Cornell University Calendar 1990–91

Fall Semester

- Friday, August 24
- Friday, August 24
- Sunday, August 26
- Tuesday–Wednesday, August 28–29
- Thursday, August 30
- Monday, September 10
- Friday, September 21
- Friday–Sunday, November 2–4
- Saturday, October 6
- Wednesday, October 10
- Wednesday–Wednesday, October 24–November 7
- Saturday, October 27
- Wednesday, November 21
- Sunday–Wednesday, December 9–12
- Thursday, December 13
- Saturday, December 22
- Saturday, December 22

- Residence halls open
- Freshman Orientation begins
- New-student orientation begins
- Registration–Course exchange
- Instruction begins, 7:30 a.m.
- Add/drop/change period begins
- Physical education classes begin
- Last day of add/drop/change period
- New-Student Parents’ Weekend
- Fall recess: instruction suspended, 1:10 p.m.
- Instruction resumes, 7:30 a.m.
- Pre-course enrollment for spring 1990
- Homecoming Weekend
- Thanksgiving recess: instruction suspended, 1:10 p.m.
- Instruction resumes, 7:30 a.m.
- Instruction ends, 1:10 p.m.
- Study period
- Final examinations begin
- Final examinations end
- Residence halls close

Winter Session

Variable periods between Tuesday, December 25, and Friday, January 18

Spring Semester

- Sunday, January 13
- Monday, January 14
- Thursday–Friday, January 17–18
- Monday, January 21
- Monday, February 4
- Friday, February 15
- Saturday, March 16
- Monday, March 25
- Wednesday–Wednesday, March 27–April 10
- Saturday, May 4
- Sunday–Wednesday, May 5–8
- Thursday, May 9
- Saturday, May 18
- Sunday–Saturday, May 19–25
- Sunday, May 26
- Wednesday, June 5–Friday, June 28
- Monday, June 17–Tuesday, August 13
- Monday, July 1–Tuesday, August 13

- Residence halls open for continuing students
- Residence halls open for new students
- Registration–Course exchange
- Instruction begins, 7:30 a.m.
- Add/drop/change period begins
- Physical education classes begin
- Last day of add/drop/change period
- Spring recess: instruction suspended, 1:10 p.m.
- Instruction resumes, 7:30 a.m.
- Pre-course enrollment for fall 1990
- Instruction ends, 1:10 p.m.
- Study period
- Final examinations begin
- Final examinations end
- Residence halls close (students who are graduating may stay through Commencement Day)
- Senior Week
- Commencement

Summer Session 1991

- Three-Week Session
- Eight-Week Session
- Six-Week Session

The dates shown in this calendar are subject to change at any time by official action of Cornell University.

In this calendar, the university has scheduled classes, laboratories, and examinations on religious holidays. It is the intent of the university that students who miss those activities because of religious observances be given adequate opportunity to make up the missed work.

The Law School and College of Veterinary Medicine calendars differ in a number of ways from the university calendar. Please consult the catalogs of those colleges for details.

The courses and curricula described in this catalog, and the teaching personnel listed herein, are subject to change at any time by official action of Cornell University.

The rules and regulations stated in this catalog are for information only and in no way constitute a contract between the student and Cornell University. The university reserves the right to change any regulation or requirement at any time.

This catalog was produced by Media Services at Cornell University.
University Administration

Frank H. T. Rhodes, president
Robert Barker, senior provost and chief operating officer
Malden C. Nesheim, provost
G. Tom Shires, provost for medical affairs
James E. Morley, Jr., senior vice president
John F. Burness, vice president for university relations
William D. Gurowitz, vice president for campus affairs
M. Stuart Lynn, vice president for information technologies
Larry I. Palmer, vice president for academic programs
Richard M. Ramin, vice president for public affairs
Frederick A. Rogers, vice president for finance and treasurer
Norman R. Scott, vice president for research and advanced studies
John R. Wiesenfeld, vice president for planning
Walter J. Relihan, Jr., university counsel and secretary of the corporation
James A. Sanderson, chief investment officer
Joycelyn R. Hart, associate vice president for human relations
Walter R. Lynn, dean of the University Faculty
Introduction

Courses of Study contains information primarily concerned with academic resources and procedures, college and department programs, interdisciplinary programs, and undergraduate and graduate course offerings of the university. Not included in this publication is information concerning the Medical College and the Graduate School of Medical Sciences, located in New York City. Information about other important areas is available from other offices of the university or is included in publications distributed to students. Students should consult with their college's advising office for specific information on academic policies and procedures, degree programs and requirements. The following is a list of offices and information sources for specific information:

Undergraduate admissions. Information pertinent to prospective applicants is available from the Undergraduate Admissions Office, 410 Thurston Avenue, Ithaca, New York 14850-9988 (telephone: 607/255-5241).

Graduate School. Information pertaining to admission to the Graduate School may be obtained by contacting the Graduate School, 100 Sage Graduate Center, Ithaca, New York 14853-6201 (telephone: 607/255-4884).

Medical College and Graduate School of Medical Sciences. Information regarding admissions is available from the Office of Admissions, 307 Day Hall, Ithaca, New York 14853-2801 (telephone: 212/746-1067).

Dining and residence halls. Information is sent to matriculating students and is available from Cornell Dining, 1140 North Balch Hall, Ithaca, New York 14853-1401.

EXPLANATION OF COURSE NUMBERING SYSTEM

The course levels have been assigned as follows:

100-level course—introductory course, open to all qualified students
200-level course—lower-division course, open to freshmen and sophomores, may have prerequisites
300-level course—upper-division course, open to juniors and seniors, prerequisites
400-level course—upper-division course, open to seniors and graduate students, 200- and 300-level course prerequisites or equivalent
500-level course—professional level (e.g., management, law, veterinary medicine)
600-level course—graduate-level course, open to upper-division students
700-level course—graduate-level course
800-level course—master's level, thesis, research
900-level course—doctoral level, thesis, research

The list of courses that follows is arranged in two broad groups.

Group 1: Divisions that offer both undergraduate and graduate-level courses

Agriculture and Life Sciences
Architecture, Art, and Planning
Arts and Sciences
Biological Sciences
Engineering
Hotel Administration
Human Ecology

Group 2: Graduate professional divisions

Law
Management
Veterinary Medicine

There are no courses offered by the Graduate School as a unit; graduate-level courses are contained in the various departments that offer the instruction.

Within each division, courses are generally arranged in alphabetical order by department and in numerical order within the departments. All courses, 0-999 are briefly described for those divisions (group 1) offering instruction to both undergraduate and graduate students. Courses in the graduate professional divisions (group 2) are designated by number and title only.

It is not possible to keep this single-volume course list completely up-to-date. The most current information regarding course schedules, sections, rooms, credits, and registration procedures may be found in the Course and Time Roster and the Course and Room Roster, each issued twice a year by the Office of the University Registrar. Students are also advised to consult the individual college and department offices for up-to-date course information.

ACCREDITATION

Cornell University is accredited by the Middle States Association of Colleges and Schools. Requests to review documentation supporting its accreditation should be addressed to the Vice President of Academic Programs, Cornell University, 307 Day Hall, Ithaca, New York 14853-2801.
Advanced Placement of Freshmen

The final decision for awarding advanced placement credit at Cornell rests with each individual college. The appropriate department of instruction within the university sets the standards of achievement that must be met for advanced placement and recommends AP credit for those who meet the standards. This recommendation is almost always based on some examination score. For policies governing advanced placement in a specific college, see the academic information section of that college. Students need not accept advanced placement. They may repeat the course, thereby relinquishing the advanced placement credit.

The Advanced Placement (AP) Program of the College Entrance Examination Board (CEEB) is the best known and most generally used of the programs that provide students with an opportunity to document participation in a college-level curriculum at the secondary level.

Advanced placement examinations. Examinations sponsored by the Advanced Placement Program of the College Entrance Examination Board are considered. Entering freshmen should have their scores sent to their college or school office (see the list at the end of this section). Placement and credit on the basis of these examinations will usually be determined during the summer, and students will be notified before course scheduling.

Departmental advanced standing examinations. In certain subjects, students may also qualify for advanced placement or credit, or both, on the basis of departmental examinations given on campus during orientation week. A schedule of these examinations will appear in the orientation booklet that will be mailed to entering students in late summer. The departments that award advanced placement and credit on the basis of CEEB Advanced Placement Examinations or departmental examinations are shown below.

Transfer of credit. Entering freshmen who have completed college courses for which they want to receive credit toward their Cornell degree should send transcripts and course descriptions to their college or school office (see the list at the end of this section). The award of credit or placement for such courses is determined by the appropriate department according to individual school and college guidelines. Because policy for using advanced placement credit varies according to each college's or school's professional and academic goals, students should consult their college or school office to determine how they may use such credit.

Foreign credentials. Information regarding Cornell's advanced standing policy for foreign credentials may be obtained by contacting the Associate Director of International Admissions, Cornell University, 410 Thurston Avenue, Ithaca, New York 14850-2488, U.S.A. Students holding foreign credentials who feel they may be eligible for advanced standing consideration should contact the International Students and Scholars Office before enrollment for clarification of the advanced standing policy.

Written inquiries. Many department, school, and college offices encourage students to contact them with any questions they may have. Addresses given in the following sections may be completed by adding Ithaca, New York 14853.

Forwarding of scores and transcripts. Entering freshmen should have their advanced placement test scores sent to their school or college office.

College of Agriculture and Life Sciences: M. B. Mullenhoff 192 Roberts Hall
College of Architecture, Art, and Planning: Donna Kuhar B2 West Sibley
College of Arts and Sciences: Michele T. Crane M46 Goldwin Smith Hall
College of Engineering: Richard K. Mosher 170 Olin Hall
School of Hotel Administration: Mary Mills 138 Statler Hall
College of Human Ecology: Joyce H. McAllister 146 Van Rensselaer Hall
School of Industrial and Labor Relations: Virginia W. Freeman 101 Ives Hall

BIOLICAL SCIENCES

The Division of Biological Sciences grants advanced placement credits and exemption from introductory biology courses based on superior performance on the CEEB Advanced Placement Examination in biology.

Any student who earns a score of 5 on this examination may elect to receive eight credits and be exempted from all introductory biology courses.

Students not majoring in biological sciences who score a 4 or 5 may receive, respectively, six or eight advanced placement credits. This will satisfy the distribution requirement in biological sciences for students in the College of Human Ecology, half of the distribution requirement in biological sciences for students in the College of Arts and Sciences, and a portion of the group B distribution requirement for students in the College of Agriculture and Life Sciences.

Biological sciences majors who receive a score of 5 may receive eight credits and be exempt from all introductory biology courses or elect to receive four credits and select one of the options allowed for majors with a score of 4. The student receiving a score of 4 must fulfill the introductory biology requirement by taking Biological Sciences 101-102, 101/103, 102/104, or 103-104 (Biological Sciences, Lectures and Laboratory). These students should consult information available in the course office (1140 Comstock Hall) and in the Biology Center (216-222 Simson Hall) to determine which semester to take to complete the introductory biology requirement.

For students in doubt, Biological Sciences 101/103 is advised. These students will receive a total of eight introductory biology credits (four advanced placement credits plus four course credits).

CHEMISTRY

The Department of Chemistry offers two sequences that satisfy prerequisites for further work in the department: Chemistry 207–208, an eight-credit sequence that includes qualitative analysis, and Chemistry 215–216, a nine-credit sequence that includes qualitative and quantitative analysis.

Freshmen may qualify for advanced placement and advanced standing credits in chemistry by satisfactory performance on the CEEB Advanced Placement Examination in chemistry or by passing an advanced standing examination offered by the department. A score of 5 on the CEEB examination entitles a student to four credits. A student may earn four or eight credits by suitable performance on the departmental examination. To take the departmental examination students must sign up, on the morning of the day of the examination, with Dr. Stanley Marcus, in 156 Baker Laboratory.

The specific course in which a student will register after having received a certain advanced placement standing will be decided by consultation between the student, his or her adviser, and the professors teaching the courses. Students receiving advanced placement who are interested in a major in chemistry or a related science should consider taking Chemistry 215–216 and should consult the Chemistry 215 instructor.

CLASSICS

For advanced placement and credit in Latin and Greek, students should consult the Department of Classics, Cornell University, 120 Goldwin Smith Hall.

Latin. Credit and placement are determined on the basis of a departmental examination. A student who is permitted to register in a 300-level course will be given six advanced placement credits.

Greek and Modern Greek. Credit and placement are determined on the basis of a departmental examination.

COMPUTER SCIENCE

Students who receive a score of 4 or 5 on the CEEB Advanced Placement Examination in computer science will receive four advanced placement credits and may take Computer Science 211, 212, or 222 (provided, in the case of Computer Science 222, the mathematics prerequisites are met). These credits may be used to satisfy the requirement in computer programming for students in the College of Engineering or half the distribution requirement in mathematics for students in the College of Arts and Sciences.

Freshmen may also earn four credits by suitable performance on a departmental examination to be given during orientation week. Students who receive a score of 3 on the CEEB Advanced Placement Examination may choose, at their own risk and in consultation with their advisers, to go directly into a 200-level course without receiving credit for Computer Science 100. These students are strongly urged to take the departmental placement test. To take the departmental
The English department will grant 3 credits to students who score 4 or 5 on the CEEB Advanced Placement Examination. The credits are granted automatically: no application to the department is required.

Students who receive scores of 700 or better on the CEEB Advanced Placement Examination in English composition, 700 or better on the CEEB College Placement Test in English literature, or 4 or 5 on the CEEB Advanced Placement Examination are eligible to enroll, space permitting, in the following English freshman writing seminars: 270, 271, 272.

Advanced placement credits may not be used to fulfill requirements of the English major or distribution requirements of the College of Arts and Sciences.

The Department of History will grant four credits to students who score 4 or 5 on the CEEB Advanced Placement Examination in European history and four credits to those with such scores in the American history examination. Such credits are granted automatically, without application to the department.

These credits may not be used to fulfill requirements of the history major or distribution requirements of the College of Arts and Sciences.

The Department of History will grant 3 credits to students who score 4 or 5 on the CEEB Advanced Placement Examination in European history and four credits to those with such scores in the American history examination. Such credits are granted automatically, without application to the department.

These credits may not be used to fulfill requirements of the history major or distribution requirements of the College of Arts and Sciences.

The English department will grant 3 credits to students who score 4 or 5 on the CEEB Advanced Placement Examination. The credits are granted automatically: no application to the department is required.

Students who receive scores of 700 or better on the CEEB Advanced Placement Examination in English composition, 700 or better on the CEEB College Placement Test in English literature, or 4 or 5 on the CEEB Advanced Placement Examination are eligible to enroll, space permitting, in the following English freshman writing seminars: 270, 271, 272.

Advanced placement credits may not be used to fulfill requirements of the English major or distribution requirements of the College of Arts and Sciences.

The Department of History will grant four credits to students who score 4 or 5 on the CEEB Advanced Placement Examination in European history and four credits to those with such scores in the American history examination. Such credits are granted automatically, without application to the department.

These credits may not be used to fulfill requirements of the history major or distribution requirements of the College of Arts and Sciences.

The English department will grant 3 credits to students who score 4 or 5 on the CEEB Advanced Placement Examination. The credits are granted automatically: no application to the department is required.

Students who receive scores of 700 or better on the CEEB Advanced Placement Examination in English composition, 700 or better on the CEEB College Placement Test in English literature, or 4 or 5 on the CEEB Advanced Placement Examination are eligible to enroll, space permitting, in the following English freshman writing seminars: 270, 271, 272.

Advanced placement credits may not be used to fulfill requirements of the English major or distribution requirements of the College of Arts and Sciences.

The Department of History will grant four credits to students who score 4 or 5 on the CEEB Advanced Placement Examination in European history and four credits to those with such scores in the American history examination. Such credits are granted automatically, without application to the department.

These credits may not be used to fulfill requirements of the history major or distribution requirements of the College of Arts and Sciences.

The English department will grant 3 credits to students who score 4 or 5 on the CEEB Advanced Placement Examination. The credits are granted automatically: no application to the department is required.

Students who receive scores of 700 or better on the CEEB Advanced Placement Examination in English composition, 700 or better on the CEEB College Placement Test in English literature, or 4 or 5 on the CEEB Advanced Placement Examination are eligible to enroll, space permitting, in the following English freshman writing seminars: 270, 271, 272.

Advanced placement credits may not be used to fulfill requirements of the English major or distribution requirements of the College of Arts and Sciences.

The Department of History will grant four credits to students who score 4 or 5 on the CEEB Advanced Placement Examination in European history and four credits to those with such scores in the American history examination. Such credits are granted automatically, without application to the department.

These credits may not be used to fulfill requirements of the history major or distribution requirements of the College of Arts and Sciences.

The English department will grant 3 credits to students who score 4 or 5 on the CEEB Advanced Placement Examination. The credits are granted automatically: no application to the department is required.

Students who receive scores of 700 or better on the CEEB Advanced Placement Examination in English composition, 700 or better on the CEEB College Placement Test in English literature, or 4 or 5 on the CEEB Advanced Placement Examination are eligible to enroll, space permitting, in the following English freshman writing seminars: 270, 271, 272.

Advanced placement credits may not be used to fulfill requirements of the English major or distribution requirements of the College of Arts and Sciences.
Advanced Placement Program (CEEB) Examinations
Summary of Credit and Placement

<table>
<thead>
<tr>
<th>Subject</th>
<th>Score</th>
<th>Advanced Placement Credit</th>
<th>Placement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arabic</td>
<td></td>
<td></td>
<td>Department of Near Eastern Studies determines credit and placement based on departmental examination. Placement out of all introductory courses. Students may select one of the options allowed for majors with a score of 4. 4 AP credits awarded after completion of 101–102, 101–103, 102–104, or 103–104. Consult department to determine which semester to take to complete introductory biology. Placement out of all introductory courses. Placement out of 109–110. Does not always satisfy the prerequisite for second- and third-level courses in biology.</td>
</tr>
<tr>
<td>Biology†</td>
<td>5 (majors)*</td>
<td>8 credits or 4 credits</td>
<td>Department determines placement.</td>
</tr>
<tr>
<td></td>
<td>4 (majors)*</td>
<td>4 credits</td>
<td>Department determines placement.</td>
</tr>
<tr>
<td></td>
<td>5 (nonmajors)</td>
<td>8 credits</td>
<td>Placement out of all introductory courses. Students may select one of the options allowed for majors with a score of 4. 4 AP credits awarded after completion of 101–102, 101–103, 102–104, or 103–104. Consult department to determine which semester to take to complete introductory biology. Placement out of all introductory courses. Placement out of 109–110. Does not always satisfy the prerequisite for second- and third-level courses in biology.</td>
</tr>
<tr>
<td></td>
<td>4 (nonmajors)</td>
<td>6 credits</td>
<td>Placement out of all introductory courses. Students may select one of the options allowed for majors with a score of 4. 4 AP credits awarded after completion of 101–102, 101–103, 102–104, or 103–104. Consult department to determine which semester to take to complete introductory biology. Placement out of all introductory courses. Placement out of 109–110. Does not always satisfy the prerequisite for second- and third-level courses in biology.</td>
</tr>
<tr>
<td>Chemistry†</td>
<td>5</td>
<td>4 credits</td>
<td>Department determines placement.</td>
</tr>
<tr>
<td>Computer science†</td>
<td>4,5</td>
<td>4 credits</td>
<td>Department determines placement.</td>
</tr>
<tr>
<td>Economics</td>
<td>4,5</td>
<td>3 credits</td>
<td>Department determines placement.</td>
</tr>
<tr>
<td>English</td>
<td>4,5</td>
<td>3 credits</td>
<td>Department determines placement.</td>
</tr>
<tr>
<td>French language</td>
<td>4,5</td>
<td>3 credits</td>
<td>Department of Modern Languages and Linguistics determines placement. Students may earn additional credit by taking CASE examination.†</td>
</tr>
<tr>
<td>French literature</td>
<td>4,5</td>
<td>3 credits (and proficiency)</td>
<td>Department of Romance Studies determines placement. Students may earn additional credit by taking CASE examination.†</td>
</tr>
<tr>
<td>German language</td>
<td>4,5</td>
<td>3 credits</td>
<td>Department of Modern Languages and Linguistics determines placement. Students may earn additional credit by taking CASE examination.†</td>
</tr>
<tr>
<td>German literature</td>
<td>4,5</td>
<td>3 credits (and proficiency)</td>
<td>Department of German Studies determines placement.</td>
</tr>
<tr>
<td>American government and politics</td>
<td>4,5</td>
<td>3 credits</td>
<td>Placement out of Government.</td>
</tr>
<tr>
<td>Greek</td>
<td></td>
<td></td>
<td>Department of Classics determines credit and placement based on departmental examination. Placement out of all introductory courses. Students may select one of the options allowed for majors with a score of 4. 4 AP credits awarded after completion of 101–102, 101–103, 102–104, or 103–104. Consult department to determine which semester to take to complete introductory biology. Placement out of all introductory courses. Placement out of 109–110. Does not always satisfy the prerequisite for second- and third-level courses in biology.</td>
</tr>
<tr>
<td>Hebrew</td>
<td>4,5</td>
<td>3 credits</td>
<td>Department of Near Eastern Studies determines placement.</td>
</tr>
<tr>
<td>American history</td>
<td>4,5</td>
<td>4 credits</td>
<td>Department of Modern Languages and Linguistics determines placement. Students may earn additional credit by taking CASE examination.†</td>
</tr>
<tr>
<td>European history</td>
<td>4,5</td>
<td>4 credits</td>
<td>Department of Modern Languages and Linguistics determines placement. Students may earn additional credit by taking CASE examination.†</td>
</tr>
<tr>
<td>History of art</td>
<td>4,5</td>
<td>3 credits</td>
<td>Department of Modern Languages and Linguistics determines placement. Students may earn additional credit by taking CASE examination.†</td>
</tr>
<tr>
<td>Italian literature</td>
<td>4,5</td>
<td>3 credits (and proficiency)</td>
<td>Department of Romance Studies determines placement.</td>
</tr>
<tr>
<td>Latin</td>
<td>4,5</td>
<td>3 credits (and proficiency)</td>
<td>Department of Romance Studies determines placement.</td>
</tr>
<tr>
<td>Mathematics BC (excluding engineering students)</td>
<td>4,5</td>
<td>8 credits</td>
<td>Placement out of 111, 112. Permission to take 221, 293, or 213. Placement out of 111. No advanced placement credit for students who take 111. Permission to take 112 or 192.</td>
</tr>
<tr>
<td>Mathematics AB (excluding engineering students)</td>
<td>4,5</td>
<td>4 credits</td>
<td>Placement out of 111. Permission to take 112, 122, or 192. Placement out of 111. Permission to take 112 or 192. Students are strongly urged to take the mathematics placement examination.</td>
</tr>
<tr>
<td>Music</td>
<td></td>
<td></td>
<td>Department of Classics determines credit and placement based on departmental examination. Placement out of all introductory courses. Students may select one of the options allowed for majors with a score of 4. 4 AP credits awarded after completion of 101–102, 101–103, 102–104, or 103–104. Consult department to determine which semester to take to complete introductory biology. Placement out of all introductory courses. Placement out of 109–110. Does not always satisfy the prerequisite for second- and third-level courses in biology.</td>
</tr>
<tr>
<td>Physics B†</td>
<td>4,5</td>
<td>8 credits</td>
<td>Placement out of Physics 101–102.</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>4 credits</td>
<td>Placement out of Physics 101.</td>
</tr>
<tr>
<td>Physics B, and Mathematics BC†</td>
<td>4,5</td>
<td>4 credits in physics</td>
<td>Student may choose placement out of Physics 112 or 207 instead or Physics 101–102.</td>
</tr>
<tr>
<td>or Mathematics AB†</td>
<td>5</td>
<td>4 credits in physics</td>
<td>Student may choose placement out of Physics 112 or 207 instead or Physics 101–102.</td>
</tr>
<tr>
<td>Physics C—Mechanics‡</td>
<td>4,5</td>
<td>4 credits</td>
<td>Student may choose placement out of Physics 112 or 207, or placement into Physics 116 with no AP credit. For more information, contact department representative.</td>
</tr>
<tr>
<td>Physics C—Electricity and Magnetism‡</td>
<td>5</td>
<td>4 credits</td>
<td>Student may choose 4 credits for Physics 208 (or 213) or placement into Physics 217 with no AP credit. For more information, contact department representative.</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>4 credits</td>
<td>Student may choose 4 credits for Physics 208 or placement into Physics 217 with no AP credit. For more information, contact department representative.</td>
</tr>
<tr>
<td>Psychology</td>
<td>4,5</td>
<td>3 credits</td>
<td>Department of Modern Languages and Linguistics determines placement. Students may earn additional credit by taking CASE examination.†</td>
</tr>
<tr>
<td>Sociology</td>
<td></td>
<td></td>
<td>Department of Modern Languages and Linguistics determines placement. Students may earn additional credit by taking CASE examination.†</td>
</tr>
<tr>
<td>Spanish language</td>
<td>4,5</td>
<td>3 credits</td>
<td>Department of Modern Languages and Linguistics determines placement. Students may earn additional credit by taking CASE examination.†</td>
</tr>
<tr>
<td>Spanish literature</td>
<td>4,5</td>
<td>3 credits (and proficiency)</td>
<td>Department of Romance Studies determines placement.</td>
</tr>
<tr>
<td>Turkish</td>
<td></td>
<td></td>
<td>Department of Near Eastern Studies determines credit and placement based on departmental examination. Placement out of all introductory courses. Students may select one of the options allowed for majors with a score of 4. 4 AP credits awarded after completion of 101–102, 101–103, 102–104, or 103–104. Consult department to determine which semester to take to complete introductory biology. Placement out of all introductory courses. Placement out of 109–110. Does not always satisfy the prerequisite for second- and third-level courses in biology.</td>
</tr>
</tbody>
</table>

*Biological sciences majors and other students who expect to take advanced biology courses. These students will receive a total of 8 introductory biology credits (4 advanced placement credits and 4 course credits).
†Cornell Advanced Standing Examination. Contact the Department of Modern Languages and Linguistics, 203 Morrill Hall.
‡In the College of Arts and Sciences, AP credit may be used to satisfy half the distribution requirement in science.
NEAR EASTERN STUDIES
The Department of Near Eastern Studies will grant three credits to students with a score of 4 or 5 on the Advanced Placement Examination in Hebrew. For advanced placement and credit in Arabic and Turkish, students should consult the Department of Near Eastern Studies, 360 Rockefeller Hall. Advanced placement and credit are determined by departmental examination.

PHYSICS
Advanced placement and credit are awarded on the basis of the CEEB Advanced Placement Examination in physics (physics B or physics C), certain international examinations, or the departmental examination (which may be taken during orientation week or at other times as arranged). For information about the departmental examination, students should consult Professor R. Cotts, 522 Clark Hall.

Physics B. Students earning a score of 4 or 5 may receive eight credits for Physics 101 and 102. Those earning a score of 5 in physics B with a score of 4 or 5 in calculus BC or a score of 5 in calculus AB may choose to accept four credits in Physics 112 or 207 instead of eight credits in Physics 101 and 102. Those earning a score of 3 will receive four credits in Physics 101.

Physics C.
1) C—Mechanics Students earning a score of 4 or 5 may receive four credits for Physics 112 or 207, or for placement into Physics 116 with no AP credit.

2) C—Electricity and Magnetism Students earning a score of 5 will be eligible for four credits for Physics 208 or 213, or for placement into Physics 217 with no AP credit. Students earning a score of 4 will be eligible for four credits for Physics 208 or placement into Physics 217 with no AP credit. Students with scores of 4 or 5 and who have questions may first meet with the department representative, Professor R. Cotts, 522 Clark Hall, for advice on making a selection.

Advanced placement into a next-in-sequence course depends on the completion of the appropriate mathematics prerequisites before enrolling. To qualify for advanced placement credit, it is not necessary to continue the study of physics.

Required information and advice may be obtained from Professor R. Cotts, 522 Clark Hall, or from the Department of Physics, Cornell University, 109 Clark Hall.

PSYCHOLOGY
Students who scored 4 or 5 on the CEEB College-Level Examination Program psychology test may receive three advanced placement credits in psychology. Those interested in taking further courses in psychology should consult a faculty member in the Department of Psychology, Cornell University, 232 Uris Hall.

Advanced placement based on the CEEB test may not be used to satisfy the distribution requirement in the College of Arts and Sciences. Credit toward the requirements of a major in psychology will depend on the recommendation of the student’s major adviser.

ROMANCE STUDIES (FRENCH, ITALIAN, AND SPANISH LITERATURE)
The Department of Romance Studies grants three credits to students with a score of 4 or 5 on the Advanced Placement Examination in French, Italian, or Spanish literature or in French or Spanish language.

For information about the College Placement Test, see "Modern Languages," above.

University Registration

University registration is the process by which the university registrar and colleges certify the eligibility of students to enroll in courses and to purchase or use a variety of services available at the university, such as CornellCard, Co-op dining, libraries, special bus passes, and housing. University registration includes the issue and validation of the student identification card and the collection of information needed for the student directory and state and federal reports. University registration is based on the student’s clearing past and current financial obligations by the date posted on the bursar’s bill. ID validation and college registration are held on the dates stated in the university calendar at a time and place announced well in advance of the beginning of each semester.

REQUIRED IMMUNIZATION
Before registration at the university all students must be prepared to present proof of adequate immunization against diphtheria, tetanus, rubella, measles, and poliomyelitis.

LATE REGISTRATION
A student clearing his or her financial obligations after the stated date on the bursar’s bill is considered late. Late registrants are assessed a finance charge on the bursar’s bill.

The university does not permit after-the-fact registration in which persons attend classes and pass courses before seeking to register and receive official course credit.

The university reserves the right to require unauthorized unregistered persons who attend classes or in other ways seek to exercise student privileges to leave the university premises. The university registrar will notify the appropriate college or school about such cases and ask that office to contact the person concerned.

COURSE ENROLLMENT
Course enrollment for each semester at Cornell takes place partway through the preceding semester. Dates are announced in advance and are usually posted in the school and college offices. Each college or school notifies students about special procedures. Students are often expected to meet with their advisers during this period to affirm that the courses they plan to take will ensure satisfactory progress toward a degree. Students complete a course enrollment form, then return the form to their college office. Each student is sent a course confirmation statement listing the courses processed from the enrollment form. Class schedules are distributed later by the college offices, often during the same days as university registration.

New students and transfer students are sent course enrollment instructions by their college offices before they arrive on campus.

Procedures vary from college to college.

Students who fail to submit a course enrollment form during the designated period may be charged a late fee. The fees are listed in the chart in the following section.

COURSE DROP/ADD/CHANGE PERIOD
Students may adjust their schedules during drop/add/change periods. The length of the periods varies according to colleges. A form is completed by the student and signed by both the student’s adviser and an appropriate representative of the department offering the course (an instructor, department staff member, or college registrar, depending on the college). The completed and signed form must be returned to the student’s college office to be processed. See the chart on the following page for the course drop/add/change fee.
INTERNAL TRANSFERS

Transfer from one undergraduate unit to another is not guaranteed. A student in good standing may apply to transfer from one college to another within the university. It is necessary for an internal transfer to inform the admitting college of the acceptance of admission within seven days of the offer of admission. Students interested in transfer within the university should consult with the appropriate school or college office, or the Division of Unclassified Students, 220 Day Hall (phone: 255-4386).

DIVISION OF UNCLASSIFIED STUDENTS

The Division of Unclassified Students (DUS) assists Cornell undergraduates in transferring to colleges of the university when direct internal transfer is not possible. The division also serves as a counseling agency for students whose academic and career goals have changed. Such students are advised about alternatives within the Cornell system.

To apply to the division, students must:
1) Make an appointment for an interview in DUS (phone: 255-4386)
2) Complete the DUS application form and return it to the division office, 220 Day Hall
3) Submit application for transfer coupons to their college registrar, requesting transfer to DUS

Candidates are admitted to the division when, in the judgment of the DUS Administrative Committee, there is reasonable evidence that a transfer can be accomplished and that the proposed program is consistent with the student’s stated objectives. Students are admitted for one semester but may be allowed to continue in the division for a second term if that is necessary and the student is making progress toward transfer.

Bursar Information

TUITION, FEES, AND EXPENSES

Tuition for Academic Year 1990-91

<table>
<thead>
<tr>
<th>Academic Unit</th>
<th>Late Course Enrollment Fee</th>
<th>Late Course Drop/Add/Change Fee</th>
</tr>
</thead>
<tbody>
<tr>
<td>College of Agriculture and Life Sciences</td>
<td>No fee</td>
<td>No fee</td>
</tr>
<tr>
<td>College of Architecture, Art, and Planning</td>
<td>$10</td>
<td>$10*</td>
</tr>
<tr>
<td>College of Arts and Sciences</td>
<td>$10*</td>
<td>$10*</td>
</tr>
<tr>
<td>College of Engineering Graduate School</td>
<td>$10</td>
<td>$10</td>
</tr>
<tr>
<td>School of Hotel Administration</td>
<td>No fee</td>
<td>No fee</td>
</tr>
<tr>
<td>College of Human Ecology</td>
<td>$10</td>
<td>$10*</td>
</tr>
<tr>
<td>School of Industrial and Labor Relations</td>
<td>No fee</td>
<td>No fee</td>
</tr>
<tr>
<td>Johnson Graduate School of Management</td>
<td>$10</td>
<td>$10</td>
</tr>
<tr>
<td>Athletics and physical education</td>
<td>$30</td>
<td>$50</td>
</tr>
<tr>
<td>Summer session and extramural courses</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>Division of Unclassified Students</td>
<td>No fee</td>
<td>No fee</td>
</tr>
<tr>
<td>Veterinary medicine</td>
<td>No fee</td>
<td>No fee</td>
</tr>
</tbody>
</table>

*Consult the college office for special considerations and requirements.
†Consult the Summer Session catalog and the Division of Extramural Study brochure for fees.

AUDITING COURSES

Summer school and extramural students may officially register as visitors (auditors) in courses and have this entered on their permanent records if their attendance is reported as satisfactory. Graduate students may register for courses as auditors but will not have the courses listed on their transcripts. Undergraduates may not register to audit courses.

LEAVES AND WITHDRAWALS

A leave of absence must be requested from the college in which the student is enrolled. A leave of absence is granted for a specified time, after which the student is expected to return to resume course work. The student should inform the college of enrollment of his or her intent to return.

A student may withdraw from the university at the student’s discretion. However, a college may withdraw a student who fails to return at the end of a period of authorized leave.

Medical leaves are granted and processed through University Health Services.

Statutory Divisions

Undergraduate

- Agriculture and Life Sciences
- Human Ecology
- Industrial and Labor Relations
- New York resident $5,900
- Nonresident $10,840

Graduate

- Graduate School (with major chair in agriculture, human ecology, or industrial and labor relations) $6,800
- Graduate School—Veterinary Medicine $8,000
- Professional
 - Veterinary Medicine $9,450
 - New York resident $11,600

Summer Session (1990)

Per credit $315

Extramural Division

Per credit $360

Other Tuition and Fees

In absentia fees
- Graduate $200 per term
- Undergraduate $15 per term
- Law and Management $75 per term

Excess hours tuition rate for students in statutory units taking extra endowed credits

Per credit hour $359.06

The amount, time, and manner of payment of tuition, fees, or other charges may be changed at any time without notice.

*Residency status is determined at the time of admission by the college. Change in residency status is determined by the bursar.

Fees and Expenses

Undergraduate applicants to Cornell pay a non-refundable $50 application fee when submitting an application for admission. The graduate application fee is $50.

Tuition Refund Policy

Amounts personally paid for tuition may be refunded if the student requests a leave of absence or withdrawal from the office of the dean of his or her college of enrollment. The date of this request will determine the tuition liability for the semester. Students who terminate their registration with the university during a fall or spring semester in this manner will be charged tuition from the university registration day through the date of their request as follows: first six days of the semester (including university registration day), no charge; seventh day of the semester, 10 percent; second week, 20 percent; third week, 30 percent; fourth week, 40 percent; fifth week, 60 percent; sixth week, 80 percent; seventh week to the end of the semester, 100 percent.

Repayment policy. Students receiving financial aid from the university who withdraw during a term will have their aid reevaluated, possibly necessitating repayment of a portion of aid received. Repayment to aid accounts depends on the type of aid received, government regulations, and the period of time in attendance. A partial semester will generally count as one of the eight semesters of financial aid eligibility normally allowed a student.
BILLING AND PAYMENT

Billing

Tuition and room and board charges will be billed in July and December and must be paid prior to registration. The due date for these semester bills will normally be five to ten working days prior to registration day. All other charges, credits, and payments will appear on monthly statements mailed before the twenty-fifth of every month. It is possible that some charges will not be listed on the first bill and will appear on a subsequent monthly bill. A student must be prepared to pay any charges appearing on a subsequent bill even though the student receives a financial aid stipend before the charges are billed.

All bills are due by the date stated on the bill; all payments must be received by that date to avoid finance charges. Payments are not processed by postmark.

Please inform the Office of the Bursar of any change in billing address. Address changes made at other offices will not change the billing address. The address initially used on billing statements will be the home address as listed on each student's application for admission.

Payments

An individual who has outstanding indebtedness to the university will not be allowed to register or reregister in the university, receive a transcript of record, have academic credits certified, be granted a leave of absence, or have a degree conferred. If students' bills show a previous unpaid balance, they must arrange for payment by August 10 if they plan to register for the fall semester. University policy precludes the use of any current financial aid for payment of past-due charges.

The Office of the Bursar acts as a clearinghouse for student charges and credits that are placed directly on a student's bill by several departments and offices of the university. Since the Office of the Bursar does not have detailed records concerning many items that appear on a bill, students should contact the office involved if they have questions.

For further information, students should contact the Office of the Bursar, Cornell University, 260 Day Hall, Ithaca, New York 14853-2801 (telephone: 607/255-2336).

ACCIDENT AND SICKNESS INSURANCE

The accident and sickness insurance charge on the July billing statement is for insurance for hospitalizations, surgical fees, and major medical coverage for the period of August 28, 1990, through August 27, 1991. The cost of this insurance is lower than the average cost of comparable coverage under other group accident and health insurance policies. A brochure is included with the July bill.

For those who do not want medical insurance coverage, a medical insurance waiver form (included with the bursar's statement mailed in mid-July) must be completed and returned no later than the date specified on the waiver form. Waivers cannot be processed after this date. If a waiver form is lost or destroyed, a replacement can be obtained by contacting the Gannett Health Center (telephone: 607/255-6363).

University Requirements for Graduation

For degree requirements such as residency, number of credits, distribution of credits, and grade averages, see the individual requirements listed by each college or school or contact the college office.

PHYSICAL EDUCATION

All undergraduate students must complete two terms of work in physical education unless exempted from this requirement for medical or other special reasons or by virtue of advanced standing on admission. For transfer students the requirement is reduced by the number of terms satisfactorily completed, not necessarily including physical education, in a college of recognized standing before entering Cornell.

Credit in physical education may be earned by participating in courses offered by the Department of Athletics and Physical Education, participating on an intercollegiate athletic team as a competitor or manager, or performing in the marching band.

Physical education is a requirement of the first two terms at Cornell. Students must register for it in each term, except those in which postponements are granted, until the requirement is satisfied.

Temporary postponements may be granted on the basis of physical disability, schedule conflicts, or excessive work load (employment exceeding twenty hours a week). The Gannett Health Center can provide certifications based on health, and the Financial Aid Office can provide certifications of employment. Students should see the Department of Athletics and Physical Education to establish postponements or waiver of the requirement. Questionable or unusual cases may be resolved by petition to the Faculty Advisory Committee on Athletics and Physical Education.

Swim test. All new students who do not pass a basic seventy-five-yard swim test are required to include swimming in their program of physical education unless they are excused by Gannett Health Center. All nonswimmers are required to register in beginning swim classes.

STUDENT RESPONSIBILITIES

Students are responsible for meeting all requirements for the courses in which they are enrolled, as defined by the faculty members teaching the courses. It is also the student's responsibility to be aware of the specific major, degree, distribution, college, and graduation requirements for completing his or her chosen program of studies. Students should know how far they have progressed in meeting those requirements at every stage of their academic career.
General Information

Evening preliminary examinations that will be given outside of normal class hours may be scheduled on Tuesday and Thursday evenings only, beginning at 7:30 p.m. All such examinations must be scheduled with the Examination and Room Coordinator in the Office of the University Registrar. The dates and times of these examinations are listed in the Course and Room Roster for each term. Any exception to the above regulations, other than those for evening preliminary examinations, will require permission of the dean or director of the college or school offering the course. Exceptions to the regulations on evening preliminary examinations require approval of the dean of the University Faculty. All such exceptions must include provision of special arrangements for the students for whom conflicts are generated by such an exception.

Final Examinations

Final examinations for undergraduate courses are scheduled by the Office of the University Registrar. Examinations may be one, two, or two and one-half hours in length at the discretion of the department concerned. Examinations not listed in the registrar's examination schedule will be arranged by the professor in charge and must fall within the announced examination period, except by permission of the dean of the faculty in accordance with existing faculty legislation.

Evening Examinations

Evening examinations, including makeup examinations, may be scheduled only on Tuesday and Thursday evenings and only after 7:30 p.m. without prior permission from the Office of the University Faculty. This permission is not, however, required for examinations or makeup examinations involving small numbers of students (generally thirty or less), provided that the scheduled time is acceptable to the students involved and that an alternative examination is provided for those students who have academic, athletic, or employment conflicts at the time scheduled.

Permission from the Office of the University Faculty to schedule on evenings other than Tuesdays or Thursdays or at a time prior to 7:30 p.m. will be granted only on the following conditions: (a) conditions such as the nature of the examination, room availability, a large number of conflicts, etc., justify such scheduling; and (b) an alternative time to take the examination must be provided for those students who have academic, athletic, or employment conflicts at the time scheduled.

Grading Guidelines

The official university grading system uses letter grades with pluses and minuses. Passing grades range from A+ to D-; F is failing. INC denotes a grade of incomplete, and R is the grade given at the end of the first semester of a year-long course. The grades of INC and R do not have quality-point equivalents attached.

These are the quality-point equivalents:

- A+ = 4.3
- B+ = 3.3
- C+ = 2.3
- D+ = 1.3

- A = 4.0
- B = 3.0
- C = 2.0
- D = 1.0

- A- = 3.7
- B- = 2.7
- C- = 1.7
- D- = 0.7

F = 0.0

This is how a term average is computed:

\[
\text{Total} = \frac{\sum \text{Quality Points} \times \text{Credits}}{\sum \text{Credits}}
\]

To arrive at the term average, add the products (credits x quality points) and divide by the number of credits taken. Here, 42 divided by 16 equals 2.63.

The cumulative average (an average of grades from two or more terms) equals the sum of the products of all the grades at Cornell divided by the total number of credits taken.

S-U Grades

On September 6, 1972, the University Faculty Council of Representatives passed the following legislation:

"Resolved, that:

A. the S-U system have symbol equivalents which are uniform within the university: "S" means C- or above; "U" means D+, D, D-, or failure.

B. S-U options be chosen by the student during the first three weeks of the term.

C. the Announcements and/or supplementary course registration material describing each course include a description of the course grading options, particularly if the course is graded with an exclusive S-U. Any change in grading options must be announced by the instructor within the first two weeks of the term.

D. course requirements (required reading, term paper, etc.) be the same for students electing S-U grades as for those electing letter grades."

The rules for the S-U option are further defined by each of the Academic Units. They are as follows:

Agriculture and Life Sciences. (a) Must have 100 credit hours with A, B, C, D grades.

(b) The S-U option is available only in those courses so designated in the course catalog after approval by the Educational Policy Committee. (c) Freshmen may not exercise the S-U option.

Architecture, Art, and Planning. (a) All courses specifically required for a degree excluded. Various departments may designate specific required courses where S-U will be permitted. (b) In a course designated as S or U, the entire class is so graded. The instructor must announce this decision within the first two weeks of class. (c) Where the option for S or U exists, both student and instructor must agree on the option. This agreement must be made by the end of the third week of classes on the appropriate form in the College Office. Once agreed upon, this grade option will be used for the final grade.

Arts and Sciences. (a) Courses that count toward satisfaction of major requirements should not be taken for S-U grade unless the department grants permission.

(b) Permission of instructor. (c) A minimum of 80 of the 120 hrs. required for the A.B. degree must be in courses for which the student has received letter grades.

Engineering. (a) May take one Humanities and Social Sciences, Approved, or Free Elective per term after completing first semester. (b) This option may be elected during Pre-Course Enrollment or with the written S-U option of the instructor and adviser on an add/drop form in the first 3 weeks of classes. (c) Decision irrevocable after first 3 weeks of term.

Graduate School. (a) Seminars and Thesis Research courses are usually graded S/U, and should be registered accordingly or a grade error results at semester's end. Other courses may be registered as S-U only if offered as S-U option.

Hotel. (a) Maximum of four free-elective credit hours per term. (b) Exceptions are required hotel courses or elective hotel courses offered only on S-U basis.

Human Ecology. (a) Not part of student's major. (b) May be used in the 15 hours required outside the major in Human Ecology courses. (c) Not part of 39 hours required in humanities, natural sciences, and social science. (d) A department may approve S-U grading in specific courses if approved by Educational Policies Committee. (e) Permission of the instructor. (f) Available each of last four terms with a total of four S-U courses during student's college career.

Industrial and Labor Relations. (a) This option may be elected, if available in IRLR electives, or in out-of-college electives but not including directed studies. (b) Degree requirements include a minimum of 105 lettergrade (A+ to D-) credits. (c) Student must also be in good academic standing. (d) A "U" is considered the equivalent of an "F" in determining a student's academic status. (e) Limited to two courses per term, not to exceed four hours in any one course.
STUDENT RECORDS POLICY AND THE POSTING OF GRADES

The university policy on access to and release of student records reflects those principles issued by the provost in 1969 and 1973, but it has been amended to conform with the Family Educational Rights and Privacy Act of 1974 (Buckley Amendment). The law gives students some important rights: the right to inspect their records, the right to challenge incorrect information, and the right to keep specific types of records private.

It is the responsibility of each university department and faculty member maintaining such records to implement this policy by appropriate means. Specifically, as it applies to grade posting, grades earned on examinations or in courses may not be posted by name. Posting by student ID number is, however, permissible. Although there is no federal or state legislation that pertains to the manner in which graded work is to be returned to students, the returning of such materials should be handled in such a manner as will preserve the student's privacy. For a full statement about Cornell's Student Records Policy, contact the Office of the Vice President for Academic Programs, 307 Day Hall.

Code of Academic Integrity

Principle

Absolute integrity is expected of every Cornell student in all academic undertakings. Integrity entails a firm adherence to a set of values, and the values most essential to an academic community are grounded on the concept of honesty with respect to the intellectual efforts of oneself and others. While both students and faculty of Cornell assume the responsibility of maintaining and furthering these values, this document is concerned specifically with the conduct of students.

A Cornell student's submission of work for academic credit indicates that the work is the student's own. All outside assistance should be acknowledged, and the student's academic position truthfully reported at all times. In addition, Cornell student's have a right to expect academic integrity from each of their peers.

I. Guidelines for Students

A. General Responsibilities

1. A student shall in no way misrepresent his or her work.
2. A student shall in no way fraudulently or unfairly advance his or her academic position.
3. A student shall refuse to be a party to another student's failure to maintain academic integrity.
4. A student shall not in any other manner violate the principle of academic integrity.

B. Examples of Violations

The following actions are examples of activities that violate the Code of Academic Integrity and subject their actors to proceedings under the Code. This is not a definitive list.

1. Knowingly representing the work of others as one's own.
2. Using, obtaining or providing unauthorized assistance on examinations, papers, or any other academic work.
3. Fabricating data in support of laboratory or field work.
4. Forging a signature to certify completion of a course assignment or a recommendation to graduate school.
5. Unfairly advancing one's academic position by hoarding library materials.
6. Misrepresenting one's academic accomplishments.

C. Specific Guidelines for Courses

1. Examinations. During in-class examinations no student may use, give or receive any assistance or information not given in the examination or by the proctor. No student shall take an examination for another student. Between the time a take-home examination is distributed and the time it is submitted by the student for grading, the student may not consult with any persons other than the course professor and teaching assistants regarding the examination. The student is responsible for understanding the conditions under which the examination will be taken.

2. Course Assignments. Students are encouraged to discuss the content of a course among themselves and to help each other to master it, but no student should receive help in doing a course assignment that is meant to test what he or she can do without help from others. Representing another's work as one's own is plagiarism and a violation of this Code. If materials are taken from published sources the student must clearly and completely cite the source of such materials. Work submitted by a student and used by a faculty member in the determination of a grade in a course may not be submitted by the student in a second course, unless such submission is approved in advance by the faculty member in the second course. If a student is submitting all or part of the same work simultaneously for the determination of a grade in two or more different courses, all faculty members in the courses involved must approve such submissions.

3. Academic Misconduct. A faculty member may impose a grade penalty for any misconduct in the classroom or examination room. Examples of academic misconduct include, but are not limited to, talking during an exam, bringing unauthorized materials into the exam room, and disruptive behavior in the classroom.
a. The faculty member must promptly notify the student of the reason for the imposition of a penalty for academic misconduct and the degree to which his or her grade will be affected.

b. Academic misconduct is not a violation of academic integrity. The student may, however, seek review by the Academic Integrity Hearing Board on the basis either that the finding of guilt is arbitrary and capricious or that the penalty for academic misconduct is excessive or inappropriate to the circumstances involved.2

D. Variances

A faculty member is responsible for informing his or her students and teaching assistants of variances from this Code that apply to work in his or her course. These variances should be clearly stated in writing at the beginning of the course or activity to which they apply.

E. Jurisdiction

The authority to determine whether a specific action shall be treated as a violation of academic integrity lies with the Academic Integrity Hearing Board.

II. Organization and Procedures

A. Students and staff members discovering an apparent violation should report the matter to the faculty member in charge of the course or to the chair of the appropriate Hearing Board. The chair is responsible for ensuring that all members of the school or college know to whom the report should be made.

B. Primary Hearing

1. Primary hearings are to be held by the faculty member unless the penalties available to him or her are inadequate, in which case, he or she may refer the case directly to the Hearing Board.

2. Notification. If, after investigation, possibly including a discussion with the student, a faculty member believes that a student has violated the Code of Academic Integrity, the charge shall include notification of a primary hearing to be held as soon as practical after the alleged infraction has come to the attention of the faculty member, but with at least one week's notice to the student. This notification period may be shortened by the agreement of both parties. The charge shall include notice of the availability of the Judicial Advisor.

3. Composition. At the primary hearing the following shall be present: the faculty member concerned, the student in question, and a third party independent witness. The independent witness shall be a faculty member or a student appointed by the Hearing Board Chair or the chair of the faculty member's department. The student may bring to the hearing an advisor and additional witnesses to testify to his or her innocence.

4. Procedure

a. At the primary hearing, the faculty member shall present evidence in support of the charge against the student. The student shall be given the opportunity to respond and, if he or she wishes, to present evidence refuting the charge.

b. The function of the independent witness is to observe the proceedings impartially, and in the event of an appeal from the judgment of the faculty member, be prepared to testify as to the procedures followed.

c. After hearing the student, the faculty member may either dismiss the charge, or if there is clear and convincing evidence that the student has violated this Code, find the student guilty. If the student is found guilty, the faculty member may impose any suitable grade punishment including failure in the course.3

d. A student wishing to seek review of the decision may bring the case before the Academic Integrity Hearing Board of the faculty member's college.

e. A faculty member who gives a penalty for a violation of academic integrity shall immediately report this action and the nature of the violation in writing to the student and to the record-keeper of the faculty member's Academic Integrity Hearing Board. This record-keeper shall then be responsible for its communication to the record-keeper in the student's college.

f. If the student fails to attend the primary hearing without a compelling excuse, the hearing may proceed in his or her absence.

C. College Academic Integrity Hearing Boards

1. Composition. Each college and school in the University, including the Graduate School and the Division of Summer Session, Extramural Study, and Related Programs, shall establish its own Academic Integrity Hearing Board. A model Hearing Board consists of the following:

a. A chair who is a member of the faculty, and, preferably, an experienced Board member, appointed by the dean of the college for a two-year term.

b. Three faculty members elected for three-year terms by the faculty of the college, except that in the case of the Division of Summer Session, Extramural Study, and Related Programs the faculty members shall be appointed by the dean.

c. Three students elected by the student body of the college or appointed by the dean of the college for at least one year, and preferably two-year terms. When possible, student terms should be staggered.

d. A non-voting record-keeper responsible for keeping clear and complete records of the proceedings.

2. Jurisdiction

a. The student may seek review of the decision of the primary hearing if:

1) He or she believes the procedure was improper or unfair.

2) He or she contests the finding of the faculty member.

3) He or she believes the penalty was too strict considering the offense.

b. After holding a primary hearing, the faculty member may bring the case to the Hearing Board if he or she believes a failing grade is too lenient considering the offense.

c. A student found guilty of more than one violation of the Code may be summoned before the college Hearing Board by the dean of his or her college. The Hearing Board may impose an additional penalty for such repeated offenses.

d. The dean of student's college who receives a report that a student has committed a violation of academic integrity while attending another academic institution or while enrolled in a Cornell sponsored off-campus program may, if he or she feels the situation warrants, summon the student to appear before the Hearing Board.

The Hearing Board may impose any penalty, including an additional penalty, it feels appropriate for the violation involved.

e. The Academic Integrity Hearing Board shall hear all cases that come before it de novo. While the Hearing Board may recommend an increase in any penalty imposed at the primary hearing, it should consider raising the penalty, if it is the student seeking review, only in the exceptional case.

f. The individual seeking review shall notify the chair of the Hearing Board of the faculty member's college within ten working days of the primary hearing. An exception to this deadline may be granted at the discretion of the chair of the Hearing Board on a showing of good cause.
3. Procedures
 a. Each Board shall conform to procedures established by the Faculty Council of Representatives. Any college or school wishing to adopt a Board or procedures varying from this model must receive prior approval from the Dean of Faculty.
 b. The Academic Integrity Hearing Board shall convene as soon as practical after notification of a request for review, although seven days notice should be given to all parties if possible. If a grade for the student in the course must be submitted before a case can be decided, the faculty member shall record a grade of incomplete, pending a decision by the Hearing Board.
 c. Those present at the Hearing shall be:
 1) The student, who has the right to be accompanied by an advisor and/or relevant witnesses,
 2) The faculty member, who has the right to bring relevant witnesses,
 3) The third party independent witness, if a primary hearing was held,
 4) Any other person called by the chair.
 d. Should the student or faculty member fail to appear before the Hearing Board, the Board shall have full authority to proceed in his or her absence.
 e. The Board members shall hear all available parties to the dispute and examine all the evidence presented. The Board may solicit outside advice at the discretion of the chair. The chair shall preside over the Hearing to ensure that no party threatens, intimidates, or coerces any of the participants.
 f. The student shall have the right to present his or her case and to challenge the charges or the evidence. The student’s advisor may assist the student in the presentation and questioning.
 g. At least two-thirds of the voting Board members shall be present at every Hearing, including two students and two faculty members. Both parties may agree in writing to waive this quorum. Of those present, a simple majority shall decide the issue. The chair shall vote only in the case of a tie vote. The Board shall find the student guilty only if there is clear and convincing evidence indicating that the student has violated this Code.
 h. The chair shall notify each party to the dispute, in writing, of the Board’s decision and, if appropriate, the penalty imposed. If the judgment of the faculty member is affirmed by the Board, or if the Board decides a different penalty is warranted, the dean of the student’s college and the dean of the student’s college shall also receive the report.
 i. If the student’s college is different from the faculty member’s, the chair shall alter the composition of the Board hearing the case by substituting or adding one faculty member and one student from the Hearing Board of the student’s college.

4. The Board may act in one or more of the following ways:
 a. Find the student innocent of the charge.
 b. Find the student guilty of the charge and
 1) Recommend to the faculty member that he or she reduce the penalty given.
 2) Affirm the faculty member’s decision.
 3) Recommend that the faculty member record a failing grade for the course, or for some portion of it.
 4) Recommend to the dean of the student’s college that the student be placed on probation (or the college’s equivalent).
 5) Recommend to the dean of the student’s college that the student be suspended from the University for a period of time.
 6) Recommend to the dean of the student’s college that the words “declared guilty of violation of the Code of Academic Integrity” be recorded on the student’s transcript.
 7) Recommend to the dean of the student’s college that the student be expelled from the University.
 8) Recommend to the dean of the student’s college any other suitable action, including counseling, community service, or reprimand.

5. The student may seek review of the decision of the Hearing Board to the dean of the student’s college within four weeks of the Board’s decision. Exceptions to this deadline may be granted by the dean of the student’s college on a showing of good cause. The dean may not increase the penalty recommended by the Hearing Board unless the Hearing Board had original jurisdiction in the case. The dean of the student’s college shall ensure that the recommendation of the Hearing Board is carried out or should give the Hearing Board and the parties a written explanation of why the recommendation was disapproved.

6. Annual Reports. Each college Academic Integrity Hearing Board shall submit a summary report of its proceedings (without identifying any particular student) to the Dean of the Faculty of the college at the end of the academic year. The names of the members of the Board and any significant departures in procedures should be reported as well.

7. The existing school honor codes (as in the College of Veterinary Medicine and the Law School) are not governed by the foregoing legislation, but current versions of these honor codes must be kept on file with the Office of the Dean of Faculty.

In the case of allegations against a student enrolled in a course subject to a school honor code but registered in another college, all actions beyond the primary hearing revert to the Hearing Board of the student’s college.

8. Records of Action
 a. If the student is found guilty, a record of the outcome of the case and the nature of the violation shall be kept by the Hearing Board, and copies shall be sent to the record-keeper in the student’s college, if different. Unless the decision provides for notation on the student’s transcript, this record shall be disclosed only to deans of colleges or Hearing Boards considering other charges against the same student. A student may waive this right to confidentiality.
 b. If the student is found not guilty by the Hearing Board, all records of the case, including the report of the primary hearing, shall be expunged from the files of the record-keeper.

2 "Arbitrary and Capricious" describes actions which have not sound basis in law, facts, or reason or are grounded solely in bad faith or personal desires. A determination is arbitrary and capricious only if it is one no reasonable mind could reach.
3 "Clear and convincing" as a standard of proof refers to a quantum of evidence beyond a mere preponderance but below that characterized as "beyond a reasonable doubt" and such that it will produce in the mind of the trier of fact a firm belief as to the facts sought to be established.
4 See the definition at section II.B.4.c.
PROTECTION OF HUMAN SUBJECTS IN RESEARCH

The University Committee on Human Subjects is the official review board of all university projects that use humans as research subjects. Projects affected by this restriction include, but are not limited to surveys, questionnaires, studies of existing data, documents, records in which there are no identifiers, as well as mental and physical tests of human subjects. All proposals involving human subjects in any category must be submitted to the committee for review. Inquiries, communications, and requests for guidelines should be directed to the committee's Executive Secretary, 117 Day Hall (255-5014). The guidelines are also available on CUINFO under OSP (Office of Sponsored Programs).

USE OF ANIMALS FOR COURSES

The Cornell University Institutional Animal Care and Use Committee has made the following statement on the use of animals for courses: "In certain courses the use of vertebrate animals is indispensible as an invaluable aid in instruction. It is recognized, however, that some students have ethical objections to the use of vertebrate animals in this manner. Courses that use vertebrate animals are identified as such in the course descriptions. Students who have concerns about the use of animals in these courses should consult the course instructor for more information about the precise ways in which the animals are used. A set of university guidelines on the use of vertebrate animals in teaching for faculty and students is available from departments in which the courses are offered. A student who is reluctant to voice his or her concerns about animal use in a particular course, or who thinks these concerns have not received proper attention, may seek assistance from the director of the Cornell Center for Research Animal Resources (253-3516)."

Interdisciplinary Centers, Programs, and Studies

ANDREW D. WHITE PROFESSORS-AT-LARGE

Urie Bronfenbrenner, chair, Göote Van Rensselaer Hall

The program has its origins in Cornell's early history. Andrew D. White, the first president of Cornell University, inaugurated the position of nonresident professor, to be held by eminent visiting scholars who would periodically visit the university to supplement the activities of the permanent university faculty. Professors-at-Large, who serve for a six-year term, are full members of the faculty when in residence.

TERM ENDING IN 1990

Heilbrun, John L., historian of science. University of California, Berkeley

Lewis, Bernard, Islamicist. Princeton University, Wely, Eudora, novelist and short story writer

CENTER FOR APPLIED MATHEMATICS

The Center for Applied Mathematics administers a broadly based interdisciplinary graduate program that provides opportunities for study and research over a wide range of the mathematical sciences. This program is based on a solid foundation in analysis, algebra, and methods of applied mathematics. The remainder of the graduate student's program is designed by the student and his or her Special Committee. For detailed information on opportunities for graduate study in applied mathematics, students should contact the director of the Center for Applied Mathematics, Sage Hall.

There is no special undergraduate degree program in applied mathematics. Undergraduate students interested in an application-oriented program in mathematics may select an appropriate program in the Department of Mathematics, the Department of Computer Science, or some department of the College of Engineering.

Graduate students in the center take courses related to their program of study that are offered by various departments. Below are listed selected courses in applied mathematics in the main areas of research interest of the center's members. Detailed descriptions of these courses can be found in the listings of the individual departments (Abbreviations: Bio S = Biological Sciences, Chem E = Chemical Engineering, CS = Computer Science, EE = Electrical Engineering, M&AE = Mechanical and Aerospace Engineering, OR&IE = Operations Research and Industrial Engineering, and T&M = Theoretical and Applied Mechanics.)

Selected Applied Mathematics Courses

Basic Graduate Courses in Applied Mathematics (and Analysis)

Math 413–414 Introduction to Analysis
Math 423–434 Introduction to Algebra
Math 511–512 Real and Complex Analysis
Math 521 Measure Theory and Lebesgue Integration
Math 522 Applied Functional Analysis
Math 531–532 Algebra
Math 551 Introduction to Algebraic Topology
Math 551–556 Mathematical Methods in Physics
T&M 612–613 Methods of Applied Mathematics

Analysis (and Differential Equations)

Math 517–518 (also Math 427) Ordinary Differential Equations
Math 519–520 (also Math 428) Partial Differential Equations
Math 552 Differentiable Manifolds
Math 611–612 Seminar in Analysis
Math 613 Functional Analysis
Math 614 Fourier Analysis
Math 622 Riemann Surfaces
Math 623 Several Complex Variables
Math 627–628 Seminar in Partial Differential Equations

Logic and Theory of Computing

CS 671 Introduction to Automated Reasoning
CS 682 Theory of Computing
CS 715 Seminar in Programming Refinement

Logics

Math 581 Logic
Math 681–682 Seminar in Logic
Math 683 Model Theory
Math 684 Recursion Theory
Math 685 Metamathematics
Math 687 Set Theory
Math 688 Topics in Applied Logic

Discrete and Numerical Mathematics

CS 621 Matrix Computations
CS 622 Numerical Optimization and Nonlinear Algebraic Equations
CS 681 Analysis of Algorithms
CS 721–722 Advanced Topics in Numerical Analysis
CS 729 Seminar in Numerical Analysis
EE 547 VLSI Architectures and Algorithms
Math 425 Numerical Solution of Differential Equations
Math 627–628 Seminar in Partial Differential Equations
Math 655 (also CS 655) Mathematical Foundations for Computer Modeling and Simulation
OR&IE 627 Dynamic Programming
OR&IE 630-631 Mathematical Programming I and II
OR&IE 632 Nonlinear Programming
OR&IE 633 Graph Theory and Network Flows
OR&IE 634 Combinatorial Optimization
OR&IE 636 Integer Programming
OR&IE 639 Convex Analysis

Information Communication and Control Theory
EE 411 Random Signals in Communications and Signal Processing
EE 425 Digital Signal Processing
EE 468 Communication Theory
EE 521 Theory of Linear Systems
EE 522 Theory of Nonlinear Systems
EE 526 Advanced Signal Processing
EE 528 Multisensor Digital Signal Processing
EE 561 Error Control Codes
EE 562 Fundamental Information Theory
EE 567 Digital Communication
EE 573 Estimation and Control in Discrete Linear Systems
EE 574 Optimal Control and Estimation for Continuous Systems

Mathematical Biology
Bio S 662 Mathematical Ecology
Stat & Bioin 451 Mathematical Modeling of Populations

Mathematical Economics
Econ 415 Econometrics I
Econ 520 Econometrics II
Econ 610 Stochastic Economics: Concepts and Techniques
Econ 617-618 Mathematical Economics
Econ 619-620 Advanced Topics in Econometrics

Mechanics and Dynamics
Chem E 731 Advanced Fluid Mechanics and Heat Transfer
Chem E 734 Fluid Mechanics in Suspensions
Chem E 751 Mathematical Methods of Chemical Engineering Analysis
Chem E 753 Analysis of Nonlinear Engineering Systems: Stability, Bifurcation, and Continuation
EE 681 (also A&EP 761) Kinetic Theory
M&E 601 Foundations of Fluid Dynamics and Aerodynamics
M&E 602 Incompressible Aerodynamics
M&E 603 Compressible Aerodynamics
M&E 704 Viscous Flows
M&E 752 Analysis of Turbulent Flows
M&E 773 Stability of Fluid Flow
M&E 734 Turbulence and Turbulent Flow
M&E 736 Computational Aerodynamics
M&E 737 Computational Fluid Mechanics and Heat Transfer
T&M 570 Intermediate Dynamics
T&M 671 Advanced Dynamics
T&M 672 Celestial Mechanics (also Astro 579)
T&M 673 Mechanics of the Solar System (also Astro 571)
T&M 675 Nonlinear Vibrations
T&M 751 Continuum Mechanics and Thermodynamics
T&M 752 Nonlinear Elasticity
T&M 776 Qualitative Theory of Dynamical Systems

Probability and Statistics
EE 562 Fundamental Information Theory
EE 563 Communication Networks
EE 564 Decision Making and Estimation
EE 566 Queuing Networks
EE 664 Foundations of Inference and Decision Making
Math 571-572 Probability Theory
Math 573 Experimental Design and Multivariate Analysis
Math 574 Probability and Statistics
Math 575 Sequential Analysis, Multiple Decision Problems
Math 577 Nonparametric Statistics
Math 670 Topics in Statistics
Math 674 Multivariate Analysis
Math 675 Statistical Decision Theory
Math 677-678 Stochastic Processes
OR&IE 561 Queuing Theory and Its Applications
OR&IE 563 Applied Time-Series Analysis
OR&IE 660 Applied Probability
OR&IE 661 Applied Stochastic Processes
OR&IE 662 Advanced Stochastic Processes
OR&IE 663 Time-Series Analysis
OR&IE 665 Advanced Queuing Theory
OR&IE 670 Statistical Principles
OR&IE 671 Intermediate Applied Statistics
OR&IE 674 Design of Experiments
OR&IE 675 Statistical Analysis of Discrete Data
OR&IE 676 Statistical Analysis of Life Data

Theoretical/Mathematical Physics/Chemistry
Chem 792 Molecular Collision Theory
Chem 793 Quantum Mechanics I
Chem 794 Quantum Mechanics II
Phys 553-554 (Astro 509-510) General Relativity
Phys 572 Quantum Mechanics I
Phys 574 Quantum Mechanics II
Phys 561 Classical Electrodynamics
Phys 562 (Chem 796) Statistical Mechanics
Phys 563 Statistical Physics
Phys 651 Advanced Quantum Mechanics
Phys 652 Quantum Field Theory

CENTER FOR ENVIRONMENTAL RESEARCH
470 Hollister Hall, 255-7535
The Center for Environmental Research is a campuswide center that promotes and conducts research, teaching, and outreach activities on environmental issues. OR&IE's seven major programs are (1) the Ecosystems Research Center (ERC), which focuses on interdisciplinary research; (2) the Cornell Laboratory for Environmental Applications of Remote Sensing (CLEARs), which conducts research and outreach activities on remote sensing and resource inventory and analysis; (3) the Water Resources Institute, which conducts research and public service activities related to water quality and supply; (4) the Waste Management Institute and the New York State Solid Waste Combustion Institute, an independent entity located at Cornell's Waste Management Institute, which conducts research and outreach on waste management issues; (5) the Environmental Policy Program, which addresses the policy aspects of issues such as biotechnology, hazardous waste management, and regulation of toxic substances; (6) the Global Environment Program, which conducts research on environmental problems at the global scale such as climate change, stratospheric ozone depletion, and trans-boundary air pollution; and (7) the Biological Resources Program, which coordinates and conducts research activities relevant to the conservation, regulation, and management of biological resources, especially in marine environments.

Courses
Although CER does not engage in teaching, courses relevant to the programs are offered in appropriate departments: (1) ecosystems science through the Section of Ecology and Systematics and the Department of Natural Resources; (2) remote sensing through the departments of Civil and Environmental Engineering and Soil, Crop, and Atmospheric Sciences; (3) water resources primarily through the departments of Agricultural and Biological Engineering, Soil, Crop and Atmospheric Sciences; and Civil and Environmental Engineering; (4) waste management primarily through the departments of Environmental Engineering, Agricultural and Biological Engineering, Geology, Natural Resources, Rural Sociology, Agricultural Economics, and the Section of Ecology and Systematics.

Because courses relating to environmental policy are not indexed by that title, representative courses are listed below that should be of interest to those who would like to study environmental policy.

Religion, Ethics, and the Environment (Natural Resources 407)
Policy, Planning and Administration (Natural Resources 608)
Seminar in Environmental Values (Natural Resources 611)
Environmental Policy (Natural Resources 661)
Legal Aspects of Land-Use Planning (City and Regional Planning 653)
Land Resources Protection Law (City and Regional Planning 956)
Environmental Ethics (Philosophy 246 and Biological Sciences 206)
Environmental Politics (City and Regional Planning 480)
Risk Management of Toxic Chemicals (Biological Sciences 659)
CENTER FOR INTERNATIONAL STUDIES

The Center for International Studies (CIS) was established in 1961 to encourage, coordinate, and support comparative and interdisciplinary research on international subjects. In a mutually dependent world, international problems require interdisciplinary collaboration, and CIS coordinates and assists such collaborative efforts both on campus and in the field. Charged with the responsibility of furthering international and comparative research and teaching—involving efforts in almost every unit of the university—over the past three decades, CIS has evolved into an administrative focus for more than twenty international programs.

The Center for International Studies at Cornell is one of the largest and most diverse in the United States. Currently it oversees five Title VI National Resource Centers (East Asia, Latin American Studies, South Asia, Southeast Asia, and Western Societies), as well as sixteen topical programs and the university study-abroad program. Over 500 faculty voluntarily collaborate in the center’s programs and well over 300 graduate students are involved directly in its international programs. Undergraduate concentrations in International Relations and Modern European Societies serve 285 students.

Cornell is committed to the application and expansion of its resources to study the global community in all its complexity. These resources include a faculty of preeminent scholars and teachers, excellent research facilities, ability to teach forty-five languages, and a library system with more than 2,500,000 volumes on topics related to international and comparative studies.

As the world changes, Cornell’s international programs change to study those developments. In addition to area studies, these programs focus on topics as varied and vital as international competitiveness, agriculture, nutrition, population, law, planning, politics, economics, and world peace. These areas and topics change as interest, demand, and potential warrant. As one program gains enough momentum and recognition to attract its own resources, the center applies its resources to another pilot activity that brings faculty and students together across customary professional and departmental boundaries.

In addition, CIS was recently given responsibility by the university to redesign and expand foreign study options for Cornellians, which has resulted in our Cornell Abroad Program. The center also encourages international research and travel by students through its annual Travel Grant Program.

Although the center has both an endowment and an appropriation from the university to support interdisciplinary international studies, Cornell monies are only a fraction of the total funds involved in international studies at Cornell. Programs seek funding from foundations, the federal government, alumni, and international agencies, a process that the center assists with as necessary. When particular programs are in a low budget cycle rather than allowing them to lapse, the center continues to support those that show promise to keep the voluntary faculty groups operating together until new outside funding can be acquired.

For additional information on current programs, publications, and courses, contact Director Center for International Studies Cornell University 170 Uris Hall Ithaca, New York 14853-7601 USA 607/255-6370 FAX 607/254-5000

CIS Area Programs and Topical Studies Programs

Center for International Studies

East Asia Program
(Formerly China-Japan Program)
Karen Brazell, Director
140 Uris Hall

Soviet and East European Studies Program
Michael Scammell, Director
George Gibian, Acting Director
236 Goldwin Smith Hall

Latin American Studies Program
Billie Jean Iselin, Director
190 Uris Hall

South Asia Program
Norman T. Uphoff, Director
170 Uris Hall

Southeast Asia Program
Randy Barker, Director
120 Uris Hall

Western Societies Program
William Lesser, Director
130 Uris Hall

Institute for African Development
David Lewis, Director
203 West Sibley Hall

Topical Studies Programs

Program in Competitiveness
Davvyd J. Greenwood, Director
170 Uris Hall

International Agriculture
in process of reorganization
350 Caldwell Hall

International Legal Studies
Alfred C. Aman, Director
309 Myron Taylor Hall

International Political Economy
Peter Katzenstein, Director
B-7 McGraw Hall

Population and Development Program
J. Mayone Sycors, Director
Warren Hall

International Studies in Planning
Porus Olpadwala, Director
209 West Sibley Hall

Peace Studies Program
R. Ned Lebow, Director
180 Uris Hall

Program in International Nutrition
Michael Latham, Director
127 Savage Hall

Program on Comparative Economic Development
Erik Thorbecke, Director
458 Uris Hall

CIS Area Programs and Topical Studies Programs

Center for International Studies

East Asia Program
(Formerly China-Japan Program)
Karen Brazell, Director
140 Uris Hall

Soviet and East European Studies Program
Michael Scammell, Director
George Gibian, Acting Director
236 Goldwin Smith Hall

Latin American Studies Program
Billie Jean Iselin, Director
190 Uris Hall

South Asia Program
Norman T. Uphoff, Director
170 Uris Hall

Southeast Asia Program
Randy Barker, Director
120 Uris Hall

Western Societies Program
William Lesser, Director
130 Uris Hall

Institute for African Development
David Lewis, Director
203 West Sibley Hall

Topical Studies Programs

Program in Competitiveness
Davvyd J. Greenwood, Director
170 Uris Hall

International Agriculture
in process of reorganization
350 Caldwell Hall

International Legal Studies
Alfred C. Aman, Director
309 Myron Taylor Hall

International Political Economy
Peter Katzenstein, Director
B-7 McGraw Hall

Population and Development Program
J. Mayone Sycors, Director
Warren Hall

International Studies in Planning
Porus Olpadwala, Director
209 West Sibley Hall

Peace Studies Program
R. Ned Lebow, Director
180 Uris Hall

Program in International Nutrition
Michael Latham, Director
127 Savage Hall

Program on Comparative Economic Development
Erik Thorbecke, Director
458 Uris Hall

Rural Development Committee
Norman T. Uphoff, Chair
170E Uris Hall

International Development and Women
Lourdes Beneria, Director
Shelley Feldman, Acting Director
33 Warren Hall

Food and Nutrition Policy Program
Per Pinstrup-Andersen, Director
305 Savage Hall

Program on International Relations
Peter Katzenstein
Walter S. Carpenter Professor of International Studies
160 Uris Hall

Graduate students interested in an international relations concentration should see Professor Katzenstein.

CENTER FOR STATISTICS

The Cornell Center for Statistics coordinates universitywide activities in statistics and probability at the graduate and research level. Students interested in graduate study in probability and statistics can apply to the Field of Statistics or to one of the other graduate fields of study that offer related course work.

Students in the Field of Statistics plan their graduate program with the assistance of their Special Committee. For detailed information on opportunities for graduate study in statistics and probability, students should contact the director of the Statistics Center, 272 Caldwell Hall.

Graduate students can design many different programs within the Field of Statistics. These can be broadly grouped as follows: biometry, biostatistics, economic and social statistics, operations research, probability theory, sampling theory, statistical computing, statistical design, statistical theory, and stochastic processes and their applications.

Below are listed selected courses in probability and statistics of interest to graduate students in the field.

Economics
519 Econometrics I
520 Econometrics II
619 Topics in Econometrics I
620 Topics in Econometrics II

Electrical Engineering
467 Communication Systems I
561 Error Control Codes
562 Fundamental Information Theory
563 Communication Networks
564 Decision Making and Estimation
INTERDISCIPLINARY CENTERS, PROGRAMS, AND STUDIES

566 Queuing Networks
568 Communication Systems II
663 Advanced Topics in Information Theory
664 Foundations of Probability

Industrial and Labor Relations
310 Design of Sample Surveys
312 Applied Regression Methods
410 Techniques of Multivariate Analysis
411 Statistical Analysis of Qualitative Data
510–511 Introductory Statistics for the Social Sciences
610 Seminar in Modern Data Analysis
711 Sensitivity Analysis in Linear Regression
712 Theory of Sampling
713 Empirical Processes with a Statistical Application

Mathematics
471 Basic Probability
472 Statistics
571–572 Probability Theory
574 Mathematical Statistics
575 Sequential Analysis, Multiple Decision Problems
577 Nonparametric Statistics
670 Topics in Statistics
674 Multivariate Analysis
675 Statistical Decision Theory
677–678 Stochastic Processes

Operations Research
561 Queuing Theory and Its Application
562 Inventory Theory
563 Applied Time Series Analysis
565 Statistics for Manufacturing
570 Statistical Methods in Quality and Reliability Control
580 Digital Systems Simulation
630–631 Mathematical Programming I and II
632 Nonlinear Programming
637 Dynamic Programming
645 Game Theory I
652 Advanced Inventory Control
660 Applied Probability
661 Applied Stochastic Processes
662 Advanced Stochastic Processes
663 Time-Series Analysis
664 Deterministic and Stochastic Control
665 Advanced Queuing Theory
670 Applied Statistics
671 Intermediate Applied Statistics
672 Statistical Decision Theory
673 Nonparametric Statistical Analysis
674 Design of Experiments
675 Statistical Analysis of Qualitative Data
676 Statistical Analysis of Life Data
677 Statistical Selection and Ranking Procedures
680 Simulation

Statistics and Biometry
408 Theory of Probability
409 Theory of Statistics
417 Matrix Algebra
601–603 Statistical Methods I, II, and III
605 Applied Regression Analysis
606 Sampling Biological Populations
607 Nonparametric and Distribution-Free Statistical Methods
662 Mathematical Ecology
699 Special Problems in Statistics and Biometry
701 Advanced Biometry
717 Linear Models
718 Variance Components
797 Statistical Consulting

COGNITIVE STUDIES
Frank Keil, Department of Psychology, and Sally McConnell-Ginet, Department of Modern Languages and Linguistics, co-directors

Graduate Programs
At the graduate level Cornell offers a graduate field minor in cognitive studies. Cornell's unique program of graduate training, which seeks to tailor an optimal program of study and research for each student, fosters highly interdisciplinary committees. It is the norm for students interested in cognitive studies to have faculty members from such departments as Philosophy, Computer Science, Modern Languages and Linguistics, and Psychology on common committees. For further information on the graduate Field of Cognitive Studies, contact Barbara Lust, graduate faculty representative, NG28 Van Rensselaer Hall (telephone: 607/255-0829).

Courses
Courses from across the university that are relevant to the Cognitive Studies program are listed in this catalog under Arts and Sciences in the section “Special Programs and Interdisciplinary Studies.”

CORNELL ABROAD
Cornell Abroad offers undergraduates a wide variety of academic programs that are intellectually rigorous, academically and socially diverse, and culturally enriching. Study abroad is considered an integral part of students' formal education complementing and enhancing their study in Ithaca. Qualified students may study abroad by attending a program sponsored directly by Cornell or another American institution, or by enrolling in a foreign university. In all cases students must enroll through Cornell Abroad.

LOCATIONS ABROAD
Cornell undergraduates regularly study in approximately 40 different countries and enroll in more than 240 programs and universities throughout the world. The university and several colleges at Cornell have established a number of their own foreign study programs and affliations with selected institutions abroad. In addition to a challenging course of study at a foreign university, the programs offer the experience of immersion in the foreign life and culture.

Cornell Abroad has programs or affiliations with the following universities or programs:

EAST ASIA
China
Peking and Nanjing Universities, Chinese Language and Study Programs, University of International Business and Economics. Chinese Business and Society Program (CIEE)
Xiamen University, PRC
Japan
Kyoto Center for Japanese Studies Inter-University Center for Japanese Language Studies
Korea
Yonsei University, Seoul

Undergraduate Programs
An undergraduate concentration in cognitive studies in the College of Arts and Sciences provides a framework for the design of structured, individualized programs of study in this growing interdisciplinary field. Such programs of study are intended to serve as complements to intensive course work in a single discipline as represented in an individual department. For further information on the undergraduate program, see “Cognitive Studies Concentration” in the College of Arts and Sciences section.
GENERAL INFORMATION

SOUTH ASIA
- India: University of New Delhi
- Pakistan: University of Karachi

SOUTHEAST ASIA
- Indonesia: Institut Kejuruan Dan Ilmu Pendidikan (IKIP), Malang (CIEE)
- Australia: Curtin University of Technology, Perth
- University of Sydney, Sydney
- University of New South Wales, Sydney
- Macquarie University, Sydney
- University of Technology, Sydney
- The University of Wollongong, Wollongong

EUROPE (EASTERN)
- Soviet Union: Leningrad State University (CIEE)
- School of Slavonic and East European Studies Programs in various locations

EUROPE (WESTERN)
- Belgium: Université Catholique de Louvain (Département des Sciences Politiques et Sociales)
- Denmark: International Study Program in Copenhagen (DIS)
- France: Cornell's EDUCO program: Université de Paris 7, Paris 1, Institut d'Études Politiques de Paris (Sciences Po)
- University of Paris: Critical Studies Program (CIEE)
- Germany: Universität Hamburg, Technische Universität Darmstadt
- Ireland: University of Limerick, Trinity College, Dublin, Ireland
- Italy: Cornell College of Art and Architecture in Rome
- Intercollegiate Center for Classical Studies in Rome
- Spain: Universidad de Sevilla (with three weeks in Madrid)
- Sweden: Agricultural College of Sweden, Uppsala
- The Swedish Program at the University of Stockholm
- Switzerland: Université de Genève
- United Kingdom: University of Bristol
- Cambridge University
- University of Edinburgh
- University of Manchester
- Oxford University
- University of Reading
- University of Sussex
- University of London: King's College
- Imperial College of Science and Technology
- London School of Economics and Political Science
- Queen Mary Westfield College
- School of Oriental and African Studies
- School of Slavonic and East European Studies

LATIN AMERICA
- Honduras: Escuela Agrícola Panamericana, Zamorano
- Mexico: Instituto Tecnológico y de Estudios Superiores de Monterrey
- Mexico: Universidad de las Américas-Puebla

MIDDLE EAST
- Egypt: American University in Cairo
- Israel: Ben Gurion University
- Haifa University
- Hebrew University of Jerusalem
- Technion (Israel Institute of Technology)
- Tel Aviv University

Other Locations Abroad
Cornell students are not limited to the locations listed above. In recent years, they have also studied in other universities in the countries mentioned above as well as ones in Argentina, Austria, Brazil, Colombia, Costa Rica, Dominican Republic, Ecuador, Greece, Honduras, Hungary, Jamaica, Kenya, Nepal, New Zealand, Nigeria, the Philippines, and the West Indies.

Externally Sponsored Programs or Enrollment in a Foreign University
Undergraduates also apply through Cornell Abroad to a wide variety of study abroad programs sponsored by other American colleges and to nonaffiliated foreign universities. Cornell Abroad forwards all applications to the programs or universities for the students. Those attending programs or universities approved by their Cornell college will remain registered at Cornell, receive credit for approved coursework, and continue to be eligible for financial aid.

Who Studies Abroad
All Cornell undergraduate students are eligible to study abroad. Since most Cornell colleges or schools require that students complete at least sixty hours of their undergraduate credit on the Cornell campus, students who transfer to Cornell as juniors generally cannot count study abroad credit toward their Cornell degree.

When Students Study Abroad
Cornell students may study abroad their sophomore, junior, or senior year. After weighing a number of considerations, many students find that their junior year is the most satisfactory time to study abroad. To ensure preparation for the program which best meets a student's needs, it is important to begin planning for study abroad early in the freshman year.

Transfer of Credits and Grades
Only students applying through Cornell Abroad will receive credit for their work abroad. Cornell Abroad has catalogs, program materials, course syllabi, and program evaluations to help students plan their studies abroad. As part of the application process, students must obtain approval of their academic plans from their college study abroad adviser listed at the end of this article. While policies and procedures vary from one Cornell college or school to the next, all Cornell colleges and schools regularly accept credits for study abroad, normally 30 credits per year or 12–20 per semester when students have taken a full load according to the standards of the foreign institution. After their return, their college will review their work and make the final decision concerning transfer of credit. The Cornell transcript will indicate the courses taken, the credits earned, and the foreign grades received. Cornell will not translate the value of each grade into an American equivalent, and will not compute them into the Cornell grade point average.

Foreign Language Requirements
Many programs abroad require two years or the equivalent of college-level language study. Students should make firm plans for foreign language study early in their freshman year if they would like to study in a country in which English is not the primary language.

For students who do not have proficiency in a foreign language, there are still some options outside of English-speaking countries. For example, Cornell Abroad sends students to programs taught in English in Belgium, Denmark, Egypt, Hong Kong, Indonesia, Israel, Italy, Korea, and Sweden. Many students in these programs do not start studying the country's language until they are abroad, but it is desirable to start studying the language at least a year before going abroad, if possible.

Length of Stay
Cornell students study abroad for one semester or the academic year. When possible, it is often desirable to study for the entire year. It takes time to adjust successfully to a different educational system, language, and culture. The full year provides a more complete immersion in the foreign country's academic life and culture. Students who are studying in foreign languages especially find it to be beneficial to study for a year. Most students find that it requires the full year to gain fluency.

There are practical sides to this question as well. In many cases, foreign universities have year-long courses. As a result, semester students often miss half of their courses and have more limited course options than full-year students. The choices of universities can be limited for semester students as well.

Many students at Cornell find it necessary to limit their study abroad to one semester. Cornell Abroad has information on a number of strong semester programs.

Housing Arrangements
Students generally have the option of living with a selected family, in a university dormitory room, or in an apartment. Cornell Abroad will advise students of the arrangements that are available and most appropriate to their individual needs.

Admission and Application Procedure
All students who wish to receive Cornell credit for study abroad must fill out the Cornell Abroad application materials available in 474 Uris Hall or the college study abroad offices. All application materials should be submitted to Cornell Abroad or, if your college prefers, your college study abroad office. Cornell Abroad will forward all applications to the appropriate institutions.
Application Deadlines

Deadlines for Cornell affiliated programs
October 15, 1990 for spring term 1991 study abroad except in the case of British universities.
February 15, 1991 for studying in 1991–92 at British universities, though British universities sometimes will consider applications for the spring semester as late as October 15 of the previous year.

Deadlines for external programs and direct enrollment
The application deadlines for external programs and direct enrollment in foreign universities vary by program. Students should submit complete application materials to Cornell Abroad at least two weeks before the program or university deadline.

Costs
When studying abroad, candidates for a Cornell degree pay the tuition of the foreign university or the specific program. Tuitions vary considerably by program. In addition, they continue to pay the regular Cornell University fee (not tuition), which is $1,480 per semester in 1990–91. Students studying in the United Kingdom and Israel pay an additional semester fee of $250 for the Cornell Centers there unless they are attending a British program sponsored by another American university. Detailed information on costs is available at the Cornell Abroad office.

Financial Aid
All student going abroad, whether through a Cornell program or a program sponsored by another institution, are eligible for financial aid as consistent with general university policy.

Sources of Information and Advice Concerning Study Abroad
Cornell Abroad (for students from all colleges): Urbain J. DeWinter, Director and Lucy Barcelo, Assistant Director, 474 Uris Hall.

In addition to individual advising, Cornell Abroad offers catalogs, program materials, course syllabi, program evaluations, books, videotapes, and a series of information meetings that are advertised in the **Cornell Daily Sun**.

College study abroad advisers:
- **Agriculture and Life Sciences**: Donald Burgett, Roberts Hall;
- **Architecture, Art, and Planning**: Professor Christian Otto, 140E Sibley Hall;
- **Arts and Sciences**: Assistant Dean Beatrice Rosenberg, 55 Goldwin Smith Hall;
- **Engineering**: Associate Dean Richard Lance, 219 Kimball Hall;
- **Hotel Administration**: Professor William Kaven, 545F Statler Hall;
- **Human Ecology**: Florence McCarthy, 170B Martha Van Rensselaer Hall;
- **Industrial and Labor Relations**: Laura Lewis, 101 Ives Hall.

CORNELL-IN-WASHINGTON PROGRAM
The Cornell-in-Washington Program offers students from all colleges within the university an opportunity to earn full academic credit for a semester in Washington, D.C. Students take courses from Cornell faculty, conduct individual research or design projects, and work as externs. The program is administered by the Vice President for Academic Programs and a Faculty Council representing several undergraduate colleges of the university. There are two components of the Washington Program: Public Policy and Architecture. Eligible students in one component may enroll in courses in the other.

The program is housed at the Cornell Center, 2148 O Street, NW, Washington, DC 20037. The academic, office, and studio space is located on the first floor; twenty-seven residential units for students and faculty are on the upper floors.

Cornell-in-Washington is a program of instruction, research, and externships in the nation's capital. The program is open to qualified juniors, seniors, and graduate students from all participating colleges, schools, and divisions of the university. Full academic credit can be earned for the semester. Programs are offered in public policy and architecture. Public policy students enroll in Government 500 (cross-listed for statutory credit), which involves a major research study carried out in conjunction with an externship. Students may work as externs with congressional committee offices, executive-branch agencies, interest groups, research institutes, nongovernmental organizations, and other organizations involved in the public process and public policy. Students also select one or two other seminars from such fields as government, history, economics, architectural history, natural resources, and social policy. All seminars are taught by Cornell faculty and carry appropriate credit toward fulfillment of major, distribution, and other academic requirements.

Tuition
Students are registered as full-time students, earn Cornell credit, pay full tuition, and remain eligible for financial aid.

Housing
Apartments may be rented at the Cornell Center during the academic year and during the summer. All are fully furnished (except for dishes, cookware, towels and bedding) and reasonably priced by both Washington and Cornell standards. Two students are assigned to each efficiency and three to each one-bedroom apartment. Because of the limited number of spaces and the need for accurate planning, a non-refundable deposit of $150 is required to reserve a space. Students are discouraged from bringing automobiles, street parking is not available. The public transportation system, consisting of both bus and subway service, is extensive and convenient to the Center.

Applications
Application forms are available from the Cornell-in-Washington office at 131A Sage Hall. Applications should be submitted the semester prior to participation and admissions are made on a rolling basis. It is to the student's advantage to apply early.

Information
Regular information meetings are held in early October and March. These meetings are advertised in the **Cornell Daily Sun** and on campus bulletin boards. Additional information concerning externships, courses, housing and other features of the program may be obtained at either the Cornell-in-Washington office at 131A Sage Hall (607) 255-4090, or in Washington at the Cornell Center, 2148 O Street, NW, Washington, DC 20037, (202) 466-2184.

CORNELL INSTITUTE FOR PUBLIC AFFAIRS
In conjunction with the College of Arts and Sciences, Cornell's Institute for Public Affairs (CIPA) is now offering a five-year dual-degree program for Cornell students. Those enrolling in this program would remain in Ithaca a fifth year after the BA or BS and earn an MPA (Master of Public Administration) degree. A semester in the Cornell-in-Washington Program is recommended.

Cornell's MPA program seeks to provide students with:
- a thorough understanding of the political processes through which issues, problems, and policies are formulated
- an understanding of the economic bases for government action in a market economy, including both micro and macro economic techniques and problems
- competence in the quantitative methods needed to analyze and evaluate programs and policies
- familiarity with public budgets and finance
- a thorough knowledge of the behavior of both public and private organizations and their management
- familiarity with the regulatory process
- sensitivity to the moral and ethical dimensions of policy questions
- an understanding of the historical context and development of governmental programs

If you are interested in pursuing a career in public service either in an administrative or a policy position in the government or the not-for-profit sector, you may qualify to complete an MPA at Cornell with only one additional year of study. Additional information is available at the CIPA office, 131A Sage Hall, 255-4090.
CORNELL PLANTATIONS

A museum of living plants and natural history resources, Cornell Plantations encompasses the arboretum, botanical garden, and natural areas of Cornell University totaling nearly 3,000 acres that include the woodlands and gardens bordering the central campus. Plantations lands provide outdoor laboratories for academic programs and research in disciplines ranging from geology to landscape architecture. All accessioned plant types are labelled. The F. R. Newman Arboretum specializes in trees and shrubs native to New York State. The botanical garden features herbs, flowers for cutting and drying, garden perennials, heritage and modern vegetables, international crops and weeds, rock garden plants, peonies, flowering groundcovers, rhododendrons and companion plants, and plants native to the Cayuga Lake Basin. Gardens on campus exhibit rhododendrons and azaleas, unusual plants for horticultural study, and poisonous plants. Orchids are displayed in the Daisy Farrand Solarium at A. D. White House. Nearly 2,000 acres of land in and around Tompkins County are set aside as nature preserves, providing quality examples of native vegetation and protection for rare species and communities for class and research use. Faculty are asked to notify the Program Coordinator (255-9908) before scheduling class visits or beginning research. The Education Program offers non-credit courses, lecture series, symposia, special events, and interpretive tours. Students are encouraged to volunteer as photographers, authors, guides, and workers. Publications include the quarterly Cornell Plantations, newsletters, a semiannual insert in the Cornell Chronicle, and Garden Pages which provide interpretive materials for the collections. Research on locally endangered plant species is being conducted to provide management guidelines for conservation. In addition, a life science curriculum for elementary schools, LEAP, has been produced based on conceptual-development teaching methods. Maps, publications, and information are available at the garden gift shop in the Lewis Headquarters Building, Cornell Plantations, One Plantations Road, Ithaca, NY 14850-2799 (255-3020).

HISPANIC AMERICAN STUDIES PROGRAM

292 Caldwell Hall (telephone: 255-3197)

The Hispanic American Studies Program is an interdisciplinary academic program that focuses on the contributions, concerns, and welfare of those persons of Hispanic origin who reside in the United States. It includes support for historical, linguistic, literary, social, economic, and political studies of this diverse group of Americans. To this end the program objectives are (1) to expand the available course curriculum by providing both undergraduate and graduate courses pertaining to Hispanic American subject matters; (2) to enlarge the size of the Hispanic American faculty at Cornell through permanent appointments and visiting appointments; and (3) to enhance the Hispanic American academic environment on campus through support of such activities as lectures, conferences, seminars, exhibits, and research activities.

1990–91 Course Offerings

Because courses relating to Hispanic American Studies are not indexed by that title, courses of particular relevance are listed below. Please refer to the appropriate department for details.

ENGR 355: Understanding Cultural Differences in the Engineering Work Environment

HSS 280/ASR 280: Racism in American Society

HSS 370: Social Welfare as a Social Institution

ILR 469: Immigration and the American Labor Force

ILR 628: Cross-Cultural Studies in Organizational Behavior

SPAN 204: Intermediate Composition and Conversation

SPAN 366/LING 366: Spanish in the United States

SPANL 311–312: Advanced Composition and Conversation

SPANL 332: The Modern Drama in Spanish America

SPANL 346: Hispanic Caribbean Culture and Literature

SPANL 390: Fiction of Modern Hispanic Women

SPANL 396: Modern US-Hispanic Prose Fiction

SPANL 397: Colombian Literature

SPANL 492: Latin American Women Writers

SPANL 105 FWS: Paradise Lost: Biculturalism in America

SPANL 106 FWS: Searching for Self in Hispanic fiction

SPANL 107 FWS: The Literature of American Hispanic/Ethnic Women Writers

LING 113 FWS: Two Worlds—Dos Mundos

SPANL 119 FWS: Letters from el Barrio: A Sense of Place in Hispanic American Fiction

SPANL 125 FWS: The City of Hispanic Novels

SPANL 126 FWS: The Complex Fate: Self-Identity and Conflict in the Literature of United States Hispanics and Other Ethnic Groups

PROGRAM IN COMPARATIVE AND ENVIRONMENTAL TOXICOLOGY

J. W. Gillett, director, 16 Femow Hall, 255-8008 or 255-2163

The Cornell Program in Comparative and Environmental Toxicology is coordinated and facilitated by the Institute for Comparative and Environmental Toxicology (ICET). ICET serves as a focal point for all research, teaching, and cooperative extension activities in the broad interdisciplinary area of environmental toxicology at Cornell and encourages the development of collaborative programs between faculty members in many university departments.

Graduate Studies

The major in the graduate Field of Environmental Toxicology promotes training leading to the M.S. or Ph.D. degrees and provides both breadth and depth in environmental toxicology and related disciplines. The program offers a combination of research and didactic training that is designed to prepare students for solving the problems of modern toxicology. Specialization tracks include cellular and biochemical toxicology; nutritional toxicology; ecotoxicology and environmental risk assessment, management, and public policy. Research of the faculty associated with the program is focused on the interactions of drugs, pesticides, and other potentially hazardous environmental agents with a wide variety of living organisms (including humans) and with the ecosystems with which these organisms are associated.

Courses

Courses in environmental toxicology are cosponsored by the university academic departments and are open to all graduate students and to those undergraduates who have permission of the instructor. The titles and numbers of these courses are listed below, and details of course content are provided elsewhere in the catalog under the listings of the cosponsoring department. Further information concerning the program and the development of new courses may be obtained through the graduate faculty representative, 16 Femow Hall (telephone: 255-8008).

Note: Bracketed courses are not offered 1990–91.

[Tox 370] Pesticides and the Environment (Entomology 370)

[Tox 419] Animal Cytogenetics (Animal Science 419)

[Tox 438] Cell Proliferation and Oncogenic Viruses (Biological Sciences 438)

[Tox 528] Pharmacology (Veterinary Medicine 528)

[Tox 607] Ecotoxicology (Natural Resources 607)

Tox 610 Introductory Chemical and Environmental Toxicology (Food Science 610)

Tox 611 Molecular Toxicology (Nutritional Sciences 611)

Tox 621 Clinical Veterinary Toxicology (Veterinary Medicine 621)

Tox 640 Principles of Toxicological Pathology (Veterinary Medicine 640)

[Tox 651] Nutrition and Chemical Environment (Nutritional Sciences 651)

[Tox 659] Risk Management of Toxic Chemicals (Biological Sciences 659 and Biology and Society 459)
Science, Technology, and Society

Concentration
Sheila Jasanoff, director; Paul Edwards, Science, Technology and Society; Walter R. Lynn, Civil and Environmental Engineering; June Gesseisen MacDonald, Biochemistry; Trevor Pinch, Science, Technology and Society; Alison Power, Ecology and Systematics; Peter Taylor, Science, Technology and Society; and Milton Wachsberg, Philosophy.

The undergraduate concentration in Science, Technology, and Society (STS) is designed for students who wish to engage in a systematic, interdisciplinary exploration of the role of science and technology in modern societies. The concentration is intended for students with varied academic interests and career goals. It offers majors in the natural sciences and engineering an opportunity to explore the social, political, and ethical implications of their selected fields of specialization. At the same time, it offers students majoring in the humanities and social sciences a chance to study the processes, products, and impacts of science and technology from varied disciplinary perspectives. Drawing on course offerings in several departments, programs, and colleges, the STS concentration permits students to develop an individualized program of study closely related to their major field. STS courses are organized under four major headings: social relations of science and technology; science, technology, and public policy; ethics and values in science and technology, and biology, medicine, and society.

To satisfy the requirements for the STS concentration, students must complete a minimum of four courses selected from the following list. At least one course should be chosen from the list of core courses. The remaining three courses should be chosen in consultation with an STS faculty adviser and must be drawn from at least two of the areas described below.

Interested students may obtain further information about advisers and courses by contacting the STS main office, 632 Clark Hall, 255-3810.

STS Core Courses

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>B&Soc 407</td>
<td>Law, Science, and Public Values (also Govt 407)</td>
<td></td>
</tr>
<tr>
<td>B&Soc 415</td>
<td>The Politics of Technical Decisions (also CRP 541, Mgmt NBA 686, Govt 628)</td>
<td></td>
</tr>
<tr>
<td>B&Soc 442</td>
<td>Social and Political Studies of Science (also Soc 355, CRP 442)</td>
<td></td>
</tr>
<tr>
<td>Hist 281-282</td>
<td>Science in Western Civilization</td>
<td></td>
</tr>
<tr>
<td>Hist 380</td>
<td>Social History of Western Technology</td>
<td></td>
</tr>
</tbody>
</table>

Social Relations of Science and Technology

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>B&Soc 288</td>
<td>History of Biology (also Hist 288, BioS 202)</td>
<td></td>
</tr>
<tr>
<td>B&Soc 300</td>
<td>Investigative Research on Social Impact of Science</td>
<td></td>
</tr>
<tr>
<td>B&Soc 460</td>
<td>Social Analysis of Ecological Change</td>
<td></td>
</tr>
<tr>
<td>Comm 352</td>
<td>Science Writing for the Mass Media</td>
<td></td>
</tr>
<tr>
<td>Comm 360</td>
<td>Science Writing for Public Information</td>
<td></td>
</tr>
<tr>
<td>Comm 626</td>
<td>Impact of Communication Technologies</td>
<td></td>
</tr>
<tr>
<td>Comm 666</td>
<td>Perspectives on Science Communication</td>
<td></td>
</tr>
</tbody>
</table>

Engr 101 The Computer Age (also CS 101)
Engr 250 Technology in Western Society (also EE 250)
Engr 292 The Electrical and Electronic Revolutions (also EE 292)
Hist 287 Evolution (also BioS 207)
Hist 433 Comparative History of Science and Technology

Science, Technology, and Public Policy

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>B&Soc 406</td>
<td>Biotechnology and Law</td>
<td></td>
</tr>
<tr>
<td>B&Soc 426</td>
<td>Medicine and the Law</td>
<td></td>
</tr>
<tr>
<td>CEE 596</td>
<td>Decision Making in Engineering Systems</td>
<td></td>
</tr>
<tr>
<td>Econ 302</td>
<td>The Impact and Control of Technology and Change (also Govt 302, CRP 440)</td>
<td></td>
</tr>
<tr>
<td>Engr 400</td>
<td>Science, Risk, and Public Policy (also T&AM 400, Econ 358)</td>
<td></td>
</tr>
<tr>
<td>Govt 381</td>
<td>The Politics of Defense Spending</td>
<td></td>
</tr>
<tr>
<td>Govt 483</td>
<td>The Military and New Technology</td>
<td></td>
</tr>
<tr>
<td>R Soc 208</td>
<td>Technology and Society</td>
<td></td>
</tr>
<tr>
<td>R Soc 342</td>
<td>Environment and Society</td>
<td></td>
</tr>
</tbody>
</table>

Ethics and Values in Science and Technology

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>B&Soc 205</td>
<td>Ethics and Health Care (also Phil 255, BioS 205)</td>
<td></td>
</tr>
<tr>
<td>B&Soc 206</td>
<td>Ethics and the Environment (also Phil 246, BioS 206)</td>
<td></td>
</tr>
<tr>
<td>Engr 350</td>
<td>Ethical Issues in Engineering</td>
<td></td>
</tr>
<tr>
<td>HSS 600.7</td>
<td>Professional Ethics and Public Policy</td>
<td></td>
</tr>
<tr>
<td>N Res 407</td>
<td>Religion, Ethics, and the Environment</td>
<td></td>
</tr>
<tr>
<td>Phil 381</td>
<td>Philosophy of Science: Knowledge and Objectivity</td>
<td></td>
</tr>
</tbody>
</table>

Biology, Medicine, and Society

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>B&Soc 232</td>
<td>Recombinant DNA Technology and Its Applications (also BioS 232)</td>
<td></td>
</tr>
<tr>
<td>B&Soc 301</td>
<td>Biology and Society: Social Construction of Life (also BioS 301)</td>
<td></td>
</tr>
<tr>
<td>B&Soc 434</td>
<td>Biotechnology: Science Values and Policy (also BioS 434)</td>
<td></td>
</tr>
<tr>
<td>B&Soc 459</td>
<td>Food, Agriculture, and Society (also BioS 459)</td>
<td></td>
</tr>
<tr>
<td>B&Soc 482</td>
<td>Human Genetics and Society</td>
<td></td>
</tr>
<tr>
<td>Entomol 370</td>
<td>Pesticides and the Environment (also Tox 370)</td>
<td></td>
</tr>
<tr>
<td>Hist 233</td>
<td>Agriculture, Technology and Society</td>
<td></td>
</tr>
<tr>
<td>N Res 401</td>
<td>Environmental and Natural Resources Policies</td>
<td></td>
</tr>
<tr>
<td>Psych 387</td>
<td>Health and Diseases</td>
<td></td>
</tr>
</tbody>
</table>

Interdisciplinary Centers, Programs, and Studies 23

Program on Science, Technology, and Society

Sheila Jasanoff, director
652 Clark Hall, 255-3810

The Program on Science, Technology, and Society (STS) is an academic unit that engages in teaching and research concerning the interaction of science and technology with social and political institutions. The program's activities can be divided into four areas: social relations of science and technology; science, technology, and public policy; ethics and values in science and technology; and biology and society. The core faculty of STS is drawn from the social sciences, the humanities, law, biological sciences, and engineering. In cooperation with faculty in other Cornell departments and centers, the STS Program administers two undergraduate curricular offerings: a concentration in Science, Technology, and Society and a major in Biology and Society. The program does not currently enroll students for advanced degrees. However, advanced degree candidates enrolled in established graduate programs at Cornell may work with STS faculty on the interrelations of science, technology, and society.

Graduate Studies

STS does not enroll students for advanced degrees. Rather, the program cooperates with departments and colleges to facilitate teaching and research on STS issues. Faculty members affiliated with the STS program are also members of graduate fields of study such as ecology, engineering, history and philosophy of science and technology, governmental philosophy, rural sociology, sociology, and environmental toxicology. It is possible to undertake research and course work in the area of science, technology, and society in one of the aforementioned fields, as well as in others. A minor concentration in science and technology policy is available in the graduate field of public affairs and in the Master of Professional Studies (International Development) degree. Further information about these graduate programs may be obtained by contacting the Graduate School.

Undergraduate Studies

Information concerning the STS program, including a list of STS-related courses offered throughout the university and information concerning individual courses of study, may be obtained from the STS program office, 632 Clark Hall (telephone: 255-3810), or the Biology and Society office, 275 Clark Hall (telephone: 255-6042).
Biology and Society Major
The Biology and Society major is designed for students who desire strong training in biology and who also wish to acquire a background in the social, political, and ethical dimensions of the biological sciences. Many of the most critical problems of our time—food and population, genetic engineering and new medical technologies, drug abuse and testing for drugs, the AIDS epidemic, and environmental degradation—are innately biological or have an irreducible biological component. At the same time, each is inherently a social concern whose resolution involves complex relations between biological and sociocultural forces. The Biology and Society major is intended to provide students the technical knowledge and analytical skills they need to systematically address these and many other social-biological issues.

The undergraduate curriculum in biology and society is a major in the College of Arts and Sciences and in the College of Human Ecology. It is also offered as an optional curriculum for undergraduates entering the General Studies Program of the New York State College of Agriculture and Life Sciences. Information and application materials may be obtained from the Biology and Society office, 275 Clark Hall (255-6042).

Biology and Society Courses

Freshman Writing Seminars
- B&Soc 103 In the Company of Animals
- B&Soc 104 Ecosystems and Ego Systems
- B&Soc 108 Living on the Land
- B&Soc 109 Women and Nature (also Eng 105.5)
- B&Soc 113 Writing as a Naturalist (also Eng 113)
- B&Soc 115 The American Way

Foundation Courses
- B&Soc 205 Ethics and Health Care (also BioS 205, Phil 245)
- B&Soc 206 Ethics and the Environment (also BioS 206, Phil 246)
- B&Soc 288 History of Biology (also Hist 288, BioS 202)

Core Courses
- Phil 286 Science and Human Nature
- B&Soc 301 Biology and Society: The Social Construction of Life (also BioS 301)

Issues
- B&Soc 201 Biotechnology: The "New" Biology (also BioS 201)
- B&Soc 232 Recombinant DNA Technology and Its Applications (also BioS 232)
- B&Soc 300 Investigative Research on the Social Impact of Science
- B&Soc 322 Medicine and Civilization
- B&Soc 347 Human Growth and Development: Biological and Social Psychological Considerations (also HDFS 347, NS 347)
- B&Soc 407 Law, Science, and Public Values (also Govt 407)
- B&Soc 469 Food, Agriculture, and Society (also BioS 469)

Senior Seminars
- B&Soc 404 Human Fertility in Developing Nations (also R Soc 408)
- B&Soc 406 Biotechnology and Law
- B&Soc 414 Population Policies (also R Soc 414)
- B&Soc 415 The Politics of Technical Decisions I (also CRP 541, Govt 628)
- B&Soc 426 Medicine and the Law
- B&Soc 428 Medical Service Issues in Health Administration (also HHS 628)
- B&Soc 434 Biotechnology: Science Policy and Values (also BioS 434)
- B&Soc 442 Social and Political Studies of Science (also CRP 442)
- B&Soc 451 AIDS and Society
- B&Soc 460 Social Analysis of Ecological Change (also R Soc 660)
- B&Soc 461 Environmental Policy (also BioS 661)

Other Biology and Society Courses
- B&Soc 375 Independent Study
- B&Soc 400 Undergraduate Seminar in Biology and Society
- B&Soc 499 Honors Project

Other Courses by STS Faculty
- The Politics of Technical Decisions II (Soc 516, CRP 542 and Govt 629)
- Professional Practice (CEE 503)
- Professional Responsibilities of Toxicologists (Tox 751 and BioS 751)
- Biotechnology Transfer: Professional Issues and Social Concerns (BioS 755)
- Ecology of Agricultural Systems (BioS 473 and Agron 473)
- Classical Sociology Theory (R Soc 603)
- Ecological Perspectives on Social Change (R Soc 721)
- Ethical Theory (Phil 341)
- Ethics and the Philosophy of Mind (Phil 442)

VISUAL STUDIES

Robert Ascher, Department of Anthropology, and Marilyn Rivchin, Department of Theatre Arts, advisers

Visual Studies as a distinct area of intellectual activity comprehends the analysis of visual forms, especially symbolic visual forms, from a range of historical, scientific, sociological, and aesthetic points of view. Images can be analyzed within a variety of contexts and by means of a variety of methods, and their study is therefore ideally conceived of in interdisciplinary terms. And since the creation of images has an important bearing on their analysis, visual studies concerns itself with practice as well as theory.

In addition to the courses listed below, which represent only a sampling of formal curricular offerings pertinent to visual studies, interested students should be aware of the programs and facilities available in the Herbert F. Johnson Museum of Art and the ETV Center of the College of Human Ecology, as well as the frequent showings by Cornell Cinema and Pentangle II.

Courses

Some of these courses may not be taught in 1990–91. For information about availability consult the appropriate departmental listings:

- Asian American Images in Film (Asian Studies 455)
- Black Communication Media and Film Workshop (Africana Studies 303)
- Cinema to Literature (Italian 399)
- Color, Form, Space (Art 110)
- Computer Graphics (Architecture 334 and Computer Science 417)
- Dance, Theatre and Film of the 1960s (Theatre Arts 400)
- Design I and II (Design and Environmental Analysis 101–102)
- Documenting the Depression: Film, Literature, and Memory (History 476)
- Ethnographic Film (Anthropology 205)
- Fiction and Film in France (French 499)
- Film and Performance (Theatre Arts 311)
- Freshman Seminar in Visual Analysis (History of Art 103)
- Fundamentals of 16-mm Filmmaking (Theatre Arts 377)
- History and Theory of Commercial Narrative Film (Theatre Arts 311)
- The History of the Book (English 450)
- How to Look at Works of Art (History of Art 104)
- Image Analysis I (Landforms) and II (Physical Environments) (Civil and Environmental Engineering 613–614)
- Impact of Communication Technologies (Communication 626 [643])
- Introduction to Film Analysis: Meaning and Value (Theatre Arts 374)
- Introduction to Mass Media (Communication 120)
- Introductory Photo I (Art 161–162 and Architectural 251)
- The Japanese Film (Asian Studies 313)
- Literature to Cinema (Italian 390)
- Looking at Dance (Theatre Arts 150)
- The Medieval Illuminated Book (History of Art 457)
- Modern Experimental Optics (Physics 330)
- Myth onto Film (Anthropology 653 and Theatre Arts 653)
- New German Cinema (German 676)
- Perception (Psychology 205)
- Photo Communication (Communication 234)
- Philosophical Problems of Classical Film (Theatre Arts 476)
- Psychology of Visual Communication (Psychology 347)
- Public Aesthetics: Art, Video, and Spectacle in the Age of Technology (English 453)
- Russian Film of the 1920s and French Film of the 1960s (Theatre Arts 378)
- Seminar in Museum Issues (History of Art 407)
- Seminar on Ethnographic Film (Anthropology 450)
- Spanish Film (Spanish 399)
- Theorizing Film: Image—Narration—Psychoanalysis (French 695)
- Theory of Design (Design and Environmental Analysis 11)
- Topics in Recent Film Theory (Theatre Arts 654)
- Video Communication (Communication 348)
- Vision (Genetics and Development 395)
- Visual Anthropology (Anthropology 453)
- Visual Communication (Communication 290)
- Visual Ideology (German 660 and Theatre Arts 660)
- Visual Perception (Psychology 305)
- Writing about Film (Theatre Arts 108 and English 108)
Business and Preprofessional Study

UNDERGRADUATE BUSINESS STUDY

Undergraduate preparation for business is found in many schools and colleges as Cornell. Students most frequently take courses in more than one area, as well as in related fields, to construct a program to suit their interests and career objectives. Each of the following areas provides a different focus for application and use of business study and training, and students should consider carefully the implications of each program when making a choice. (Graduate study is available in the Johnson Graduate School of Management, as well as in graduate fields following each of the undergraduate options.)

The areas most often pursued include applied economics and business management (College of Agriculture and Life Sciences), economics (College of Arts and Sciences), engineering, hotel administration, consumer economics and housing (College of Human Ecology), and industrial and labor relations.

Applied economics and business management. This program is designed to prepare students for a career in business or in public service. Emphasis is placed on the application of economic theory and management principles. Students are required to satisfy the distribution requirements of the College of Agriculture and Life Sciences, which include courses in the social sciences and humanities. Four areas of specialization are available: agricultural and applied economics, business management and marketing, farm business management and finance, and food industry management.

Economics. This program provides a broad view of that social science concerned with the description and analysis of the production, distribution, and consumption of goods and services, the understanding of monetary systems, and the comprehension of economic theories and models. It is viewed more often as preprofessional than as training for immediate practice in business or economics.

Engineering. This area provides much of the management personnel of modern industry. Engineers frequently climb the ladders of technological management that lead to more general management responsibilities; more than half of the management-level personnel of major corporations such as General Electric, Xerox, IBM, and Du Pont have engineering degrees. In addition to becoming managers by being effective technical supervisors, many students enter engineering explicitly anticipating graduate business education, judging that an engineering background is particularly appropriate for management in a technology-oriented society.

Hotel administration. The undergraduate program in hotel administration prepares individuals to be mid- to upper-level managers and entrepreneurs for the hospitality industry (lodging, food service, and travel) and allied fields. Instruction is provided in the areas of administration and general management, human-resources management, accounting and financial management, food and beverage management, law, properties management, communication, science and technology, economics, and marketing.

Consumer economics and housing. Study in the department develops an understanding of the market economy from both buyers' and sellers' perspectives. The focus is on the economic behavior and welfare of consumers in the private, public, and mixed sectors of the economy. An understanding of economics, sociology, and government policy provides the basis for an analysis of consumers' rights and responsibilities.

Industrial and labor relations focuses on the interactions among human beings, organizations, and institutions. It encompasses not only the relationships between employer and employee but the political, economic, social, and psychological factors that affect those relationships. It includes the study of the hiring, training, and motivating of individual workers; negotiation and conflict resolution; and the economic and technological changes that affect the jobs that people perform. Finally, it embraces the many regulations and regulatory agencies created by our society to protect and help both employer and employed.

Related Areas

Courses in areas directly related to these business programs are found in many of the university departments. For example, quantitative methods may be studied in the departments of Mathematics and Computer Science, and courses in public administration are found in the departments of Government, and City and Regional Planning. There are additional programs that allow students with an interest in business to focus on a particular geographic area. Examples are the Latin American Studies Program, the South Asia Program, and the Africana Studies and Research Center. Such interdisciplinary programs as the Program on Science, Technology, and Society and the various programs in international agriculture provide additional opportunities for study of interest to business students.

Combined Degree Programs

Because Cornell has the Samuel Curtis Johnson Graduate School of Management, special opportunities exist for highly qualified undergraduates to combine their undergraduate programs with graduate study in that school. Students in the double-reginant program generally receive a bachelor's degree after four years of study and a Master of Business Administration (M.B.A.) degree after the fifth year of study, rather than the usual sixth year. Students in all Cornell undergraduate colleges and schools are eligible to explore this option. There is also a program with the College of Engineering that allows qualified students to earn a B.S., M.B.A., and Master of Engineering degree in six years. Admission to these combined degree programs is limited to particularly promising applicants. Careful planning is required for successful integration of the work in the two schools.

SELECTED BUSINESS AND MANAGEMENT COURSES

<table>
<thead>
<tr>
<th>Accounting</th>
<th>Financial Accounting</th>
<th>Financial Management</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ag Ec 221</td>
<td>Managerial Accounting</td>
<td>Basic Principles of</td>
</tr>
<tr>
<td>Ag Ec 323</td>
<td></td>
<td>Accounting and Financial</td>
</tr>
<tr>
<td>H Adm 120</td>
<td></td>
<td>Management</td>
</tr>
<tr>
<td>H Adm 121</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H Adm 220</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H Adm 221</td>
<td></td>
<td></td>
</tr>
<tr>
<td>JGSM MBA 500</td>
<td>Intermediate Accounting</td>
<td>Advanced Accounting</td>
</tr>
<tr>
<td>JGSM MBA 501</td>
<td></td>
<td></td>
</tr>
<tr>
<td>JGSM MBA 505</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OR&IF 350</td>
<td>Cost Accounting Analysis</td>
<td></td>
</tr>
<tr>
<td></td>
<td>and Control</td>
<td></td>
</tr>
</tbody>
</table>

Communications

Comm 201	Oral Communication
Comm 204	Effective Listening
Comm 272	Principles of Public Relations and Advertising
Comm 301	Business and Professional Speaking
Comm 372	Advanced Advertising
H Adm 165	Introduction to Writing
H Adm 265	
H Adm 364	Advanced Business Writing

Computing

Ag Ec 412	Introduction to Mathematical Programming
Ag Ec 413	Information Systems and Decision Analysis
Ag En 204	Introduction to Computer Uses
CS 100	The Computer Age
CS 101	Introduction to Microcomputer Applications
CS 102	Instructional Applications of the Microcomputer Information Systems
Educ 247	Hotel Computing
H Adm 174	Applications End-User Business Computing Tools
H Adm 274	
H Adm 374	

Economics

Ag Ec 332	Economics of the Public Sector
CEE 321	Resource Economics
CEE 310	Microeconomic Analysis
CEE 355	Intermediate Microeconomics
Econ 101	Wealth and Income
Econ 102	Introductory Microeconomics
Econ 301	Introductory Macroeconomics
Econ 313	Economics of Market Failure
Econ 317	Intermediate Macroeconomic Theory
Econ 318	Intermediate Mathematical Economics I
Econ 338	Intermediate Mathematical Economics II
Econ 341	Macroeconomic Policy
Econ 342	Labor Economics
	Problems in Labor Economics
	(also I&LR 343)
General Information

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Econ 351</td>
<td>Industrial Organization</td>
</tr>
<tr>
<td>Econ 358</td>
<td>Current Economic Issues</td>
</tr>
<tr>
<td>I&LR 240</td>
<td>Economics of Wages and Employment</td>
</tr>
<tr>
<td>I&LR 340</td>
<td>Economic Security</td>
</tr>
<tr>
<td>I&LR 440</td>
<td>Economics of Fringe Benefits</td>
</tr>
</tbody>
</table>

Entrepreneurship

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ag Ec 325</td>
<td>Personal Enterprise and Small Business</td>
</tr>
<tr>
<td>Ag Ec 425</td>
<td>Counseling Small Business</td>
</tr>
<tr>
<td>JGSM NBA 300</td>
<td>Entrepreneurship and Enterprise</td>
</tr>
</tbody>
</table>

Finance

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ag Ec 324</td>
<td>Financial Management</td>
</tr>
<tr>
<td>Ag Ec 404</td>
<td>Advanced Agricultural Finance Seminar</td>
</tr>
<tr>
<td>Ag Ec 405</td>
<td>Farm Finance</td>
</tr>
<tr>
<td>Ag Ec 407</td>
<td>Financial Management in Farming</td>
</tr>
<tr>
<td>CEH 315</td>
<td>Personal Financial Management</td>
</tr>
<tr>
<td>Econ 331</td>
<td>Money and Credit Management</td>
</tr>
<tr>
<td>Econ 333</td>
<td>Theory and Practice of Asset Markets</td>
</tr>
<tr>
<td>Econ 336</td>
<td>Public Finance: Resource Allocation</td>
</tr>
<tr>
<td>H Adm 125</td>
<td>Finance</td>
</tr>
<tr>
<td>H Adm 222</td>
<td>Hospitality Financial Management</td>
</tr>
<tr>
<td>H Adm 322</td>
<td>Investment Management</td>
</tr>
<tr>
<td>H Adm 326</td>
<td>Corporate Finance</td>
</tr>
<tr>
<td>OR&IE 451</td>
<td>Economic Analysis of Engineering and Management</td>
</tr>
</tbody>
</table>

International Business

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ag Ec 100</td>
<td>Introduction to Global Economic Issues</td>
</tr>
<tr>
<td>Ag Ec 444</td>
<td>Export Marketing</td>
</tr>
<tr>
<td>Econ 102</td>
<td>Introductory Macroeconomics</td>
</tr>
<tr>
<td>Econ 314</td>
<td>Intermediate Macroeconomics Theory</td>
</tr>
<tr>
<td>Econ 325</td>
<td>Economic History of Latin America</td>
</tr>
<tr>
<td>Econ 329</td>
<td>Eastern Europe Today: Economics, Government, and Culture (also Government 326 and Russian 329)</td>
</tr>
<tr>
<td>Econ 330</td>
<td>The Soviet Union: Politics, Economics, and Culture (also Government 330 and Russian 330)</td>
</tr>
<tr>
<td>Econ 338</td>
<td>Macroeconomic Policy</td>
</tr>
<tr>
<td>Econ 366</td>
<td>The Economy of the Soviet Union</td>
</tr>
<tr>
<td>Econ 369</td>
<td>Selected Topics in Socialist Economies: China</td>
</tr>
<tr>
<td>Econ 561</td>
<td>International Trade Theory and Policy</td>
</tr>
<tr>
<td>Econ 562</td>
<td>International Monetary Theory and Policy</td>
</tr>
<tr>
<td>Govt 354</td>
<td>America in the World Economy</td>
</tr>
<tr>
<td>Japan 141-142</td>
<td>Introductory Japanese for Business Purposes</td>
</tr>
<tr>
<td>Japan 241-242</td>
<td>Intermediate Japanese for Business Purposes</td>
</tr>
<tr>
<td>NES 463</td>
<td>International Trade, Market, and Politics in the Ancient Near East</td>
</tr>
</tbody>
</table>

Law, Regulation, and Ethics

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ag Ec 320</td>
<td>Business Law</td>
</tr>
<tr>
<td>Ag Ec 321</td>
<td>Law of Business Associations</td>
</tr>
<tr>
<td>Ag Ec 322</td>
<td>Taxation in Business and Personal Decision Making</td>
</tr>
<tr>
<td>Ag Ec 252</td>
<td>Natural Resource and Environmental Economics</td>
</tr>
<tr>
<td>Ag Ec 420</td>
<td>Advanced Business Law</td>
</tr>
<tr>
<td>Ag Ec 422</td>
<td>Estate Planning</td>
</tr>
<tr>
<td>CEH 430</td>
<td>The Economics of Consumer Policy</td>
</tr>
<tr>
<td>CEH 465</td>
<td>Economics of Consumer Law</td>
</tr>
<tr>
<td>Comm 428</td>
<td>Communication Law</td>
</tr>
<tr>
<td>Econ 302</td>
<td>The Impact and Control of Technological Change</td>
</tr>
<tr>
<td>Econ 304</td>
<td>Economics and the Law of Securities</td>
</tr>
<tr>
<td>Econ 308</td>
<td>Economic Analysis of Government (also Civil and Environmental Engineering 322)</td>
</tr>
<tr>
<td>Econ 552</td>
<td>Public Regulation of Business</td>
</tr>
<tr>
<td>Econ 554</td>
<td>Economics of Regulation Policy</td>
</tr>
<tr>
<td>Govt 389</td>
<td>International Law</td>
</tr>
<tr>
<td>H Adm 283</td>
<td>Law of Securities Regulation</td>
</tr>
<tr>
<td>H Adm 385</td>
<td>Law of Business I</td>
</tr>
<tr>
<td>H Adm 422</td>
<td>Taxation and Management Decisions</td>
</tr>
<tr>
<td>I&LR 201</td>
<td>Labor Relations Law and Legislation Comparative Industrial Relations Systems: Western Europe</td>
</tr>
<tr>
<td>I&LR 330</td>
<td>Comparative Industrial Relations Systems: Non-Western Countries</td>
</tr>
<tr>
<td>I&LR 331</td>
<td>Cooperative Industrial Relations Systems: Non-Western Countries</td>
</tr>
</tbody>
</table>

Management

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ag Ec 120</td>
<td>Introduction to Business Management</td>
</tr>
<tr>
<td>Ag Ec 302</td>
<td>Farm Business Management</td>
</tr>
<tr>
<td>Ag Ec 402</td>
<td>Advanced Farm Business Management</td>
</tr>
<tr>
<td>Ag Ec 424</td>
<td>Business Policy Cooperative Management and Strategies</td>
</tr>
<tr>
<td>Ag Ec 426</td>
<td>Food Industry Management</td>
</tr>
<tr>
<td>Ag Ec 443</td>
<td>Introduction to Public Policy Analysis and Management</td>
</tr>
<tr>
<td>H Adm 103</td>
<td>The Professional Manager at Work</td>
</tr>
<tr>
<td>H Adm 401</td>
<td>Sociology of Work</td>
</tr>
<tr>
<td>JGSM NBA 573</td>
<td>Entrepreneurship and Enterprise</td>
</tr>
<tr>
<td>Soc 328</td>
<td>Industrial Systems Analysis Production Planning and Control</td>
</tr>
</tbody>
</table>

Manufacturing

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Econ 302</td>
<td>The Impact and Control of Technological Change</td>
</tr>
<tr>
<td>OR&IE 410</td>
<td>Industrial Systems Analysis</td>
</tr>
<tr>
<td>OR&IE 421</td>
<td>Production Planning and Control</td>
</tr>
</tbody>
</table>

Marketing

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ag Ec 240</td>
<td>Marketing</td>
</tr>
<tr>
<td>Ag Ec 342</td>
<td>Marketing Management</td>
</tr>
<tr>
<td>Ag Ec 346</td>
<td>Dairy Markets and Policy</td>
</tr>
<tr>
<td>Ag Ec 347</td>
<td>Marketing Fruits, Vegetables, and Ornamental Products</td>
</tr>
<tr>
<td>Ag Ec 448</td>
<td>Food Merchandising Applications in Strategic Marketing</td>
</tr>
<tr>
<td>Ag Ec 449</td>
<td>Marketing and the Consumer</td>
</tr>
<tr>
<td>CEH 235</td>
<td>Consumer Behavior Economic Organization of the Marketplace</td>
</tr>
<tr>
<td>H Adm 243</td>
<td>Principles of Marketing</td>
</tr>
</tbody>
</table>

Personnel and Human Resource Management

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>CEE 325</td>
<td>Social Implications of Technology</td>
</tr>
<tr>
<td>CEH 411</td>
<td>Time as a Human Resource</td>
</tr>
<tr>
<td>CEH 418</td>
<td>Work and Human Development</td>
</tr>
<tr>
<td>Econ 381</td>
<td>Economics of Participation and Workers’ Management</td>
</tr>
<tr>
<td>Econ 382</td>
<td>The Practice and Implementation of Self-Management</td>
</tr>
<tr>
<td>H Adm 211</td>
<td>The Management of Human Resources</td>
</tr>
<tr>
<td>H Adm 212</td>
<td>Human Relations Skills</td>
</tr>
<tr>
<td>H Adm 311</td>
<td>Union—Management Relations in Private Industry: A Survey</td>
</tr>
<tr>
<td>H Adm 313</td>
<td>Training for the Hospitality Industry</td>
</tr>
<tr>
<td>H Adm 414</td>
<td>Organizational Behavior and Small-Group Processes</td>
</tr>
<tr>
<td>H Adm 513</td>
<td>Situational Leadership and Organizational Behavior Introduction to Macro Organizational Behavior and Analysis</td>
</tr>
<tr>
<td>I&LR 120</td>
<td>Introduction to Micro Organizational Behavior and Analysis</td>
</tr>
<tr>
<td>I&LR 121</td>
<td>Studies in Organizational Behavior: Regulating the Corporation</td>
</tr>
<tr>
<td>I&LR 260</td>
<td>Personnel Management Psychology of Industrial Engineering</td>
</tr>
<tr>
<td>I&LR 320</td>
<td>Sociology of Occupations Psychology of Industrial Conflict</td>
</tr>
<tr>
<td>I&LR 326</td>
<td>Human Resource Economics and Public Policy</td>
</tr>
<tr>
<td>I&LR 360</td>
<td>Effective Supervision</td>
</tr>
<tr>
<td>I&LR 361</td>
<td>Women at Work</td>
</tr>
<tr>
<td>I&LR 366</td>
<td>The Study of Work Motivation</td>
</tr>
<tr>
<td>I&LR 370</td>
<td>Organizational Behavior Simulations</td>
</tr>
<tr>
<td>I&LR 374</td>
<td>Technology and the Worker Contract Administration</td>
</tr>
<tr>
<td>I&LR 404</td>
<td>Group Processes Sociology of Industrial Conflict</td>
</tr>
<tr>
<td>I&LR 420</td>
<td>Sociology of Industrial Conflict</td>
</tr>
<tr>
<td>I&LR 425</td>
<td>Human Resource Management (I&LR 200 Collective Bargaining)</td>
</tr>
<tr>
<td>Psych 206</td>
<td>Psychology in Business and Industry (also Hotel 314)</td>
</tr>
</tbody>
</table>
INTRODUCTORY STATISTICS

Introduction to Econometrics

Business Statistics

Information Systems and Business Analysis

Uncertainty Analysis in Engineering

Engineer Economics

Introduction to Econometrics

Quantitative Methods

Basic Engineering Probability and Statistics

Farm and Rural Real Estate Appraisal

Real Estate Development I: Advanced Analysis and Critique

Real Estate Development II: Advanced Analysis and Critique

Economics and Financing of Neighborhood Conservation and Preservation

Real Estate Finance

Personal Real Estate Investment

Transportation Planning and Policy

Transportation Engineering

Introduction to Transportation Engineering

Business Analysis

Decision Making

Engineering Economics

Real Estate Development

Real Estate Finance

Transportation Planning and Policy

PRELAW STUDY

Law schools do not prescribe any particular prelaw program, nor do they require any specific undergraduate courses as do medical schools. Law touches nearly every phase of human activity, and there is practically no subject that cannot be considered of value to the lawyer. Therefore, no undergraduate course of study is totally inappropriate. Students contemplating legal careers should be guided by certain principles, however, when selecting college courses.

1. Interest encourages scholarship, and students will derive the greatest benefit from those studies that stimulate their interest.

2. Of first importance to the lawyer is the ability to express thoughts clearly and cogently in both speech and writing. Freshman writing seminars, required of nearly all Cornell freshmen, are designed to develop these skills. English literature and composition, and communication courses, also serve this purpose. Logic and mathematics develop exactness of thought. Also of value are economics, history, government, and sociology, because of their close relation to law and their influence on its development and ethics, and philosophy, because of the influence of philosophic reasoning on legal reasoning and jurisprudence. Psychology leads to an understanding of human nature and mental behavior. Some knowledge of the principles of accounting and of the sciences such as chemistry, physics, biology, and engineering is recommended and will prove of practical value to the lawyer in general practice in the modern world.

3. Cultural subjects, though they may have no direct bearing on law or a legal career, will expand students' interests, help cultivate a wider appreciation of literature, art, and music; and make better-educated and well-rounded persons.

4. Certain subjects are especially useful in specialized legal careers. For some, a broad scientific background—for example, in agriculture, chemistry, physics, or engineering—when coupled with training in law, may furnish qualifications necessary for specialized work with the government, for counseling certain types of businesses, or for a career as a patent lawyer. A business background may be helpful for those planning to specialize in corporate or tax practice. Students who anticipate practice involving labor law and legislation might consider undergraduate study in the School of Industrial and Labor Relations. Whatever course of study is chosen, the important goals are to acquire perspective, social awareness, and a critical mind; to develop the ability to think logically and analytically; and to express thoughts clearly and forcefully. These are the crucial tools for a sound legal education and a successful career.

The presence of the Cornell Law School on the campus provides the opportunity for a limited number of highly qualified undergraduates registered in the College of Arts and Sciences at the university to be admitted to the Law School. At the time of entry they must have completed 105 of the 120 credits required for the Bachelor of Arts degree, including 92 credits of course work in the College of Arts and Sciences.

It may be possible for exceptionally well-qualified students in other Cornell undergraduate colleges to arrange to enter the Law School after three years. The College of Human Ecology offers a program in which students spend their fourth year at the Law School. In addition, members of the Cornell Law School faculty often offer courses such as Nature, Functions, and Limits of Law, which are open to all undergraduates.

PREMEDICAL STUDY

Medical and dental schools while not requiring or recommending any particular major course of study, do require that a particular selection of undergraduate courses be completed. These courses usually include general chemistry and organic chemistry, biology, physics, and a year of English composition (or a freshman writing seminar). In addition, many medical schools require or recommend at least one advanced biological science course, such as genetics, embryology, histology, or physiology.

There is no major program that is the best for those considering medical or dental school, and students are therefore encouraged to pursue their own intellectual interests. Students are more likely to succeed at, and benefit from, subjects that interest and stimulate them, and there is no evidence that medical colleges give special consideration to any particular undergraduate training beyond completion of the required courses. In the past, successful Cornell applicants to medical and dental schools have come from the Colleges of Arts and Life Sciences, Agriculture and Life Sciences, Human Ecology, and Engineering. The appropriate choice depends to a great extent on the student's other interests.

Qualified students in the College of Agriculture and Life Sciences may apply for acceptance into a double-registration program arranged between Cornell University and Cornell University Medical College in New York City. This program allows registered students to save one year in pursuit of the bachelor's and M.D. degrees. Further information about this program is available from the Health Careers Program office at the Career Center, Cornell University, 205 Barnes Hall, Ithaca, New York, 14853-1601.

PREVETERINARY STUDY

There is no specific preveterinary program at Cornell, and students interested in veterinary medicine as a career should select a major area of study that fits their interests while at the same time meeting the entrance requirements for veterinary college as listed below. Most preveterinary students at Cornell are enrolled in the College of Agriculture and Life Sciences, which offers several applied science majors, such as animal science, that can lead to related careers if the student is not accepted into veterinary college. Some enter other divisions of the university, especially the College of Arts and Sciences, because of the desire for a broad liberal arts curriculum.

The college-level prerequisite courses for admission to the New York State College of Veterinary Medicine at Cornell are English composition, biology or zoology, physics, inorganic chemistry, organic chemistry, biochemistry, and microbiology. All science courses must include a laboratory. These requirements, necessary for admission to the New York State College of Veterinary Medicine at Cornell, may vary slightly at other veterinary colleges.

For information on additional preparation, including work experience and necessary examinations, students should consult the brief summary, Admission to the New York State College of Veterinary Medicine, obtained by writing to the Office of Admissions, New York State College of Veterinary Medicine, Cornell University, 1117 Schuman Hall, Ithaca, New York 14853-6401. Information on the Guaranteed Admissions Program is available from the same address.

Qualified students in the College of Agriculture and Life Sciences may apply for acceptance in a double-registration program arranged between Cornell University and the New York State College of Veterinary Medicine at Cornell. This program allows students to save one year in pursuit of the bachelor's and D.V.M. degrees. Further information about this program is available from the Health Careers Program office at the Career Center, Cornell University, 205 Barnes Hall, Ithaca, New York 14853-1601.
ADMINISTRATION

David L. Call, dean
Kenneth E. Wing, associate dean
William G. Boldt, assistant dean for public affairs
George J. Connessman, director of academic programs
Elizabeth A. Olenacu, associate director of academic programs
Brian F. Chabot, acting director of research
David L. Brown, associate director of research
Lucinda A. Noble, director of cooperative extension
R. David Smith, associate director of cooperative extension
Larry W. Zuidera, acting director of international agriculture

Office of Academic Programs Staff
Student services: Donald Burgett, Lisa Ryan, Catherine Thompson
Records: Tom Wakula
Registrar: Mary Milks
Admissions: Richard Church, Laura Herlands, Susan Miller, Randy Stewart
Career development: William Alberta

Department Chairs
Agricultural and biological engineering: G. E. Rehkluger, Riley-Robb Hall
Agricultural economics: W. G. Tomek, Warren Hall
Animal science: J. M. Elliot, Morrison Hall
Communication: R. D. Colle, Kennedy Hall
Entomology: Q. D. Wheeler, Comstock Hall
Floriculture and ornamental horticulture: G. L. Good, Plant Science Building
Food science: R. A. Ledford, Stocking Hall
Microbiology: W. C. Ghiorse, Stocking Hall
Natural resources: J. P. Lassoie, Fernow Hall
Plant breeding and biometry: W. R. Coffman, Emerson Hall
Plant pathology: W. E. Fry, Plant Science Building
Pomology: G. H. Oberly, Plant Science Building
Poultry and avian sciences: R. E. Austic, Rice Hall
Rural sociology: D. L. Poston, Warren Hall
Soil, crop and atmospheric sciences: R. J. Wagenet, Emerson Hall
Vegetable crops: E. E. Ewing, Plant Science Building

Facilities

The College of Agriculture and Life Sciences is located on the upper campus, up the hill from the central area of Cornell University, on land that was once part of the Ezra Cornell family farm.

Buildings around the area commonly known as the Ag Quad house classrooms, offices, and laboratories. Flanking them are the greenhouses, gardens, and research facilities. Nearby orchards, barns, field plots, forests, and streams extend as far as the Animal Science Teaching Research Center at Harford and the Agricultural Experiment Station at Geneva.

Roberts Hall serves as headquarters for the administrative units, including offices of the deans and directors of academic programs, research, and cooperative extension. Included in the Office of Academic Programs are the director and associate director, the Admissions Office, the Career Development Office, the Office of Student Services and the Registrar.

Mann Library, with its extensive collections of materials in the agricultural and biological sciences, is at the east end of the Ag Quad. The student lounge and service center, known as the Alfalfa Room, and many of the college classrooms are in Warren Hall. Public computer facilities are available in Warren Hall, in Riley-Robb Hall, and in Mann Library.

DEGREE PROGRAMS

The College of Agriculture and Life Sciences offers programs leading to the degrees of Bachelor of Science, Master of Science, and Doctor of Philosophy. Professional degrees include the Master of Professional Studies and the Master of Arts in Teaching. Some registered professional licensing and certification programs are also available.

Each curriculum in the college creditable toward a degree is registered with the New York State Education Board and is linked with the national Higher Education General Information Survey (HEGIS) codes for federal and state reporting.

Graduate Degrees

Graduate study is organized by fields that generally coincide with the academic departments but may draw faculty from several disciplines in the various colleges of the university. The following graduate fields have primary affiliation in Agriculture and Life Sciences. Current graduate field representatives are also listed.

Agriculture [M. P. S. (Agr.)], G. Conneman, Roberts Hall
Agricultural and Biological Engineering, W. Gunzel, Riley-Robb Hall
Agricultural Economics, L. Tauer, Warren Hall
Animal Breeding, J. Pollak, Morrison Hall
Animal Science, R. Quaas, Morrison Hall

*Biochemistry, Molecular and Cell Biology; V. Vogt, Biotechnology Building
Biometry, S. Schwager, Warren Hall
*Botany, K. Niklas, Plant Science Building
Communication [M.P.S. (COMM)], C. Glynn, Kennedy Hall
*Ecology and Evolutionary Biology, N. Hainston, Jr., Corson Hall
Education [also M.A.T.], H. Cushman, Kennedy Hall
Development Sociology, T. Lyon, Warren Hall
*Ecology and Evolutionary Biology, N. Hainston, Jr., Corson Hall
*Genetics, C. Aquadro, Biotechnology Building
International Agricultural and Rural Development [M.P.S. (Agr.)], J. F. Young, Warren Hall
Landscape Architecture [M.L.A.], L. Mirin, W. Sibley Hall
Microbiology, S. Zinder, Stocking Hall
Natural Resources, R. Oglesby, Fernow Hall
*Neurobiology and Behavior, R. Harris-Warrick, Seeley Mudd Hall
Nutrition, B. Lewis, Martha Van Rensselaer Hall
*Physiology, J. Wooten, Vet Research Tower
Plant Breeding, E. Earle, Bradfield Hall
Plant Pathology, S. Beer, Plant Science Building
Plant Protection [M.P.S. (Agr.)], G. Bergstrom, Plant Science Building
Pomology, L. Powell, Plant Science Building
Soil, Crop and Atmospheric Sciences, J. Pepperly, Bradfield Hall
Statistics, G. Casella, Warren Hall
Vegetable Crops, P. Ludford, Plant Science Building

*Division of Biological Sciences

Bachelor of Science Degree

Departments in the College of Agriculture and Life Sciences sponsor study for the B.S. degree in sixteen major fields. To qualify for the degree, students must fulfill requirements established by the faculty of the college and administered through the Office of Academic Programs. The following units offer major fields of study for undergraduates. A faculty advising coordinator is listed for each unit. Students should consult with the faculty coordinator regarding requirements and opportunities for concentrations within the major field.
Summary of Basic College Requirements for Graduation

1. Credit Hours
 a. Minimum: 120
 b. Minimum with letter grade: 100
 c. Maximum independent study, teaching experience, internships: 15
 d. Minimum College of Agriculture and Life Sciences: 55
 e. Maximum from endowed colleges without additional charge: 55
 f. Maximum transferred in: 60, minimum at Cornell: 60

 Note: Credits received for physical education and for certain other courses, such as Mathematics 109, Education 005 and LSC courses, do not count toward the 120 hours but are included on the transcript and in the grade-point average.

2. Residence
 a. Normally, eight full-time semesters
 b. Seven semesters, if all other degree requirements are met, with a grade-point average of 2.0
 c. Minimum of 12 credits per semester
 d. Minimum of two semesters, including the final semester prior to graduation, in the College of Agriculture and Life Sciences (residency in the Division of Unclassified Students [DUS] does not count toward residency in the college)
 e. Students who have completed 8 semesters in residence at Cornell, including two in the college, and who have 8 or fewer credits remaining for graduation may petition for approval to complete this work elsewhere.

3. Physical Education
 a. Completion of university requirement for two terms of work
 b. Transfer students may be exempt from part or all of the requirement.

 Note: Requests for postponement or exemption should be made in writing to the University Faculty Committee on Physical Education. Questions should be referred to Alan Ganter, Teagle Hall (255-4286).

4. Grade-Point Average (GPA)
 a. Cumulative GPA: 1.7 or above must be maintained
 b. Final GPA: 1.7 for a minimum of 12 credits in final term before graduation.

 Note: Only grades earned at Cornell and while registered in the college are included.

5. Distribution
 The purpose of the distribution requirement is to acquaint students with a broad range of subject matter. Through study of the physical sciences, students develop quantitative and analytic skills based on an understanding of the physical laws governing the universe; through study of the biological sciences, they gain an appreciation of the variability of living organisms. The social sciences and humanities give students perspective on the structure and values of the society in which we live. Through development of written and oral expression skills, students master the essentials of effective communication.

 Credits received for independent study, field, teaching, or work experience, and internships cannot be used to fulfill the distribution requirement. Courses judged to be remedial in subject matter do not count toward the distribution requirement. Courses in the following departments are excluded:

 - Plant Science Units (Plant Biology, Breeding, Pathology/Protection, Plant Culture, Pomology, Vegetable Crops): J. Lorbeer, 424 Plant Science Building
 - Food Science: J. Sherbon, 207 Stocking Hall
 - Entomology: R. Roush, 6130 Comstock Hall
 - Special Agricultural Studies (ALS): D. Burgett, 338 Roberts Hall
 - Natural Resources: H. Brumsted, 122c Fernow Hall
 - Animal Sciences: E. J. Pollak, B-22 Morrison Hall
 - Agricultural and Biological Engineering:
 - Maximum independent study, teaching experience, internships: 15
 - Minimum with letter grade: 100
 - Minimum: 120
 - Biological Sciences, Division of: H. Sinson, 200 Sinton Hall
 - Communication: S. Warland, Kennedy Hall
 - Computer Science: J. Foraker, 254 Warren Hall
 - Education: G. Posner, Kennedy Hall
 - Geology: J. Poliak, 104 Riley-Robb Hall
 - Genetics: R. Roberts, 412a Stocking Hall
 - Microbiology: V. Stewart, 200 Stimson Hall
 - Natural Resources: H. Brumsted, 122c Fernow Hall
 - Pharmacy: A. Ganter, Teagle Hall (255-4286)
 - Psychology: L. Johnson, 104 Riley-Robb Hall
 - Sociology: D. Poston, 133 Warren Hall
 - Statistics and Biometry: C. McCulloch, 338 Warren Hall
 - Special Agricultural Studies (ALS): D. Burgett, Roberts Hall
 - Wildlife, Fisheries, Natural Resources: H. Brumsted, 122c Fernow Hall

 Group A: Physical Sciences. 9 credits of 100- or 200-level courses, in at least two disciplines, including at least one course in chemistry or physics:

 - Soil, Crop and Atmospheric Sciences 131
 - Astronomy
 - Chemistry
 - Geology
 - *Mathematics (excluding Education 005 and Mathematics 109)
 - Education 115

 *The college mathematics requirement is described below.

 Group B: Biological Sciences. 9 credits, including 6 of introductory biological science:

 - Biological Sciences (except 152, 202, 205, 206, 208, 209, 301)
 - Animal Sciences 220, 221
 - Entomology 212
 - Microbiology
 - Plant Breeding 225
 - Plant Pathology 301, 309

 Group C: Social Sciences and Humanities. 12 credits (6 in each of the following two categories):

 - Social Sciences. 100- through 400-level courses in the following departments (excluding Freshman Seminars): Archaeology Anthropology Economics Government (including Africana Studies 190) Psychology Sociology (including Rural Sociology) CEH 110/CEH 111 (cannot receive credit for these courses and Econ 101/Econ 102) Education 311, 317 HDFS 150 (cannot receive credit for this course and Soc 243)

 Humanities. 100- through 400-level courses in the following departments (excluding Freshman Seminars and language courses): Africana Studies (humanities and history) Asian and Near Eastern Studies (History and Literature) Classics Comparative Literature English (literature only) French, German, Italian, Russian, and Spanish (literature only) History History of Art/Architecture Music and Theatre Arts (theory, literature, and history only) Philosophy (also Natural Resources 407) ALS 100, 318

 Group D: Written and Oral Expression. 9 credits of which at least 6 must be in written expression, selected from the following:

 - Freshman Seminars Communication 161, 201, 350, 352, 360, 363, 365
 - English 280-281, 288-289, 382-385, 388-389
 - Hotel Administration 365

 6. Mathematics

 The faculty requires minimum competency in mathematics as a requisite to satisfactory pursuit of a degree. All students must complete, with a passing grade, one course in mathematics at Cornell as part of the physical sciences requirement. Advanced placement credit in mathematics or transfer credit in a college calculus course may be presented to meet this requirement.

 a. The ALS Mathematics Placement test. All entering undergraduates, including those presenting advanced placement or transfer credit in college calculus, must take the test, which is administered free of charge just prior to registration each semester. Students with accepted advance placement or transfer credit in college calculus will not need to complete a mathematics course at Cornell, unless required by the major. No student may repeat the placement test. It consists of fifty sample questions from arithmetic, algebra, geometry, trigonometry, and basic calculus. The index score is determined by the number of correct answers minus one quarter of the number of incorrect answers.
STUDENTS

Undergraduate enrollment is approximately 3,000, with about 65 percent in the upper division. Each year about 850 students are graduated, while 650 freshmen and 250 transfer students are enrolled. Members of the faculty of the college serve as chairs of the Special Committees of about 1,000 graduate students.

Admission

The College Admissions Committee selects applicants who are academically well prepared and appear most likely to profit from the college's various curricula.

Most students come from New York State, but around 25 percent come from other parts of the United States or abroad. About half of the undergraduates are women. Approximately 11 percent are identified as members of minority ethnic groups.

Transfer Students

Approximately 18 to 20 percent of the ALS undergraduate students are transfers who have taken part of their collegiate work at community colleges, agricultural and technical colleges, or other four-year institutions. Many of them hold an associate degree.

A Cornell student in good standing may apply for intra-university transfer to pursue a course of study unavailable in his or her current college. Guidelines are available in the Admissions Office of the College of Agriculture and Life Sciences, Roberts Hall. The procedure includes filing a transfer request and submitting a letter explaining reasons for making the transfer.

Consideration is given to students who have demonstrated an interest in their intended field of study, by taking appropriate prerequisite courses and courses within this area of study. Academic achievement is also considered. Students are seldom allowed to transfer during their freshman year.

In some cases a student may be referred to the Division of Summer Session, Extramural Courses, and Related Programs. The Continuing Education Information Service, B-12 Ives Hall, provides information, counseling, and special programs for mature students throughout the university.

Off-Campus Students

Programs in which students study off campus but enroll for Cornell credit include SEA semester, field study in human ecology or industrial and labor relations, Albany programs, Cornell-in-Washington, student teaching, IPM internship, and clinical microbiology internship.

Students intending to receive Cornell credit for work done off campus should inform the college registrar at the time of enrolling for courses to ensure that proper registration will occur.

Leave of Absence

A student considering taking a leave of absence from the university should contact the Office of Student Services. A petition must be filed when requesting a leave of a semester or more. Students returning from a leave of absence do not need to reapply for admission; they should contact Student Services.

Withdrawal

A student who finds it necessary to leave the university permanently should file a petition for withdrawal. Such petitions are approved if the student is in good standing. Students who have withdrawn and who later decide to return must apply to the Admissions Office.

Graduation

Diplomas are prepared by the Office of the University Registrar and distributed to those who have completed the degree requirements and have been approved by the college faculty.

ADVISING AND COUNSELING SERVICES

Faculty members in the College of Agriculture and Life Sciences recognize that students need information and advice to make intelligent decisions while they are in college. They believe that personal contact on a one-to-one basis is an important way to identify individual differences and needs of students. Faculty members believe that they can and should be an important source of information and advice on both academic and personal matters. Thus they consider advising to be an important and integral part of the undergraduate program.

The Office of Student Services has overall responsibility for coordinating the college advising and academic counseling program. Each student enrolled in the college is assigned to a faculty adviser in the major field of study for aid in developing a program of study and to a peer adviser who has volunteered to help with problems of a general nature relating to personal matters and campus life.

Student Services provides a variety of services for undergraduates in the College of Agriculture and Life Sciences. The staff is available to help students with academic, social, and personal concerns. In addition, learning skills information and tutoring is offered, at no charge, by the college's honor society, Hon-De-Kah. Assistance is also available for students considering submitting petitions for waiver of college regulations.
The office is located on the first floor of Roberts Hall. Appointments are not necessary and questions regarding services and procedures should be directed to Donald Burgett and the Student Services staff.

Minority students in the College of Agriculture and Life Sciences receive counseling, tutoring, advising, and referral to agencies that will meet their special needs. The Educational Opportunity Program (EOP) is a state-supported program intended to assist New York State students who meet specific economic and academic criteria set by the State Programs Office and the NYS Board of Regents. Eligible students are accepted during the admissions process.

For further information, please contact Catherine Thompson in Roberts Hall.

The Office of Career Development offers a variety of services to all students and alumni of the college. Career development includes self-awareness and assessment, career exploration, decision making, and job search. Services are designed to assist students and alumni with those activities and to help them develop the career planning and job search skills they will find useful as their career paths progress and change.

An active on-campus recruitment program is integrated with the other services provided by the office. Extensive job vacancy files are updated daily and a bulletin of select job listings is published each month. The Career Information Library contains an extensive collection of current and useful material. The Sigi Plus system is a computer-assisted guidance system that can help in career and educational planning, providing useful information and ideas about work-related interests, skills and values, and occupations and careers. Internships, summer jobs, job search presentations, and assistance with resume writing are other activities of interest.

The office, in conjunction with a network of college faculty members, assists students throughout their undergraduate years. For further information students should contact William Alberta and the staff in Roberts Hall.

Financial aid is administered through the university office in Day Hall. Endowment funds and annual donations provide supplemental aid for students in the college who are eligible for aid. Information about these college grants is available from the Office of Academic Programs in Roberts Hall. Financial Aid and Scholarship Committee are processed through the university’s Office of Financial Aid.

A small loan fund is administered by the college through the Office of Academic Programs to assist students facing short-term emergencies. The loans are interest-free and are usually made for no more than ninety days.

For information and an application form students should contact the Office of Academic Programs, Roberts Hall.

Academic Integrity Policy

The College of Agriculture and Life Sciences faculty, students, and administration support and abide by the university Code of Academic Integrity. Its principle is that absolute integrity is expected of every student in all academic undertakings. Students must in no way misuse their work, fraudulently or unfairly advance their academic status, or be a party to another student’s failure to maintain academic integrity.

The maintenance of an atmosphere of academic honor and the fulfillment of the provisions of the code are the responsibility of the students and the faculty. Therefore, all students and faculty members shall refrain from any action that would violate the basic principles of this code.

1. Students assume responsibility for the content and integrity of the work they submit, such as papers, examinations, or reports.

2. Students are guilty of violating the code if they
 - knowingly represent the work of others as their own
 - use or obtain unauthorized assistance in any academic work
 - give fraudulent assistance to another student
 - fabricate data in support of laboratory or field work
 - forge a signature to certify completion or approval
 - knowingly deprive other students of library resources, laboratory equipment, computer programs, and similar aids
 - in any other manner violate the principle of absolute integrity

3. Faculty members assume responsibility to make clear to students and teaching assistants specific regulations that apply to scholarly work in a discipline.

4. Faculty members fulfill their responsibility to
 - maintain in all class, laboratory, and examination activities an atmosphere conducive to academic integrity and honor
 - make clear the conditions under which examinations are to be given
 - make clear the consequences of violating any aspects of the code
 - provide opportunities for students to discuss the content of courses with each other and help each other to master the content and distinguish those activities from course assignments that are meant to test what students can do on their own without help from others
 - state explicitly the procedures for use of materials taken from published sources and the methods appropriate to a discipline by which students must cite the source of such materials
 - approve in advance, in consultation with other faculty members, which work submitted by a student and used by a faculty member to determine the grade in a course may be submitted by that student in a different course
 - monitor the work and maintain such records as will support the crucial underpinning of all guidelines: the students’ submitted work must be their own and no one else’s

Cornell’s Code of Academic Integrity spells out how individuals who have allegedly violated Cornell standards for academic integrity are to be confronted, and, if found to be in violation of those standards, sanctioned. The code provides for informal resolution of most perceived violations through a primary hearing between the faculty member and the student involved. If necessary, a hearing before a hearing board follows.

The Academic Integrity Hearing Board for the College of Agriculture and Life Sciences consists of three elected faculty members, three elected student members, a chair appointed by the dean, and the coordinator of student services, who serves as a nonvoting record keeper. Professor J. Bugliari is the current chair.

Individuals who observe or are aware of an alleged violation of the code should report the incident to the faculty member in charge of a course or to the chair of the hearing board.

General information and forms on procedures for suspected violations or hearings are available from the Office of Student Services, Roberts Hall.

Academics Policies and Procedures

Records

The college registrar maintains for each student a complete record of academic achievement. A permanent record card is on file for each matriculated student and is updated whenever new information becomes available. Staff members are available in Roberts Hall to consult with students regarding the assignment of credit toward meeting distribution and elective requirements and to verify the official summary of record.

The Committee on Academic Achievement and Petitions is a standing committee of six college faculty members and two students. On behalf of the faculty and subject to its review, the committee

- reviews, at the end of each semester and at other times as shall seem appropriate to the committee, the progress of all students not meeting academic requirements
- receives and acts upon petitions from individual students asking for exceptions to particular academic regulations or requirements of the college, or for reconsideration of action previously taken by the committee
- acts upon readmission requests from persons whose previous enrollment was terminated by the committee
- notifies the petitioner in writing of the action taken by the committee

Good academic standing means a student is eligible for, or has been allowed to register and enroll in, academic course work for the current semester. Whether an individual student is in good academic standing is determined by the college registrar and the Committee on Academic Achievement and Petitions.
A petition to be exempt from a college academic requirement or regulation may be filed by any student who has grounds for exemption. Forms are available in the Office of Student Services, Roberts Hall.

A petition is usually prepared with the assistance of a student's faculty adviser, whose signature is required; it indicates the adviser's awareness of the petition. The adviser's recommendation is helpful to the committee. The committee determines whether there is evidence of mitigating and unforeseen circumstances beyond the control of the student that would warrant an exemption or other action.

Registration Procedures
All students must register with the university and this college at the beginning of each semester. Registration materials are available at a time and place announced each term by the Office of the University Registrar.

Course Enrollment Procedures
To enroll in courses, students pick up materials from the college Registrar's Office, Roberts Hall; plan a schedule in consultation with their adviser, and return the completed forms to the Registrar's Office for verification and processing. Class lists are generated on the basis of the properly filed course enrollment forms.

To enroll in courses that involve independent study, teaching, or research, a student must file an independent study statement. Students who will be studying off campus or abroad should file the intent to study off campus form to ensure that proper registration will occur. Both forms are available from the college registrar, Roberts Hall.

Students may enroll again for a course in which they received a grade of F in a previous semester. The grade received the second time will be recorded and both grades calculated as part of their GPA.

Students should not enroll again for a course in which they received an incomplete. Work for that course should be completed. The instructor will file an incomplete make-up form. An incomplete will not be made up by the end of two successive semesters of registration reverts to a failure. In the case of a graduating senior, incompletes revert to failures at the time of graduation.

Students enrolled in a two-semester course will receive an F at the end of the first semester and should enroll again for the same course the second semester. The letter grade will be recorded for the second semester when all work for the course is completed. A note on the transcript will explain the two grades for the same course.

Should exceptionally challenging circumstances prevent students from completing the second semester, the college registrar verifies the student's grade-point average, the student will be officially enrolled in the honors or university registrar by mid-May.

Grade Reports
Grade reports for the fall term are included in spring term registration materials; grade reports for the spring term are mailed to students at their home addresses unless alternative addresses are reported to the college or university registrar by mid-May.

Academic Deficiency Policies
At the end of each semester, the Committee on Academic Achievement and Petitions reviews the records of those students who in any respect are failing to meet the academic requirements of the college or who persistently fail to attend classes. In case of students not making satisfactory progress, the committee takes appropriate action, including, but not limited to, issuing warnings to students, suspending them, decreeing that they may not register, granting them leaves of absence, and advising them to withdraw.

Specifically, the committee considers as possible cause for action failure to attend and participate in courses on a regular basis or, at the end of any semester, failure to attain one or more of the following:

- semester GPA of at least 1.7
- cumulative GPA of at least 1.7
- satisfactory completion of 12 or more credits per semester
- reasonable progress toward completion of distribution requirements
- appropriate completion of college and university requirements

In general terms, regular participation in course work with academic loads at a level sufficient to assure graduation within eight semesters and grades averaging C- (1.7) or higher are prima facie evidence of satisfactory progress.

HONORS PROGRAM
The Bachelor of Science degree with honors will be conferred upon those students who, in addition to having completed the requirements for the degree of Bachelor of Science, have satisfactorily completed the honors program in their area of major interest and have been recommended for the degree by the honors committee of that area.

An undergraduate wishing to enroll in the honors program must have completed at least 55 credits, at least 30 of the 55 at Cornell. Also, the student must have attained a cumulative grade-point average of at least 3.0 at the time of entry.

Interested students must make written application no later than the end of the third week of the first semester of their senior year, but are encouraged to make arrangements with a faculty member during the second semester of their junior year. An application form is available from the college registrar, Roberts Hall, or from the area committee chair.

Written approval of the faculty member who will direct the research and of the honors committee in the area is required. After the college registrar verifies the student's grade-point average, the student will be officially enrolled in the honors program.

Academic credit may also be earned by enrolling in an appropriate independent study course. When applying for admission to the program, the student may, if appropriate, submit a budget and a modest request for funds to cover some of the costs the student incurs in doing the research.

The honors committee for each area recommends to the college registrar those students who qualify for honors. Only those who maintain a GPA of at least 3.0 will be graduated with honors.

Students in the College of Agriculture and Life Sciences wishing to participate in the honors program must be accepted in one of the program areas approved by the faculty. Students are not eligible for honors by participating in a program offered by another college or administrative unit.

Animal Sciences
Faculty committee: J. A. Marsh, chair; H. F. Hintz, R. L. Quaas

The objective of the animal sciences honors program is to provide outstanding undergraduates with the opportunity to pursue supervised independent research and to develop an awareness of the scientific process. It is expected that students in doing the research will incur significant effort and creative input by the student in its design and execution and in the reporting of the results.

Those students with majors in animal sciences who are interested in doing an honors project should consult with their faculty adviser early in their junior year. All students are expected to meet the college requirements in qualifying for the program and to complete the following:

- Identify a potential honors project sponsor (i.e., a faculty member working in the animal sciences) and secure that faculty member's commitment to sponsor the student in the honors project. That should be accomplished early in the second semester of the junior year.
- Preregister during the spring semester for AS 496, Animal Sciences Honors Seminar, which is offered in the fall semester.
Applications and details pertaining to program of the program can be obtained from the office. Research activities is available in the Behrman Stimson Hall. Also see Biological Sciences Division Office for Academic Affairs, 200 requirements may be obtained from the Biological Sciences.

Details pertaining to the specific requirements of the program can be obtained from the office of the committee chair, 102 Rice Hall.

Biological Sciences

Students interested in the honors program in the biological sciences should consult with their faculty advisers early in their junior year. Applications and details pertaining to program requirements may be obtained from the Division Office for Academic Affairs, 200 Stimson Hall. Also see Biological Sciences section in this catalog. Information on faculty research activities is available in the Behrman Biology Center, G20 Stimson Hall.

Entomology

Faculty committee: W. L. Brown, Jr., chair; D. Pimentel, M. J. Tauber.

An honors program in the area of entomology may be available to a qualified student in the College of Agriculture and Life Sciences (see the requirements at the beginning of this section). The student need not be specializing in entomology. Insects, because of their variety, small size, and easy availability, are convenient subjects for study in a wide array of classes. If reviewers indicate that changes must be made, the revised thesis should be submitted to the chair no later than the last day of classes.

Natural Resources

Faculty committee: M. E. Richmond, chair; J. W. Kelley, R. J. McNeill.

The honors program in natural resources provides an opportunity for undergraduates to participate in independent research in the areas of fisheries and aquatic science, forest science, wildlife science, ecotoxicology, and conservation. The subject matter and nature of the research experience may be quite varied in this program but require the guidance and supervision of a faculty member with substantial interest and expertise in the problem area chosen.

In addition to meeting requirements of the college, the student is expected to do the following:
- Register for the honors program in the junior year or earlier.
- Select a faculty adviser who will help identify and formulate a research problem.
- Carry out an independent research effort that is original and separate from the work of others who may be investigating similar subjects.
- Describe and summarize the work in the form of a written thesis or in the form of a scientific paper ready for journal submission. About half of the theses have been published.
- Work closely with at least two faculty or staff members who will agree to serve as readers for the thesis. Provide readers with a copy of the guidelines for evaluation of honors theses, available from the department's honors program committee.

Nutritional Sciences

Faculty committee: T. C. Campbell, chair; W. J. Arion, C. Campbell

The honors program in nutritional sciences is designed to provide the academically talented undergraduate with the opportunity to become involved in a faculty research program. This program is available to students majoring in general studies with a concentration in nutritional sciences. Students are selected in the spring semester of the sophomore year on the basis of scholastic achievement, cumulative grade point average, and motivation for independent study. Students interested in participating in the honors program should consult their faculty adviser in the Division Office, 335 Martha Van Rensselaer Hall, and submit their application to the honors committee.

In addition to meeting requirements of the college, to qualify for graduation with honors, students must:
- Maintain high scholastic achievement.
- Successfully complete the junior seminars, NS 398 and 498. Students are required to complete biochemistry by the end of the junior year.
- Successfully complete NS 499, Honors Problem, with a minimum of 6 credits, during the senior year. To do so the student must (1) attend a one-hour senior seminar, fall and spring, (2) plan and carry out an independent research problem in consultation with a faculty adviser, (3) submit for approval a written thesis to the division honors committee, (4) present a seminar on their research, and (5) register for honors with the ALS college registrar by the first two weeks of the senior year.

A copy of the honors program guidelines are available in the division's Undergraduate Office, 335 Martha Van Rensselaer Hall, or from the honors chair.

Physical Sciences

Faculty committee: C. E. McCulloch, chair; G. W. Fick, J. Y. Parlange, J. W. Sherbon

The honors program in physical sciences provides outstanding students with an opportunity to do independent research under the supervision of a faculty member in the Departments of Agricultural and Biological Engineering; Soil, Crop, and Atmospheric Sciences; Food Science; or in the Biometrics Unit.
The proposal must be 5-10 typed, double-spaced pages in length and include the following sections:

- **Research Topic**: This section should contain a statement of the problem to be studied or the topic of interest. The relevant literature should be briefly reviewed and the background of the problem or topic discussed; a more extensive bibliography should be included.

- **Research Questions/Empirical Hypotheses**: This section should contain specific questions to be answered or hypotheses to be empirically tested via collection of data and statistical analysis or some other mode of analysis accepted in the social sciences.

- **Research Methods**: This section should contain a discussion of models to be constructed, data collection procedures (including survey instruments or experiments, if appropriate), and methods of analysis.

- **Expected Significance**: What new knowledge or information is likely to be forthcoming and why is it important? Faculty advisers must be members of the graduate faculty. Exceptions to this rule will be granted for persons with special expertise who are deemed capable of thesis supervision; exceptions will be granted pending petition to the social science honors committee. Students may register for independent study directed by the faculty adviser in conjunction with an honors project.

Honors degrees are awarded upon approval of the honors thesis by the social science honors committee. The research should deal with a substantive issue within one of the fields in the social sciences. Both the results of the research and the methodology or the argument by which the results were achieved must be reported. Reviews of the literature, practical conclusions or applications, or broad characterizations of an area of inquiry may constitute part of the research report but are not themselves sufficient to count as research. Honors theses should be written according to the form of any standard journal within the appropriate fields. Four copies of the thesis must be submitted to the chair of the social science committee no later than three weeks before the last day of classes of the semester for which the degree is sought. A supporting letter from the faculty member supervising the work also must be submitted. Approval of the thesis requires a majority vote of the honors committee.

The College of Veterinary Medicine may accept students who are then permitted to double-register in their seventh or eighth semester and complete requirements for the Bachelor of Science degree in the College of Agriculture and Life Sciences. Students should consult with the college registrar, Roberts Hall, to ensure that degree requirements have been fulfilled.

Students who have been offered admission to the S. C. Johnson Graduate School of Management upon completion of the B.S degree in Agriculture and Life Sciences may take a program of management courses in their senior year if it is approved by their college faculty adviser as part of their undergraduate program. In certain cases an "upset" tuition charge, equal to the endowed undergraduate tuition rate, will be applied for undergraduate statutory college students taking excess credit hours from endowed colleges and schools. Inquiries should be directed to the university bursar.

Students in the Field Program in Agricultural and Biological Engineering are usually enrolled in the Intercolleges of Agriculture and Life Sciences during the freshman and sophomore years and jointly enrolled in this college and the College of Engineering in the junior and senior years. Students pay the engineering college tuition rate in the junior and senior years. The curriculum is accredited by the Accreditation Board for Engineering and Technology. The B.S. degree is awarded in cooperation with the College of Engineering.

The Program in Landscape Architecture is cosponsored by the Department of Floriculture and Ornamental Horticulture in the College of Agriculture and Life Sciences and by the College of Architecture, Art, and Planning. The program offers a first professional degree curriculum in landscape architecture at both undergraduate and graduate levels, as well as a graduate second professional degree program.

The Division of Nutritional Sciences is an intercollegiate unit affiliated with the College of Human Ecology and the College of Agriculture and Life Sciences. The undergraduate nutrition major is based in the College of Agriculture and Life Sciences during the freshman and sophomore years and jointly enrolled in this college and the College of Engineering. The curriculum is accredited by the Accreditation Board for Engineering and Technology. Students in Agriculture and Life Sciences may study nutrition in areas such as animal sciences, poultry and avian sciences, food-industry management, food science, microbiology, pomology, and vegetable crops. Students may also plan a concentration in biological sciences or a concentration in general studies in agriculture to include a human nutrition component.

The Program on Science, Technology, and Society is an academic unit that engages in teaching and research involving the interactions of science and technology with social and political institutions. The program draws on the students, faculty, and research staff from the various divisions of the university, including the College of Agriculture and Life Sciences. It offers an interdisciplinary undergraduate curriculum in Biology and Society. A concentration in general studies in the agriculture major program is available in consultation with a faculty adviser to include a biology and society component. Further information, including a list of courses, may be obtained from the program office, 632 Clark Hall.

Intercolleges Programs

The College of Agriculture and Life Sciences does not participate in any dual-degree programs. Study for the Bachelor of Science is the only undergraduate degree program offered.
AGRICULTURE AND LIFE SCIENCES

The American Indian Program (AIP) is a multidisciplinary intercollege program with instructional, research, and extension components. The instructional core consists of courses focusing on American Indian life with emphasis on the Iroquois and other Indians of the Northeast. A description of the program and general information is available from the director of the American Indian Program, Caldwell Hall.

The Comparative and Environmental Toxicology Program is an interdisciplinary intercollege program with research, teaching, and extension components. The program is administered by the Institute for Comparative and Environmental Toxicology (ICET). Courses are cosponsored by academic departments in several colleges of the university. A description of the program and general information is available from the director of the program through the ICET office, 16 Femow Hall.

The Cornell Laboratory of Environmental Applications of Remote Sensing (CLEARs) is an interdisciplinary intercollege center with teaching, research, and extension components affiliated with the College of Agriculture and Life Sciences and the School of Civil and Environmental Engineering. A description of the program and general information is available from the director through the CLEARs office in Hollisfer Hall.

OFF-CAMPUS STUDY PROGRAMS

Study off campus is of two types: (1) credit earned in Cornell courses that require off-campus activity, and (2) credit may be transferred to Cornell, or (2) credit may be earned in Cornell courses that require off-campus activity.

An Intent to Study Off Campus form should be submitted to Cornell, or (2) credit may be earned in Cornell courses that require off-campus activity.

To receive academic credit for the internship, students enroll in ALS 400, for an S-U grade only.

Information and applications are available in the Career Development Office, Roberts Hall.

Cornell-in-Washington

Students in all colleges apply for the Cornell-in-Washington program through the Department of Government, 134 McGraw Hall. ALS students admitted to the program should file the off-campus study form with the college registrar prior to leaving campus. Selection of courses should be made in consultation with an academic advisor to assure that the courses are appropriate for the degree program being pursued. The enrollment forms should be filed in the office of the college registrar as soon as course selection is completed and approved.

SEA Semester

The Sea Education Association is a nonprofit educational institution offering ocean-focused academic programs and the opportunity to live, work, and study at sea. Science, the humanities, and practical skills are integrated in small, personal classes. The 17-credit program is twelve weeks in length. Six weeks are spent in Woods Hole, the following six weeks are spent on either one of SEA's two sailing vessels: the R/V Westward, or the R/V Cornish Cramer. For more information, students should contact the Cornell Marine Programs office, G14 Stimson Hall. ALS students should file the intent to study off campus form with the college registrar as soon as possible to ensure proper registration and enrollment in courses.

Shoals Marine Laboratory

The Shoals Marine Laboratory, run cooperatively by Cornell University and the University of New Hampshire, is a seasonal field station located on 95-acre Appledore Island off the coast of Portsmouth, New Hampshire, in the Gulf of Maine. SML offers undergraduate, beginning graduate students, and other interested adults a unique opportunity to study marine science, conservation, and life in the Gulf of Maine. SML offers undergraduate, beginning graduate students, and other interested adults a unique opportunity to study marine science, conservation, and life in the Gulf of Maine. SML offers undergraduate, beginning graduate students, and other interested adults a unique opportunity to study marine science, conservation, and life in the Gulf of Maine. SML offers undergraduate, beginning graduate students, and other interested adults a unique opportunity to study marine science, conservation, and life in the Gulf of Maine. SML offers undergraduate, beginning graduate students, and other interested adults a unique opportunity to study marine science, conservation, and life in the Gulf of Maine. SML offers undergraduate, beginning graduate students, and other interested adults a unique opportunity to study marine science, conservation, and life in the Gulf of Maine. SML offers undergraduate, beginning graduate students, and other interested adults a unique opportunity to study marine science, conservation, and life in the Gulf of Maine.

Overseas Academic Programs

The Cornell Abroad program is open to students in all colleges of the university. Students in the College of Agriculture and Life Sciences should consult with their faculty adviser and the college registrar to determine that credit received for academic work abroad will meet requirements for graduation. The Office of Student Services, Roberts Hall, has information and application forms.

Cooperative arrangements with the University of Reading, in England, and the University of Dublin, in Ireland, enable the college to endorse several students for a year of study under a tutor in those schools. The Swedish exchange program is operated in cooperation with the Agricultural College of Sweden at Uppsala. The ALS student selected to participate in the Swedish exchange spends the
junior year at Uppsala. All essential expenses in Sweden, including a living allowance, are provided by a student group there. Round-trip air transportation must be paid by the student. An exchange student from Uppsala spends a year at Cornell, supported by the college and the Cornell student in Sweden.

MAJOR FIELDS OF STUDY

The college curriculum emphasizes the biological and physical sciences and the technology basic to the study of agriculture and life sciences. The sixteen major program areas reflect the departmental academic effort in the college. Faculty curriculum committees in each area identify a sequence of courses appropriate to all students studying in that field. Courses of study are designed to provide systematic development of basic skills and concepts. Opportunity for concentration in an area of particular interest is usually available.

Programs are planned with considerable flexibility, allowing students to prepare for careers, graduate work, professional opportunities, and the responsibilities of educated citizens. Course requirements in each program area are different, but all students must meet minimum distribution requirements of the college.

Agricultural and Biological Engineering

Agricultural and biological engineering links engineering and technology with the biological, social, environmental, and agricultural sciences. It is the branch of engineering that serves the public sector all the way from the grower to the consumer in addition to contributing to the public interest in other ways. The primary challenge is to apply engineering principles to solve problems in the agricultural and food industries. Applications involve production, processing, distribution, cost, environmental quality, safety, and computer utilization. An increasingly important and emerging aspect of the field is the engineering activity related to biotechnology.

A strong mixture of engineering and biology is the feature that makes this program area unique.

Students in this program area study topics such as biological engineering, food engineering, soil and water conservation, mechanical systems, waste management, small-scale energy development and management, international agriculture, structures and building design, design and construction of secondary roads, and environmental quality engineering.

The program area, which includes two distinct academic programs—agricultural engineering and biosystems technology—is offered by the Department of Agricultural and Biological Engineering. The department is located in Riley-Robb Hall, and operates specialized facilities that are among the largest and most complete agricultural engineering facilities in the world.

The agricultural engineering program has four concentrations: Agricultural Engineering, Biological Engineering, Environmental Systems, and Biological Systems Engineering, and is intended for the student who is particularly interested in the theoretical and fundamental aspects of engineering required for design and research. The student must be highly-motivated and have a strong aptitude for mathematics and the sciences. Biological, social, and agricultural sciences are integrated into this specialization, but the physical sciences dominate. The academic program is accredited by the Accreditation Board for Engineering and Technology and is jointly sponsored by the New York State College of Agriculture and Life Sciences and the College of Engineering. Students double register in both colleges during their junior and senior years. The program provides excellent preparation for a variety of positions in industry, and qualified graduates often continue study in a Master of Engineering, Master of Science, or doctoral degree program, or in veterinary science or medicine.

For specific course requirements and other information, see the section on the College of Engineering.

The biosystems technology program emphasizes the applied and technical aspects of agricultural, biological, and environmental systems. The curriculum incorporates courses in basic biological and physical sciences as well as agriculture, soil, and atmospheric sciences, agricultural economics, natural resources, and animal, plant, and food sciences.

Concentrations include agricultural systems, biological systems, and environmental systems.

The student develops his or her own program of advanced and elective courses in consultation with a faculty adviser and may have an informal minor in an area such as communication, business, education, or international agriculture.

Specific course requirements for the academic program in biosystems technology are:

A. Basic Subjects Credits
1. Calculus 8
2. Chemistry 6
3. Physics 8
4. Introductory biological science 6
5. Computer applications 4
6. Statistics or probability 3
7. Economics 3
8. Oral communication 3

B. Advanced and Applied Subjects
1. Five courses in the agricultural, biological, or environmental sciences 15
2. Five engineering courses at the 300 level or above; at least 9 credits in agricultural and biological engineering 15

C. Electives

Additional courses to complete college requirements

D. Total (minimum) 120

For further details on both the agricultural engineering and biosystems technology specializations, see the department's undergraduate program brochure, available at 106 Riley-Robb Hall.

Animal Sciences

The animal sciences program area involves two departments—the Department of Animal Science (in Morrison Hall) and the Department of Poultry and Avian Sciences (in Rice Hall)—which offer a coordinated group of courses dealing with the principles of animal breeding, nutrition, physiology, management, and meat science. While emphasis in subject matter is directed toward farm-animal species, including dairy and beef cattle, horses, poultry, pigs, and sheep, laboratory and other species are used in research and teaching programs as well. The departments have extensive facilities for raising animals and well-equipped laboratories and classrooms, including a teaching farm, in which students can gain practical experience in the care and management of large animals at a convenient location on campus.

The program focuses on the application of science to the efficient production of animals for food, fiber, and pleasure and easily accommodates a variety of interests and goals. Beyond a core of basic courses (suggested minimum, 12 credits) students select production (minimum, 6 credits) and management courses (minimum, 6 credits) courses to fulfill an individually tailored program worked out in consultation with their advisers. In this way it is possible to concentrate by species as well as by subject matter (nutrition, physiology, breeding, management, meat science). Dairy management, for example, is a popular program among students who may be preparing to manage a dairy farm or enter a related career. Supporting courses in other departments are readily available and strongly encouraged. Thus, some students elect a program emphasizing supportive preparation in the basic physical and biological sciences appropriate to graduate or professional study following graduation. Others elect a program heavily oriented toward economics and business in preparation for a career in the poultry, dairy, meat-animal, horse, feed, or meats industry. Those are but two examples of the programs that can be developed to meet a student's career interests. It is highly recommended that students obtain appropriate fieldwork experience during summers.

Several special training opportunities exist for highly motivated undergraduate students. Upperclassmen whose academic records warrant it may, by arrangement with individual faculty members, engage in research (either for credit or for honors) or assist with teaching (for credit). The Dairy Management Fellows program and the Livestock Fellows program offer an equally challenging but different type of experience for a highly select group of students.

Applied Economics and Business Management

The undergraduate program in applied economics and business management is based in the Department of Agricultural Economics. Courses in agricultural economics are supplemented with others in related areas such as computer science, economics, sociology, history, government, industrial and labor relations, hotel administration, consumer economics, animal sciences, plant sciences, natural resources, mathematics, and statistics.
Four areas of specialization are offered:

Agricultural and applied economics provides a general program in the economics of the agricultural and of resource use. It is an appropriate major for those students who (1) are interested in applied economics; (2) want to survey offerings in agricultural economics, such as management, marketing, economic development and policy, public affairs management, and resource economics; and (3) want to prepare for graduate work in agricultural economics. It is an appropriate option for those interested in the application of the principles of economics to problems in both the public and private sector.

Business management and marketing applies the principles of economics and the tools of management to prepare students for careers in business. Special emphasis is given to developing decision-making skills and to the study of the structure and practices of business institutions. Market analysis, sales, banking, merchandising, production management, and general management are fields for which students may prepare.

Farm business management and finance is intended for students with farm experience who are interested in farming or in preparing for work in farm management or farm finance, in cooperative extension, or in farm cooperatives.

Food-industry management is designed for students interested in management or sales positions with the processing, manufacturing, or distribution segments of the food industry. In planning a course schedule, students must work closely with their faculty adviser. Each area of specialization has its own unique set of required and recommended courses, yet all the areas have enough flexibility to satisfy the interests and abilities of each individual student.

Biological Sciences

The program of study in biology is offered by the Division of Biological Sciences. Students enroll in either the College of Agriculture and Life Sciences or the College of Arts and Sciences.

Programs of study within the biology major include general biology; animal physiology and anatomy; biochemistry; botany; cell biology; ecology, systematics, and evolution; genetics and development; neurobiology and behavior; and an independent study option. Programs of study are described under the Division of Biological Sciences.

Communication

Everyone relates to others through the process of communication. Whether these human linkages are personal or through the mass media, there is an increasing need for individuals who can help establish communication relationships and make them more effective. All individuals who are able to do this must have good communication skills themselves and must comprehend the social psychology of human communication. Students in the Department of Communication have the opportunity to learn both the social science underlying human communication and the most effective means of adapting written, interpersonal, audio, and visual communication to audiences. The curriculum emphasizes learning communication theory along with communication skills.

Students elect one of five different sequences by the beginning of their junior year: public communication, electronic media, publication, interpersonal communication, or science communication. Each sequence has a required core of courses that includes Theories of Human Communication, Introduction to Mass Media, Visual Communication, and Oral Communication.

Public communication prepares students for careers as communication, information, or public relations specialists in a wide variety of organizations. Required courses for this sequence include communication planning and strategy, survey research, communication in organizations, and visual communication. There is heavy emphasis on developing writing skills.

Electronic media is a special track within the public communication sequence emphasizing structure and application of electronic media. The track prepares students for careers in electronic media or information agencies in which they must work with electronic media. Required courses include electronic media production, visual communication, the media writing, and mass media industries. There is an emphasis on planning and writing skills, and on development of an in-depth understanding of media industry audiences and economic structure.

Publication provides an excellent background for working as an editor or writer in virtually any organization. Such work might include preparing annual reports, editing an employee newspaper, writing sales or marketing literature, or writing news stories. Required courses for this sequence are taken in writing, media law, publication design, and communication theory. Students serve as staff members for the Cornell Countryman for one or two terms. The publication sequence provides students with a good background for science communication.

Interpersonal communication coupled with a carefully designed concentration prepares students for careers in human service professions, such as personnel administration, training, or social sciences. The sequence also may be used to prepare for graduate study in communication and other social sciences. Required courses for this sequence are taken in communication theory, survey research, and persuasion. Elective courses as small group communication, listening, intercultural communication, and organizational communication.

Science communication combines the superior resources of Cornell's natural and social science courses with a broad range of courses in communication principles and skills to offer students the background needed to succeed in positions that involve the communication of scientific and technical information. The sequence emphasizes courses in writing and those involving production in various media. The sequence is appropriate for those who are interested in communicating with the general public or with scientific and technical constituents.

In addition to the requirements for a sequence, a concentration of at least 12 credits outside the department is required. The concentration helps orient students to a communication career in either a business, government, education, or public service organization or to a very specific profession such as agribusiness public relations or science communication.

Students are strongly encouraged to seek practical communication experience through part-time or summer employment, the department's internship course, or the campus media. Work experience contributes to a portfolio of professional materials that is invaluable in obtaining a position in communication.

Detailed descriptions of the sequences and the guidelines for the selection of elective courses are available from the Department of Communication, Kennedy Hall.

Education

The focus in the Department of Education is on how teaching and learning take place in school and nonschool settings, as well as on the role of education in our society. Students study concepts and develop competencies necessary to analyze educational situations critically and to plan, implement, and evaluate educational programs. Students in the program area take a core curriculum:

- A course in general psychology
- A course in educational psychology (e.g., Education 311)
- A course in the social, historical, and philosophical foundations of education (e.g., Education 271, 370, 472)
- A field experience (e.g., Education 402, 403, 409, 420, 430)

Three specializations are available at the undergraduate level:

Agricultural Education Concentration. This program leads to teaching agriculture in secondary schools and two-year colleges, positions in extension education, international agricultural education, and in related careers in the public and private sectors. It is intended for students who have good academic ability, experience in agriculture, interest in youth and young adults, and the ability to work with people.

Within this concentration students may obtain certification to teach agricultural education in secondary schools and in related areas by completing the concentration course requirements, by student teaching, and by passing a state examination. Positions in agriculture, mechanization, conservation, and agricultural business are the areas most frequently taught in secondary schools. Students who complete certification requirements are provisionally certified for 5 years. A master's degree is required for permanent certification within five years after first employment in teaching. Persons with a baccalaureate degree in technical agriculture may earn certification through a master's degree in agricultural education. Students who major outside of education may also obtain a teaching certificate in agriculture by completing the certification program and passing the state examination. Directed field experiences, internships, and selected education courses are used to prepare students for agricultural educator positions not requiring certification. Further information is available from the agricultural education coordinator, Kennedy Hall (Tel: 607/255-2197).

General Education. By selecting courses in the Department of Education, students can prepare for positions in areas such as counseling, youth-group leadership, cooperative extension, and the Peace Corps. Students
can also prepare themselves for graduate programs in science education, environmental education, educational psychology, research methods, extension, adult and continuing education, and the social/economic/legal/philosophical foundations of education.

Teacher Education in Science and Mathematics. Students at Cornell may pursue teaching credentials in biology, chemistry, earth science, geology, science, mathematics, and physics. Teacher Education in Science and Mathematics (TESM) is a university program jointly conducted by the departments of education and mathematics. Although TESM offers options for undergraduate and graduate study, most students enroll in a five-year program, which combines an undergraduate major in mathematics or one of the sciences with a one-year Master of Arts in Teaching (MAT). Students from any college at Cornell are eligible to apply to the program as undergraduates. Undergraduate students in TESM do not normally major in education.

Students completing their studies as undergraduates, and having completed their student teaching, are normally eligible for provisional teaching certification from the State Education Department, effective for five years. Students completing the graduate program earn the master's degree required for permanent certification.

For more information, contact the TESM Student Support Specialist at (607) 255-9255 or the program coordinator, Professor Carlsen (607) 255-9257.

Entomology

The intent of this curriculum is to provide students with the basic skills and knowledge necessary to ensure an adequate general food supply. Students take a core of fundamental courses and in consultation with faculty advisors select courses suitable for specific career objectives. The core is designed to meet minimum guidelines of the Institute of Food Technologists, the professional society of U.S. food scientists. The flexibility of the food science program allows students to prepare for a variety of positions in industry, government, or education. Some of the positions and areas of work require graduate training. Opportunities for graduate study exist at a number of universities, including Cornell.

During the first two years, students are required to take the two-semester introductory courses in biology, chemistry, and physics plus introductory courses in microbiology, calculus, food science, and nutrition. During the last two years, students take courses dealing with the application of science and technology to the processing, preservation, distribution, and utilization of foods. This includes the following required courses: Food Analysis, Food Engineering I, Sanitation and Public Health, Food Processing I and II, Food Chemistry, Sensory and Objective Evaluations of Foods, Food Microbiology, Food Chemistry Laboratory, and introductory statistics. Students also take courses in the social sciences and humanities to meet the general college requirements.

Students may choose additional courses in chemistry, microbiology, or nutrition in preparation for careers in research and development; in mathematics and engineering, for careers in processing and engineering; in marketing and business management; or in a variety of production courses related to specific commodities. Emphasis may be placed on the international aspects of food science.

Students are strongly encouraged to obtain further competence in one or more areas of emphasis. Lists of recommended courses are available for many areas, but the student is free to select courses for special objectives. The areas of emphasis include: processing technology, food chemistry, nutritional aspects of processing, technology and management, dairy science, meat, poultry, and fish technology, food microbiology, and international food development.

A state-of-the-art food processing and development laboratory, a full-scale dairy plant, and extensive research laboratory facilities are available for training, research, and employment.

Landscape Architecture Program

The Landscape Architecture Program focuses on the art of landscape design as an expression of cultural values combined with the processes of the ambient environment. The program's unique place within the university promotes interaction among the areas of horticulture, architecture, and city and regional planning.

The program offers a course of study that prepares students intellectually, technically, artistically, and ethically for the practice of landscape architecture. The curriculum focuses upon graphic communication, basic and advanced design methods, landscape history, plant materials, construction technology, theory, and professional practice. Design studios focus upon the integration of site requirements as applied to specific sites at a variety of scales. Projects range from urban design and housing to parks and garden design.

The Landscape Architecture Program offers three professional degree alternatives: a two-year graduate curriculum for those who have undergraduate degrees in landscape architecture or architecture, a three-year graduate curriculum for those who have a four-year undergraduate degree in another field and a four-year Bachelor of Science degree. Graduate studies in landscape architecture are administered through the Graduate School and lead to a Master of Landscape Architecture degree. Undergraduate studies in landscape architecture are administered through the College of Agriculture and Life Sciences.

Dual Degree Options

Graduate students can earn a Master of Landscape Architecture and a Master of Science or a Master of City and Regional Planning simultaneously. Students need to be accepted into both fields of study to engage in a dual degree program and must fulfill requirements of both fields of study. Thesis requirements are generally integrated for dual degrees.

Study Abroad

The faculty encourages study abroad and has two formally structured programs. The Denmark International Study (DIS) program is available primarily to senior undergraduates in their fall semester and is administered through Cornell Abroad. The Rome Program is made available to undergraduates and graduate students through the College of Architecture, Art, and Planning.
First Year

<table>
<thead>
<tr>
<th>Fall Term</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>*FR DR 109, Nature Drawing</td>
<td>3</td>
</tr>
<tr>
<td>Biological sciences elective</td>
<td>3</td>
</tr>
<tr>
<td>Physical sciences elective</td>
<td>3</td>
</tr>
<tr>
<td>Social sciences or humanities elective</td>
<td>3</td>
</tr>
<tr>
<td>Written or oral expression elective</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Spring Term</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>*LA 142, Introduction to Landscape Architecture</td>
<td>4</td>
</tr>
<tr>
<td>Biological sciences elective</td>
<td>3</td>
</tr>
<tr>
<td>Social sciences or humanities elective</td>
<td>3</td>
</tr>
<tr>
<td>Written or oral expression elective</td>
<td>3</td>
</tr>
</tbody>
</table>

Second Year

<table>
<thead>
<tr>
<th>Fall Term</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>*LA 480, Principles of Spatial Design</td>
<td>3</td>
</tr>
<tr>
<td>*LA 201, Design, Theory, and Composition</td>
<td>6</td>
</tr>
<tr>
<td>Free elective</td>
<td>3</td>
</tr>
<tr>
<td>*HORT 335, Woody Plant Materials for Landscape Use</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Spring Term</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>*LA 202, Design, Composition, and Theory</td>
<td>6</td>
</tr>
<tr>
<td>*LA 521, History of European Landscape Architecture</td>
<td>3</td>
</tr>
<tr>
<td>Written or oral expression elective</td>
<td>3</td>
</tr>
<tr>
<td>Physical sciences elective</td>
<td>3</td>
</tr>
</tbody>
</table>

Third Year

<table>
<thead>
<tr>
<th>Fall Term</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>*LA 301, Site Design and Detailing</td>
<td>6</td>
</tr>
<tr>
<td>*LA 310, Site Engineering</td>
<td>4</td>
</tr>
<tr>
<td>*LA 522, History of American Landscape Architecture</td>
<td>3</td>
</tr>
<tr>
<td>*LA 491, Design and Plant Establishment</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Spring Term</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>*LA 302, Site Design and Detailing</td>
<td>6</td>
</tr>
<tr>
<td>Biological Sciences Elective</td>
<td>3</td>
</tr>
<tr>
<td>Physical sciences elective</td>
<td>3</td>
</tr>
<tr>
<td>*LA 312, Site Construction</td>
<td>4</td>
</tr>
</tbody>
</table>

Fourth Year

<table>
<thead>
<tr>
<th>Fall Term</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>*LA 401, Urban Design and Planning</td>
<td>6</td>
</tr>
<tr>
<td>*LA 520, Contemporary Issues in Landscape Architecture</td>
<td>2</td>
</tr>
<tr>
<td>Social sciences or humanities elective</td>
<td>3</td>
</tr>
<tr>
<td>Free elective</td>
<td>4</td>
</tr>
</tbody>
</table>

(Optional landscape architecture study abroad semester in Denmark)

Spring Term

<table>
<thead>
<tr>
<th></th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>*LA 402, Advanced Project Studio</td>
<td>6</td>
</tr>
<tr>
<td>Social sciences or humanities elective</td>
<td>3</td>
</tr>
<tr>
<td>*LA 412, Professional Practice</td>
<td>1</td>
</tr>
<tr>
<td>*LA 490, Undergraduate Seminar</td>
<td>2</td>
</tr>
</tbody>
</table>

Summary of credit requirements

- Specialization requirements: 69
- Distribution electives: 38
- Free electives(s): 13
- Total credits: 120

Master of Landscape Architecture (M.L.A.) Degree

Requirements of the three-year M.L.A. curriculum include 90 credits, satisfactory completion of the core curriculum courses, and a thesis.

First Year

<table>
<thead>
<tr>
<th>Fall Term</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>*LA 505, Graphic Communication</td>
<td>3</td>
</tr>
<tr>
<td>*LA 480, Principles of Spatial Design and Aesthetics</td>
<td>3</td>
</tr>
<tr>
<td>*LA 501, Design Composition and Theory</td>
<td>6</td>
</tr>
<tr>
<td>*HORT 335, Woody Plant Materials for Landscape Use</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Spring Term</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>*LA 502, Design Composition and Theory</td>
<td>6</td>
</tr>
<tr>
<td>*LA 521, American History of Landscape Architecture</td>
<td>3</td>
</tr>
<tr>
<td>LA 506, Graphic Communications II</td>
<td>3</td>
</tr>
<tr>
<td>Free elective</td>
<td>2</td>
</tr>
</tbody>
</table>

Second Year

<table>
<thead>
<tr>
<th>Fall Term</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>*LA 601, Site Project Planning and Application</td>
<td>6</td>
</tr>
<tr>
<td>*LA 610, Site Engineering for Landscape Architects</td>
<td>4</td>
</tr>
<tr>
<td>*LA 522, History of European Landscape Architecture</td>
<td>3</td>
</tr>
<tr>
<td>*LA 491, Design and Plant Establishment</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Spring Term</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>*LA 602, Urban Design and Planning</td>
<td>6</td>
</tr>
<tr>
<td>LA 490, Graduate Seminar</td>
<td>3</td>
</tr>
<tr>
<td>LA 612, Site Construction</td>
<td>4</td>
</tr>
<tr>
<td>Free elective(s)</td>
<td>4</td>
</tr>
</tbody>
</table>

Third Year

<table>
<thead>
<tr>
<th>Fall Term</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>*LA 701, Natural Systems Studio</td>
<td>6</td>
</tr>
<tr>
<td>*LA 531, Regional Planning</td>
<td>3</td>
</tr>
<tr>
<td>*LA 490, Graduate Seminar</td>
<td>3</td>
</tr>
</tbody>
</table>

Second professional degree curriculum.

The two-year Master of Landscape Architecture (M.L.A.) curriculum serves to broaden and enrich undergraduate education in design by providing an expanded educational experience to those who are technically skilled. Applicants are therefore expected to hold a bachelor's degree in landscape architecture or architecture from an accredited program.

The objectives of the two-year M.L.A. curriculum are to permit students to conduct research relating to landscape architecture and to provide advanced education and training to individuals who may wish to teach, practice, or conduct applied research in landscape architecture. Students are permitted considerable flexibility in establishing programs that take full advantage of the teaching and research resources of the university.

Students admitted to the two-year M.L.A. curriculum are required to complete 60 credits of course work as approved by the members of their graduate committee. This must include at least two advanced studios, a graduate seminar, and a thesis or final master's project.

Microbiology

Microbiology is concerned with both basic and applied study of microorganisms such as bacteria, fungi, and viruses. Microorganisms touch many areas of human activity such as food production and nutrient and waste recycling, in addition to causing infectious diseases. Fundamental knowledge of microbiology is crucial for continued advances in basic biological sciences such as biochemistry and genetics as well as in applied areas such as agriculture, soil, crop, and atmospheric sciences, animal sciences, bioengineering, ecology, food science, medicine, and natural resources. Microbiology also provides the basis for the new and exciting disciplines of genetic engineering and biotechnology.

The undergraduate major in microbiology provides excellent preparation for graduate study in many areas of biological science, as well as for professional study in medical, veterinary, or dental school. Microbiology graduates can pursue careers in biotechnology or industrial microbiology, clinical microbiology, food microbiology, or pharmaceutical microbiology. Microbiologists also work as technicians in university, government, industry, or hospital research laboratories.
Study in microbiology emphasizes laboratory aspects as well as classroom training and requires a rigorous background in basic sciences. Courses in general biology, genetics, general chemistry, organic chemistry, biochemistry, microbiology laboratory, physics, and calculus are required. The required microbiology courses include introductory microbiology, advanced general microbiology, microbial physiology, microbial genetics, either pathogenic microbiology or immunology (taught in the College of Veterinary Medicine), and at least two microbiology laboratory courses. Electives include courses in procar-yotic cytology, bacterial diversity, tissue culture techniques, soil microbiology, food microbiology, and microbial engineering. Students with good academic records are encouraged to conduct independent research during their senior year.

Students interested in clinical microbiology may apply to the Clinical Microbiology Specialization Program. Students selected for the program begin in their senior year at Cornell Medical College and the New York Hospital, studying and working in clinical microbiology. Applicants must have completed their departmental course requirements by the end of their junior year.

More information may be obtained from the Department of Microbiology, Stocking Hall. A pamphlet entitled Microbiology In Your Future can be obtained without charge by writing to the American Society for Microbiology, 19131 Street N.W., Washington, D.C. 20006.

Natural Resources

The undergraduate curriculum is designed to provide an enduring and broadly applicable education. The focus of study is on the systems that yield our renewable natural resources (water, forests, fish, and wildlife) and includes emphasis on both natural sciences and human organizations involved with resource management. Students are provided with an opportunity to understand the scientific, ethical, and political basis for the protection and management of renewable resources through the application of ecological principles and knowledge of social needs.

The program is based in the Department of Natural Resources and is housed in Fernow Hall, named after the father of American forestry. The curriculum helps prepare students for a wide range of careers and can serve as a base for graduate work in numerous fields. Students are prepared to appreciate and understand their natural environment and humanity’s interactions with it. A foundation is developed for the many students who continue with graduate professional training in natural resource science and management, including wildlife, fisheries, and forest sciences, aquatic systems, and policy studies.

Students are encouraged to study in each of the seven learning areas listed below:

1) Understanding basic substrates for life: geology, soils, water resources
2) Understanding natural processes: chemistry, physics, ecology, field biology, meteorology
3) Understanding how organisms, populations, and ecosystems function: biology, physiology, anatomy, behavior, ecology, population dynamics
4) Understanding how people and their institutions function: psychology, sociology, political science, government, history, anthropology, law, economics
5) Identifying and measuring the environment: taxonomy, remote sensing, mathematics, statistics
6) Understanding resource management processes: communication, analysis, planning, philosophy, computer science, decision making, law, ethics
7) Learning about the world: Students should recognize that not all learning takes place in the classroom. Exploring different careers, participating in campus and community activities, and conducting independent research all contribute to continuing growth.

Students need not select an area of concentration, but those who wish to do so may specialize further in wildlife science, forest science, aquatic science, fishery science, or natural resource policy and management.

Opportunities for field-oriented studies are available at the Amos Forest Teaching and Research Center; the Cornell Biological Field Station, on the shore of Oneida Lake; and the Uihlein Maple Syrup Research and Extension Field Station at Lake Placid.

Students should seek relevant work experience to complement their academic studies.

Plant Sciences

Plant science graduates at the bachelor's degree level in the service and supply industries as extension agents, as teachers, and as research technicians.

More than one hundred courses are offered that deal directly with some area of plant science. Other courses relating to plant science are offered in agronomy and biological sciences. In addition, an interest in plant science may be combined with some other area of specialization, such as agricultural and biological engineering, education, extension, statistics, international agriculture, food science, or agricultural economics.

Undergraduates are encouraged to obtain practical experience. It may involve research under the direction of a faculty member or work in a commercial industry or research institute or on a farm. Departments will assist students looking for positions that would provide useful experience.

Floriculture and ornamental horticulture applies principles of plant science and business management to the production and marketing of florist, nursery, and turfgrass crops, as well as to the selection and management of plants for both indoor and outdoor landscapes. Programs prepare students for careers at the professional and managerial levels in horticultural business, research, teaching, communications, and extension and public education.

The core curriculum consists of the following courses:

Hort 201, Introduction to Horticultural Science
Hort 102, General Horticulture
Hort 230, Woody Plant Materials
Hort 300, Garden and Interior Plants
Hort 400, Principles of Plant Propagation
Bio S 241, Plant Biology (Introductory Botany)
Bio S 242, Plant Physiology
Bio S 244, Plant Physiology (Laboratory)
SCAS 260, Introduction to Soil Science
Entom 241, Applied Entomology
Entom 212, Insect Biology
PI Pa 301, Introductory Plant Pathology

Although mastery of these subject areas is considered essential for students planning to enter a floriculture or landscape horticulture career, justifiable exceptions to the core curriculum may be granted by the student's adviser.

With permission of the adviser, a transfer student may receive core curriculum credit for similar courses taken at other institutions provided that transfer credit is granted by the college. In addition, all transfer students must complete a minimum of 12 credits in floriculture and ornamental horticulture courses at Cornell. No more than two of the following landscape architecture courses may be included in this 12-credit requirement: LA 140, LA 220, LA 310, or LA 312. No other landscape architecture or freehand drawing courses may be applied to the requirement because they do not contain horticultural subject matter.

Students may select an area of emphasis in either floriculture or landscape horticulture. Specialization in floriculture prepares students for careers in management of the production of crops in greenhouses and wholesale- and retail-florist marketing, whereas specialization in landscape horticulture trains students for careers in nursery-crop production, turfgrass management, landscape contracting and service, retail- and wholesale-marketing of nursery products and services, botanical garden and arboretum management, urban horticulture, and related areas. Some students choose to pursue a general program in floriculture and landscape horticulture including courses in both areas. Similarly, programs in horticultural business management, research, teaching, extension and public education, and communications may be arranged across two specialization areas. Students wishing to prepare for graduate study in horticultural science may develop a program in basic sciences and their application in horticultural science. Lists of recommended courses for the areas of specialization are available from student
advisers and from the undergraduate program coordinator.

Working with his or her faculty adviser, each student will tailor a program to achieve individual educational objectives in floriculture, landscape horticulture, or general horticultural science. A core of management courses also is recommended for students planning horticultural business careers. Students are also encouraged to take courses in these areas: agricultural and biological engineering, soil science, computer science, ecology, entomology, meteorology, atmospheric sciences, biochemistry, communications, computer science, ecology, entomology, plant pathology, or weed science. Other technical positions. Although designed as a terminal program for students desiring a practical preparation in general plant protection, this specialization may also provide an adequate base for graduate work in entomology, plant pathology, or weed science.

The following subjects are considered essential to the plant protection specialization: botany and plant physiology, general ecology, soils, crop science, and microbial ecology. Additional course in introductory entomology, integrated introductory plant pathology, plant disease control, weed science, and integrated pest management are recommended. Students should plan to take a total of 62 to 70 credits in courses required and recommended for the specialization.

In addition, a number of other subjects pertinent to plant protection are recommended, depending upon the student's interests: agricultural economics, agricultural and biological engineering, soil, crop, and atmospheric sciences, entomology, communications, pathology and entomology, general physics, genetics, meteorology, mycology, pesticides in the environment, and plant taxonomy. Employment involving practical experience in plant protection between the junior and senior years is encouraged. The job may be on a farm, at an experimental station, with an agrichemical company, or with a regulatory agency.

Pomology (the science of fruit growing) provides students with knowledge of the scientific technology and the influence of environmental factors on the production, handling, and storage of deciduous fruit crops. New York is a national leader in fruit production, particularly in apple production. The state's economy generates an estimated $620 million for the state's economy. Vegetable Crops

Vegetable Crops is offered for students with an interest in either applied or basic aspects of vegetable production. The high value of vegetables and their importance in the human diet assures a continued demand for trained personnel in all aspects of vegetable production. A flexible curriculum is provided to prepare undergraduates for careers in a diversity of fields, including: horticultural research, teaching, extension, production, processing, and marketing. A faculty adviser assists individual students in the selection of courses, which usually include: general horticulture, soils, botany, vegetable types and identification, vegetable production, and postharvest handling or marketing. Additional course work depends upon the interest of the student, and may include: vegetable physiology, plant breeding, entomology, plant pathology, weed science, ecology, soil, crop, and atmospheric sciences, educational technology, agricultural economics, international agriculture, and agricultural and biological engineering.

The vegetable industry is an economically important component of agriculture in New York and in the United States. Recently, there has been increased interest in growing vegetables in tropical countries. Exciting challenges are facing the industry. Greater awareness of environmental and health issues is driving a change toward farming practices that depend less upon agricultural chemicals than in the recent past. New technologies are being developed and implemented to help growers make this change while remaining profitable. Among these technologies are integrated pest management, genetic engineering, breeding for insect and disease resistance, low-input and organic cropping systems, and cultural practices that improve production efficiency and conserve agricultural resources.

The Department of Vegetable Crops has on-campus greenhouses and laboratories as well as two research farms that support our teaching program. Students are encouraged to gain hands-on experience growing vegetables and to pursue individual interests through research work and by taking advantage of the many resources available in the College of Agriculture and Life Sciences.

Rural Sociology

Technological, economic, demographic, and environmental changes are social processes, and each has major impacts on individuals, social groups, societies, and the international order. At Cornell, rural sociology students study these and other facets of social change in both domestic and international settings. Among the topics in which faculty members in the Department of Rural Sociology specialize are international agricultural and rural development, community organization, regional development and changes in the United States, environmental sociology, sociology of agriculture, rural industrialization and labor markets, technology and social change, population and development, national economies, gender and social change, and economic and social change, and...
All students majoring in rural sociology are expected to take four core courses: an introductory course (R Soc 101 or 102), methods (R Soc 213), theory (R Soc 301), and a course in statistics.

The concentration in development sociology provides an understanding of the processes and policies that influence social and economic development in rural settings in North America and low-income countries in the developing world. The required courses provide background in the sociology of development in both the advanced and developing countries. Students normally select a set of elective courses in which either domestic or international development is emphasized. The required and elective courses provide background in several aspects of development sociology, including (1) an understanding of the processes of socioeconomic development in low-income or Third World countries and training in the formulation of strategies to enhance the socioeconomic well-being of citizens of those countries, (2) an analysis of the social structures and processes for development in nonmetropolitan settings in the United States, (3) an analysis of the processes of agricultural change and development in industrialized and low-income countries, and (4) an understanding of the processes of technological development and change in agriculture and other rural industries in developed and developing countries.

Students are encouraged to complement courses in the department with course work in the history and economics of development, area studies, and the policy sciences.

Total credits required, including the four core courses: 27

Courses Required

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>R Soc 205, Rural Sociology and International Development or R Soc 208, Technology and Society</td>
<td>3</td>
</tr>
<tr>
<td>R Soc 370, Comparative Issues in Social Stratification</td>
<td>3</td>
</tr>
<tr>
<td>R Soc 436, Small Towns in Metropolitan Society: Changing Structures and Quality of Life</td>
<td>3</td>
</tr>
</tbody>
</table>

Electives for the Concentration

At least six credits must be selected from a list of complementary courses for the concentration in development sociology. The list of courses is available in 133 Warren Hall.

The concentration in population, environment, and society provides an understanding of (1) the causes and consequences of the major components of population change—fertility, mortality, and migration; (2) the major patterns of population distribution and population characteristics in the United States and the developing world; (3) the relationships between social structure and the biophysical environment; and (4) the relationships between population change and natural resource utilization in development.

Students normally select the elective courses for the major in such a way as to stress either population studies or sociological aspects of natural resources and the environment.

Students are encouraged to complement courses in the department with course work in demographic methods, household analysis, ecology and evolution, environmental studies, and natural resources.

Total credits required, including the four core courses: 27

Courses Required

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>R Soc 201, Population Dynamics</td>
<td>3</td>
</tr>
<tr>
<td>R Soc 324, Environment and Society</td>
<td>3</td>
</tr>
</tbody>
</table>

Electives for the Concentration

At least six credits must be selected from a list of complementary courses for the concentration in social data and policy analysis. The list of courses is available in 133 Warren Hall.

The concentration in social data and policy analysis provides (1) an in-depth knowledge of research methodology, statistics, and computer applications, (2) an understanding of social, economic, political, and historical concepts essential for conducting meaningful analyses of practical problems and issues faced by organizations, communities, regions, and states, and (3) knowledge and practice in policy analysis. Students ordinarily select electives for the concentration in order to specialize in either policy analysis or in a particular area of public policy (international development policy, domestic rural development policy, environmental policy, or population policy).

In addition to the required courses listed below, students in the concentration in social data and policy analysis are required to take Soc 301, Evaluating Statistical Evidence, as their statistics course for meeting the core requirements of the major.

Students are encouraged to complement courses in the department with course work in data collection and research design, evaluation research, computing, and advanced statistics.

Total credits required, including the four core courses: 27-29

Courses Required

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soc 303, Primary Data Collection and Design (4 credits), or HSS 292, Research Design and Analysis, or Comm 382, Survey Research Methods</td>
<td>3-4</td>
</tr>
<tr>
<td>ABEN 102, Introduction to Microcomputer Applications, or CRF 421, Introduction to Computers in Planning (4 credits)</td>
<td>3-4</td>
</tr>
</tbody>
</table>

Electives for the Concentration

At least six credits to be selected from a list of complementary courses for the concentration in social data and policy analysis. The list is available in 133 Warren Hall.

Brochures are available from rural sociology faculty members.
Soil, Crop, and Atmospheric Sciences

The Soil, Crop, and Atmospheric Sciences department is intended to provide students with a solid foundation in the basic sciences. Special emphasis can be placed in one of five specializations: agronomy, crop science, atmospheric science, soil science, or weed science. Many students pursue a general program in the department to maximize job opportunities upon graduation. Specialization is required at the graduate level.

Crop science is the application of basic biological and ecological concepts to the production of field crops. Examples of field crops are alfalfa, corn, soybeans, and wheat. Courses required include general biology, botany, plant physiology, general chemistry, mathematics, computing, crops, and soils. Students who anticipate a career in agricultural production or service after completion of the B.S. degree should take additional courses in crops, soils, crop physiology, economics, communication, plant pathology, nutrition, genetics, microbiology, and climatology. Students planning graduate or professional study beyond the bachelor's degree should take advanced course work in biochemistry and botany; quantitative, and organic chemistry; and calculus, physics, and statistics.

Atmospheric science is the study of the atmosphere and the processes that shape our weather. The core curriculum in meteorology is designed to provide students with an understanding of the fundamental physical and dynamic properties and processes of the atmosphere. All students are required to complete a minimum of three semesters of calculus; two semesters of physics; a semester each of chemistry, computer science, and statistics; and a sequence of eight courses covering observational, general, theoretical, and synoptic meteorology. Additional courses are available for students interested in subjects such as agriculture, climatology, physical meteorology, and statistical meteorology. The curriculum satisfies the basic requirements for employment as a professional meteorologist and provides a sound background for study or work in the numerous specialized areas of meteorological science. Students are encouraged to choose additional coursework in related or complementary areas of interest, such as agriculture, biology, computer science, mathematics, statistics, physics, chemistry, or engineering.

Soil science is the application of basic physical and biological science to the classification, use, and management of soils on an ecologically sound basis. The curriculum in soil science combines training in the physical and biological sciences with a thorough background in soil science. Students take 16 credits in soil science, including 4 credits in the introductory course and 12 credits chosen from more advanced courses in soil science. In addition, 10 credits of chemistry, 6 credits of mathematics, and 6 credits of physics, as well as supporting biological sciences courses, are expected to satisfy the major.

Weed science is that branch of pest management which emphasizes the principles and practice of weed control. The scientific basis for mechanical, cultural, chemical, and biological control procedures is considered. Plant physiology, ecology, organic chemistry, and biochemistry are required in addition to fifteen credits in weed science and plant protection. The specialization is offered cooperatively by the departments of Soil, Crop, and Atmospheric Sciences, Floriculture and Ornamental Horticulture, and Vegetable Crops so that a variety of managed plant systems may be studied.

Statistics and Biometry

Statistics is concerned with quantitative aspects of scientific investigation: design, measurement, summarization, and drawing conclusions based on probability sampling. Biometry is the application of mathematical and statistical techniques to the life sciences. Students with ability in mathematics and an interest in its applications will find this a challenging specialization.

The work of a statistician or biometrician can encompass research, teaching, consulting, and computing in almost any mix and in a wide variety of applications. Opportunities for employment are abundant in universities, in government and in businesses and industries ranging from non-profit to private consulting firms, and salaries are usually excellent. While satisfying course requirements for a specialization in statistics and biometry, students can also take a wide variety of courses in other disciplines. In fact, students are encouraged to take courses in applied disciplines such as agriculture, biology, economics, and the social sciences that involve numerical data and their interpretation. Students specializing in this area are required to take computer science courses (e.g., Computer Science 100 and 211), mathematics courses (at least three semesters of calculus), and statistics courses (Statistics and Biometry 200, 215, 408-409, 417, 601-602 and 607 and Industrial and Labor Relations 310). Work experience gained through summer employment or undergraduate teaching is highly recommended. Students should contact Charles E. McCulloch for information.

Special Programs in Agriculture and Life Sciences

Some students are interested in pursuing a general education in the agricultural sciences. Others are uncertain about career objectives in agriculture and the life sciences. The opportunity to develop an independent major in general studies in agriculture and the life sciences is available for such students. In consultation with a faculty adviser, they may plan a sequence of courses suited to their individual interests, abilities, and objectives. In the area not encompassed by the existing programs, such as distribution and other college requirements, the major may include a concentration of courses in one or several academic units of the university.

Students completing this major are often planning a career in agriculturally related food and service enterprises. Many of the fast-growing occupations require the broad perspective, the scientific and technical skills, the attitudes, and the analytical ability that a general education fosters. A course of study for a special program must be planned with and approved by a college faculty adviser. Information on the options and names of faculty advisers prepared to advise in special programs are available in the Office of Student Services, Roberts Hall.

General studies includes production agriculture as well as technical work in the agricultural and life sciences. Many biotechnology concerns deal with aspects of agricultural, especially plants, crops, and ecosystems in the natural environment. A strong grounding in biological sciences as well as knowledge of the agricultural sciences is essential in this rapidly growing field. Students should plan basic course work in the major areas of study in the college—animal sciences, plant sciences, environment and technology, agronomic sciences, biological sciences, and social sciences. Advanced courses may be selected in those and other areas of individual interest or career aspiration.

International agriculture provides students with an understanding of the special problems of applying basic knowledge to the processes of agricultural modernization in low-income countries. The student typically specializes in a particular subject and works with an adviser to plan a program oriented toward international agriculture. The courses in international agriculture are designed to acquaint students with the socioeconomic factors in agricultural development, with the physical and biological nature of tropical crops and animals, and with various world areas for which study programs exist. The study of a foreign language is required.

In addition to the college distribution requirement, students majoring in international agriculture must take a minimum of 30 credits. A minimum of 7 credits in international agriculture and 8 credits in a modern foreign language are required. The other courses recommended are drawn from a wide range of disciplines. The objective is to acquaint students with the many facets of agricultural development in low-income countries. Students are encouraged to take additional specialized courses in one of the other program areas of the college.

DESCRIPTION OF COURSES

Undergraduate and graduate courses in the college are offered through the seventeen academic departments and also through the Divisions of Biological Sciences and Nutritional Sciences.

Descriptions of courses, both undergraduate and graduate, are given by department, arranged in alphabetical order.

Graduate study is organized under graduate fields, which generally coincide with the departments. Graduate degree requirements are described in the Announcement of the Graduate School. Courses for graduate study are described in the section on the academic department that offers them.

NONDEPARTMENTAL COURSES

ALS 100 American Indian Studies: An Introduction

Fall. 3 credits. S-U grades optional.

Lee, W 7–10 p.m. Robert W. Venahles. This course provides a foundation for the study of American Indian Studies that is placed on social, cultural, historical, educational, and human development. Guest lecturers from Cornell’s staff and the Indian community will serve to broaden the scope of the course.
ALS 127 Introduction to Farm Techniques
Fall and spring. 1 credit each semester. Prerequisite: permission of instructor. S-U grades only. Contact C. Pace, Roberts Hall, for scheduling. Limited to 8 students per section. T. J. Cook, J. R. Cooke, W. J. Jewell. 3 credits. M, T and R labs, each limited to 18 students, Fall and spring. 2 credits.

ALS 318 Ethnohistory of the Northern Iroquois
Fall. 3 or 4 credits. S-U grades optional. J. G. Whitcomb. 3 credits. Tu 1:25-4:30. Roherv and Variables. The development of Iroquois (Haudenosaunee) culture is traced from the Archaic period to the present day. Changes in cultural ecology, social organization, and world view and environmental information is drawn from accounts of neighboring groups in southern Canada and western New England. Approximately one-third of the course is devoted to contemporary issues faced by the Iroquois people.

ALS 400 Internship
Fall, spring, or summer. 6 credits maximum. Not open to students who have earned internship credits elsewhere or in previous terms. S-U grades only. Staff. Students may register only for internships approved by the College Internship Committee. Currently, the opportunities are available in the New York State Assembly Intern Program, the New York State Senate Session Assistant's Program, and the Albany Semester Program. A learning contract is negotiated between the student and the faculty supervisor, stating conditions of the work assignment, supervision, and reporting. Participation is required in any structured learning activities associated with the internship.

ALS 500 Cornell-in-Washington Program
Agriculture and Life Sciences students may register for this course when they are accepted for the public policy portion of the Cornell-in-Washington Program. An assignment with a suitable externship of at least 25 hours per week is expected. Students must satisfy the requirements of the relevant core instruction in methods and policy offered for externs, including any papers required. Credit and grading will be negotiated by theCitP Program for the term taken. Applications are made through the Department of Government, 134 McGraw Hall. Staff. Students may register only for internships approved by the College Internship Committee. Currently, the opportunities are available in the New York State Assembly Intern Program, the New York State Senate Session Assistant's Program, and the Albany Semester Program. A learning contract is negotiated between the student and the faculty supervisor, stating conditions of the work assignment, supervision, and reporting. Participation is required in any structured learning activities associated with the internship.

ALS 661 Environmental Policy (also Biological Sciences 661 and Biology and Society 461)
Fall and spring. 3 credits each term. Limited to 12 students. Prerequisite: permission of instructor. Sem R 2:30-4:30 p.m. D. Pimentel. This course uses an interdisciplinary approach to focus on complex environmental and energy problems. Ten to twelve students representing several disciplines, investigate significant environmental problems. The research team spends two semesters preparing a scientific report for publication in Science or BioScience.

Related Courses in Another Department
Agriculture, Science and Society (History 233) Seminar in the History of the Agricultural Sciences (History 687)

AGRICULTURAL AND BIOLOGICAL ENGINEERING

102 Introduction to Microcomputer Applications (also Computer Science 102)
Fall. 3 credits. S-U grades optional. Each lab section limited to 16 students. Not open to students enrolled in the College of Engineering or to students who have taken any prior computer courses at Cornell. Students in statutory colleges must enroll in Agricultural and Biological Engineering 102. Lec, T W 10-12 or 12-2, lab M 1:25-4:25 or 7:30-10:30 p.m., T 1:25-4:25, W 1:25-4:25 or 7:30-10:30 p.m., or R 1:25-4:25. 1 evening prelim. P. E. Hillman and computer science staff. An introduction to the use of application packages on microcomputers using the Macintosh. An attempt will be made to assess and demonstrate the capability and limitations of the current generation of personal computers through software for word processing, spreadsheets, database, and other applications. The course will involve very little programming using high-level languages.

110 Farm Metal Work
Spring. 2 credits. Lec, R 9:05; labs, M T or R 1:25-4:25, M 7-10 p.m. T. J. Cook. M and R labs, each limited to 18 students, include instruction in sheet metal work, pipe fitting, hot and cold metal work, and arc and acetylene welding.

132 Farm Carpentry
Fall. 2 credits. Each lab limited to 15 students. Lec, T W 10-12, labs, T W or R 1:25-4:25, M 7-10 p.m. T. J. Cook. Instruction in the fundamentals of farm carpentry, including concrete work, and equipment and buildings constructed of wood. Each student is required to plan and construct an approved carpentry project.

151 Introduction to Computing
Fall. 4 credits. M W 11:15, labs, W or R or F. 12:20-2:20 or 2:30-4:30. L. D. Albright. An introduction to computer programming and concepts of problem solving and development in an engineering context. The structured programming language, Pascal, is used, implemented on interactive personal computers, and applied to problems of interest in agricultural and biological engineering. No previous programming experience is assumed. An introduction to the use of spreadsheet programs for engineering is included as an option.

153 Engineering Drawing
Fall. 2 credits. Limited to 30 students (15 in each lab). Lec, M 9:05; lab, T or W 1:25-4:25. H. A. Longhouse. Designed to promote an understanding of engineering universal graphic language. The lectures and laboratories develop working knowledge of drawing conventions, drafting techniques, and their application to machine and pictorial drawing problems. The course will involve both instrument and AutoCAD computer drawings.

200 Undergraduate Seminar
Spring. 1 credit. S-U grades optional. Lec, M 2:30. G. E. Rehkugler. A forum to discuss the contemporary and future role of agricultural and biological engineering in society. A required course for majors in Agricultural and Biological Engineering academic programs. A series of lectures will be given by practicing engineers, Cornell faculty members, and students. Laboratory demonstrations in major areas of the field are also included. Written critiques are required.

204 Introduction to Computer Uses
Spring. 4 credits. Each lab section limited to 20 students. S-U grades optional. Lecs, T R 11:15; lab, T, W or R 1:25-2:15. 2 evening prelims. R. B. Furry. An introductory course in computing for those interested in using microcomputers to handle data. Topics include preparing and processing computer programs in Pascal and FORTRAN. No prior knowledge of computers or computer languages is necessary.

221 Plane Surveying
Fall. 3 credits. S-U grades optional. Lab, M 1:25-4:25, lecs, M W 12.00. H. A. Longhouse. Principles and practice of measurement of distance, elevation, and direction. Use and care of equipment is stressed during field problems related to mapping, engineering design, and construction. Other topics include surveying specifications, error analysis, and standards of accuracy.

250 Engineering Applications in Biological Systems
Fall. 3 credits. Prerequisite: enrollment in an engineering curriculum. Recommended for the sophomore year. Lec, M W F 12.20. R. E. Pitt. Case studies of engineering problems in agricultural and biological systems, including animal and crop production, environmental control, energy, and food engineering. Emphasis is on the application of mathematics, physics, the engineering sciences, and biology to energy and mass balances in agricultural systems.
301 Introduction to Energy Technology
Spring. 3 credits. Prerequisite: high school or college physics. S-U grades optional. Offered alternate years.
Lec, M W F 10:10. L. D. Albright.
Basic concepts of energy transfer and traditional and alternate sources of energy. Design of small systems and appropriate technology are emphasized. Topics include heating, cooling, solar energy, electricity, hydroelectric, wind energy, geothermal, coal, oil, and nuclear energy. Offer hands-on experience.

305 Principles of Navigation
Fall. 4 credits.

310 Advanced Farm Metal Work
Spring. 1 credit (2-credit option available). Prerequisite: Agricultural and Biological Engineering 110 or permission of instructor. Lab F 1:25-4 (second lab must be arranged for 2-credit option). T. J. Cook.
Advanced welding and metal construction project.

311 Farm Machinery
Fall. 3 credits. Each lab limited to 16 students. Prerequisite: high school physics or equivalent.
A study of the operating principles, use, selection, and methods of estimating costs of owning and operating farm machines. Lab work includes practice in the calibration of planting, fertilizing, and pesticide application machinery, and study of the functional characteristics of agricultural machines and equipment.

312 Engines and Tractors for Agricultural Applications
Spring. 3 credits. Each lab limited to 16 students. Students missing the first week of classes without permission of the instructor are dropped so others may register. Prerequisite: high school physics or equivalent.
A study of the principles of operation, adjustment, and maintenance of internal combustion engines and tractors. Topics include engine cycles, fuels, lubricants, carburetion, fuel injection systems, ignition, charging circuits, valve reconditioning, engine testing, transmissions, tract, and human factors in tractor operation.

315 Electrotechnology
Spring. 3 credits. Prerequisite: Physics 102 or equivalent.
A study of electrotechnology. Topics covered include: fundamentals of AC and DC circuits, power distribution, electrical safety, motors, lighting, control of electrical systems, batteries, solid-state electronics, digital logic, integrated circuits, and computer control. Laboratories offer hands-on experience.

321 Soil and Water Management
Spring. 2 credits. S-U grades optional. Concurrent registration in SCAS 321 required. Prerequisite: SCAS 190 or 260.
An interdisciplinary course intended to introduce students to the general principles of soil and water interaction and to the effects of human intervention in these processes. Topics covered include soil and water management, including hydrology, soil erosion, irrigation, drainage, and water quality are examined. Case studies from both the United States and the tropics are used to illustrate basic principles.

331 Environmental Control for Agricultural Production Systems
A study of analysis and design of agricultural production environments, ventilation design, regulation and control, animal physiologically and homeothermy, material handling, waste management, alternate energy sources on the farm, and farmstead layout. Specific farmstead production systems (dairy, swine, poultry, fruit, and vegetable storage facilities) are discussed. A systems approach to agricultural production is emphasized. A project is expected at the end of the semester.

350 Transport and Kinetic Principles
Fall. 3 credits. Prerequisites or concurrent registration in Math 294 and fluid mechanics.
Integration of heat and mass transfer combined with reaction kinetics in the context of agricultural and biological systems. Emphasis is on physical understanding of transport processes and simple reaction rates with application examples from plant and animal biology, soil, the environment, and food processing.

367 Introduction to Biological Engineering
Spring. 3 credits. Prerequisites: one year each calculus and introductory biology; minimum one term each college chemistry and physics. Not open to freshmen. S-U grades optional.
Explores the use of engineering principles to solve biological problems in the context of laboratory experiments. Topics may include artificial organs, neuromuscular electrical signals, mass transfer in fermentation, enzyme kinetics, mechanics of plant or animal tissue, and DNA transfer. Many topics relate to ongoing research at Cornell. Appropriate for engineering and life science students. Field trips, demonstrations, and readings in current scientific literature.

371 Introduction to Hydrology and Ground-Water Pollution
Fall. 3 credits. Prerequisites: knowledge of soils and one year of calculus.
Introduction to basic hydrologic processes that focuses on the description of water in the unsaturated and saturated soil. The interaction of hydrologic processes with chemical transport processes is discussed. Emphasizes basic understanding of the processes involved. Case studies are used to illustrate the theory.

401 Career Development in Agricultural and Biological Engineering
Fall. 1 credit. Limited to seniors. S-U grades only.
A career development seminar for majors in the field of agricultural and biological engineering. Presentations of career opportunities in corporations, independent businesses, consulting, and public service. Professionalism, ethics, and public policy issues are discussed.

435 Principles of Aquaculture
Spring. 3 credits. Prerequisite: junior and above. S-U grades optional.
An in-depth treatment of the principles of aquaculture: fish biology, waste treatment, engineering design, fish health, nutrition, processing, etc. This course is intended to build upon the undergraduate's previous course background and interests.

450 Instrument Design
Fall. 3 credits. Prerequisites: Math 293 or equivalent, physics or electrical science, computer programming.
Lecs, M W F (first 4 weeks) 12:20. lab to be arranged. D. J. Amehansley.
An introduction to static and dynamic characteristics of instruments, electronic instruments, digital and analog signal conditioning circuits and techniques, data acquisition and instrument control with personal computers and micro-controllers, and computer data analysis. Biological and agricultural examples of instrument problems and designs are used. A final design project is required.

451 Biomass Conversion Processes for Energy and Chemicals
Spring. 3 credits. Prerequisites: Agricultural and Biological Engineering 250 and 350, Mathematics 294, thermodynamics (co-registration permissible), and Chemistry 207 or equivalent.
Lecs, M W F 9:05. L. P. Walker.
There are a variety of physical and biological processes available for converting plants and other biomass resources into energy, industrial chemicals, and foods. The design of these processes is accomplished through fusing concepts from biochemistry, microbiology, and plant biology with the concepts and methods of engineering. There are four major components to this course: plants as biochemical resources, heat and mass transfer, enzyme catalysis, and fermentation kinetics. Each component is concluded with a case study that demonstrates how the scientific concepts and methods are used to design a biomass conversion process.
461 Agromechanical Engineering: Machining Systems and Design
Fall. 3 credits. Prerequisites: Agricultural and Biological Engineering 250 and mechanical design or equivalent. Offered alternate years. Not offered fall 1990.

Principles of design and analysis of agricultural machines to meet functional requirements. Emphasis is given to computer-aided analysis and design, selection of construction materials, and testing procedures. Engineering creativity, economic considerations, and safety are also stressed.

462 Agromechanical Engineering: Power and Traction
Spring. 3 credits. Prerequisites: engineering dynamics, thermodynamics, and Agricultural and Biological Engineering 250. Offered alternate years.

Synthesis of engineering sciences in the analysis, design, and testing of internal combustion engines and traction devices. Study areas include vehicle statics and dynamics, soil-machine interaction, electro-hydraulic control systems, human factors in vehicle design, and machine reliability. Computer analysis involves Runge-Kutta simulation, the finite element method, and digital data acquisition and processing. Students gain experience in modern laboratory and field testing.

465 Agricultural Processing Systems
Fall. 3 credits. Prerequisite: Agricultural and Biological Engineering 250. Offered alternate years.

Grain drying, flow measurement, and material handling for agricultural engineering applications, with an introduction to system simulation, dimensional analysis, and similitude.

466 Food Engineering: Design of Equipment and Processes
Spring. 3 credits. Prerequisites: courses in either fluid mechanics and heat transfer or unit operations in food processing.

A transport phenomena based quantitative engineering approach to basic and advanced food processing concepts including thermal processing, concentration, drying, freezing, separation, etc.

467 Bioprocessing Applications in Agriculture
Fall. 4 credits. S-U grades optional. Prerequisites: Biochemistry 231, college biology and calculus, one year each; Agricultural and Biological Engineering 250 or Engineering 219, or senior standing in life sciences. May not be taken for credit after Chemical Engineering 643.

An introduction to microbial and enzymatic process technology for engineers and life scientists. A substantial introduction to process engineering is illustrated by case studies of both food and agricultural bioprocesses. Emphasis on engineering analysis and design. Suitable for both engineers and life scientists seeking careers in the biotechnology industry.

471 Geohydrology (also Geology 445 and Civil and Environmental Engineering 431)
Students enrolled in the statutory colleges must enroll in Agricultural and Biological Engineering 471.

Fall. 3 credits. Prerequisites: Mathematics 294 and Engineering 202.

An intermediate course in surface and groundwater flow and related design factors. Includes principles of fluid flow, the hydrologic cycle, natural channel dynamics and sediment transport, description and behavior of natural aquifers, ground-water hydraulics, soil water, and solute transport.

475 Environmental Systems Analysis
Spring. 3 credits. Prerequisites: computer programming and one year of calculus.

Systems analysis and its use in environmental quality management. Emphasis is on mathematical modeling of environmental problems, translation of models into efficient computational algorithms, and use of computer simulation and optimization procedures (search techniques, linear programming, dynamic programming, and separable programming) to evaluate management alternatives. Applications include pollution control and resource management problems.

481 Design of Wood Structures
Spring. 3 credits. Prerequisite: permission of instructor.

Computer-aided and design code manual procedures of timber engineering of agricultural, commercial, and industrial structures. Estimation of design loads, timber stress properties, design of columns, beams, trusses, rigid and post-frame buildings, shear walls, horizontal diaphragms, connections, and special timber structural systems.

482 Environmental Control for Animals and Plants
Spring. 3 credits. Prerequisite: Agricultural and Biological Engineering 250.

Analysis and design of the thermal and aerial environment of animal housing and greenhouses. Heat flow, air flow, psychrometrics, energy balances, thermal modeling, mechanical and natural ventilation, solar energy, and weather phenomena.

491 Highway Engineering (also Civil and Environmental Engineering 642)
Spring. 3 credits. Prerequisites: junior standing in engineering, fluid mechanics, and soil mechanics (may be taken concurrently).

An introduction to highway engineering with an emphasis on design. Students will work in teams to apply the current standards and design criteria used in professional practice to several laboratory design projects. Topics of discussion include route location and design, traffic engineering, economic analysis, human factors and public safety, hydrology and drainage design, highway materials, pavement design, and maintenance.

497 Special Topics in Agricultural and Biological Engineering
Fall or spring. 1–4 credits. S-U option. Prerequisite: written permission of instructor and adequate ability and training for the work proposed. Normally reserved for seniors in upper two-fifths of their class. Undergraduates must attach to their course enrollment material written permission from the staff member who will supervise the work and assign the grade.

Staff.

Special work in any area of agricultural and biological engineering on problems under investigation by the department or of special interest to the student, provided, in the latter case, that adequate facilities can be obtained.

498 Undergraduate Teaching
Fall or spring. 1–3 credits. Prerequisite: written permission of instructor.

Staff.

The student assists in teaching an agricultural and biological engineering course appropriate to his/her previous training. The student meets with a discussion or laboratory section, prepares course materials, grades assignments, and regularly discusses objectives and techniques with the faculty member in charge of the course.

499 Undergraduate Research
Fall or spring. 1–3 credits. Prerequisites: normally reserved for seniors in upper two-fifths of their class. Adequate training for work proposed. Written permission of instructor.

Staff.

Research in any area of agricultural or biological engineering on problems under investigation by the department or of special interest to the student, provided that adequate facilities can be obtained. The student must review pertinent literature, prepare a project outline, carry out an approved plan, and submit a formal final report.

501-502 M.P.S. Project
Fall and spring. 1–6 credits. Required of each M.P.S. candidate in the field.

Hours to be arranged. Staff.

A comprehensive project emphasizing the application of agricultural technology to the solution of a real problem.

581-582 Agricultural and Biological Engineering Design Project
Fall and spring. 6 credits. Prerequisite: admission to the M.Eng.(Agr.) degree program.

Hours to be arranged. D. J. Aneshansley.

Comprehensive design projects dealing with existing engineering problems in the field. Emphasis is on the formulation of alternative design proposals that include consideration of economics, nontechnical factors, engineering analysis, and complete design for the best design solution. Projects are supervised by faculty members on an individual basis. However, there is a formal orientation during the first four weeks of the semester. A formal report and public presentation of the results of the design project are required for completion of the course(s).
652 Instrumentation
Spring. 3 credits. Prerequisites: Linear differential equations, Fourier Transforms, experience with computer data-acquisition systems, introductory biology and introductory physics. Permission of the instructor.
Lecs, T R 12:20; lab to be arranged.
D. J. Anehsalsley.
Application of instrumentation concepts and systems to the measurement of environmental, biological, and agricultural phenomena. Construction and characterization of electronic sensors and transducers will be emphasized. Digital signal processing techniques will also be included. A final project is required.

655 Thermodynamics and its Applications
Spring. 3 credits. Prerequisite: Mathematics 293 or equivalent.
Thermodynamics and its applications to problems in engineering and agriculture. Topics include basic concepts (equilibrium, entropy, processes, systems, potentials, stability, phase transitions) and applications (soil and water processes, dilute solutions, electromagnetism, surface phenomena, heat and mass transport, structure of organizations).

665 Engineering Properties of Foods (also Food Science 666)
Fall. 2 credits. Prerequisite: course in transport processes or unit operations as applied to foods; or permission of instructor.
Theories and methods of measurement and prediction of rheological, thermal, and mass transport properties of foods and biomaterial systems. Emphasis is on physical/mathematical basis of the measurement as well as the prediction processes. Examples of appropriate use of these properties in engineering design and analysis of food processes will also be provided.

671 Analysis of the Flow of Water and Chemicals in Soils
Fall. 3 credits. Prerequisite: two calculus courses and fluid mechanics.
The course encompasses the full range from simple to complex methods to describe the chemical and water flows on the surface, in the vadose zone, and through the aquifer. Current analytical, semi-analytical, and computer-based techniques are discussed. Both homogeneous and heterogeneous soils are analyzed. Offered alternately with Civil and Environmental Engineering 633—a complementary, but not identical, course.

672 Drainage
Spring. 4 credits. Prerequisites: Agricultural and Biological Engineering 371 and two calculus courses.
Lecs, M W F 10:10; lab, T 1:25–4:25.
T. S. Steenhuis.
The physics of groundwater flow with specific reference to tile drainage. Critical review of benefits of drainage as well as a thorough analysis of the design of drainage systems. Effects of drainage on water quality will be discussed. Laboratories are used to measure physical parameters used in drainage designs.

673 Irrigation Systems
Spring. 3 credits. Prerequisite: permission of instructor.
An introduction with a systems perspective to the design and implementation of irrigation. Topics include systems planning and appraisal, irrigation structures and measuring devices, water distribution, and scheduling. Emphasis will be on getting a broad understanding of irrigation systems in the Third World through the use of case studies.

677 Treatment and Disposal of Agricultural Wastes
Fall. 3 credits. Prerequisite: permission of instructor. Not offered 1990–91.
3 lecs, hours to be arranged. W. J. Jewell.
Emphasis is on the causes of agricultural waste problems and the application of fundamentals of treatment and control methods to minimize related pollution. Fundamentals of biological, physical, and chemical pollution control methods are applied to wastes from animals, food production, and food and fiber processing, with actual systems as examples.

678 Nonpoint Source Models
Fall. 3 credits. Prerequisites: computer programming and calculus.
Development and programming of simulation models for management of water pollution from runoff and percolation. Emphasis is on prediction of water and chemical inputs to surface waters and groundwater. Applications include urban and rural runoff, lake eutrophication, groundwater waste loadings from land disposal sites, pesticides and nutrients in agricultural drainage, irrigation return flows, and watershed stream-flow and sediment yield.

679 Use of Land for Waste Treatment and Disposal
Spring. 3 credits. Prerequisite: permission of instructor.
Covers social, legal, and technical factors; the properties of land and crop systems that make land application of wastes a viable alternative; and the use of fundaments in the development of regulations and the design of full-scale units.

682 Building Environment Control
Spring. 3 credits. Prerequisites: one course in building environment control and a course in heat transfer. Offered alternate years.
Hours to be arranged. L. D. Albright.
Topics include thermal interactions of animals and plants with their environments, time-dependent thermal modeling of buildings, natural ventilation processes in buildings, sensors and controllers, and psychrometric processes.

685 Biological Engineering Analysis
Spring. 4 credits. Prerequisite: Theoretical and Applied Mechanics 310 or permission of instructor.
Engineering problem-solving strategies and techniques are explored. Students solve several representative engineering problems that inherently involve biological properties. Emphasis is on formulation and solution of mathematical models and the interpretation of results. The student's knowledge of fundamental principles is used extensively.

692 Pavement Engineering (also Civil and Environmental Engineering 643)
Fall. 4 credits. Limited to engineering seniors and graduate students. Prerequisite: one introductory course in soil mechanics or highway engineering.
L. H. Irwin.
Application of geotechnical engineering principles to the selection of materials and the design of highway and airfield pavements. Laboratory will provide experience with materials testing, asphalt concrete mix design, and chemical soil stabilization. Topics of discussion will include properties of asphalts and aggregates, bituminous mixture design; base courses; soil stabilization methods; sealcoat design; design of flexible and rigid pavements; design for frost conditions; and pavement evaluation using nondestructive test methods.

700 General Seminar
Fall. No credit. S-U grades only.
M 12:20. Staff.
Presentation and discussion of research and special developments in agricultural and biological engineering and related fields.

701 Special Topics in Agricultural and Biological Engineering
Fall or spring. 1–6 credits. Prerequisite: permission of instructor. S-U grades optional. Hours to be arranged. Staff.
Topics are arranged by the staff at the beginning of the term.

750 Orientation for Research
Fall. 1 credit. Limited to newly joining graduate students. S-U grades optional. Hours to be arranged. W. W. Gunkel.
An introduction to departmental research policy, programs, methodology, resources, and degree candidates' responsibilities and opportunities.

754 Sociotechnical Aspects of Irrigation (also Rural Sociology 754, Agricultural Economics 754, and Government 644)
Examines irrigated agriculture and its relation to agricultural development. Emphasis on social processes within irrigation systems and interactions with social setting, including political and administrative aspects. Provides an opportunity to examine systematically the institutional and organizational policy issues associated with the design and operation of systems of irrigated agriculture in developing countries.

761 Power and Machinery Seminar
Spring. 1 credit. Limited to graduate students. Prerequisite: permission of instruction. S-U grades only.
Hours to be arranged. W. W. Gunkel.
Study and discussions of research and new developments in agricultural power and machinery.
771 Soil and Water Engineering Seminar
Fall and spring. 1–3 credits. Prerequisite: graduate status or permission of instructor. S-U grades optional.
Hours to be arranged. T. S. Stechhuis, M. P. Walter, J. Y. Parlarge.
Study and discussion of research or design procedures related to selected topics in irrigation, drainage, erosion control, hydrology, and water quality.

775 Agricultural Waste Management Seminar
Spring. 1 credit. Prerequisite: permission of instructor. S-U grades only.
Hours to be arranged. Staff.
Management of agricultural wastes, with emphasis on physical, chemical, biological, and economic factors affecting waste production, treatment and handling, utilization, and disposal.

781 Agricultural Structures and Related Topics Seminar
Spring. 1 credit. Prerequisite: graduate status or permission of instructor. S-U grades only.
Disc to be arranged. K. G. Gehremaedhin.
Consideration of farmstead production systems, with emphasis on biological, economic, environmental, and structural requirements.

785 Biological Engineering Seminar
Spring. 1 credit. Prerequisite: graduate status or permission of instructor. S-U grades only.
Disc to be arranged. J. R. Cooke.
The interactions of engineering and biology, especially the environmental aspects of plant, animal, and human physiology, are examined in order to improve communication between engineers and biologists.

AGRICULTURAL ECONOMICS

Courses by Subject
Resource economics: 252, 452, 454, 651, 652, 750, 754.

General, contemporary issues, research, and other: 100, 380, 492, 497, 498, 499, 699, 700.

100 Introduction to Global Economic Issues
Fall. 3 credits.
Lecs, M, W, F 11:15. 2 evening prelims.
D. Sisler.
The economics and geography of world agriculture, providing a basis for understanding past development and future changes.
Elementary economic principles, historical development, physical geography, and population growth are studied in relation to agricultural development and the economic problems of farmers. Where possible, current domestic and foreign agricultural issues are used to illustrate principles.

120 Introduction to Business Management
Spring. 3 credits.
Lecs, M, W, F 10:10 or 11:15; disc, M 2:30–4:25 or 7:30–9:25 p.m. (3 secs); T 9:55, 12:20–2:15, or 1:25, or 2:30–4:25; W 8:9–5:55, 10:10–12:05, 2:30–4:25, or 7:30–9:25 p.m. (2 secs); R 9:55 or 2:30–4:25. In weeks when discs are held, there will be no W lecture.
2 evening prelims. G. A. German.
Principles and tools useful in performing four major functions of management: planning, organizing, directing and leading, and controlling. Within this framework, consideration is given to the firm's internal and external environments, the role of business ownership, financial statements, cost behavior, and a few key concepts and tools in financial management.

221 Financial Accounting
Spring. 3 credits.
Lecs, M, F 10:10 or 11:15; lab, T 10:10–12:05 (2 secs); 12:20–2:15, or 2:30–4:25; W 10:10–12:05 (2 secs), 12:20–2:15 (2 secs), 2:30–4:25 (2 secs), or 7–9 p.m. (3 secs); R 10:10–12:05, 12:20–2:15, or 2:30–4:25. 2 evening prelims and a comprehensive final.
M. Huthbert.
A comprehensive introduction to financial accounting concepts and techniques, intended to provide a basic understanding of the accounting cycle, elements of financial statements, and statements interpretation. Elements examined include inventory, depreciation, internal control of assets, time value of money, notes, stocks, bonds, and the statement of cash flows. Limited use of a financial data base of publicly held companies.

240 Marketing
Fall. 3 credits. Not offered 1990–91.
E. W. McLaughlin.
An introductory study of the food marketing system and the society it serves, including the goals and practices of producers and marketers (in such areas as buying and selling, grading, transporting, packaging, and advertising), price-making institutions (such as commodity futures markets), the behavior and purchasing practices of consumers, and the interrelationships among those groups.

252 Natural Resource and Environmental Economics
Spring. 3 credits. Recommended: Economics 101.
An introduction to the concepts and methods of analysis in the public and private use of resources, particularly benefit-cost analysis and discounting. Major current problems in global warming, agriculture, forestry, acid rain, energy use, and world petroleum resources. The growing world trade in resource-intensive manufactured products and the impact on income, employment, and pollution.
Comparative resource use and environmental protection in industrialized and developing countries.

302 Farm Business Management
Fall. 4 credits. Not open to freshmen. This course is a prerequisite for Agricultural Economics 402 and 405.
Lecs, M, W, F 9:05; lab, T W or R 1:25–4:25. On days farms are visited, the lab period is 1:25–5:30.
W. A. Knoblauch.
An intensive study of problems associated with planning, organizing, directing, and controlling a farm business, with emphasis on the tools of managerial analysis and decision making.
Topics include management information systems, business analysis, budgeting, and acquisition, organization, and management of capital, labor, land, and machinery.

310 Introductory Statistics
Fall or spring. 4 credits. Prerequisite: Education 115 or equivalent level of algebra.
Lecs, M, W, F 1:25; lab, T 9:05–11 or 1:25–3:20 (2 labs); W 11:15–1:10 or 2:30–4:25 (2 labs); or R 9:05–11, 12:20–2:15, or 2:30–4:25 (2 labs).
3 evening exams. C. van Es.
An introduction to statistical methods. Topics to be covered include the descriptive analysis of data, probability concepts and distributions, estimation and hypothesis testing, regression, and correlation analysis. Applications from business, economics, and the biological sciences are used to illustrate the methods covered in the course.

320 Business Law
Fall. 3 credits. Limited to juniors, seniors, and graduate students.
Lecs, M, W, F 9:05. 1 evening prelim.
J. B. Bugliari and D. A. Grossman.
Consideration is given chiefly to legal problems of particular interest to persons who expect to engage in business. Emphasis is on the law pertaining to personal property, contracts, agency, real property, and the landlord-tenant relationship.

321 Law of Business Associations
Spring. 3 credits. Limited to juniors, seniors, and graduate students. Prerequisite: Agricultural Economics 320 or permission of instructor. 321 and 420 may be taken concurrently.
Lecs, T R 2:30–4:1. 1 evening prelim.
J. B. Bugliari.
The first portion of this course examines the formation and operation of business enterprises, particularly partnerships and corporations. The second portion of the course will review government regulations and control of business organizations. Special attention will be given to the antitrust laws, consumer protection legislation, and environmental protection legislation.
322 Taxation in Business and Personal Decision Making
Spring. 3 credits. Recommended: background in accounting and business law. Lecs, M W 2:30; section to be arranged. D. A. Grossman.
The impact of taxation on business and personal decision making. After a brief discussion of tax policy, an in-depth examination is conducted of federal income, estate and gift taxes and the impact on individuals and business entities. Both tax management and tax reporting are stressed.

323 Managerial Accounting
Fall. 3 credits. Prerequisite: Agricultural Economics 221 or equivalent. Lecs, M W 12:20; disc, R 10:10-12:05, 12:20-2:15 (2 secs), or 2:30-4:25; or F 10:10-12:05, 12:20-2:15 (2 secs), or 1:25-3:20. 2 evening prelims, second exam, and a project on an electronic spreadsheet. M. Hubbert.
An introduction to managerial accounting that emphasizes the application of accounting concepts to management control and decision making. Major topics include product costing, standard costing, cost behavior, cost allocation, budgeting, inventory control, variance analysis, measuring divisional performance, and accounting systems in the manufacturing environment. Limited use of Lotus on the IBM PC.

324 Financial Management
Spring. 4 credits. Prerequisite: Agricultural Economics 120 or equivalent. Recommended: Agricultural Economics 221 and 310 or equivalents. Lecs, M W F 9:05; disc, W 2:30-4:25 or R 9:05-11, 12:20-2:15, or 2:30-4:25, or F 10:10-12:05 or 12:20-2:15. 2 evening prelims. M. Hudson.
Focuses on three major questions facing management: how to evaluate capital investment decisions, how to raise the capital to finance the firm, and how to generate sufficient cash flows to meet the firm's cash obligations. Major topics include methods to analyze capital decisions, impact of taxes, techniques for handling risk and uncertainty, effects of inflation, sources and costs of debt and equity, capital structure, leverage, and working capital management. Microcomputers are used for analyzing financial problems. No previous computer experience is required.

325 Personal Enterprise and Small Business Management
Spring. 3 credits. Limited to 250 juniors and seniors. Prerequisities: Agricultural Economics 120 and 221 or permission of instructor. Lec, M W 12:20-2:15; Disc, F 10:10-12:05 (2 secs) or F 2:30-4:25 (2 secs). M. Hudson.
Designed to acquaint students with the changing role of small businesses in the global economy. Special emphasis on the problems of starting a new business, including strategic planning, financing, marketing, and managing growth. The term project involves group development of a business plan. Case studies will be used to illustrate a variety of business problems. Visiting entrepreneurs will also share experiences with a variety of small business formats, topics, and issues.

326 Economics of the Public Sector
Spring. 3 credits. Limited to 150 juniors and seniors. Prerequisite: Economics 101 or equivalent. Lecs, TR 12:20-2:15. C. Ranney.

340 Futures and Options Trading
The focus of the course is on the use of agricultural financial futures and options as marketing and management tools. A primary objective is to understand how companies, financial institutions, and farm businesses can employ hedging to manage risk. All but the final lecture will be held during weeks 1-7. During weeks 7-15, students will participate in a computerized simulated hedging exercise, with a concluding lecture in week 15.

342 Marketing Management
Fall. 3 credits. Limited to ALS majors. Prerequisites: Agricultural Economics 240 and Economics 101-102. Lecs, M W F 10:10; disc, R 12:20-1:50 or 2:30-4:00 (3 secs), F 10:10-11:40 (2 secs), or 12:20-1:50 (2 secs). In weeks discs are held, there is no lecture. E. W. McLaughlin.
Deals with the central link between marketing at the societal level and everyday consumption by the general public. As such, this course emphasizes the management aspects of marketing by considering consumer behavior, strategies in product and brand selection, pricing, promotion, sales forecasting, and channel selection. Identification and generation of economic data necessary for marketing decisions are considered. Public policy and ethical dimensions of marketing are examined.

346 Dairy Markets and Policy
Fall. 3 credits. Limited to juniors and seniors. Prerequisite: Economics 101 or equivalent. Lecs, TR R 8:30-9:55. A. M. Novakovic.
A survey of the structural and institutional characteristics of dairy markets and the analysis of policy issues, pricing systems, and government programs, including marketing orders, price supports, and import policies.

347 Marketing Fruits, Vegetables, and Ornamental Products
Fall. 3 credits. S-U grades optional. Lecs, MW F 12:20. A field trip of one or two days. E. E. Figueroa.
A study of fruits, vegetables, and ornamental markets, including seasonal variations. Role of market intermediaries, role of government agencies, and the price discovery process. Discussion and description of horticultural product market orders in the U. S. The emerging importance of interregional and international markets.

380 Independent Honors Research in Social Science
Fall or spring. 1-6 credits. Limited to students who have met the requirements for the honors program. A minimum of 6 credits may be earned in the honors program.

401 Agricultural Law
Law and government regulation as they apply to agriculture and the development of agricultural production. Topics covered may include legal issues in installment sales and financing, farm leases, cooperatives, employment, soil and water management, farm land, preservation and use, and ownership of animals.

402 Advanced Farm Business Management
Spring. 3 credits. Prerequisite: Agricultural Economics 302 or equivalent. Lecs, M W 9:05; disc, W 1:25-3:20. G. L. Casler.
Emphasis is on evaluating the profitability of alternative investments and enterprises. Principal topics include strategic planning, the effects of income taxes on investment decisions, capital investment analysis, linear programming, labor management, and financial risk and uncertainty. Experience in computer applications to farm business management is provided. Previous computer experience is not required.

404 Advanced Agricultural Finance Seminar
Spring. 2 credits. Limited to 16 seniors with extensive course work in farm management and farm finance. Open by application prior to March 1 of the year before the course is offered. W 3:35-5:30. E. L. LaDue.
A special program in agricultural finance, conducted with financial support from the Farm Credit System. Includes two days at Farm Credit Banks of Springfield, one week in Farm Credit Association offices, an all-day field trip observing FHA financing during fall term, a four-day trip to financial institutions in New York City during intersession, and lecture-discussions in the spring term. Representatives from banking, agribusiness, finance, and similar areas participate in spring-term lecture-discussion sessions.

405 Farm Finance
Spring. 4 credits. Prerequisite: Agricultural Economics 302 or equivalent. Lecs, M W F 10:10; disc, TR 1:25-3:20. E. L. LaDue.
The principles and practices used in financing farm businesses, from the perspectives of the farmer and the farm lender. Topics include sources of capital, financing entry into agriculture, financial analysis of a business, capital management, financial statements, credit instruments, loan analysis, financial risk, and leasing.

406 Farm and Rural Real Estate Appraisal
Spring, weeks 7-15. 2 credits. Limited to 45 students. Prerequisites: Agricultural Economics 302 or equivalent and permission of instructor. Lecs, R 11:15; lab, R 1:25-5:30. 6 half-day field trips, 1 all-day field trip. G. J. Conneman.
The basic concepts and principles involved in appraisal. Factors governing the price of farms and rural real estate and methods of valuation are studied. Practice in appraising farms and other rural properties.
407 Financial Management in Farming

408 Seminar in Farm Business Decision Making
Fall (1 week in intersession). 1 credit.
Prerequisites: Agricultural Economics 302 and 405 or equivalent, and permission of instructor.
M T WRF 8-5. G. J. Connerran.
Develops method of analyzing farm business management problems. Gives student experience in identifying alternatives in problem solving. Provides opportunities to analyze and evaluate actual farm situations. Two field trips and intensive work with a farm family.

409 Farm Management Workshop
Fall. 1 credit. Limited to seniors and graduate students.
T 12:20-2. B. F. Stanton and staff.
Presentation and interpretation of research in farm management and production economics. Participants take part in seminars reporting on research methodology and results obtained. Students prepare a summary and evaluation of a recent research publication during the semester.

410 Business Statistics
Spring. 3 credits. Prerequisite: Agricultural Economics 310 or equivalent.
This course focuses on five major topics used to analyze data from marketing research, business, and economics. Topics studied are: survey sampling procedures, nonparametric methods, index numbers, time series and forecasting, and experimental design and ANOVA. The course will involve a research project designed to give experience in collecting and interpreting data.

411 Introduction to Econometrics
Spring. 3 credits. Prerequisite: Agricultural Economics 310 or equivalent.
The course introduces students to basic econometric principles and the use of statistical procedures in empirical studies of economic models. Assumptions, properties, and problems encountered in the use of multiple regression procedures are discussed, and simultaneous equation models are introduced. Students are required to specify, estimate, and report the results of an empirical model.

412 Introduction to Mathematical Programming
Fall. 3 credits. Primarily for juniors, seniors, and M.S. degree candidates. Prerequisite: Agricultural Economics 310 or equivalent.
H. M. Kaiser.
This is primarily a course in applied linear programming, but some basic nonlinear programming techniques will be covered. The links between theoretical and empirical models are stressed in this course. Emphasis will be placed on model building, estimation, and interpretation of results. Some topics include applied linear, quadratic, and integer programming to common decision-making problems.

413 Information Systems and Decision Analysis
Spring. 3 credits. Limited to 60 juniors and seniors. Prerequisites: Agricultural and Biological Engineering 102 or equivalent, Economics 101 or equivalent, and Agricultural Economics 310.
The focus of the course is on management decision making and the support provided by management information systems. The student will learn the behavioral assumptions made in economics about decision making and the decision rules that result. Techniques for implementing the decision rules will be introduced (decision trees, network analysis, Markov analysis, sensitivity analysis), as well as the statistical techniques (simulation, forecasting) used to produce the information necessary to the decision process. The topics will be discussed in a variety of decision settings (inventory, congestion, planning, and scheduling).

415 Price Analysis
Fall. 3 credits. Prerequisite: Economics 101-102 or equivalent. S-U grades optional.
The focus of this course is on the analysis of supply and demand characteristics of commodities with particular attention to agricultural products. Institutional aspects of pricing, temporal and spatial price relationships, price forecasting, and the economic consequences of pricing decisions are included.

420 Advanced Business Law
Spring. 3 credits. Limited to juniors, seniors, and graduate students.
Designed to provide a fairly detailed and comprehensive legal background in areas of commercial law affecting the operation of business enterprises. Particular consideration is given to the law pertaining to bailments, sales, secured transactions, bankruptcy, and commercial paper.

422 Estate Planning
Fall. 1 credit. Limited to upperclass students.
S-U grades only.
Fourteen sessions on the various aspects of estate planning techniques. The law and use of trusts, the law of wills, federal and New York State estate and gift taxes, and probate procedures are covered.

424 Business Policy
Fall. 3 credits. Limited to seniors majoring in business management and marketing.
An integrating course that examines business policy formulation and implementation from the standpoint of the general manager of an organization, focusing on decision making and leadership. The course is built around a series of cases. Several guest executives. Emphasizes improving oral and written communication skills.

425 Counseling Small Business
Spring. 3 credits. Prerequisite: Agricultural Economics 220, 221, and 341 and permission of instructor.
Allows students to serve as consultants to small businesses throughout New York State. Provides the opportunity to identify and confront problems facing small personal enterprises. Encourages the application of basic business courses to an actual business and the witnessing, first hand, of the results of firm-level decision making. Student teams meet with the instructor at predesignated times throughout the semester.

426 Cooperative Management and Strategies
Spring. 3 credits. Recommended. Agricultural Economics 120 or equivalent. Estimated cost of field trip, $50.
Lecs. M W F 12:20. 2-day field trip required. B. L. Anderson.
Investigates the unique aspects of cooperative business organizations. Topics are approached from the points of view of management, the board of directors, and members and include cooperative principles, legislation, taxation, as well as cooperative management, financial and marketing strategies. Primary focus is on operating cooperatives in agriculture and the management and strategic alternatives they face.

431 Food and Agricultural Policies
Fall. 3 credits.
The course deals broadly with food and agricultural policies, including price support and storage or reserve policies, agricultural protection, soil conservation programs, the structure of agriculture, domestic food subsidy programs, environmental issues, and food safety. The importance of international trade and agricultural policies in other countries is emphasized.

443 Food-Industry Management
Fall. 4 credits. Limited to juniors and seniors.
Prerequisite: Agricultural Economics 448 or 342 or permission of instructor.
G. A. German.
A case-study approach is used to examine the application of management principles and concepts to marketing and distribution problems of the food industry. Cases covering new product introductions, merchandising strategies, and investment decisions are included. Guest speakers from the food industry present case-study solutions at the Tuesday session.

444 Export Marketing
Fall. 3 credits. Prerequisite: graduate or upperclass standing. Estimated cost of field trip, $150. Limited to 40 students.
An exploration of the processes and procedures for export marketing. Emphasis is placed on financing arrangements and alternative risk-reducing strategies. Organization for export marketing is discussed along with government export-promotion programs. This course is intended to provide practical information on the process of marketing overseas. Students participate in a custom-developed, competitive export-trading simulation.
449 Applications in Strategic Marketing
Spring. 3 credits. Limited to juniors and seniors. Prerequisite: Agricultural Economics 240.

Lecs, T R 10:10–11:25. G. A. German. Merchandising principles and practices as they apply to food industry situations. The various elements of merchandising are examined, including buying, pricing, advertising, promotion, display, store layout, profit planning and control, and merchandising strategy. The consequences of food industry trends and initiatives for other industry members, public policymakers, and consumers are considered.

449 Applications in Strategic Marketing
Fall. 2 credits. Prerequisite: Agricultural Economics 342 or permission of instructor. Cost of field trips, about $275.

W 2:30–4. Two 1-day field trips to the upstate area and a 3-day trip to the New York City area during intersession, just prior to registration. E. W. McLaughlin. Focus on the major components of strategic marketing with an applied orientation: product mix, distribution, pricing, advertising, and promotion, and market research. The international dimensions of marketing are emphasized. Students will be given firsthand exposure to a wide range of marketing strategies through field trips, guest lectures, case studies, group exercises, and development of a strategic marketing plan.

452 Resource Economics
Fall. 3 credits. Prerequisites: Mathematics 111 and Economics 313.

Lecs, T R 10:10; disc M 2:30. J. Conrad. This course develops economic models for renewable resources, exhaustible resources, and environmental quality. Applications to fisheries, forestry, oil and gas, and air and water pollution are presented. Emphasis is on the microeconomic foundations in resource economics and the policy implications for resource management.

454 The History and Economics of Whaling in North America (also History 413)
Spring. 3 credits. Prerequisite: written permission of the staff.

457 Special Topics
Fall or spring. Variable credit. Written permission from the staff member who will supervise the work and assign the grade must be attached to course enrollment material.

Hours to be arranged. Staff. Special projects designed by faculty members to supplement existing classes.

458 Supervised Teaching Experience
Fall or spring. 1–3 credits. Total of 4 credits maximum during undergraduate program.

Hours to be arranged. Staff.

Designed to give qualified undergraduates experience through actual involvement in planning and teaching courses under the supervision of department faculty. Students are expected to actually teach at least one hour per week for each credit awarded. Students cannot receive both pay and credit for the same hours of preparation and teaching.

459 Undergraduate Research
Fall or spring. 1–4 credits. Limited to seniors with grade-point averages of at least 2.7. Prerequisite: written permission of the staff member who will supervise the work and assign the grade; this permission must be attached to course enrollment material. S–U grades optional.

Permits outstanding undergraduates to carry out independent study of suitable problems under appropriate supervision.

605 Agricultural Finance and Capital Management
Fall. 3 credits. Prerequisite: Agricultural Economics 402 or 405, or equivalent. Offered alternate years. $25 charge for reading materials; no text.

T R 8:40–9:55. L. Tauer, E. LaDue. Advanced topics in capital management and financing of agriculture. Special emphasis on current issues. Example topics: farm-sector funds flows, financial risk and decision analysis, agricultural finance policy, financial intermediation and intermediaries, firm growth, inflation investment-replacement models, and selected topics on financing agriculture in developing countries.

608 Production Economics
Fall. 3 credits. Prerequisite: Economics 311 or equivalent. Recommended: Mathematics 111 or equivalent.

Lecs, M W F 10:10. L. W. Tauer. The theory of production economics with emphasis on applications in agriculture. Topics include the derivation, estimation, and use of production, cost, profit, demand, and supply functions. Production response over time and under risk is introduced.

630 Policy Analysis I: Welfare Theory, Agriculture, and Trade
Spring. 4 credits. Prerequisites: Agricultural Economics 608 or Consumer Economics 603, Economics 313, or equivalent intermediate micro theory incorporating calculus.

Lecs T R 8–9:55. C. Ranney and D. Lee. The first half of this course surveys the theory of welfare economics as a foundation for public policy analysis. Major issues addressed include the problem of social welfare measurement, the choice of welfare criteria, and the choice of market or nonmarket allocation. Basic concepts covered include measurement of welfare change, including the compensation principle, consumer and producer surplus, willingness-to-pay measures, externalities, and the general theory of second-best optimia. The second half of the course focuses on public policy analysis as applied to domestic agricultural policy and international trade. The domestic policy component examines major U.S. farm commodity programs and related food and macroeconomic policies and analyzes their effects on producers, consumers, and other groups. The international trade component examines the structure of world agricultural trade, analytical concepts of trade policy analysis, and the principal trade policies employed by countries in international markets.

631 Policy Analysis II: Resources and Agricultural Development
Fall. 4 credits. Prerequisite: Agricultural Economics 630. May not be offered 1990–91.

Lecs, T R 8:40–9:55. D. Chapman and staff. The first half of this course covers issues related to natural resources. Beginning with an overview of benefit–cost analysis and project evaluation, the course continues by considering global and transnational resource topics including exhaustible and renewable resource theory, externalities, and international environmental problems. Issues related to the role of resources in development. The second half of the semester focuses on the analysis of policies for agricultural growth and development. Theories of growth and agriculture's role in the development process are discussed. Macroeconomic and sectoral policies affecting production, consumption, and trade are evaluated.

640 Analysis of Agricultural Markets
Fall. weeks 1–7. 2 credits. Prerequisites: Agricultural Economics 415 and 411 or equivalents.

Lecs, T R 12:20–2:15. L. Willett. This course is about markets for agricultural products. Focus is placed on identifying their distinguishing characteristics, establishing criteria for evaluating performance, analyzing models for price determination and farm-retail marketing margins, and evaluating selected public-policy issues related to market performance.
641 Commodity Futures Markets
Fall, weeks 8-14. 2 credits. Prerequisites: Agricultural Economics 411 and 415 or equivalents. Recommended: Agricultural Economics 640.
This course is primarily about markets for agricultural futures contracts. Emphasis is placed on price behavior on cash and futures markets and the relationships among prices. These principles provide a foundation for a discussion of hedging, speculation, and public policy issues.

651 Economics of Resource Use
Fall. 4 credits. Economics 509 or Agricultural Economics 452 recommended. May not be offered 1990-91.
Lec-sem, hours to be arranged.
D. Chapman.

652 Land Economics Problems
Fall or spring. 1 or more credits. Limited to graduate students. Prerequisite: permission of instructor. S-U grades optional.
Hours to be arranged. D. J. Allen.
Special work on any subject in the field of land economics.

660 Food, Population, and Employment
Spring. 3 credits. S-U grades optional.
Designed to introduce first-year graduate students to the interrelated problems of food, population, and employment in developing countries. Food economics, the world food situation, and the outlook for feeding an eventual global population of 10 to 11 billion people are emphasized. Employment is seen as the key variable influencing both population growth and effective demand for food. The record of various development strategies is examined.

[663 Macroeconomic Issues in Agricultural Development
Fall. 3 credits. Prerequisite: permission of instructor. S-U grades optional. Offered alternate years. Not offered 1990-91.
Lec to be arranged. E. Thorbecke.
Issues such as the role of agriculture in economic development, the household farm as a producing and consuming unit, operation of product and factor markets in agricultural and rural areas, structural transformation of agriculture in the process of economic development, theories of agricultural development, and agricultural and rural development strategies and models. The approach followed is theoretical, quantitative, and empirical.

664 Microeconomic Issues in Agricultural Development
Spring. 3 credits. Prerequisite: Agricultural Economics 608, Economics 511, or permission of instructor. S-U grades optional.
TR 4:30-5:55. R. Barker.
Issues such as production efficiency, induced technological change, allocation of research resources, incomes distribution and benefits from new technology are discussed. The theoretical argument is related to applied research problems.

685 Food and Nutrition Policy (also Nutritional Sciences 685)
Fall. 3 credits. Prerequisites: Consumer Economics and Housing 503 or Economics 311 or 313 or Agricultural Economics 415 or Consumer Economics and Housing 310 or equivalent. Knowledge of multiple regression. S-U grades optional.
Lecs, M W 1:15-2:25.
P. Pintstrup-Andersen.
The course will identify the principal links between human nutrition and government action, with emphasis on developing countries. The process of policy formulation, including economic and political factors, will be discussed. Political economy issues, including the influence of and conflict among interest groups and rent-seeking behavior related to food and nutrition policies and programs, will be analyzed. The role of nutrition information and surveillance in policy design, implementation, and evaluation will be analyzed along with methodologies for empirical analysis of food and nutrition policy. Findings and analytical methodologies from case studies in developing countries will be used, as appropriate. The role of improved nutrition in economic development both as an indicator of welfare and as a productivity-enhancing factor as well as basic relationships among nutrition, poverty, food, and household behavior will be briefly presented at the beginning of the course to provide a context for policy discussions.

699 M.P.S. Research
1-6 credits. Prerequisite: registration as an M.P.S. student. Credit is granted for the M.P.S. project report.

700 Topics in Agricultural Economics
Fall or spring. Limited to graduate students. Credit, class hours, and other details arranged with a faculty member.
This course is used to offer special topics in agricultural economics that are not covered in regular class offerings. More than one topic may be given each semester in different sections. The student must register in the section appropriate to the topic being covered; the section number is provided by the instructor.

708 Advanced Production Economics
Fall. 3 credits. Prerequisite: Agricultural Economics 608, 710, or equivalents; Economics 509 is highly recommended. Offered alternate years.
Hours to be arranged. R. N. Boisvert.
Theoretical and mathematical developments in production economics, with emphasis on estimating micro- and macro-production equations, scale economies, technical change, factor substitution, and recent developments in flexible functional forms, duality and dynamic models are emphasized. Discussions of several other selected topics such as risk, supply response, and household production functions change from year to year based on student interest.

710 Econometrics I
Spring. 3 credits. Prerequisite: enough preparation in matrix algebra and statistics (e.g., Statistics 417 and 601) to read J. Johnston, Econometric Methods, 3d edition, chapters 5ff.
This course provides an intermediate-level treatment of linear statistical models used in econometrics, including distributed lag specifications, disturbance-related sets of equations, and simultaneous linear models. Common problems such as multicollinearity, specification error, and autocorrelated disturbances are covered. Students seeking an introduction to econometrics should take Agricultural Economics 411.

711 Econometrics II
Fall. 4 credits. Prerequisite: Agricultural Economics 710 or equivalent. Statistics 417 recommended.
Coverage beyond that of Agricultural Economics 710 of the linear regression models, including alternative methods of incorporating non-sample information and testing restrictions, diagnostic techniques for collinearity and influential observations, pooling data, stochastic coefficients, limited dependent variables and latent variables.

712 Quantitative Methods I
Fall. 4 credits. Prerequisite: some formal training in matrix algebra. A course at the level of Statistics 417 is highly recommended.
A comprehensive treatment of linear programming and its extensions, including postoptimality analysis, goal programming, and the transportation model. Special topics in nonlinear programming, including separable, spatial equilibrium and risk programming models. Input-output models and their role in social accounting matrices and computable general equilibrium models are discussed. Applications are made to agricultural, resource, and regional economic problems.

713 Quantitative Methods II
Spring. 4 credits. Prerequisites: Economics 509 and Agricultural Economics 710.
This course is concerned with the analysis and optimization of dynamic systems. Course objectives are to (1) present the basic theory of dynamical systems and dynamic optimization, (2) introduce associated methods of numerical and econometric analysis, (3) review some applications of dynamic analysis from various subfields in economics, and thereby (4) equip students with basic theory and methods to perform applied research on dynamic allocation problems.

717 Research Methods in Agricultural Economics
Spring. 2 credits. Limited to graduate students.
Discussion of the research process and scientific method as applied in agricultural economics. Topics include problem identification, hypotheses, sources of data, sampling concepts and designs, methods of collecting data, questionnaire design and testing, field organization, and analysis of data. During the semester each student develops a research proposal that may be associated with his or her thesis.
730 Seminar on Agricultural Trade Policy
Spring. 3 credits. Limited to graduate students.
Prerequisites: Agricultural Economics 630-631 and basic familiarity with quantitative methods.
F 1:25-4. Staff.
A discussion of selected topics in agricultural trade policy. The relationship between the agricultural trade policies, instability and market stabilization, and agricultural trade and development. The preparation of a term paper is an important part of the course.

731 Seminar on Agricultural Policy
Spring. 2 credits. Limited to graduate students.
Offered alternate years.
A review of the professional literature relating to agricultural policy issues and techniques appropriate to the analysis of such issues.

740 Agricultural Markets and Public Policy
Spring. weeks 1-7. 2 credits. Limited to graduate students.
Prerequisite: familiarity with multiple regression techniques at the Agricultural Economics 411 level or higher.
Recommended. Agricultural Economics 640.
Develops the concepts and methodology for applying and analyzing the effects of public-policy directives to the improvement of performance in the U.S. food marketing system. Topics include a survey of industrial-organization principles, antitrust and other legal controls, and coordination systems in agriculture.

741 Space, Trade, and Commodity Analysis
Spring, weeks 8-14. 2 credits. Limited to graduate students.
Recommended. Agricultural Economics 640.
Principal topics are spatial relationships in markets, the analysis of export supply-import demand for a single country, international commodity models, and models of commodity trade.

750 Economics of Renewable Resources
Spring. 4 credits. Prerequisites: Economics 509 and 518, or Agricultural Economics 713.
Hours to be arranged. J. M. Conrad.
This course is concerned with the optimal allocation of renewable resources. Bioeconomic models of fishing and forestry are presented along with models of groundwater and residuals (environmental) management. Theory, applications, and management policy are considered.

754 Sociotechnical Aspects of Irrigation (also Rural Sociology 764, Agricultural and Biological Engineering 754, and Government 644)
Spring. 2 or 3 credits. S-U grades optional.
Hours to be arranged. R. Barker.
Examines irrigated agriculture and its relation to agricultural development. Emphasis on the social processes within irrigation systems and interactions with social setting, including political and administrative aspects. Provides an opportunity to examine systematically the institutional and organizational policy issues associated with the design and operation of systems of irrigated agriculture in developing countries.

763 Macro Policy in Developing Countries
Spring. 3 credits. Prerequisites: Economics 509, 510, 513 (may be taken concurrently), or permission of instructor. Offered alternate years.
This course examines macroeconomic policies in developing countries and their interaction with economic growth, development, and stability. Theoretical models useful for analysis of macro policies will be covered as well as an examination of empirical studies. Emphasis will be on research topics of current interest to students and professionals in the field, particularly those relating to the interaction of macro policy with micro and sectoral analysis.

ANIMAL SCIENCES

100 Domestic Animal Biology I
Fall. 3 credits. S-U grades optional.
Lec. M W F 9:05; lab/disc, T W R 2-4:25.
W. B. Currie, M. L. Thonney, and staff.
An introduction to the science of raising animals in the context of commercial animal production. Lectures and labs address the biology of economically important species (morphology, anatomy, and physiology) and application of the biology to the management of animals within major livestock industries. Topics covered include fundamentals of anatomy, regulatory mechanisms, vital systems, digestion, and metabolism. Students care for small numbers of cattle, sheep, pigs, and chickens in different phases of their life cycle to maximize hands-on contact. Living animals will be used noninvasively, and fresh organs and tissues from dead animals will be used in laboratories.

105 Contemporary Perspectives of Animal Science
Spring. 1 credit. Limited to freshmen, sophomores, and first-year transfers.
T 1:25 or W 12:20. R. C. Gorewit.
A forum to discuss the contemporary and future role of animals in relation to human needs and students' career planning.

150 Domestic Animal Biology II
Spring. 4 credits. S-U grades optional.
Lec. M W F 9:05; lab/disc, T W R 2-4:25.
W. B. Currie and staff.
Second of a two-semester sequence (100/150) applying the basic biology of growth, defense mechanisms, reproduction, and lactation to aspects of the husbandry of animals within major livestock industries. Fresh tissues and organs from dead animals will be used in laboratories.

212 Livestock Nutrition
Fall. 4 credits. Prerequisite: Chemistry 104 or 208. Recommended: Animal Sciences 100 and 150.
An introduction to animal nutrition, including digestive physiology and metabolism of livestock species; nutrient properties and requirements for different aspects of animal production; principles of feed evaluation and ration formulation. Laboratory classes include gastrointestinal tract dissections and a nutritional experiment performed on a laboratory or farm animal species.

213 Nutrition of Companion Animals
Spring, weeks 1-7. 1 credit. Prerequisite: Animal Sciences 212 or equivalent. Offered alternate years only.
W 7:30-9:30 p.m. H. F. Hintz.
Nutrition of companion animals, with emphasis on the dog and cat. Digestive physiology, nutrient requirements, feeding practices, and interactions of nutrition and disease.

214 Nutrition of Exotic Animals
Spring, weeks 1-7. 1 credit. Prerequisite: Animal Science 212. Offered alternate years only.
Not offered 1990-91:
Lec. W 7:30-9:30 p.m. H. F. Hintz. Principles of nutrition for exotic animals including birds and fish. Nutrient requirements, sources of nutrients, feeding management systems, and ration formulation will be discussed. Signs of nutrient deficiencies and excesses will be described.

221 Introductory Animal Genetics
Spring. 3 credits. Prerequisite: a year of college biology.
Lecs, T R 9:05; disc, T W R or F 2-4:25.
E. J. Pollak.
An examination of basic genetic principles and their application to the improvement of domestic animals, with emphasis on the effects of selection and mating systems on animal populations.

230 Poultry Biology
Spring. 3 credits.
Lecs. T R 11:15; lab, W 2-4:25. Field trips during lab periods may last longer.
R. E. Austic.
Designed to acquaint the student with the scope of the poultry industry. Emphasis is on the principles of avian biology and their application in the various facets of poultry production. Some laboratory sessions involve dissection and/or the handling of live poultry.

251 Dairy Cattle Selection
Spring. 2 credits.
Emphasis on economical and type traits to be used in the selection and evaluation of dairy cattle. Practical sessions include planned trips to dairy herds in the state.

265 Horses
Spring. 3 credits. Prerequisites: Animal Sciences 100 and 150 or permission of instructor. S-U grades optional.
Selection, management, feeding, breeding, and training of light horses.
[290] Meat Science
Fall. 3 credits.
Lecs, T R 10:10; lab, M T or W 1:25-4:25.
D. H. Beermann and staff.
An introduction to meat science through a study of the structure, composition, and function of muscle and its conversion to meat. Properties of fresh and processed meat, microbiology, preservation, nutritive value, inspection, and sanitation are also studied. Laboratory exercises include meat-animal slaughter, meat cutting, wholesale and retail cut identification, anatomy, processing, inspection, grading, quality control, and meat merchandising. An all-day field trip to commercial meat plants is taken.

[300] Animal Reproduction and Development
Spring. 3 credits. Prerequisite: Animal Science 100-150 or equivalent and one year of introductory biology.
Comparative anatomy and physiology of domestic animal reproduction. Fertilization through embryonic development, pregnancy, and growth to sexual maturity; emphasis on physiological mechanisms and application to fertility regulation. Separate laboratory offered to demonstrate fundamental and applied aspects of reproduction.

[301] Animal Reproduction and Development Lab
Spring. 1 credit. Prerequisite: Animal Science 100-150 or equivalent. Concurrent enrollment in or completion of Animal Science 300 required to register.
Labs, M W or F 1:25-4:25. Each lab limited to 30 students. J. Parks.
Demonstration of fundamental principles and applied aspects of domestic animal reproduction. Dissection and examination of tissues from vertebrate animals will be included in selected laboratories.

[305] Farm Animal Behavior
Spring. 2 credits. Prerequisites: an introductory course in animal physiology and an introductory course in genetics; at least one animal production course is recommended.
The behavior of production species (avian and mammalian) influences the success of any management program. Students will study behaviors relating to feeding, reproduction, and social interactions of poultry, cattle, sheep, and swine. Management systems for commercial livestock production and their implications for animal behavior and welfare will be stressed.

[312] Applied Animal Nutrition
Spring. 4 credits. Limited to 40 students.
Prerequisites: Animal Science 100, 150, and 212 (or equivalents). Recommended: 1 semester organic chemistry. S-U grades optional.
Lecs, M W F 10:10; lab, R 1:25-4:25.
R. D. Boyd and D. G. Fox.
Provides in-depth training in applied animal nutrition. Appropriate for students considering careers as nutritional consultants or who intend to enter graduate school in nutrition. An appropriate balance between biological concepts and applied feeding practices is attained with particular emphasis on the dynamics of nutrient requirements in various physiological states of both ruminant and nonruminant farm animals.

[321] Seminar: Horse Genetics
Spring. 1 credit. Prerequisite: Animal Sciences 265 or permission of instructor. Recommended: Animal Sciences 221 or Biological Sciences 281. Not offered 1990-91.
Lecs, M T or W 9:05. Staff.
A discussion of genetics of the horse, with special reference to simply inherited traits and selection for quantitative traits.

[330] Commercial Poultry Production
Fall. 1-2 credits. Prerequisites: Animal Sciences 100, 150, and 230 or permission of instructor. Offered alternate years. Not offered 1990-91.
F 2-4 (occasional field trips run past 4 p.m.). K. Keshavarz.
The course emphasizes production and business management aspects of commercial poultry farm operation and is designed to acquaint the student with current technology involved in commercial poultry production.

[332] Poultry Hygiene and Disease (also Veterinary Medicine 255)
Spring, alternate years. 2 credits. Minimum enrollment, 5 students; maximum enrollment, 15 students. Prerequisites: Microbiology 290 and permission of the instructor.
Lec and lab, W 2:05-4:25.
B. Lucio-Martinez.
Selected diseases of poultry are used as models to discuss control through eradication or immunization. Includes laboratory sessions on anatomy of the chicken, bleeding, euthanasia, and necropsy techniques. Common serological techniques will be demonstrated.

[340] Decision Analysis in Dairy Systems
Fall. 2 credits.
The concepts of decision making under uncertainty are presented. The course covers model building for a decision problem, assessment and revision of probabilities, value of information, options for making a choice, and preference theory and methods for dealing with risk, such as risk sharing and diversification. The concepts are presented in an animal production context.

[341] Physiology of Lactation
Spring. 3 credits. Prerequisite: Animal Sciences 150 or Animal Sciences 300 or equivalent.
Lecs, T R 9:05; lab, R 2-4:25.
R. C. Gorewit.
The physiology of milk production is covered with emphasis on mammary gland development, anatomy, hormonal control of milk secretion, and the biosynthesis of milk constituents. The dairy cow serves as the model system, but all livestock species are considered.

[350] Dairy Cattle
Fall. 3 credits. S-U grades optional. Recommended: Animal Sciences 150 or equivalent, 212 and 221.
Lecs, T R 10:10; lab, M T or W 1:25-4.
D. M. Galton, C. R. Holtz.
Introduction to the background and scientific principles relating to dairy cattle production. Laboratories are designed to provide an understanding of production techniques. This course is a prerequisite for Animal Sciences 351.

[351] Dairy Herd Management
Spring. 4 credits. Prerequisites: Animal Sciences 350 or permission of instructor. Recommended: Agricultural Economics 302.
Lecs, M W F 11:15; labs, M T 1:25-4:25, F (alternate weeks) 1:25-4:25.
D. M. Galton and staff.
Application of scientific principles to practical herd management with components of reproduction, genetics, milking, housing, and records. Laboratories emphasize practical applications, analyses of alternatives, decision making, field trips, and discussion.

[360] Beef Cattle
Spring. 3 credits. Prerequisite: Animal Science 100, 150 or equivalent, 212, 221, or permission of instructor.
Lecs, T R 10:10; lab, W 2-4:25.
M. L. Thonney.
Emphasis is on the management of reproduction, nutrition, and selection in beef cattle enterprises. A cattle growth model is studied. Laboratories acquaint students with the management skills needed for a beef operation. Students are required to spend several days during the semester feeding and caring for cattle and observing calving.

[370] Swine Production
Fall. 3 credits. Limited to 80 students; each lab limited to 40 students. Prerequisites: Animal Science 150 or equivalent, 212, 221, or permission of instructor.
Lecs, T R 11:15; lab, T or W 2-4:25.
R. D. Boyd.
The objective is to provide an opportunity to acquire practical knowledge and a technical basis for making decisions in various types of swine enterprises. Emphasis on the types of production systems; selection and breeding programs; reproductive, farrowing, and lactation management; nutrition; herd health; and housing facilities. Laboratories are designed to extend and apply principles discussed in lecture and to provide students with the opportunity to develop management skills.

[380] Sheep
Fall. 3 credits. Prerequisites: Animal Sciences 100 and 150. Recommended: Animal Sciences 212 and 221.
Lecs, T R 9:05; lab and disc periods, W 1:25-4:25 every other week.
D. E. Hogue.
The breeding, feeding, management, and selection of sheep. Lectures and laboratories are designed to give students a practical knowledge of sheep production as well as the scientific background for improved practices.

[392] Animal Growth Biology
Fall. 2 credits. Not open to freshmen, sophomores by permission of instructor only.
Prerequisites: one year of college biology and one course in animal or human physiology, Animal Science 212 and 221.
D. H. Beermann.
A detailed discussion of the anatomy and physiology of growth in domestic farm animals. Cellular aspects of tissue-growth patterns, their relationship to body composition, and measurement of growth and body composition will be discussed. Endocrine, genetic, nutritional, and pharmacological influences on growth, metabolism, and body composition will be emphasized.
400 Tropical Livestock Production
Spring. 3 credits. Prerequisite: Animal Sciences 150 or equivalent, 212, or 221 or permission of instructor.
An analysis of constraints on livestock production in developing countries of the tropics, economic objectives and risk, and production methods. Emphasis is on strategic use of animal and plant resources, animal performance with inputs restricted, decision making, and integrative systems of production. Principles, real examples, and independent study projects will help identify research to improve food security.

401 Dairy Production Seminar
Spring. 1 credit. Limited to juniors and seniors.
Disc, M 7 p.m. D. E. Bauman.
Students, with the help of faculty members, complete a study of the research literature on topics of current interest in the dairy industry. Students make oral and written reports.

402 Seminar in Animal Sciences
Spring. 1 credit. Limited to juniors and seniors. May be repeated. S-U grades optional.
M 4:30; then hours to be arranged.
W. R. Butler and staff.
Review of literature pertinent to topics of animal science or reports of undergraduate research and honors projects. Students present oral and written reports.

403 Tropical Forages
Spring. 2 credits. Limited to seniors and graduate students except by permission of instructor. Prerequisites: crop production and livestock nutrition. Offered alternate years.
Not offered 1990-91.
An overview of tropical grasslands, seeded pastures, and crop residues as feed resources; grass and legume characteristics; establishment and management of pastures; determination of feeding value forages and crop residues; physiology of digestion of ruminants that affects feeding behavior of various species; problems of chemical inhibitors in plants; and utilization of tropical forages as hay or silage.

410 Principles of Animal Nutrition
Fall. 3 credits. Prerequisite: organic chemistry. Recommended: biochemistry or concurrent registration in a biochemistry course.
M W F 11:15; 2 discs to be arranged.
C. C. McCormick.
A fundamental approach to nutrition focusing on the metabolism as well as the biochemical and physiological function of the known nutrients. The basic principles of nutrition are elaborated with examples drawn from a broad range of animal species, including humans. Emphasis is also directed toward nutritional techniques and the application of the topics covered.

415 Poultry Nutrition
Spring. 1 credit. Prerequisite: Animal Sciences 410 or permission of instructor.
F 11:15. G. F. Combs, Jr.
A practical consideration of principles of nutrition applied to feeding poultry, including use of linear programming techniques in diet formulation.

419 Animal Cytogenetics (also Toxicology 419)
Fall. 4 credits. Prerequisites: Animal Sciences 221, Biological Sciences 281, or permission of instructor. Not offered 1990–91.
Lecs, T R 9:05; disc, T or W 1:25–3:20.
S. E. Bloom.
A study of normal and aberrant chromosomes in animals and man. Lecture topics include chromosome organization, variations in chromosome structure and number, chromosomes in mitosis and meiosis, cytogenetics of abnor­mals, parthenogenesis, chromosomes in cancer, veterinary and human cytogenetics, genetic engineering, and genetic toxicology. Students investigate topics of their choice for discussions and a research paper.

420 Quantitative Animal Genetics
Fall. 3 credits. Not offered 1990–91.
Lecs, T R 11:15; lab, W or F 2–4:25.
Staff.
A consideration of problems involved in improvement of animals, especially farm animals, through application of the theory of quantitative genetics, with emphasis on selection index.

421 Seminar in Animal Genetics
Fall. 1 credit. Prerequisite: Animal Sciences 221 or concurrent registration in Animal Sciences 420. Not offered 1990–91.
T 12:20. Staff.
A discussion of applications of principles of quantitative genetics and animal breeding to specific types of animals such as dairy animals, meat animals, and horses.

422 Methods: Quantitative Genetics
Fall. 1 credit. Prerequisite: Animal Sciences 420 or concurrent registration in Animal Sciences 420. Not offered 1990–91.
R 12:20. Staff.
An introduction to methods of research in quantitative genetics and animal breeding, including estimation of heritability, repeatability, and genetic and phenotypic correlations.

427 Fundamentals of Endocrinology
Fall. 3 credits. Prerequisite: human or veterinary physiology or permission of instructor.
Lecs, M W F 9:05. P. A. Johnson.
Physiology and regulation of endocrine secretions. Neuroendocrine, reproductive, growth, and metabolic aspects of endocrinology are emphasized. Examples are selected from many animals, including humans.

430 AI and Embryo Biotechnology
Fall. 2 credits. Prerequisite: a course in reproductive physiology and permission of instructor at preregistration. Fee of $250 includes books and supplies.
Lecs, T R 9:05; labs to be arranged.
R. H. Foote.
Principles and practice of semen collection and evaluation, artificial insemination, freezing of sperm and embryos, embryo collection, evaluation, microincubation, and transfer in farm animals and rabbits. Embryo transfer may require surgery.

450 Immunophysics
Spring. 3 credits. Prerequisites: basic immunology and animal physiology or permission of instructor.
Lecs, M W F 11:15. 2 evening prelims to be arranged. J. A. Marsh.
Emphasis on the development and regulation of the immune system and the physiological parameters affecting or affected by immune function. Major topics include development, immunoregulation, immunological involvement in reproduction and gonadal function, interrelationships between immune and endocrine functioning, and the immunology of aging.

455 Dairy Nutrition and Health
Fall. 3 credits. Prerequisite: Animal Sciences 351 and permission of instructor.
Lecs, T R 11:15; lab, M T 1:25–4:25; F (alternate weeks) 1:25–4:25.
D. M. Galton and staff.
Application of scientific principles to practical herd management with components of nutrition and herd health. Laboratories emphasize practical applications, analyses of alternatives, decision making, field trips, and discussion.

456 Dairy Management Fellowship
Spring. 2 credits. Limited to seniors. Prerequisites: Animal Sciences 351 and 455, and permission of instructor. S-U grades only.
Hours to be arranged. D. M. Galton.
The program is designed for undergraduates who have a sincere interest in dairy farm management. Objectives are to gain further understanding of the integration and application of dairy farm management principles and programs with respect to dairymen's objectives and methodology, to expand the concept of team approach in the development and implementation of management programs, and to gain further understanding of the role of research and industry in agriculture.

486 Immunogenetics (also Biological Sciences 486)
Fall. 3 credits. Limited to seniors (25) and graduate students. Prerequisites: an introductory course in genetics and prior or concurrent enrollment in basic immunology. Offered alternate years.
Consideration of the genes and gene families important for immune function. Genetic factors in leukocyte differentiation, antibody diversity, inflammation, antigen recognition, immune response, cell cooperation, and disease resistance will be considered.

490 Commercial Meat Processing
Spring. 3 credits. Prerequisite: Animal Sciences 290 or permission of instructor. Not offered 1990–91.
Lecs, T W 9:05; lab, T or R 1:25–4:25
Field trip to commercial meat processing plants. D. H. Beermann.
A study of the classification, formulation, and production of commercially available processed meat products. Physical and chemical characteristics of meat and nonmeat ingredients; their functional properties; various methodologies; microbiology; packaging, handling, and storage; and quality assurance are discussed.
496 Animal Sciences Honors Seminar
Fall. 1 credit. S-U grades only. Students must be accepted into the Animal Sciences Honors Program.
Disc, M 4–5:30. J. A. Marsh.
The course is designed to provide information and guidance for students enrolled in the honors program in animal sciences and expecting to complete an honors thesis. The course will meet for 1–2 hours per week for 8 to 10 consecutive weeks, during which time the following topics will be presented and discussed: requirements and expectations of the honors program, formulating hypotheses, the scientific method, experimental design, data handling and manipulation, library usage and literature search techniques, animals in research, ethics in science, and scientific writing.

497 Special Topics in Animal Science
Fall or spring. 1–3 credits; may be repeated for credit. Intended only for students in animal sciences. Prerequisite: permission of instructor. S-U grades optional.
Staff.
May include individual tutorial study or a lecture topic selected by a professor. Since topics may change, the course may be repeated for credit.

498 Undergraduate Teaching
Fall or spring. 1 or 2 credits; 4 credits maximum during undergraduate career. Limited to students with grade-point averages of at least 2.7.
Designed to consolidate the student’s knowledge. A participating student assists in teaching a course allied with the student’s education and experience. The student is expected to meet regularly with a discussion or laboratory section, to gain teaching experience, and regularly to discuss teaching objectives, techniques, and subject matter with the professor in charge.

499 Undergraduate Research
Fall or spring. 6 credits maximum during undergraduate career. Not open to students who have earned 6 or more undergraduate research credits elsewhere in the college.
Limited to juniors and seniors with grade-point averages of at least 2.7.
Affords opportunities for students to carry out independent research under appropriate supervision. Each student is expected to review pertinent literature, prepare a project outline, conduct the research, and prepare a report.

600 Research
Fall or spring. Credit to be arranged. S-U grades only.
Hours to be arranged.
All members of animal sciences program area.

601 Proteins and Amino Acids (also Nutritional Sciences 601)
Fall. 2 credits. Prerequisites: physiology, biochemistry, and nutrition, or permission of instructor. Not offered 1991–92.
Hours to be arranged. R. E. Austic.
A course in amino acid and protein nutrition, with emphasis on the dynamic aspects of protein digestion and amino acid absorption, protein and amino acid metabolism, nutritional interrelationships, and assessment of amino acid availability and amino acid requirements.

604 Vitamins
Fall. 2 credits.
A discussion of the chemistry, biochemistry, and physiological functions of the vitamins, with emphasis on nutritional aspects.

605 Forage, Fiber, and the Rumen
Spring. 4 credits. Prerequisites: either general nutrition and biochemistry or permission of instructor. S-U grades optional.
Ruminant nutrition; lower-tract fermentation in monogastrics; nutritional biochemistry of forage plants, fiber, and cellulosic material.

607 Microbiology of the Rumen
Fall. 3 credits. Prerequisites: general biochemistry and microbiology.
Nutrition, biochemistry, physiology, taxonomy, and ecology of rumen microorganisms. Effects of rumen microbial ecology on ruminant nutrition. Manipulation of rumen fermentations to maximize host-animal performance.

609 Seminar in Poultry Biology
Fall and spring. Limited to graduate students. S-U grades only.
Hours to be arranged. Staff.
A survey of recent literature and research in poultry biology.

610 Seminar
Fall and spring. 1 credit. Required of all graduate students with a major or minor in animal sciences. S-U grades only.
M 11:15. Department faculty.

613 Forage Analysis
Spring. 2 credits. Prerequisite: permission of instructor. S-U grades optional.
Chemical composition and nutritive evaluation of forage plants and related materials. The course includes a term paper summarizing results of independent laboratory study of either materials or methods.

619 Field of Nutrition Seminar
Fall and spring. No credit. No grades given.
M 4:30. Faculty and guest lecturers.
Lectures on current research in nutrition.

620 Seminar in Animal Breeding
Fall and spring. 1 credit. Limited to graduate students with a major or minor in animal breeding. S-U grades only.
Hours to be arranged.

621 Seminar: Endo/Reprod Biology
Fall and spring. 1 credit. Registration limited to graduate students. Advanced undergraduates welcome to attend. S-U grades only.
W 4:30. W. R. Butler and staff.
Current research in reproductive physiology is presented by staff members, graduate students, and visitors.

630 Bioenergetics/Nutritional Physiology
Spring. 3 credits. Prerequisites: Animal Sciences 410 and biochemistry or physiology, or permission of instructor. S-U grades optional.
An integrated systems approach to the nutritional physiology and energy metabolism of productive animals. Emphasis on extracellular regulation of tissue and organ metabolism of specific nutrients in relation to level and efficiency of milk and meat production.

Critical discussion of techniques and approaches to the study of animal bioenergetics.

640 Special Topics in Animal Science
Fall or spring. 1 or more credits. S-U grades optional.
Hours to be arranged. Staff.
Study of topics in animal science more advanced than, or different from, other courses. Subject matter depends on interests of students and availability of staff.

[720 Advanced Quantitative Genetics
Hours to be arranged. R. L. Quaas.
Estimation of genetic and environmental parameters required to design efficient selection programs. Emphasis is given to interpretation of experimental and survey data with unequal subclass numbers, and prediction of genetic progress resulting from alternative selection methods.]

Related Courses in Other Departments

Introductory Animal Physiology (Biological Sciences 311)
Introductory Animal Physiology Laboratory (Biological Sciences 319)

Milk Quality (Food Science 351)
Agriculture in the Developing Nations (International Agriculture 602)
Lipids (Nutritional Sciences 602)
Basic Immunology, Lectures (Biological Sciences 305)
Basic Immunology, Laboratory (Biological Sciences 307)

BIOLOGICAL SCIENCES

The program of study in biology is offered by the Division of Biological Sciences. For course descriptions, see the section on the Division of Biological Sciences.

COMMUNICATION

The middle and last digits of course numbers are used to denote specific areas:

00–09 Speech communication
10–19 Interpersonal communication
20–29 Mass communication
30–39 Visual communication and graphic design
40–49 Electronic media
50–59 Journalism writing
60–66 Professional writing
67–69 Editing
190 Communication Perspectives Seminar
Fall. Lecture, 0.5 credits. Prerequisite: Communication 102. Students research and analyze contemporary issues to identify facts and derive the underlying values. Research will be used to write line arguments, cases for debate, and speeches for public address or to analyze pieces of literature to understand the author's intent. Analyses will be used to develop approaches to the oral presentation of the literature.

101 Debate: Affirmative Case
Fall. Lecture, 1.5 credits. Students research and analyze contemporary issues to identify facts and derive the underlying values. Research will be used to write line arguments, cases for debate, and speeches for public address or to analyze pieces of literature to understand the author's intent. Analyses will be used to develop approaches to the oral presentation of the literature.

102 Debate: Value Objections
Fall. Lecture, 1.5 credits. Students research and analyze contemporary issues to identify facts and derive the underlying values. Research will be used to write line arguments, cases for debate, and speeches for public address or to analyze pieces of literature to understand the author's intent. Analyses will be used to develop approaches to the oral presentation of the literature.

103 Debate: Briefs
Fall. Lecture, 1.5 credits. Students research and analyze contemporary issues to identify facts and derive the underlying values. Research will be used to write line arguments, cases for debate, and speeches for public address or to analyze pieces of literature to understand the author's intent. Analyses will be used to develop approaches to the oral presentation of the literature.

104 Public Address: Persuasion
Fall. Lecture, 1.5 credits. Students research and analyze contemporary issues to identify facts and derive the underlying values. Research will be used to write line arguments, cases for debate, and speeches for public address or to analyze pieces of literature to understand the author's intent. Analyses will be used to develop approaches to the oral presentation of the literature.

105 Public Address: Rhetorical Criticism
Fall. Lecture, 1.5 credits. Students research and analyze contemporary issues to identify facts and derive the underlying values. Research will be used to write line arguments, cases for debate, and speeches for public address or to analyze pieces of literature to understand the author's intent. Analyses will be used to develop approaches to the oral presentation of the literature.

106 Public Address: Informative
Fall. Lecture, 1.5 credits. Students research and analyze contemporary issues to identify facts and derive the underlying values. Research will be used to write line arguments, cases for debate, and speeches for public address or to analyze pieces of literature to understand the author's intent. Analyses will be used to develop approaches to the oral presentation of the literature.

107 Oral Interpretation: Prose
Fall. Lecture, 1.5 credits. Students research and analyze contemporary issues to identify facts and derive the underlying values. Research will be used to write line arguments, cases for debate, and speeches for public address or to analyze pieces of literature to understand the author's intent. Analyses will be used to develop approaches to the oral presentation of the literature.

108 Oral Interpretation: Poetry
Fall. Lecture, 1.5 credits. Students research and analyze contemporary issues to identify facts and derive the underlying values. Research will be used to write line arguments, cases for debate, and speeches for public address or to analyze pieces of literature to understand the author's intent. Analyses will be used to develop approaches to the oral presentation of the literature.

109 Oral Interpretation: Dramatic Duo
Fall. Lecture, 1.5 credits. Students research and analyze contemporary issues to identify facts and derive the underlying values. Research will be used to write line arguments, cases for debate, and speeches for public address or to analyze pieces of literature to understand the author's intent. Analyses will be used to develop approaches to the oral presentation of the literature.

110 Introduction to Mass Media
Fall or summer. 3 credits. Students research and analyze contemporary issues to identify facts and derive the underlying values. Research will be used to write line arguments, cases for debate, and speeches for public address or to analyze pieces of literature to understand the author's intent. Analyses will be used to develop approaches to the oral presentation of the literature.

111 Theories of Human Communication
Fall or summer. 3 credits. Students research and analyze contemporary issues to identify facts and derive the underlying values. Research will be used to write line arguments, cases for debate, and speeches for public address or to analyze pieces of literature to understand the author's intent. Analyses will be used to develop approaches to the oral presentation of the literature.

112 Oral Communication
Fall, spring, or summer. 3 credits. Each section limited to 24 students (fall and spring) or 15 students (summer). Preference given to sophomores, juniors, and seniors. Students missing the first two class meetings without university excuse are dropped so others may register. No student will be added after the second week of classes.

113 201 Oral Communication
Fall, spring, or summer. 3 credits. Each section limited to 24 students (fall and spring) or 15 students (summer). Preference given to sophomores, juniors, and seniors. Students missing the first two class meetings without university excuse are dropped so others may register. No student will be added after the second week of classes.

114 Argumentation and Debate
Spring and fall semesters. 3 credits. Prerequisite: 113. Students research and analyze contemporary issues to identify facts and derive the underlying values. Research will be used to write line arguments, cases for debate, and speeches for public address or to analyze pieces of literature to understand the author's intent. Analyses will be used to develop approaches to the oral presentation of the literature.

115 Argumentation and Debate
Fall. 3 credits. Prerequisite: 113. Students research and analyze contemporary issues to identify facts and derive the underlying values. Research will be used to write line arguments, cases for debate, and speeches for public address or to analyze pieces of literature to understand the author's intent. Analyses will be used to develop approaches to the oral presentation of the literature.

116 Visual Communication

117 Visual Communication

118 Visual Communication

119 Visual Communication
250 Newswriting for Newspapers
Fall or spring. 3 credits. Limited to 25 students. Prerequisite: Comm 150, major in communication, or permission of instructor. Keyboarding ability essential. Students missing first two classes without university excuse will be dropped.
Lee, R 1:25–2:20; lab, R 2:30–4:25, plus out-of-class writing assignments. J. Earle. Writing and analyzing news stories. A study of the elements that make news, sources of news, interviewing, writing style and structure, press problems, and press-society relations. Concentration on newswriting as it is practiced by newspapers in the United States. Two writing assignments each week, one done in class, one done out of class.

272 Principles of Public Relations and Writing
Spring. 3 credits. Preference given to ALS students. Not open to freshmen.
Lee, M W F 1:25. Z. Pan. Survey of the fields of public relations and advertising. Descriptions of organizational jobs, and functions in the industry. The roles of public relations and advertising in society, the economic system, and organizations. Psychological and sociological principles as formulation for appeals. Strategies for media selection and message execution. Introduction to research and regulation.

301 Business and Professional Speaking
Fall or spring. 3 credits. Prerequisite: Communication 201.
Lee, M W F 11:15; lab, T 10:10–12:05, 1:25–3:20 or W 11:15–1:10. B. O. Earle. The study and practice of oral communication skills used in organizations, including speeches, interviews, reports, and discussions. It is expected that students will develop the analytical and presentation skills needed in business and professional careers.

314 Small-Group Communication
Spring. 3 credits. Limited to juniors and seniors. Prerequisite: Communication 116 or permission of instructor.
TR 1:25–3:30. N. E. Awa. Exploration of the principles, values, and limitations of group discussion in democratic systems. Principles are put into practice in decision-making and problem-solving groups.

316 Rhetorical Theory
Fall. 3 credits. Limited to 20 communication majors. Prerequisites: Communication 116 and 201 or permission of instructor.
Lee, M W F 1:25. R. Thompson. Considers current views of rhetoric in historical perspective. Shows how assumptions about communication both shape the worldview of the communicator and either aid or hinder the reaching of communication goals. Treats historical figures briefly; focuses on contemporary thinkers such as Toulmin, Ong, Ehninger, Richards, Kuhn. Second half of course taught in seminar format.

342 Electronic Media
Spring. 3 credits. Limited to 18 communication majors. Prerequisites: Comm 120 and 150. Lee, T 1:25; lab, R 1:30–3:30. T. Russo. The techniques of audio and video message design and production. Emphasis on development of pre- and postproduction skills needed for the development of effective audio/video production. Students complete exercises designed to develop specific competencies and work on projects from conception through production.

344 Radio Writing and Production
Fall. 3 credits. Limited to 30 communication majors. Prerequisite: Communication 342. Not offered 1990–91.
Lee, M W F 1:25, lab, W 2:30–4:25. Staff. Scripting and recording various public information formats for possible use on local and state radio stations. Students create complete broadcasting plans and materials for public and private organizations.

346 Television Writing and Production
Fall. 3 credits. Limited to 30 communication majors. Prerequisite: Communication 342.
Lee, M 1:25–3:20, lab, evening hours to be arranged. D. McDonald. Television and video production. Students gain experience in studio and field production. Lectures concentrate on developing a sense of project planning and production aesthetics; lab concentration is on producing full-scale information, documentary, or public affairs programs from development of the idea through research, scripting, planning, and production.

348 Video Communication
Fall or summer. 3 credits. Prerequisites: Communication 116, 250, 342, and permission of instructor.
R 1:25–4:25. S. White. An overview of video communication applications. Examination of relevant organizational and visual communication theory. Development of basic competency with portable videotape recording, equipment, audio and visual input to video and production, and postproduction planning and editing techniques.

350 Writing for Magazines
Fall or spring. 3 credits. Limited to 25 juniors, seniors, and graduate students, or others with permission of instructor. No drops after third week. Extensive out-of-class writing assignments.
Fall: M 1:25–4:25. W. W. Ward. Spring: TR 11:15–12:45. J. Earle. A course in nonfiction freelance writing for magazines. Intensive fact writing to help students communicate more effectively through the medium of the printed word in magazines. Intensive fact writing to help students communicate more effectively through the medium of the printed word in magazines. Art and techniques of good writing are studied; magazines in many fields of interest are reviewed. All articles are analyzed and returned to the student to rewrite and submit to a magazine.

352 Science Writing for the Mass Media
Fall. 3 credits. Not open to freshmen. Limited to 25 students. Prerequisite: one college writing course.
Lee, M W F 9:05. B. Lewenstein. How to cover science (including technology and medical news) for the mass media. Discussion topics include audience, simplicity, comprehensiveness, scientific literacy, risk communication, and the history and social structure of science. Weekly writing assignments focus on writing news and feature stories for newspapers and magazines, with excursions into newsletters, radio, TV, and other media.

354 Print Media Laboratory
Fall. 3 credits. Limited to junior, senior, and graduate communication majors. Prerequisite: Communication 252, 250, or 350. R 1:25–4:25. J. E. Hardy and staff. Writing, editing, and layout principles practiced in publishing the Cornell Countryman. Some additional outside work sessions may be required. Students will use microcomputers.

356 Writing in the Sciences and Engineering
Spring. 3 credits. Limited to 25 junior, senior, or graduate students per section. Prerequisite: any college-level writing course. Not offered 1990–91.
Lee, M W F 10:10. Staff. Students write scientific or technical material for colleagues in their own field. The objective is clear, concise writing, with attention to grammatical construction, usage, paragraph development, and organization. Weekly writing assignments include scientific or technical instructions, descriptions of equipment and procedures, definition and explanation of concepts, graphic presentations and discussion of data, abstract and summary, memorandum, research proposal, progress report, and research report.

368 Editing
Spring. 3 credits. Limited to 25 junior, senior, or graduate students. Prerequisite: Communication 250, 350, 352, or 365.
W F 10:10–11:25. J. E. Hardy. Students will follow the process that takes a manuscript from final draft to page proof. Emphasis will be on copy editing, proofreading, fitting copy, working with authors, making editorial decisions, and developing skill in critical reading. Appropriate for any student who expects to work with manuscripts or do editorial work.
372 Advanced Advertising
Fall and spring. 3 credits. Prerequisites: Communication 272 and communication or marketing major.
A continuation of Communication 272.
Examination of the qualitative and quantitative aspects of the mass media and how they are evaluated by advertisers. Function of media strategy in the marketing mix survey of advertising from the viewpoint of consumers. Introduction to research in advertising, with emphasis on identifying and predicting advertising effectiveness. Investigation into the planning, creation, and evaluation of advertisements and advertising campaigns.

375 Communication Planning and Strategy I
Fall. 3 credits. Limited to 35 juniors and seniors. Prerequisite: Communication 272 or permission of instructor.
Lec, TR 10:10–12:05. Z. Pan.
Theories that guide and influence the solutions to public relations and public information problems in agriculture, business education, government, and social welfare organizations. Examination of the process of the formation of public opinion. Discussion of research techniques and communication tools used in communication planning, and fundamentals of developing a communication plan. Case studies and projects.

376 Communication Planning and Strategy II
Spring. 3 credits. Limited to 25 juniors and seniors. Prerequisite: Communication 375 and Communication 382.
Lec and lab, TR 10:10–11:40. G. Glynis.
A continuation of Communication 375. Focus is on the development and implementation of actual communication campaigns. Students work closely with a community organization in designing and implementing a communication program.

380 Independent Honors Research in Social Science
Fall or spring. 1–6 credits. Limited to undergraduates who have met the requirements for the honors program. N. E. Awa.

382 Survey Research Methods
Fall or spring. 3 credits. Limited to 20 junior, senior, or graduate communication majors, others by permission of instructor. Prerequisite: Communication 116 or 120 or permission of instructor.
Analysis of public opinion polls, market research, media audience ratings, readership surveys, and communication impact designs. Development of class research project from research question to final report. Instruction in computer use of Statistical Package for the Social Sciences (SPSS) to assist in data analysis.

401 Organizational Communication
Fall. 3 credits. Labs limited to 15 junior, senior, or graduate students. Prerequisite: Communication 116 or equivalent.
Study of management in formal organizations with emphasis on communication between supervisor and employee; examination of the structure and function of planned and unplanned organizational communication networks. Case studies analyzed in lab.

416 Psychology of Communication
Fall. 3 credits. Prerequisite: Communication 116 or permission of instructor.
An advanced multidisciplinary study of communication theory. Topics include personal interaction, channels of communication, and effectiveness of messages. Study includes intensive analysis of major communication theorists.

418 Persuasion
Spring. 3 credits. Prerequisite: Communication 116 or permission of instructor.
The course explores the influence of communication in persuasion and attitude change. Topics may include persuasion as it applies to mass communication, advertising, public communication, or interpersonal communication.

[420 Media Industries
Spring, even-numbered years. 3 credits. Limited to communication majors. Prerequisites: Communication 120 and 272. Not offered 1990–91.
The workings and functions of mass media industries. Emphasis is placed on the structure of media industries, audience research, media economics programming, and the organization of content production. For several projects, students will use microcomputers and work with data supplied by an audience research firm.

[421 Broadcast Media Laboratory
Fall. 2 credits. Limited to junior and senior communication majors. Prerequisite: Communication 344 or 346. Not offered 1990–91.
Emphasis on production of television and radio programs for various audiences. Course work is done primarily through individual tutorial arrangement.

[423 Broadcast Media Laboratory
A continuation of Communication 421.

428 Communication Law
Fall. 3 credits. Limited to junior, senior, and graduate students.
A practical survey of the law governing mass media, primarily for those working in the field. Coverage includes restraints on news gathering and publication, privacy, defamation, copyright, broadcast licensing, access, and other issues of current interest.

439 Interactive Multimedia: Design and Research Issues
Fall. 3 credits. Prerequisite: permission of instructor.
Lec, T T 1:25–4:25; lab TBA. G. Gay.
an overview of interactive multimedia technologies (videodisc, CD-ROM, digital video interactive [DVI], computer graphics, and text). Course will focus on theories and research applicable to interactive multimedia such as visualisation, learner control, mental models, knowledge representation, and information processing. Course will emphasize interactive multimedia design, application, and evaluation.

490.01 Special Topics in Communication
Fall, spring, or summer. 1–3 credits variable. S-U grades optional. Prerequisite: permission of instructor.
Hours to be arranged. Staff.
Study of topics in communication not otherwise provided by a department course and determined by the interest of the faculty and students.

490.02 Information Technology for Today's World
Fall and spring. 2 credits. Limited to students at sophomore level or above. Prerequisite: Some experience in the use of a microcomputer. Should have some expertise in the use of word processing software.
Fall: Lecs, TR 12:20; lab T 2:30–4:25. M. Ochs. Spring: hours to be arranged.
This class provides students with an in-depth knowledge of and hands-on instruction in the various information technologies central to the use of scholarly information. Topics include the structure of scholarly information; searching of bibliographic, numeric, and full-text databases; use of software to manage information; and use of national/international networks for scholarly communication.

492 Listening and Contemporary Management: Issues and Responsibilities
This seminar examines the role of listening in organizational contexts from a managerial perspective, discussing listening as a vehicle through which managers define and establish goals, engage and motivate workers, and perform other traditional management functions. Application to the newer schools of thought—particularly the symbolic/culture and human resources perspectives—will be emphasized.

496 Internship
Fall, spring, or summer. 1–3 credits. Students must apply to department internship committee no later than the spring pre-course-enrollment period for a fall internship or the fall pre-course-enrollment period for a spring or summer internship. Prerequisites: communication junior or senior, 3.0 average in communication courses, and approval of committee. S-U grades only.
Lec, one hour per week to be arranged. C. Whittle.
Structured, on-the-job learning experience under supervision of professionals in a cooperating organization. Students have a faculty course supervisor, who must be approved by the department internship committee. The faculty course supervisor awards the credit and grade (S-U only). A learning contract is written between the faculty supervisor and student, stating the conditions of the work assignment, supervision, and reporting. Minimum of 60 on-the-job hours per credit granted. May be repeated to a maximum of 6 credits.
497 Independent Study
Fall or spring. 1-3 credits, may be repeated to 6 credits with a different supervising faculty member. Prerequisite: 3.0 cumulative average. Undergraduates must attach to their course enrollment material written permission from the faculty member who will supervise the work and assign the grade. Staff.

Group or individual study under faculty supervision. Work should concentrate on locating, assimilating, synthesizing, and reporting existing knowledge on a selected topic. Attempts to implement this knowledge in a practical application are desirable.

498 Communication Teaching Experience
Fall or spring. 1-3 credits; may be repeated to 6 credits. Limited to juniors and seniors. Intended for undergraduates desiring classroom teaching experience. Prerequisite: 3.0 cumulative average. 2.5 if teaching assistant for a skill development course and permission of the faculty member who will supervise the work and assign the grade. Hours to be arranged. Staff.

Periodic meetings with the instructor cover realization of course objectives, evaluation of teaching methods, and student feedback. In addition to adhering to the actual instruction, each student prepares a paper on some aspect of the course.

499 Independent Research
Fall or spring. 1-3 credits; may be repeated to 6 credits. Limited to seniors and graduate students. Prerequisite: 3.0 cumulative average. Seniors must attach to their course enrollment material written permission from the faculty member who will supervise the work and assign the grade. Students must use the faculty member's section number to register.

Permits outstanding students to conduct laboratory or field research in communication under appropriate faculty supervision. The research should be scientific: systematic, controlled, empirical. Research goals should include description, prediction, explanation, or policy orientation and should generate new knowledge.

610 Organizational Communication
Spring. 3 credits. Open to seniors with permission of instructor.
Study of interpersonal communication in organizations. Methods for analyzing communication structure and processes, including communication audits and network analysis.

611 Communication in Organizations
Fall. 3 credits. Prerequisite: Communication 610 or permission of instructor.
M 1:25-4:25. S. White. Review of theories, research, and practical systems as they relate to human communication effectiveness in organizations. Includes components of interpersonal communication, intragroup and intergroup communication, communication processes involved in organizational goal setting, renewal, and change.

612 Intercultural and Development Communication
Fall. 3 credits.
A systematic analysis of sociocultural and psycholinguistic obstacles to effective communication between cultures, subcultures, and ethnic and identity groups. Also examined are the subtleties and complexities of nonverbal behavior in cross-cultural transactions. Examples are drawn from ethnolinguistic and cross-cultural studies.

616 Interpersonal Communication
Spring. 3 credits. Limited to graduate students in communication; others by permission of instructor.
A study of recent advances in interpersonal communication and social cognition. Theories and research in relational development. Human understanding of social events in an interpersonal context is explored.

620 Public Opinion and Communication
Fall. 3 credits. Graduate students and advanced undergraduates.
T 1:25-4:25. C. Glynn.
Examination of the concept public opinion: investigating how it is measured and applied in society. Analysis of relationships between public opinion and communication. Practical applications.

624 Communication in the Developing Nations
Spring. 3 credits. Open to seniors.
An examination of existing communication patterns and systems and their contributions to the development process. Attention is given to the interaction between communication systems and national development in primarily agrarian societies.

626 Impact of Communication Technologies
Spring. 3 credits. Open to seniors. Offered alternate years. Not offered 1990-91.
A study of emerging technologies of communication, such as computer-based information systems and satellites and their potentials for influencing communication processes and social systems. Also examines the impacts of previous communication innovations from cave painting to television.

665 Scientific Writing for Scientists
Fall. 3 credits. Prerequisite: research in progress and permission of instructor. Not offered 1990-91.
T R 8:30-9:35. Staff.
Workshop for students with research in progress. Discussion and lectures on writing a journal article, thesis, report, and proposal; on objectives in scientific writing, relation of rhetoric and linguistics to scientific writing, process of publication and reviewing, and preparation of tables and illustrations; and on advanced and special problems in organization, paragraph development, sentence structure, and usage.

666 Perspectives on Science Writing
Spring. 3 credits. Open to graduate students and advanced undergraduates (with permission) from all departments. Not offered 1990-91.
M W F 10:10-12:05. B. Lewenstein. A graduate reading course that surveys the approaches that scholars have used to understand science communication, with special emphasis on scientific information intended for nonscientists. Among the perspectives are sociology, journalism, risk communication, agricultural communication, literature, and philosophy. To supplement the primary goals of the course, students may also learn basic techniques of science writing.

676 Communication Planning and Strategy
Spring. 3 credits. Primarily for graduate students but open to seniors.
T R 10:10-12. C. Scherer. Seminar in the planning of communication activities for the support of directed social-change programs. Examines communication and social theories, case studies, and planning models. Participants produce a comprehensive communication plan designed to solve a significant (real) communication problem of interest to them. Case studies and discussion focus on communication problems from nutrition and health, rural development programs, marketing, nonformal education programs, and corporate and government public information campaigns.

681 Communication Effects and the Individual
Spring. 3 credits. Limited to graduate students in communication; others by permission of instructor.
A review of classical and contemporary research in communication, including key concepts and areas of investigation. An exploration of the scope of the field and the interrelationships of its various branches.

682 Methods of Communication Research
Fall. 3 credits. Limited to graduate students.
M W 10:10-12. R. E. Ostman. An analysis of the methods used in communication research. Emphasis is on understanding the rationale for experimental, descriptive (empirical and nonempirical), and historical-critical research methods.

683 Survey Research Methods in Communication
Spring. 3 credits. Prerequisite: Communication 682 or equivalent.
Lee, M W 1:25-3:20. D. McDonald. Practical experience in the design and execution of surveys in communication research. Course topics include design and measurement, data collection, data preparation, data analysis, and interpretation of results. Secondary analyses of survey data are conducted within each topic area.
Analysis, design, conduct, administration, and evaluation of training programs for the development of human resources in small-farm agriculture, rural health and nutrition, literacy and nonformal education, and general community development. Designed for scientists, administrators, educator-trainers, and social organizers in rural and agricultural development programs in the U.S. and abroad.

792 Advanced Communication Studies Fall or spring. 3 credits. Limited to communication graduate students. May not be repeated. Students must use the faculty member’s section number to register.
Graduate faculty.
Independent studies and projects are carried out in conjunction with selected undergraduate courses.

794 Seminar in Communication Issues Fall, spring, or summer. 1–3 credits. Prerequisite: permission of instructor.
Hours to be arranged.
Small group study of topical issue(s) in communication not otherwise examined in a graduate field course.

797 Graduate Independent Study Fall, spring, or summer. 1–3 credits. Prerequisite: permission of instructor.
Hours to be arranged.
Individual study concentrating on locating, assimilating, synthesizing, and reporting existing knowledge on a selected topic.

798 Communication Teaching Laboratory Fall and spring. 1–5 credits each semester. May be repeated once. Limited to graduate students. Prerequisite: permission of the faculty member who will supervise the work and assign the grade. Students must use the faculty member’s section number to register.
Graduate faculty.
Designed primarily for graduate students who want experience in teaching communication courses. Students work with an instructor in developing course objectives and philosophy, planning, and teaching.

799 Graduate Research Fall, spring, or summer. 1–3 credits. Prerequisite: appropriate communication graduate course work or permission of instructor.
Hours to be arranged.
Small group or individual research based on original, empirical, data-based designs regarding topical issues in communication not otherwise examined in a graduate field course.

899 Directed Graduate Study Fall or spring. 3–6 credits. S-U grades only. Students must use the faculty member’s section number to register.
Graduate faculty.

EDUCATION

605 Basic Review Mathematics Fall. 3 credits (this is credit not counted toward the 120 credits required for the degree). Primarily for entering students.
Introduction to concepts necessary for success in Education 115 and basic statistics courses. Topics include problem solving, ratios and proportions, factoring and solving algebraic equations, graphing linear and quadratic equations, and trigonometry. Considerable emphasis is placed on learning to teach mathematics for understanding and on comprehending word problems.

115 Introductory College Mathematics Fall or spring. 4 credits.
Fall: M W F 11:15 or 12:20; labs, R 8, 10:10, 12:20 or F 10:10, 12:20, 2:30.
Designed to give students with sound high school mathematics backgrounds a unified treatment of the basic concepts of college algebra, trigonometry, and geometry.

120 Education for Empowerment Spring. 1–3 credits.
A modular course, with each module spanning 5 weeks for 1 credit. Common themes running through the modules include human learning, teaching strategies, political/social/economic factors affecting education. The course provides an opportunity to sample different areas of study and to gain knowledge and awareness of one’s own educational processes.

210 Psychology of Learning and Memory Fall. 3 credits. Prerequisite: introductory psychology.
This course deals with contemporary theories of learning, issues in the study of learning, and application of the principles of learning to the management of teaching and learning. Practical application of research findings will be emphasized. One or more experimental projects and the use of microcomputers will be required. Not acceptable as a substitute for Education 311.

M W F 12:20, J. A. Dunn.
An introductory course focused on basic concepts in the psychology of individual differences applicable to the teaching/learning process. Topics include intelligence, personality, motivation, cognition, memory, psychological testing, and measurement.

240 The Art of Teaching Fall and spring. 3 credits.
This course is designed for all students interested in finding out more about teaching. Students engage in field experiences to find out what teaching involves (minimum of two hours a week). Possible field experiences range from large group to tutorial situations, from preschool to adult education, from traditional school subject matters to recreational and vocational areas, and from school-based to nonformal situations. Classwork builds on those experiences and provides skills and concepts to make the field experiences more profitable.

427 Instructional Application of Microcomputers and Related Technologies Fall and spring. 2–3 credits. Not available to students who have completed ABEN 102 or NR 107.
R 2:30–3:45; lab to be arranged.
H. D. Sutphin.
This course provides an introduction to instructional applications and strategies for using microcomputers and related technologies in public and private education in the private sector. The course also helps students learn to use technologies to enhance their college studies. Wordprocessing, spreadsheets, databases, hypertext, electronic bibliographical searching, networking, and desktop publishing are covered. Module A (1 credit) is the first seven weeks of the semester, focused on Macintosh technology. Module B (1 credit) is the second seven weeks focused on IBM-compatible and related technologies. For Module C (1 credit) students propose and complete an approved special project related to the class.

271 Sociology of Education Fall. 3 credits. S-U grades optional.
An introduction to the sociological study of schooling and education. Topics include the effects of social factors on educational achievement, the norms and values learned as part of the process of schooling, the relations between students and teachers, and the school’s relations to the economic and political systems. All levels of education, from elementary school to the university, are considered.

This course is an introduction to the social and behavioral science side of rural and agricultural development. Students will study human behavior as it occurs in typical interfaces between key groups like peasants and government officers, farmers and extension
agents, rural female and male development workers, academicians and practitioners, administrators, supervisors and field workers, generalists and specialists, rural teachers and parents, merchants and farmers. A problem-solving approach will be used to help students identify factors inhibiting human interaction and to design approaches for dealing with such factors.]

284 Introduction to U.S. Cooperative Extension
Fall. 3 credits. T 3:35–4:25, R 2:30–4:25. J. H. Gould. History, programs, policy analysis, organization, and future role of cooperative extension in the United States. The role of the change agent, extension program development process, education techniques, communication skills, and volunteer involvement will be stressed. For students interested in a field of practice that makes use of undergraduate majors in ALS or the College of Human Ecology and for international students interested in an introduction to the U.S. extension experience.

301 Knowing and Learning in Science and Mathematics
Fall. 3 credits. Prerequisite: enrollment in science/mathematics certification program or permission of instructor. M W F 2:30. D. J. Trumbull. Students examine both current notions in the history and philosophy of science that explain how knowledge within a discipline develops and current theory and research that examines the individual's acquisition of knowledge. This material serves as a basis for students to conduct clinical interviews under the direct supervision of program staff. During the course students examine their own understanding of their major as the first step in their preparation as teachers.

302 Observing Science and Math Instruction
Spring. 3 credits. Prerequisite: Education 301 or permission of instructor. Lee, W 2–4:25. W. S. Carlisen and J. Confrey. The study of a variety of methods for recording and understanding science and mathematics teaching and learning. By reading and conducting research from a variety of analytic/interpretive paradigms, students will approach the familiar world of the secondary classroom with fresh perspectives. The course will include a final project that involves observing and evaluating a case of teaching. Students enrolled in teacher education programs will be expected to focus on their own teaching for the final project.

310 Psychology of Instructional System Design
Fall. 2–3 credits. Prerequisite: Education 210 or permission of instructor. Not offered 1990–91. M W 11:15, hour to be arranged. J. A. Dunn. The course reviews the relevance of theories of learning and issues in the study of learning to the technology of instruction. Various examples of instructional systems will be considered. Student projects and laboratory exercises will be required.

311 Educational Psychology
Fall or spring. 3 credits. Prerequisite: introductory psychology. S-U grades optional in fall, letter grade only in spring. Fall. M W 11:15, F to be arranged; D. E. Schrader and staff. [Spring. M W F 10:10. J. A. Dunn. Not offered Spring 1991.] An introductory survey course. Emphasis is on human learning and the educational process from a psychological point of view. The course is set in a broadly based teaching-learning context appropriate for prospective teachers, youth group leaders, community leaders, and those in the service-helping professions.

312 Learning to Learn
Spring. 3 credits. Prerequisite: one or more courses in psychology or educational psychology. T R 9:05. J. D. Novak. This course is intended for persons interested in the improvement of their learning strategies and the application of new ideas and methods to improve educational programs. Lectures and discussions are based on assigned readings and the contributions of class members. The major focus of the course is how and why concepts play a central role in human learning. Concept mapping and other strategies for educating will be used. Students will apply principles and methodologies in a project related to their interests.

317 Psychology of Adolescence
Spring. 3 credits. Prerequisite: introductory psychology. S-U grades optional. M W 11:15. F to be arranged. D. E. Schrader. A survey of the nature of adolescent development, with emphasis on case analyses of adolescent behavior. Focus is on an examination of the interrelationships among the major aspects of adolescent development, an examination of some of the dominant themes of adolescence, acquaintance with research on adolescent development, and implications for the educational process.

331 Introduction to Agricultural and Extension Education
Fall. 2 credits. Lee, M 1:25–3:25; lab to be arranged. W. E. Drake and staff. The course is intended for persons interested in careers as professional educators in agriculture. Investigates careers as a secondary school or two-year college teacher, cooperative extension agent, or educator in agriculture business and industry. The course emphasizes career information, methodology, and introductory teaching experiences. Class activities include presentations by resource persons currently in teaching and extension careers, field trips, and microteaching experiences.

332 Instructional Methods in Agricultural and Extension Education
Spring. 3 credits. M 2–4:25 and F 12:20. H. Cushman, W. Drake, J. Gould. Selection, practice, and evaluation of methods in agricultural and extension education will be stressed. The course will focus on both general teaching strategies and methodology unique to teaching in either schools or extension. Course activities include micro-teaching and/or field experience during arranged times.

335 Youth Organizations
Spring. 3 credits. Prerequisite: introductory psychology or permission of instructor. Lecs, T R 10:10; lab to be arranged. J. H. Gould. The role of selected youth organizations in promoting educational experiences for youth. Factors affecting membership, purposes, design, operation, and administration are surveyed, emphasizing the roles an adult volunteer leader may play. The course is designed to give students an in-depth, learning-by-doing experience of how youth organizations function. Field experience with a recognized youth organization is required.

352 Reading Statistics
Fall or spring. 1 credit. Prerequisite for spring: concurrent registration in Education 353. Fall. T 12:20, spring. T R 8:30–9. Staff. An introduction to statistical vocabulary and symbolism frequently used in reporting empirical research in education and other social sciences. Students are taught how to comprehend statistical terminology and results.

353 Introduction to Educational Statistics
Spring. 3 credits. Enrollment limited to 40 students. Prerequisite: Education 352 or concurrent registration, or permission of instructor. T R 9:05–11. J. Millman. A study of common univariate and multivariate statistical procedures encountered in educational and psychological inquiry. Meaning of concepts and mastery of course content is emphasized; computational details are not. Microcomputers are used extensively in class to develop understanding of the properties of statistical indices.

370 Issues in Educational Policy
Spring. 3 credits. T R 10:10–11:30. K. A. Strike. An examination of selected policy issues in current education. Included are such topics as equality of educational opportunity, student, parent, and teacher rights; and educational politics. Issues are treated from legal, sociological, and economic perspectives.

378 Political Economy of Education
Fall. 3 credits. S-U grades optional. Prerequisites: one introductory level course in either government or economics, or prior permission of instructor. T 3:00–4:25, R 2:30–3:20. D. H. Monk. A policy-oriented examination of educational systems with an emphasis on political and economic perspectives. Attention will be paid to both external and internal aspects of educational activities. Specific topics will include the changing contributions of education to earnings, school-community relations, power within educational organizations, the impact of technology in the workplace and in classrooms, and the sources and impact of educational costs. A variety of education settings will be examined including higher education and non-formal education.

380 Independent Honors Research in Social Science
Fall or spring. 1–6 credits. Limited to students who have met requirements for the honors program. S-U grades optional. A maximum of 6 credits may be earned in the honors program. Staff.
401 Our Physical Environment
Fall or spring. 3 credits. Prerequisite: permission of instructor. Fee, approximately $7.
T 1:25–4:25. V. N. Rockcastle.
A practical, relatively nonmathematical study of some basic relationships and physical interactions in the environment, with emphasis on physics and earth science. Attention is paid to analysis for understanding and techniques for teaching. A two-week session on photography and an individual research project are included. Useful for teachers and environmental educators.

411 Introduction to Educational Measurement
Fall. 3 credits.
Present practices and theories of the measurement of human knowledge and performance. Students will be expected to acquire the practical skills of planning and constructing tests for a variety of purposes, interpreting and using test results, evaluating commercially available instruments, and the like. Students will also be expected to discuss intelligently a myriad of social, ethical, legal, and technical issues associated with educational testing. One course in statistics or concurrent registration in Education 552 is recommended but is not required.

413 Psychology of Human Interaction
Fall. 3 credits. Enrollment limited. Prerequisite: permission of instructor. Fee, $5.
Designed to develop skills for, and understanding of, effective interpersonal communication and interaction. Appropriate for students in the helping professions, education, and areas involving management of human resources.

414 Counseling Psychology
Spring. 4 credits. Limited to 30 students.
Prerequisites: introductory psychology, social or personality psychology, and Education 413.
The processes of counseling are examined from various theoretical perspectives. Typical adult counseling issues are examined, and implications are drawn for counseling strategies with an adult population, including psychological assessment, establishing therapeutic goals, intervention strategies, and evaluation of outcomes. Alternative models of service delivery, such as outreach, consultation, and psychoeducation, are emphasized.

420 Field Experience
Fall or spring. 1–4 credits. S-U grades optional. Undergraduates must attach to their course enrollment material written permission from the faculty member who will supervise the work and assign the grade.
Staff.
Students may engage in planned, semiprofessional, or professional practice in an educational enterprise. Each student prepares a plan of action including rationale, purposes, and procedures and arranges with a faculty member to supervise and evaluate the field experience.

430 Special Problems in Agricultural Education
Fall, spring, or summer. 1–3 credits. S-U grades optional.
Fall and summer: hours to be arranged; spring: T R 8:30–10:45. T. R. H. R. Cushman.
An opportunity to study individually selected problems in agricultural education.

432 Teaching Agriculture: Methods, Materials, Practice
Fall. 3 credits. Prerequisites: Education 332 and concurrent registration in Education 430 and 499.
M T W R F 8–8. A. L. Berkery and staff.
Directed participation in teaching agriculture at the secondary school level. Program includes a four-day intensive on-campus period and periodic seminars addressing selected methods and materials in teaching agriculture, combined with a 14-week period in a student teaching center. Includes design of area resources, instructional materials and facilities, planning and executing instruction, directing work experience, and advising youth organizations.

445 Curriculum Design Workshop
Fall. 3 credits. Education 644 may be taken concurrently. Not offered 1990–91.
A general practical approach to course planning. Readings, group discussions, workshops, and individual conferences centering on each student's project. This project consists of designing a course in a subject area at a grade level and an institutional setting of the student's choosing.

457 Discourse Analysis
Fall. 2 credits. Offered alternate years.
Lec, T R 2:30. W. S. Carsen.
An introduction to the sociolinguistics of education. In the context of classrooms and schools, we will consider among other issues the relationship between social status and talk, questioning, the negotiation of meanings in lessons, and the theoretical and empirical challenges of recording, transcribing, and analyzing conversations and interviews.

472 Philosophy of Education
Fall. 3 credits.
A study of central issues in the philosophy of education. Questions of ethics, political philosophy, and the theory of knowledge are examined and linked to current educational issues.

473 Contemporary Philosophy of Education
Spring. 3 credits.
M W 11:15, plus additional work to be arranged. D. B. Gowin.
The emphasis in this course is the architecture of meaning as a guide to philosophizing about education, our topic. We begin with the fact that philosophers disagree, as do experts in all fields. Every discipline exhibits competing philosophical principles. The appeal to facts to settle disagreements fails because some philosophical principle is necessary to give meaning to facts. Philosophy concerns itself with problems we can neither solve nor abandon. Each year the readings in the course will change as we seek to use texts that are the most up-to-date and also the most fundamental in philosophy. Thus, the course may be taken more than once. The curriculum is emergent.

477 Law and Educational Policy
Fall. 3 credits.
M 2:00–4:25. K. A. Strike.
A study of recent federal court decisions concerning education. Emphasis on examining legal issues against a background of related educational issues and in terms of the consequences of legal decisions for the development and operation of educational institutions.

481 Educating for Community Action
Spring. 3 credits.
The design and execution of educational aspects of community-action and nonformal education programs. Deals with the identification and statement of educational goals, selection of teaching strategies, and evaluation of outcomes.

482 Introduction to Adult Education
Fall. 3 credits. S-U grades optional.
Focuses on the broad aspects of adult education: scope and history of adult-education programs, philosophy and principles, perspective of the adult learner, media and methods of instruction, and program development. Opportunities are provided for observation of adult-education programs in community organizations and agencies.

483 Comparative Studies in Adult Education
Spring. 3 credits. S-U grades optional.
W 7:30–10:30 p.m. D. Deshler.
Focuses on the variety of adult-education programs in countries around the world. Literature on comparative adult education, international conferences on adult education, UNESCO adult-education publications, and international community development are analyzed in relationship to each student's exploration of adult education in two countries. Description of adult education in other countries is shared by international students.

492 Contemporary Issues Seminar: Development in Southern Africa (also Agricultural Economics 492)
Spring. 2 credits. Limited to 25 juniors and seniors.
Hours to be arranged. D. Chapman, J. Volmink.
A contemporary issues seminar about economic and social issues in the development of Southern Africa. Natural resources as the basis for trade and manufacturing. Potential for agriculture. Education, health, and public sector development. Economic integration and political conflict. Apartheid as a regional problem. Opportunities and obstacles to regional development. Summer field trip for additional credit is possible.

*492 Contemporary Issues in Psychology of Environmental Education
Spring. 2 credits. S-U grades optional.
Offered even-numbered years.
A survey of theory and research in environmental psychology. Issues arising from environmental education and production efforts will be considered. Topics include: energy conservation, pollution control, recreational use of national parks and wilderness areas, habitat destruction, the psychology of environmental activism, etc. Student projects, reports, and oral presentations will be emphasized.

*Pending approval.
497 Independent Study
Fall or spring. 1-3 credits. S-U grades optional. Undergraduates must attach to their course enrollment material written permission from the faculty member who will supervise the work and assign the grade.
Staff.
A student may, with approval of a faculty adviser, study a problem or topic not covered in a regular course or may undertake tutorial study of an independent nature in an area of educational interest.

498 Undergraduate Teaching
Fall or spring. 1 or 2 credits; 4 credits maximum during undergraduate career. Limited to students with grade-point averages of at least 2.7. S-U grades optional.
Staff.
Participating students assist in teaching a course allied with their education and experience. Students are expected to meet regularly with a discussion or laboratory section, to gain teaching experience, and regularly to discuss teaching objectives, techniques, and subject matter with the professor in charge.

499 Undergraduate Research
Fall or spring. 6 credits maximum during undergraduate career. Not open to students who have earned 6 or more undergraduate research credits elsewhere in the college. Limited to juniors and seniors with grade-point averages of at least 2.7.
Staff.
Affords opportunities for students to carry out independent research under appropriate supervision. Each student is expected to review pertinent literature, prepare a project outline, conduct the research, and prepare a report.

[547] Improvement of College Teaching
Fall, spring, or summer. 2 credits. Not offered 1990-91.
D. B. Gowin.
Concepts of teaching, learning, curriculum, and governance are used to guide practical activities that enhance faculty competence. Recent studies of concept mapping and learning, structure of knowledge, science teaching, adult learning, and evaluation provide a conceptual basis for improving teaching.

590 Special Topics in Education
Fall, spring, or summer. 1-3 credits. Prerequisite: permission of instructor. S-U grades optional. Hours to be arranged.
Staff.
Topics to be announced.

601 Secondary Science and Mathematics Teaching Practicum
Fall or spring. 3 credits. Prerequisite: permission of instructor. Letter grades only. For graduate students enrolled in the Teacher Education in Science and Mathematics Program.
M T W R F 8-3. D. J. Trumbull and staff. Supervised student teaching in science or mathematics at the secondary level. Program includes teaching at a local school for ten weeks.

602 Teaching Science/Mathematics: Methods, Materials, Practice
Fall. 9 credits. Prerequisite: concurrent enrollment in Education 601 or permission of instructor.
LEC: M F 9-12 and 1-3, first 5 weeks; last 10 weeks to be arranged. G. J. Posner and staff.
The course begins with five weeks of intensive consideration of theoretical frameworks relevant to all aspects of student teaching. Assignments and a weekly seminar during the next ten weeks require students to use these theories to develop and evaluate teaching materials and practices. Students will complete an extensive portfolio documenting their work.

603 Teaching Mathematics
Current research in mathematics education will be examined in order to develop a picture of the mathematics classroom that integrates subject matter, student conceptions, affective variables, and issues in the social context of learning mathematics. Special topics will include research on problem solving, women and mathematics, misconceptions, and research on teaching.

606 Seminar in Science and Mathematics Education
Fall. 1 credit. S-U grades only. R 4:30. W. S. Carlsen and staff.
Explores topics in science and mathematics education. The focus of the seminar changes each year.

609 Educational Ethnography
Spring. 3 credits. Prerequisite: course in research methods or measurement or permission of instructor.
The course will study educational ethnography as a form of interpretive research, a perspective that attends to the complex interactions between researcher, researched, and context and accepts the centrality of meaning-making in the conduct of human affairs. Students will examine some of the philosophical debates about research approaches and will discuss research methods as they relate to the aims and assumptions of interpretive research. Students will conduct a research project during the course of the semester.

611 Educational Psychology
A basic survey course for graduate students. Emphasis on psychological factors involved in human learning and the educational process. Set in a broad-based conceptual model of any behavioral setting for learning. Appropriate for those seeking an introduction to educational psychology or a refresher course in contemporary educational psychology.

613 Theory and Methods for Education
Fall. 3 credits. Prerequisite: Education 311 or 611 or permission of instructor.
T R 9:05. J. D. Novak.
 Presents a coherent theory of education combining concepts from philosophy, psychology of learning, curriculum, and instruction. New educational methods, including concept mapping and clinical interviews, will be presented. Students will gain competence by applying concepts and methods in a project related to their interests.

Classes include discussion of student-initiated questions and use of videotape to analyze educational techniques.

620 Internship in Education
Fall or spring. 2-6 credits. S-U grades optional. Each student, before course enrollment, must obtain the approval of a faculty member who will assume responsibility for supervising the work.
Staff.
An opportunity for practical experience in educational professions development.

630 Special Problems in Agricultural and Occupational Education
Fall or spring, may also be offered in summer. 1-3 credits. S-U grades optional. Hours to be arranged. A. L. Berkhey and staff.
The course provides an opportunity for graduate-level study of individually selected problems and issues in agricultural and occupational education. Designed for experienced teachers.

632 Teaching Agricultural and Occupational Education
Spring. 3 credits. Prerequisite: an introductory course in teaching methods or permission of instructor.
M 8-10. A. L. Berkhey.
The focus of the course is on the selection, use, and evaluation of methods and materials for teaching occupational subjects. Methods for both group and laboratory instruction are covered. Opportunity is provided for students to develop teaching competencies based on their individual needs and interests. Development of self-evaluation skills is included. A class project on the development of instructional materials is required.

633 Curricular in Agricultural and Occupational Education
Fall. 3 credits. T 1:25-3:20; labs to be arranged. W. E. Drake.
Current situations affecting occupational education curricula are examined. Principles, objectives, and sources of information are developed for planning curricula. Strategies for developing occupational courses are examined. Consideration is given to planning, developing, and managing work experience programs. Participants have an opportunity to observe ongoing programs at the secondary and two-year college levels and to pursue individual interests in curriculum improvement.

643 Structure of Knowledge and Curriculum
Spring. 3 credits. Prerequisite: permission of instructor.
Curriculum studies are the opening door to the four commonplaces of educating: curriculum, teaching, learning, and governance. A theory of educating explains the relations among these educational variables. Practice in concept mapping and Vee diagramming is required to achieve proficiency in curriculum analysis and curriculum construction. A theory and method for the analysis of the structure of knowledge is presented.
644 Curriculum Theory and Analysis
Fall. 3 credits. T 2:30-4. J. G. Posner.
An examination of the basic elements involved in making curriculum decisions and an analysis of current approaches to curriculum. The course focuses on the assumptions underlying any curriculum. The major task of each student is to choose and conduct an in-depth analysis of a curriculum. This course is the basic graduate course in curriculum.

647 Instructional Technologies: Analysis and Practices
Fall and spring. 2-4 credits. Prerequisite: skills in statistics and research design. Letter grade only.
R 2:30-3:45; lab to be arranged.
H. D. Sutphin.
Current research and literature on instructional computing and related technologies in the public and private sectors will be examined. Students complete a group research project on educational technologies and meet for five seminar sessions to earn 2 credits. The research experience includes design, data collection, input, analysis, and synthesis. Concurrent attendance in ED 247 Modules A and B is required (2 credits); or 247 may be taken as a prerequisite.

650 Methods of Educational Inquiry
Fall. 1 credit.
A survey of approaches to inquiry in the social sciences, including experimental and comparative designs, survey research, case study, simulation, philosophical and historical inquiry, content analysis, and secondary data analysis. The course is intended to broaden the student’s views of appropriate methods of disciplined inquiry.

651 Writing a Thesis Proposal
Fall. 1 credit. S-U grades only.
T 3:35-5. J. Millman.
Procedures for developing and writing a master’s or doctoral thesis proposal. Emphasis will be given to identifying a significant topic, conducting and describing a group mini­search study, recognizing weaknesses in illustrative proposals, and clear and concise writing. Students will be provided ample assistance in constructing a brief thesis proposal of their own.

654 Evaluation for Program Management
Spring. 3 credits. S-U grades optional.
M 1:25-4.25. R. L. Bruce.
The course will consist of three modules, each for one hour a credit. (1) Evaluation as a programming function: fitting an evaluation to decision needs; program monitoring; evaluation and information systems. No prerequisite. (2) Evaluation models: comparative examination of various models and their implications for practice. No prerequisite. (3) Practicum in program evaluation: directed practice in the design and conduct of a “live” evaluation. Prerequisite: module 1.

659 Special Topics in Research Methods
Spring. 2-3 credits. Prerequisite: permission of instructor. Letter grade only.
Hours to be arranged. J. Millman.
Consideration of new techniques and current topics in educational research design, measurement, or evaluation of programs, products, and personnel.

661 Administration of Educational Organizations
Fall. 3 credits. W 3:35-6. E. Haller.
Perspectives on the administration of educational organizations. Consideration of social science, legal, ethical, and religious theories, and their application to both public schools and higher education. Intended for students who are considering careers as educational administrators, as well as for those who want to further their understanding of schools as organizations.

664 Educational Finance
Fall. 3 credits. S-U grades optional.
An analysis of the distribution and utilization of public and private resources for educational purposes. The discussion will revolve around the issues of equity, efficiency, and freedom of choice. Alternative methods of financing schools will be evaluated, and the perplexing legal and moral issues raised by such questions as “Who pays?” and “Who benefits?” will be discussed. Specific attention will be given to budgeting, accountability, and productivity. An opportunity for individuals to focus on their own areas of interest, such as occupational education, the two-year college, or secondary or higher education.

665 Administrative Decision Making
Spring. 3 credits. S-U grades optional.
An introduction to decision making theory and its relevance to the field of educational administration. Specific applications will be made to the study and improvement of productivity within educational systems. A wide variety of educational settings will be considered, including higher education and non-formal education.

673 Seminar in Dewey’s Philosophy of Education
Fall. 3 credits. S-U grades optional.
R 3-5. D. B. Gowin.
Dewey’s corpus of philosophical works has been given new life by contemporary philosophers (Richard Rorty, Richard Bernstein, James Gouinlock, and Walter Watson). After fifty years of inattention, Dewey is now acknowledged as a “philosophic genius” of the twentieth century (along with Wittgenstein and Heidegger). Education and democracy are central to Dewey’s thought; this seminar is an exploration of theory, method, and practical educative consequences of Dewey’s views. The Dewey Center edition of original works is now available in Cornell libraries.

678 Planning Educational Systems
Spring. 3 credits. S-U grades optional.
A seminar directed toward a critical analysis of educational planning as it is practiced in both industrialized and developing nations. Topics will include manpower planning, the social demand approach to educational planning, benefit-cost analysis, and incentive models of planning. The political and economic implications of attempts to plan education will be emphasized.

679 Policy Issues in Higher Education
Spring. 3 credits. S-U grades optional.
T 11:15-1:15. R. J. Eggener.
Deals with administration of higher educational organizations. Current approaches to planning and analysis of special problems.

680 Foundations of Extension Adult Education
Fall. 3 credits. Limited to 20 students. S-U grades optional.
An analysis of alternative purposes, nature, and scope of extension, adult, and continuing education programs in the United States and abroad, with emphasis on the relationship of programs to historical, cultural, political, and social settings. Definitions, conceptual controversies, philosophical issues, and current research directions will be examined through a seminar approach.

681 Designing Extension and Continuing Education Programs
Fall. 3 credits. Prerequisite: permission of instructor.
T 1:25-4. R. L. Bruce.
Designed to help students understand the concepts, principles, and procedures relevant to developing programs and curricula for the continuing education of adults. Emphasis is on such key areas as the nature and role of programming, situation analysis and needs identification, choosing among alternative courses of action, stating program objectives, and program organization.

683 Administration of Nonformal Education
Fall. 3 credits. Not offered 1990-91.
W 1:25-4. Staff.
An overview of selected theories, principles, and strategies applicable to management of decentralized, professionally staffed, nonformal educational organizations and change agencies. Content includes management functions, managerial leadership, management by objectives, and decision-making strategies. Particular attention is given to leadership of organizations with volunteer staff.

684 Adult Education Programs: Organization and Direction
Spring. 3 credits.
Alternative procedural models for organizing and conducting adult occupational education courses are presented. Guidelines and procedures for implementing the models in secondary and postsecondary school settings are emphasized.

685 Training and Development: Theory and Practice (also Communication 685, International Agriculture 685 and Industrial and Labor Relations 686)
Spring and summer. 4 credits. S-U grades optional. Charge for materials, $45.
F 9:05-12:05. Communication Graduate Center, R. Colle, D. Deshler, W. Frank.
Analysis, design, conduct, administration, and evaluation of training programs for the development of human resources in small-farm agriculture, rural health and nutrition, literacy and nonformal education, and general community development. Designed for scientists, administrators, educator-trainers, and social organizers in rural and agricultural development programs in the U.S. and abroad.

690 Research Seminar
Fall and/or spring. No credit.
Presentation of current research in the field of education by graduate students and staff. Opportunities to discuss methodology, findings, and other aspects of research.
711 Contemporary Issues in Educational Psychology
M W 11:15. 1 hour to be arranged.
J. A. Dunn.
This is a graduate-level seminar dealing with key issues in contemporary psychology having implications for educational practice and research. Topics will vary from year to year. Students may take the course more than once.

715 Seminar in Psychology and Education
Fall or spring. Variable credit. Prerequisite: permission of instructor.
Selected topics focusing on the interaction of theoretical and research developments in psychology and education.

718 Adult Learning and Development
Spring. 3 credits. Prerequisite: permission of instructor. S-U grades optional. Offered alternate years.
Hours to be arranged. R. E. Ripple, R. L. Bruce.
Deals with adult development and learning behavior from points of view of educational psychology, social psychology, and sociology. Inferences are drawn from theory and research to the practice of adult continuing education. Appropriate for graduate students in educational psychology, extension and continuing education, and community service education, and for others interested in adult learning and development.

719 Seminar in Educational Psychology
Fall. 1 credit. S-U only.
W 12:20. Staff.
Presentation and discussion of current professional topics in educational psychology. Current research and theoretical controversies in the field will be covered.

730 Seminar in Agricultural and Occupational Education
Spring. 2 credits. S-U grades optional.
R 8–9:55. H. D. Surphine and staff.
For master's degree candidates who have had teaching experience and doctoral candidates with majors or minors in agricultural and occupational education. Emphasis is on current problems and research. Includes discussion and analysis of student research proposals.

735 Teacher Preparation in Agriculture
Fall. 3 credits. Prerequisite: teaching experience in agriculture.
For persons with teaching experience interested in the preparation of agricultural teachers. Involvement in the Cornell program of teacher preparation in agriculture is expected.

736 Occupational Education Program: Administration and Supervision
Spring. 3 credits.
T 3:35–6; special sessions to be arranged.
Staff.
Practices and procedures of organizing, administering, and supervising programs of occupational education at the secondary and postsecondary level are stressed. The role of the director in providing leadership in improving instruction, designing programs, and using resources at federal, state, and local levels is considered.

739 Evaluating Programs in Occupational Education
Spring. 3 credits. Offered alternate years.
T 1:25–3:20; labs to be arranged.
W. E. Drake.
This course examines objectives, criteria, and strategies for evaluating programs of occupational education in secondary and postsecondary schools. Evaluation models, case studies, and evaluation as a function of program planning are considered. Participants examine the roles of supervision in evaluation and have an opportunity to develop and apply evaluative instruments. Field trips and resource persons provide opportunities to observe actual evaluation problems and procedures.

745 Seminar in Curriculum Theory and Research
Spring. 3 credits. Prerequisite: Education 644, or permission of instructor.
Theoretical issues in curriculum and appropriate areas for curriculum research are discussed. Two current topics are the hidden curriculum and school reform. Both topics serve to uncover the relation between ideology and research.

750 Conceptual Problems in Educational Inquiry
Fall. 3 credits. S-U grades optional.
A constructionist view (as opposed to the conventional foundationalist viewpoint) of creating knowledge and value claims is the starting point of this seminar. We will be concerned with the conceptual principles (both normative and scientific) that guide research such that knowing and valuing are integrated in research. A view of theory-driven programmatic research is presented. We will read recent works in women's way of knowing, in children's clever misconceptions of science and math, alternative ways of knowing peace and war, and Hispanic minorities' view of knowing. Familiarity with master's and doctoral dissertation work of the past fifteen years at Cornell is expected. Copies are available in the libraries.

751 Quantitative Approaches to Qualitative Data Analysis
Spring. 3 credits. Prerequisite: Education 353 or equivalent. Offered alternate years.
W. S. Carlsen.
This course focuses on techniques for analyzing and reporting interpretive research data. Although we will consider some general analytic methods (e.g., constant comparative analysis) and their theoretical foundations, the emphasis in this course will be on categorical, computational, and graphical approaches to constructing meaning from rich interpretive data sets. This course is intended to complement but not replace the study of discipline-specific interpretive approaches like ethnography, historiography, and sociolinguistics.

762 Research in Educational Administration
Spring. 3 credits. Prerequisite: one course in elementary statistics or permission of instructor. S-U grades only.
Hours to be arranged. E. J. Haller.
An analysis and critique of current research in educational administration. Discussion of research priorities and strategies. For graduate students interested in research on problems of educational administration. Students will carry out a small-scale empirical research project.

772 Seminar in Philosophy of Education
Spring. 3 credits. Prerequisite: permission of instructor. S-U grades optional.
Hours to be arranged. K. A. Strike.
Topics to be announced.

784 Technology-Focused Decision Making: Models for Extension Educators
Fall. 3 credits.
The educational and program management decisions involved in the adoption of educational technology in extension, rural development, and nonformal education programs are reviewed, and a variety of decision-making approaches is explored. An overall problem-solving method with case study illustrations is used. Consideration is given to structure and operating style of the educational organization, as well as to the characteristics of the technology under consideration. The course makes use of recent literature and continuously updated files on current developments in technology applications.

800 Master's-Level Thesis Research
Fall or spring. Credit to be arranged. S-U grades optional. Each student, before course enrollment, must obtain the approval of a faculty member who will assume responsibility for guiding the work. Staff.

900 Doctoral-Level Thesis Research
Fall or spring. Credit to be arranged. Limited to students working on theses or other research and development projects. S-U grades optional. Each student, before course enrollment, must obtain the approval of a faculty member who will assume responsibility for guiding the work. Staff.

Related Course in Another Department
Historical Roots of Modern Psychology (Psychology 490)
262 The Biology of the Honey Bee
Fall. 1 credit. Limited to 10 students.
Prerequisite: permission of instructor.
Labs, afternoons or weekends to be arranged; course will meet in Sept. and Oct. only. R. A. Morse.
A series of laboratories in which students perform some of the classical experiments on honey bee behavior. Various techniques used in bee research are introduced.

264 Practical Beekeeping
Fall. 1 credit. Limited to 20 students.
Prerequisite: Entomology 260 (may be taken concurrently).
Lab, R 2–4:25, R. A. Morse.
This course consists of fourteen laboratory sessions to acquaint students with practical methods of colony management. Laboratories involve actual work with honey bee colonies and equipment. Some of the topics covered are management of bees for apple pollination, honey harvesting and processing, and disease identification and control.

322 Insect Morphology
Fall. 5 credits. Prerequisite: Entomology 212 or 241. Offered alternate years.
An introduction to the external and internal anatomy of insects, with emphasis on the comparative and functional aspects. The laboratory is devoted largely to dissection.

331 Introductory Insect Systematics
Spring. 4 credits. Prerequisite: Entomology 212.
An introduction to the classification, evolutionary history, and distribution of the insects. Laboratory practice in the identification of orders, families, and representative genera of insects; methods of collection, preservation, and study. Lectures on theory and practice of insect systematics and major features of insect evolution. Some techniques are required.

332 Systematics Discussion Group
Spring. 1 credit. Prerequisite: concurrent enrollment in Entomology 331 or permission of instructor. S-U grades only. Offered alternate years.
Disc, hours to be arranged. Q. D. Wheeler.
Readings and discussion on topics in systematics coordinated with the lecture series in Entomology 331.

342 Special Topics in Economic Entomology
Hours to be arranged. Staff.
Topics to be announced.

370 Pesticides and the Environment (also Toxicology 370)
Fall. 2 credits. Prerequisites: Biological Sciences 101–102 or equivalent. Offered alternate years.
Lecs, T R 9:05, J. G. Scott.
A survey of the different types of pesticides, their uses, properties, and effects on the environment. Discussion of the risks, benefits, regulation, politics, and current controversies associated with pesticide use.

[441 Seminar in Insect Pest Management
Spring. 1 credit. Limited to 10 students.
Prerequisite: Entomology 241 or 444 or permission of instructor. S-U grades only. Not offered 1990–91.
Hours to be arranged. A. M. Shelton.
Discussion of current topics in pest management, with an emphasis on insect pest management.

443 Pathology and Entomology of Trees and Shrubs (also Plant Pathology 443)
Fall. 5 credits. Prerequisites: Plant Pathology 301 and Entomology 241 or equivalent. Offered alternate years.
For students preparing for careers in horticulture, urban forestry, and pest management.

444 Integrated Pest Management (also Plant Pathology 444)
Fall. 4 credits. Prerequisites: Biological Sciences 261, Entomology 241 or 244, and Plant Pathology 301 or their equivalents or permission of instructor.
Lecs, MWF 9:05; lab, M or W 1:25–4:25, Evening prelims. P. A. Arneson.
Lectures integrate the principles of pest control, ecology, and economics in the management of pest-crop systems. Laboratories consist of exercises to reinforce concepts presented in lecture and demonstrate pest monitoring techniques and the application of computer technology to management problems.

452 Medical Entomology
Fall. 3 credits. Prerequisites: Entomology 212 or permission of instructor. Offered alternate years. Not offered 1990–91.
Lecs, T R 10:10; lab, R 1:25–4:25, Staff.
A survey of arthropods of public health and veterinary importance, with emphasis on transmission dynamics of pathogens, biornomics of vector populations, and current control concepts. Morphology and taxonomy of selected groups are examined in the laboratory, with additional exercises in vector-pathogen relationships and epidemiological techniques.

453 Insect Pathology
Spring. 4 credits. Prerequisite: Entomology 212 or 241 or permission of instructor. Recommended: a course in microbiology. Offered alternate years. Not offered 1990–91.
Lecs, MWF 10:10; lab, R 1:25–4:25, Staff.
A survey of the diseases of insects caused by viruses, bacteria, fungi, and protozoans and a consideration of the role of microbial diseases in natural and applied insect control. Laboratory investigations center around living insect-pathogen associations and the consequences of these associations for both insect and microbe.

[454 Insect Pathology Seminar
Spring. 1 credit. Prerequisite: Entomology 453. S-U grades only. Offered alternate years. Not offered 1990–91.
Hours to be arranged. Staff.
Presentations, discussions, and analyses of current topics by the participants. Focus centers on microbial diseases of insects.]
[455 Insect Ecology, Lectures (also Biological Sciences 455)] Fall. 3 credits. Prerequisites: Biological Sciences 261 and Entomology 212 or their equivalents. Offered alternate years. Not offered 1990-91.

Lecs, WF 11:15 and 1 hour of discussion weekly to be arranged. R. B. Root.

Ecological and evolutionary principles are integrated by thorough examination of outstanding investigations. Topics discussed include the role of the great diversity of insects, adaptive syndromes associated with climate, natural history of arthropod guilds, impact of insects on terrestrial vegetation, population regulation, and the impacts between natural and managed ecosystems.

The lecture explores the morphology, physiology, phylogeny, life histories, behavior, feeding ecology, and evolution of macroscopic freshwater invertebrates with an emphasis on contrasting the attributes of aquatic and terrestrial insects. The laboratory involves field collections and laboratory identification of invertebrates and stresses the use of keys. Students prepare a collection of freshwater invertebrates.

[472 Genetics of Pest Management] Fall. 4 credits. Prerequisite: Biological Sciences 261 or equivalent. S-U grades optional.

Lecs, T R 12:20-1:45; lab to be arranged (3 hours). R. T. Roush.

A detailed survey of the application of genetics to pest management. Includes discussion of host plant resistance, pesticide resistance, insect mass rearing technology, autocidal control agents, with examples from plant pathology, weed science, and entomology.

[483 Insect Physiology] Spring. 4 credits. Prerequisite: Entomology 212 or permission of instructor.

An introduction to the often unique ways in which insects have met their basic needs. Each organ system is examined with emphasis on the physiological basis and specific examples. The student will also be introduced to some common methods used in physiological research and to the critical reading of scientific literature.

[497 Special Topics for Undergraduates] Fall or spring. Credit to be arranged. Prerequisite: permission of instructor. Undergraduates must attach to their course enrollment material written permission from the staff member who will supervise the work.

[498 Undergraduate Teaching] Fall or spring. Credit to be arranged. Prerequisite: permission of instructor. Undergraduate teaching in entomology course by arrangement with the instructor. Undergraduates must attach to their course enrollment material written permission from the staff member who will supervise their work.

[499 Undergraduate Research] Fall or spring. Credit to be arranged. Prerequisite: permission of instructor. Undergraduates must attach to their course enrollment material written permission from the staff member who will supervise the work.

[621 Acerology] Fall. 4 credits. Prerequisites: Entomology 212 and permission of instructor. Offered alternate years. Not offered 1990-91.

An introduction to the taxonomy, morphology, and biometrics of mites and ticks, with emphasis on taxa of economic importance. A collection is required.

Field trips. Q. D. Wheeler.

A comprehensive review of the comparative morphology, phylogenetic relationships, classification, natural history, and distribution of the Coleoptera, including adult and immature stages. Laboratory practice in sampling and methods for collection and study of beetles. A collection is required.

[633 Systematics of the Diptera and Hymenoptera] Spring. 3 credits. Prerequisite: Entomology 331. Offered alternate years.

Lecs and two labs, hours to be arranged. W. L. Brown.

Lectures on the classification, evolution, and biometrics of the Diptera and Hymenoptera. Laboratory studies on the literature, characters, and classification of representative genera and species of these orders, based on adult and immature stages.

[634 Special Topics in Systematic Entomology] Fall or spring; taught on demand. 2-4 credits. Prerequisite: permission of instructor. Hours to be arranged. Staff.

Lectures on the classification, evolution, and biometrics of selected taxa, with accompanying laboratory studies on identification and comparative morphology. Collections sometimes required.

[636 Seminar in Systematic Entomology] Fall or spring. 1 credit. Prerequisite: permission of instructor. S-U grades only. Hours to be arranged. Staff. Discussion of current topics in systematic entomology. Topics to be announced, including current theoretical issues in insect classification, evolution, and biogeography.

[640 Pest Management: Quantitative Aspects] Fall. 3 credits. Prerequisites: Entomology 444 and a course in statistics. Recommended: an introductory course in computer science. S-U grades optional. Offered alternate years.

Lecs and disc, T R 10:10-12:15. Staff.

Quantitative aspects of the development of pest and agricultural resource management systems. Systems analysis, modeling and simulation, sampling, quantitative biological research, and economics are covered in lectures. Discussions of philosophical issues and current and classical literature.
LIFE SCIENCES

685 Seminar in Insect Physiology
Spring. 1 credit. S-U grades optional. Prerequisite: permission of instructor. Hours to be arranged. Staff.

690 Insect Toxicology and the Molecular Basis of Insecticide Toxicity (also Toxicology 690)
Spring. 4 credits. Prerequisites: general chemistry and organic chemistry. Undergraduate students by permission of instructor. Offered alternate years.
Lecs, M W F 9:05; lab, day to be arranged, 1:25–4:25. J. G. Scott.
The history, metabolism, and mechanism of action of synthetic and naturally occurring insecticides. Mechanisms of insecticide resistance, evaluation of insecticide toxicity, and new approaches to insecticidal compounds with biotechnology will be discussed.

707 Special Topics for Graduate Students
Fall or spring. Credit to be arranged. Prerequisite: permission of instructor. Not for thesis research.

708 Graduate Research
Fall or spring. Credit to be arranged. Prerequisite: permission of instructor. Not for thesis research.

709 Teaching Entomology
Credit to be arranged. Staff.
Teaching entomology or for extension training.

710 Curation in Entomology
Fall or spring. Credit to be arranged. Prerequisite: permission of instructor. S-U grades only. Hours to be arranged. J. K. Liebherr and staff.
The range of curatorial techniques required to operate an institutional insect collection will be investigated by working with staff. Curation of a specific taxon of interest will comprise part of the course of study.

800 Master's-Level Thesis Research
Credit to be arranged. Prerequisite: permission of instructor. S-U grades optional. Staff.

900 Doctoral-Level Thesis Research
Credit to be arranged. Prerequisite: permission of instructor. S-U grades optional. Staff.

Jugatae Seminar
Fall and spring. M 4–5.
A seminar conducted by Jugatae, the entomology club of Cornell University, to discuss topics of interest to its members and guests.

FLORICULTURE AND ORNAMENTAL HORTICULTURE: HORTICULTURAL SCIENCES

653 Advanced Insect Pathology
Fall. 3 credits. Prerequisite: Entomology 453, Microbiology 290, or permission of instructor. S-U grades optional.
Detailed presentations on the major diseases of insects caused by viruses, bacteria, fungi, protozoa, and nematodes. Emphasis will be on host-pathogen interactions, including at the cellular level. Also, molecular genetics and epizootological principles will be discussed. Laboratories will include practical aspects (such as bioassays) of working with each group.

662 Insect Behavior Seminar
Spring. 2 credits. Prerequisites: permission of instructors and Entomology 212 and Biological Sciences 221 or equivalents. S-U grades optional. Offered alternate years. Not offered 1990–91.

Hours to be arranged. G. C. Eickwort, M. J. Tauber.

[664 Seminar in Insect-Plant Interactions (also Biological Sciences 664)]

One evening a week, to be arranged. P. P. Feeny.
For graduate students and seniors. Presentations and discussions by students on the evolution of patterns of interaction between plants and insects, emphasizing critical evaluation of concepts and evidence.

672 Seminar in Aquatic Ecology
Spring. 1 credit. Prerequisites: permission of instructor and either Entomology 456, 471 or Biological Sciences 462, 464. S-U grades optional. Offered alternate years.

Hours to be arranged. B. L. Peckarsky.
Discussion and analysis of current topics in the ecology of streams and lakes, including synthesis of key papers in the literature. Reports on personal research or ideas by students are encouraged.

[674 Principles of Systematics (also Biological Sciences 674)]
Spring. 4 credits. Prerequisite: Entomology 331 or introductory systematics course in another field of biological sciences. Offered alternate years. Not offered 1990–91.

An introduction to modern theory and methods of systematic biology. Lectures, readings, and discussions on theoretical systematics, including species concepts, classification, phylogenetics, and biogeography. Laboratories include various methods of analysis of data (e.g., cladistic hand and computer methods, numerical methods). Part of the grade is based on a final paper.

[677 Biological Control]
Fall. 3 credits. Prerequisites: Entomology 212, Biological Sciences 261, and permission of instructor. S-U grades optional. Offered alternate years. Not offered 1990–91.

Theory and method of biological control of arthropod pests and weeds. Laboratory includes studies with living parasites and predators.

Courses by Subject

Commercial floriculture-crop production: 410, 411
Floral design: 205, 210
Freehand drawing and illustration: see the section below, "Freehand Drawing and Scientific Illustration"
Horticultural physiology: 400, 405, 603
Horticultural sales and service businesses: 425
Independent study, research and teaching in floriculture and ornamental horticulture: 495, 496, 497, 498, 499, 500, 700, 800, 900
Introductory courses: 101, 102
Landscape architecture (professionally accredited program): see the section below, "Landscape Architecture"
Landscape horticulture: Hort. Sci. 435, Landscape Architecture 140, 205, 220, 310, 312, 475, 521, 522
Nursery-crop production: 420
Plant materials: 230, 300, 301, 335, 430
Postharvest physiology of horticultural crops: 415
Retail floriculture: 205, 210, 425
Seminars in floriculture and ornamental horticulture: 495, 600.
Turfgrass management: 330, 440

101 Introduction to Horticultural Science
Fall. 4 credits.
Lecs, M W F 10:10; lab, W 2–4:25. C. F. Gottzic.
An introduction to horticulture in all of its components: floriculture, landscape horticulture, pomology vegetable crops, and related professional and commercial fields. Emphasis is on the history, geography, and literature of the field; the structure and organization of the component industries, institutions, and professions; and the role of science and technology in the continuing development of horticultural practice. Field trips, including at least one all-day field trip, are taken to horticultural firms, institutions, and historic sites.

205 Floral Design
Fall or spring. 2 credits. Each of the two studios is limited to 22 students. Prerequisite: permission of instructor, with preference given to plant science majors, then to students in education, design, and journalism. Charge to purchase instructional plant materials that the student will keep: $75. Enrolled students who do not attend the first session and fail to notify the secretary in 20 Plant Science Building of their absence will automatically be dropped.

T or R 1:25–4:25. C. C. Fischer.
A study of the established floral design techniques of this country, presenting the principles and the mechanics of the art to prepare the student to design for varying themes and occasions. Other aspects include selection, preparation, and factors affecting keeping-quality of plant materials. Emphasizes the economical use of all supplies.
210 Floral Design: Intermediate
Fall. 2 credits. Prerequisite: Horticultural Sciences 205 or permission of instructor; preference given to students planning a career in retail floriculture. Charge to purchase instructional plant materials that the student will keep: $75.

Chapter: Study W 1:25-4:25. C. C. Fischer. Advanced study of the art of floral design. The students assist in scheduling the design themes and occasions for floral display during the semester. Enrolled students who do not attend the first session and fail to report their absence to the secretarial office in 20 Plant Science Building will automatically be dropped.

230 Woody Plant Materials
Spring. 4 credits. Fee for lecture-laboratory manual: $25.

Lecs. T R 9:05; lab, T 2-4:25 and W or F 2-4:25. R. G. Mower. A study of the trees, shrubs, ground covers, and vine 3 credits. Landscape plantings. Emphasis is on winter identification and values for use as landscape material.

243 Taxonomy of Cultivated Plants (also Biological Sciences 243)
Fall. 4 credits. Prerequisite: One year of introductory biology or written permission of instructor. May not be taken for credit after Biological Sciences 248. Offered alternate years.

M. Luckow. An introduction to the study of ferns and seed plants with an emphasis on cultivated families and genera. Lectures will cover the principles and methods of systematics, basic rules of nomenclature, and relationships between families, all in the context of cultivated plants. Laboratories will teach sight identification of important plant families and identification of unknowns using analytic keys.

300 Garden and Interior Plants I
Fall. 3 credits. Fee for lecture-laboratory manual: $25.

Lecs. T R 10:10; lab, T 2-4:25.

R. G. Mower. A study of ornamental plants used in garden and interior situations. The first seven weeks cover primarily herbaceous annuals and perennials, with the laboratory devoted to various practical gardening activities. The remainder of the semester covers the major kinds of foliage and flowering plants used in the home and in other interior landscape situations. Emphasis is on identification, use, and general cultural requirements.

301 Garden and Interior Plants II
Spring. 3 credits. Prerequisite: Horticultural Sciences 300 or permission of instructor. Fee for lecture-laboratory manual: $25.

Lecs. M W 11:15; lab, M 2-4:25.

R. G. Mower. A continuation of Horticultural Sciences 300. The first seven weeks are devoted to a further study of interior plants, with emphasis on specialized groups of interior plants such as orchids, cacti and succulents, gesneriads, ferns, palms, and bromeliads. The second seven weeks are devoted to outdoor herbaceous plants, such as tulips, daffodils, crocuses, and irises, as well as other spring-blooming bulbs and perennials. Outdoor laboratories emphasize practical gardening activities appropriate to the spring season.

330 Turfgrass Management
Fall. 3 credits. Prerequisite: Soil, Crop, and Atmospheric Sciences 260. Offered alternate years.

Lecs. R 11:15-1:10; lab, T 11:15-1:10.

A. M. Petrovic. Study of the scientific principles involved in the management of golf courses, athletic fields, parks, industrial grounds, and sod production. Considerations given to principles of establishment, mowing, irrigation, growth and development, species selection, and nutrition in the management of turfgrass sites.

335 Woody Plant Materials for Landscape Use
Fall. 3 credits. Limited to 30 students. Primarily for landscape architecture majors. Fee for lecture-laboratory manual: $25.

R. G. Mower. A study of the trees, shrubs, vines, and ground covers used in landscape plantings in the northeastern United States. Emphasis is on leaf identification and on characteristics that determine the usefulness of each as landscape material.

400 Principles of Plant Propagation
Fall. 3 credits. Prerequisites: Biological Sciences 242 and 244 or another course in plant physiology.

Lecs. T R 8; lab, R 1:25-4:25.

K. W. Mudge. Propagation of plants using vegetative techniques including cuttage, graftage, tissue culture, and propagation from seed. Physiological, environmental, and anatomical principles are stressed rather than hands-on techniques. Examples include horticultural, agronomic, and forestry crops.

405 Physiology of Horticultural Crops
Spring. 4 credits. Prerequisite: Biological Sciences 240 and 347 or permission of instructor.

C. F. Gortzig. A study of the application of horticultural, marketing, and management principles and practices in the operation of horticultural sales and service firms, e.g., garden centers, retail florist and nursery stores, wholesale marketing operations, mail-order businesses, mass markets, interior and outdoor landscape-service and related firms. Weekly field trips are included. G. L. Good. Principles of commercial production of nursery crops to marketable stage, including postharvest handling and storage. Term project is required. Field trips are made to commercial nurseries.

425 Horticultural Sales and Service Businesses
Spring. 4 credits. Prerequisites: Agricultural Economics 240 and 347 or permission of instructor. Cost of field trips approximately $150.

C. F. Gortzig. A study of the application of horticultural, marketing, and management principles and practices in the operation of horticultural sales and service firms, e.g., garden centers, retail florist and nursery stores, wholesale marketing operations, mail-order businesses, mass markets, interior and outdoor landscape-service and related firms. Weekly field trips are taken to commercial operations and one 3-4-day field trip to a metropolitan area is taken.

430 Special Topics in Ornamental Plants
Fall or spring. Credit to be arranged. Primarily for upperclass floriculture and ornamental horticulture majors. Prerequisite: Horticultural Sciences 230, 300, 301, 335, or the equivalent, and permission of instructor.

Lecs. T R 10:10-12:05; lab, T 3 hours to be scheduled. Two field trips. R. W. Langhans. A study of commercial production of greenhouse crops with emphasis on their culture as influenced by greenhouse environment. Field trips are made to commercial greenhouses.

431 Greenhouse Production Management
Spring. 4 credits. Primarily for seniors. Prerequisite: an elementary course in horticulture or equivalent. Cost of field trips: $150.

Lecs. T R 10:10-12:05; lab, T 3 hours to be scheduled. Two field trips. R. W. Langhans. Intended to provide the latest information on efficient operation and administration of a commercial greenhouse, outside the sphere of production methods for specific crops. Consideration is given to the industry, centers of production, competition, location, types of structures, heating, ventilation, cooling, fertilizing, watering systems, and business analysis and management.

451 Postharvest Physiology and Storage of Horticultural Crops
Fall. 3 credits. Prerequisite: one horticulture course or permission of instructor.

Lecs. M W F 9:05; lab, W 1:30-4: F. W. Liu. A study of principles of postharvest physiology, handling, and storage of horticultural crops, including fruits, vegetables, flowers, and ornamental crops. Major physiological processes such as transpiration, respiration, compositional changes, ethylene synthesis and action, maturation, ripening, and senescence of the crops are studied. Methods of harvesting and handling, including cleaning, grading, packing, precleaning, waxing, sanitation, and transportation, are studied. Methods of storage, including common storage, under-ground storage, refrigerated storage, controlled atmosphere storage, and hypobaric storage, are also studied.

470 Principles of Nursery-Crop Production
Fall. 4 credits. Prerequisite: Horticultural Sciences 400.

Lecs. M W F 9:05; lab, M 2-4:25; field trips are included. G. L. Good. Principles of commercial production of nursery crops to marketable stage, including postharvest handling and storage. Term project is required. Field trips are made to commercial nurseries.

475 Turfgrass Management
Fall or spring. 4 credits. Prerequisite: Horticultural Sciences 330.

Lecs. M W F 10:10; lab, M 2-4:25.

R. G. Mower. A study of commercial production of green- house crops with emphasis on their culture as influenced by greenhouse environment. Field trips are made to commercial greenhouses.
435 Landscape Management
Fall. 4 credits. Prerequisites: Horticultural Sciences 230 or 335, and Biological Sciences 241 or permission of instructor.
A study of the practices involved in the planting and maintenance of woody ornamental plants in the landscape. The major emphases will be on planting and post-planting techniques, water and fertilization management, pruning, and general tree care. The lectures will focus on the physiological bases for essential management principles. The focus of the labs will be hands-on.

440 Turfgrass Management
Fall. 3 credits. Prerequisites: Horticultural Sciences 330 or concurrent registration in Horticultural Sciences 330 and permission of instructor.
Lee, T R 9:05; lab R 10:10-12:05. A. M. Petrovic.
Study of the scientific principles involved in the management of golf courses, athletic fields, parks, industrial grounds, and sod production. Emphasis is placed on pest management, irrigation design, and field diagnostic technology.

495 Undergraduate Seminar
Fall or spring. May be taken for one credit per semester. S-U grades only. Graduate students who plan to enroll in Horticultural Sciences 600.
Undergraduate participation in departmental weekly seminar series.

496 Internship in Horticultural Sciences
Fall or spring. Credit variable. S-U grades optional. Prerequisite: permission of student's adviser in advance of participation in internship programs. Students must attach to their course enrollment materials a "CALS Independent Study, Research, Teaching, or Internship" form signed by the faculty member who will supervise their study and assign their grade.
Staff.

497 Independent Study in Horticultural Sciences
Fall or spring. Credit variable. S-U grades optional. Prerequisite: permission of instructor(s). Students must attach to their course enrollment materials a "CALS Independent Study, Research, Teaching, or Internship" form signed by the faculty member who will supervise their study and assign their grade.
Independent study in horticultural sciences under the direction of one or more staff members.

498 Undergraduate Teaching Experience
Fall or spring. Credit variable. S-U grades optional. Prerequisites: previous enrollment in course to be taught or equivalent, and written permission of the instructor. Students must attach to their course enrollment materials a "CALS Independent Study, Research, Teaching, or Internship" form signed by the faculty member who will supervise their teaching experience and assign their grade.
Hours to be arranged.
Designed to give qualified undergraduate students teaching experience through actual involvement in planning and teaching horticultural sciences courses under the supervision of departmental faculty members. This experience may include leading discussion sections; preparing, assisting in, or teaching laboratories; and tutoring.

499 Undergraduate Research
Fall or spring. Credit variable. S-U grades optional. Prerequisite: permission of instructor. Students must attach to their course enrollment materials a "CALS Independent Study, Research, Teaching, or Internship" form signed by the faculty member who will supervise their research and assign their grade.
Staff.
Undergraduate research projects in horticultural sciences.

500 Master of Professional Studies (Agriculture) Project
Fall or spring. 1–6 credits. (6 credits maximum toward MPS [Agriculture] degree). S-U grades optional.
Hours to be arranged. Graduate faculty.
A comprehensive project emphasizing the application of floricultural and ornamental horticultural principles to professional horticultural teaching, extension, and research programs and situations. Required of Masters of Professional Studies (Agriculture) candidates in the field.

600 Seminar
Fall or spring. Open for credit to graduate students only. Undergraduates should register for Horticultural Sciences 495. S-U grades only. Students must attach to their course enrollment materials a "CALS Independent Study, Research, Teaching, or Internship" form signed by the student's committee chair.
Graduate student participation in departmental weekly seminar series.

605 Current Topics in Floricultural and Ornamental Horticultural Physiology
Spring. Variable credit. Prerequisite: permission of instructor. Not offered 1990–91. Hours to be arranged. Staff.
Discussions of modern concepts, research, and commercial problems as reflected in current horticultural literature.

629 Special Topics in Plant Science Extension (also Plant Breeding 620)
Spring. 2 credits.
Designed for graduate students and advanced undergraduates to provide a broader knowledge of cooperative extension philosophy and methods. Developed for students interested in extension and research in public and commercial organizations. Topics relate to extension in other countries as well as in the United States.

700 Graduate Teaching Experience
Fall or spring. Credit variable. Open only to graduate students. Students should enroll in Horticultural Sciences 498. S-U grades optional. Prerequisite: permission of instructor. Students must attach to their course enrollment materials a "CALS Independent Study, Research, Teaching, or Internship" form signed by the faculty member who will supervise their teaching and assign their grade.
Hours to be arranged.
Designed to give graduate students teaching experience through actual involvement in planning and teaching courses under the supervision of departmental faculty members. The experience may include leading discussion sections; preparing, assisting in, or teaching laboratories; and tutoring.

800 Thesis Research, Master of Science
Fall or spring. Credit to be arranged. S-U grades only. Students must attach to their course enrollment materials a "CALS Independent Study, Research, Teaching, or Internship" form signed by the faculty member who will supervise their research and assign their grade.
Staff.

900 Thesis Research, Doctor of Philosophy
Fall or spring. Credit to be arranged. S-U grades only. Students must attach to their course enrollment materials a "CALS Independent Study, Research, Teaching, or Internship" form signed by the faculty member who will supervise their research and assign their grade.
Staff.
See also other courses in Horticultural Sciences.

Freehand Drawing and Scientific Illustration

109 Nature Drawing
Fall. 3 credits. Limited to 25 students. S-U grades optional.
M W F 10:10-12:05. R. J. Lambert.
A beginning course with emphasis on the drawing of natural forms: plants, animals, and landscapes. Of particular interest to students in floriculture and ornamental horticulture, landscape architecture, biological sciences, nature education, etc. Outside field notebook assignments.

111 Freehand Drawing
Fall or spring. 3 credits. Each section limited to 25 students. S-U grades optional. Credit may not be received for both Freehand Drawing 109 and 111.
Fall: lec, R 10:10; studios, T 9:05–11, R 12:25–4. Spring: permission of instructor required (registration must specify lecture hour and all studio hours).
Lec, T or W 10:10, plus 5 additional studio hours to be scheduled in 2- or 3-hour blocks during M W T R F 9:05-12:20 and 12:20–1:25. Staff.
Developing accuracy of observation and a personal graphic vocabulary. Freehand perspective and its uses in establishing design and spatial relationships, practice in figure and landscape drawing, freehand practice in sketching landscapes. Weekly outside sketchbook assignments.

210 Architectural Sketching in Watercolor
Summer. 3 credits. S-U grades optional.
M T W R F 11:30-12:45. R. J. Lambert.
Practice in outdoor architectural sketching, primarily in watercolor, but including pen and ink, pencil, and colored pencil. Studio will develop working sketches into complete renderings. Principles of perspective are taught and applied. For any student who wishes to develop skill in handling watercolor. Outside-of-class sketchbook work required.

211 Freehand Drawing and Illustration
Fall. 2 credits. Prerequisite: Freehand Drawing 111 or equivalent. S-U grades optional.
6 studio hours scheduled in 2- or 3-hour units between 9:05 and 12:05 M T W R F. R. J. Lambert.
Progression to the organization of complete illustrations. Subject matter largely from sketchbooks, still life, and imagination. Composition, perspective, and ways of rendering in different media are considered.
214 Watercolor
Spring. 2 credits. Prerequisite: Freehand Drawing 211 or permission of instructor. S-U grades optional.
6 studio hours scheduled in 2- or 3-hour units between 9:05 and 12:05 M-T-W-R-F.
R. J. Lambert.
A survey of watercolor techniques. Subject matter largely still life, sketchbook, and on-the-spot outdoor painting.

316 Advanced Drawing
Fall or spring. 2 credits. Prerequisite: Freehand Drawing 211 or permission of instructor. S-U grades optional.
6 hours to be arranged. A. M. Elliot or R. J. Lambert.
For students who want to attain proficiency in a particular type of illustration or technique.

417 Scientific Illustration
Fall. 2 credits. Prerequisite: Freehand Drawing 211 or 316 or equivalent. S-U grades optional for graduate students only.
6 studio hours scheduled between 9:05 and 12:05 M W F. A. M. Elliot.
A survey of methods of illustration. Training in techniques of accurate representation in media suitable for reproduction processes, including pen and ink, scratchboard, wash, and mixed media.

Landscape Architecture

142 Introduction to Landscape Architecture
Spring. 4 credits. Limited to approximately 15 students; freshman landscape architecture majors or permission of instructor.
Cost of basic drafting equipment and supplies, $200.
Lecs, T R 1:25; studio, T R 2:30-4:25.
D. W. Krall.
Fundamentals of landscape design applied to residential and other small-scale site-planning projects. Work in the studio introduces course participant to the design process, design principles, construction materials, planting design, and graphics.

201 Design, Theory, and Composition
Fall. 6 credits. Limited to landscape architecture majors.
Cost of basic drafting equipment and supplies, about $200; expenses for field trip, about $200.
Basic design principles and processes applied to the design of the outdoor environment. Studio projects focus on the analysis, organization, and form of outdoor space through the use of three-dimensional components including structures, vegetation, and earthform.

202 Design, Composition, and Theory
Spring. 6 credits. Prerequisite: LA 201 with a grade of C or better.
Cost of drafting supplies, about $200; expenses for field trip, approximately $200.
Site design and planning for parks, housing, and architectural ensembles. Basic theory, historic precedents, and the design process are correlated with garden landscapes, open-space systems, earth form, vegetation, and circulation systems.

301 Site Design and Detailing
Fall. 6 credits. Prerequisite: LA 202 with a grade of C or better.
Cost of drafting supplies, about $200; expenses for field trip, about $200.
Course participants will be engaged in the art and science of site-scaled design. This includes gardens, parks, and residential projects with design and technical solutions.

302 Site Design and Detailing
Spring. 6 credits.
This studio will engage course participants in a wide range of site-scaled projects such as subdivision development, street improvement projects, and gardens. Projects and associated detailing will be built upon knowledge gained in LA 301.

310 Site Engineering for Landscape Architects
Spring. 4 credits. Prerequisite: permission of instructor.
Lectures and studio projects focusing on the development of a working knowledge of site grading, earthwork, storm-water management, site irrigation, site layout, and road alignment.

312 Site Construction
Spring. 4 credits. Prerequisite: permission of instructor.
Construction materials, specifications, cost estimates, and methods used by landscape architects in project implementation. The course includes lectures, studio problems, and development of construction documentation for a selected project.

401 Urban Design and Planning
Fall. 6 credits. Prerequisites: LA 302 with a grade of C or better.
Cost of supplies, about $200; basic expenses for field trip, about $200.
A sequence of projects introducing students to advanced skills in spatial design, and historic precedent in an urban context.

402 Advanced Project Studio
Spring. 6 credits. Prerequisite: completion of LA 401 or of the Denmark landscape architecture studio with a grade of C or better.
Cost of supplies and reproductions, about $200.
Lecs, M W F 1:25; studios, M W F 2:30-4:25. L. Mirin.
A variety of site design and construction projects introduced as an evaluation of each student's professional competency in landscape architecture.

412 Professional Practice
Spring. 1 credit.
Presents the student with a comprehensive understanding of the role of the professional landscape architect and the problems and opportunities one may encounter in an office or other professional situations. Topics discussed include practice diversity, marketing professional services, office and project management, construction management, computers in the profession, and ethics.

480 Principles of Spatial Design and Aesthetics (also City and Regional Planning 481)
Fall. 3 credits.
Basic principles involved in design theory, interpretation, and methodology as they are applied to shaping the outdoor environment. Students are introduced to spatial design vocabularies for a variety of environmental scales and spatial types.

490 Special Topics in Landscape Architecture
Fall or spring. 1-3 credits; may be repeated for credit. S-U grades optional.
Staff.
Topical subjects in landscape architectural design, theory, history, or technology. Group study of topics not considered in other courses.

491 Design and Plant Establishment
Fall. 3 credits. Prerequisites: FOH 230 or permission of instructor.
N. Bassuk and P. Trowbridge.
This course will focus on the establishment of woody and herbaceous plants in urban and garden settings. By understanding the special constraints placed on plants, we will be able to critically assess and modify potential planting sites, select appropriate trees, shrubs, and ground covers for a given site, and learn about the principles and practices of plant establishment both in the ground and in contained environments. Design followed by specifications and graphic details will be produced to implement these practices. Techniques for tree preservation and land reclamation/ revegetation will also be discussed.

497 Independent Study in Landscape Architecture
Fall or spring. 1-5 credits; may be repeated for credit. S-U grades optional.
Staff.
Work on special topics by individuals or small groups.

501 Design, Composition, and Theory
Fall. 6 credits. Limited to graduate students.
Cost of drafting supplies about $200. Field trip $200.
L. Mirin.

502 Design, Composition, and Theory
Spring. 6 credits. Limited to graduate students.
Cost of drafting supplies, about $200.
Lecs, M W F 1:25; studios, M W F 2:30-4:25. T. Johnson.
The studio will focus on the spatial design of project-scale site development. Students will develop their expertise in applying the design theory, vocabulary, and graphic expression introduced in LA 501.

505 Graphic Communication I
Fall. 3 credits. Prerequisites: concurrent enrollment in LA 501 or permission of instructor.
Lecs, T R 9:05; studios, T R 10:10-12:05. T. Johnson.
Basic skills in graphic presentation, including pencil-and-ink drawing and drafting techniques applicable to landscape architecture projects. Freehand drawing, orthographic projection, axonometric projection, and lettering are covered in the course.
506 Graphic Communication II
Spring. 3 credits. Prerequisites: LA 505 and concurrent enrollment in LA 502 or permission of instructor.
Lecs, TR 9:05; studios, TR 10:10-12:05.
An advanced graphics studio focusing upon color techniques, perspective sketching, freehand drawing, and analytical diagrams.

*520 Contemporary Issues in Landscape Architecture
Fall. 2 credits. L. Mirin.
*Offered through the College of Architecture, Art, and Planning.

*521 History of European Landscape Architecture
Spring. 3 credits.

*522 History of American Landscape Architecture
Fall. 3 credits.
L. Mirin.

531 Regional Landscape Planning I
Fall. 4 credits. Prerequisite: permission of instructor.
Lecs, TR F 9:05 plus 1 hour disc to be arranged. A. S. Lieberman.
Landscape ecology as a basis for regional landscape planning. Regional landscape planning strategies and methods that have been developed and employed in North America, Europe, Australia, and the Middle East. This course is intended to provide a base for understanding the utilization of landscape ecological knowledge in the planning process. It is presented through a series of lectures, readings, class discussions, exercises, and review of case studies. The course is directed to graduate students in landscape architecture, architecture, city and regional planning, ecology, international studies, international agriculture and rural development, and natural resources.

610 Site Engineering for Landscape Architects
Fall. 4 credits.
Lec, M W F 9:05; studios M W Th 10:10-12:05.
M. I. Adleman.
Lectures and studio projects focusing on the development of a working knowledge of site grading, earthwork, storm-water management, and road alignment.

612 Site Construction
Spring. 4 credits. Prerequisite: permission of instructor.
Lecs, M W 9:05; studios, TR 9:05-11.
P. J. Trowbridge.
Construction materials, specifications, cost estimates, and methods used by landscape architects in project implementation. The course includes lectures, studio problems, and development of construction documentation for a selected project.

690 Independent Study in Landscape Ecology and Regional Landscape Planning
Fall. 1–3 credits. Limited to 7 students.
Prerequisite: permission of instructor. S-U grades optional.
Hours to be arranged. A. S. Lieberman.
This course is designed to allow students who have taken LA 531 to engage in advanced readings and research in the human ecosystem science of landscape ecology. Also designed for other students who wish to gain familiarity with the conceptual and practical tools offered by landscape ecology. Open to graduate students in landscape architecture, city and regional planning, ecology, international studies, international agriculture and rural development, and natural resources. The course allows participants to engage in research or study leading to thesis preparation.

701 Natural Systems and Planting Design Studio
Fall. 6 credits. Limited to graduate students.
Cost of drafting supplies, about $200; expenses for field trip, about $200.
P. J. Trowbridge.
Course participants are engaged in the analysis and design of various types of projects at the site scale. Projects include parks, housing projects, and commercial programs.

601 Project Planning and Application
Fall. 6 credits. Limited to graduate students.
Cost of supplies, about $200; expenses for field trip, about $200.
Lecs, M W F 1:25; studios, M W F 2:30–4:25. Required field trip.
P. J. Trowbridge.
Course participants are engaged in the analysis and design of various types of projects at the site scale. Projects include parks, housing projects, and commercial programs.

602 Urban Design and Planning (also City and Regional Planning 555)
Spring. 6 credits. Limited to graduate students.
Cost of drafting supplies, about $200.
Lecs, M TR F 1:25; studios, M TR 2:30–4:25.
R. T. Trancik and staff.
Application of urban-design and town-planning techniques to specific contemporary problems of city environments. Issues of urbanism are investigated and applied to physical design interventions and spatial typologies involving the street, square, block, garden, and park systems. Urban land-use development and public and private implementation of urban-design plans are examined. This is a specially arranged collaborative studio with the Department of City and Regional Planning.
*Offered through the College of Architecture, Art, and Planning.

620 Site Planning
Fall or spring. 9 credits.
Hours to be arranged. Staff.
Independent research, under faculty guidance leading to the development of a comprehensive and defensible design or study related to the field of landscape architecture. Work is expected to be completed in final semester of residency.

800 Master’s Thesis in Landscape Architecture
Fall or spring. 9 credits.
Hours to be arranged. Staff.
Independent research, under faculty guidance leading to the development of a comprehensive and defensible design or study related to the field of landscape architecture. Work is expected to be completed in final semester of residency.

FOOD SCIENCE

100 Introductory Food Science
Fall. 3 credits.
Lec, M W F 10:10. N. N. Potter.
A comprehensive introduction to food science and technology—its scope, principles, and practices. Topics are constituent properties; methods of preservation; the major food groups, including their handling and processing; and current problems such as chemical additives and world feeding needs. Interrelations between chemical and physical properties, processing, nutrition, and food quality are stressed.

150 Food Choices and Issues
Spring. 2 credits. S-U grades optional.
This course provides nonmajors with the knowledge they need to make appropriate food choices. Lectures will emphasize the concepts necessary for selecting nutritious diets and interpreting popular nutrition literature, the impact of food science and technology on food choices, the characteristics of the major food commodity groups, and current issues affecting food quality and safety. The course is designed to provide students with practical and useful information about the foods they eat.

210 Food Analysis
Spring. 3 credits. Prerequisite: Chemistry 104 or 208.
Lecs, M F 12:20; lab, M or F 1:25–4:25.
J. W. Sherbon.
Introduces tests used by food analysts for fats, proteins, carbohydrates, and selected minor nutrients. Emphasis is on understanding and use of good analytical techniques, including gravimetric, volumetric, and spectrophotometric methods. A special project for the total analysis of a complex food provides experience in technique selection, work scheduling, and execution.

220 Food Science for Industry
Fall. 2 credits.
Lec and lab, F 12:20–4:25.
J. W. Sherbon.
The course involves practice in the production of selected food items (including processed meat, baked goods, and confections). Students will investigate some processing factors affecting quality. Half-day (2–3) and longer (1–2) field trips to commercial plants producing these same products are used to illustrate the application of the technologies being studied.
An interdisciplinary course designed for all undergraduate and graduate students in ALS that describes postharvest food losses and methods to reduce the loss. Topics include storage and care of unprocessed and minimally processed foods such as cereal grains, fruits, vegetables, tubers, and fish; biology and control of fungi, insects, and vertebrates in foods; chemical causes of quality loss; simple and complex technologies of extraction and processing; and effects of climate; and economic and social factors affecting food preservation and storage. Emphasis is given to the problems in developing countries.

311 Milk and Frozen Desserts
Fall. 2 credits. Prerequisite: Food Science 322 or permission of instructor. Offered alternate years.

Deals with the principles and practices of processing fluid milk products and frozen desserts. The chemical, microbiological, and technological aspects of processing dairy products are considered. Emphasis will be upon product quality and recognition of factors affecting it.

312 Technology of Poultry, Fish, and Other Meats
Fall. 3 credits. Prerequisite: organic chemistry.

Intended to give a unified introduction to the food technology of poultry, seafood, and other meats and to relate the underlying chemistry, biochemistry, and physiology of muscle to the technologies of extraction, processing, and handling of meats and related products. A field trip provides an additional experiential learning opportunity.

321 Food Engineering I
Fall. 4 credits. Prerequisites: physics and Food Science 100.

Intended to give science students an introduction to the engineering aspects of food processes and equipment. Emphasis on the fundamental concepts of momentum, heat, and mass-transfer processes.

322 Unit Operations in Food Processing I
Spring. 3 credits. Prerequisites: Food Science 100 and 321 and Microbiology 280 and 291.

Lee, TR 10:10; lab, T 1:25-4:25. Staff.

Deals with the principles and practices of concentration, drying, and freezing applied to foods. Current processing methods and their relations to the chemistry, microbiology, and technology of raw materials and final products are discussed.

331 Statistical Quality Control of Food Processing
Spring. 1 credit. Prerequisite: Agricultural Economics 310 or equivalent.

An introduction to the statistical tools used to control quality in food-processing plants. Topics covered include estimating product variability, estimating shelf life, using control charts, and doing acceptance sampling.

351 Milk Quality
Spring. 1 credit. Prerequisite: Animal Science 350 or equivalent or permission of instructor.

Focuses on the important aspects of farm sanitation and milk handling as they affect milk flavor and quality. The course is an overview of quality control tests, basic microbiology, cleaning and sanitizing, and special problems in manufacturing and marketing fresh and storable dairy products.

394 Food Microbiology Lectures
Fall. 2 credits. Prerequisites: Microbiology 290 and 291.

The major families of microorganisms of importance in foods are studied systematically, with emphasis on the roles of those organisms in food preservation, food fermentations, and public health.

395 Food Microbiology Laboratory
Fall. 2 credits. Graduate students must have permission of the instructor.

Work includes study of the physiological characteristics of representative food microorganisms, practice in using general and special methods for microbiological testing and control of food products, and practice in isolating and characterizing organisms of importance in foods.

396 Food Sanitation as Related to Public Health and Food Plant Processing
Spring. 2 credits. Prerequisite: Food Science 100.

Lee, TR 9:05. Staff.

Deals with measures essential in producing and processing wholesome and safe foods. Rules and regulations of the Food and Drug Administration, the U.S. Department of Agriculture, and other organizations important to the food industry are covered. Sanitation practices as they relate to plant construction, unit operation, and storage practices are discussed.

400 Senior Seminar in Food Science and Technology
Fall. 1 credit. Limited to seniors.

With assistance of faculty members, students complete a study of the literature on topics of current interest in food science and technology. Students make oral and written reports.

401 Concepts of Product Development
Spring. 2 credits. Prerequisite: Food Science 100 or equivalent. Offered alternate years. Not offered 1990-91.

A discussion of the sequence of events in developing and marketing new food products. Topics include packaging and labeling, food additive and ingredient regulations, taste panels, market testing, market research, and patents.

402 Product Development Laboratory
Spring. 2 credits. Limited to food science majors. Prerequisites: concurrent registration in Food Science 401 and permission of instructor. S-U grades optional. Offered alternate years. Not offered 1990-91.

Emphasis is on gaining practical experience in the development of new foods.

403 International Food Science and Development
Spring. 3 credits. Offered alternate years.

A critical evaluation of humanity's needs for food, especially in the developing world, and of the international food technologies, organizations, and policies necessary to meet such needs. Traditional methods and fermentation food processes of basic foods for specific developing countries are described.

404 Technology of Lipid Foods
Spring. 2 credits. Prerequisite: Biological Sciences 251. Offered alternate years.

Lec, M 12:20; lab, M 1:25-4:25.

J. W. Sherbon.

Sources and utilization of food fats and the technologies of extraction and processing will be studied. The functional properties of fats as food ingredients will be covered. Special features of the chemical and physical reactions of fats will be stressed throughout the term.

405 Waste Management and Energy Conservation
Spring. 2 credits. Prerequisite: FS 100 or its equivalent. Offered alternate years.

Field trips, laboratories, and demonstrations. Deals with the principles and practices related to managing, reducing, and reclaiming wastes from food plants and other unit operations important to the food industry. Selected types of methods used to conserve energy will be covered.

406 Food Processing Fermentations Lectures
Fall. 2 credits. Prerequisite: background in microbiology. Offered alternate years. Not offered 1990-91.

Lecs, TR 11:15. R. A. Ledford.

Principles and practices of lactic acid and alcoholic fermentation processes as they apply to cheeses, cultured dairy foods, meats, vegetables, wines, beers, and related products.

408 Food Processing Fermentations Laboratory
Fall. 2 credits. Enrollment limited. Prerequisite: concurrent registration in Food Science 406. Offered alternate years. Not offered 1990-91.

Lab, T 1:25-4:25. Staff.

Laboratory exercises and demonstrations in the making of cheeses and cultured dairy foods and related products. A field trip provides additional experience.

409 Food Chemistry
Spring. 4 credits. Prerequisite: introductory biochemistry.

Lecs, M W F 9:05; rec, to be announced. J. M. Regenstein, J. P. VanBuren.

Deals with the relationship between the composition and biochemical and physical properties of foods. The effects of chemical and biochemical interactions among the components of foods and of processing on the quality, functional attributes, and nutrient bioavailability are discussed. Reactions (e.g., Maillard browning, enzymatic, oxidative, hydrolytic, and thermal) are emphasized.

410 Food Science 75
410 Sensory Evaluations of Foods
Fall. 3 credits. Prerequisite: statistics.
Deals with the sensory techniques used in evaluating the flavor, color, and texture of foods and the evaluation of consumer acceptance. Includes methods for measuring these qualities, underlying psychological principles, statistical methods for analyzing results, and establishing a full-service sensory evaluation program.

411 Food Mycology
Fall. 3 credits. Prerequisite: Microbiology 290 or equivalent. Recommended: Microbiology 394. Offered alternate years.
To acquaint students with important fungi, from the standpoint of their beneficial as well as their harmful effects in food production, preservation, and spoilage. Laboratories deal with morphology, physiology, culture and isolation, identification of fungi, and isolation and quantification of fungal toxins.

415 Principles of Food Packaging
Fall. 3 credits.
The chemical and physical properties and manufacture of the basic material used to construct packaging are discussed. Specific packages currently used for individual food commodity groups are also presented with emphasis on newer technologies. Economics, design, and regulation of food packaging are briefly presented.

416 Food Packaging Laboratory
Spring. 2 credits. Prerequisite: Food Science 415. Offered alternate years.
Lecs, T R 8; lab to be arranged. J. H. Hotchkiss.
A laboratory course designed to introduce several testing methods used to evaluate adequacy of food packaging. Emphases are on physical testing methods of packaging materials and the evaluation of total packages. Students will design and build a new food package.

419 Food Chemistry Laboratory
Spring. 2 credits. Prerequisites: Biological Sciences 330 or 331 and concurrent registration in Food Science 419. Lab, W 12:20–4:25. D. D. Miller.
Intended to complement Food Science 409 in developing an understanding of the chemistry of food. Laboratory exercises deal with the chemical properties of food components and changes these components undergo in processing and storage. The relationship between the chemical composition of foods and functional, nutritional, and organoleptic properties is stressed.

420 Nutritional Aspects of Raw and Processed Foods [also Nutritional Sciences 420]
Fall. 3 credits. Prerequisites: organic chemistry and Food Science 100 or Nutritional Sciences 115. S-U grades optional. Not offered 1990-91.
An evaluation of factors affecting the nutritional quality of foods and diets. Nutritional quality is defined. Methods and approaches for assessing nutritional quality are presented. Factors that may alter the nutritional quality of foods and food supplies (e.g., agricultural practices, processing, storage, cooking, government regulations, new technologies, fortification) are discussed.

421 Unit Operations in Food Processing II
Fall. 3 credits. Prerequisite: Food Science 322.
Principles and techniques of thermal processing of foods, with emphasis on kinetics of destruction of microorganisms and quality factors. Laboratory measurement of kinetic data, retort processing, and lethality evaluation.

422 Food Engineering II
Spring. 3 credits. Prerequisite: Food Science 421.
Application of transport phenomena to food processing unit operations. Engineering aspects of food plant operations and automation, with emphasis on future directions.

450 Fundamentals of Food Law
Fall. 2 credits. Not offered 1990-91.
Introduction to the complex array of federal and state statutes and regulations that control the processing, packaging, labeling, and distribution of food, including aspects of safety and nutritive value. Emphasis will be on the Food and Drug Administration and U.S. Department of Agriculture regulations, but the course also will refer to other regulatory agencies.

456 Advanced Concepts in Sensory Evaluation
Spring. 2 credits. Prerequisite: Food Science 410.
Readings and discussions of primary source materials in sensory evaluation, including historical perspectives, psychophysics, perceptual biases, human information processing. Concepts influencing detection of sensory differences, use of rating scales, and characterization of sensory properties will be emphasized.

496 Extension Methods in Food Science
Fall. 2 credits. Offered in alternate years.
A series of lectures, demonstrations, and practical exercises to improve the basic communication skills of the food scientist. The course will deal specifically with presenting scientific data in oral, visual, and written form.

497 Special Topics in Food Science
Fall or spring. 3 credits maximum. Prerequisite: permission of instructor. S-U grades optional.
Staff.
For the food science student. May include individual tutorial study, a special lecture topic selected by a professor or a group of students, or selected lectures of a course already offered. As topics may be changed, the course may be repeated for credit.

498 Undergraduate Teaching Experience
Fall or spring. 3 credits maximum. Prerequisite: permission of instructor. S-U grades only.
Staff.
Students assist in teaching a course appropriate to their previous training. Students will meet with a discussion or laboratory section and will regularly discuss objectives with the course instructor.

499 Undergraduate Research in Food Science
Fall or spring. 4 credits maximum. S-U grades optional. Students must attach to their course enrollment materials written permission from the staff member who will supervise the work and assign the grade. Except for students enrolled in the honors program, credit will be limited to 4 credits total.
Hours to be arranged. Staff.
Independent study.

600 Seminar
Fall or spring. 1 credit. Required of all food science graduate students. S-U grades only.
T 4:30.

601 Food Protein Chemistry
Fall. 3 credits. Offered alternate years.
Limited to graduate students and to seniors with permission of instructor. Prerequisite: Food Science 409 or equivalent.
The chemistry and physical chemistry of proteins are discussed critically with respect to current methods of characterizing and purifying proteins. Food protein functionality is emphasized.

602 Computers in Food Laboratories
Fall. 3 credits. Prerequisite: introductory physics.
Lecs, T 12:20, 2 labs per week, hours to be arranged. G. Houghton.
An introduction to computers as tools for data acquisition, process control, and data analysis in food science. Independently scheduled labs will teach basic analog and digital electronics, computer function and programming, the interfacing of computers with laboratory and industrial equipment, and the use of data analysis software. A background in computers or electronics is not required.

604 Chemistry of Dairy Products
Fall. 2 credits. Limited to 16 students.
Prerequisites: organic chemistry, biochemistry, knowledge of dairy-product manufacturing procedures, and permission of instructor. Offered alternate years.
A detailed study of milk constituents and their properties. Properties of various milk constituents are related to observed physical and chemical changes that occur in dairy products during and after processing. This course will emphasize current research in dairy chemistry.

605 Physical Chemistry of Food Components
Fall. 3 credits. Prerequisite: an undergraduate course in physical chemistry. Offered alternate years.
This course will cover the physical properties of food molecules. Emphasis will be placed on the molecular basis of structural characteristics, colloidal properties, molecular interactions; foams, gels, and water binding of foods.

606 Instrumental Methods
Fall. 3 credits. Prerequisite: permission of instructor. Offered alternate years.
Lecs, M W F 8; lab, M 1:25–3:20, alternate weeks. J. W. Sherbon.
Deals with instrumental methods widely used in research and industry. Includes chromatography, spectroscopy, electrophoresis, and thermal analysis. The stress is on the theoretical and practical aspects of the material presented. After the introduction of a
technique, students will schedule laboratory time at their convenience.

[607] Advanced Food Microbiology
Spring. 2 credits. Prerequisites: food microbiology, genetics (preferred). Offered alternate years. Not offered 1990-91.
Lec, M W 11:15. C. A. Bati.
Primary emphasis will be to review new methods for detecting microorganisms and their products by DNA-DNA hybridization, monoclonal antibodies, etc. The theory and application of genetic engineering for improvement of microorganisms used in the food and other industries will be addressed.

[609] Rheology
Spring. 3 credits. Prerequisites: Food Science 321 and 605 or permission of instructor. Not offered 1990-91.
Fundamental concepts of rheology applied to foods, with emphasis on the relations between molecular structure and rheological behavior. The laboratory will cover the main rheological techniques. Examples of rheological behavior of gels, suspensions, emulsions, doughs.

610 Introductory Chemical and Environmental Toxicology (also Toxicology 610)
Fall. 3 credits. Prerequisites: biochemistry and animal physiology.
Lec, M W F 11:15. Staff.
Introduction to the concepts and essentials of toxicology. The various biological responses to toxicants and the in vivo and in vitro methods of assessing toxicity, as well as the role of epidemiology, will be discussed. The chemical and biological factors that affect toxicity and specific sources of toxicants, including air pollution, agriculture, industrial processes, foods, naturally occurring toxicants, and social poisons will be presented. Regulation of toxic materials will be introduced.

615 Secondary Plant Metabolites in Foods
Fall. 1 credit. Prerequisite: Biological Sciences 330 or 351. Offered alternate years.
Lec, F 9:05. G. Hrazdina.
Deals with the chemistry and biochemistry of secondary plant metabolites (chlorophyll, lignin, flavonoids, alkaloids, terpenes, carotenoids, steroids, and cyanogenic glycosides) and their importance to food products. Emphasis is on the chemical and biochemical properties of these compounds, their occurrence in edible plants, their reactions, and influence on food products.

620 Food Carbohydrates (also Nutritional Sciences 620)
Spring. 2 credits. Limited to qualified seniors and graduate students. Prerequisite: Biological Sciences 330 or equivalent. Offered alternate years. Not offered 1990-91.
A consideration of the chemistry of carbohydrates, including sugars, starches, pectins, hemicelluloses, gums, and other complex carbohydrates. Emphasis is on the intrinsic chemistry and functionality in food systems and the changes occurring during food processing and storage.

665 Engineering Properties of Foods (also Agricultural and Biological Engineering 665)
Fall. 2 credits. Prerequisite: course in transport processes or unit operations as applied to foods, or permission of instructor. Offered alternate years.
Theories and methods of measurement and prediction of rheological, thermal, and mass transport properties of foods and biomaterial systems. Emphasis is on physical-mathematical basis of measurement as well as the prediction processes. Examples of appropriate use of these properties in engineering design and analysis of food processes will also be provided.

800 Research
Fall or spring. Credit to be arranged. Maximum credit, 10/semester. Limited to master's and doctoral candidates with permission of the graduate field member concerned. S-U grades only.

Related Courses in Other Departments
Computing in Agricultural and Biological Engineering (ABEN 151)
Food Engineering: Design of Equipment and Processes (ABEN 466)
Marketing (Agricultural Economics 240)
Food Industry Management (Agricultural Economics 443)
Meat Science (Animal Science 290)
Commercial Meat Processing (Animal Science 490)
Advanced General Microbiology Lectures (Microbiology 390)
Postharvest Physiology and Storage of Horticultural Crops (Horticultural Sciences 415)
Practical Aspects of Postharvest Handling of Horticultural Crops (Horticultural Sciences 325)
Tropical and Subtropical Fruits (Horticultural Sciences 308)

HORTICULTURAL SCIENCES
Department Chairs
Ornamental Horticulture: G. E. Ewing
Horticultural Sciences courses at Cornell University are taught by the faculties of the three departments listed above and the Department of Horticultural Sciences at the N.Y.S. Agricultural Experiment Station at Geneva. Descriptions of each course appear under the department whose name appears in parentheses after the horticultural sciences course number below (e.g., the description for Horticultural Science 200 appears under Pomology).

Horticultural Sciences Courses
101 (FOH) Introduction to Horticultural Science
102 (VC) General Horticulture
200 (POM) Introductory Pomology
205 (FOH) Floral Design: Introduction
210 (FOH) Floral Design: Intermediate
220 (VC) Vegetable Types and Identification
225 (VC) Commercial Vegetable Crops
230 (FOH) Woody Plant Materials
243 (FOH) (also Biological Sciences 243) Taxonomy of Cultivated Plants
300 (FOH) Garden and Interior Plants I
301 (FOH) Garden and Interior Plants II
308 (POM) Tropical and Subtropical Fruits
325 (VC) Practical Aspects of Postharvest Handling of Horticultural Crops
330 (FOH) Turfgrass Management
335 (FOH) Woody Plant Materials for Landscape Use
400 (FOH) Principles of Plant Propagation
405 (FOH) Physiology of Horticultural Plants
410 (FOH) Principles of Florist Crop Production
411 (FOH) Greenhouse Production Management
415 (FOH, VC, POM) Postharvest Physiology and Storage of Horticultural Crops
420 (FOH) Principles of Nursery Crop Production
425 (FOH) Horticultural Sales and Service Businesses
430 (FOH) Special Topics in Ornamental Plants
435 (FOH) Landscape Management
440 (FOH) Turfgrass Management
442 (POM) Small Fruits
444 (POM) Viticulture
445 (POM) Temperate Tree Fruits
450 (POM) Soil Management and Nutrition of Perennial Crops
455 (VC) Vegetable Crop Physiology
460 (VC) Plant-Plant Interactions
465 (VC) Vegetable Varieties and Their Evaluation
470 (POM) Special Topics in Pomology
495 (FOH, POM, VC) Undergraduate Seminar
496 (FOH, VC) Internship in Horticultural Sciences
497 (FOH, POM, VC) Undergraduate Experience
498 (FOH, VC) Undergraduate Teaching Experience
499 (FOH, POM, VC) Undergraduate Research
500 (FOH, POM, VC) Master of Professional Studies (Agriculture) Project
600 Seminar: International Agriculture
Fall and spring. No credit. S-U grades only.
Third and fourth W of each month, 4–5.
Staff.
The seminar focuses on developing an
understanding of the nature and interrelatedness
of agricultural development and the social sciences,
plant and animal sciences, foods and nutrition,
and natural resources.

602 Agriculture in the Developing Nations
Spring. 3 credits. Prerequisites: International
Agriculture 402 and permission of instructors.
Cost of field-study trip includes air fare and
approximately $450 for lodging, meals, and
personal expenses.
T R 2:30–4:25 until midterm only.
W. R. Comman and staff.
Oriented to provide students an opportunity to
observe agricultural development in a tropical
environment and promote interdisciplinary
analysis, design, and administration of training
and rural development. Specific content varies
each semester.

603 Administration of Agricultural and
Rural Development (also Government 692)
Spring. 4 credits.
T 2:30–5:30. E. B. Oyer, N. T. Uphoff,
L. W. Zuidema.
An intercollege course designed to provide
graduate students with a multidisciplinary
perspective on the administration of agricul-
tural and rural development activities in
developing countries. The course is oriented
to students trained in agricultural and social
sciences who are likely to occupy administrative
duties during their professional careers.

650 Special Topics in International
Agricultural and Rural Development
Fall and spring. 1–3 credits.
Staff.
A seminar on current themes of agricultural
and rural development. Specific content varies
each semester.

685 Training and Development: Theory
and Practice (also Communication 685,
Education 685 and Industrial
and Labor Relations 658)
Spring and summer. 4 credits. S-U grades
optional. Charge for materials $45.
F 9:05–12:05. At Communication
Graduate Center. R. Colle, D. Deshler,
W. W. Frank.
Analysis, design, and administration of training
programs for the development of human
resources in small-farm agriculture, rural health
and nutrition, literacy as nonformal education,
and general community development.
Designed for scientists, administrators,
educator-trainers, and social organizers in rural
and agricultural development programs in the
U.S. and abroad.

695 International Nutrition, Agriculture,
and Development Policy (also
Nutritional Sciences 695)
Spring. 1 credit.
Hours to be arranged. T. Brun.
A course concentrating on the major issues in
food and nutrition policies as they relate to
agriculture, including Africa’s nutritional and
agricultural decline, lessons from socialist
countries (China and Vietnam), the cash-
versus food-crop debate, land reform, Green
Revolution, and nutrition impact of agricultural
programs. Emphasis will be on agricultural
policies leading to growth with equity.

703 Seminar for Special Projects in
Agricultural and Rural Development
Spring. 1 credit. Required for graduate
students enrolled in the M.P.S. (Agr.) degree
program and majoring in international
agricultural and rural development; others with
permission of the program director. S-U grades
only.
The seminar provides students with the
opportunity to present their special projects.
It also serves as a forum for discussion of current
issues in low-income agricultural and rural
development, with particular attention to
interdisciplinary complexities.

Related Courses in Other Departments
Introduction to Global Economic Issues
(Agricultural Economics 100)
Contemporary Issues Seminar: Development
in Southern Africa (Agricultural Economics
492, Education 492)
Economics of Agricultural Development
(Agricultural Economics 464)
Food, Population, and Employment
(Agricultural Economics 660)
Microeconomic Issues in Agricultural De-
development (Agricultural Economics 664)
Seminar on Agricultural Trade Policy (Ag-
icultural Economics 730)
Tropical Livestock Production (Animal
Science 400)
Tropical Forages (Animal Sciences 403)
Southeast Asia Seminar: Country Seminar
(Asian Studies 601 and 602)
Ethnobotany (Biological Sciences 246)
Food, Agriculture, and Society (Biological
Sciences 469)
Seminar in International Planning (City
and Regional Planning 671)
[Seminars in Policy Planning in Developing
Nations: Technology Transfer and
Adaptation (City and Regional Planning
772) Not offered 1990–91.]
Seminar in Project Planning in Developing
Countries (City and Regional Planning
773)
Science, Technology, and Development
(City and Regional Planning 774)
Intercultural and Development Communi-
cation (Communication 612)
Communication in the Developing
Nations (Communication 624)
Planning Educational Systems (Education
678)
Designing Extension and Continuing
Education Programs (Education 681)
Community Education and Development
(Education 682)
Behavioral Change in International Rural
Modernization (Education 782)
Comparative Extension Education Systems
(Education 783)
Postharvest Food Systems (Food Science
247)
International Food Sciences and Development (Food Science 403)
Ethics and Public Life (Philosophy 247)
Political Economy of Change: Rural Development in the Third World (Government 648)
Regional Landscape Planning I (Landscape Architecture 531)
International Environmental Issues (Natural Resources 400)
Religion, Ethics, and the Environment (Natural Resources 407)
National and International Food Economics (Nuritional Sciences 457)
International Nutrition Problems, Policy, and Programs (Nutritional Sciences 680)
Seminar in International Nutrition and Development Policy (Nutritional Sciences 695)
International Nutrition Seminar (Nutritional Sciences 698)
Special Topics in International Nutrition (Nutritional Sciences 699)
Introduction to Plant Breeding (Plant Breeding 201)
Plant Diseases in Tropical Agriculture (Plant Pathology 655)
Rural Sociology and Agrarian Problems (Rural Sociology 205)
Social and Demographic Changes in Asia (Rural Sociology 439)
Contemporary Sociological Theories of Development (Rural Sociology 606)
Design and Data Analysis in Development Research (Rural Sociology 715)
Social Movements in Agrarian Society (Rural Sociology 723)
Sociotechnical Aspects of Irrigation (Rural Sociology 754, Agricultural Economics 754, and Agricultural and Biological Engineering 754)
Geography and Appraisal of Soils of the Tropics (Soil, Crop, and Atmospheric Sciences 471)
Ecology of Agricultural Systems (Soil, Crop, and Atmospheric Sciences 473, and Biological Sciences 472)

LANDSCAPE ARCHITECTURE
The Landscape Architecture Program at Cornell is sponsored by the College of Agriculture and Life Sciences through the Department of Floriculture and Ornamental Horticulture and the College of Architecture, Art, and Planning. For course descriptions, see the listings under the Department of Floriculture and Ornamental Horticulture.

MICROBIOLOGY

Microbiology is a program of study in the Division of Biological Sciences beginning Fall 1990. Information on the requirements for the program of study in microbiology is available in 200 Stimson Hall.

290 General Microbiology Lectures
Fall, spring, or summer. 3 credits. Prerequisites: Biological Sciences 101-102 and 103-104 and Chemistry 104 or 208, or equivalent. Recommended: concurrent registration in Microbiology 291.
A comprehensive overview of the biology of microorganisms, with emphasis on bacteria. The biology of eukaryotic microorganisms and viruses is also discussed. Topics include microbial cell structure and function, physiology and metabolism, genetics, diversity, and ecology. Applied aspects of microbiology are also covered such as biotechnology, immunology, and the role of microorganisms in environmental processes and disease.

291 General Microbiology Laboratory
Fall or spring, 2 credits. Summer, 2 or 3 credits. Prerequisite: Microbiology 290 (may be taken concurrently). M W 2-4:25 or 7-9:30 p.m. (spring only), or T R 8-10:30, 11:15-1:45, or 2-4:25. C. M. Rehkugler.
A study of the basic principles and techniques of laboratory practice in microbiology, and fundamentals necessary for further work in the subject.

292 General Microbiology Discussion
Spring. 1 credit. Prerequisite: Microbiology 290 (may be taken concurrently). S-U grades only.
Hours to be arranged. C. M. Rehkugler and E. Seacord.
A series of discussion groups in specialized areas of microbiology to complement Microbiology 290.

300 Seminar in Microbiology (formerly Microbiology 400)
Spring. 1 credit. Limited to undergraduate students specializing in microbiology. Required for microbiology students in their sophomore year. S-U grades only.
A series of lectures and seminars designed to present students with laboratory safety training and acquaint them with research projects in microbiology on Cornell campus.

317 Tissue Culture Techniques and Applications (formerly Microbiology 314)
Fall. 2 credits. Prerequisites: Microbiology 290 and 291 or permission of instructor. Not offered 1990-91.
P 1:25-2:30, lab exercises with follow-up work done independently, F 2:30-4:30. C. M. Rehkugler.
A series of lectures and demonstrations dealing with cell culture methods especially those required to culture cells of different cells of animal from different tissue origins. The application of cell culture to the study of bacterial diseases, virus replication, and the production of biologicals is considered.

398 Environmental Microbiology (also SCAS 398)
Spring. 3 credits. Prerequisites: Microbiology 290 or Biological Sciences 261 or Soil, Crop, and Atmospheric Sciences 260 or permission of instructor. Offered alternate year.
Behavior and function of microorganisms in natural environments and the role of microorganisms in transformation of pollutants.

406 Clinical Microbiology (formerly Microbiology 412/413)
Fall or spring. Credit to be arranged. Prerequisite: permission of instructor.
Hours to be arranged. R. P. Mortlock.
Training and practical experience in clinical microbiology in the hospital laboratory of the Cornell Medical College and New York Hospital in New York City. Emphasis will be upon developing students' capability in the isolation and rapid identification of organisms from various types of clinical specimens. This course is intended to prepare the student for state and federal licensing in various areas of clinical microbiology.

415 Bacterial Diversity Lectures
(formerly Microbiology 390/490) Fall. 3 credits. Prerequisites: Microbiology 290 and 291 and Biological Sciences 330/351. May be taken without Microbiology 417.
A consideration of the physiology, ecology, genetics, and practical potential of important groups of bacteria. Topics include molecular methods for determining bacterial phylogeny and taxonomy, the evolution of diverse mechanisms of energy conservation, fixation of carbon and nitrogen, and adaptation to extreme environments.

416 Microbial Physiology Lectures
(formerly Microbiology 480) Spring. 3 credits. Prerequisites: Microbiology 290 and 291 or equivalent and biochemistry. Micro 415 recommended. S-U grades optional for students not specializing in microbiology.
The concern is with the physiological functions of microorganisms. Consideration is given to chemical structure, regulation, growth, and the energy metabolism of prokaryotic organisms. Special attention is given to those aspects of microbial metabolism and carbohydrate catabolism not normally studied closely in biochemistry courses.

417 Bacterial Diversity Laboratory
(formerly Microbiology 391/491) Fall. 2 credits. Prerequisites: Microbiology 415 (may be taken concurrently) and permission of instructor. M W 2-4:25. S. H. Zinder.
Intended as a laboratory complementing Microbiology 415. The enrichment, isolation, characterization, and study of bacteria included in Microbiology 415.

418 Microbial Physiology Laboratory
(formerly Microbiology 481) Spring. 3 credits. Limited to 12 students. Prerequisites: Microbiology 416 (may be taken concurrently) and permission of instructor. S-U grades optional.
The laboratory component of Microbiology 416. Deals with laboratory experiments and techniques used in studying the enzymology and physiological characteristics of microorganisms.
451 Structure and Function of Bacterial Cells (formerly Microbiology 484)
Fall. 3 credits. Prerequisites: Microbiology 290 and biotechnology or permission of instructor. Microbiology 415 recommended. S-U grades optional. Offered alternate years. M W F 10:10. W. C. Ghiorse. Morphology, ultrastructure, macromolecular organization and life cycles of bacterial cells are considered with regard to chemical composition and physiological and ecological function of cellular components.

453 Bacterial Cytology Laboratory (formerly Microbiology 485)
Fall. 1 or 2 credits. Enrollment limited. Prerequisites: Microbiology 451 or concurrent enrollment, and permission of instructor. Offered alternate years. Hours to be arranged. W. C. Ghiorse. Theory and proper use of light and electron microscopes; cytological and cytochemical techniques for light and electron microscopy that are applicable to the study of bacterial structure and function.

498 Teaching Experience
Fall or spring. 1–3 credits. Enrollment limited. Prerequisites: previous enrollment in the course to be taught or equivalent, and written permission of instructor. S-U grades with permission of instructor. Hours to be arranged. Staff. Designed to give qualified undergraduate students teaching experience through actual involvement in planning and teaching microbiology courses under supervision of departmental faculty. This experience may include leading a discussion group; preparing, assisting, or teaching a microbiology laboratory, or tutorial course in microbiology. Students currently offering such experience include 291 and 292. This course cannot be used to fulfill the specialization requirement.

499 Research in Microbiology
Fall or spring. 1–3 credits. Undergraduates must attach to their course enrollment materials written permission of the staff member who will supervise the work and assign the grade. This course cannot be used to fulfill the specialization requirement. Hours to be arranged. Staff.

652 Molecular Plant-Microbe Interactions (also Biological Sciences 652, section 04)
Spring. 1 credit. Prerequisite: Biological Sciences 653 (section 01). M W F 10:10 (12 lectures, dates to be announced). S. C. Winans and T. A. Lasure. Module 8 in Plant Molecular Biology series. Course will focus on the interactions of Agrobacteria and Rhizobium with plants. Topics on Agrobacteria-plant interactions include plant-host recognition mechanisms, T-DNA transfer process, oncogenesis, and use of Agrobacteria to produce transgenic plants. Topics on Rhizobium-plant interactions include regulation of nitrogenase activity and expression, organization and function of the sym plasmid, nodule development, plant genetics involved in plant-microbe interaction.

694 Genetic Aspects of Bacterial Diversity
Spring. 3 credits. Prerequisites: Biological Sciences 485 or equivalent. M W 3:30–4:45. S. C. Winans. Selected topics in bacterial diversity, with strong emphasis placed on underlying molecular mechanisms. Topics will include interactions between bacteria and plants and animals, prokaryotic developmental biology, biodegradation of xenobiotics, and synthesis of antibiotics.

695 Bacterial Genetics
Fall. 3 credits. Prerequisites: Biological Sciences 485 and 633 or permission of instructor. Lec, TR 10:10–11:25. V. J. Stewart. Current themes in bacterial genetics are considered in detail through examination of the primary literature. Topics include: recombinogenic and genetic exchange; transposons; mutagenesis and DNA repair; and pathway-specific and global regulation of gene expression. Emphasis is on coordinated studies that derive complementary information from both in vivo and in vitro techniques.

696 Advanced Bacterial Genetics
Offered by special arrangement; see instructor. 2 credits. Prerequisites: Microbiology 291, Biological Sciences 281, and written permission of instructor. Corequisite: Microbiology 695 or Biological Sciences 485. Not offered 1990–91. Hours to be arranged. V. J. Stewart. Theory and practice of prokaryotic genetics as applied to Escherichia coli. Topics include: isolating, characterizing, and mapping mutations; using transposons as mutagens and as linked selectable markers; constructing operon and gene fusions, and selected recombinant DNA methods for gene isolation and analysis.

795–796 Current Topics in Microbiology (formerly Microbiology 731–736)
Fall. 795. Spring. 796. 1/2 or 1 credit each topic. May be repeated for credit. Students registering for 1/2 credit should not fill in the credit-hour column on the optical-mark registration form; the computer is programmed to register students automatically for 1/2 credit. Designed primarily for graduate students in microbiology. Prerequisite: upper-level courses in microbiology. S-U grades only. Hours to be arranged. Staff. Lectures and seminars on special topics in microbiology.

797 Graduate Seminar in Microbiology (formerly Microbiology 791)
Fall and spring. 1 credit each semester. All students in the Graduate Field of Microbiology must enroll for at least their first three semesters in residence. Students will be expected to lead discussions on recent primary literature in microbiology. S-U grades only. Hours to be arranged. Staff.

798 Graduate Research Seminar in Microbiology (formerly Microbiology 792)
Fall and spring. 1 credit each semester. Required of all graduate students in microbiology; a seminar relating to the research activities of those enrolled. Students who have completed the Microbiology 791 series requirement are required to present a seminar concerning their research interests and activities at least once each year. S-U grades only. Hours to be arranged. Staff.

799 Microbiology Seminar (formerly Microbiology 699)
Fall and spring. 1 credit each semester. Required of all graduate students in the Department of Microbiology and open to all who are interested. Hours to be arranged. Staff.

Related Courses in Other Departments
Bioprocessing Applications in Agriculture (Agricultural and Biological Engineering 467)
Microbiology of the Rumen (Animal Science 607)
Introduction to Scanning Electron Microscopy (Biological Sciences 400)
Microbial Genetics, Lectures (Biological Sciences 485)
Microbial Genetics, Laboratory (Biological Sciences 487)
Introduction to Bioprocess Engineering (Chemical Engineering 643)
Controlled Cultivation of Microbial Cells (Chemical Engineering 646)
Microbiology of Water and Wastewater (Civil and Environmental Engineering 651)
Insect Pathology (Entomology 453)
Food Microbiology Lectures (Food Science 394)
Food Microbiology Laboratory (Food Science 395)
Food Mycology (Food Science 411)
Advanced Food Microbiology (Food Science 607)
Intermediate Soil Science: Chemistry and Microbiology (Soil, Crop, and Atmospheric Sciences 364)
Advanced Soil Microbiology (Soil, Crop, and Atmospheric Sciences 666)
Basic Immunology, Lectures (Veterinary Medicine 315 and Biological Sciences 305)
Basic Immunology, Laboratory (Veterinary Medicine 316 and Biological Sciences 307)
Pathogenic Microbiology (Veterinary Medicine 317 and Biological Sciences 308)
Advanced Work in Bacteriology, Virology, or Immunology (Veterinary Medicine 707)
Advanced Animal Virology, Lectures (Veterinary Medicine 708)

NATURAL RESOURCES

100 Principles of Conservation
Fall. 3 credits. Limited to students specializing in natural resources. Not open to students who have passed Natural Resources 201. Lecs, M W F 9:05–11:05 disc to be arranged. R. T. Oglesby. The nature of natural resources, how they are managed, and their interactions with individuals and societies are considered. Case histories are used to illustrate both principles and practices. Emphasis will be on management of renewable resources based on ecological and cultural perspectives.
107 Microcomputing in Natural Resources Management
Spring. 3 credits. Prerequisite: Natural Resources 100 or concurrent registration in Natural Resources 201 or permission of instructor.
Lec: T 10:10; lab T R 2:30–5. R. Oglesby. Instruction and development of hands-on familiarity with hardware and software will focus on examples taken from problems of resource management. Computing topics covered include word processing, spreadsheet, and data base management. Students will learn use of both Macintosh and IBM equipment. This course is not open to those who have taken Education 247/447 or Agricultural and Biological Engineering 102.

201 Environmental Conservation
Spring. 3 credits.
Lecs, M W F 10:10; 1-hr disc to be arranged. T. J. Fahey. A survey course intended for students in any year and major intending to understand the major environmental problems facing the planet. A topical approach with representative case histories is taken. Topics include global climate change; population growth and resources; energy resources and alternatives; mineral resources and recycling; land use in urban and rural landscapes; air, water, and soil pollution; and endangered species and wildlands.

210 Introductory Field Biology
Fall. 4 credits. Limited to 45 students. Open to sophomores and juniors with an adviser in Natural Resources or by permission of instructor. Prerequisites: Biological Sciences 101 and 102 or equivalent. Cost of field trips, approximately $10. Lecs, W 9:50, labs, M W F 1:25–4:25. 2 overnight field trips required. T. A. Gavin. Introduction to methods of inventorying and identifying plants and animals. Approximately 150 species of vertebrates and 75 species of woody plants found in New York State are covered. Selected aspects of current ecological thinking, relevant to problems in assessment of the distribution and abundance of organisms, are stressed. The interaction of students with biological events in the field and accurate recording of these events are emphasized.

250 Introduction to Wildlife Biology
Spring, first third of term. 1 credit.
Lecs, M W F 8. T. A. Gavin. An introduction to biological topics relevant to informed management of wildlife, emphasis will be on the population as the unit of interest. An overview of the history of wildlife management in North America will illustrate the importance of the interaction between biological and nonbiological factors on wildlife. However, this course is about wildlife biology, not wildlife management, which is treated in Natural Resources 308 and 410.

251 Introduction to Fishery Biology
Spring, weeks 6–10. 1 credit.
Lecs, M W F 8. T. A. Gavin. Subject areas that form the basis of fishery biology are introduced by staff member working in that particular area. The areas included are limnology, insect biology, biology of fishes, genetics, life history, population biology, environmental impacts, policy, and management.

252 Introduction to Forest Science
Spring, last third of term. 1 credit. Prerequisite: Natural Resources 210 or permission of instructor.
Lecs, M W F 8. T. A. Gavin. Appreciation of forests as a natural resource. Introduction to the importance of ecology, tree biology, and environment as bases for forest management and silviculture. Emphasis is on the forests of the northeastern United States.

270 Bird Biology and Conservation
Spring. 2 credits.
Lecs, T R 11:15–12:05. C. Smith. A survey course for majors and nonmajors, focusing on birds and the ways they illustrate general principles of behavior, ecology, management, and conservation at the organism, population, and community levels. Topics covered will emphasize attributes of birds that can be observed directly by the student. Current resource-management issues relevant to birds will be explored in the context of common management practices, habitat management, tropical deforestation, the design and management of natural preserves, endangered species management, and the economic importance of bird study as an outdoor recreational activity.

271 Bird Biology and Conservation Laboratory
Spring. 1 credit. Concurrent enrollment in Natural Resources 270 required. At least six Saturday-morning field trips plus three indoor labs. C. Smith. A field-oriented course designed to teach skills of bird observation and identification based on the integration of field marking, songs and calls, and habitat cues. Topics covered will include the choice and effective use of field guides, binoculars, and other aids to bird identification; procedures for taking and organizing field notes; the relationships of birds to their habitats and to other birds; and methods and procedures for censusing and surveying songbird populations. Students are expected to provide their own binoculars for field use.

302 Forest Ecology
Fall. 4 credits. Cost of trip, no more than $20. Lecs, M W F 11:15; lab, M W F 12–4:25. 1 weekend trip through the Adirondacks or other forest region. T. J. Fahey. Analysis of the distribution, structure, and dynamics of forest ecosystems. All laboratory sessions in the field. One weekend field trip to the Adirondacks or other forest region.

303 Woodlot Management
Fall. 3 credits. Letter grades only.

304 Wildlife Ecology
Spring. 3 credits. Prerequisites: general biology and at least one course in computer programming or proficiency.
Lecs, M W F 11:15; lab to be arranged. A. Moen. This course focuses on the physiological, behavioral, and population characteristics of wild species, interactions among species, and their relationships with range characteristics and resources. Computer modeling is an integral part of the course.

305 Maple Syrup Production
Spring. 2 credits. Limited to 20 students. Prerequisite: permission of instructor required. Letter grades only.
T 12:20–4:25 (preliminary seminars followed by weekly half days of fieldwork during the maple season). J. W. Kelley. Students work in most phases of the Arnot Forest maple operation and learn modern sapcollecting techniques and quality control in making syrup.

306 Coastal and Oceanic Law and Policy
Summer. 2 credits. A special 1-week course offered at Cornell's Shoals Marine Laboratory (SML), on an island off Portsmouth, N.H. For more details and an application, consult the SML office, G14 Summer Hall. Estimated cost (includes tuition, room and board, and ferry transportation), $650. Daily lectures and discus for 1 week. T. A. Gavin. Introduction for persons interested in careers in management of marine or coastal resources or in the natural sciences. Subjects include law and policy related to ocean dumping, marine sanctuaries, environmental impact statements, water and air pollution, offshore gas and oil production, and territorial jurisdiction. Lectures on the status and history of law are accompanied by discussion of relevant policy and analysis of the efficacy of various legal techniques. A case study that requires extensive use of the laboratory's library and personnel is assigned. The week concludes with a mock hearing.

308 Natural Resources Management
Fall. 3 credits. Prerequisite: junior standing; introductory ecology or permission of instructor.
Lecs, M W F 10:10. B. A. Knuth. Management of natural resources with a focus on fish, wildlife, forest, and water resources. Emphasis is on concepts necessary to formulate and achieve specific management goals and objectives. Topics include an overview of natural resource planning processes and the management cycle; and organizational, environmental, social, and institutional dimensions of management. Focus is on management in the public domain directed toward multiple interests. Students will be assigned one case study issue for the term, on which all written and oral assignments will be based.

400 International Environmental Issues
Fall. 4 credits. Limited to 30 students. Prerequisite: junior standing or above.
Lecs, T R 10:10–12:05. R. J. McNeil. International aspects of the preservation and development of environmental and natural resources. Concepts include development, resource ownership, exploitation, compensation, and preservation. Cultural differences in attitudes and behavior toward environment. Management practices under different cultural, economic, and social systems. Will cover current issues such as acid precipitation, management of migratory whales, fish, and waterfowl, Antarctic development, global climate and energy issues; and preservation of tropical rainforests and endangered species. Lecture and discussion, term paper, and examinations. Priority to: seniors, a few graduate students, others providing best mix of backgrounds, others with special needs, natural resources majors.
401 Environmental and Natural Resources Policies
Fall or spring. 3 or 4 credits. Prerequisites: junior standing and participation in Cornell-in-Washington Program. Lab to be arranged. R. J. McNeil and staff.

Concepts and principles fundamental to the environmental policy process. Biological and ecological principles central to decision making in the natural resources arena, particularly at the national and international levels. Role of the legal system in the policy process; roles of citizen organizations, lobbyists, bureaucrats, legislators. Case studies, interviews with Washington officials, several short papers, one exam. A fourth credit available requires a more extensive written assignment and an oral presentation.

402 Natural Resources Policy, Planning, and Politics
Spring. 3 credits. Prerequisites: junior standing and permission of instructor.

Lec. January 2-week intersession; one 2-hr. orientation session in Dec. and four 2-hr. seminars in Jan. and Feb. R. J. McNeil and staff.

An introduction to the environmental policy process and its conceptual framework. Recognition of phenomena identified as natural resources or environmental problems and issues, steps leading to legislation or regulations to solve problems; implementation and evaluation stages; role of the legal system; roles of citizens, lobbyists, government actors. Case studies, presentations by and discussions with about twenty prominent Washington policy makers appearing as guest lecturers. Required interviews, term paper, oral reports. Several meetings in Ithaca before and after intensive January session in Washington.

406 Conducting Marine and Natural Resource Extension Programs
Spring. 3 credits. Lec and rec. One weekend field trip. B. T. Wilkins.

Extension programs stimulate and help citizens use current research knowledge to reach decisions on the management of natural resources. The course provides an overview of the constructs used in this emerging natural resource field, and gives students experience in components important in conducting such efforts.

407 Religion, Ethics, and the Environment
Spring. 3 credits. For juniors, seniors, and graduate students, others by permission only.

S-U grades optional. R. A. Baer.

A study of how religion (mainly Christianity and Judaism), philosophy, and ethics affect our understanding and treatment of nature. The terms religion, value, knowledge, nature, and the public interest are examined in detail. Particular themes include the structure of modern science, play and work, and human finitude and death. Also, responsibility to future generations, limiting growth and questions of distributive justice, and world population and global hunger.

410 Principles of Wildlife Management
Spring. 3 credits. Prerequisite: introductory biology, Natural Resources 304 (Wildlife Ecology) desirable. Junior, senior, graduate level standing.

MWF 9:05. A. N. Moen.

In-depth analyses of the ecological basis for decision making in wildlife management, computer simulations of management problems and effects of options, and preparation of management information systems.

414 Selected Topics in Wildlife Resource Policy
Spring. 2 credits. Intended for juniors, seniors, and graduate students. Prerequisite: Natural Resources 410 or equivalent or permission of instructor. Cost of field trips, no more than $25.

Time to be arranged. Several field trips usually taken weekdays; one overnight field trip to Albany. H. B. Brumsted.

A seminar devoted to analysis of selected current policy issues in wildlife management. Particular attention is given to citizen roles in policy development.

417 Wetland Resources
Summer, 1 week at Shoals. 1 credit. Not offered 1990–91.

R. A. Malecki.

For description, see listing under "Courses in Marine Science," in the section on the Division of Biological Sciences.

438 Fishery Management
Spring. 3 credits. Not offered 1990–91.

Lecs, TR 8 plus discus. C. C. Krueger.

Introduction to management as an adaptive process that focuses on achievement of goals. Coverage includes sport and commercial fisheries. Topics include setting goals and objectives, regulations, habitat management, population control, stocking, and management of trout, reservoirs, the Great Lakes, and Pacific halibut. Ecological, social, political, and economic aspects of those topics are discussed.

440 Fishery Science
Fall. 3 credits. For juniors and seniors majoring in fishery science; others by permission of instructor. Prerequisites: a year of statistics and calculus. Offered alternate years. Not offered 1990–91.

Principles and theories involved in dynamics of fish populations. Methods of obtaining and evaluating statistics of growth, population size, mortality, yield, and production are considered.

442 Techniques in Fishery Science
Fall. 5 credits. Limited to 15 upperclass and graduate fishery students. Cost of field trips, no more than $30.

TR 1.25–4.25; 1 or more weekend field trips. C. C. Krueger.

Emphasis is on methods of collecting data on attributes of fish populations and their habitat. Topics include passive and active fish-capture methods, tagging and marking, and physical and chemical habitat measurements. Assumptions and limitations inherent in data sets, research planning, and scientific report writing are also discussed. Several field trips provide hands-on experience in data collection on streams and lakes.

493 Research in Policy and Human Studies in Natural Resource Management
Fall or spring. Credit to be arranged. Prerequisite: permission of instructor. S-U grades optional.

494 Research in Fishery Science
Fall or spring. Credit to be arranged. S-U grades optional.

495 Research in Wildlife Science
Fall or spring. Credit to be arranged. Prerequisite: permission of instructor. S-U grades optional.

496 Research in Forestry
Fall or spring. Credit to be arranged. S-U grades; letter grade by permission of instructor. Hours to be arranged. T. J. Fahey, J. P. Lassonde, L. H. Weinstein.

498 Teaching in Natural Resources
Fall and spring. 1–4 credits. Prerequisite: permission of instructor.

Staff.

Course designed to give students an opportunity to obtain teaching experience by assisting in labs, field trips for designated sections, discussions, and grading. Students will gain insights into the organization, preparation, and execution of course plans through application and discussions with instructor.

500 Professional Projects—M.P.S.
Fall and spring. Credit to be arranged. Limited to graduate students working on professional master's projects. S-U grades only.

Staff.

501 Seminar on Selected Topics in Fishery Biology
Fall or spring. 1 credit. S-U grades optional. Hours to be arranged. Staff.

503 Habitat Ecology
Spring. 1 or 2 credits. Limited to 12 seniors and graduate students majoring in natural resources or biological sciences. Prerequisite: permission of instructor. Cost of field trips, no more than $20.

W 12-20.3. M. E. Richmond.

This course requires an understanding of broad ecological concepts relative to plant-wildlife interactions. The concepts of niche, habitat, and ecotope are addressed from the standpoint of island biogeographic principles, structural and spatial heterogeneity of the vegetation, community productivity, and temporal change. Major landforms and plant-animal communities of the northeastern United States will be discussed and visited during weekend field trips as scheduling permits. Paper required for 2-credit option.

504 Seminar on Selected Topics in Resource Policy and Management
Fall. 2 credits. S-U grades optional.

Hours to be arranged. Staff.

Primarily for graduate students with a major or minor in resource policy and planning and upper level undergraduates with a strong interest in policy analysis. Topics vary with staff involvement.
605 Marine Resources Policies
Spring. 2 credits. Prerequisite: at least one related course such as Natural Resources 308, 438; or permission of instructor. S-U grades optional.
LEC: MWF 1:30-3:30. B. T. Wilkins.
A seminar discussing the law and issues concerning current marine policy questions, such as coastal zone management, marine fish regulations, marine mammal protection, and wetland preservation.

[607 Ecotoxicology
Spring. 3 credits. Prerequisites: graduate or seniors. Censuses and two 300-level courses in chemistry, biochemistry, or toxicology. Not offered 1990-91.
Lectures, readings, and special guests focus on the principles of effects of toxic chemicals on natural ecosystems, their components, and processes. Major topics include fate and transport of chemicals (chemodynamics), comparative biochemical toxicology, ecosystem process analysis, simulation through mathematical and physical (microcosm) models, and relationships to regulation and environmental management.

608 Resource Policy and Administration
Fall. 3 credits. Prerequisite: graduate standing; juniors and seniors with instructor's permission.
An examination, through lectures, readings, and discussions, of policy, decision making, and administration relating to natural resource management in the public domain. Emphasis is on concepts relevant to policy formulation, implementation, and evaluation with specific applications from fisheries, wildlife, forest, and water resource management. Topics include natural resource policy makers, bureaucracies and organizational effectiveness, professionalism and ethics, policymaking processes and philosophies, and problem-solving and decision aids including public involvement, mediation, impact and risk assessment, benefit/cost analysis, and group decision processes.

610 Conservation Seminar
Fall and spring. No credit. All graduate students in natural resources are expected to participate.
HOURS TO BE ARRANGED. STAFF.

611 Seminar in Environmental Values
Fall. 3 credits. For graduate students, seniors, and juniors. S-U grades optional.
Moral concerns relative to agriculture and/or the environment. In successive years, the seminar will focus on such topics as (1) natural resources management and the concept of the public interest, (2) land use ethics, (3) formulating natural resource policy in a democratic and pluralistic society, and (4) responsibility to future generations.

612 Wildlife Science Seminar
Fall and spring. 1 credit. Prerequisite: permission of instructor. S-U grades optional.
HOURS TO BE ARRANGED. WILDLIFE SCIENCE FACULTY.
Discussion of individual research or current problems in wildlife science.

615 Seminar in Agroforestry
Spring. 2 credits. Prerequisites: senior or graduate standing and permission of instructor.
LEC: M 7-9 p.m. J. P. Lassoie.
An interdisciplinary course intended to introduce students to the general principles and types of agroforestry systems. Agronomic, forestry, socioeconomic, and institutional factors are considered through the use of case studies. Conceptual and methodological approaches to agroforestry research design and program development are stressed. A presentation during the seminar and a short library research paper are required of all enrolled.

616 Forest Science and Management Seminar
Fall/spring. 1 credit. Permission of instructor.
STAFF.
Selected readings and discussions of research and/or current problems in forest science and management.

[618 Current Topics: Environmental Toxicology
Fall. 2 credits. Prerequisites: graduate or senior standing in scientific discipline. Not offered 1990-91.
LEC: 2:30-4:25, day to be announced. J. W. Gillett.
A student-faculty colloquium on the theories and methodologies of ecological risk assessment of anthropogenic stresses, particularly toxic chemicals. Generic and site-specific chemical-specific assessments will be covered with attention to topical problems (e.g., Superfund, oil spills.)

800 Master's Thesis Research
Fall and spring. Credit to be arranged. Limited to graduate students working on master's thesis research. S-U grades only.
STAFF.

900 Ph.D. Thesis Research
Fall and spring. Credit to be arranged. Limited to graduate students working on Ph.D. thesis research. S-U grades only.
STAFF.

Related Courses in Other Departments
See department advisers and curriculum materials for information about other related courses.

Environmental Policy (Agriculture and Life Sciences 661, Biological Sciences 66, and Biology and Society 461)

Resource Economics (Agricultural Economics 100, 252, 322, 452, 631, 651, 652, 750)
The Vertebrates (Biological Sciences 274)

Limnology (Biological Sciences 462)
Mammalogy (Biological Sciences 471)

Ornithology (Biological Sciences 475)

Biology of Fishes (Biological Sciences 476)

Insect Biology (Entomology 212)

Public Administration (City and Regional Planning 634)

Policy Analysis (City and Regional Planning 720)

Soil Science (Soil, Crop, and Atmospheric Sciences 260, 361)

International Development (City and Regional Planning 777, Government 648)

Environmental Planning Law (Law 660, City and Regional Planning 653, 656)

Political Economy and Political Theory (City and Regional Planning 719, Government 428)

Philosophy 381—Philosophy of Science

PLANT BREEDING

Biometry courses are listed under "Statistics and Biomentry.'

201 Introduction to Plant Breeding
Spring. 4 credits. Prerequisite: one year of introductory biology.
The contributions of plant breeding to national and international development. An overview of genetics, breeding methods, systems, and operational procedures for producing commercial crop varieties are considered along with the major breeding objectives.

225 Plant Genetics
Spring. 4 credits. Prerequisite: one year of introductory biology or permission of instructor. Limited to 50 students. Not offered 1990-91.
LEC: MWF 9:05; lab, T or W 1:25; lab section assignments at first lecture. Labs start first week. M. A. Mutschler.
An overview of genetic principles as related to plant sciences. Mitosis and meiosis, gamete production, Mendelian inheritance, linkage and mapping, gene interaction, DNA as genetic material, genetic fine structure and gene regulation, gene recombination, extranuclear inheritance, environmental effect on phenotypic expression, gene mutation and chromosomal aberrations, variation in chromosome numbers or structure, tissue culture, and genetic engineering. Students conduct an independent inheritance project with Brassica campestris. The course may not be used to fulfill the genetics requirement for students in the Division of Biological Sciences.

401 Plant Cell and Tissue Culture
Fall. 3 credits. Prerequisites: a course in plant physiology, cell biology, or genetics, or permission of instructor.
Lectures and demonstrations dealing with the techniques of plant tissue, cell, protoplast, embryo, and anther culture and the applications of those techniques to biological and agricultural studies. Methods for plant improvement via manipulations of cultured cells will be discussed. Four or five written assignments and a term paper are required.
402 Plant Tissue Culture Laboratory
Fall. 1 credit. Enrollment limited. Prerequisites: Plant Breeding 401 (may be taken concurrently) and written permission of instructor.
W 1:25-4:25 plus 1 hr. to be arranged, alternate weeks. E. D. Earle. Laboratory exercises complementing Plant Breeding 401. Techniques for establishing, evaluating, and utilizing plant organ, embryo, callus, cell, protoplast, and anther cultures will be covered. Experiments will use a broad range of plant materials.

496 Internship in Plant Breeding
Fall or spring. Credits variable, may be repeated to a maximum of 6. Minimum of 60 on-the-job hours per credit granted. Prerequisites: permission of adviser and enrollment during the pre-enrollment period of the semester before the internship. Student must be a plant breeding junior or senior with a minimum 3.0 average in plant breeding courses. Students must attach to their course enrollment materials a "CALS Independent Study, Research, Teaching, or Internship" form signed by the faculty member who will supervise their study and assign their credits and grade. S-U grades only.
Staff.
On-the-job learning experience under the supervision of professionals in a cooperating organization. A learning contract is written between the faculty supervisor and student, stating the conditions of the work assignment, supervision, and reporting.

497 Special Topics for Undergraduates
Fall or spring. Credits variable, may be repeated to a maximum of 6. Prerequisite: permission of instructor. Students must attach to their course enrollment materials a "CALS Independent Study, Research, Teaching, or Internship" form signed by the faculty member who will supervise their study and assign their credits and grade. S-U optional.
Staff.

498 Undergraduate Teaching
Fall or spring. Credits variable, may be repeated to a maximum of 6. Prerequisites: permission of instructor, and previous enrollment in course to be taught or equivalent. Students must attach to their course enrollment materials a "CALS Independent Study, Research, Teaching, or Internship" form signed by the faculty member who will supervise their study and assign their credits and grade. S-U optional.
Staff.
Undergraduate teaching assistance in a plant breeding course. Teaching experience may include leading a discussion section, preparing and teaching laboratories, and tutoring.

499 Undergraduate Research
Fall or spring. Credits variable, may be repeated to a maximum of 6. Prerequisite: permission of instructor. Students must attach to their course enrollment materials a "CALS Independent Study, Research, Teaching, or Internship" form signed by the faculty member who will supervise their study and assign their credits and grade. S-U optional.
Staff.
Undergraduate research projects in plant breeding.

603 Methods of Plant Breeding
Fall. 3 credits. Prerequisite: Biological Sciences 281 or Plant Breeding 225 or equivalent and an introductory course in crop production.
M W F 9-:05. M. E. Smith.
Breeding methods and operational procedures for producing commercial crop varieties are considered in detail. Emphasis is on an integrated, interdisciplinary approach to major breeding objectives, including agronomic characteristics, quality characteristics, and biotic and abiotic tolerances. Inbreeding methods, population genetics, population improvement, and breeding methods for special situations will be covered.

604 Methods of Plant Breeding Laboratory
Fall. 2 credits. Prerequisite: Plant Breeding 603 or equivalent.
Field trips to plant breeding programs. Discussion of breeding methods used, overall goals, selection and screening techniques, and variety and germ plasm release. Use of computers in plant breeding research. Organization and presentation of a comprehensive breeding program on a chosen crop.

605 Physiological Genetics of Plant Adaptation and Yield
Spring. 1 credit. Prerequisite: genetics or plant breeding, or permission of instructor.
Offered alternate years.
The physiology and genetics of yield accumulation and of cultivar adaptation are explored. Biological relationships between adaptation and yield are studied. Early and modern literature on breeding for adaptation and yield in any environment are compared.

606 Biochemical Approaches in Plant Breeding
Fall. 3 credits. Prerequisites: Biological Sciences 330, 331, or permission of instructor.
Lecs, M W 10:10; lab, W 7:30-10:30 p.m. J. C. Steffens.
A review of biochemical, spectroscopic, and immunological techniques used in the analysis, selection, and generation of crop plants. Examples from current literature and possible applications of new technologies will be discussed. Laboratory will emphasize biochemical techniques used in plant breeding programs. Students should expect to spend more hours in laboratory than suggested by the formal meeting times.

622 Seminar
Fall or spring. 1 credit. S-U grades only.
T 12:20. Staff and graduate students.

629 Special Topics in Plant Science Extension
Spring. 2 credits. Not offered 1990-91.
Designed for graduate students and advanced undergraduates to provide a broader knowledge of cooperative extension philosophy and methods. An introductory course in extension and research in public and commercial organizations. Topics relate to extension in other countries as well as in the United States.

650 Special Problems in Research and Teaching
Fall or spring. 1 or more credits. Prerequisite: permission of instructor or supervising the research or teaching.
Staff.

653c Plant Genome Organization
Fall. 1 credit. Prerequisite: Biological Sciences 653a.
Module 3 in Plant Molecular Biology series. Molecular structure and evolution of plant nuclear genomes are explored. Topics covered include mechanisms for packaging DNA into chromosomes, molecular structure of telomeres and centromeres, DNA replication and methylation, and molecular biology of plant transposons. Methods for genetic and physical mapping of plant genomes is discussed as well as applications of mapping tools for gene isolation and plant breeding.

716 Perspectives in Plant Breeding Strategies
Spring. 3 credits. S-U grades optional.
Prerequisite: Plant Breeding 603.
Selection techniques and breeding objectives, methods, and strategies for both self- and cross-pollinated crops are reviewed and discussed. Extensive outside reading is required. Emphasis is on discussion and evaluation of selected benchmark papers and current literature.

717 Quantitative Genetics in Plant Breeding
Spring, even years. 3 credits. Prerequisites: Plant Breeding 603 and Statistics 601. S-U grades only. Not offered 1990-91.
Discussion of quantitative genetics to help make decisions for more efficient plant breeding. Specific topics include components of variance (estimated from mating designs), gene pool development, linkage, heritability, phenotypic and genotypic correlation coefficients, and theoretical gain from selection. During one period, plants in the greenhouse will be evaluated to provide data for computing quantitative genetic parameters.

718 Breeding for Pest Resistance
Spring, alternate years beginning 1991. 3 credits. Prerequisites: BS 281 or PB 225, and PB 603 required. An introductory course in Plant Pathology and/or Entomology also highly recommended.
A multidisciplinary examination of incorporating disease and insect resistance into crop plants. Topics covered include national and international germplasm collections, identification of sources of resistance, resistance mechanisms in plants, monogenic and polygenic control of resistance, approaches to breeding for resistance, and the use of biochemical/physiological/molecular tools in pest resistance.
201 Magical Mushrooms, Mischievous Molds
Spring. 2 credits. S-U optional.
Lecs, TR 11:15. G. W. Hudler.
A presentation of the fungi and their roles in nature and in shaping past and present civilizations. The historical and practical significance of fungi as decomposers of organic matter, as pathogens of plants and animals, as food, and as sources of mind-altering chemicals will be emphasized.

301 Introductory Plant Pathology
Fall. 4 credits. Prerequisites: Biological Sciences 101–102 and 103–104, or 105–106 or 109–110. Recommended: Biological Sciences 241 or equivalent.
Lecs, TR 11:15; lab, MT W or R 1:25–4:25 and one period weekly, scheduled at the convenience of the student.
W. A. Sinclair.
An introduction to the theory and practice of plant pathology with emphasis in lectures on principles that govern interactions of plants and pathogens and in laboratories on diagnostic criteria, life cycles of pathogens, and epidemiological phenomena and control. Specific aspects considered in detail include fungi, bacteria, nematodes, viruses, and mycoplasmas as plant pathogens; attack and resistance mechanisms; environmental influences; disease forecasting and loss assessment; development of resistant plants; and chemical and biological control.

309 Introductory Mycology
Fall. 3 credits. Prerequisite: a year of biology or equivalent. Concurrent registration in Plant Pathology 319 is recommended.
R. P. Korf.
An introduction to fungi, emphasizing biology, comparative morphology, and taxonomy.

319 Field Mycology
Fall. 1 or 2 credits. Prerequisite: CALS biology students, Plant Pathology 309 or equivalent; others by permission of instructor.
Lab, M 1:25–4:25 and 7:30–9:30 p.m.
R. P. Korf.
Study of mushrooms and other fungi on 7 field excursions followed by 7 evening labs devoted to identification and study of collections under the microscope. Emphasis on ecology, and means of identification. The pore fungi (Polyporaceae) will be emphasized. Students electing 2 credits attend 12 additional labs to prepare special project. There are no lectures; grades will be determined on basis of laboratory final and, for 2 credits, also on special project report.

402 Plant Disease Control
Spring. 3 credits. Prerequisite: Plant Pathology 301 or equivalent.
Lecs, TR 11:15; lab and rec, W 1:25–4:25.
P. A. Arneson.
This course complements Plant Pathology 301 with an in-depth presentation of the principles and practices of plant disease control that builds on students' knowledge of diseases and their causal agents. General principles and concepts, illustrated by specific examples, are presented. Students write a term paper applying those principles to a specific disease-control problem. The laboratories provide practical experience in diagnosis and disease-control techniques.

411 Plant Disease Diagnosis
Fall. 3 credits. For senior undergraduates specializing in plant pathology or pest management and for graduate students with a major or minor in plant pathology or plant protection. Limited to 20 students. Prerequisites: Plant Pathology 301 or equivalent and permission of instructor.
Lec, M 11:15; lab, M W 1:25–4:25. G. W. Hudler.
Not offered 1990–91. A method for diagnosis of plant disease is presented with emphasis on contemporary laboratory techniques and effective use of the literature.

443 Pathology and Entomology of Trees and Shrubs (also Entomology 443)
Fall. 5 credits. Prerequisites: Plant Pathology 301 and Entomology 241 or equivalents.
W. T. Johnson, G. W. Hudler.
For students preparing for careers in horticulture, urban forestry, and pest management. Deals with the nature, diagnosis, assessment, and treatment of diseases and anthropod pests of trees and shrubs. Forest, shade, and ornamental plants are considered.

444 Integrated Pest Management (also Entomology 444)
Fall. 4 credits. Prerequisites: Biological Sciences 261, Entomology 212 or 241, and Plant Pathology 301 or their equivalents or permission of instructor.
Lecs, M W F 9:05; lab, M or W 1:25–4:25.
P. A. Arneson.
Lectures integrate the principles of pest control, ecology, and economics in the management of pest crop systems. Laboratories consist of exercises to reinforce concepts presented in lectures and demonstrate pest monitoring techniques and the application of computer technology to management problems.

497 Special Topics
Fall or spring. 1–5 credits. S-U grades optional.
Hours to be arranged. Staff.
An opportunity for independent study of a special topic in mycology or plant pathology under the direction of a faculty member.

498 Teaching Experience
Fall or spring. 1–5 credits. S-U grades optional.
Hours to be arranged. Staff.
Undergraduate teaching assistance in a mycology or plant pathology course by mutual agreement with the instructor.

499 Undergraduate Research
Fall or spring. 3–5 credits. S-U grades optional.
Hours to be arranged. Staff.
An opportunity for research experience under the direction of a faculty member.

642-661 Special Topics Series
Unless otherwise indicated, the following description applies to courses 642–661. Fall or spring. 1 credit. Prerequisite: permission of instructor. S-U grades only.
Hours to be arranged.
Weekly discussions of current topics in special areas of plant pathology and mycology. Students are required to do extensive reading of current literature and to present oral and written reports.

642 Plant Disease Epidemiology
Fall.

644 Ecology of Soil-Borne Pathogens
Fall.

645 Plant Virology
Fall.

646 Plant Nematology
Fall and spring. Not offered fall 1990.

647 Bacterial Plant Diseases
Spring.
M 11:15. S. V. Beer.

648 Molecular Plant Pathology
Fall and spring. Not offered fall 1990.
R 12:20. O. C. Yoder.

649 Mycology Conferences
Lec, F 10:10; lab, F 1:25. R. P. Korf.
The lower fungi (phycocymetes).

650 Diseases of Vegetable Crops
Fall.

651 Diseases of Fruit-Tree Crops
Fall. For graduate students and advanced undergraduates with a particular interest in fruit. Autotutorial slide and tape sets.
Hours to be arranged. P. A. Arneson.
Covers the economic importance, causal agents, symptoms, disease cycle, and control measures for the major diseases of tree fruit in the Northeast.

652 Field Crop Pathology
Spring.
W 8. G. C. Bergstrom.

653 Dendropathology
Spring.
To be arranged. G. W. Hudler, W. A. Sinclair.

654 Diseases of Florist Crops
Spring.

655 Plant Diseases in Tropical Agriculture
Spring.

661 Diagnostic Lab Experience
Summer and fall. 2 credits.
T. A. Zitter.
For graduate students and advanced undergraduates with a special interest in diagnosing plant diseases. Students will work in the Diagnostic Laboratory (Plant Pathology Department) under supervision of the diagnostican. Students may choose to work on a wide array of plant material or to concentrate on a particular commodity. Priority will be given to graduate students in plant pathology and plant protection.
701 Concepts of Plant Pathology: Organisational Aspects
Spring. 3 credits. For graduate students with majors or minors in plant pathology; others by permission. Prerequisites: Plant Pathology 301 and equivalent or permission of instructor.

702 Concepts of Plant Pathology: Population Aspects
Spring. 3 credits. For graduate students with a major or minor in plant pathology; others by permission. Prerequisite: Plant Pathology 301 or equivalent or permission of instructor.

705 Phytopathology
Spring. 2 credits. For graduate students with a major or minor in plant pathology; others by permission. Prerequisite: Plant Pathology 301 or equivalent. Offered alternate years.

706 Phytopharmacology
Fall. 2 credits. For graduate students with a major or minor in plant pathology; others by permission. Prerequisite: Plant Pathology 301 or equivalent or permission of instructor.

707 Phytopathology
Fall. 2 credits. Prerequisites: general microbiology, lectures and laboratory; Introductory Plant Pathology.

709 Phytopharmacology
Spring. 2 credits. For graduate students with a major or minor in mycology or plant pathology; others by permission. Prerequisites: Plant Pathology 301 and 309 or equivalents, and permission of instructor.

735 Advanced Plant Virology
Spring. 3 credits. Prerequisite: permission of instructors. Offered alternate years.

736 Molecular Mechanisms of Pathogenesis
Fall. 2 credits. For graduate students with a special interest in molecular mechanisms of pathogenesis. Prerequisite: permission of instructor.

739 Advanced Mycology
Spring. 4 credits. Prerequisites: Plant Pathology 309 or equivalent, a course in genetics, and permission of instructor. Not offered 1990-91.

308 Tropical and Subtropical Fruits

442 Small Fruits
Fall. 3 credits. Offered alternate years.

451 Postharvest Physiology and Storage of Horticultural Crops
Fall. 3 credits. Prerequisite: one horticultural course or permission of instructor.

Pomology: Horticultural Sciences

200 Introductory Pomology
Fall. 3 credits. S-U grades only for graduate students.

681 Plant Pathology Seminar
Fall and spring. 1 credit. Required of all plant pathology majors. S-U grades only.

T 4:30-5:30. Staff.
\textbf{RURAL SOCIOLOGY} 87

[444 Viticulture] Fall. 3 credits. Prerequisite: Horticultural Sciences 200 or permission of instructor. Offered alternate years. Not offered 1990–91. Lecs, T R 9:05; lab, R 2–4:25; S field trips in early fall will replace several laboratory meetings. L. L. Creasy. (Grapes, growing, with emphasis on the viticulture of the Great Lakes region, is presented as a series of interrelated decisions on varieties, sites, vine management, and vine protection. Those decisions are based on ampelography, meteorology, soils, vine and grape anatomy and physiology, as well as protection of the vine and grapes from injuries, primarily from diseases and insects.)

[445 Temperate Tree Fruits] Spring. 3 credits. Prerequisite: Horticultural Sciences 200. Offered alternate years. Lecs, M W 8; lab, M 1:25–4:25. Staff. A treatment of problems of concern to tree fruit growers, such as site selection, planting and pruning systems, water relations, cold hardiness, fruit quality, and protection from pests. Physiological and practical aspects are emphasized.

[470 Special Topics in Pomology] Spring. 3 credits. Open to undergraduates by permission. Hours to be arranged. Staff. Selected topics are considered with respect to the current literature, experimental techniques, or applied technologies. Topics change from one year to another and reflect the expertise and research interests of the professors who participate. Topics selected for each term will be announced several months before the term begins.

[485 Undergraduate Seminar] Spring. 1 credit (may be taken twice for credit). Prerequisite: a course in pomology. S-U grades only. Hours to be arranged. Staff. Seminar topics and presenters selected and arranged by the students on subject areas related to pomology.

[497 Independent Study in Pomology] Fall or spring. 1 or more credits: may be repeated for credit. S-U grades optional. Prerequisite: a student must satisfy the faculty member with whom he or she will work that his or her background warrants the choice of project. Undergraduates must attach to their course enrollment materials written permission from the faculty member who will supervise their work and grade their project. Staff. Individual or small-group study and special projects in pomology and related areas.

[499 Undergraduate Research] Fall or spring. 2 or more credits. Prerequisite: a course in advanced pomology. S-U grades optional. Students must attach to their course enrollment materials written permission from the staff member who will supervise the work and assign the grade. Staff.

[500 Master of Professional Studies (Agriculture) Project] Fall or spring. 1–6 credits. S-U grades optional. Hours to be arranged. Staff. A comprehensive project emphasizing the application of pomological principles and practices to professional pomology teaching, extension, and research programs. Required of Master of Professional Studies (Agriculture) candidates in the field.

[601 Graduate Seminar] Fall. 1 credit. S-U grades only. Hours to be arranged. Staff. Reports by students on current research or literature in experimental pomology or related areas.

[610 Developing Effective Horticultural Research Programs] Spring. 2 credits. Prerequisite: introductory plant physiology. Offered alternate years. Not offered 1990–91. TR 9:05, L. E. Powell. An advanced course dealing with physiological, morphological, and biochemical changes during development, beginning with the seed and advancing through the mature reproductive plant. Hormonal control mechanisms are emphasized.

[620 Developing Effective Horticultural Research Programs] Spring. 2 credits. Undergraduates admitted by permission of instructor. S-U grades optional. Offered alternate years. Not offered 1990–91. TR 9:05, L. E. Powell. An advanced course dealing with the development and management of career-long research programs in horticulture for Ph.D. students. Invited faculty and administrators will lead discussions on topics such as grants, funding, and personnel management. Each student will be required to prepare a term paper and make an oral presentation on a grant proposal related to horticulture.

[630 Current Topics in Postharvest Horticulture] Fall or spring. 1 credit. Prerequisite: permission of instructor. S-U grades only. Hours to be arranged. G. D. Blanpied. Graduate students and staff report and discuss current topics in postharvest biology and technology of horticultural crops.

[700 Teaching Experience] Fall or spring. 1 credit. S-U grades only. Prerequisite: permission of instructor. Hours to be arranged. Staff. Designed to acquaint pomology graduate students with the methods and materials involved in teaching. The student participates in the design, delivery, and evaluation of segments of a departmental course.

[800 Master's Thesis Research] Fall or spring. Credit to be arranged. S-U grades only. Hours to be arranged. Staff.

[900 Doctoral Thesis Research] Fall or spring. Credit to be arranged. S-U grades only. Hours to be arranged. Staff.

Related Courses in Another Department

General Horticulture (Horticultural Sciences 102)

Quality of Horticultural Crops During Marketing (Horticultural Sciences 330)

Advanced Postharvest Physiology of Horticultural Crops (Horticultural Sciences 625)

POULTRY AND AVIAN SCIENCES

The faculty members in the Department of Poultry and Avian Sciences are responsible for courses taught in several areas, including animal sciences, biological sciences, food science, and nutritional sciences. See the particular sections on those subjects for courses.

RURAL SOCIOLOGY

[101 Introduction to Sociology] Fall or spring. 3 credits. (See Sociology 101 as an alternative.) May not be taken after RS 102. Fall: Lecs, T R 10:10; disc and lab, M 9:05, 10:10, 12:20; R 11:15, 12:20; F 10:10, 12:20. E. C. Erickson and staff. Spring: Lecs, T R 10:10; disc and lab, M 9:05, 10:10, 11:15, 12:20, 1:25, or 2:30. T. A. Lyson.

A survey of major concepts and theories in sociology and an examination of major social forces and institutions shaping modern societies. The major topics include culture and socialization, social stratification and social class, age and gender inequality, economy and society, politics and the state, urbanization and demographic change, social change and international development, the rural-urban transition, and war and peace.

This course provides a general introduction to the field of rural sociology. It is organized as a skills course as well as a survey course. The focus will be on giving students fundamental skills with which to decode the social world, including an understanding of the basic philosophical and theoretical underpinnings of the discipline and an exposure to the various types of data and methods sociologists use to describe and explain behavior. Special attention is paid to the agricultural sector and problems of rural development in the United States.)

R 12:20–1:25. Staff.

Introduces students to subject matter of concern to both applied and academic rural sociologists. Focuses on such subjects as migrant workers, agrarianism, rural poverty, rural-to-urban migration, rural development, agrarian research and people, community development, and small farmers in the less-developed nations. These topics are explored through the use of films and group discussion.

W 7 p.m. R. McPheeters.

American Indian people are confronted with a myriad of special circumstances that impinge upon their everyday lives. The purpose of this course is to present background to these issues and give perspective from an American Indian point of view. Early history and the postcontact period will be reviewed with an emphasis given to developments since 1890. Topics such as land claims, treaties, education, mineral and water resources, social problems, militant organizations, and civil rights will be covered, with guest lecturers and media presentations giving added impact.

201 Population Dynamics (also Sociology 205) Spring. 3 credits. S-U grades optional. ALS students must register for this course as Rural Sociology 201.

An introduction to population studies, which include the determinants and consequences of population change. The primary focus is on the influences of demographic dynamics on society and the economy, with emphasis on marriage, family formation, mortality, crime and deviance, migration, and marketing behavior.

205 Rural Sociology and International Development Spring. 3 credits.

This course is concerned with global food security issues. While our primary focus is on the varying capacities for food production and supply in Third World regions, we shall be taking into consideration the role of metropolitan agencies and the changing role of the U.S. as the world’s “breadbasket.” We consider food systems comparatively, in terms of differences among world regions and between peasant agriculture and modern “industrial” agriculture. We examine the nature of peasant society and consider how traditional rural systems have responded to their exposure to external forces—such as the expansion of export agriculture, development agencies, local bureaucracies, the current “debt crisis,” and technologies such as the Green Revolution. The focus will be on the changing social organization of food systems, and the implications for food security.

206 Gender and Society Spring. 3 credits.

MWF 11:15. N. Glasgow.

Course will familiarize students with social and behavioral similarities/differences between females and males and the degree that biological, psychoanalytic, social psychological, and sociological perspectives help understand the differences. Objectives will be met through lectures, readings, films, participant observations, and personal experiences. Special attention given to gender role behavior in the U.S. and China.

208 Technology and Society Fall. 3 credits.

The relationship between technology and society is among the most pervasive concerns of our time. Ultimately, what makes a technology useful or “appropriate” is a sociological question. Lectures and readings review classical debates regarding technology and society. Herein, students compare high technologies and appropriate technologies, identify problems associated with technology transfer to other societies, and create a list of important criteria by which technologies are judged appropriate or inappropriate using numerous case studies.

213 Social Indicators, Data Management, and Analysis Fall. 3 credits.

Lecs, TR 12:20–1:35. P. R. Eberts.

A survey of definitions of social indicators and general principles of social indicators research will be illustrated from data on both developed and less-developed countries. Data management and analysis of measures of poverty, level of living, inequality, quality of life, etc., based on census data, household surveys, and key-informant and other low-cost techniques, will be examined, using personal computers.

242 American Indian Philosophies I: Power and World Views Fall. 3 credits. Enrollment limited to 20 students. Not offered 1990–91.

This course is designed to facilitate an understanding of the world views of American Indians of the past and present. The goal is to provoke edifying discourse that will enable American Indian beliefs concerning the workings of the universe and the relationship of human beings to nature to be understood on their own terms.

243 American Indian Philosophies II: Native Voices Spring. 3 credits. Enrollment limited to 20 students. Not offered 1990–91.

An exploration of the diverse expressions of philosophy to be found in the words of American Indians. Novels, political treatises, speeches, autobiographies, and other sources reflecting Indian attitudes on a variety of subjects will be examined for beauty and power of expression as well as to identify recurring themes.

250 Farming as an Occupation Spring. 1 credit.

The occupation of farming will be examined through such topics as how farm and family tasks are coordinated, the most important decisions in farming, how a woman gets established in farming, what determines what can be done in farm operation, how farm people retire, what constitutes success in farming, and how farming differs from other occupations.

[301 Theories of Society (also Sociology 401)] Fall. 4 credits. Prerequisites: Rural Sociology 101 and 102, or Sociology 101. S-U grades optional. Not offered 1990–91.

A seminar for juniors, seniors, and beginning graduate students, especially in rural sociology and sociology. A survey of major theoretical approaches to the study of society and social institutions, with emphasis on (1) the central concepts of the sociological tradition, (2) major classical theorists (Marx, Durkheim, Weber) and contemporary counterparts, and (3) application of the classical ideas in contemporary research. Applications of theories of society to current research and social problems will be stressed.

324 Environment and Society Fall. 3 credits.

Explores various sociological approaches to the study of society and its physical environment and analyzes major contemporary environmental issues from a sociological viewpoint. Among the major topics treated are world population growth, energy and environmental policy, the limits to growth debate, the impacts of technological and social change in agriculture on environmental quality, global warming, sustainable development, genetic resources conservation, and topical deforestation.

[387 American Indian Tribal Governments Fall. 3 credits. Not offered 1990–91.

W 7:30–9:55 p.m. Staff.

This course focuses on the structure of contemporary tribal governments and the ways in which those governments approach the issues confronting their constituents. The effects of European contact on traditional political organizations are detailed, as are the present-day relationships of tribal governments to federal and state governments.

370 Comparative Issues in Social Stratification Fall. 3 credits. Prerequisite: an introductory social science course.

This course reviews both classical and contemporary issues in the social stratification literature. Particular attention is given to two main themes: the change in contemporary nature of the labor market and the contemporary debates on the "under class," the "middle class," and the "new class." Throughout the course attention is drawn to the importance of conceptual clarity, questions of measurement, and the changing salience of popular topics such as new social movements, the role of ideology and consciousness, and the role of gender, race, and ethnicity in assessments of inequality and hierarchy.

380 Independent Honors Research in Social Science Fall and spring. 1–6 credits. Limited to students who have met the requirements for the honors program. A maximum of 6 credits may be earned in the honors program.

Staff.

Students must submit written proposals by the third week of the semester of their senior year to the departmental honors committee representative, T. Hirsch.
[408 Human Fertility in Developing Nations
Fall. 3-4 credits. S-U grades optional. Not offered 1990-91.
R 3-5. J. M. Stycos.
A review of the major literature dealing with the social causation of variation in human fertility. Emphasis will be on international comparisons and on the methodology of field research.]

[418 Population Policy
Fall. 3 credits. Prerequisite: Rural Sociology 201 or permission of instructor.
T R 2:30-3:45. J. M. Stycos.
The ways in which societies try to affect demographic trends. Special focus is on government policies and programs to reduce fertility.

[425 Gender Relations and Social Change
Fall. 3 credits.
W 7:30 p.m. S. Feldman.
This course offers comparative analyses of women's contribution to subsistence, domestic/household, and agricultural production in the context of changing labor market dynamics. The course also examines various forms of wage labor and self-employment as these characterize Third World and advanced industrialized countries. Drawing on feminist and sociological theories and methodological critiques the course emphasizes the configuration of various economic and social sectors and their realignments within a global economy. Changes in women's productive activity are examined as they occur in response to technology transfer, the transformation of the labor process and the labor market, the international division of labor, and changing family relations.

[430 Migration and Population Distribution
Fall. 3 credits. Not offered 1990-91.
This course analyzes the determinants and consequences of internal migration in urban and rural areas of the United States and other industrial nations. Economic and demographic inter-relationships will be emphasized as will implications of changes in population size and composition for labor supply, the demand for goods and services, and infrastructure. Public policy implications of the inter-relationships will be investigated.]

[431 Social Demography of Minorities
Spring. 3 credits. S-U option.
Ethnic conflict and accommodation is examined in diverse settings (societies and historical periods). Demographic indicators (such as residential segregation, marital patterns, mortality and fertility differentials, and occupational mobility) of underlying social conditions serve as the principal vehicle for evaluating the status of ethnic relations.

[436 Small Towns in Metropolitan Society: Changing Structures and Quality of Life
Spring. 2 credits. S-U grades optional. Prerequisite: a social science course. Not offered 1990-91.
Examination of recent social dynamics in small towns, including experiences of resurgence in attractiveness and a simultaneous transformation in small town character and quality of life. Analysis of data on personal computers is combined with theoretical explorations in explaining trends. Key analyses focus on causes and effects of new industrial and communication technologies, population migration, business locations, housing, family stresses, human service networks, educational attainment, local politics, and personal well-being, happiness, and satisfaction.]

[437 Aging: Issues in the 1990s
Fall. 3 credits. Prerequisite: RS 101 or its equivalent.
An analysis of the "graying" of America's and the world's population and responses of the public and the private sector to the demographic revolution. Explores major societal issues relating to aging, including intergenerational equity; age-versus need-based social programs; opportunity structures and resourceful aging. Examines the interplay between basic and applied knowledge in social gerontology.

[438 Social Demography
Fall. 3 credits.
A survey of the methods, theories, and problems of contemporary demography. Special attention is directed to the social determinants and consequences of fertility, mortality, and migration. The populations of both developed and developing areas are examined.

[439 Social and Demographic Changes in Asia
Spring. 3 credits. Prerequisite: Rural Sociology 201.
W 7:30 p.m. D. L. Poson.
The course will be devoted to demographic and social changes in Asia, with special attention to China (PRC & ROC), India, Korea, and Thailand. The course will survey population trends, including fertility, mortality, marriage, migration, and urbanization in Asia, with special attention directed to the above four countries. Demographic and sociological theories and methods will be introduced to understand contemporary studies of demographic change in these four countries in particular and in Asia in general. A basic course in statistics is recommended.

[440 The Social Impact of Rapid Resource Development
Spring. 3 credits.
The seminar defines social-impact assessment (SIA), places it in the context of contemporary theories of development, and identifies alternative SIA models. Focus is on the SIA experiences of various groups and constituencies, including indigenous people at home and abroad. Students will learn certain practical research skills needed in doing SIA and will participate in an SIA simulation exercise.

[442 American Indian Philosophies: Selected Topics
Spring. 3 credits. S-U grades optional. Prerequisite: RS 2 or RS 201.
Seminars on selected topics of interest from American Indian Philosophies I and II or other introductory American Indian studies courses. Spring in greater depth. The specific topics to be investigated will be selected by the students in consultation with the instructor prior to the beginning of the semester.

[475 Global Patterns of International Migration
Spring. 3 credits. Prerequisite: RS 101 or RS 102 or RS 103. Not offered 1990-91.
A comparative approach will be taken in looking at international migration patterns in different countries and regions, assessing how migration flows are changing in an increasingly interdependent world. Various types of international migration (e.g., permanent, refugee, labor, illegal, family, etc.) will be looked at from the perspective of both the receiving and sending countries and their policy, economic, and social correlates reviewed.]

[490 Society and Survival
Fall. 3 credits. Prerequisite: introductory sociology course or permission of instructor.
Course surveys existing theories, methodological techniques, and research results relating to how social, economic, and cultural structures and processes affect survival chances in diverse societies. A comparative framework is presented and the utility of existing knowledge for policy-related applications in different societies is assessed. Attention is given to the problems associated with imputing causality in morbidity and mortality data.

[492 Contemporary Issues Seminars: Developments in the Pacific Rim
Fall. 1-2 credits. Not offered 1990-91.
Pacific Rim dynamics challenge U.S. supremacy. Western concepts of modernization, and "Third World" unity. We relate these trends to regional political, economic, and cultural forces, including the Japanese model, the "Newly Industrializing Countries" (e.g., South Korea, Taiwan), the "third tier" countries (e.g., Indonesia, the Philippines), and emerging Chinese markets.]

[495 Social and Demographic Change In Sub-Saharan Africa
Fall. 3 credits.
The 47 countries of sub-Saharan Africa are experiencing rapid social change but serious economic problems. This course will examine these trends and consider their implication for demographic change. Both the traditional structures and the modernizing forces shaping sub-Saharan African development will be examined and variations stemming from ethnic and colonial influences assessed. Community, family, and gender systems, education, urbanization, and demographic processes will be reviewed, as well as the role of state policy in affecting population change.]
603 Classical Sociological Theory
Fall. 4 credits. S-U grades optional. Prerequisites: open to graduate students and undergraduates with permission of instructor.

An overview of the main streams of classical sociological thought, focusing on the work of Marx, Durkheim, and Weber. Emphasis is placed on the concepts, method, and ontological posture of the three major classical sociological theorists, on rival interpretations of their theoretical systems within the contemporary sociological community, and on the implications of classical thought for contemporary development theories.

606 Contemporary Sociological Theories of Development
Fall. 3 credits.
MWF 11:15. F. W. Young.

A survey of theory, empirical studies, and policy prescriptions as applied to communities and regions, especially those in less-developed countries. Social ecology, the Weberian tradition, dependency/political economy, and structural theory are compared.

610 Population and Development: Developed Nations
Fall. 3 credits.

Investigates interrelationships between demographic, social, and economic changes in developed nations past, present, and future. Particular focus is on relationships between demographic processes (fertility, mortality, international migration, and immigration) and such issues as national and regional economic growth; labor force and labor market structure and change; income distribution and poverty; design, administration, and finance of social welfare policy; and national resource use and availability.

619 Research Design II
Spring. 4 credits. Prerequisite: an introductory methods course and a statistics course.

The second part of the two-semester sequence in introductory graduate methods deals with principles of design, especially nonexperimental designs, with emphasis on an intermediate-level treatment of the following topics: regression, analysis of variance, analysis of covariance, and causal models. Special emphasis is given to the use of categorical variables in regression. Students develop and examine several analytical models using actual data to familiarize themselves with data handling and processing. Extensive use of computers.

640 Community and Changing Property Institutions
Fall. 3 credits. Not offered 1990–91.

The seminar acquaints students with the evolution of property rights, beginning in antiquity, and with the close association between changing property forms and community type as recognized by both classical and contemporary sociologists. Readings will cover land-use regulation and property rights, common property issues and the land ethic.

641 Politics and Economics of Rural and Regional Development
Fall. 3 credits. Limited to upperclass or graduate students. S-U grades optional. Not offered 1990–91.

A survey of social, political, and economic factors in regional development. Theories and case studies from demography, human ecology, social organization, and planning are used to examine the emergence or retardation of regions and their implications for contemporary development and developed societies.

642 Regional Systems and Policy Analysis
Spring. 3 credits. Prerequisites: a social or economic theory course and statistics, or permission of instructor. S-U grades optional. Not offered 1990–91.

Lee, F. 2:20—4:30; disc to be arranged. P. R. Eberts.

A systems analysis of theoretical and research problems arising from localities' changing social organization. Major theories are examined with attention to their compatibility with modern policy analytic techniques. Topics covered center on the interplay of economic, social-class, and political activities in localities.

643 Land Reform Old and New
Spring. 3 credits. Not offered 1990–91.

A 2:30—5. C. C. Geisler.

Land reform continues to be a major cornerstone of development planning. Between 1980 and 2000 the number of landless and near-landless in the Third World will approach one billion. Though land reform is a principal source of hope for the landless, its meanings are many and its models are controversial. The seminar acquaints students with land reform in antiquity as well as in contemporary settings (e.g., Japan, the Philippines, Israel, India, Brazil, Mexico, the Soviet Union, and the United States). Perennial issues of equity, efficiency, and sustainability will be discussed in each of these case study areas.

654 Agrarian Structure and Rural Transformation
Spring. 3 credits. Not offered 1990–91.

This advanced seminar examines theories of rural stratification in agricultural and advanced industrial societies, highlighting the classical and contemporary debates surrounding the relationships between agricultural and industrial productive relations. Theories of agrarian change are also examined, and discussion will focus on the role of state policy and practice in shaping agrarian relations.

655 Advanced Techniques of Demographic Analysis
Spring. 3 credits. Prerequisites: RS 481 or CEH 438, graduate standing or permission of instructor. Not offered 1990–91.

An examination of analytical techniques that assumes a basic knowledge of demographic data and research methodology. Life tables, demographic estimates with incomplete data, survey techniques to supplement inadequate vital registration systems, and multivariate procedures are among the topics to be covered.

660 Social Analysis of Ecological Change
Fall. 3 credits. Prerequisite: graduate standing.

M 7:30 p.m. P. Taylor.

Scientific studies of ecological and social processes together with the analysis of those studies by historians, sociologists, and anthropologists. Topics include cybernetics, systems ecology, the tragedy of the Commons, Limits to Growth, ecological degradation, political ecology, global models, conservation biology, and sustainable development.

675 The Political Economy of Policy and Planning in Third World States
Fall. 3 credits. Not offered 1990–91.

This course examines the structure and formation of national development priorities in Third World countries in the context of the internationalization and politicization of policy and planning agendas. The course draws on themes in development theory and theories of the state and social organization and is comparative in focus. Major topics considered are the role of international financial institutions and multinational corporations in shaping national policy, national fiscal and administrative crises, forms of colonial and authoritarian regimes, and the state–class relation in shaping policy and planning outcomes.
This seminar focuses on the comparative perspective and tradition of human ecology in sociology, beginning with Durkheim, through the Chicago school (McKenzie, Park and Burgess), to the neo-orthodox positions of Hawley, Duncan, Schmee, Gibbons, Martin, and others. Similarities and differences between the ecological paradigm and Marxian theory are presented. Sociological and demographic research incorporating ecological theory is analyzed and reviewed. Employment of ecological approaches in other disciplines (primarily anthropology and geography) is discussed. Application of the ecological orientation to social and economic development is presented.

706 State, Economy, and Society
Reviews major issues concerning the relations between political and economic institutions, including the political-economic methodologies of the classical sociological theorists, the instrumentalist-structuralist debate on the nature of the state, theories of crisis in advanced capitalism, and the controversies among theorists of unequal exchange, dependency, and imperialism in the world system.

715 Comparative Research Methods
Fall. 3 credits. M 12:20-2:50. T. A. Lyson.
This seminar focuses on the comparative method in the social sciences. Topics include cross-national and cross-regional research design and an analysis of the comparative case study approach. Illustrations of the comparative research approach will cover a range of data types and problems.

718 Multidimensional Measurement and Classification
Fall. 4 credits. Prerequisite: previous course work in scaling and statistics. Not offered 1990-91. TR 1:25-3:30. J. D. Francis.
An advanced course in measurement and scaling, building from work by Thurstone, Guttman, and Coombs to multidimensional measurements. Topics include philosophy of factor analysis, factor analytic models, factoring design, and comparison with factor analytic models. Cluster analysis, multidimensional scaling, and discriminate analyses are the other major topics discussed. As matrix algebra is an integral part of these procedures, class time is devoted to that topic. Computers are used to analyze fit to models.

719 Regression and Path Analysis
Spring. 4 credits. Prerequisites: two courses in statistics and one in methods. Not offered 1990-91. TR 1:25-3:30. J. D. Francis.
The first part of the course reviews multiple regression theory and procedures, after which extensions of those models to categorical data are discussed. Consideration is given to violations of assumptions and their effects. Then more-advanced regression concepts and estimation techniques are discussed. The middle third of the course deals with logit, probit, and log linear models. The last part deals with recursive and nonrecursive path models. Time-series analysis is the last topic discussed. Computerized laboratories are an integral part of the course.

721 Ecological Perspectives on Social Change
Reviews major theoretical traditions in human ecology, ecological anthropology, and environmental sociology and applies these perspectives to a range of public policy and development problems in both developed and developing countries. Of particular interest will be the contribution of each perspective to the resolution of conflicts arising between agroecosystems and natural ecosystems and the pursuit of sustainable development.

723 Social Movements in Agrarian Society
Spring. 3 credits. W 1:25-4: F. W. Young.
The seminar moves from a critical review of current explanatory formats (resource mobilization, political economy, structuralist) to a research practicum focused on ethnoregional movements, illustrating the possibilities of comparative research based on descriptive accounts. Those movements are associated with agricultural and industrial change, as well as shifts in the regional ethnic/class system.

730 Issues in the Sociology of Development
This seminar examines emerging substantive issues in the sociology of development. The goal is twofold: (1) to analyze contemporary Third World trends (e.g., in development policy, agrarian reform, industrialization, state-building, food security), and world systemic trends influencing Third World development possibilities; and (2) to re-evaluate development theories in the light of current transformations.

741 Community Development and Local Control
Theories of community growth and decline and the current debate over the place of local control in community development in general are considered. Salient themes include the role of neopopulism in community development, changing institutions of property as community development occurs, and changing definitions of community.

751 Applications of Sociology to Development Programs
Spring. 3 credits. W F 10-10. E. C. Erickson.
Strategies of change and the measurement of change at national, regional, community, and institutional levels are reviewed. Illustrative topics to be covered are indices of development such as GNP, social welfare, urban hierarchies and evaluation of programs, uses of baseline studies, etc.

754 Sociotechnical Aspects of Irrigation (also Agricultural Economics 754, Agricultural and Biological Engineering 754, and Government 644)
Examines irrigated agriculture and its relation to agricultural development. Emphasis on social processes within irrigation systems and interactions with the social setting, including political and administrative aspects. Provides an opportunity to examine systematically the institutional and organizational policy issues associated with the design and operation of systems of irrigated agriculture in developing countries.

771 Special Seminar
Fall or spring. Credit to be arranged. Limited to graduate students; others by permission of instructor.

791 Teaching Experience
Fall or spring. 1-3 credits. Limited to graduate students. S-U grades only.
Staff Participation in the ongoing teaching program of the department.

792 Public Service Experience
Fall or spring. Credit to be arranged. Limited to graduate students. S-U grades optional.
Staff Participation in the ongoing public service activities of the department.

871-874 Informal Study
Fall or spring. Credit to be arranged. Limited to master's and doctoral degree candidates with permission of the graduate field member concerned. S-U grades optional.

871 Rural Sociology

872 Development Sociology

873 Organization Behavior and Social Action

874 Methods of Sociological Research

881 Research
Fall or spring. Credit to be arranged. Limited to master's and doctoral degree candidates with permission of the graduate field member concerned. S-U grades optional.

791 Teaching Experience
Fall or spring. Credit to be arranged. Limited to graduate students; others by permission of instructor.

792 Public Service Experience
Fall or spring. Credit to be arranged. Limited to graduate students. S-U grades optional.

871 Rural Sociology

872 Development Sociology

873 Organization Behavior and Social Action

874 Methods of Sociological Research

881 Research
Fall or spring. Credit to be arranged. Limited to master's and doctoral degree candidates with permission of the graduate field member concerned. S-U grades optional.
SOIL, CROP, AND ATMOSPHERIC SCIENCES

Courses by Subject

General Courses

190 Food and Fiber Production: Possibilities and Perils
Spring. 2 credits. Limited to 40 students. S-U grades optional.

249 Undergraduate Research
Fall or spring. Credit to be arranged. Written permission from the staff member who will supervise the work and assign the grade must be attached to course enrollment material.

Atmospheric Science

131 Basic Principles of Meteorology
Fall. 3 credits. Limited to 75 students.

A simplified treatment of the structure of the atmosphere: heat balance of the earth, general and secondary circulation; air masses, fronts, and cyclones; and hurricanes, thunderstorms, tornadoes, and atmospheric condensation. In the laboratory, emphasis is on techniques of analysis of weather systems.

232 Climatology
Spring. 3 credits. Prerequisite: SCAS 131.
Offered alternate years. Not offered 1990-91.
Will be offered spring 1992.
The first part of the course is devoted to the description of world climates in terms of the global distribution of radiation, temperature, pressure, wind, precipitation, and air masses. The second part of the course relates climates and climatic anomalies to planetary, regional, and local circles.

250 Meteorological Observations and Instruments
Spring. 3 credits. Prerequisite: SCAS 131.
M. W. Wysocki.

Methods and principles of meteorological measurements and observations, including surface, free-air, and remote systems. Instrument siting, mounting, and protection. Instrument response characteristics, calibration, and standardization. Recorders and data-logging systems. Laboratory exercises in observation and data analysis. Intended to serve as preparation for Observers Examination. Lab fee, $25.

334 Agricultural Meteorology
Spring. 3 credits. Recommended: a course in physics.
An introductory course in microclimatology. The relationships of radiant energy, temperature, wind, and moisture in the atmosphere near the ground; and the interplay between physical processes of the atmosphere, plant canopies, and soil are examined. Moisture relationships in the atmosphere-soil-plant continuum, the effects of environmental modification, and the bioclimatic requirements of plants.

351 Synoptic Meteorology I
Fall. 3 credits. Prerequisites: SCAS 131 and one year of calculus.
Lecs, T R 9:05; lab, M 1:25-3:20.
S. J. Colucci.

An introduction to methods and principles of weather forecasting and analysis, including weather data plotting and analysis, interpretation of radar and satellite imagery and National Meteorological Center forecast guidance products, and description of the structure and behavior of weather systems.

353 Forecasting and Dynamics Lab I
Fall. 2 credits. Prerequisites: SCAS 131 and concurrent registration in SCAS 441.
M. W. Wysocki.

Weather briefings by the instructor based upon real-time operational guidance. Computer tutorials in thermodynamics, including sounding diagrams, stability indices, and static energy terms.

354 Forecasting and Dynamics Lab II
Spring. 2 credits. Prerequisites: SCAS 353 and concurrent registration in SCAS 442.
M. W. Wysocki.

Weather discussions prepared by students. Computer tutorials in hydrodynamics, including vorticity and divergence computation, geostrophic and thermal wind concepts, and Richardson, Reynolds, and Proud numbers.

425 Statistical Methods in Meteorology
Fall. 3 credits. Prerequisite: an introductory course in statistics (e.g., Statistics 215 or Agricultural Economics 310 and Calculus). Offered alternate years.

Statistical methods in climatology, operational weather forecasting and selected meteorological research applications. Some statistical characteristics of meteorological data, including probability distributions, intercorrelations, and persistence. Operational forecasts derived from multiple regression models, including the MOS system. Forecast verification techniques and scoring rules. Time series analysis, Eols, and other research topics as time permits.

437 Agrometeorological Decision Analysis
Fall. 3 credits. Prerequisite: An introductory course in statistics (e.g., Agricultural Economics 310 or Statistics 215). Offered alternate years.
Not offered 1990-91.
Application of Statistical Decision Analysis to weather-sensitive agricultural decision problems. Characteristics of categorical and probabilistic weather forecasts, incorporation of forecast information into the decision problem, selection of optimal strategies, forecast value in relation to forecast quality, effects of the decision maker's attitude toward risk, and static vs. dynamic decision-making problems.

441-442 Theoretical Meteorology I and II
441, Fall, 442, spring. 3 credits each semester. Prerequisites: a year each of calculus and physics.

Fall semester topics include thermodynamics of dry air, water vapor, and moist air, and concepts of hydrostatics and stability. Topics considered in the spring term include meteorological coordinate systems, variation of wind and pressure fields in the vertical, winds in the planetary boundary layer, surfaces of discontinuity, mechanisms of pressure change, and vorticity and circulation.
447 Physical Meteorology
Fall. 3 credits. Prerequisites: a year each of calculus and physics. Offered alternate years.
Primarily a survey of natural phenomena of the earth's atmosphere, with emphasis on their underlying physical principles. Topics include composition and structure of the atmosphere, atmospheric optics, acoustics and electricity, and solar and terrestrial radiation, and principles of radar probing of the atmosphere.

452 Synoptic Meteorology II
Spring. 3 credits. Prerequisites: SCAS 351, 441, and 442.
Application of principles of theoretical meteorology to the diagnosis and prediction of weather systems such as mid-latitude cyclones, anticyclones and fronts, tropical cyclones, thunderstorms and related phenomena, and lake-effect snow squalls.

692 Special Topics in Atmospheric Sciences
Fall or spring. 1-6 credits. S-U grades optional.
Hours to be arranged. Staff.
Study of topics in atmospheric science that are more specialized or different from other courses. Special topics to be covered will depend on staff and student interests.

701 Meteorology Seminar
Fall or spring. Prerequisite: permission of instructor.
Lecs. Hours to be announced. Staff.
Subjects such as weather modification, paleoclimatology, and atmospheric pollution.

859 Master's Level Thesis Research in Meteorology
Fall or spring. Credit by arrangement. Limited to students in the graduate field. S-U grades optional.
Hours by arrangement.

959 Doctoral-Level Thesis Research in Meteorology
Fall or spring. Credit by arrangement. Limited to students in the graduate field. S-U grades optional.
Hours by arrangement.

Crop Science
[311 Grain Crops]
Fall. 4 credits. Prerequisite: SCAS 260 or Biological Sciences 241. Not offered 1990–91.
Lecs, MWF 10:10, lab, M or T 1:25–4:25. 1 or 2 field trips during lab periods (until 5 p.m. or on weekends). R. L. Obendorf.
Principles of field-crop growth, development and maturation, species recognition, soil and climatic adaptations, timing and mineral nutrition, weed control, cropping sequences, management systems, and crop improvement are considered. Grain, protein, fiber, and sugar crops are emphasized.

[312 Forage Crops]
Spring. 4 credits. Prerequisites: SCAS 260 or Biological Sciences 241 or equivalent.
Recommended: Animal Science 212.
Lecs, MWF 11:15; lab, M or T 1:25–4:25. G. W. Fick
The production and management of crops used for livestock feed are considered in terms of establishment, growth, maintenance, harvesting, and preservation. Forage grasses, forage legumes, and corn are emphasized, and consideration is given to their value as livestock feed in terms of energy, protein, and other nutritional components.

[314 Production of Tropical Crops]
Spring. 3 credits. Prerequisite: a course in crop production. Not offered 1990–91.
Lecs, MWF 10:10. Staff.
An introduction to the characteristics and culture of the principal food staple crops of the tropics and subtropics and of some of the crops grown for export. Vegetables and fruits are not emphasized.

315 Weed Science
Fall. 3 credits. Prerequisite: introductory course in biology or botany.
Principles of weed science are examined. Emphasis is on (a) weed ecology, (b) chemistry of herbicides in relation to effects on the environment and plant growth, and (c) control of weeds in crops. Laboratory covers weed identification and ecology, herbicide selectivity, symptomology, and behavior in soil.

[317 Seed Science and Technology]
Fall. 3 credits. Prerequisite: Biological Sciences 241 or equivalent. Offered alternate years. Not offered 1990–91.
Lecs, TR 11:15; lab R 1:25–4:25. 2 all-day field trips will be scheduled during the semester. A. G. Taylor, Geneva Experiment Station (Ithaca contact, R. L. Obendorf).
The principles and practices involved in the production, harvesting, processing, storage, testing, quality management, certification, and use of high-quality seed from improved cultivars. Information is applicable to various kinds of agricultural seeds.

608 Water Status in Plants and Soils
Fall. 1 credit. Prerequisite: permission of instructor. S-U grades optional.
Lec, 1 hour to be arranged; lab, R 1:25–4:25 or as arranged. T. L. Setter.
Techniques for field appraisal of the status of water in plants and soil, including methods used in evapotranspiration studies.

610 Physiology of Environmental Stress
Spring. 3 credits. Prerequisite: Biological Sciences 242 or 341.
A study of the responses of plants to environmental stresses, including chilling, freezing, high temperature, and drought. Emphasis is on the physiological and biochemical basis of injury and plant resistance mechanisms at the whole-plant, cellular, and molecular levels.

611 Crop Simulation Modeling
Fall. 3 credits. Prerequisite: Biological Sciences 242 or 341.
A topic dealing with root-soil interaction will be selected during the first meeting of the term. Students will prepare one or two seminars based on published work on the topic. Possible topics include root growth, root morphology, conservation tillage, and soil temperature.

612 Seed Physiology
Spring. 3 credits. Prerequisite: plant physiology.
Morphology, physiology, and biochemistry of cereal, legume, and oil-seed formation, composition, storage, and germination. Emphasis is on the deposition of seed reserves during seed formation, stabilization of reserves during storage, and mobilization of reserves during germination. Topics range from on-farm problems to molecular mechanisms.

613 Physiology and Ecology of Yield
Spring. 3 credits. Prerequisite: plant physiology.

614 Advances in Weed Science
Spring. 3 credits. Prerequisite: SCAS 315 or equivalent. Offered alternate years. Offered 1990–91.
Lecs and labs to be arranged. J. M. DiTomaso.

642 Plant Mineral Nutrition (also Biological Sciences 642)
Spring. 3 credits. Prerequisite: Biological Sciences 341 or equivalent.
A detailed study of the processes by which plants acquire and utilize mineral nutrients from the soil. Topics will include the uptake, translocation, and compartmentation of mineral elements; root-soil interactions; metabolism of mineral elements; the involvement of mineral nutrients in various physiological processes; and nutrition of plants adapted to extreme environmental stresses (e.g., salinity). Specific mineral elements will be emphasized to illustrate the above topics.

690 Root-Soil Interactions
Fall or spring. 1-2 credits. S-U grades optional.
Hours to be arranged. R. F. Zabel.
A topic dealing with root-soil interaction will be selected during the first meeting of the term. Students will prepare one or two seminars based on published work on the topic. Possible topics include root genetics, root morphology, conservation tillage, and soil temperature.

691 Special Topics in Crop Science
Fall or spring. 1-6 credits. S-U grades optional.
Hours to be arranged. R. Radulovich.

Study of topics in crop science that are more specialized or different from other courses. Special topics to be offered will depend on staff and student interests.
Agriculture and Life Sciences

829 Master’s-Level Thesis Research in Crop Science
Fall or spring. Credit by arrangement. Limited to students in the graduate field. S-U grades optional. Hours by arrangement.

929 Doctoral-Level Thesis Research in Crop Science
Fall or spring. Credit by arrangement. Limited to students in the graduate field. S-U grades optional. Hours by arrangement.

Remote Sensing

461 Remote Sensing: Environmental Applications (also Civil and Environmental Engineering 461)
Spring. 3 credits. Prerequisite: permission of instructor.
Lecs, T R 10:10; lab, T 2:30–4:25 (a second lab sec will be scheduled if more than 15 students register).
W. R. Philipson.
A survey of how remote sensing is applied in various environmental disciplines. Laboratory emphasis is on using aircraft and satellite imagery for inventorying and monitoring surface features in engineering, planning, agriculture, and natural resource assessments.

660 Remote Sensing Fundamentals (also Civil and Environmental Engineering 610)
Fall. 3 credits. Prerequisite: permission of instructor.
An introduction to equipment and methods used in obtaining information about earth resources and the environment from aircraft or satellite. Coverage includes sensors, sensor and ground-data acquisition, data analysis and interpretation, and project design.

662 Seminar in Remote Sensing (also Civil and Environmental Engineering 619)
Lectures on current developments in assessing earth resources or the environment. Each week a different topic on remote sensing or geographic information systems is presented by specialists from government, industry, Cornell, or other research or academic institutions.

Soil Science

260 Introduction to Soil Science
Spring. 4 credits. Prerequisite: Chemistry 103, 207 or 215. S–U grades optional.
Lecs, M W F 9:05; lab, M T W or R 1:25. M. McBride.
A comprehensive introduction to the field of soil science, with emphasis on scientific principles and their application to solving soil management problems. The laboratory exercises stress quantitative measurement of soil properties.

321 Soil and Water Management
Spring. 2 credits. Prerequisites: SCAS 190 or 260. Concurrent registration in Agricultural and Biological Engineering 321 required. S–U grades optional.
An interdisciplinary course intended to introduce students to the general principles of soil and water interaction and to the effects of human intervention in these processes.

362 Soil Morphology
Fall. 1 credit. Undergraduates only. Recommended for sophomores and juniors.
R 1:25–4:25. All-day field trip required. R. B. Bryant, W. J. Waltman.
The principles for field identification of soil properties, profiles, and landscapes are presented. A series of soil pits are examined, described, classified, and interpreted in the field.

363 Intermediate Soil Science: Genesis, Classification, and Physics
Fall. 4 credits. Prerequisite: SCAS 260.
Lecs, M W F 10:10; lab, W 1:25–4:25. One all-day field trip required.
R. B. Bryant and M. Alexander.
Factors and processes of soil formation. Principles of field identification, classification, survey, and interpretation. Laboratory exercises and field trips provide practical training in soil morphology and landscape relations. Description and measurement of the status of water in soils. Theory of water, solute, and heat transport. Infiltration, drainage and redistribution. Weekly laboratory exercises illustrate the concepts introduced in class.

364 Intermediate Soil Science: Chemistry and Microbiology
Spring. 3 credits. Prerequisite: SCAS 260.
The chemical properties and microorganisms of soil and the chemical reactions and transformations occurring in soil.

372 Soil Fertility Management
Fall. 3 credits. Prerequisite: SCAS 260 or permission of instructor.
An integrated discussion of soil crop yield relationships, the role of the soil as a source of mineral nutrients for crops and the role of fertilizers and manure in crop production.

373 Soil, Water, and Aquatic Plants
Fall. 3 credits. Prerequisites: SCAS 260, Biological Sciences 101–102, and Chemistry 103–104 or equivalents.
The success or failure of soil and water management is manifested in streams, wetlands, lakes, and aquifers. Chemical and biological changes downstream are studied and related to agricultural management techniques upstream. Basic chemical and physiological processes are presented and used to suggest appropriate responses to water management problems.

385 Biogeochemical Cycles, Agriculture, and the Environment
Spring. 2 credits. Prerequisites: Chemistry 103 or 207 and SCAS 260 or equivalent.
The impact of agriculture on aspects of the global biogeochemical cycles of carbon, nitrogen, sulfur, and phosphorus is discussed and illustrated with current agricultural and environmental issues. Topics include sustainable agriculture, effects of nitrogen fixation, acid rain, global warming, and land disposal of wastes.

396 Environmental Microbiology (also Microbiology 396)
Spring. 3 credits. Prerequisites: Micro 290 or BioSci 261 or SCAS 260 or permission of instructor. Offered alternate years starting spring 1991.
Behavior and function of microorganisms in natural environments and the role of microorganisms in transformation of pollutants.

465 Soil and Plant Analysis
Intensive and systematic study of the theoretical and practical aspects of soil and plant analysis. Analyses of soil and plant samples are carried out with emphasis on analytical problem solving and evaluation of the experimental data. Sampling philosophy and preliminary treatment of samples is covered. A variety of wet chemistry and instrumental methods are employed. Considerable attention is given to correlation of analytical properties and chemical forms of elements in soils and plants with growth and yield.

471 Geography and Appraisal of Soils of the Tropics
Fall. 3 credits. Prerequisite: SCAS 260 or equivalent. S–U grades optional. No audits accepted.
The character of principal kinds of soils in the major regions of the tropics. Emphasis is on soil properties as a basis for interpretation of crop management requirements and production potential. Lectures introduce principles whose applications are examined through discussions, problem solving, and independent reading.

473 Ecology of Agricultural Systems (also Biological Sciences 473)
Fall. 3 credits. Limited to 45 students.
Prerequisite: Biological Sciences 261 or permission of instructor. S–U grades optional. Offered alternate years.
Lec and disc, T R 2:30–3:45. During the first 6 weeks of this Thursday meetings may run to 5:00 because of field trips. A. G. Power and T. W. Scott.
Analysis of the ecological processes operating in agricultural systems, with an emphasis on the interactions between organisms. Topics include nutrient dynamics in agroecosystems, plant competition and facilitation, intercropping, the ecology of species invasions, mutualism in agroecosystems, plant–herbivore relations, plant–pathogen interactions, biological pest control, and evolutionary processes in agriculture. Case studies from both the tropics and the temperate zone are used to illustrate important concepts.

483 Environmental Biophysics
Fall. 3 credits. Prerequisite: SCAS 260 or equivalent or permission of instructor.
Lecs, M W F 11:15. S. J. Riha.
Introduction to basic principles of energy and water transfer and storage in soil–plant systems. Energy budgets, soil heat flow, water movement in saturated and unsaturated soils, evapotranspiration, and water dynamics in the soil–plant–atmosphere continuum will be covered. Applications to agronomic and environmental problems and instrument design and use are considered through discussion and problems sets.
683 Pedology
Spring. 3 credits. Prerequisite: SCAS 361 or permission of instructor. Offered alternate years. Textbook recommended, not required.
TR 10:30-12. R. B. Bryant.

666 Advanced Soil Microbiology
Fall. 1 credit. Prerequisite: SCAS 476 or permission of instructor. S-U grades only for graduate students.
Discussions of current topics in special areas of soil microbiology. Particular attention is given to biochemical problems in microbial ecology.

667 Advanced Soil Physics
Spring. 3 credits. Prerequisites: One year of college physics and SCAS 483 or permission of instructor. S-U grades optional. Offered alternate years.
MWF 11:15. P. Baveye.
A detailed study of the hydrostatics of aqueous solutions in soils and porous media, with emphasis on fundamental principles. Examination of the molecular aspects of water-solid interactions, including shrink-swell phenomena and the properties of absorbed water. Analysis of equilibrium water adsorption from thermodynamical and mechanistic (molecular) standpoints. Mechanical and thermodynamical analysis of the equilibrium status of aqueous solutions in deformable soils. Formal lectures are complemented by tutorial sessions.

669 Organic Matter - Soils, Sediments, and Waters
Spring. 2 or 3 (with discussion) credits. Prerequisites: SCAS 260 and Chemistry 357–358 or equivalent.
TR 9:05; disc W 1:25–2:15.
J. M. Duxbury.
A discussion of current concepts on the chemical nature, dynamics, and properties of natural organics and organo-mineral associations in terrestrial and aquatic environments. Interaction with anthropogenic organics and effects of anthropogenic activities on natural organics are considered.

675 Modeling the Soil-Plant-Atmosphere System
Spring. 3 credits. Prerequisite: SCAS 483 or equivalent and Computer Science 100 or equivalent. Offered alternate years.
Derivation of dynamic simulation models of soil-plant-atmosphere systems and their application. Models will include water, plant nutrients, and pesticide transport and their interaction with soil and plants. Students will develop their own models and apply existing models to environmental and plant production problems.

681 Soil Physics Research Seminar
Fall. 1 credit. Open to graduate students.
Discussions of current topics in special areas of soil physics and presentation of research carried out by participants.

683 Special Topics in Soil Science
Fall or spring. 1–6 credits. S-U grades optional. Hours to be arranged. Staff.
Study of topics in soil science that are more specialized or different from other courses. Special topics to be covered will depend on staff and student interests.

771 Clay Chemistry
Fall. 3 credits. Prerequisite: one year of physical chemistry or permission of instructor. Offered alternate years. Not offered 1990–91.
A detailed examination of the structure and surface chemistry of minerals common to soils. Ion exchange, mineral-solution equilibria, and adsorption reactions of silicate clays and oxides will be emphasized.

774 Soil Fertility Advanced Course
Spring. 3 credits. Prerequisite: graduate status with a major or minor in agronomy. Offered alternate years. Not offered 1990–91.
Lecs, M W F 8:00–8:50. D. R. Bouldin.
A study of selected topics in soil-crop relationships, with emphasis on concepts of soil fertility, interpretation of experimental data, and soil fertilizer chemistry.

889 Master's-Level Thesis Research in Soil Science
Fall or spring. Credit by arrangement. Limited to students in the graduate field. S-U grades optional. Hours by arrangement.

989 Doctoral-Level Thesis Research in Soil Science
Fall or spring. Credit by arrangement. Limited to students in the graduate field. S-U grades optional. Hours by arrangement.
Courses in "Remote Sensing" are also listed under the Department of Civil and Environmental Engineering in the College of Engineering.

STATISTICS AND BIOMETRY

200 Statistics and the World We Live In
Spring. 3 credits.
Lecs, TR 10:10–11:25; disc, T 1:25 or 2:30, or W 1:25 or 2:30, or R 9:05. Staff.
Major concepts and approaches of statistics are presented at an introductory level. Three broad areas are covered: collecting data, organizing data, and drawing conclusions from data. Topics include sampling, statistical experimentation and design, measurement, tables, graphs, measures of center and spread, probability, the normal curve, confidence intervals, and statistical tests.

215 Introduction to Statistical Methods
Fall. 3 credits. Prerequisite: Statistics 200 is recommended for students with no prior experience in data collection and interpretation.
Lecs, M W F 11:15; lab, 1 hr. to be arranged. Staff.
Statistical methods are developed and used to analyze data arising from the biological sciences. Topics include point and confidence interval estimation, hypothesis testing, t-tests, correlation, simple linear regression, and possibly analysis of variance and multiple regression. Statistical computing is taught and used throughout the course. Emphasis is on proper use of statistical methodology and interpretation of statistical analyses.

408 Theory of Probability
Fall. 4 credits. Prerequisite: Mathematics 112, 122, or 192, or permission of instructor.
Lecs, M W F 10:10; disc, M 3:35–5. Staff.
An introduction to probability theory: foundations, combinatorics, random variables and their probability distributions, expectations, generating functions, and limit theory. Biological and statistical applications are the focus. Can serve as either a one-semester introduction to probability or a foundation for a course in the theory of statistics.

409 Theory of Statistics
Spring. 4 credits. Prerequisite: Statistics 408 or equivalent.
Lecs, M W F 10:10; disc, M 3:35–5. Staff.
The concepts developed in Statistics 408 are applied to provide an introduction to the classical theory of parametric statistical inference. Topics include sampling distributions, parameter estimation, hypothesis testing, and linear regression. Students seeking applied courses in statistical methodology should consider Statistics 601–602.

417 Matrix Algebra
Fall. 3 credits. Prerequisite: precalculus mathematics.
Definitions, basic operations and arithmetic, determinants, and the inverse matrix. Rank, linear dependence, canonical forms, linear equations, generalized inverses and eigenvectors and vectors. Emphasis is on understanding basic ideas and on developing skills for applying matrix algebra.

451 Mathematical Modeling of Populations
Fall. 3 credits. S-U grades optional. Prerequisites: Mathematics 111 and 112, or equivalent. Offered alternate years. Not offered 1991–92.
This course concentrates in the analysis and simulation of mathematical models, and it will focus in the study of models relevant to population genetics and population biology. Mathematical techniques that are relevant to these areas will be presented. The course will emphasize stochastic and deterministic models. Computer simulations and the use of mathematical packages will be an integral part of this course.

495 Statistical Consulting
Fall. 2 credits. S-U grades only. Limited to undergraduates. Prerequisites: Statistics 409 and 602 and permission of instructor.
Lecs, W 1:25–2:15 plus 1 hr. of consulting to be arranged. Staff.
Participation in the Biometrics Unit consulting service: faculty-supervised statistical consulting with researchers from other disciplines. Discussion sessions for joint consideration of selected consultations encountered during previous weeks.
497 Special Topics
Fall or spring. 1–3 credits. S-U grades optional.
Staff.
Can consist of individual tutorial study or a course of lectures (or both) selected by the faculty. Since topics usually change from year to year, this course may be repeated for credit.

498 Supervised Teaching
Fall or spring. 2 credits. S-U grades only.
Limited to statistics and biometry undergraduates.
Staff.
Students assist in teaching a course appropriate to their previous training. Students will meet with a discussion or laboratory section and regularly discuss objectives with the course instructor.

499 Undergraduate Research
Fall or spring. 1–3 credits. Limited to statistics and biometry undergraduates. Prerequisite: permission of faculty member directing research.
Staff.

600 Statistics Seminar
Fall or spring. 1 credit. S-U grades only.
W 3–4:30. Staff.

601 Statistical Methods I
Fall. 4 credits. Limited to graduate students, others by permission of the instructor.
Statistical methods are developed and used to analyze data arising from a wide variety of applications. Topics include descriptive statistics, point and interval estimation, hypothesis testing, inference for a single population, comparisons between two populations, one- and two-way analysis of variance, comparisons among population means, analysis of categorical data, and correlation and regression analysis. Interactive computing is introduced through MINITAB statistical software. Emphasis is on basic principles and criteria for selection of statistical techniques.

602 Statistical Methods II
Spring. 4 credits. Limited to graduate students; others by permission of instructor. Prerequisite: Statistics 601 or equivalent.
A continuation of Statistics 601. Emphasis is on the use of multiple regression analysis, analysis of variance, and related techniques to analyze data in a variety of situations. Topics include an introduction to data collection techniques; least squares estimation; multiple regression; model selection techniques; detection of influential points, goodness-of-fit criteria; principles of experimental design; analysis of variance for a number of designs, including multi-way factorial, nested, and split plot designs; comparing two or more regression lines; and analysis of covariance. Emphasis is on appropriate design of studies prior to data collection, and the appropriate application and interpretation of statistical techniques. For practical applications, computing is done with the SAS statistical package.

603 Statistical Methods III
Fall. 3 credits. Prerequisite: Statistics 601 and 602 or permission of instructor. Offered if a sufficient number of students are interested. Offered alternate years. Not offered 1990–91. Principles of scientific experimentation, experiment design, sample surveys and questionnaire design, statistical aspects of survival analysis, life tables, statistical analyses for clinical trials; categorical data analysis, including logistic regression, loglinear models, combining contingency tables, and application to case control studies; multivariate analysis; and space-time clustering.

604 Statistical Methods IV: Applied Design
Fall. 3 credits. Prerequisites: Statistics and Biometry 601 and 602 or permission of instructor.
Offered alternate years. Not offered 1990–91. Applications of experimental design including such advanced designs as split plots, incomplete blocks, fractional factorial designs. Use of the computer for both design and analysis will be stressed, with emphasis on solutions of real data problems.

605 Applied Regression Analysis
Fall, 1/3 of the term. 1 credit. Prerequisites: Statistics 409 and 602. Offered alternate years. Not offered 1990–91. A continuation of Statistics 602, with emphasis on data analysis including logistic and nonlinear regression.

606 Sampling Biological Populations
Fall, 1/3 of the term. 1 credit. Prerequisite: Statistics 601 or equivalent. Not offered 1990–91. Standard methods of sample-survey design and estimation are presented, including stratified random sampling, cluster sampling, double sampling, and variable probability sampling. Special emphasis given to methods of particular utility or specifically designed for biological sampling. Examples are taken from forestry, fisheries, and other biological areas.

607 Nonparametric and Distribution-Free Statistical Methods
Spring, 1/3 of the term. 1 credit. S-U grades optional. Not offered 1990–91. Nonparametric and distribution-free alternatives to normal-theory testing procedures are presented: sign or rank tests for one or two populations, analyses for completely randomized and randomized blocks designs, comparisons among several means; correlation and regression, goodness-of-fit; and tests based on randomization of the data.

639 Epidemiology Seminar (also Nutritional Sciences 639)
Fall and spring. 1 credit. S-U grades only. Limited to graduate students; others by permission of instructor.
M 12:20. Staff.
This course will develop skills in the preparation and interpretation of epidemiological data by discussing current research topics and issues.

642 Advanced Mathematical Methods in Statistics and Biometry
Spring. 3 credits. S-U grades optional. Prerequisites: Mathematics 411 or 421, or equivalent. Offered alternate years. Not offered 1990–91.
This advanced level course will cover classical mathematical methods that are useful in statistics, biometry, and biomathematics, with an introduction to MACSYMA. Topics include: Introduction to MACSYMA, complex numbers and their elementary properties, analytic functions, contour integration, special functions, asymptotic methods, generalized functions, and the Fourier transform. Techniques will be illustrated with examples drawn from statistics, biometry, and biomathematics.

651 Mathematical Population Studies and Modeling
Fall. 3 credits. S-U grades optional. Prerequisites: Statistics 408 and 417, or equivalent. Statistics 409 is recommended. Offered alternate years. Not offered 1990–91.
Model formulation, parameter estimation, and mathematical analysis of stochastic and deterministic models in population dynamics. Emphasis will be put on the interactions between human demography and sociology (human behavior), and their relationship to disease dynamics of microparasitic and macroparasitic infections. The process of pair formation and dissolution and their impact on demography, sociology, and epidemiology will also be studied.

662 Mathematical Ecology (also Biological Sciences 662)
Spring. 3 credits. Prerequisites: a year of calculus and a course in probability. Offered alternate years.
Lecs, M W F 12:20. Staff.
Mathematical and statistical analysis of populations and communities: theory and methods. Spatial and temporal pattern analysis, deterministic and stochastic models of population dynamics. Model formulation, parameter estimation, and simulation and analytical techniques.

697 Special Topics in Statistics and Biometry
Fall, spring, or summer. 1–3 credits. S-U grades optional.
Staff.
Can consist of individual tutorial study or a course of lectures (or both) selected by the faculty. Since topics usually change from year to year, this course may be repeated for credit.

701 Advanced Biometry
Spring. 3 credits. Prerequisites: Statistics 409 and 602. Limited to graduate students; others by permission of instructor. Not offered 1990–91.
Bioassay methods, including parametric and nonparametric statistical analyses of quantal and graded response to controlled levels of single and multifactored stimuli; directional statistics as applied to animal orientation experiments; compartment models and analyses; enzyme kinetics and pharmacokinetic analyses; and bioavailability.
VEGETABLE CROPS: HORTICULTURAL SCIENCES

VEGETABLE CROPS: HORTICULTURAL SCIENCES

E. E. Ewing, chair; R. R. Bellinder,
L. A. Elerichbrock, D. E. Halseth, J. R. Hicks,
D. J. Lisk, P. M. Ludford, P. L. Minotti,
M. A. Mutschler, J. Sieczka, L. D. Topoleski,
D. H. Wallace, H. C. Wien, A. W. Wilcox-Lee,
D. W. Wolfe

102 General Horticulture
Spring. 4 credits. Each lab limited to 25 students.
Lecs, MWF 10:10; lab, MTW 2:45.
L. D. Topoleski.
Acquaints the student with application and basic horticulture. Open to all students who want a general knowledge of the subject or who want to specialize in horticulture but have a limited background in practical experience or training in plant science. Includes flowers, fruit, and vegetable growing and gardening techniques.

220 Vegetable Types and Identification
Fall. 2 credits. T 2:45. L. D. Topoleski.
Acquaints the student with the vegetable species grown in the Northeast and the pests and disorders encountered in their production. Subjects covered include identification of economically destructive weeds, diseases and insects of vegetable, identification of vegetable and weed seeds, seedlings, nutrient deficiencies, vegetable judging, grading, and grade defects.

225 Vegetable Production
Fall. 4 credits. Field trip fee, no more than $20.
Lecs, MWF 11:15; lab, W 2:45; 1 S field trip and 3 field trips (Sept.), W 11:15–6. L. A. Elerichbrock.
Intended for students interested in horticulture from the viewpoint of production, processing, marketing, or the related service industries. Topics include techniques, problems, and trends in production, harvesting, and storage of the major vegetable crops, including potatoes and dry beans. Consideration is given to issues affecting the industry, such as pesticide usage, environmental concerns, and new marketing developments. Field trips to conventional and organic farms and hands-on experience in growing vegetables in the laboratory are included.

325 Practical Aspects of Postharvest Handling of Horticultural Crops
Spring. 3 credits.
Study of changes that occur in horticultural crops between harvest and consumer. Practices that affect the rate of change and the final effect on quality of the commodity are discussed. Maturity, quality indices, preharvest treatments, and harvesting/handling practices and storage/transportation requirements of selected horticultural crops are covered. The effect of marketing orders, marketing chains, market requirements, quarantine, and pest eradication procedures is emphasized.

415 Postharvest Physiology and Storage of Horticultural Crops
Fall. 3 credits. Prerequisite: a course in floriculture, pomology, or vegetable crops, or permission of instructor.
A study of principles of postharvest physiology, handling, and storage of horticultural crops, including fruits, vegetables, flowers, and ornamental crops. Major physiological processes such as transpiration, respiration, compositional changes, ethylene synthesis and action, maturation, ripening, and senescence of the crops are studied. Methods of harvesting and handling, including cleaning, grading, packing, precooking, ventilation, sanitation, and transportation, are studied. Methods of storage, including common storage, underground storage, refrigerated storage, controlled atmosphere storage, modified atmosphere storage, and hypobaric storage, are also studied.

455 Vegetable Crop Physiology
Fall. 5 credits. Prerequisites: Horticultural Sciences 225 and Biological Sciences 242, or equivalents.
Lecs, MWF 10:10; lab, M–2:45; disc, R or F 1, 2, or 3. H. C. Wien, P. L. Minotti.
Subjects include mineral nutrition as influenced by fertilizer programs and crop sequence, nutrient interactions and induced deficiencies, growth and development, flowering, fruit setting, growth control, temperature regulation, sex expression, photoperiodism, vernalization, and environmental factors affecting growth.

460 Plant-Plant Interactions
Spring. 3 credits. Prerequisite: any crop production course or permission of instructor.
Lecs, MWF 8; disc, to be arranged. Each disc section limited to 6 students. P. L. Minotti.
The manner in which plants interfere or positively interact with other plants is examined with primary emphasis on crop situations rather than natural plant communities. Competitive and chemical interactions are considered between weeds and crops, crops and associate crops, and between individuals in monoculture.

465 Vegetable Varieties and Their Evaluation
Fall. Weeks 1–7. 2 credits. Prerequisite: Horticultural Sciences 225 or permission of instructor. S-U grades only. Offered alternate years.
Lecs, MWF 8; lab, F 1:25–4:25.
D. W. Wolfe and H. C. Wien.
Principles of vegetable variety evaluation and selection of techniques in relation to program objectives. Morphology, yield, and quality of selected crops will be studied in the field. The need industry will be briefly discussed.

495 Undergraduate Seminar
Spring. 1 credit. (May be taken twice for credit.) Prerequisite: a course in vegetable crops. S-U grades only.
Hours to be arranged. Staff.
Seminar topics and speakers selected and arranged by the student or subject areas related to vegetable crops.

496 Internship in Horticultural Sciences
Fall or spring. Credit variable. S-U grades optional. Prerequisite: permission of student’s adviser in advance of participation in internship programs. Students must attach to their course enrollment a "CALS Independent Study, Research, or Teaching" form signed by the staff member who will supervise their internship and assign their grade.

Staff.
625 Advanced Postharvest Physiology of Horticultural Crops
Fall or spring. 3 credits. Prerequisite: Biological Sciences 247 and/or Horticultural Sciences 315 (also Agricultural and Biological Engineering 319). Offered alternate years. Lecs. T R 10:10-12:05. Disc session to be arranged. P. M. Ludorf. Physiological and biochemical aspects of growth and maturation, ripening, and senescence of harvested horticultural plant parts. Topics include morphological and compositional changes during ripening and storage life, some physiological disorders, aspects of hormone action and interactions, and a consideration of control.

629 Special Topics in Plant Science Extension (also Plant Breeding 629)

700 Graduate Teaching Experience
Fall, spring. 1 or more credits by arrangement with instructor. Hours to be arranged. Staff. Participation in the teaching program of the department.

800 (801) Thesis Research, Master of Science
Fall or spring. Credit to be arranged. S-U grades only. Hours to be arranged. Staff.

900 (901) Thesis Research, Doctor of Philosophy
Fall or spring. Credit to be arranged. S-U grades only. Hours to be arranged. Staff.

FACULTY ROSTER

Ahsawi, George S., Ph.D., Cornell U. Prof., Plant Pathology (Geneva)
Acree, Terry E., Ph.D., Cornell U. Prof., Food Science, and Technology (Geneva)
Agello, Arthur M., Ph.D., North Carolina State U. Asst. Prof., Entomology (Geneva)
Aho, Paul W., Ph.D., Michigan State U. Asst. Prof., Poultry and Avian Sciences
Aist, James R., Ph.D., U. of Wisconsin. Prof., Plant Pathology
Albright, Louis D., Ph.D., Cornell U. Prof., Agricultural and Biological Engineering
Aldwinkle, Herbert S., Ph.D., U. of London (England). Prof., Plant Pathology (Geneva)
Alexander, Martin, Ph.D., U. of Wisconsin. Liberty Hyde Bailey. Professor of Soil Science, Soil, Crop, and Atmospheric Sciences
Allee, David J., Ph.D., Cornell U. Prof., Agricultural Economics
Altman, Naomi S., Ph.D., Stanford U. Asst. Prof., Plant Breeding and Biometry
Anderson, Robert L., Ph.D., U. of Minnesota. Prof., Horticultural Sciences (Geneva)
Anderson, Bruce L., Ph.D., U. of California at Berkeley. Assoc. Prof., Agricultural Economics
Aneshansley, Daniel J., Ph.D., Cornell U. Assoc. Prof., Agricultural and Biological Engineering
Apar, Barbara J., Ph.D., Cornell U. Assoc. Prof., Animal Science
Apin, Richard D., Ph.D., Cornell U. Prof., Agricultural Economics
Aretho, Paul A., Ph.D., U. of Wisconsin. Assoc. Prof., Plant Pathology
Austic, Richard E., Ph.D., U. of California at Davis. Prof., Poultry and Avian Sciences

Awa, Njoku E., Ph.D., Cornell U. Assoc. Prof., Communication
Baer, Richard A., Ph.D., Harvard U. Prof., Natural Resources
Bandler, David K., M.P.S., Cornell U. Prof., Food Science
Barbano, David M., Ph.D., Cornell U. Assoc. Prof., Food Science
Barker, Randolph, Ph.D., Iowa State U. Prof., Agricultural Economics
Bartsch, James A., Ph.D., Purdue U. Assoc. Prof., Agricultural and Biological Engineering
Beattie, Carl A., Ph.D., Rutgers U. Asst. Prof., Food Science
Bauman, Dale E., Ph.D., U. of Illinois. Prof., Animal Science
Bailey, Philip C., Ph.D., U. of California at Riverside. Asst. Prof., Soil, Crop, and Atmospheric Sciences
Becker, Robert F., M.S., U. of New Hampshire. Assoc. Prof., Horticultural Sciences (Geneva)
Becker, Barbara, Ph.D., U. of Wisconsin, Madison. Assoc. Prof., Natural Resources
Beer, Steven V., Ph.D., U. of California at Davis. Assoc. Prof., Plant Pathology
Beermann, Donald H., Ph.D., U. of Wisconsin. Assoc. Prof., Animal Science
Bell, Alan W., Ph.D., U. of Glasgow (Scotland). Assoc. Prof., Animal Science
Bellinger, Robin R., Virginia Polytechnic Inst. and State U. Assoc. Prof., Vegetable Crops
Bergstrom, Gary C., Ph.D., U. of Kentucky. Assoc. Prof., Plant Pathology
Berkey, Arthur L., Ph.D., Michigan State U. Prof., Education
Billis, Nelson L., Ph.D., Washington State U. Assoc. Prof., Agricultural Economics
Bjorkman, Thomas, Ph.D., Cornell U. Asst. Prof., Horticultural Sciences (Geneva)
Blake, Robert W., Ph.D., North Carolina State U. Prof., Animal Science
Blangied, George D., Ph.D., Michigan State U. Prof., Pomology
Bloom, Stephen E., Ph.D., Penn State U. Prof., Poultry and Avian Sciences
Boisvert, Richard N., Ph.D., U. of Minnesota. Prof., Agricultural Economics
Bouldin, David R., Ph.D., Iowa State U. Prof., Soil, Crop, and Atmospheric Sciences
Bourne, Malcolm C., Ph.D., U. of California at Davis. Prof., Food Science and Technology (Geneva)
Boyd, R. Dean, Ph.D., U. of Nebraska. Assoc. Prof., Animal Science
Brady, John W., Jr., Ph.D., SUNY at Stonybrook. Assoc. Prof., Food Science
Brake, John R., Ph.D., North Carolina State U. W. I. Myers Professor of Agricultural Finance, Agricultural Economics
Broadway, Roxanne M., Ph.D., U. of California at Davis. Asst. Prof., Entomology (Geneva)
Brown, David L., Ph.D., U. of Wisconsin. Professor, Rural Sociology
Brown, Susan K., Ph.D., U. of California at Davis. Asst. Prof., Horticultural Sciences (Geneva)
Brown, William L., Jr., Ph.D., Harvard U. Prof., Entomology
Bruce, Robert L., Ph.D., Cornell U. Prof., Education
Bromsted, Harlan B., Ph.D., Cornell U. Assoc. Prof., Natural Resources
Bryant, Ray B., Ph.D., Purdue U. Assoc. Prof., Soil, Crop, and Atmospheric Sciences

Agriculture and Life Sciences

497 Independent Study in Horticultural Sciences
Fall or spring. Credit variable. S-U grades optional. Prerequisite: permission of instructor(s). Students must attach to their course enrollment materials a "CALS Independent Study, Research, or Teaching" form signed by the staff member who will supervise their research and assign their grade. Independent study in horticultural sciences under the direction of one or more staff members.

498 Undergraduate Teaching Experience
Fall or spring. Credit variable. S-U grades optional. Prerequisites: previous enrollment in course to be taught or equivalent, and written permission of the instructor. Students must attach to their course enrollment materials a "CALS Independent Study, Research, or Teaching" form signed by the staff member who will supervise their research and assign their grade.

499 Undergraduate Research
Fall or spring. 1 or more credits, by arrangement. Written permission from staff member directing the work must be obtained before course enrollment.

500 Master of Professional Studies (Agriculture) Project
Fall or spring. 1-6 credits. S-U grades optional. Hours to be arranged. Graduate faculty. A comprehensive project emphasizing the application of horticultural principles and practices to professional horticultural teaching, extension, and research programs and situations. Required of Master of Professional Studies (Agriculture) candidates in the field.

602 Seminar in Vegetable Crops
Fall or spring. 1 credit. Required of graduate students majoring in minor in vegetable crops. Limited to graduate students. S-U grades only. R 430. Staff.

615 Quantitative Methods in Horticultural Research
Scott, Norman R., Ph.D., Cornell U. Prof., Agricultural and Biological Engineering
Scott, Thomas W., Ph.D., Michigan State U. Prof., Soil, Crop, and Atmospheric Sciences
Searle, Shayle R., Ph.D., Cornell U. Prof., Plant Breeding and Biometry
Seem, Robert D., Pennsylvania State U. Assoc. Prof., Plant Pathology (Geneva)
Setter, Timothy L., Ph.D., U. of Minnesota. Assoc. Prof., Soil, Crop, and Atmospheric Sciences
Shapiro, Michael A., Ph.D., U. of Wisconsin. Asst. Prof., Communication
Shelton, Anthony M., Ph.D., U. of California at Riverside. Assoc. Prof., Entomology (Geneva)
Sherbon, John W., Ph.D., U. of Minnesota. Prof., Food Science
Shields, Elson J., Ph.D., U. of Wisconsin. Asst. Prof., Entomology
Siebert, Karl J., Ph.D., Pennsylvania State U. Prof., Food Science and Technology (Geneva)
Siegfried, Joseph B., M.S., Cornell U. Assoc. Prof., Vegetable Crops
Sinclair, Wayne A., Ph.D., Cornell U. Prof., Plant Pathology and Avian Sciences
Sister, Daniel G., Ph.D., Cornell U. Prof., Agricultural Economics
Slack, Steven A., Ph.D., U. of California at Davis. Prof., Plant Pathology
Smith, Charles R., Ph.D., Cornell U. Prof., Natural Resources
Smith, Margaret E., Ph.D., Stanford U. Asst. Prof., Plant Breeding and Biometry
Smith, R. David, Ph.D., Cornell U. Assoc. Prof., Animal Sciences
Soderlund, David M., Ph.D., U. of California at Berkeley. Assoc. Prof., Entomology (Geneva)
Sorrels, Mark E., Ph.D., U. of Wisconsin. Assoc. Prof., Plant Breeding and Biometry
Splittstoesser, Don F., Ph.D., U. of Wisconsin. Prof., Food Science and Technology (Geneva)
Stanton, Bernard F., Ph.D., U. of Minnesota. Assoc. Prof., Soil, Crop, and Atmospheric Sciences
Stykel, Warren C., Ph.D., Pennsylvania State U. Prof., Pomology
Stoesewald, Gilbert S., Ph.D., Cornell U. Prof., Food Science and Technology (Geneva)
Straub, Richard W., Ph.D., U. of Missouri. Assoc. Prof., Agricultural Engineering
Streeter, Deborah H., Ph.D., U. of Wisconsin. Asst. Prof., Agricultural Economics
Streeter, Kenneth A., Ph.D., Northwestern U. Prof., Education
Stygos, J. Mayone, Ph.D., Columbia U. Prof., Rural Sociology
Sutphin, H. Dean, Ph.D., Ohio State U. Assoc. Prof., Entomology (Geneva)
Sutcliffe, Stephen D., Ph.D., U. of California at Davis. Assoc. Prof., Plant Breeding and Biometry
Tauber, Maurice J., Ph.D., U. of California at Berkeley. Prof., Entomology (Geneva)
Taylor, Loren W., Ph.D., Iowa State U. Assoc. Prof., Agricultural Economics
Taylor, Alan G., Ph.D., Oklahoma State U. Assoc. Prof., Horticultural Sciences (Geneva)
Thonney, Michael L., Ph.D., U. of Minnesota. Prof., Animal Science
Thurston, H. David, Ph.D., U. of Minnesota. Prof., Plant Pathology
Timmons, Michael B., Ph.D., Cornell U. Assoc. Prof., Agricultural and Biological Engineering
Tingey, Ward M., Ph.D., U. of Arizona. Prof., Entomology
Tomek, William G., Ph.D., U. of Minnesota. Prof., Agricultural Economics
Topoleski, Leonard D., Ph.D., Purdue U. Prof., Vegetable Crops
Trancik, Roger T., M.A., Harvard U. Prof., Floriculture and Ornamental Horticulture
Trowbridge, Peter J., M.A., Harvard U. Prof., Floriculture and Ornamental Horticulture
Trombley, Deborah J., Ph.D., U. of Illinois. Assoc. Prof., Education
VanBuren, Jerome P., Ph.D., Cornell U. Prof., Plant Breeding and Biometry
Van Campen, Darrell R., Ph.D., North Carolina State U. Assoc. Prof., Animal Science
VanEss, Harold M., Ph.D., North Carolina State U. Asst. Prof., Soil, Crop, and Atmospheric Sciences
VanEtten, Hans D., Ph.D., Cornell U. Prof., Plant Pathology
VanSool, Peter J., Ph.D., U. of Wisconsin. Prof., Animal Science
VanWambeke, Armand R., Ph.D., U. of Ghent (Belgium) Prof., Soil, Crop, and Atmospheric Sciences
Via, Sara, Ph.D., Duke U. Assoc. Prof., Entomology
Vie, Ronald R., Ph.D., U. of Minnesota. Assoc. Prof., Plant Breeding and Biometry
Villani, Michael G., Ph.D., North Carolina State U. Asst. Prof., Entomology (Geneva)
Volkman, John D., Ph.D., Cornell U. Asst. Prof., Education
Wagener, Robert J., Ph.D., U. of California at Davis. Prof., Soil, Crop, and Atmospheric Sciences
Walker, Larry P., Ph.D., Michigan State U. Assoc. Prof., Agricultural and Biological Engineering
Wallace, Donald H., Ph.D., Cornell U. Prof., Vegetable Crops
Walker, Michael F., Ph.D., U. of Wisconsin. Prof., Agricultural and Biological Engineering
Walker, Reginald H., Ph.D., U. of Massachusetts. Assoc. Prof., Food Science and Technology (Geneva)
Welden, Norman F., Ph.D., U. of California at Davis. Assoc. Prof., Horticultural Sciences (Geneva)
Weiler, Thomas C., Ph.D., Cornell U. Prof., Floriculture and Ornamental Horticulture
Weis, Richard W., Ph.D., U. of Minnesota. Assoc. Prof., Entomology (Geneva)
Welch, Ross M., Ph.D., U. of California at Davis. Asst. Prof., Soil, Crop, and Atmospheric Sciences
Wells, Quentin D., Ph.D., Ohio State U. Assoc. Prof., Entomology
White, Gerald B., Ph.D., Pennsylvania State U. Assoc. Prof., Agricultural Economics
Whie, Shirley A., Ph.D., Michigan State U. Assoc. Prof., Communication
Wien, Hans C, Ph.D., Cornell U. Assoc. Prof., Vegetable Crops
Wilcox, Wayne F., Ph.D., U. of California at Davis. Assoc. Prof., Plant Pathology (Geneva)
Wilcox-Lee, Darlene, Ph.D., U. of Florida. Assoc. Prof., Vegetable Crops
Wilkins, Bruce T., Ph.D., Cornell U. Prof., Natural Resources
Wilks, Daniel S., Ph.D., Oregon State U. Asst. Prof., Soil, Crop, and Atmospheric Sciences
Willett, Lois S., Ph.D., U. of California at Davis. Asst. Prof., Agricultural Economics
Winans, Stephen C., Ph.D., Massachusetts Inst. of Technology. Asst. Prof., Microbiology
Wing, Kenneth E., Ph.D., Cornell U. Prof., Agriculture
Wolfe, David W., Ph.D., U. of California at Davis. Asst. Prof., Vegetable Crops
Wylie, Mary Jean, Ph.D., Texas A & M U. Asst. Prof., Animal Science
Yarbrough, J. Paul, Ph.D., Iowa State U. Prof., Communication
Yoder, Olen C., Ph.D., Michigan State U. Prof., Plant Pathology
Young, Frank W., Ph.D., Cornell U. Prof., Rural Sociology
Youngs, William D., Ph.D., Cornell U. Prof., Natural Resources
Zaitlin, Milton, Ph.D., U. of California at Los Angeles. Prof., Plant Pathology
Zall, Robert R., Ph.D., Cornell U. Prof., Food Science
Zinder, Stephen H., Ph.D., U. of Wisconsin. Assoc. Prof., Microbiology
Zitter, Thomas A., Ph.D., Michigan State U. Assoc. Prof., Plant Pathology
Zobel, Richard W. Ph.D., U. of California at Davis. Assoc. Prof., Soil, Crop, and Atmospheric Sciences
ADMINISTRATION

William G. McMinn, dean
Roberto Bertoia, Associate Dean
Ellen McCollister, director of external affairs
Cynthia K. Prescott, director of administrative operations
Ray Dalton, Director of Minority Educational Affairs
Donna L. Kuhar, registrar
Elizabeth A. Cutter, admissions coordinator
Margaret Webster, slide curator

FACULTY ADVISERS

Architecture students are assigned faculty advisers for their first year. Upperclass students have one assigned adviser but are encouraged to seek assistance and advice from the most appropriate faculty member or college officer.

Freshmen in the fine arts department are assigned faculty advisers for the first year. Students may then choose advisers in their major area of concentration.

Undergraduate students in the Program of Urban and Regional Studies are assigned faculty advisers.

All students in the college are invited to share their concerns and seek advice from the volunteer student advisers at anytime.

Specific inquiries regarding rules, procedures, or deadlines should be addressed to:

Val K. Warke, chair, Department of Architecture
David B. Lewis, chair, Department of City and Regional Planning
Victor Kord, chair, Department of Art.

DEGREE PROGRAMS

Degree
Architecture B.Arch.
Fine Arts B.F.A.
History of Architecture and Urban Development B.S.
Urban and Regional Studies B.S.

The college offers programs leading to the Bachelor of Architecture, Arts, and Planning; and to the Bachelor of Science. In addition, four-year programs in art and architecture are available to all students in a curriculum that stresses the convergence of artistic, cultural, and architectural ideas vital to an understanding of the city. Students are responsible for planning course schedules that ensure their particular requirements can be met, since course offerings in Rome are limited.

LIBRARIES

The Fine Arts Library, in Sibley Dome, serves the College of Architecture, Art, and Planning through its collections on architecture, fine arts, city and regional planning and landscape architecture. The library, with more than 135,000 books, is capable of supporting undergraduate, graduate, and research programs. Some 1,900 serials are currently received and maintained.

A slide library in Sibley Dome contains the F. M. Wells Memorial Slide Collection, which consists of a large and growing collection of slides of architecture, architectural history, and art. The library now includes approximately 350,000 slides.

The facilities of the libraries of other schools and departments on campus and the John M. Olin Library, designed primarily as a research library for graduate students, are also available.

Museums and Galleries

The Herbert F. Johnson Museum of Art was formally opened in May 1973. Although many of its exhibitions and activities relate directly to academic programs of the university, the museum has no administrative affiliation with any department. In this way, its programs freely cross academic boundaries, stimulating interchange among disciplines. With a strong and varied collection and a continuous series of high-quality exhibitions, it fulfills its mission as a center for the visual arts at Cornell. Art galleries are also maintained in Willard Straight Hall, where loan exhibitions of paintings and graphic work by contemporary artists are held. Current work of students in the College of Architecture, Art, and Planning is shown in the exhibition areas in Sibley Dome and the gallery in Olive Tjaden Hall.

ROME PROGRAM

The College of Architecture, Art, and Planning's Rome Program was founded in the fall of 1986 to provide instruction in Italy for students seeking excellence in art, architecture, and other disciplines. The program offers an educational experience that draws upon the rich past of Rome, its resources in museums, its art and architecture, and its wide variety of cultural offerings. The school is located in the famous Palazzo Massimo in the center of the historical city next to such well-known Roman sights as Piazza Navona, the Pantheon, and Rome's famous outdoor market at the Campo dei Fiori.

The program in Rome offers components for students majoring in liberal arts, architecture, fine arts, and planning. Full course loads are available to all students in a curriculum that stresses the convergence of artistic, cultural, and architectural ideas vital to an understanding of the city. Students are responsible for planning course schedules that ensure their particular requirements can be met, since course offerings in Rome are limited.

COLLEGE ACADEMIC POLICIES

Ownership of Student Work

All drawings, models, paintings, graphic art, and sculpture done in the studios and drafting rooms of the architectural program are the property of the college until they have been graded and released by the instructor. Certain works may be selected by the college for retention for academic purposes.
Exhibitions of Student Work

Exhibitions of student work will be held each semester as part of the yearly schedule of the Olive Tjaden Hall gallery and the John Hartell Gallery. These may display the work of a specific course or exhibit examples of the best recent work done.

Scholastic Standards

Term by term, a candidate for an undergraduate degree in this college is required to pass all courses in which the student is registered and have a weighted average for the term of not less than C (2.0). The record of each student who falls below the standard will be reviewed by the Student Records Committee for appropriate action, as described below:

1) Warning means that the student's performance is not up to expectations. Unless improvement is shown in the subsequent term, the student may be placed on final warning or required to take a leave of absence from the college.

2) Final Warning indicates that the student's record is unsatisfactory. Unless considerable improvement is shown in the subsequent term, the student shall be required to take a leave of absence from the college.

3) Required leave of absence: Academic Deficiency. The student is dismissed from the college and may not continue studies in the college. A student who has been placed on a required leave of absence may apply for readmission after an absence of at least two semesters. Application for readmission is made by letter, addressed to the department chair. The student must submit evidence that his or her time has been well used, and, if employed, must submit a letter from an immediate superior. If a student chooses to register for courses, either extramurally at Cornell or at another institution, he or she should be advised that credit for these courses will not apply toward the degree but will appear on the student's transcript. The grades received for any courses taken while on a required leave of absence will not be counted into the grade point average. Readmission to the college is at the discretion of the Admissions Committee. Application for spring-term readmission must be made by November 15, and application for fall-term readmission must be made by April 15. Refer to the college handbook for further information regarding required leave of absence.

4) Required withdrawal: May Not Reregister, College of Architecture, Art, and Planning. The student is dismissed from the college and is permanently prohibited from continuing studies in it. This dismissal does not preclude the possibility of applying for admission to another division of the university. The above actions are not necessarily sequential. A student who has received a warning may be placed on a required leave of absence for academic deficiency at the end of the next term if performance during that time is deemed to be grossly deficient.

It is necessary to have a cumulative average of at least C- (1.7) for graduation.

ARCHITECTURE

Professional Degree Program

The first professional degree in architecture is the Bachelor of Architecture. This degree counts toward the professional registration requirements established by the various states and the National Council of Architectural Registration Boards. The professional program is normally five years in length and is designed particularly for people who, before they apply, have established their interest and motivation to enter the field. Therefore incorporates both a general and professional educational base.

The program is oriented toward developing the student's ability to deal creatively with architectural problems on analytical, conceptual, and developmental levels. The sequence courses in design, consisting of studio work augmented by lectures and seminars dealing with theory and method, are the core of the program. Sequences of studies in culture and society, environmental science, structures, and building technology provide a base for the work in design.

In the first three years the student has the opportunity to establish a foundation in the humanities and sciences through electives. During the fourth and fifth years this base may expand through detailed further studies in these areas. Within the professional program a basis for understanding architecture in its contemporary and historical cultural contexts is established.

The structure of the program incorporates considerable flexibility for the individual student to pursue his or her particular interest in the fourth and fifth years. By carefully planning options and electives in the fifth year, it is possible for a qualified student to apply the last year's work for the Bachelor of Architecture degree to one of the graduate programs offered in the department. Some students are then able to complete the requirements for the master's degree in one additional year.

Washington Program

Fourth- and fifth-year students in good standing who have completed the requirements of the first three years of the curriculum are eligible for a term of study in Washington, D.C. Outstanding third-year students are admitted to the Washington program only by petition and review of their design record. Courses offered by the department include design, thesis, special problems in architectural design, a professional seminar, and professional studies. Additional courses are offered by other departments participating in the program. The program provides a period of intensive exposure to the characteristics of urban development within the framework of a design studio. Content concentrates on urban design issues, restraints related to financing, zoning, development criteria, adaptive reuse, and multiuse developments.

Overlap Program

For qualified students the department offers an option that combines the fifth year of the undergraduate program with the first year of the Master of Architecture program. In the fall of the fourth undergraduate year interested students petition the department to substitute Arch 501-502 for Arch 501-502. At the same time, they complete graduate school applications and submit them with fee and portfolio to the graduate field secretary for architecture. Students accepted into the program may normally begin at the end of their fifth year and, once enrolled, may not transfer back into the 501-502 sequence.

Following admission into the Overlap Program, students may petition to apply toward the requirements of the master's degree a maximum of 30 credits, including Arch 601-602 and other courses taken in excess of distribution requirements for the Bachelor of Architecture degree.

Curriculum

First Year

Fall Term Credits
101 Design I 6
181 History of Architecture I 3
151 Drawing I 2
Math III Calculus 4
Out-of-college elective 3
Total 18

Spring Term
102 Design II 6
182 History of Architecture II 3
152 Drawing II 2
122 Structural Concepts 4
Out-of-college elective (Freshman Seminar suggested) 3
Total 18

Second Year

Fall Term Credits
201 Design III 6
221 Structural Systems I 3
231 Architectural Elements and Principles 2
261 Site Planning 3
Out-of-college elective 3
Total 17

Rome Program

The program offers the opportunity for students from Cornell and other universities to spend one or two terms of study in Rome. This option is open to fourth- and fifth-year Cornell architecture students; outstanding third-year students are admitted by petition and a review of their design record. Courses offered by this department include design, thesis, introduction, history, theory, architectural science, and design communication. In addition, courses are offered by other departments in Italian language, Italian culture, and history of art. The program provides a unique urban and architectural experience drawing from the rich past of the city for sources of instruction and inspiration.
Spring Term	202 Design IV	6	
	222 Structural Systems II	3	
	232 Design Methods and Programming	2	
	262 Building Technology, Materials, and Methods	3	
	College elective	3	
Third Year	**Fall Term**	**Credits**	
301 Design V	6		
361 Environmental Controls I—Lighting and Acoustics	3		
Departmental elective	3		
Out-of-college elective	3		
Out-of-college elective	3		
Spring Term	**362 Environmental Controls II—Mechanical and Passive Solar Systems**	3	
Departmental elective	3		
College or out-of-college elective	3		
Fourth Year	**Fall Term**	**Credits**	
401 Design VII	6		
461 or 462 Professional Practice	3		
Departmental elective	3		
College elective	3		
Out-of-college elective	3		
Spring Term	**402 Design VIII**	3	
Departmental elective	3		
Departmental elective	3		
College or out-of-college elective	3		
Out-of-college elective	3		
Fifth Year	**Fall Term**	**Credits**	
501 Design IX or 601 or 603 Overlap Program	6		
Departmental elective	3		
College or out-of-college elective	3		
Out-of-college elective	3		
Out-of-college elective	3		
Spring Term	**502 Design X or 602 or 604 Overlap Program**	8	
Departmental elective	3		
College or out-of-college elective	3		
College or out-of-college elective	3		
Required Departmental Courses	**Course**	**Number**	**Credits**
Terms	**Subject**	**Number**	**Credits**
10	design	101–504	62
1	mathematics	Math 111 or approved equivalent	4
3	structures	122, 221, 222	10
4	technology	261, 262, 361, 362	12
2	architectural principles, theories, and methods	231, 232	4
2	history of architecture	181, 182	6
1	architecture, culture and society	342	3
1	professional practice	461 or 462	3
2	drawing	151, 152	4
Electives	**Departmental**	**Terms**	**Credits**
3	history of architecture: 300-level	9	
1	design communication: design communication, drawing, computer graphics	3	
2	principles, theories, and methods	6	
1	architectural science	3	
College	**Terms**	**Credits**	
2	art: any courses	6	
Out-of-College	**Terms**	**Credits**	
1	computer programming	3	
1	Freshman Seminar (humanities)	3	
1	mathematics, physics, or biological sciences	3	
1	humanities	3	
Free	**Total credits**	**177**	

Transfer Students

Although the program leading to the Bachelor of Architecture is specifically directed to those who are strongly motivated to begin professional study when entering college, it is sufficiently flexible to allow transfers for students who have not made this decision until after they have been in another program for one or two years. Individuals who have already completed a nonprofessional undergraduate degree must also apply to transfer to the Bachelor of Architecture degree program, since the graduate program in architecture requires the Bachelor of Architecture degree or its equivalent for entrance.

Transfer students are responsible for completing that portion of the curriculum that has not been covered by equivalent work. Applicants who have had no previous work in architectural design must complete the ten-term design sequence. Since this sequence may be accelerated by attending summer terms, seven or eight regular terms and two or three summer terms are typically required.

For those who would benefit from an opportunity to explore the field of architecture before deciding on a commitment to professional education, the department offers an introductory summer program that includes an introductory studio in architectural design, lectures, and other experiences designed to acquaint the participants with opportunities, issues, and methods in the field of architecture.

Admission is offered to a limited number of transfer applicants who have completed a portion of their architecture studies in other schools. Each applicant’s case is considered individually. Transfer students must complete a minimum of 70 credits and four terms in residence, taking 35 of the 70 credits (including four terms of design) in the Department of Architecture. Placement in the design sequence is based on a review of a representative portfolio of previous work.

Alternative Programs

Bachelor of Fine Arts

After completing the first four years of requirements, the student may choose to receive the degree of Bachelor of Fine Arts (B.F.A.) in architecture. It is not a professional degree.

Bachelor of Science in History of Architecture

The history of architecture major leads to a Bachelor of Science degree, conferred by the College of Architecture, Art, and Planning. The major is intended for transfer students from other programs at Cornell and from colleges and universities outside Cornell. Students in the College of Arts and Sciences may take the major as part of a dual-degree program. The course of study in this major, available to students from a variety of academic backgrounds, offers the opportunity for a vigorous exploration of architecture and its history.

Admission requirements

Two years of undergraduate study; Arch 181 and 182, or the equivalent, and one 6-credit studio in architecture (or Arch 103, which is available during the fall semester for students with no previous studio work) are required. Students transferring from a B.Arch. program must be in good standing in their design sequence.

Procedure

Students from Cornell may transfer to the program at the beginning of the fall term of their third or fourth year of study. They submit a short application as prospective external transfer students. It is crucial that, before applying, all prospective internal transfer students meet with a history of architecture faculty member to discuss procedural matters and program content.

Students who wish to transfer to the program from outside Cornell must apply to the Department of Architecture by March 15. Applications may be considered after this date but are given lower priority. Applications for both internal and external transfer students are available from Elizabeth Cutter, Admissions Office, College of Architecture, Art, and...

Curriculum. A student entering the program selects an adviser from the history of architecture faculty in the Department of Architecture. Adviser and student together prepare an appropriate two-year course of study according to the following guidelines:

1) 25 credits of 300-level courses in architectural history: Arch 381, 382, 384, 385, 387, 388, 390, 391
2) 12 credits in 600-level architectural history seminars: Arch 681 through Arch 699, e.g. 8 credits in a 600-level seminar plus Arch 499, offered for honors candidates only
3) One 300-, 400-, or 600-level course in architectural theory
4) 24 credits in electives selected in consultation with the student's adviser
5) Language requirement, to be met in the manner specified for students enrolled in the College of Arts and Sciences

Honors program. Students will graduate with honors if, during their two years of study in the program and in addition to a cumulative average of B or better in all courses, they have no grade lower than A- in all history of architecture courses taken at the 300 level, and have completed an honors thesis (Arch 499) deemed to be of distinguished quality by the history of architecture faculty.

Dual Degree Options
Students can earn both the B.S. and B.Arch. degrees either simultaneously or sequentially. Students who have transferred into the B.Arch. program at Cornell may find this to be a special opportunity for an enlarged and enriched program of study. Ordinarily this option requires five years of study and assumes the satisfactory fulfillment of requirements in both the B.S. and B.Arch. programs. Students currently enrolled in the College of Arts and Sciences at Cornell can earn a B.A. in an arts college major and a B.S. in the history of architecture in five years. In this option, students complete a minimum of 150 credits, which includes the B.S. prerequisites and curriculum requirements and 100 credits of the usual distribution and major requirements in the College of Arts and Sciences. Further information about this option is available at the Admissions Office, 135 East Sibley Hall, and at the Academic Advising Center of the College of Arts and Sciences, 55 Goldwin Smith Hall. Students may also elect to continue toward a Master of Arts degree in the history of architecture. The M.A. ordinarily requires a minimum of two years of graduate work beyond the bachelor's degree, with this special sequential degree arrangement that time is shortened by approximately one year.

Summer Term in Architecture
The summer term offers students the opportunity of a concentrated period of design work. Design is offered at both undergraduate and graduate levels; the term is six to eight weeks in duration. Undergraduate design sequence courses, including thesis, are offered at first- through fifth-year levels in Ithaca. Normally there is also a design program abroad for third-, fourth-, and fifth-year students. Students from schools of architecture other than Cornell are welcome to apply to the college for admission to any summer programs. At the graduate level the summer term is devoted to problems forming part of the student's program of work. The term may carry residence credit equal to that of a normal academic term. Participation in the program cannot be undertaken without the consent of the student's Special Committee.

Architectural Design
Courses in brackets are not offered this year.
A studio fee of $25 is charged each semester for every design course (these fees are subject to change).

Sequence Courses
101 Design I
Fall. 6 credits. Limited to department students.
Architectural Design
102 Design II
Spring. 6 credits. Limited to department students.
103 Design III and IV
Fall and spring. 6 credits each term. Coregistration in Architecture 231–232 and completion of Architecture 151–152 required. Limited to department students.
104 Design V and VI
Fall and spring. 6 credits each term. Limited to department students.
105 Design VII and VIII
Fall and spring. 6 credits each term. Limited to department students.

501 Thesis IX
Fall or spring. 6 credits. Limited to department students.

502 Thesis X—Thesis
Fall or spring. 8 credits. Prerequisite: Architecture 501. Required of B.Arch. candidates who must satisfactorily complete a thesis. Students accepted for admission to the Overlap Program are exempt from the thesis requirement.

Related Courses and Seminars
611–612 Urban Housing Developments
Fall and spring. 3 credits each term. Limited to fourth- and fifth-year students in architecture and graduate students. Prerequisite: permission of instructor. Not offered every year.

613 Transportation
Fall. 3 credits. Prerequisite: permission of instructor. Not offered every year. Not offered 1989–90.

615–616 Urban Design
Fall and spring. 2 credits each term. Limited to students from outside the department. Prerequisite: permission of instructor.

620–621 Urban Regional Planning
Fall and spring. 3 credits each term. Limited to students from outside the department. Prerequisite: permission of instructor.
614 Low-Cost Housing
Fall. 3 credits. Prerequisite: permission of instructor. Not offered every year.
T 2-4/30. H. W. Richardson.
Aspects of low-cost housing involving engineering technology, architecture, physical planning, economics, and sociology.

618-619 Seminar in Urban and Regional Design
618, fall; 619, spring. 3 credits each term. Limited to fifth-year and graduate students. Not offered every year.
Hours to be arranged. Staff and guest lecturers.
A broad range of issues and problems of urban and regional development and the context in which the designer functions are surveyed. Selected case studies are presented by the participants and visitors.

Graduate Courses

701-702 Problems in Architectural Design
Fall and spring. 9 credits each term.
Studio and sem, hours to be arranged. Staff.
Basic first-year design course for graduate students whose major concentration is architectural design.

703-704 Problems in Urban Design
Fall and spring. 9 credits each term.
Studio and sem, hours to be arranged. Staff.
Basic first-year design course for graduate students whose major concentration is urban design.

801 Thesis or Research in Architectural Design
Fall or spring. 9 credits.
Hours to be arranged. Staff.
Second-year design course for graduate students whose major concentration is architectural design.

802 Thesis or Research in Urban Design
Fall or spring. 9 credits.
Hours to be arranged. Staff.
Second-year design course for graduate students whose major concentration is regional design.

Structures

122 Structural Concepts
Spring. 4 credits. Prerequisite: Mathematics III or approved equivalent.
Lecs and sems, M W F 9-10/30. Staff.
Fundamental concepts of structural behavior. Statics and strength of materials.

221 Structural Systems I
Fall. 3 credits. Prerequisites: Mathematics III and Architecture 122.
Lecs and sems, T R 9/05–11. Staff.
Structural design concepts and procedures for steel building construction.

222 (322) Structural Systems II
Spring. 3 credits. Prerequisite: Architecture 122.
Lecs and sems, M W F 11/15–12/05. Staff.
Structural design concepts and procedures for reinforced concrete building construction.

326 Building Substructure
Spring. 3 credits. Prerequisite: Architecture 222 or concurrent registration and permission of instructor. Not offered every year.
Sem, hours to be arranged. Staff.
The principles of soil mechanics and subsurface exploration. Design of building foundations—footings, piles, and subsurface walls.

Architectural Principles, Theories, and Methods

131 An Introduction to Architecture
Fall or spring. 3 credits. Open to out-of-department students only.
Lecs T R 1:25–2:15. Staff, guest lecturers.
Architecture for non-architects. Intended to familiarize non-architecture students with the profession of architecture through lectures, readings, and films. Examines past and present criteria for excellence in architecture and the notable designs and designers who achieve this. Related fields such as urban design, landscape architecture, structural design, interior design, computer graphics, and professional practice will be included.

231 Architectural Elements and Principles
Fall. 2 credits. Architecture students must register concurrently in Architecture 201.
Studies and lecs, T 1:30–3:25. Staff.
Theory of the order, perception, and function of architectural space. Discourse on the nature of architectural systems and the multiplicity of ways they can be used to solve architectural problems.

232 Design Methods and Programming
Spring. 2 credits. Architecture students must register for this course concurrently with Architecture 202.
Lecs and lecs, T 1:30–3:25. Staff.
Basic methods for developing architectural programs. Programming as a conceptual as well as a descriptive task is emphasized. Basic methods of design. Analytic and synthetic skills are stressed.

337 Special Investigations in the Theory of Architecture
Fall or spring. Variable credit (maximum, 3).
Prerequisite: permission of instructor and approved independent study form.
Hours to be arranged. Staff.
Independent study.

339 Principles of Design Process
Fall or spring. 3 credits. Limited to third-year architecture students and above; students in other colleges must have permission of instructor. Not offered every year.
Hours to be arranged. V. Warke and visiting faculty.
Topic to be announced before preregistration.
Architectural technology is a seemingly illogical world for which there is a significant ethnographic literature, with special emphasis on this course draws on concepts, methods, and findings from the broad field of cultural anthropology to address these questions. Case studies and examples are drawn from a wide range of architectural traditions around the world for which there is a significant ethnographic literature, with special emphasis on sub-Saharan Africa, India, and the United States. Topics include the idea- and formal relationships between folk and monumental traditions in complex societies, the structure of the ideal social order and its relationship to architecture, cosmological models and architectural form, geometries of non-Western traditions, and the relationship between indigenization and culture change.

445 Architecture and the Mythic Imagination
Fall. 3 credits. Prerequisite: Architecture 342 or permission of instructor.
M W F 10:10-11:00. B. MacDougall.
This course focuses on traditional societies in which beliefs about architectural order are borne out of the mythic and religious imagination. Certain themes that are common to a range of cultures are explored in detail. They include the model of the human body as a source of architectural knowledge, the sacred center, the cosmic mountain, and architectural rituals as enactments of myths. Such themes are traced across cultures, through time and into contemporary theory.

446 Topics in Architecture, Culture, and Society
Fall or spring. 3 credits. Prerequisite: Architecture 342 or permission of instructor.
Hours to be announced. B. MacDougall.

447 Architectural Design and the Utopian Tradition
Fall. 3 credits. Prerequisite: Architecture 342 or permission of instructor.
R 2:30-4:30. B. MacDougall.
This course explores the relationship between visionary architecture of the late 19th and 20th centuries and the wider utopian literature of the time. It first explores themes in utopian fiction as well as in anti-utopian tracts and then turns to the attempts of architects, planners, and artists to concretize visions of the ideal world. The course will devote special attention to the ways in which ideals grounded in the utopian tradition have emerged in the social criticism of housing and neighborhood design in the urban setting in recent times.

448 The Indian Example and the Visual Tradition in Culture
Spring. 3 credits. Prerequisite: Architecture 342 or permission of instructor.
T R 2:30-4:30. B. MacDougall.
This course provides a concise chronological summary of the major building traditions of Hindu India and explores the relationship between form and more general beliefs about the power of vision to reveal and transform. Topics include the sculptural program of the Hindu temple as a vehicle for the preservation and transmission of mythic texts, the oculus as an element and the eye as a motif, darshan, the spiritually transforming vision, and the destructive power of vision as revealed in myth and beliefs about "evil eye."

Design Communication
Darkroom fees for all photography courses (these fees are subject to change):
In-college students—$55 per term
Out-of-college students—$55 plus $10 per term course fee

151 Drawing I
Fall. 2 credits.
Studios, T R 2:30-4:25. Staff.
Freehand drawing with emphasis on line and perspective representation of form and space.

152 Drawing II
Fall or spring. 2 credits. Prerequisite: Architecture 151.
Studios, T R 2:30-4:25. Staff.
Freehand drawing as a means of conceiving and expressing spatial form; line weight, shades and shadows, and figure drawing.

251 Introductory Photo I (also Art 161)
Fall or spring. 3 credits each term.
Hours to be arranged. Staff.
For description see Art 161.

251 Introductory Photo II (also Art 261)
Spring. 3 credits. Prerequisites: Architecture 251 or Art 161, or permission of instructor.
Hours to be arranged. Staff.
For description see Art 261.

353 Large-Format Architectural Photography
Spring. 3 credits. Prerequisites: Architecture 251 or Art 161 or 261, or permission of instructor.
Darkroom fee, $55/$65. Not offered every year.
Lec and studio, hours to be arranged. Staff.
The special uses of large-format view camera photography. Emphasis on the creative use of the view camera in architectural photography.

355 Graphic Design Studio
Fall or spring. 3 credits. Prerequisite: Architecture 151 or 152, or permission of instructor.
Not offered every year.
Lec and studio, hours to be arranged. Staff.

356 Architectural Simulation Techniques
Fall or spring. 3 credits. Prerequisite: Architecture 151 or permission of instructor.
Lec and studio, hours to be arranged.
G. Hascup.
Two- and three-dimensional simulation techniques in architecture. Emphasis on simulation of environment, space, materials, and lighting as visual tools for architectural design.

457 Special Project in Photography
Fall or spring. Variable credit (maximum, 3). Prerequisites: written proposal outlining the special project and permission of instructor.
Not offered every year.
Hours to be arranged. Staff. Independent study.

458 Special Project in Design Communication
Fall or spring. Variable credit (maximum, 4). Prerequisites: permission of instructor and approved independent study form.
Hours to be arranged. Staff. Independent study.

Architectural Science and Technology
160 The History of Architectural Technology
Fall or spring. 3 credits. Not for students in the Department of Architecture. Not offered every year.
Staff.
Architectural technology is a seemingly illogical blend of scientific knowledge and empirical experience. Whereas it may seem chaotic to the nonprofessional, it is a product of logic in the widely differing areas of design, structure, installation, production and erection, material use, law, economics, and historical development. The evolution of this interdependence is treated using examples of architectural and civic engineering works and processes.

261 Environmental Controls—Site Planning
Fall. 3 credits.
The basic principles involved in design in the outdoor environment. A brief historical perspective. A development of inventory including grading and drainage. Foundations, surfacing, and construction.

262 Building Technology, Materials, and Methods
Spring. 3 credits.
Lecs, M W F 9:05-11:00. R. Hall and staff.
Basic properties and principles of sound and light. Sound phenomena, noise control, absorption, acoustical design. Light, color, and form. Natural lighting possibilities and constraints. Good and bad examples of artificial lighting.

361 Environmental Controls—Lighting and Acoustics
Fall. 3 credits.
Lecs, M W F 9:05-11:00. R. Hall and staff.
Basic properties and principles of sound and light. Sound phenomena, noise control, absorption, acoustical design. Light, color, and form. Natural lighting possibilities and constraints. Good and bad examples of artificial lighting.

362 Environmental Controls—Mechanical and Passive Solar Systems
Spring. 3 credits.
Lecs, M W F 9:05-11:00. R. Hall and staff.
Basic thermal analysis of buildings, human comfort criteria, energy conservation, passive solar design, HVAC distribution systems, overview of mechanical conveying systems and plumbing.

367 Contemporary Italian Culture
Fall or spring. Variable credit (maximum, 3). For students in the Rome program only.
Staff and visiting faculty.
This course provides a broad view of the culture and social structure of Italy, drawing from literary and current events.
371 Environmental Technology Workshop I
Fall or spring. 2 credits. Not offered every year.
Studio, hours to be arranged. Staff.
The mechanical engineer's task and its relation to the architectural design process. Full-scale and model studies of the role of air movement and temperature in building design. Passive and active solar energy design.

372 Environmental Technology Workshop II
Fall or spring. 2 credits. Prerequisite or corequisite: Architecture 362. Not offered every year.
Studio, hours to be arranged. Staff.
The tasks of the acoustical consultant, the electrical engineer, and the illumination consultant in relation to the architect's work. Acoustical and lighting design studies using full-scale mock-ups and specific building type studies. Cost factors.

374 Computer Graphics (also Computer Science 417)
Spring. 3 credits. Prerequisites: two terms of calculus and Computer Science 211, or equivalent. Not offered every year.
2 lecs, 1 lab. D. P. Greenberg.
Introduction to the principles of interactive computer graphics, including input techniques, display devices, display files, interactive graphic techniques, two- and three-dimensional computer graphics, perspective transformations, hidden line and hidden surface algorithms, and color-picture generation.

375 Practicum in Computer Graphics (also Computer Science 418)
1 lab.
Two or three programming assignments dealing with sophisticated interactive vector graphics programs on calligraphic displays and solid-image generation on raster graphics displays.

378 Computers in Architecture Seminar
Fall or spring. 3 credits. Prerequisites: Computer Science 100 or permission of instructor. Not offered every year.
Hours to be arranged. H. Richardson and staff.
Exploration of the use of computers in a variety of ways encompassing architectural practice and education. Use of the computer is not required for this course.

379 Architectural Computer Applications
Fall or spring. 3 credits. Prerequisites: Computer Science 100 or second-year standing. Not offered every year.
Hours to be arranged. B. Hall.
Introduction to the use of the computer as a tool in the architectural design process. Experience with computer applications will be offered.

461 Professional Practice
Fall or spring. 3 credits each term.
An examination of organizational and management theories and practices for delivering professional design services. Included is a historic overview of the profession and a review of the architect's responsibilities from the precontract phase through construction. Application of computer technology in preparing specifications.

462 Professional Seminar
Fall or spring. 3 credits. Washington Program only.
M. Schack and staff.
Visits to public and private agencies and architectural firms in Washington and Baltimore. Discussions relative to the various aspects of each firm's practice and the identification of agency roles.

477-478 Special Projects in Computer Graphics
477, fall; 478, spring. Variable credit (maximum, 4). Limited to third-year students and above. Prerequisites: Architecture 374 plus concurrent registration in Computer Science 314 or equivalent, and permission of instructor.
Hours to be arranged. D. P. Greenberg and staff.
Advanced work in computer graphics input and display techniques, including storage tube, dynamic vector and color raster displays.

561 Special Problems in Architectural Science
Fall or spring. Variable credit (maximum, 3). Prerequisite: permission of science staff instructor and approved independent study form.
Hours to be arranged. Staff.
Topics to be announced. Independent study.

563 Emerging Methods in Energy-Efficient Design
Fall. 3 credits. Prerequisite: Architecture 362. Not offered every year.
Sem, T R 8:05. Staff.
State-of-the-art energy-efficient building design strategies and computational methods to model the thermal performance of buildings, presented through case studies of exemplary designs and application of selected analytical methods to exercises in building design development.

564 Earth-sheltered Architecture
Fall or spring. 3 credits. Not offered every year.
Hours to be arranged. Staff.

571-572 Computer-aided Structural Design
571, fall; 572, spring. 4 credits each term. Limited to fourth-year students and above. Prerequisites: Architecture 374 and Civil and Environmental Engineering 571-572, concurrent registration in Civil and Environmental Engineering 673, and permission of instructor. Not offered every year.
D. P. Greenberg.
Advanced topics involving interactive computer graphics and advanced structural analysis techniques.

573-574 Computer-aided Environmental Design
573, fall; 574, spring. 4 credits each term. Limited to students in their fourth or later year. Prerequisites: Architecture 374 and 362, one year of college physics, and permission of instructor. Not offered every year.
Staff.
Advanced topics involving interactive computer graphics and advanced environmental design techniques. Topics may include acoustics, lighting, and energy analyses.

662 Environmental Control Systems
Fall or spring. 3 credits. Prerequisite: Architecture 362. Not offered every year.
Lec and sem, hours to be arranged. Staff.
The influences of the environment on the design of buildings and urban developments. Lecture and workshop exercises use the wind tunnel and artificial sun.

667-668 Architecture in Its Cultural Context I and II
667, fall; 668, spring. 4 credits each term. Prerequisite: permission of instructor. Not offered every year.
Sem, M W F 10:10. B. MacDougall.
Fall term, theory; spring term, problem solving and method. An examination of the relationship between architecture and other aspects of culture. Emphasis on the motivations for particular architectural forms and especially on theories of architecture. Examples from the United States and Asia.

Graduate Courses
761-762 Architectural Science Laboratory
761, fall; 762, spring. 6 credits each term. Open to architectural science graduate students only.
Hours to be arranged. Staff.
Projects, exercises, and research in the architectural sciences.

763-764 Thesis or Research in Architectural Science
763, fall; 764, spring. Variable credit (maximum, 12). Limited to architectural science graduate students.
Hours to be arranged. Independent study.

Architectural History
The history of the built domain is an integral part of all aspects of the architecture curriculum, from design and theory to science and technology. Incoming students take Architecture 181-182 in the first year, and three additional courses from the 380-390 series, preferably in the third and fourth years. Seminars are intended for advanced undergraduate and graduate students and do not satisfy undergraduate history requirements. Courses, seminars, and special investigations focus on the Western tradition, which constitutes the most immediate setting for contemporary practice. Building cultures from other parts of the world, often more extensive and far older than those of the West, are studied in special offerings as opportunities in faculty resources become available.
Sequence Courses

181 History of Architecture I
Fall. 3 credits. Required of all first-year students in architecture; open to all students in other colleges with an interest in the history of the built domain.

TR 11:15-1:10. Staff.
The history of the built environment as social and cultural expression in Western civilization from earliest times to the present. In the fall, themes, theories, and ideas in architecture and urban design are considered on the basis of selected instances beginning with the earliest written records.

182 History of Architecture II
Spring. 3 credits. Required of all first-year students in architecture. Open to all students in other colleges with an interest in the history of the built domain; may be taken independently of Architecture 181.

TR 11:15-1:10. Staff.
The history of the built environment as social and cultural expression in Western civilization from earliest times to the present. In the spring, themes, theories, and ideas are addressed in greater detail for architecture and urban design leading to the present.

Freshman Writing Seminars

190 The Language of Architecture
Fall or spring. 3 credits. Not for students in the Department of Architecture. Not offered every year.

Hours to be arranged. Staff.
The metaphor of language is used to discuss works of architecture both as formal objects and as carriers of meaning when seen in their cultural contexts. Contemporary and historical examples, including local buildings, are examined to develop skills in visual analysis and in "reading the messages" in architectural design.

191 The Literature of Architecture
Fall or spring. 3 credits. Not for students in the Department of Architecture. Not offered every year.

Hours to be arranged. Staff.
The literature of architecture, understood as the testimony of the architects themselves, is drawn on to examine major themes of twentieth-century architecture. Texts are presented according to rhetorical mode within a framework of thematic categories. For example, narrative, descriptive, and polemical readings address the birth of the skyscraper. Three salient themes in modern architecture are explored in the seminar: the impact of technology and revolution, the skyscraper and dwelling as new types for new needs, and the aesthetic of modern architecture.

192 Visions of the City
Fall or spring. 3 credits. Not for students in the Department of Architecture. Freshman Seminar.

Staff.
Visions of the City explores the history and nature of the American city through the works of writers, poets, artists and designers. Three thematic categories provide a framework for class discussion and writing assignments. "The Industrial City" considers the social, political, and physical environment shaped by the forces of industrialization and increasing urban populations in late nineteenth-century America. "The City Beautiful" focuses on journalistic accounts and technical reports by professionals advocating physical planning as a cure for the social and aesthetic problems of the rapidly expanding metropolis. "The Modern City" is the disparate elements of the contemporary city, from the sprawl of suburbia to the large urban complexes such as Rockefeller Center, which are "cities within cities." Students will also consider comprehensive city plans proposed by prominent modern architects such as Frank Lloyd Wright and Le Corbusier. Students will be encouraged to draw on their own experiences and impressions of the city and to consider the relevance of historical problems and solutions to contemporary urban situations.

Directed Electives

381 Architecture of the Classical World
Spring. 3 credits. Limited to 30 students. Prerequisites: Architecture 181-182 or permission of instructor. Not offered every year.

Hours to be announced. M. Jarzombek.
The history of architecture and urban design in ancient Mediterranean civilizations, with emphasis on Greece and Rome. The course considers change and transformation of building types and their elements within the general context of social demands.

382 Architecture of the Middle Ages
Fall. 4 credits. (Credit for this course may be obtained by taking History of Art 352.) Prerequisites: Architecture 181-182 or permission of instructor. Not offered every year.

A survey of medieval architecture from the Early Christian period to the late Gothic (A.D. 300-1500). Emphasis is given to the development of structural systems, form, function, and meaning of important medieval buildings.

384 The Renaissance
Fall. 3 credits. Limited to 30 students. Prerequisites: Architecture 181-182 or permission of instructor.

The history of European architecture and city planning of the fifteenth and sixteenth centuries. Special consideration is given to building types and to internal changes in architecture and urban design, as well as to external influences such as social, economic, and political factors.

385 The Baroque
3 credits. Limited to 30 students. Prerequisites: Architecture 181-182 or permission of instructor. Not offered every year.

History, ideas, and theories of architecture and urban design in Europe between 1600 and 1800. Special consideration is given to the contribution and significance of major architects of the time.

386 English Architecture: 1850-1892
Fall. 3 credits. Prerequisites: Architecture 181-182 or permission of instructor. Not offered every year.

Hours to be arranged. C. Rowe and staff.
An investigation of English architecture from the revolution of 1858 to the appearance of the parliamentary Labour party in 1892.

387 The Nineteenth Century
Spring. 3 credits. Limited to 30 students. Prerequisites: Architecture 181-182 or permission of instructor. Not offered every year.

Examination of the significant individuals and movements in Western architectural theory and practice from the rationalist traditions through Art Nouveau.

388 The Twentieth Century
Fall. 3 credits. Limited to 30 students. Prerequisites: Architecture 181-182 or permission of instructor. Not offered every year.

The history, ideas, and theories of architecture and urban design in Europe and America during the course of the twentieth century, beginning with reform efforts of the 1890s and concluding with work from the 1990s.

390 American Architecture I
Fall. 3 credits. Limited to 30 students. Prerequisites: Architecture 181-182 or permission of instructor. Not offered every year.

The history of American architecture and urbanism from prehistoric times to the Civil War, with emphasis on stylistic trends, practitioners, and social, economic, and aesthetic issues.

391 American Architecture II
Spring. 3 credits. Limited to 30 students. Prerequisites: Architecture 181-182 or permission of instructor. Not offered every year.

A continuation of Architecture 390 but may be taken independently. The history of American architecture and urbanism from the Civil War to the 1980s. Special attention is paid to the dominant cultural, technical, and aesthetic determinants of form as manifested in the work of the major architects of the time.

395 Special Topics in Architectural History
Spring. 3 credits. Limited to 30 students. Prerequisites: Architecture 181-182 or permission of instructor. Not offered every year.

Hours to be arranged. M. Jarzombek. Topic to be announced by preregistration.

396 Special Topics in Architectural History
Spring. 3 credits. Limited to 30 students. Prerequisites: Architecture 181-182 or permission of instructor. Not offered every year.

Hours to be arranged. M. Kubelik. Topic to be announced by preregistration.

397 Special Topics in Architectural History
Spring. 3 credits. Limited to 30 students. Prerequisites: Architecture 181-182 or permission of instructor. Not offered every year.

Hours to be arranged. C. F. Otto. Topic to be announced by preregistration.

398 Special Topics in Architectural History
Spring. 3 credits. Limited to 30 students. Prerequisites: Architecture 181-182 or permission of instructor. Not offered every year.

Hours to be arranged. M. Woods. Topic to be announced by preregistration.
399 Special Topics in Architectural History
Fall or spring. 3 credits. Limited to 30 students. Prerequisites: Architecture 181-182 or permission of instructor. Not offered every year.
Hours to be arranged. Staff. Topic to be announced by preregistration.

Courses in Preservation
583 (543) Measured Drawing (also City and Regional Planning 567)
Fall. 3 credits. For undergraduate architecture students and graduate students in history and preservation. Prerequisite: permission of instructor.
Hours to be announced. M. A. Tomlan.
Combines study of architectural drawings as historical documents with exercises in preparing measured drawings of small buildings. Presents the basic techniques of studying, sketching, and measuring a building and the preparation of a finished drawing for publication.
584 (544) Problems in Contemporary Preservation Practice (also City and Regional Planning 563)
Spring. Variable credit (maximum, 3).
Hours to be announced. M. A. Tomlan.
A review and critique of ongoing preservation projects and an investigation of areas of expertise currently being developed, presented by staff and guest lecturers.
585 (545) Perspectives on Preservation (also City and Regional Planning 562)
Fall. 3 credits.
Hours to be announced. M. A. Tomlan and visiting lecturers.
Introductory course for preservation planning. The rationale for, and methods of, using existing cultural and aesthetic resources in the planning and design of regions and cities.
586 (546) Documentation for Preservation Planning (also City and Regional Planning 560)]
Fall. 3 credits.
Hours to be announced. M. A. Tomlan and visiting lecturers.
Methods of collecting, recording, processing, and analyzing historical architectural and planning materials.
587 (547) Building Materials Conservation (also City and Regional Planning 564)
Spring. 3 credits. Open to juniors, seniors, and graduate students.
Hours to be announced. M. A. Tomlan.
A survey of the development of building materials in the United States, chiefly during the nineteenth and early twentieth centuries, and a review of the measures that might be taken to conserve them.
588 (548) Historic Preservation Planning Workshop: Surveys and Analyses (also City and Regional Planning 561)
Fall or spring. 4 credits.
Hours to be announced. Staff.
Techniques for the preparation of surveys of historic structures and districts; identification of American architectural styles, focusing on upstate New York; explorations of local historical resources, funding sources, and organizational structures. Lectures and training sessions. Emphasis on fieldwork with individuals and community organizations.

Seminars in Architectural History
681 Seminar in the Architecture of the Classical World
Fall or spring. 4 credits. Prerequisites: Architecture 381 or permission of instructor. Not offered every year.
Hours to be arranged. M. Jarzombek.
Issues in Greek and Roman architectural history. Specific topic to be announced.
684 Seminar in the Renaissance
Fall or spring. 4 credits. Prerequisites: Architecture 384 or permission of instructor. Not offered every year.
Hours to be arranged. M. Jarzombek.
685 Seminar in the Baroque
Fall or spring. 4 credits. Prerequisites: Architecture 385 or permission of instructor. Not offered every year.
Hours to be arranged. C. F. Otto.
687 Seminar in Nineteenth-Century Architecture
Fall or spring. 4 credits. Prerequisites: Architecture 388 or permission of instructor. Not offered every year.
Hours to be arranged. M. Woods.
Historical topics in European architecture and urbanism in the nineteenth century. Specific topic to be announced.
688 Seminar in Twentieth-Century Architecture
Fall or spring. 4 credits. Prerequisites: Architecture 390-391 or permission of instructor. Not offered every year.
Hours to be arranged. C. F. Otto.
Special topics in the history of architecture and urban design in Europe and America during the twentieth century. Specific topic to be announced.
690 Seminar in American Architecture
Fall or spring. 4 credits. Prerequisites: Architecture 390-391 or permission of instructor. Not offered every year.
Hours to be arranged. C. F. Otto.
695 Seminar in the History of Architecture and Urbanism
Fall or spring. 4 credits. Prerequisite: permission of instructor. Not offered every year.
Hours to be arranged. M. Jarzombek.
Specific topic to be announced.
696 Seminar in the History of Architecture and Urbanism
Fall or spring. 4 credits. Prerequisites: permission of instructor. Not offered every year.
Hours to be arranged. M. Kubelik.
Topic to be announced.
697 Seminar in the History of Architecture and Urbanism
Fall or spring. 4 credits. Prerequisite: permission of instructor. Not offered every year.
Hours to be arranged. C. F. Otto.
Topic to be announced.

699 Seminar in the History of Architecture and Urbanism
Fall or spring. 4 credits. Prerequisite: permission of instructor. Not offered every year.
Hours to be arranged. M. Woods.
Topic to be announced.

299 Undergraduate Independent Study in the History of Architecture
Fall or spring. Variable credit (maximum, 3).
Prerequisite: permission of instructor. May not be taken by students in design to satisfy undergraduate history requirements.
Hours to be arranged. Staff.
Independent study for undergraduate students.
499 Undergraduate Thesis in the History of Architecture
Fall or spring. 4 credits. For B.S. honors candidates in history only.
Hours to be arranged. Staff.
Graduate Independent Study in the History of Architecture and Urbanism
Fall or spring. Variable credit.
Hours to be arranged. Staff.
Independent study for graduate students.

899 M.A. Thesis in History of Architecture and Urbanism
Fall or spring. Variable credit.
Prerequisite: permission of instructor.
Hours to be arranged. Staff.
Independent study for the master's degree.
999 Ph.D. Dissertation in History of Architecture and Urbanism
Fall or spring. Variable credit.
Hours to be arranged. Staff.
Independent study for the doctoral degree.

ART

Undergraduate Program
The undergraduate curriculum in art, leading to the degree of Bachelor of Fine Arts, provides an opportunity for the student to combine a general liberal education with the studio concentration required for a professional degree. During the first three semesters all students follow a common core of study designed to provide a broad introduction to the arts and a basis for the intensive studio experience in the last three years. Beginning with the fourth term, students concentrate on painting, sculpture, photography, or printmaking. They may elect additional studio work in any of these subjects during the last two years, with the consent of the instructor, providing the courses are taken in sequence and at the hours scheduled. These courses are designed to promote a knowledge and critical understanding of these arts and to develop the
individual student's talent. All members of the faculty in the Department of Art are active, practicing artists, whose work represents a broad range of expression.

Studio courses occupy approximately one-half of the student's time during the four years at Cornell; the remainder is devoted to a diversified program of academic subjects with a generous provision for electives.

The curriculum in art is an independent program of study within the College of Architecture, Art, and Planning. However, the intimate relationships between the fine arts and training in architecture and city planning is a source of special strength in the Cornell program and affords unusual benefits to the students in these three disciplines.

Although the undergraduate curriculum in art is an excellent background for a career in applied art and offers courses in the use of graphics in modern communications, no specific technical courses are offered in such areas as interior design, fashion, or commercial art.

The department discourages accelerated graduation. However, a student may petition for consideration of early graduation by submission of a petition to the faculty before course enrollment in the spring semester of the student's junior year.

A candidate for the B.F.A. degree who also wants to earn a Bachelor of Arts degree from the College of Arts and Sciences can arrange to do so. This decision should be made early in the candidate's career (no later than the third semester), so that he or she can petition to be registered in both colleges simultaneously. Each student is assigned an adviser in the College of Arts and Sciences to provide needed guidance. Those students who are interested primarily in the history rather than in the practice of art should apply for admission to the College of Arts and Sciences with the objective of pursuing a major in the Department of History of Art in that college.

Department of Art studio courses may then be taken as electives.

The B.F.A. program is designed so that students may fulfill the degree requirements of 130 credits with a minimum of 65 credits taken in the Department of Art and a minimum of 55 credits taken outside the department. Within these ranges, students may design their own programs subject to the following limitations:

1) Of the minimum of 55 elective credits to be taken outside the Department of Art, 12 credits must be in English, history, or other humanities offered in the College of Arts and Sciences. In the first two years 9 credits in history of art at the 200 level or higher or in architectural history must be completed. An additional 12 credits in art history at the 200 level or higher or in architectural history must be completed in the last two years. Also, 12 of the total 21 required credits must be in introduction to art history courses at the 200 level.

2) Students must also plan their programs to complete 30 credits in courses in one of the following studio areas: painting, sculpture, printmaking, or photography. In the area of photography, students must take both Art 263 and 264. Students should plan to complete all fourth-year studio concentration courses in one area of concentration and are required to participate in the Senior Exhibition.

The university requirement of two terms in physical education must be met.

A candidate for the B.F.A. degree at Cornell is required to spend the last two years of candidacy in residence at the university, subject to the conditions of the Cornell faculty legislation of November 14, 1962.

Students who transfer into the undergraduate degree program in art must complete a minimum of four terms in residence at Cornell and a minimum of 60 credits at the university, of which 30 credits must be taken in the Department of Art, including four terms of studio work. No student may study in absen title for more than two terms.

Rome Program

Students in good standing who have completed the requirements of the first two years of the curriculum are eligible for participation in the Rome Program. Students are admitted to the program by application and review of their record. The Rome studio is offered by the Department of Art. Additional courses in art and architectural history, contemporary Italian culture, and Italian language are offered by other departments participating in the program.

Curriculum

Students are expected to take an average course load of 16 credits per semester during their four years. They must complete a minimum of two courses each in painting, sculpture, printmaking, and photography and four in drawing by the end of the third year. All studio courses may be repeated for credit.

First Year

<table>
<thead>
<tr>
<th>Credits</th>
<th>Fall Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 Color, Form, and Space</td>
<td>3</td>
</tr>
<tr>
<td>121 Introductory Painting</td>
<td>3</td>
</tr>
<tr>
<td>141 Introductory Sculpture</td>
<td>3</td>
</tr>
<tr>
<td>151 Introductory Drawing</td>
<td>3</td>
</tr>
<tr>
<td>Elective</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Credits</th>
<th>Spring Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>One of the following:</td>
<td>3</td>
</tr>
<tr>
<td>131 Introductory Etching</td>
<td></td>
</tr>
<tr>
<td>132 Introductory Graphics</td>
<td></td>
</tr>
<tr>
<td>133 Introductory Lithography</td>
<td></td>
</tr>
<tr>
<td>151 Introductory Drawing</td>
<td>3</td>
</tr>
<tr>
<td>161 Introductory Photography</td>
<td>3</td>
</tr>
<tr>
<td>Art history elective</td>
<td>3 or 4</td>
</tr>
<tr>
<td>Elective</td>
<td>3 or 4</td>
</tr>
</tbody>
</table>

Second Year

<table>
<thead>
<tr>
<th>Credits</th>
<th>Fall Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>110 Color, Form, and Space</td>
<td>3</td>
</tr>
<tr>
<td>121 Introductory Painting</td>
<td>3</td>
</tr>
<tr>
<td>141 Introductory Sculpture</td>
<td>3</td>
</tr>
<tr>
<td>151 Introductory Drawing</td>
<td>3</td>
</tr>
<tr>
<td>Elective</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Credits</th>
<th>Spring Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>Art studio (two courses)</td>
<td>6</td>
</tr>
<tr>
<td>Art history elective</td>
<td>3 or 4</td>
</tr>
<tr>
<td>Elective(s)</td>
<td>6 or 7</td>
</tr>
</tbody>
</table>

Course Information

Most courses in the Department of Art are open to students in any college of the university who have fulfilled the prerequisites and who have permission of the instructor.

Fees are charged for all Department of Art courses. For fine arts majors the fee is $20 each semester. Students from outside the department are charged $10 a course. In addition, there are darkroom fees for all photography courses (these fees are subject to change): for in-college students the fee is $65 each semester, and for out-of-college students the fee is $55 plus $10 per term course fee.

To take advantage of the special opportunities afforded by summer study, the department has developed several summer-only courses. Students wanting to satisfy Cornell degree requirements may petition to have these courses substituted for fall- or spring-term required courses.

Courses in Theory and Criticism

110 Color, Form, and Space

Fall or spring. 3 credits. Fall enrollment limited to B.F.A. candidates.

A study of traditional and contemporary ways of drawing and painting. An analysis of color theory and pictorial space.

311 Issues in Contemporary Art

Fall. 3 credits.

Hours to be arranged. S. Poleskie.

A seminar course in issues of contemporary art, including lectures by visiting artists.

610 Seminar in Art Criticism

Fall or spring. 2 credits, may be repeated for credit. Four terms required for M.F.A. candidates.

Hours to be arranged. Staff.

Historical and modern critical opinions and their relation to problems in the theory of art are studied.
An introduction to the problems of artistic design. Color as applied to abstract and representational composition; proportion, space, shapes, and expression through the study of pictorial elements. A special summer abroad course with emphasis on artistic expression and techniques, for students at all levels of skill. Included will be a mixture of painting and drawing assignments, self-initiated projects, and drawing sessions with a live model.

Studio Courses in Painting

121 Introductory Painting
Fall, spring, or summer. 3 credits. Hours to be arranged. Staff. An introduction to the problems of artistic expression through the study of pictorial composition; proportion, space, shapes, and color as applied to abstract and representational design.

123 Landscape Painting
Summer. 3 credits. Class meets outdoors at selected sites in the Ithaca area. A different motif is explored each week. Pen, pencil, and water- or oil-based colors (optional) are the materials employed. Analysis and discussion of the landscape work of Corot, Cézanne, van Gogh, Seurat, and others are included.

124 Painting and Drawing
Variable credit (maximum 5). Summer only. A special summer abroad course with emphasis on artistic expression and techniques, for students at all levels of skill. Included will be a mixture of painting and drawing assignments, self-initiated projects, and drawing sessions with a live model.

221 Painting II
Fall or spring. 3 credits. Prerequisite: Art 121 or permission of instructor. Hours to be arranged. Staff. A continuation of Art 121.

231 Painting III
Fall. 4 credits. Prerequisite: Art 221 or permission of instructor. Hours to be arranged. Staff. Continued study of the principles of painting and the selection and expressive use of materials and media. Group discussions and individual criticism.

322 Painting IV
Spring. 4 credits. Prerequisite: Art 321 or permission of instructor. Hours to be arranged. Staff. Continued study of the principles of painting and the selection and expressive use of materials and media. Group discussions and individual criticism.

421 Painting V
Fall. 6 credits. Prerequisite: Art 322 or permission of instructor. Hours to be arranged. Staff. Further study of the art of painting through both assigned and independent projects executed in various media. Instruction through group discussions and individual criticism.

422 Senior Thesis in Painting
Fall or spring. 6 credits. Prerequisite: Art 321 or 322 or permission of instructor. Hours to be arranged. Staff. Advanced painting project to demonstrate creative ability and technical proficiency.

311 Introductory Intaglio
Fall, spring, or summer. 3 credits. Hours to be arranged. E. Meyer. A basic introduction to etching techniques, with emphasis on engraving, lift ground, relief printing, monotypes, and experimental techniques.

132 Introductory Graphics
Fall, spring, or summer. 3 credits. Hours to be arranged. S. Poleskie. An introduction to the two-dimensional thought process and the language of vision. Students will explore design projects and the use of graphic materials, including collage, pochoir, and screen printing.

133 Introductory Lithography
Fall, spring, or summer. 3 credits. Hours to be arranged. G. Page. Theory and practice of lithographic printing, using limestone block and aluminum plate. Basic lithographic techniques of crayon, wash, and transfer drawing are studied.

231 Intaglio Printing II
Fall or spring. 3 credits. Prerequisite: Art 131 or permission of instructor. Hours to be arranged. E. Meyer. Continuing the study and practice of methods of intaglio printing, with emphasis on techniques and color.

232 Advanced Screen Printing (Book Arts)
Spring. 3 credits. Prerequisite: Art 132 and Art 161 or permission of instructor. Hours to be arranged. S. Poleskie. Students will expand their knowledge of screen printing to include photo stencil and printing on diverse materials such as cloth and plastic with the goal of producing a book or a portfolio of prints by the end of the semester.

233 Lithography II
Fall or spring. 3 credits. Prerequisite: Art 133 or permission of instructor. Hours to be arranged. G. Page. Continuing the study and practice of lithographic printing, with emphasis on color.

331 Printmaking III
Fall or spring. 4 credits. Prerequisite: Art 231, 232, or 233 or permission of instructor. Hours to be arranged. Staff. Study of the art of graphics through both assigned and independent projects. Work may concentrate in any one of the graphic media or in a combination of media.

332 Printmaking IV
Fall. 4 credits. Prerequisite: Art 331 or permission of instructor. Hours to be arranged. Staff. Advanced printmaking project to demonstrate creative ability and technical proficiency.

721-722, 821-822 Graduate Painting
721 and 821, fall; 722 and 822, spring. Credit as assigned. May be repeated for credit. Limited to M.F.A. candidates in graphic arts. Prerequisite: permission of instructor. Staff. Students are responsible, under staff direction, for planning their own projects and selecting the media in which they will work. Members of the staff are available for consultation; discussion sessions of works in progress are held.

Studio Courses in Sculpture

141 Introductory Sculpture
Fall, spring, or summer. 3 credits. Hours to be arranged. Staff. A series of studio problems introduce the student to the basic considerations of artistic expression through three-dimensional design, i.e., modeling in Plasteline, building directly in plaster, casting in plaster, and constructing in wood and metal.

241 Sculpture II
Fall or spring. 3 credits. Prerequisites: Art 141 or permission of instructor. Hours to be arranged. Staff. Continuation of study of the principles of sculpture and the selection and expressive use of materials and media. Group discussions and individual criticism.

341 Sculpture III
Fall. 4 credits. Prerequisite: Art 241 or permission of instructor. Hours to be arranged. Staff. Continued study of the principles of sculpture and the selection and expressive use of materials and media. Group discussions and individual criticism.

342 Sculpture IV
Spring. 4 credits. Prerequisite: Art 241 or permission of instructor. Hours to be arranged. Staff. Continuation and expansion of Art 341.

441 Sculpture V
Fall. 6 credits. Prerequisite: Art 342 or permission of instructor. Hours to be arranged. Staff. Further study of the art of sculpture through both assigned and independent projects executed in various media. Instruction through group discussions and individual criticism.

442 Senior Thesis in Sculpture
Fall or spring. 6 credits. Prerequisite: Art 341 or 342 or permission of instructor. Hours to be arranged. Staff. Advanced sculpture project to demonstrate creative ability and technical proficiency.

741-742, 841-842 Graduate Sculpture
741 and 841, fall; 742 and 842, spring. Credit as assigned. May be repeated for credit. Limited to M.F.A. students in sculpture. Staff. Students are responsible, under staff direction, for planning their own projects and selecting the media in which they are to work. All members of the staff are available for individual consultation. Weekly discussion sessions of works in progress are held.
Studio Courses in Photography
Darkroom fees for all photography courses (these fees are subject to change): In-college students $55 per term, Out-of-college students—$55 plus $10 per term course fee.

161 Introductory Photography I (also Architecture 251)
Fall, spring, or summer. 3 credits. A basic lecture-studio course in black and white photography for beginners. Emphasis is on basic camera skills, darkroom techniques, and understanding of photography imagery.

167 Photography
Variable credit (maximum 5). Summer only. A special summer-abroad course with emphasis on both the techniques and aesthetics of black-and-white photography, for students at all levels of skill. Initial photographic assignments will be followed by other projects of the student’s own choosing.

168 Black-and-White Photography
Summer. 3 credits. Fee, $60. Intended for students at all levels, from introductory to advanced. Emphasis on camera skills, darkroom techniques, and the content of black-and-white photographic imagery.

169 Color Photography
Summer. 3 credits. Fee, $60. Intended for students at all levels, from introductory to advanced. Emphasis on camera skills, darkroom techniques, and the content of color photographic imagery.

261 Photography II (also Architecture 351)
Fall, spring, or summer. 3 credits. Prerequisites: Art 161 or Architecture 251, or permission of instructor. Hours to be arranged. Staff. A continuation of Introductory Photography I.

263 Color Photography
Fall or spring. 3 credits. Prerequisite: Art 161 or permission of instructor. Hours to be arranged. Staff. A studio course in color photographic processes, including color film developing and color printing. Emphasis is on camera skill, color techniques, image content, and creative use of color photography.

264 Photo Processes
Fall or spring. 3 credits. Prerequisite: Art 161 or permission of instructor. Hours to be arranged. Staff. A studio course in alternate and nonsilver photographic processes. Emphasis is on camera skill, basic techniques and processes, image content, and creative use of photo processes.

265 Studio Photography
Fall or spring. 3 credits. Prerequisite: Art 161 or permission of instructor. Hours to be arranged. Staff. A studio course in the use of medium- and large-format cameras that explores technique, lighting, and the use of larger-format cameras for personal expression both in the studio and outdoors.

361 Photography III
Fall or summer. 4 credits. A studio course intended for photography majors and other qualified students. Prerequisite: Art 261, 262, or 263 or permission of instructor. Hours to be arranged. Staff. Continued study of creative use of photography, with emphasis on specialized individual projects.

362 Photography IV
Spring. 4 credits. A studio course intended for photography majors and other qualified students. Prerequisite: Art 361 or permission of instructor. Hours to be arranged. Staff. A continuation of Art 361.

379 Independent Studio
Summer. Credit by arrangement. Hours by arrangement. Staff. Projects of the student's own choosing.

461 Photography V
Fall. 6 credits. Prerequisite: Art 361 or permission of instructor. Hours to be arranged. Staff. A studio course intended for photography majors and other qualified students.

462 Senior Thesis in Photography
Fall or spring. 6 credits. Prerequisite: Art 461 or permission of instructor. Hours to be arranged. Staff. A studio course intended for photography majors and other qualified students. Advanced photography project to demonstrate creative ability and technical proficiency.

751-752, 851-852 Graduate Photography
Fall and 851, 852, spring. 3 credits. Prerequisites: Art 251 or permission of instructor. Hours to be arranged. S. Taft. Continued study of creative use of the microcomputer, various graphic art programs, and methods for the generation of abstract color images. Emphasis on the computer as a tool for making art.

Graduate Thesis
712 Graduate Thesis
Spring. Credit as assigned. Staff. For graduate students in their last term in the programs in painting, sculpture, printmaking, and photography.

Special Studio Courses
171 Computer Art
Fall, spring, or summer. 3 credits. Prerequisite: Introductory course in the use of the microcomputer, various graphic art programs, and methods for the generation of abstract color images. Emphasis on understanding and skill in design and observation, as well as gaining an understanding of how the materials may be relevant to making art through the study of works by the masters.

400 Rome Studio
Fall or spring. 6 credits. Prerequisite: permission of instructor. Staff. The content for the Rome studio will be determined by the instructor. Emphasis will be divided between work accomplished in the studio and work executed outdoors in the environs of Rome. Media will consist primarily of painting, drawing, sculpture, and photography, or those assigned by the instructor.

159 Life and Still-Life Drawing
Summer. 3 credits. The human figure and still life are studied both as isolated phenomena and in relation to their environment. Focuses on helping the student observe and discover.

251 Drawing II
Fall or spring. 3 credits. Prerequisites: Art 151 or permission of instructor. Hours to be arranged. Staff. A continuation of Art 151 but with a closer analysis of the structure of the figure and a wider exploitation of its purely pictorial qualities.

351 Drawing III
Fall or spring. 3 credits. Prerequisite: Art 251. Not offered 1990-91. Staff.

352 Anatomy for Artists
Spring. 3 credits. Prerequisites: Art 151, 159, and 251 or permission of instructor. Hours to be arranged. S. Taft. Intended to develop basic understanding of the structure of the human figure as it is relevant to artists through an in-depth study of the skeleton and muscle-tendon system. Focuses on improving understanding and skill in design and observation, as well as gaining an understanding of how the materials may be relevant to making art through the study of works by the masters.

461 Photography V
Fall. 6 credits. Prerequisite: Art 361 or permission of instructor. Hours to be arranged. Staff. A studio course intended for photography majors and other qualified students.

462 Senior Thesis in Photography
Fall or spring. 6 credits. Prerequisite: Art 461 or permission of instructor. Hours to be arranged. Staff. A studio course intended for photography majors and other qualified students. Advanced photography project to demonstrate creative ability and technical proficiency.

751-752, 851-852 Graduate Photography
Fall and 851, 852, spring. 3 credits. Prerequisites: Art 251 or permission of instructor. Hours to be arranged. S. Taft. Continued study of creative use of the microcomputer, various graphic art programs, and methods for the generation of abstract color images. Emphasis on the computer as a tool for making art.

371 Independent Studio
Fall, spring, or summer. Variable credit (maximum, 5). Students may register for two studios in a semester. May be repeated for credit. Prerequisite: written permission of instructor. Department staff.

372 Special Topics in Art Studio
Fall, spring, or summer. Variable credit. Hours to be arranged. Staff. An exploration of a particular theme or project.

400 Rome Studio
Fall or spring. 6 credits. Prerequisite: permission of instructor. Staff. The content for the Rome studio will be determined by the instructor. Emphasis will be divided between work accomplished in the studio and work executed outdoors in the environs of Rome. Media will consist primarily of painting, drawing, sculpture, and photography, or those assigned by the instructor.
471 Independent Studio
Fall, spring, or summer. Variable credit (maximum, 6). Students may register for two studios in a semester. May be repeated for credit. Prerequisite: written permission of instructor.
Department staff.

CITY AND REGIONAL PLANNING
The department offers several programs of study at both the undergraduate and graduate levels.

The Undergraduate Program in Urban and Regional Studies
The four-year Bachelor of Science program in urban and regional studies offers students an opportunity to direct their education toward an understanding of urban and regional problems and solutions. The curriculum acquaints students with the physical, social, political, economic, and environmental forces that confront cities and regions and contribute to their growth and decline. The curriculum draws on strengths in the department and is supplemented by course work in related areas in other departments at Cornell.

The first two years in this program are a general education in the liberal arts and sciences. Writing and quantitative skills are developed, and an exposure is provided to course work in the natural and social sciences, the expressive or design arts, and the humanities. Two introductory courses in urban and regional issues are also taken during the first two years. During the junior and senior years ten specific courses are taken to provide a significant foundation of knowledge in the major. Additional directed electives will permit the student to gain greater depth of knowledge and acquire a broader understanding of topics of individual interest. These courses may be in any related subject, including, for example, housing, urban design, neighborhood, energy, environmental controls, economic development, architecture, land use, social policy, and international planning.

Basic Requirements for Graduation
1) General education (during the first four terms)
 a. Freshman writing seminars: 6 credits
 b. Foreign language: qualification in one foreign language
 c. An approved course sequence (minimum of 6 credits) in each of the five categories below: 30 credits
 1. a. Biological sciences or
 b. Physical sciences
 2. a. Social sciences (other than economics) or
 b. History
 3. a. Humanities or
 b. Expressive arts or design arts

4. Mathematics
5. Economics
2) Major concentration: 50 to 52 credits
 a. Specific course requirements (38 to 40 credits)
 CRP 100, The American City
 CRP 101, The Global City
 CRP 314, Planning, Power, and Decision Making, or Government 311, Urban Politics
 CRP 315, The Progressive City
 CRP 320, Introduction to Quantitative Methods
 CRP 321, Introduction to Quantitative Methods II
 CRP 361, Seminar in American Urban History, or History 332 or 333, The Urbanization of American Society
 CRP 400, Introduction to Urban and Regional Theory
 CRP 401, Urban Political Economy
 CRP 480, Environmental Politics
 CRP 481, Principles of Spatial Design and Aesthetics
 CRP 482, Urban Land Use Concepts
 b. Directed electives (related to urban and regional studies): 12 credits (at least 6 credits to be taken outside CRP)
 3) Free electives: 26 to 28 credits
 a. 12 credits during first four terms
 b. 14 to 16 credits during last four terms
 Required courses for graduation: 34
 Required Credits: 120
The university requirement of two terms of physical education must be met during the first two terms.

Honors Program
Each year a small number of well-qualified junior-year students will be accepted into the honors program. Each honors student will develop and write a thesis under the guidance of his or her faculty adviser. There will be a seventy-five-page limit on each honors thesis.

Off-Campus Opportunities
Cornell-in-Washington Program. Students in good standing may be eligible to earn degree credits in the Cornell-in-Washington program through course work and an urban-oriented internship in Washington, D.C. Students may work as interns with congressional offices, executive-branch agencies, interest groups, research institutions, and other organizations involved in the political process and public policy. Students also select one or two other seminars from such fields as government, history, economics, human development and family studies, architectural history, and agricultural economics. All seminars are taught by Cornell faculty members and carry appropriate credit toward fulfillment of major, distribution, and other academic requirements.

Cornell Abroad. Cornell encourages qualified undergraduates to study abroad in the belief that exposure to foreign cultures is an important component of a good education. In an increasingly interdependent world, the experience of living and learning in a foreign country is invaluable. With this in mind, the university is continuing to develop study abroad opportunities. Current programs are available in Great Britain, Spain, and Germany. Opportunities in Asia, the Mideast, and France should be forthcoming. The department encourages its students to explore these opportunities.

Cornell-in-Rome Program. The College of Architecture, Art, and Planning has a teaching facility in Rome located in the sixteenth-cent­ury Palazzo Massimo. Students in good standing are eligible to earn degree credits through course work undertaken with Cornell faculty assigned to Rome and with accredited instructors. Courses are available in areas of urban development, regional development, and architecture and art.

Research and fieldwork. Students are welcome to work with departmental faculty on research or other opportunities that are appropriate to their particular interests. Fieldwork and community-service options also exist for students in the Urban and Regional Studies Program.

Additional Degree Options
Linked degree options. Urban and regional studies students have the opportunity to earn both a Bachelor of Science degree and a Master of Regional Planning (M.R.P.) degree in a fifth year of study. Ordinarily the professional M.R.P. degree requires two years of work beyond that for the bachelor's degree. This arrangement shortens that time by about one year. A minimum of 30 credits and a master's thesis or thesis project are required for the M.R.P. degree. Students apply to the Graduate School, usually in the senior year.

Dual degree option. A student in the Cornell College of Arts and Sciences currently can earn both a B.A. in an arts college major, plus a B.S. in urban and regional studies in a total of five years. Special requirements have been established for this dual degree program. Cornell students interested in pursuing the dual degree program should contact either the director of the Urban and Regional Studies Program or the appropriate dean of the College of Arts and Sciences for further information.

Admissions Requirements and Procedures
Among the most important criteria for admission to the Urban and Regional Studies Program are intellectual potential and commitment—a combination of ability, achievement, motivation, diligence, and use of educational and social opportunities. Nonacademic qualifications are important as well. The department encourages students with outstanding personal qualities, initiative, and leadership ability. Above all, the department seeks students with a high level of enthusiasm and depth of interest in the study of urban and regional issues. Applicants must complete a university admission application.
Transfer Students

In most cases, transfer applicants should no longer be affiliated with a high school and should have completed no fewer than 12 credits of college or university work at the time of application. A high school student who has completed graduation requirements at midyear and is taking college courses for the rest of the academic year should apply as a freshman. Prospective candidates who believe that their circumstances are exceptional should consult with the director of admissions in the Cornell division of interest to them before filing an application.

Forms for transfer application and financial aid are available from the Cornell University Office of Admissions, 410 Thurston Avenue, Ithaca, New York 14850–2488. Official transcripts of all high school and college work must be submitted along with SAT or ACT scores and letters of recommendation.

It is desirable for prospective transfers to have taken at least 6 credits in English. In addition, students should have taken basic college-level courses distributed across the natural and social sciences, humanities, and mathematics. Those applicants whose previous course work closely parallels the general education portion of the urban and regional studies curriculum will have relative ease in transfer. However, as there are no specific requirements for transfer, students with other academic backgrounds, such as engineering, architecture, fine arts, management, and agriculture, are eligible to apply.

Although an interview is not required, applicants are urged to visit the campus. Applicants who want further information regarding urban and regional studies may contact Professor Richard S. Booth, Program Director, Urban and Regional Studies, Cornell University, 106 West Sibley Hall, Ithaca, New York 14853–6701 (telephone: 607/255–4613).

The Graduate Program in City and Regional Planning

Planning seeks to guide the development of the economic, social, natural, and built environments so that the needs and aspirations of all people may be better satisfied.

The major concentrations of course work in city and regional planning are in the following areas:

Built environment and urban development planning is concerned with physical facilities; the social, economic, and environmental forces that affect their design; and the process of development, plan making and administration.

History and historic preservation planning is a special program of study preparing students for work in history, analysis, and preservation of buildings, urban environments, and neighborhoods, including downtown business areas.

Regional planning and regional science are concerned with socioeconomic issues and functional planning at the regional level, the forces that generate economic growth and social development, and the ways in which resources can best be used.

Local and regional economic development is concerned with understanding and influencing how economic change may be harnessed to the benefit of communities, countering recent plant closings and more general regional decline and stimulating more equitable programs of socioeconomic change and development.

International planning offers a broad range of courses in international economic development, development planning, and political economy.

Quantitative methods and policy analysis courses are offered to prepare planners and researchers for a variety of situations and problems.

Complementing these concentrations, planning theory and political economy courses examine the organizational and planning processes and the political and economic conditions in which planning and international development operate.

Several graduate degrees are offered: the Ph.D.; the Master of Regional Planning (M.R.P.), for a two-year program; the Master of Arts (M.A.) in historic preservation planning, for a two-year program; and, in special cases, the Master of Professional Studies (International Development) [M.P.S.(I.D.)], for the twelve-month international planning program.

Off-Campus Opportunities

Rome Program. Graduate students have the opportunity to spend one or two semesters in Rome, studying at Cornell's center at the Palazzo Massimo. Instruction is given by Cornell professors-in-residence and by other faculty. The program is structured to include work assignments in one of the international development organizations headquartered in Rome.

Course Information

Most courses in the Department of City and Regional Planning are open to students in any college of the university who have fulfilled the prerequisites and have the permission of the instructor.

The department attempts to offer courses according to the information that follows. However, students should check with the department at the beginning of each semester for late changes.

Undergraduate Program in Urban and Regional Studies

100 The American City

Fall. 3 credits.

Staff. An introductory course on the evolution of urban problems and opportunities facing the majority of this country's population as we approach the last decade of the twentieth century. Readings, discussions, and brief papers exploring topics ranging from suburban development to urban poverty, from urban environmental threats to downtown revitalization, and from municipal finance to the new position of women in the urban economy.

101 The Global City: People, Production, and Planning in the Third World

Spring. 3 credits.

P. Olpadwala. A critical look at the physical and social development of giant cities in the Third World. Their origins, roles, contributions, and shortcomings are examined. Their place in world political economy is evaluated. Policy prescriptions for their principal problems are discussed.

108 FWS: Environment and Society: The Delicate Balance

Fall. 3 credits.

J. Cody. This freshman writing seminar addresses the delicate balance that must be maintained between societal needs and demands and environmental quality. It uses several important texts that examine and challenge society's widespread and deep-rooted tendencies to ignore the social, economic, and environmental consequences of degrading the natural environment. Students work extensively on improving writing skills.

109.01 Freshman Writing Seminar

Fall or spring. 3 credits.

Hours to be arranged. Staff. Topic to be announced.

109.02 FWS: In Search of American Cities

Spring. 3 credits.

Staff. An unusual course structure is used to give students broad exposure to ongoing changes in the social, political, economic, and physical character of U.S. cities. Each week students will "visit" a different city by way of readings, oral presentations, discussions, and brief papers that touch on major aspects of the city's economic, social, and political history; the city's physical character and regional context; and recent planning or policy issues.

216 Economics of Gender

Spring. 3 credits.

L. Benetta. The emphasis in this course will be on the economic aspects of women and work. What are the consequences of women's concentration in reproductive work? What economic role does domestic work play within the larger economy? What are the consequences of occupational segregation by gender? Why is the wage gap between men and women not disappearing? What is the role of discrimination? What is the condition of women in other countries? Throughout the course we will examine different analytical frameworks and distinguish between different feminist perspectives dealing with those questions.

314 Planning, Power, and Decision Making

Fall. 3 credits.

J. Forester. This seminar examines various bases of political and professional power. We ask, What do professionals who want to serve the public need to know about power and decision-making processes in the institutional settings in which they operate? How and why can professionals make a difference when facing problems characterized by great complexity and severe inequalities among affected groups?

315 The Progressive City

Spring. 3 credits.

P. Clavel. A review of attempts to incorporate the interest of working-class and poor constituencies through majority control of local governments. Topics to be covered include the role of the city in class formation; historical perspectives on urban political administration; contemporary political, socialist, and progressive urban governments; and the search for an economic basis for progressive reforms.
320 Introduction to Quantitative Methods I
Fall. 3 credits.
B. Lewis.
An introduction to the role and use of quantitative methods in the study of urban and regional issues. Emphasis will be on statistical, mathematical, and computer methods for the formulation, analysis, and testing of hypotheses and models of social, economic, and physical phenomena of cities and regions. The first semester will cover applicable methods in probability, descriptive statistics, estimation, hypothesis testing, and regression.

321 Introduction to Quantitative Methods II
Spring. 3 credits.
S. Saltzman.
A continuation of City and Regional Planning 320. The second semester will focus on regression and other methods commonly used to analyze urban and regional phenomena, including techniques for decision analysis, linear programming, and cost-benefit analysis and simulation, among others. Strengths and weaknesses of those methods will also be considered.

381 Seminar in American Urban History (also CRP 662)
Spring. 3 credits. Prerequisite: permission of instructor.
K. C. Parsons.
Seminar in the historical evolution of the American city. Emphasis on factors in urban growth, the process of urbanization, the urban reform movement, and intellectual and social responses to the city.

382 Urban Housing: Sheltered vs. Unsheltered Society (also CRP 582)
Fall. 4 credits. Not offered 1990-91.
M. Wilder.
Homelessness is the latest in a continuing list of terms to describe unmet housing needs. To understand how and why such needs persist, even in good economic times, one must examine the nature of interactions between housing policies and housing market forces. This course examines the complex interaction of public and private actions in the development and redevelopment of urban housing. More specifically, the course seeks to investigate the many ways in which private and public policy decisions determine which groups in society will have access to housing. This course is appropriate for students with an interest in urban housing and a background in any of the following areas: urban economics, urban sociology, anthropology, history, or geography. The course will consist of lectures, a wide variety of readings, and guest speakers. Students will be evaluated on the basis of class discussions, two exams, a 15–20 page paper, and an oral presentation.

387 Urbanization and the Environment
Fall. 4 credits. Offered alternate years. Not offered 1990–91.
R. S. Booth.
This seminar explores a series of issues related to the impacts of urbanization on the natural environment. Examples of these issues include: waste management, water supply, transportation, energy generation, and maintenance of open spaces. The seminar will include discussion sessions and a series of field trips. Students will prepare short reports, work on a team project, and make class presentations.

400 Introduction to Urban and Regional Theory
Fall. 4 credits. Open to juniors and seniors.
B. G. Jones.
Introductory review of theories dealing with the spatial distribution of population and economic activity, drawn from various social science disciplines such as geography, economics, and sociology. Review of recent research dealing with such topics as population distribution, migration, location of industry and economic activity, and the spatial organization of urban and regional social systems.

404 Seminar in Urban Political Economy
Spring. 4 credits. Prerequisites: Upper division standing for URS students, CRP 400; for other students, permission of the instructor.
W. W. Goldsmith.
The world economy, the global city, and social change. Population, technology, and work in industrial and developing countries. Race, ethnicity, and nationality. Profits, subsistence, and poverty. Students may read and direct discussions on outstanding texts, write book reviews, and complete a research paper comparing one issue in two cities.

404 Urban Economics (also CRP 604)
Fall. 4 credits. Prerequisite: basic economics.
Urban phenomena are analyzed from an economic point of view. Areas examined include economic aspects of urbanization, processes and policies, determinants of urban growth and decline, urban land and housing markets, urban transportation, and urban public services. Some time will be spent in discussing problems of cities in developing countries.

413 Planning and Political Economy I
Fall. 4 credits. Not offered 1990–91.
Staff.
This course deals with Marx's methodological approach and his elaboration in volume one of Capital. Topics will cover Marx's method, the labor theory of value, the labor process and surplus value, absolute and relative surplus value, the general law of capital accumulation, and the transition from feudalism to capitalism. Basic texts will be supplemented with readings and discussion about current urban problems.

414 Planning and Political Economy II
Spring. 4 credits. Prerequisites: students must have read volume one of Capital and be generally familiar with Marx's approach. Not offered 1990–91.
Staff.
Introduction to volumes two and three of Marx's Capital and his Theories of Surplus Value. Discussion of selected topics among the circulation of capital, productive and unproductive labor, reproduction schemes, accumulation, the transformation of surplus value into profits, the transformation of value into prices of production, the tendency of the rate of profit to fall, and crises. Emphasis on interpretation of current urban problems.

415 Gender Issues in Planning and Architecture
Spring. 3 or 4 credits.
S. Christopherson.
In this course we will examine the role of gender in relation to urban policy, regional planning, and architecture. The course has two major objectives: (1) to provide a theoretical and empirical context for understanding how gender influences the form and allocation of space and (2) to explore concrete ways to address and ameliorate gender inequalities in the practice of planning and architecture.

417 Industrial Restructuring: Implications for State and Local Policy (also CRP 517)
Fall. 4 credits.
S. Christopherson.
A basic introduction to new issues arising from the way in which national and international economic shifts are affecting diverse United States localities. The course will focus on intra-industry restructuring, the location of economic activities, and state and local economic policy. Cases will be drawn from a variety of industries and national situations, with specific application to New York and other Northeast locations.

421 Introduction to Computers in Planning (also CRP 522)
Fall. 4 credits.
Staff.
Students learn how to use microcomputers and software packages in the planning and problem-solving processes. Included are word processing, spreadsheets, mapping, and other types of packages that are useful for other classes and for professional work in the field. (WordPerfect, Lotus 1-2-3, dBase and MacGIS are examples of packages that have been taught in previous years.)

422 Social and Political Studies of Science (also Sociology 355)
Spring. 3 credits.
Staff.
A view of science less as an autonomous activity than as a social and political institution. We will discuss such issues as secrecy in science, ethical and value disputes, and the limits to scientific inquiry in the context of the changing relations between science and the public.

452 Urban Policy, Planning, and Design in Practice
Hours to be arranged. K. C. Parsons.
Study and discussion of selected policy-issue areas and programs in city and regional planning and urban design. The historical context of ideas and issues will be covered in addition to critical reviews of specific programs such as equal access to housing, central city revitalization, neighborhood planning, urban aesthetics, transportation policy, etc. Field trips to selected projects in Washington and Baltimore.

461 Methods of Archival Research
Fall. 3 credits.
K. C. Parsons.
Examination of methods of using archival materials including documents in the Cornell archives and regional history collection, for research in the history of architecture, historic preservation, and history of urban development.
Graduate Courses and Seminars

<table>
<thead>
<tr>
<th>Course Title</th>
<th>Credits</th>
<th>Prerequisites/Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>500 Urban and Regional Theory</td>
<td>4</td>
<td>Spring. Prerequisite: Intermediate-level economics or sociology, or CRP 400. W. W. Goldsmith. A review of attempts by the various social sciences to understand the contemporary city and its problems, particularly as seen by planners. Material is drawn from urban and regional economics, human ecology, urban sociology, psychology, anthropology, and geography in order to explain the location, size, form, and functioning of cities. Traditional and contemporary critical theory is examined as it applies to physical, social, and economic problems of the modern city. Major texts will be read, criticized, and discussed in seminars.</td>
</tr>
<tr>
<td>501 Introduction to Economics and Political Economy</td>
<td>2 or 4</td>
<td>Fall. T. Victorisz/W. W. Goldsmith. This course introduces students to the fundamentals of economics from the user's point of view. The course compares two major schools of thought that take a conflicting approach to political-economic problems of society: the mainstream school of traditional economics and the Marxian school of political economy. Concrete planning problems, with which the course illustrates theoretical points, appear in a very different light from these two perspectives. The course provides bases for independent judgment in assessing conflicting interpretations likely to be encountered in students' professional careers.</td>
</tr>
</tbody>
</table>

Student-Faculty Research

<table>
<thead>
<tr>
<th>Course Title</th>
<th>Credits</th>
<th>Prerequisites/Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>490 Student-Faculty Research</td>
<td>1–4</td>
<td>Fall or spring. Limited to undergraduate students in the Urban and Regional Studies Program. S-U grades only. Hours to be arranged. Staff. A seminar for graduate students and others interested in an in-depth introduction to the main ideas and concepts that underlie the practice of city and regional planning. Weekly discussions will focus on selected articles and books. Interrelations between national, state, and local practices and policies, and developments in methodology, organization, and the political environment, will be explored.</td>
</tr>
</tbody>
</table>

Honors Thesis Writing

<table>
<thead>
<tr>
<th>Course Title</th>
<th>Credits</th>
<th>Prerequisites/Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>493 Honors Thesis Writing</td>
<td>4</td>
<td>Fall or spring. Prerequisite: Completion of CRP 492. Hours to be arranged. Staff. Each selected student works with his or her thesis advisor.</td>
</tr>
</tbody>
</table>

Special Topics

<table>
<thead>
<tr>
<th>Course Title</th>
<th>Credits</th>
<th>Prerequisites/Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>495 Special Topics</td>
<td>3–6</td>
<td>Fall or spring. Hours to be arranged. Staff.</td>
</tr>
</tbody>
</table>

482 Environmental Politics

<table>
<thead>
<tr>
<th>Course Title</th>
<th>Credits</th>
<th>Prerequisites/Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>481 Principles of Spatial Design and Aesthetics</td>
<td>3</td>
<td>Fall. R. T. Trancik. A lecture course that introduces the spatial and visual design vocabularies of cities. Aesthetic principles and theories of design are investigated for different types of urban spaces drawn from a variety of international examples, historic and modern. Included in the course are design methods and applications in the contemporary urban context of Europe and North America.</td>
</tr>
<tr>
<td>483 Urban Land Use Concepts</td>
<td>3</td>
<td>Spring. Staff. Explorations of the use of land in urban areas, with an emphasis on the experience of North American cities. The course reviews use types, use characteristics, and use relationships in terms of conflicting social and economic demands. Concepts of organizing urban space in the past and present are reviewed. Physical planning and aesthetic issues are also discussed.</td>
</tr>
</tbody>
</table>

Honors Thesis Thesis

<table>
<thead>
<tr>
<th>Course Title</th>
<th>Credits</th>
<th>Prerequisites/Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>492 Honors Thesis Thesis</td>
<td>4</td>
<td>Fall or spring. Limited to Urban and Regional Studies Program majors who have been selected as honor students by the department faculty. Hours to be arranged. Staff. Each selected student works with his or her thesis advisor.</td>
</tr>
</tbody>
</table>

511 Concepts and Issues in Planning Practice

<table>
<thead>
<tr>
<th>Course Title</th>
<th>Credits</th>
<th>Prerequisites/Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>512 Introduction to Planning Theory</td>
<td>4</td>
<td>Spring. Not offered 1990–91. J. Forestier. Planning is a form of social intervention. It parallels and complements other important decision-making institutions such as voting, interest-group bargaining, and market exchange. This course provides cases and analysis describing examples of alternative forms of planning and the various arguments used to justify planning: market failure, democratic participation, advocacy, and expert judgment. Political, organizational, and practical-ethical aspects of planning practice are explored. The course covers the work of Dyckman, Piven, Krumholz, Marcuse, Lindblom, Friedmann, March, and others.</td>
</tr>
</tbody>
</table>

515 Gender Issues in Planning and Architecture

<table>
<thead>
<tr>
<th>Course Title</th>
<th>Credits</th>
<th>Prerequisites/Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>515 Gender Issues in Planning and Architecture</td>
<td>3 or 4</td>
<td>Fall. S. Christopherson. Offered alternate years. In this course we will examine the role of gender in relation to urban policy, regional planning, and architecture. The course has two major objectives: (1) to provide a theoretical and empirical context for understanding how gender influences the form and allocation of space and (2) to explore concrete ways to address and ameliorate gender inequalities in the practice of planning and architecture.</td>
</tr>
</tbody>
</table>

520 Statistical and Mathematical Concepts for Planning

<table>
<thead>
<tr>
<th>Course Title</th>
<th>Credits</th>
<th>Prerequisites/Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>521 Mathematical Foundation for Planning Analysis</td>
<td>1</td>
<td>Spring. S. Saltzman. An introduction to statistical and mathematical concepts and methods of importance in planning policy analysis. Topics will include matrix algebra, probability, sampling, estimation, and regression as well as the use of a microcomputer statistical package.</td>
</tr>
</tbody>
</table>

522 Introduction to Computers in Planning

<table>
<thead>
<tr>
<th>Course Title</th>
<th>Credits</th>
<th>Prerequisites/Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>522 Introduction to Computers in Planning (also CRP 421)</td>
<td>4</td>
<td>Fall. S. Saltzman. Students learn how to use microcomputers and software packages in the planning and problem-solving processes. Included are word processing, spreadsheets, mapping, and other types of packages that are useful for other classes and for professional work in the field. (WordPerfect, Lotus 1-2-3, dBase, and MacGIS are examples of packages that have been taught in previous years.)</td>
</tr>
</tbody>
</table>

541 The Politics of Technical Decisions

<table>
<thead>
<tr>
<th>Course Title</th>
<th>Credits</th>
<th>Prerequisites/Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>541 The Politics of Technical Decisions I (also Government 628 and Sociology 510)</td>
<td>4</td>
<td>Fall. S. Christopherson. Offered alternate years. Staff. Each selected student learns the political aspects of decision-making in technical areas. Drawing from recent risk disputes, we will examine the origins and characteristics of "technical politics," the role of experts in government, and the problem of expertise in a democratic system. Alternatives to current decision-making procedures are explored.</td>
</tr>
</tbody>
</table>

542 Introduction to Planning Theory

<table>
<thead>
<tr>
<th>Course Title</th>
<th>Credits</th>
<th>Prerequisites/Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>542 Introduction to Planning Theory (also Government 628 and Sociology 541)</td>
<td>4</td>
<td>Fall. S. Christopherson. Offered alternate years. Staff. Each selected student learns the political aspects of decision-making in technical areas. Drawing from recent risk disputes, we will examine the origins and characteristics of "technical politics," the role of experts in government, and the problem of expertise in a democratic system. Alternatives to current decision-making procedures are explored.</td>
</tr>
</tbody>
</table>
This course is intended to introduce graduate students to public sector decision making in technical areas. Drawing from recent risk disputes, we will examine the origins and characteristics of "technical politics," the role of experts in government, and the problem of expertise in a democratic system.

[545 Introduction to Public Policy Analysis and Management](#)

Fall or spring. 3 credits. Not offered 1990-91. S. Saltzman or staff.

Introduction to systematic methods and processes for analyzing issues and problems of public policy and management. Roles of economic analysis and of analytic techniques in public sector decision making will be reviewed and their respective strengths and weaknesses evaluated. Applications to a variety of public sector problem areas will be explored.

[546 Conflict Resolution in the Public Sector](#)

Fall. 5 credits. J. Forester.

This course will explore the theories and techniques of conflict resolution as they apply to community, environmental, and local land use disputes. We consider principles and strategies of negotiation, mediation, and facilitation. Style, power, and representation are of central concern.

[550 Built Environment](#)

Fall. 3 credits. S. Christopherson.

This course is intended to introduce graduate-level students to the study of the built environment. This course will include: 1) theoretical approaches to the study of the built environment; 2) an introductory survey of the literature on built environment "elements," such as streets, grids, houses; 3) consideration of methods used to understand how people affect and are affected by their immediate environment; and 4) special topics, particularly, historic landscapes and historic preservation. This course will emphasize examples from the United States but some international comparisons will be drawn.

[551 Environmental Law](#)

Fall. 3 credits. R. Booth.

An introduction to how the legal system handles environmental problems. Study of federal statutes such as the National Environmental Policy Act and the Clean Air Act; federal environmental regulations and the important judicial decisions that have been handed down under federal environmental statutes and regulations. Discussion of environmental topics from a policy management perspective.

[552 Urban Land-Use Planning I](#)

Fall. 3 credits. S. Stein.

Surveys, analyses, and plan-making techniques for guiding physical development of urban areas; location requirements, space needs, and interrelations of land uses. Emphasis on residential, commercial, and industrial land-use activities and community facilities; housing and neighborhood conditions. Lectures, seminars, and field exercises.

[553 Urban Land-Use Planning II](#)

Spring. 3 credits. Prerequisite: CRP 552 or permission of instructor. K. C. Parsons.

In-depth consideration of special issues in urban land-use planning, such as industrial districts, large-scale integrated development, Planned Unit Development, public and institutional facilities, open space, land banking, central business districts, neighborhoods, energy impacts, transportation impacts, and others.

[554 Introduction to Planning Design](#)

Fall. 3 credits. Not offered 1990-91. Staff.

Lectures, seminars, readings, and design exercises explore basic concepts and issues related to urban planning, urban design, site planning, and environmental awareness. Emphasis is on professional practice. Intended for students without design backgrounds, but others may enroll.

[555 Urban Systems Studio (also Landscape Architecture 602)](#)

Spring. 6 credits. Prerequisite: permission of instructor. R. T. Tranick.

Application of urban-design and town-planning techniques to specific contemporary problems of city environments. Issues of urbanism are investigated and applied to physical design interventions involving the street, square, block, garden, and park systems. Topics covered in the studio include urban land-use development, spatial systems and aesthetics, and public and private implementation of urban-design plans. This is a specially arranged collaborative studio with the Landscape Architecture Program.

[556 Built-Environment Education Workshop](#)

Spring. 4 credits. Fieldwork hours to be arranged. Staff.

Interdisciplinary teams of students from planning, architecture, landscape architecture, historic preservation, and other environmental design disciplines work in classrooms with schoolchildren and teachers to deepen their understanding of the built environment and to encourage their participation in the shaping of their own environment. Work in local schools is emphasized.

[557 Small-Town Community Design Workshop](#)

Fall or spring. 2 or 4 credits. Not offered 1990-91. Fieldwork hours to be arranged. S. Stein.

An in-depth approach to specific problems facing the small town or small city. Various aspects of planning, historic preservation, landscape architecture, and design, including "Main Street" revitalization, street scape planning, storefront rehabilitation, signage, and comprehensive planning, are explored in a workshop setting. Working with real clients in nearby communities.

[558 City and Regional Planning Workshop](#)

Fall or spring. 4 credits. S. Stein.

Students will work on urban issues, such as housing, traffic and parking, economic development, zoning, and related planning issues, with public or non-profit organizations in New York State. Projects are undertaken on a community-service basis for "clients" who specifically request planning assistance. Students work individually or in teams.

[560 Documentation for Preservation (also Architecture 586)](#)

Fall. 3 credits. M. A. Tomlan.

Methods of identifying, recording, collecting, processing, and analyzing information dealing with historic and architecturally significant structures, sites, and objects.

[561 Historic Preservation Planning Workshop: Surveys and Analyses (also Architecture 588)](#)

Fall or spring. 4 credits. Staff.

Techniques for the preparation of surveys of historic structures and districts; identification of American architectural styles, focusing on upstate New York; and explorations of local historical resources, funding sources, and organizational structures. Lectures and training sessions. Emphasis on fieldwork with individuals and community organizations.

[562 Perspectives on Preservation (also Architecture 585)](#)

Fall. 3 credits. M. A. Tomlan.

Introductory course for preservationists. A survey of the historical development of preservation activity in Europe and America leading to a contemporary comparative overview. Field trips to notable sites and districts.

[563 Problems in Contemporary Preservation Practice (also Architecture 584)](#)

Spring. Variable credit. M. A. Tomlan.

A review and critique of ongoing preservation projects and an investigation of areas of expertise currently being developed. Presented by staff and guest lecturers.

[564 Building Materials Conservation (also Architecture 587)](#)

Spring. 3 credits. Open to juniors, seniors, and graduate students. M. A. Tomlan.

A survey of the development of building materials in the United States, chiefly during the nineteenth and early twentieth centuries, and a review of the measures that might be taken to conserve them.

[565 Fieldwork or Workshop in History and Preservation](#)

Fall or spring. Variable credit. M. A. Tomlan.

Work on applied problems in history and preservation planning in a field or laboratory setting or both.
567 Measured Drawing (also Architecture 583)
Fall. 3 credits. For undergraduate architecture students and graduate students in history and preservation. Prerequisite: permission of instructor.
J. Cody.
Combines study of architectural drawing as historical documents with exercises in preparing measured drawings of small buildings. Presents the basic techniques of studying, sketching, and measuring a building and the preparation of a finished drawing for publication.

568 Introduction to American Decorative Arts and Historic Interiors
Spring. 3 credits. Not offered 1990–91.
Staff.
An introductory survey of the design and evolution of the style of domestic furnishings and related utilitarian objects made in or imported for use in America from 1670 to 1900. Categories to be covered include furniture, glass, ceramics, metals, prints, and textiles. Objects of national significance as well as common items created in relative abundance outside the major urban style centers will be covered.

574 Legal Aspects of International Planning
Fall. 3 credits.
R. Booth.
Legal systems vary substantially around the world. Planners operate within the parameters established by the legal system of the nation in which they are working. This course allows each student to examine the legal structure of a particular nation (chosen by the student) and to explore how that country's legal system shapes/controls decisions regarding the use, management, and development of land resources. The course emphasizes written and oral presentations.

582 Urban Housing: Sheltered vs. Unsheltered Society (also CRP 382)
Fall. 4 credits. Not offered 1990–91.
M. Wilder.
Homelessness is the latest in a continuing list of terms to describe unmet housing needs. To understand how and why such needs persist, even in good economic times, one must examine the nature of interactions between housing policies and housing market forces. This course examines the complex interaction of public and private actions in the development and redevelopment of urban housing. More specifically, the course seeks to investigate the many ways in which private and public policy decisions determine which groups in society will have access to housing. This course is appropriate for students with an interest in urban housing and a background in any of the following areas: urban economics, urban sociology, anthropology, history, or geography. The course will consist of lectures, a wide variety of readings, and guest speakers. Students will be evaluated on the basis of class discussions, two exams, a 15–20 page paper, and an oral presentation.

604 Urban Economics (also CRP 404)
Fall. 4 credits. Prerequisite: basic economics. Not offered 1990–91.
Staff.
Urban phenomena are analyzed from an economic point of view. Areas examined include economic aspects of urbanization processes and policies, determinants of urban growth and decline, urban land and housing markets, urban transportation, and urban public services. Some time will be spent in discussing problems of cities in developing countries.

609 Special Topics in Urban and Regional Theory
Fall or spring. 1–4 credits.
Hours to be announced. Staff.

613 Political Economy of Women and Work I
Fall. 3 credits.
L. Beneria.
This course deals with the question of how to understand and analyze the economic condition of women. Starting with general issues about the "question of origins," reproduction, and production, it then deals with different approaches to the analysis of women's work in the household and in the labor market. The empirical material will mostly concentrate on the United States, with some glances at other industrialized countries and the international economy.

614 Political Economy of Women and Work II
Spring. 3 credits.
L. Beneria.
Continuation of CRP 613. Focusing mostly on Third World countries, this course deals with the impact of economic development on women. In particular it deals with how changing economic structures affect household organization, labor-market dynamics, the division of labor, and women's condition in different societies. Topics include the analysis of current international development, such as the commoditization of life, globalization of production, the crisis of development, population growth, and foreign debt.

615 The Politics of Planning
Fall. 4 credits.
P. Clavel.
This graduate-level seminar explores the relationship between the persons who do planning and the community, political, and social movement context for planning. A range of political models is addressed, and literature in politics, sociology, and organizational theory is part of the coverage. Methodology of field research is part of the course, and students will be encouraged to design research that puts them in touch with actual cases, persons, and recent local histories.

619 Special Topics in Planning Theory and Politics
Fall or spring. 1–4 credits.
Hours to be arranged. Staff.

620 Planning Analysis
Spring. 4 credits.
B. G. Jones.
A survey of commonly used techniques for analyzing various aspects of subnational socioeconomic systems. Emphasizes planning applications.

621 Planning Research Methods
Fall. 3 credits. S-U grades only. Not offered 1990–91.
S. Christopherson.
For master's degree students, to write thesis project proposals. Four parts: theory, formulation of research questions and working hypotheses, guide to methods and techniques in social science research, and the role of the expert. The final proposal must also be approved by the thesis adviser.

622 Information Systems and Microcomputers for Planning and Policy Analysis
Spring. 3 credits. Prerequisite: CRP 522 or equivalent, or permission of instructor.
S. Saltzman.
An introduction to the design and use of computer-based information systems for planning and policy analysis. The focus of the course will be on the design and use of database systems for organizing, storing, retrieving, and analyzing information using microcomputers and, secondarily, mainframe computers. Applications of information systems in public and not-for-profit institutions will be reviewed. Students will be expected to complete a term project on a microcomputer using an appropriate programming language.

629 Special Topics in Quantitative Methods and Analysis
Fall or spring. 1–4 credits.
Hours to be arranged. Staff.

630 Local Economic Development Policy—Seminar
M. Wilder.
The politics and administration of economic development programs. Theory case studies and policy issues treating the evolution of local development efforts in the transition from the high-growth post-World War II economy to contemporary and classic situations of regional decline.

631 Local Economic Policy—Field Workshop
Fall. 4 credits.
P. Clavel.
A group policy analysis exercise in an upstate New York city. Students do a combination of data analysis; interviews with labor, business, and public leaders; and problem papers addressed to current issues presented by a client group. Individual work is synthesized into a comprehensive report at the end of the semester.

639 Special Topics in Regional Development Planning
Fall or spring. 1–4 credits.
Hours to be arranged. Staff.

642 Critical Theory and the Foundation of Planning Analysis
Spring. 1–4 credits.
J. Forester.
Problems of social action are studied in the traditions following Marx, Weber, and Durkheim. Analyses of reproduction and resistance, normative order and power, meaning systems, and organizational action provide the bases for a consideration of Habermas's 'critical' communications theory of society. Implications for planning practice, education, and research are drawn.

649 Special Topics in Social-Policy Planning
Fall or spring. 1–4 credits.
Hours to be arranged. Staff.
652 The Urban Development Process
Fall. 2 credits. Enrollment limited.
K. C. Parsons.
Examination of the goals, strategies, methods, and achievements of major participants in the urban land and building market: landowners, speculators, real estate brokers, developers, bankers, lawyers, nonprofit builders, and government agencies. Primarily visiting speakers.

653 Legal Aspects of Land-Use Planning
Offered alternate spring semesters. 3 credits.
R. S. Booth.
Survey of leading cases and legal concepts in land-use planning, with particular attention to zoning, subdivision control, condemnation, and growth-control issues.

654 Real Estate Development I: Analysis and Critique
Fall. 4 credits. Not offered 1990-91. Limited to 20 students with permission of instructor. Prerequisite: Hotel Administration 300 or equivalent or permission of instructor.
Staff.
The course will investigate many aspects of real estate development. Areas covered will include acquisition, finance, valuation, construction, design and marketing, and the interplay of those variables.

655 Real Estate Development II: Advanced Analysis and Critique
Spring. 4 credits. Limited to 20 students with permission of instructor. Prerequisite: CRP 654 or equivalent. Not offered 1990-91.
Staff.
A continuation of City and Regional Planning 654.

656 Land Resources Protection Law
Fall. 3 credits. Not offered 1990-91.
R. S. Booth.
Examines legal issues raised by government efforts to protect critical land resources such as tidal wetlands, flood plains, forests and agricultural lands, and large resource areas such as the coastal zone. Students will use a broad selection of legal materials and learn to use the basic resources of a law library.

659 Special Topics in Urban Development Planning
Fall or spring. 1-4 credits. Hours to be arranged. Staff.

660 Seminar in the History of American City Planning (also Architecture 693)
Fall. 3 credits. Prerequisite: CRP 662 or permission of instructor. Not offered 1990-91.
Staff.
A research seminar in which each student selects a topic for oral presentation followed by the completion of a research paper. Early sessions examine the scope of planning history, its relations to other disciplines, sources of written and graphic materials, and the uses of historical evidence in interpreting urban planning and development.

661 Historic Preservation Planning Workshop: Plans and Programs
Fall or spring. 1-4 credits. Prerequisite: CRP 561.
Staff.
Preparation of elements of historic preservation plans, designs, legislation, and special studies. Individual or group projects are selected by students. Fieldwork is emphasized.

662 Seminar in American Urban History (also CRP 361)
Spring. 3 credits. Prerequisite: permission of instructor.
K. C. Parsons.
Seminar in the historical evolution of the American city. Emphasis on factors in urban growth, the process of urbanization, urban reform movement, and intellectual and social responses to the city.

663 Historic Preservation Law
Spring. 3 credits. Offered alternate years.
R. S. Booth.
Law of historic district and landmark designation, tools for preservation (such as police power, taxation, eminent domain), and recent developments in state and federal historic preservation mandates.

664 Economics and Financing of Neighborhood Conservation and Preservation
Fall. 3 credits.
B. G. Jones.
The economic and financial aspects of historic preservation and neighborhood conservation. Topics include public finance, selected issues in urban economics, real estate economics, and private financing of real estate projects.

665 Preservation Planning and Urban Change
Fall. 3 credits. Not offered 1990-91.
Staff.
An examination of fundamental planning concepts and issues as they relate to historic preservation. Neighborhood revitalization, federal housing programs, the role of public and private institutions, displacement, and other social issues are among the primary topics.

669 Special Topics in History and Preservation
Fall or spring. 1-4 credits. Hours to be arranged. Staff.

670 Regional Planning and Development in Developing Nations
Fall. 4 credits. Prerequisite: second-year graduate standing.
W. W. Goldsmith.
Extensive case studies of development planning are analyzed. Focus is on a Marxist critique of the process of regional development through urbanization and in particular on the concepts of equity and efficiency, external economies, export linkages, and internal self-sufficiency and integration. Resource development, national integration, human development, and migration problems are discussed.

671 Seminar in International Planning
Spring. 3 credits. S/U grades only.
P. Olpadwala.
The international planning lecture series sponsors lectures by visiting scholars or professionals in the field of international development and planning. The only formal requirement for the course is a brief evaluation of the series at the end of the semester.

673 Economics of Regional Development
Spring. 2 or 4 credits.
T. Victorisz.
This course deals with the historical process of regional and metropolitan development, emphasizing Third World problems. While its basic approach is mode-of-production analysis, it also critically surveys location, comparative advantage, and feedback system theories. Development is interpreted as the penetration of the capitalist mode of production into precapitalist societies. Its features are analyzed both in terms of the historical stages of expanding capitalism (mercantile phase, imperialism, multinationals) and in terms of the pre-existing (feudal, Asiatic) precapitalist mode of production. Regional and urban development planning problems are discussed in the light of the contradictions of the above process, as well as in the context of newly emerging Third World socialist countries.

679 Special Topics in Planning and Developing Regions
Fall or spring. 1-4 credits.

687 Urbanization and the Environment
Fall. 4 credits. Offered alternate years. Not offered 1990-91.
R. S. Booth.
This seminar explores a series of issues related to the impacts of urbanization on the natural environment. Examples of these issues include: waste management, water supply, transportation, energy generation, and maintenance of open spaces. The seminar will include discussion sessions and a series of field trips. Students will prepare short reports, work on a team project, and make class presentations.

689 Special Topics in Environmental Planning
Fall or spring. Variable credit. Hours to be arranged. Staff.

699 Special Topics in Regional Science
Fall. Variable credit. Staff.

711 Planning and Organization Theory
Spring. 4 credits.
P. Cavel.
Advanced seminar on theoretical models of planning, organization, and urban structure. The first part of the course, which may be taken separately for one credit, provides an overview of administrative issues affecting planning. Next, attention is given to theories of organizational structure, growth, and change. Final sessions are devoted to the influence of urban and regional structures as context.

719 Special Topics in Planning Theory and Politics
Fall or spring. Variable credit. Staff.

720 Quantitative Techniques for Policy Analysis and Program Management
Fall. 4 credits.
B. Lewis.
Selected analytical techniques used in the planning and evaluation of public policy and public investments are examined. Topics include simulation modeling, benefit-cost and cost-effectiveness analysis (including capital budgeting), and optimization strategies.
ARCHITECTURE, ART, AND PLANNING

730 Methods of Regional Science and Planning I
Spring. 4 credits. Prerequisite: CRP 520 and CRP 620 or equivalent.
B. Lewis.
An introduction to some of the major methods and models used in regional science and planning. This is the first semester of a two-semester sequence (see CRP 731). Both courses will cover topics related to the structure and assumptions of the models, model development, and their applications in regional science and planning. Where appropriate, computer implementation will be considered. The fall semester will emphasize statistical and econometric methods.

731 Methods of Regional Science and Planning II
Spring. 3 credits. Prerequisite: CRP 730 or equivalent.
S. Saltzman.
A continuation of CRP 730. The spring semester will provide an introduction to deterministic methods and models such as input/output, social accounting matrices, and optimization models.

732 Regional Industrial Development
Fall. 4 credits. Prerequisites: basic economics and elementary calculus. Not offered 1990-1991.
Staff.
The course focuses on issues of industrial, as distinct from agricultural, development. Material includes theory of production, elements of growth theory, interindustry relations and formation of industrial complexes, locational attractiveness, and interregional flows of goods, services, and factors of production.

746 Informal Seminar in Planning Theory: Philosophy, Ethics, and Values in Planning
Fall or spring. Variable credit. Not offered 1990-91.
J. Forester.
An informal seminar to discuss problems of values, ethics, and alternative philosophical positions that are inherent in various planning proposals or perspectives.

772 Advanced Topics on International Development and Women
Spring. 4 credits. Offered alternate years.
I. Beneria.
A seminar to explore theoretical and empirical issues of interest to M.A. and Ph.D. students working on topics related to gender and international development. The focus will be on a few narrow topics such as the effect of the foreign debt crisis on women, the informal sector and women's work, and gender aspects in demographic change, to be explored in depth in preparation for research and thesis writing. Students will be encouraged to explore and exchange ideas, and to provide mutual support and criticism.

773 Seminar in Project Planning in Developing Countries
Spring. 4 credits.
D. Lewis.
An examination of the problems and issues involved in preparing project proposals for presentation to funding agencies. Topics include technical design, financial feasibility, social impact analysis, and policy relevance, as well as techniques for effective presentation of proposals. The course is organized as a seminar-workshop providing both an analysis of the critical elements of effective proposals and an opportunity to use those elements in the preparation of proposals. A multidisciplinary perspective is emphasized.

774 Science, Technology, and Development
Fall. 3 credits. Offered alternate years. Not offered 1990-91.
P. Olpadwala.
The place and role of science and technology as a factor in socioeconomic growth is examined with special reference to developing regions. The social underpinnings and linkages of science and technology are studied and their role explored as a nonneutral and dynamic social force that primarily serves the ends of particular groups in societies. Current issues such as technological development, technology transfer, and appropriateness of technology are discussed in this context, with attention given to both rural and industrial development. Third World science and technology policy-planning options are considered throughout the course.

775 Transnational Corporations and Developing Regions
Fall. 3 credits. Offered alternate years.
P. Olpadwala.
Transnational corporations are studied in the context of socioeconomic development. Contending theories of the international firm are examined as a starting point for evaluating contradictory claims and counter claims of proponents and detractors of transnational corporations. Advantages and disadvantages for developing regions are considered.

776 Seminar in Urban Policy and Planning in Developing Countries
Spring. 3 credits.
K. C. Parsons.
The national urban development policy and planning efforts of selected developing countries are examined in the context of urbanization theory and national spatial planning. Recent descriptive and critical literature is explored. Topics include secondary cities policy, national and urban transportation planning, city planning, sites and services project planning, housing, land policy, and urban development control systems.

777 Theories of Development and Underdevelopment
Spring. 3 credits.
P. Olpadwala.
Various theories attempting to analyze and explain the phenomena of underdevelopment are examined. Although a range of thought and appreciation is required, the accent is on aspects of political economy revolving around concepts of class and exploitation. Topics include the transition to capitalism; dependent and uneven development; various issues of growth and fluctuation under contemporary capitalism, including crises; rural and industrial development in less-developed countries; and planning for development.

790 Professional Planning Colloquium I
Fall. 1 credit.
Staff.
Visiting lecturers treat problems and opportunities in the practice of planning. Topical focus to be announced. The only formal requirements for the course are attendance and a brief evaluation at the semester's end.

792 Master's Thesis, Project, or Research Page
Fall or spring. 1-10 credits.
Hours to be arranged. Staff.

794 Planning Internships
Fall, spring, or summer. 1-12 credits.
Hours to be arranged. Staff.
Combines a professional planning internship in a metropolitan area with academic study to provide experience and understanding of the planner's role in formulating and implementing plans and policies. Salaried internships in federal or state agencies, legislative offices, and comparable settings include development of existing and new plans and policies. Weekly seminars draw on student field experiences, assigned readings, and guest speakers to examine current issues of federal, urban, and regional policy from the perspective of planning practice.

795 Master's Thesis in Preservation Planning
Fall or spring. 1-6 credits.
Hours to be arranged. Staff.

796 Colloquiual Journal Publication Workshop
Fall or spring. 2 credits. S-U grades only.
P. Clavel, J. Forester.
Individual and group projects culminating in the production of a professional journal.

800 Advanced Seminar in Urban and Regional Theory I
Fall. 3 credits. Prerequisite: CRP 500.
B. G. Jones.
The theory of urban spatial organization. Economic, technological, and social factors leading to urbanization and various kinds of spatial organizations are explored. Major theoretical contributions to the understanding of intraregional and intrurban distribution of population and economic activity are reviewed.

801 Advanced Seminar in Urban and Regional Theory II
Spring. 3 credits. Prerequisite: CRP 800.
B. G. Jones.
A continuation of City and Regional Planning 800, concentrating on recent developments.

810 Advanced Planning Theory
Fall. 3 credits. Prerequisite: CRP 500 or 710.
B. G. Jones.
A survey of the works of scholars who have contributed to current thinking about planning theory. Alternative assumptions concerning models of man and theoretical concepts concerning the nature of planning today are considered.

830 Seminar in Regional Sciences, Planning, and Policy Analysis (run jointly with Economics 505: Interdependent Decision Making)
Fall or spring. 4 credits.
S. Saltzman.
This seminar will provide an opportunity to review some of the literature and current research in regional science, planning, and policy analysis. Specific topics covered will vary each year. Empirical and analytical research will be emphasized. Students will be expected to prepare and present a research paper during the semester on some aspect of the topics under review.
LANDSCAPE ARCHITECTURE

The Landscape Architecture Program at Cornell is jointly sponsored by the College of Agriculture and Life Sciences (in association with the Department of Floriculture and Ornamental Horticulture) and the College of Architecture, Art, and Planning.

The Program

The Landscape Architecture Program offers three professional degree alternatives: a two-year graduate curriculum directed to those who have undergraduate degrees in landscape architecture or architecture; a three-year graduate curriculum directed to those who have undergraduate degrees in other fields, and a four-year undergraduate curriculum. Graduate studies in landscape architecture are administered through the Graduate School and a four-year undergraduate curriculum directed to those who wish to pursue the Bachelor of Science degree.

Course Information
*142 Introduction to Landscape Architecture
Spring. 4 credits.
D. W. Krall.

*201 Design, Theory, and Composition
Fall. 6 credits.
T. H. Johnson.

*202 Design, Composition, and Theory
Spring. 6 credits.
M. I. Adelman.

*301 Site Design and Detailing
Fall. 6 credits.
D. W. Krall.

*302 Site Design and Detailing
Spring. 6 credits.
D. W. Krall.

*310 Site Engineering
Fall. 4 credits.
M. I. Adelman.

*312 Site Construction
Spring. 4 credits.
P. J. Trowbridge.

*401 Urban Design and Planning
Fall. 6 credits.
R. T. Trancik.

*402 Advanced Project Design
Spring. 6 credits.
Staff.

*412 Professional Practice
Spring. 1 credit.
K. Wolf.

*480 Principles of Spatial Design and Aesthetics
Fall. 3 credits.
R. T. Trancik.

490 Special Topics in Landscape Architecture
Fall or spring. 1–3 credits; may be repeated for credit. S-U grades optional.
Staff.

Topical subjects in landscape architectural design, theory, history, or technology. Group study of topics not considered in other courses.

*491 Design and Plant Establishment
Fall. 2 credits.
P. J. Trowbridge.

497 Independent Study in Landscape Architecture
Fall or spring. 1–5 credits; may be repeated for credit. S-U grades optional.
Staff.

Work on special topics by individuals or small groups.

501 Theory and Application Studio
Fall. 6 credits. Lab fee, $20, cost of basic drafting equipment and supplies, about $200. Lecs, M W F 1:25; studios, M W F 2:30–4:25. L. Mirin.

Introduction to basic concepts of site analysis and physical design of landscape. Exercises and projects explore the relationship between natural features, functional demands, professional traditions, and the creation of spatial form.

*502 Theory and Application Studio
Spring. 6 credits.
D. W. Krall.

*505 Graphic Communication I
Fall. 3 credits.
T. H. Johnson.

520 Contemporary Issues in Landscape Architecture
Fall. 2 credits. S-U grades only.
Lec, P. J. Trowbridge.

Presentations on topics that are current and significant to the environmental design and planning fields. Issues are discussed from a landscape architecture point of view by practitioners and researchers representing a range of professions.

521 History of European Landscape Architecture
Fall. 3 credits.
Lecs, TR 11:15–1:10; discs to be arranged. L. Mirin.

A survey from classical times to the present, emphasizing design principles and techniques that have established the landscape architecture tradition in Europe. Particular reference is made to the manner in which environments such as gardens, streets, plazas, parks, and new towns reflect in their built form a range of response to demands of culture, economics, technology, security, the law, and ecology.

522 History of American Landscape Architecture
Spring. 3 credits.
Lecs, TR 11:15–1:10; discs to be arranged. L. Mirin.

Landscape architecture in the United States from Jefferson to the present is examined as a unique expression of the American experience. Influences exerted by the physical landscape, the frontier and utopian spirit, and the cultural assumptions of democracy and capitalism are traced as they affect the forms of urban parks, private and corporate estates, public housing, transportation planning, national parks, and other open-space designs.

*531 Regional Landscape Planning I
Fall. 4 credits.
A. S. Lieberman.

601 Project Planning and Application Studio
Fall. 6 credits.
P. J. Trowbridge.

602 Urban Systems Studio (also CRP 555)
Spring. 6 credits.
R. T. Trancik and staff.

610 Site Engineering for Landscape Architects
Fall. 4 credits.
M. I. Adelman.

*612 Site Construction
Spring. 4 credits.
P. J. Trowbridge.

621 Summer Internship Seminar
Fall. 2 credits. S-U grades only.
Hours to be arranged. L. Mirin.
Presentation and discussion of projects developed during summer internships.

634 Landscape Architectural Research
Spring. 3 credits.
T. H. Johnson.

650 Fieldwork or Workshop in Landscape Architecture
Fall or spring. 1–5 credits; may be repeated for credit. S-U grades optional.
L. Mirin.

Work on applied problems in landscape architecture in a field or studio setting or both.

690 Independent Study in Landscape Ecology and Regional Landscape Planning
Fall. 1–3 credits.
A. S. Lieberman.

*701 Natural Systems and Planting Design Studio
Fall. 6 credits.
A. I. Adelman.

800 Master’s Thesis in Landscape Architecture
Fall or spring. 9 credits.
Hours to be arranged. Staff.

Independent research under faculty guidance, leading to the development of a comprehensive and defensible design or study related to the field of landscape architecture. Work is expected to be completed in the final semester of residency.

*Offered through the College of Agriculture and Life Sciences.
To accomplish these objectives, the college has
yet the faculty believes that each student's
particular field to develop, as fully as possible,
study foreign languages, acquire effective
skills. They also come to understand more
wider community provides strength and
diversity not available in an isolated under-
graduate institution. Students may draw upon
the knowledge and facilities of the other
undergraduate colleges at Cornell to supple-
ment their studies. Finally, the college is a
graduate school and research center attracting
faculty whose writing and research require
first-rate academic facilities and whose
participation in undergraduate teaching brings
to their students the most current ideas in
modern scholarship. It is this abundant variety
that gives the college its distinctive character.

The richness of the curriculum is extraordinary;
there is no course that all students must take,
and there are several hundred from which they
may choose. By choosing courses each
semester, students design their own education.
They strike a balance between developing
known interests and exploring new subjects.
They sharpen their verbal and quantitative
skills. They also come to understand more
thoroughly our common Western tradition and
learn something about the non-Western world
and its peoples. An education in the liberal arts
means honing one's critical capacities, learning
more about oneself in nature and culture, and
gaining real experience of views of the world
radically unlike one's own. All this is highly
individual, and the college relies on each
student and faculty adviser to select sensible,
challenging, and appropriate courses.

Yet the faculty believes that each student's
education should have certain common
qualities. These include familiarity with several
different ways of knowing that are reflected in
the natural sciences, in the social sciences, and
in those achievements of intellect and
imagination that are the focus of the humani-
ties and the expressive arts. In addition to
these general areas of knowledge, students
study foreign languages, acquire effective
writing skills, and concentrate on one
particular field to develop, as fully as possible,
the powers of imaginative and critical thinking.
To accomplish these objectives, the college has
certain requirements for graduation.

Summary of Basic College
Requirements for Graduation

1) Freshman writing seminars: Two.
2) Foreign language: Up to four courses to
obtain qualification in two languages or
proficiency in one.
3) Distribution: Four approved sequences of
two full-semester courses.
4) Major
5) Electives: Four or five courses (or 15
credits) in courses not used to fulfill other
requirements and not in the major field.
6) Residence: Eight full-time semesters,
unless a student can successfully complete
the other requirements in fewer than eight
semesters, maintain a B average, and is
allowed to accelerate graduation.
7) Minimum number of courses: Thirty-four
courses. A 2-credit course counts as half a
course; a 6-credit language course counts
as one and one-half courses.
8) Credits: A total of 120 credits, of which 100
must be taken in the College of Arts and
Sciences.
9) Physical education: Completion of the
university requirement. Please note that
physical education does not count
toward graduation or toward the 12-credit
minimum required for good standing each
semester. See p. 11.
10) Application to graduate.

Freshman Writing Seminars
See "John S. Knight Writing Program," p. 311.

Language Requirement
The faculty considers competence in a foreign
language essential for an educated person.
Studying another language helps students
understand language itself, our fundamental
intellectual tool, and opens another culture for
exploration. The sooner the student acquires
competence, the more useful it will be. Hence
work toward the foreign language requirement
should be undertaken in the freshman and
sophomore years.

The following departments teach foreign
languages or literature or both in the College of
Arts and Sciences: Africana Studies and
Research Center, Asian Studies, Classics,
German Literature, Modern Languages and
Linguistics, Near Eastern Studies, Romance
Studies, and Russian Literature.

The language requirement may be satisfied in
one of two ways:

1) by attaining proficiency in one language or
2) by attaining qualification in two lan-
geuages.

Proficiency
Proficiency is attained by passing a 200-level
course (or Chinese or Japanese 161) or by
equivalent achievement, to be determined by
examination, see below under "Advanced
Standing Credit."

Qualification
Qualification may be attained in any of the
following four ways.

1) Three years of high school study in any
one language gives qualification in that
language. Note, however, that this route
to qualification does not guarantee
entrance into a 200-level course. The
student who wants to continue in this
language must be placed by examination.
2) Passing the requisite course: 102, 123, or
134 in languages taught by the Department
of Modern Languages and Linguistics;
Chinese 112–114 or Japanese 160,
Studies 102 or 122 in Hebrew, 112 in
elementary classical Arabic, 214 in
Egyptian Arabic, or 138 in Turkish; Classics
103 or 104 in Greek; Classics 106 or 107 or
108 in Latin, Classics 112 in modern Greek;
132 in Sanskrit, AS&RC 134 in Swahili.
3) A score of 560 or better on the College
Placement Test (CPT).
4) Placement in a 200-level course by special
examination (in cases where no CPT is
available).

A student may submit a 560 CPT score at the
end of a course numbered 122, thus attaining
qualification without taking 123. This
procedure is optional: the student with a score
of 560 or better may want to take 123 to be
better prepared for the 200-level courses.

Note: Completion of 131–132 language course
sequences does not constitute qualification.

Speakers of languages other than English may
be awarded credit for their bilingual ability.
Their English achievement is measured by the
Test of English as a Foreign Language (TOEFL),
a requirement for matriculation. Their
performance in one other language learned
outside the academic environment is measured
by examination, and evidence of abilities in
reading and writing, as well as speaking, is
required. A maximum of 6 advanced
placement credits is granted to students who
demonstrate proficiency equivalent to course
work at the 200 level or above at Cornell.

Students may not earn credit both for
proficiency in their native language and for
studying English as a second language at
Cornell.

Language Course Placement and Credit
Students who have had two or more years of
high school study in a language may not enroll
in any course in that language without being
placed by examination. Nor may transfer
students register without examination, even
though they may have been given credit for
language work elsewhere.

The type of examination depends upon the
language course and the level of achievement:

1) French, German, Italian, Russian, and
Spanish courses: the standardized College
Placement Test. Entering students who
have not taken the CPT in high school and
who want to continue their language study
must take the CPT at Cornell during
orientation week. Students may retake this
examination at Cornell if they have studied
the language a year or more since last
taking the test. To do this, students register
with the Academic and Career Counseling
services, 203 Barnes Hall, and pay a fee.
Advanced Standing Credit

Advanced standing credit may be entered on a student's record as follows: Credit may be granted for high school work for the equivalent of language courses numbered 203-204. The amount of credit is based on performance on one or more of the following examinations:

Spanish

<table>
<thead>
<tr>
<th>CPT Reading Score</th>
<th>Language Courses</th>
<th>Literature Courses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Below 450</td>
<td>121</td>
<td></td>
</tr>
<tr>
<td>450-599</td>
<td>123</td>
<td></td>
</tr>
<tr>
<td>560-649</td>
<td>203</td>
<td>201</td>
</tr>
<tr>
<td>650 and above</td>
<td>Apply for the Cornell Advanced Standing Examination (CASE)</td>
<td></td>
</tr>
</tbody>
</table>

Arabic

Placement by departmental examination.

Hebrew

AP 4 or 5 in language, 3 credits. Department determines placement.

Turkish

Placement by departmental examination.

Advanced Placement Credit

Advanced standing credit may be entered on a student's record as follows: Credit may be granted for high school work for the equivalent of language courses numbered 203-204. The amount of credit is based on performance on one or more of the following examinations:

a. CPT Advanced Placement Examination

- **French, Spanish, and German**: A score of 4 or 5 yields 3 credits on the French, Spanish, or German language examinations and literature examinations. **Hebrew**: Up to 6 credits may be granted, depending on the student's score on the departmental examination. **Latin**: Students should consult the Department of Classics, 120 Goldwin Smith Hall. They must take the department's own placement examination during orientation week. A student who is permitted to register in a 300-level course on the basis of this examination will be given 6 advanced standing credits.

b. Cornell Advanced Standing Examination (CASE)

- **French, Spanish, and German**: Students who consult the Department of Classics, 120 Goldwin Smith Hall. They must take the department's own placement examination during orientation week. A student who is permitted to register in a 300-level course on the basis of this examination will be given 6 advanced standing credits.

c. Special examinations are given for languages where no CPT exists.

Distribution Requirement

The purposes of the distribution requirement are to acquaint students with a broad range of subject matter in the liberal arts and to provide them with the opportunity to explore new areas. Accomplishing these purposes is part of the task of freshmen and sophomores. Although completion of the requirements may be spread over the eight semesters, successful introduction to courses may be followed up with advanced courses only if undertaken early. For purposes of distribution, subjects are divided into four groups. Each of the first three groups has two subdivisions.

<table>
<thead>
<tr>
<th>Group 1</th>
<th>Group 2</th>
<th>Group 3</th>
<th>Group 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>b. Biological sciences</td>
<td>b. History</td>
<td>b. Expressive arts</td>
<td>b. Expressive arts</td>
</tr>
</tbody>
</table>

Humanities or expressive arts

AP credit may not be used to satisfy this requirement.

Mathematics

AP credit may be used to fulfill the requirement in mathematics.

Art and Science Courses

- **Latin (all courses except 105 and 107)**: departmental examination.
- **Greek (all courses except 101, 104, and 111)**: departmental examination.
- **Arabic**: departmental examination.
- **Hebrew**: departmental examination.
- **Other languages**: special examinations; Turkish: department examination; see the professor in charge.
- **High achievement (students with a CPT score of 650 or better in French, German, Hebrew, Italian, Russian, and Spanish)**: the Cornell Advanced Standing Examination (CASE).

An entering or continuing student with high achievement scores should take the Cornell Advanced Standing Examination (CASE); even if the student does not want to do any further work in the language, the CASE may provide proficiency status for the language requirement, and it may provide up to 6 advanced standing credits. Students who do not have high achievement scores are eligible for the courses listed in the chart below, depending on their CPT scores. For other languages, or for special problems, students should see the professor in charge.

<table>
<thead>
<tr>
<th>Language</th>
<th>CPT Reading Score</th>
<th>Language Courses</th>
<th>Literature Courses</th>
</tr>
</thead>
<tbody>
<tr>
<td>French</td>
<td>Below 450</td>
<td>121</td>
<td></td>
</tr>
<tr>
<td></td>
<td>450-599</td>
<td>123</td>
<td></td>
</tr>
<tr>
<td></td>
<td>560-649</td>
<td>203</td>
<td>201</td>
</tr>
<tr>
<td></td>
<td>650 and above</td>
<td>Apply for the Cornell Advanced Standing Examination (CASE)</td>
<td></td>
</tr>
<tr>
<td>German</td>
<td>Below 450</td>
<td>121</td>
<td></td>
</tr>
<tr>
<td></td>
<td>450-599</td>
<td>123</td>
<td></td>
</tr>
<tr>
<td></td>
<td>560-649</td>
<td>203</td>
<td>201</td>
</tr>
<tr>
<td></td>
<td>650 and above</td>
<td>Apply for the Cornell Advanced Standing Examination (CASE)</td>
<td></td>
</tr>
<tr>
<td>Italian</td>
<td>Below 450</td>
<td>121</td>
<td></td>
</tr>
<tr>
<td></td>
<td>450-599</td>
<td>123</td>
<td></td>
</tr>
<tr>
<td></td>
<td>560-649</td>
<td>203</td>
<td>201</td>
</tr>
<tr>
<td></td>
<td>650 and above</td>
<td>Apply for the Cornell Advanced Standing Examination (CASE)</td>
<td></td>
</tr>
<tr>
<td>Russian</td>
<td>Below 450</td>
<td>101</td>
<td></td>
</tr>
<tr>
<td></td>
<td>450-599</td>
<td>102</td>
<td></td>
</tr>
<tr>
<td></td>
<td>560-649</td>
<td>203</td>
<td>201</td>
</tr>
<tr>
<td></td>
<td>650 and above</td>
<td>Apply for the Cornell Advanced Standing Examination (CASE)</td>
<td></td>
</tr>
</tbody>
</table>
Economics: 101–102, 203–204, or a combination of one of these courses and any course for which it is a prerequisite if the course is taught by a member of the Department of Economics.

Government: Any two of 111, 131, 161, 181; or any one of these courses followed by a 300-level course in the same area.

Linguistics: 101 and (1) any other course in linguistics or (2) any other course offered by the Department of Modern Languages and Linguistics for which this introductory linguistics course is a prerequisite.

Near Eastern Studies: Any two NES 197 or 198 plus an NES 300-level course will also satisfy the social sciences requirement.

Psychology: Any two courses in psychology with the exception of Psychology 123, 307, 322, 324, 326, 332, 350, 361, 396, 422, 425, 429, 471, 472, 473, 475, 476, 479, 491, 492.

Sociology: Any two of 101, 103, 104, 106, or 107 followed by any course at the 200 level or above in sociology.

Women's Studies: (a) Any two courses in 208, 218, 238, 244, 277, 297, 305, 321, 353, 365, 366, 400, 408, 425, 428, 450, 468, 480; or (b) any one of 210, 365, 454, plus one course from list a. (Appropriate courses in women's studies taken previously may be approved by the program.)

City and Regional Planning: 100 and 101.

b. History

Asian Studies: Any two courses in Asian history given by the Department of History and listed under the Department of Asian Studies under the areas of China, Japan, South Asia, and Southeast Asia, excluding only freshman writing seminars and courses given outside the College of Arts and Sciences. A reasonable sequence is formed by taking any two courses in the same area, or by taking AS 211, 212, 215, or 218 followed by a history course in that area.

Art History: Any two courses in the Department of History.

History of Science and Technology:

Any two of the following courses: History 281, 282, 286, 287, 288, 380, 447, 448, 482; or Engineering 250 and 292.

Near Eastern Studies: Any two NES history courses at the 200 or 300 level that form a reasonable sequence or combination. NES 197 or NES 198 plus an NES history course will also satisfy the history requirement.

Women's Studies: Any two of 227, 238, 275, 307, 356, 357, 426. (Appropriate courses taken previously may be approved by the program.)

Group 3: Humanities or Expressive Arts

a. Humanities

Asian Studies: Any two courses in Asian art, literature, or religion given by the Department of Asian Studies or listed there under the areas of China, Japan, South Asia, and Southeast Asia, excluding only freshman writing seminars and courses given outside the College of Arts and Sciences. A reasonable sequence is formed by any two courses in the same area, or by taking AS 211, 212, 215, or 218, either using two of these courses as a sequence or following one with a course in the humanities in that area.

Classics: (a) any two courses in Greek beginning with 201 or in Latin beginning with 209 that form a reasonable sequence; or (b) any two of the following: Classics 206, 211, 212, 217, 218, 219, 220, 221, 222, 223, 224, 225, 232, 233, 235, 236, 237, 238, 239, 245, 250, 300, 305, 319, 320, 321, 322, 325, 326, 327, 329, 330, 331, 333, 336, 337, 339, 340, 346, 350, 356, 363, 365, 382, 390, 391, 423, 434, 435, 480, 496.

Comparative Literature: Any two comparative literature courses at the 200 level or above, including 150; 400-level courses with permission of the instructor or the director of undergraduate studies.

English: Any two courses in English at the 200 level or above. If students have used English courses to satisfy the expressive arts requirement, they should not take courses numbered in the 80s (e.g., 281, 382) to satisfy the humanities requirement.

French Literature: Any two courses from 200, 201, 202, 222, or 300-level literature courses.

German Literature: Any two courses at the 200 level or above.

Italian Literature: Any two literature courses at the 200 level or above.

Near Eastern Studies: Any two NES civilization or literature courses at the 200 or 300 level that form a reasonable sequence or combination, including Hebrew 201–202, Intermediate Arabic 211–212, Advanced Arabic 311–312, Intermediate Modern Hebrew 201–202, Advanced Modern Hebrew 301–302, and Intermediate Turkish 283–284. NES 197 or 198 plus an NES civilization or literature course will also satisfy the humanities requirement.

Philosophy: Any two courses with the following exceptions: (1) Philosophy 100, if used to satisfy the freshman writing seminar requirement; (2) a combination of two courses in logic, such as 131, 231, 331, 431, 432, 436.
Group 4: Mathematics or an Unused Subdivision

a. Mathematics and Computer Science

Any 6 credits in mathematics except 104 and not including more than one course from 105 or 403. Computer Science 100, 211, or 212 may be used for three of these credits. A mathematics distribution requirement is also satisfied by a score of 3 or higher on the CEEB calculus BC examination. Mathematics 109 and Education 005 and 115 (College of Agriculture and Life Sciences) do not count toward satisfying the requirement.

b. An Unused Subdivision

A sequence of courses in any one of the subdivisions in groups 1-3 that has not been used to fill that group's requirement.

The Major

In their last two years, students devote roughly one-half their time to acquiring depth and competence in a major subject. The choice of major is not intended to define a student's education or to lead to a lifetime's occupation, although it may do so. By majoring, students may develop a concentration in one or more departments. Students are responsible for completing their major according to the regulations of their departments. Courses that fulfill major requirements may not be taken for S-U grades.

Electives

Of the thirty-four courses and 120 credits required for graduation, almost one-third are free electives. Students use these electives frequently to make the difference between an ordinary and a truly interesting curriculum. Students must complete four or five courses or at least 15 credits in courses that are offered outside the major field and are not used to fill another requirement. Students may group electives to form a concentration within one discipline or to cover a topic across several disciplines. Some choose to explore a variety of subjects. Electives taken in other divisions of the university may be used to gain practical training or specialized knowledge. Some students develop a concentration in one particular department or subject outside arts and sciences.

Residence

Earning a Bachelor of Arts degree from the College of Arts and Sciences normally takes eight semesters of full-time study. Even if the minimum requirements can be met in fewer semesters, the college expects that students will study full-time for eight semesters to take maximum advantage of the resources of the university and obtain a rich liberal arts education. A full semester in an approved program of study abroad, a fieldwork program, or an approved program of study abroad is considered Cornell courses, although all courses not taught in Ithaca in the College of Arts and Sciences are subject to review. These courses cannot count as semesters of residence.

Students occasionally enter with advanced placement credit from other institutions (this does not include advanced placement credit from the CPT program, for which regular Cornell credit is awarded), take leaves and complete courses at other institutions, or take summer courses at other institutions. The college will accept up to 20 credits from other institutions as part of the out-of-college electives if they are approved by departments at Cornell approve. (This excludes, of course, approved study abroad and in absence programs, for which up to 30 credits will be accepted, and credits earned by transfer students at their first universities.) However, credits earned at other institutions do not replace any of the eight semesters of residence and may not normally be substituted for the final two semesters. Nor may students leave the college after three or three and a half years and complete their degrees with credits earned at other institutions or through the Cornell extramural division. Students are not allowed to be part-time students during their eight regular semesters unless they meet the criteria described in the section "Part-Time Study and Pro Rata Tuition" or present convincing academic or medical reasons for part-time study. Students as part-time students in the extramural division do not count as semesters of residence.

Acceleration

Less than 10 percent of the students in the college graduate in fewer than eight semesters. All accelerants are required to spend a minimum of six regular (i.e., full-time spring or fall) semesters at Cornell University, except external transfers, who are required to spend a minimum of four regular semesters at Cornell. All accelerants are required to be students in Cornell's College of Arts and Sciences for at least two regular semesters.

a. To complete the degree in seven semesters, students must have passed sixty credits by the end of the third semester. To complete the degree in six semesters, students must have passed sixty credits by the end of the second semester. Students must have completed the prerequisites for admission to the major in time to spend four semesters in the major.

b. To complete the degree in fewer than eight semesters, students must have passed 48 credits in Cornell courses numbered "300" and above. Courses taken at Cornell University, Cornell-in-Washington, the SEA semester, a fieldwork program, or an approved program of study abroad are considered Cornell courses, although all courses not taught in Ithaca in the College of Arts and Sciences are subject to review. These courses cannot count as semesters of residence.

c. To complete the degree in fewer than eight semesters, students must have at least a B average by the time they graduate.

2. All accelerants are required to complete 100 credits at C or above.

3. No student may use credits earned while on required leave of absence to reduce their terms of residence.

4. No accelerants may finish the degree with credits earned in summer or winter session, through part-time study (unless they meet the guidelines for part-time study in the catalog), or at another institution. That is, they may not exit through any program other than a regular, full-time Cornell Semester.

Students planning to accelerate should present petitions by the beginning of the junior year to the Office of Records and Scheduling, M46 Goldwin Smith Hall.
Minimum Number of Courses and Credits
Students must complete at least thirty-four courses to graduate, that is, four courses during each of the six semesters and five courses during each of the two semesters. A 3- or 4-credit course counts as one course; a 2-credit course counts as one-half course. Single-credit courses do not count as part of the thirty-four except in certain cases when they form a part of a series (certain offerings in biology, music, and theatre arts for instance) and two in the same series can be aggregated to count as one-half course. A 6-credit language course counts as 1 1/2 courses, while the summer five Falcon Programs in Asian languages count as 10 credits and 2 1/2 courses each. Biology 364, for 6 credits, and most other 5- or 6-credit courses count as one course.

Students must also complete 120 credits, 100 of which must be from courses taken in the College of Arts and Sciences, to earn the Bachelor of Arts degree. Credits earned from advanced placement examinations, courses approved for study abroad, and courses taken in certain off-campus residential programs may be counted toward the 100 credits required within the college and also toward the required thirty-four courses. Credits earned in other colleges at Cornell, or in any subject at U.S. institutions other than Cornell, do not count as part of the 100. The only exception is for courses (usually no more than three) that a department accepts from other colleges at Cornell as fulfilling major requirements.

Application to Graduate
In the first semester of their senior year, students must complete an application to graduate so that the college can check each student's plan for fulfilling college requirements. This process is intended to help seniors identify problems early enough in the final year so that they may make any necessary changes in course selection to satisfy requirements.

Meeting graduation requirements is the student's responsibility; problems that are discovered, even late in the final term, must be resolved before the degree can be granted. Seniors will receive applications and instructions with their prerегистration materials for the final semester.

Attendance at graduation ceremonies.
There are three degree dates in the year: May, August, and January. Students who plan to graduate in August or January are expected to attend the graduation ceremonies in the following May.

Courses, Credit, and College Requirements
A course may not be used to fulfill more than one college requirement, with the following exceptions.

1) A course may be used to fulfill a distribution requirement, and also a major requirement, provided that the major adviser agrees.

2) A one-semester course in foreign literature that is acceptable for achieving proficiency in that language may also be used as a partial fulfillment of the distribution requirement in the humanities.

3) Students whose native language is not English and who take English 211-212, may fulfill both the freshman writing seminar requirement and the appropriate distribution requirement by taking two freshman writing seminars offered in English, art, classics, philosophy, romance studies, Russian literature, German literature, or comparative literature.

4) Courses used to fulfill college requirements (but not major requirements) may be taken for S/U grades.

Repeating courses. Students may repeat courses. If the instructor certifies that the course content has been changed, credit will be granted a second time. If the content has not changed, both grades will appear on the transcript and will be included in any average that is calculated, but credit will be counted toward the degree only once. Students who plan to repeat a course should submit a petition to the Office of Records and Scheduling, M46 Goldwin Smith Hall.

Attendance in classes is a matter between students and their instructors. If a student cannot attend classes because of illness or family crisis, the Academic Advising Center will notify instructors when requested to do so, but students must arrange for making up examinations or other work with their instructors. When students are absent because of religious holidays, they must discuss arrangements for making up their work with their instructors. Students who miss an examination should be sure to contact the professor in advance. Alternative arrangements are at the discretion of the instructor.

Transferring credit. The college evaluates credit received from either another school or college at Cornell University or another accredited institution of collegiate rank to determine the number of credits and courses the student may apply toward the Bachelor of Arts degree. Tentative credit evaluations are normally provided to external transfers at the time of their notification of their admission. No more than 20 credits in courses not commonly offered by the college of Arts and Sciences may be applied toward the degree.

Transfer students must successfully complete at least 60 credits and sixteen courses at Cornell; they must be in residence for four regular semesters. Summer session does not count toward the residence requirement. Advanced placement credit awarded by other colleges, either at Cornell or elsewhere, will be reevaluated by the college and may not be accepted.

Advanced placement credit. See p. 6.

Summer session credit. A student may earn credit toward the degree by completing courses in Cornell's summer session or by petitioning to take courses at other colleges. Students should consult their advisers regarding summer study plans.

Credit for summer courses not taken at Cornell must be approved by the appropriate Cornell department. The college Office of Records and Scheduling, M46 Goldwin Smith Hall, can supply forms and information. Credit earned in summer courses other than those at Cornell will not count toward the 100 credits required in the college except for summer programs abroad if sponsored by Cornell Abroad, for which from 3 to 8 credits may be earned and counted as in-college credit. Transcripts from other institutions should be sent to the Office of Records and Scheduling, M46 Goldwin Smith Hall.

Special Academic Options

Physical Education
See “University Requirements for Graduation,” p. 11. The college does not count physical education credit toward the 120 credits required for graduation, nor does physical education credit count toward the twelve credits required for good standing each semester.

SPECIAL ACADEMIC OPTIONS

Degree Program
The following programs allow students to work toward more than one degree or to alter the regular college requirements or departmental requirements for the major.

Independent Major Program
The Independent Major Program allows students to design their own interdisciplinary majors if they want to pursue an interest that cannot be met within an existing major. Proposals for an independent major must be supported by a faculty adviser and are assessed by a board of faculty members. Board members consider whether the plan is equivalent in coherence, breadth, and depth to a departmental major, whether it is well suited to the student’s academic preparation, and whether it provides a liberal education. Independent majors substitute for established majors, but students must still satisfy all the other requirements for the baccalaureate degree. Students should contact the director of the Independent Major Program, Academic Advising Center, 55 Goldwin Smith Hall, for further information. Deadlines for submitting independent major proposals are listed on the calendar supplement for the College of Arts and Sciences.
College Scholar Program

The College Scholar Program frees no more than forty students in each freshman class from the usual college requirements for a degree and allows them to design their own academic programs. It is meant to serve students whose interests and talents do not easily fit into the usual departmental majors, who demonstrate exceptional promise, and who show the maturity to plan and carry out, with the help of their adviser, a well-designed program of studies. College Scholars do not all design the same program. Some, for instance, pursue diverse interests, while others integrate studies. College Scholars do not all design the project. They are not required to complete or fulfill the distribution requirements, although they must complete the physical education requirement. All College Scholars must complete a senior project. They are not required to complete or fulfill the distribution requirements, although members of the College Scholar Advisory Board believe that the spirit of the requirement is a good one.

Each applicant to the College Scholar Program is asked to write an essay, which is due the last Wednesday in April of the freshman year. Students should contact the Academic Advising Center, 55 Goldwin Smith Hall, for further information.

Double Majors

A student may complete a double major by fulfilling the major requirements in any two departments of the college. No special permission or procedure is required. Students need, however, to become accepted into both majors and be assigned an adviser in each department. Both majors will be posted on the official transcript.

Double Degrees with Other Colleges

Especially ambitious and diligent students may earn both a Bachelor of Arts degree from the College of Arts and Sciences and (1) a Bachelor of Science degree from the College of Engineering or (2) a Bachelor of Fine Arts degree from the Department of Art in the College of Architecture, Art, and Planning or (3) a Bachelor of Science degree in urban and regional studies from the Department of City and Regional Planning in the College of Architecture, Art, and Planning or (4) a Bachelor of Science degree in architectural history from the College of Architecture, Art, and Planning. Dual Degree Programs ordinarily take five years to complete. Students enter one of these colleges as freshmen and begin the dual degree program with the second college in the second or, in some cases, the third year. For further information students should contact assistant dean Rosenberg, Academic Advising Center, 55 Goldwin Smith Hall.

Double Registration with Professional Schools

Double registration in the College of Arts and Sciences and with the Cornell Law School and Cornell Medical College is possible. A few exceptionally well prepared students who have earned 105 credits before the start of the senior year and have been accepted by one of the above-named professional schools may be permitted to register simultaneously in the college and in one or another of these professional schools during the seventh and eighth terms.

Students interested in the joint program with the Law School should see the assistant dean for the senior class, Academic Advising Center, 55 Goldwin Smith Hall.

Students registering in the college and in the Cornell Medical College receive the Bachelor of Arts degree after the first year of medical studies and the Doctor of Medicine degree after the remaining two years of medical college are completed. Interested students should contact Jane Crawford, health careers coordinator, 203 Barnes Hall.

Double-registered students must, of course, complete all requirements for the B.A. degree, including 100 credits in College of Arts and Sciences courses.

Special-Interest Options

The following options do not alter the college's requirements but enable students to pursue special interests within the usual program.

Independent study affords students the opportunity to pursue special interests not treated in regularly scheduled courses. A faculty member, who becomes the student's instructor for the course, must approve the student's program of study and agree to provide continuing supervision of the work. Students must prepare a proposal for independent study. Consult the Office of Records and Scheduling, M 46 Goldwin Smith Hall, for information. In one semester students may earn up to 6 credits with one instructor or up to 8 credits with more than one instructor.

Undergraduate Research Program

The Undergraduate Research Program enables students to gain a first-hand experience in scholarly research by participating in a faculty member's research project. Participation is recognized by course credit, since the program emphasizes what students will learn rather than what they will contribute to the project. However, students sometimes make contributions of a very high order and publish the results of their work.

Besides learning research methods that are appropriate to the discipline, students gain awareness of their own research interests and abilities, self-discipline, new insight into the subject matter, and the pleasure of working as scholar-apprentices with professors and other students who share a common interest.

Students interested in this program should see assistant dean Williams, Academic Advising Center, 55 Goldwin Smith Hall.

Language Study

More than forty languages are taught in the College of Arts and Sciences; some of them are available only at Cornell. A full range of language, literature, and cultural courses are available in most of the major ancient and modern languages through the joint efforts of the Department of Modern Languages and Linguistics and the departments that specialize in literary and cultural study. The Africana Studies and Research Center and the departments of Asian Studies, Classics, German Literature, Near Eastern Studies, Romance Studies, and Russian Literature. Semi-intensive courses afford students the opportunity of accelerating the development of language skills.

FALCON Program (Full-Year Asian Language Concentration)

FALCON allows students who are interested in the Far East to study Chinese, Japanese, or Indonesian exclusively for one year. They gain proficiency in the language and familiarity with the culture. Students who are interested in the Far East should be aware of the timing in order to pursue rapid and thorough beginning studies on campus with the objective of studying abroad later—in China, Japan, or Southeast Asia.

Language House Program (136 Goldwin Smith Hall)

Beatrice B. Szekely, academic administrator

A complement to classroom cultural and linguistic instruction, the Language House Program combines residential and academic opportunities for developing and practicing conversational skills in French, Spanish, German, and Mandarin Chinese. It provides preparation for students who plan to study abroad and serves as a place for returning students to share their cultural experiences while further increasing their language skills.

Premedical Study

Law schools neither require nor prefer any particular program of study; they do seek students with a broad training in the liberal arts. It is important that students plan a program in which they are interested and do well. Beyond that, students are advised to take courses that will develop the powers of precise, analytical thinking and proficiency in writing and speaking.

The college offers a concentration in law and society. Students should work towards completion of this concentration because they are interested, not because they believe it will convince law schools of their interest.

The adviser for students in the College of Arts and Sciences who are planning careers in medicine is assistant dean Turner, Academic Advising Center, 55 Goldwin Smith Hall.

Premedical Study

The breadth and depth afforded by a liberal arts education are invaluable for people who plan medical careers, whether they intend to practice or go into medical research. Such training has a profound effect on the doctor's usefulness to patients, and it affords the flexibility of mind that is needed for major research undertakings. Medical and dental schools do not prescribe or even prefer a particular major; they do, however, require particular undergraduate courses. Students who are interested in medical careers are urged to visit the Health Careers Office, 203 Barnes Hall.

The adviser for students in the College of Arts and Sciences who are planning careers in medicine is assistant dean Turner, Academic Advising Center, 55 Goldwin Smith Hall.
Off-Campus Programs
Many students find it important to their majors or to their overall academic programs to study abroad for one or two semesters. When it makes academic sense, the college encourages its students to pursue such studies and grants credit toward the degree for work satisfactorily completed.

Study Abroad
In 1989-90, 234 students in the college studied abroad. Cornell has established affiliations with several universities and programs in Africa, Australia, Belgium, Britain, China, Denmark, Egypt, Indonesia, Israel, and Sweden, as well as its own programs in France, Germany, Italy, Japan, Spain, and Switzerland. Students have studied in those countries and in others all over the world. Before planning a program for study abroad, students should consult assistant dean Rosenberg, in the Academic Advising Center, 55 Goldwin Smith Hall, who will help them find the program most appropriate to their academic goals.

A request to study abroad must have the support of the faculty adviser, and the college. A maximum of 30 credits for a year or 15 credits for a semester may be earned abroad. These credits may count as part of the 100 credits required within the College of Arts and Sciences. On returning, students must seek approval of the Cornell-sponsored abroad from the appropriate departments. Normally, transfer students entering as juniors will not be allowed to study away from Cornell.

Students studying abroad must be in good standing at Cornell and must have satisfied all regulations, academic advising, or counseling. A request to study abroad must have the support of the faculty adviser, and the college. A maximum of 30 credits for a year or 15 credits for a semester may be earned abroad. These credits may count as part of the 100 credits required within the College of Arts and Sciences. On returning, students must seek approval of the Cornell-sponsored abroad from the appropriate departments. Normally, transfer students entering as juniors will not be allowed to study away from Cornell.

Seniors who wish to study abroad during their final semester must petition the college for permission to do so, but such permission is only rarely granted.

Summer Residential Programs in Archaeology
During the summer months students may participate in the many university-sponsored archaeological projects. In recent years the program has organized archaeological projects in New York State, Central America, South America, and the Mediterranean region. Students should contact the Archaeology Program for information about the sites available this summer.

Marine Science
Shoals Marine Laboratory is a seasonal field station designed to introduce undergraduates to the marine sciences. The laboratory is located on Appledore Island, six miles off the Maine and New Hampshire coasts. Students should contact the Division of Biological Sciences for further information.

Cornell-in-Washington
The Cornell-in-Washington program enables a limited number of advanced students to study questions of public policy and to do supervised research during a term of residence in the capital. Students choose among several seminars. They become familiar with the various sources of information and develop research techniques. The program also offers a unique internship program. Students who want to serve an internship in a federal agency or congressional office take part in a public-policy seminar. They define and carry out individual research projects that explore the connections between abstract policy issues and the day-to-day activities of the office. Potential internships are arranged through Office of the Academic Advising Center, 55 Goldwin Smith Hall.

Fieldwork
Sometimes it is appropriate for students to include fieldwork as part of their major. A three-member faculty committee helps the student plan the project, arranges for ongoing supervision, and evaluates the project at the end of the term. Fieldwork almost always involves writing a long paper or several short ones, as well as practical experience. All proposals for fieldwork must be presented in advance to the Academic Records Committee for approval. A maximum of 15 credits in fieldwork may be earned. For further information students should contact assistant dean Unsworth, Academic Advising Center, 55 Goldwin Smith Hall.

ADVISING
The following advisers and offices provide information on college procedures and regulations, academic advising, or counseling.

Faculty Advisers
Faculty advisers help students design programs of study and advise students about ways to achieve their academic goals. Faculty members volunteer to act as advisers to new students in the college, advisers and advisers meet during orientation week in plan the student's program. Students are encouraged to see their advisers again early in the term, before it is too late to drop courses and before signing into courses for the following term, to discuss their academic program and to become better acquainted. Academic difficulties may frequently be solved or avoided if students and advisers recognize problems early. Students who would like to petition for an exception to college rules should discuss the matter with their advisers.

Advisers may also help students with study or personal problems or direct them to other offices on campus where help is available.

Student Advisers
Each new student is also assigned a student adviser who can provide information about the college's requirements, courses and instructors and about life at Cornell.

Major Advisers
After acceptance into a major program, students are assigned a major adviser, a faculty member in the major department, with whom they make major academic decisions. The major adviser eventually certifies the completion of the major. The major adviser should be consulted by the student about all academic plans, including honors, study abroad, acceleration, and graduate study. The adviser's support is especially important if a student petitions for an exception to the requirements for the degree.

Academic Advising Center
The Academic Advising Center, 55 Goldwin Smith Hall, serves as a resource for faculty and student advisers and for students and their parents. The assistant deans (one for each class, one for minority students, and two for special programs) are available there to help students define their academic and career goals and to help with all academic problems and options such as study abroad, undergraduate research, fieldwork, and exceptions to college rules.

REGISTRATION AND COURSE SCHEDULING

Registration with the University
All students must register with the university at the beginning of each semester. Students may register if they are academically eligible and have satisfied the payment of their tuition. Registration materials are available at a time and place announced each term by the Office of the University Registrar.

Enrollment in Courses in the College of Arts and Sciences
Students must enroll in courses through the Office of Records and Scheduling in the college, M46 Goldwin Smith Hall.

New Students
The Academic Advising Center conducts briefings during orientation week for incoming freshmen and transfer students about procedures for scheduling courses.

Continuing Students
Continuing students are expected to select and schedule courses in advance during the previous term. Students who fail to sign into courses during the designated period must wait until the beginning of the semester and may have difficulty securing places in the courses they desire. Students may schedule up to five courses during the pre-course enrollment period. Information and materials will be available in the Records and Scheduling Office, M46 Goldwin Smith Hall. Before signing into courses, students should make appointments with their faculty advisers to plan their programs. Pre-course enrollment (pre-registration) is the best time to discuss long-range goals with faculty advisers. Students who do not have majors must submit an academic plan, approved by the faculty adviser, with their proposed schedule. Student advisers will also assist students. All students are welcome to discuss programs and plans with an assistant dean in the Academic Advising Center, 55 Goldwin Smith Hall.

The Records and Scheduling Office issues a supplement to Courses of Study showing last-minute changes in courses; the supplements of other divisions of the university are also available for reference in the Office of Records and Scheduling. Continuing students receive their course schedules at university registration. In the fall they also receive a copy of their transcript and a record of their progress toward the degree, which shows the courses taken, grades received, graduation requirements fulfilled, and academic actions. These are not official transcripts, but they reflect the official record and should be corrected in the Records and Scheduling Office if they are incorrect.
Limits on Courses and Credits

Students must take four courses during each of six semesters, five courses in each of two semesters, and average fifteen credits each semester in order to graduate in eight terms. At a minimum, students must carry twelve credits per semester; if for compelling personal or academic reasons students need to carry fewer than twelve credits, they should consult their faculty adviser and the academic dean of their class. Permission is by petition only. Completion of fewer than twelve credits without permission results in unsatisfactory academic standing. First-term freshmen may not register for more than eighteen credits; other students may register for more than eighteen credits a term only if their previous term's average was a B or higher. No more than twenty-two credits may be taken in a regular semester without permission of the Committee on Academic Records.

Any student who is not officially enrolled in a schedule of courses by the end of the third week of classes may be withdrawn from the college.

Forgery on Forms

Forging signatures or credentials on college forms is an academic offense; sometimes it constitutes academic fraud. In all cases of forgery on academic forms, the effect of the forged documents shall be negated. If a student forges more than once or if the forgery would advance the student’s academic standing unfairly or fraudulently or if, for any other reason, the situation requires some other response in addition to the uniform penalty, the Academic Integrity Hearing Board might make a different recommendation, such as a notation on the student’s transcript, suspension, or dismissal.

Special Registration Options

Adding and Dropping Courses

After advance course enrollment, students may not add or drop courses until the new term begins. All program changes must be approved by the department and also by the faculty adviser (for juniors and seniors only). During the first three weeks of the semester, course changes may be made without fees. Add/drop forms are available in the Records and Scheduling Office, M46 Goldwin Smith Hall.

After the third week of classes courses may be added, and after the eighth week courses may be dropped, only by petition. Students may withdraw from courses between the ninth and twelfth weeks of the term only if (1) the instructor certifies that the student has worked hard to master the material and has completed assigned work and taken exams, (2) the instructor approves, and (3) no issue of academic integrity is at stake. Students who want to withdraw from a course after the eighth week of the term must meet with an assistant dean and submit a petition by the end of the twelfth week of the term. The records of students whose course loads drop below 12 credits will be reviewed at the end of the semester.

Courses dropped after the eighth week will be noted on the transcript by a “W” where the grade would normally appear. No petitions to withdraw from courses may be submitted after the end of the twelfth week in the term. Deadlines for short courses will be adjusted according to the length of the course. After the midpoint of a short course, students who wish to drop the course must petition to do so.

For each course change approved after the third week there is a $10 fee.

Leaves of Absence

Taking time off from college to think about goals and progress, to gain additional experiences or funds, or just to take a break from studying is sometimes useful to students. Those in good standing who take a leave by the end of the eighth week of the semester are welcome to register in the college the following semester. Five years is the maximum length of time a student may be on leave and return without special permission. Leaves of absence are of four types.

1) Personal leave: impose no conditions concerning the right to enter the college except for the five-year limit. Readmission is automatic if a written request is made one month before the beginning of the term in which the student wishes to return.

2) Medical leave: granted by the college on recommendation by a physician from the Gannett Health Center. Such leaves are granted for an unspecified length of time (up to five years) with the understanding that the student may return at the beginning of any term after the medical condition in question has been corrected. In some cases students must satisfy the Gannett Health Center that the condition has been corrected before they may return. The student’s academic standing will also be subject to review at the time of the leave and on return.

3) Conditional leave: may be granted if the student is not in good standing or, in unusual circumstances, after the eighth week of the term. Normally students may not return from conditional leaves for at least two years or until specific and individual conditions, such as completing outstanding work, have been met.

4) Required leaves: The Academic Records Committee may require a leave of absence if a student is in academic difficulty. See the section “Academic Actions.”

Any student who wishes to take a leave of absence should consult an assistant dean in the Academic Advising Center. On readmission, the student’s graduation date will be recalculated according to the number of terms completed, the number of acceptable credits earned toward the degree, and the requirements for graduation. Students who take courses elsewhere while on leave, may petition to have credits accepted as part of the 20 out-of-college credits allowed toward the 120 credits needed for graduation. Approval depends on the judgment of the relevant departments and acceptable grades. Credits earned on leave do not count toward the eight semesters of residence unless a student petitions successfully to accelerate. See the section “Residence.”

Withdrawals

A withdrawal is a voluntary severance of connection with the university. If a student wants to withdraw after registering for the term, the withdrawal must be requested before the end of the eighth week of classes to avoid grades of “W” on the transcript. A notation of “W” will appear on the transcript for any course dropped after the eighth week. On withdrawal it is assumed that the student will not want to reregister in the college. Students who seek readmission after withdrawing from the college write an appeal to the Admissions Committee on Academic Records. If a student fails to register for a term and does not request a leave, the student will be withdrawn from the college for failure to register.

Transferring within Cornell (Internal Transfer)

Internal transfer from one college or school at Cornell into another is attractive for many students whose intellectual interests change. Students who want to transfer should discuss their eligibility with a counselor at the new school or college. In some cases students who want to transfer to the College of Arts and Sciences may transfer directly. In other cases they may be referred to the Division of Unclassified Students. During the term immediately preceding transfer into the College of Arts and Sciences, students should complete at least 12 credits of courses in the College of Arts and Sciences with superior grades and without any grades of Incomplete, any S-U grades (unless the student was offered S-U grades for that particular course), or any grades below C. Satisfying this minimum requirement does not, however, guarantee admission. Admission to the college is based on consideration of the student’s entire record at Cornell and the high school record, not just the work of one semester. Interested students should see assistant dean Unsworth, in the Academic Advising Center, 55 Goldwin Smith Hall.

Part-Time Study

The college ordinarily expects its students to be full-time students. Except in the case of Ithaca residents who are twenty-three years of age or older, part-time attendance is permitted only in unusual circumstances.

In certain circumstances seniors who are completing their final term in the college may be allowed to register in the Division of Extramural Study for fewer than 12 credits. Tuition is charged per credit. The guidelines for granting this permission are adhered to strictly.

Guidelines for part-time study:

1) A student who has completed all degree requirements by the end of the seventh term, and could have received permission to accelerate, may receive permission to study part-time during the eighth term.

2) A student who has completed all degree requirements in seven terms but is majoring in a department that requires candidates for bachelor’s degrees to take the thesis in the eighth term may be permitted to register for fewer than 12 credits.
3) A student who has received permission to accelerate, but who has been forced to drop a course (for reasons beyond his or her control) and has not been able to complete the course work on schedule, may be able to complete the requirements as a part-time student.

4) A student who is pursuing honors work and must complete extensive research away from the campus, which precludes registering for additional courses, may be allowed to register for fewer than 12 credits.

ACADEMIC STANDING

Students are in good standing for the term if they successfully complete at least 12 credits by the end of the term and receive no more than one D and no F or U grades. If a student completes only three courses, all grades must be above D. In addition, students are expected to make satisfactory progress toward satisfying requirements for the degree. They are expected to earn grades of C (not G-) or better in at least 100 of the total credits for the degree.

Honors

Dean’s List

Inclusion on the Dean’s List for academic excellence is an honor bestowed by the dean of the college. The criteria are subject to change from semester to semester and are available in the Office of Records and Scheduling, M46 Goldwin Smith Hall.

Bachelor of Arts with Honors

Almost all departments offer honors programs for students who have demonstrated exceptional ability in the major and who seek an opportunity to explore branches of their subject not represented in the regular curriculum or to gain experience in original research. The honors programs are described by individual departments in the following sections. The degree of Bachelor of Arts with honors will be conferred upon students who, in addition to having completed the requirements for the degree of Bachelor of Arts, have satisfactorily completed the honors program in their major and have been recommended for the degree by their major department, the Independent Major Program, or the College Scholar Program. Concentrations, however, do not offer honors programs.

Bachelor of Arts with Distinction

The degree of Bachelor of Arts with distinction in all subjects will be conferred on students who, in addition to having completed the requirements for the degree of Bachelor of Arts, have:

1) completed at least 60 credits while registered in regular sessions at Cornell;
2) ranked in the upper 30 percent of their class at the end of their seventh semester, or next-to-last semester for transfers and accelerants;
3) received a grade below C– in no more than one course;
4) received no failing grade;
5) maintained good standing in each of their last four terms; and
6) have no Incompletes remaining on their records.

Failure to Maintain Good Standing

Students are not in good standing if they complete fewer than 12 credits, except for second-semester seniors who need fewer credits and courses to graduate; if they have more than one D, or one D in a schedule with only three courses, or any F or U grades; if they have not made satisfactory overall progress in grades or credits (whether due to failures or Incompletes) or in the requirements of the college or the major; and if they are required to consider academic action by the Committee on Academic Records or one of the deans of the college.

Academic Actions

Warning. Any student who fails to maintain good standing will at least be warned. The warning may be given by an assistant dean in the college or by the faculty’s Committee on Academic Records. A warning is posted on a student’s unofficial college transcript but not reported to the university registrar and does not appear on official transcripts.

Required leave of absence. A student in serious academic difficulty may be required by the Committee on Academic Records to take a leave of absence, normally for a full year. Usually, but not necessarily, the Committee on Academic Records warns students before suspending them. Before being allowed to return and reregister in the college, students must submit a plan for completing the degree. In some cases the students will be required to furnish evidence that they are ready to return before being allowed to reregister in the college. Students who request to return in less than a year must present to the committee exceptionally strong evidence of their readiness to return. “Required Leave of Absence” is posted on the student’s unofficial college transcript; the university registrar is notified, and “Leave of Absence” and the date will appear on the student’s official transcript.

May not reregister. The Committee on Academic Records may dismiss a student from the college because of a highly unsatisfactory record for one term or for failure to make satisfactory overall progress in grades, credits, or the requirements of the major. This action expels the student permanently from the college. “May Not Reregister” is posted on the student’s unofficial college transcript; the university registrar is notified, and “May Not Reregister in the College of Arts and Sciences” and the date will appear on the official transcript. Students being reviewed for academic action are urged to present evidence that will help explain their poor academic performance. Students may appeal a decision or action of the committee if they have new relevant information to present.

Grades of Incomplete

A grade of Incomplete signifies that a course was not completed before the end of the term for reasons beyond the student’s control that are acceptable to the instructor. Students must have substantial equity in the course; that is, they must be able to complete the remaining work without further registration and must have a passing grade for the completed portion. When a grade of Incomplete is reported, the instructor will state what work must be completed, when it must be completed, and the grade earned if the work is not completed by that date. Unless the instructor stipulates otherwise, students will be allowed one term plus one summer to make up the work. When a final grade is reported, it is recorded on the official transcript with an asterisk and a footnote explaining that this grade was formerly an Incomplete.

Once a grade of Incomplete is assigned, the college does not change it unless and until the faculty member submits a change of grade form or gives written permission to “freeze” it as an Incomplete. Students must consult the instructors to resolve any incompletes before graduation.

S-U Grades

The S-U option allows students to explore unfamiliar subject areas without being under pressure to receive high grades. It is not meant to reduce the amount of work a student completes in a course or the amount of effort a student devotes to a course. Students may elect during the first three weeks of the term to receive a grade of S (satisfactory) or U (unsatisfactory) instead of one of the letter grades (A+ through F), provided that the instructor is willing to assign such grades.

Students may not elect the S-U option after the third week of the term. A grade of S is equivalent to a grade of C– or higher; a grade of U, which is equivalent to any grade below C–, is a failing grade equal to an F. S means the student receives the credit specified for the course. U means no credit is given. A few courses in the college are graded exclusively S-U; in that case, the final grade appears on the transcript as SX or UX.

Courses that will count toward satisfaction of major requirements should not be taken for an S or U grade unless the department grants permission. Students may elect the S-U option in courses used to satisfy the distribution and language requirements, provided that such courses do not also count toward major requirements or serve as prerequisites for admission to the major. Students are advised to use the S-U option sparingly if they intend to apply to graduate school or for transfer to another college. There is no limit on the number of courses each term for which students may elect the S-U option, but within the 120 credits required for the degree, a minimum of 80 credits must be in courses for which a letter grade was received.

With special permission students may change from S-U to a letter grade within the first five weeks of the term, although a $10 fee is charged after the third week.

Letter Grades

See Grading Guidelines.
R Grades
R designates two-semester or year-long courses. The R is recorded on the student's transcript at the end of the first term. The grade recorded at the end of the second term shows the student's level of performance in the course for the entire year. The total credits that will be earned for the whole course are listed each term.

Grade Reports
Grade reports for the fall term are included in spring-term registration materials; grade reports for the spring term are mailed to students at their home addresses. The college does not compute class rank.

CALENDAR SUPPLEMENT
All of the dates in the university calendar at the front of this volume apply to all Cornell students. Listed below are some additional dates that are of importance for students in the College of Arts and Sciences.

Courses and Departments

SPECIAL PROGRAMS AND AREAS OF CONCENTRATION
The college offers a number of special and interdisciplinary programs that are described following the departmental program descriptions. Students may devise an independent major with the aid of any of these programs or develop an informal minor field. (Informal minors are not listed on the student's official record.)

GENERAL EDUCATION COURSES
The introductory and advanced courses offered by departments in their respective disciplines and fields comprise the bulk of the curriculum in the College of Arts and Sciences. Most of these courses are accessible to almost all students who are interested in them. However, the faculty of the college also offers general education courses, including interdisciplinary courses for a broad audience, courses that provide insight into a particular discipline for students who are not specializing in that field, and courses for advanced students who consider a discipline in terms of its history, its presuppositions, or its relation to other branches of knowledge. The following courses have been identified by the various departments of the College of Arts and Sciences as particularly appropriate, by that definition, for general education. For full course descriptions consult the departments' sections of the catalog.

American Studies
Some professors in English and history with an interest in American studies regularly teach courses that emphasize the interconnections of literary and historical materials. Some courses focus on these interconnections with a non-specialist audience in mind; others aim at an upper-level audience to put literature and history in a comparative perspective with respect to a common subject. These purposes may suit not only American studies, English, or history majors, but the general-education interests of nonmajors. Members of the American Studies Committee can be consulted about the pertinence of their courses to general education.

Archaeology
Several members of the Archaeology Program offer general education courses suitable for nonmajors. These are listed under the departments that offer archaeology courses, such as the departments of Anthropology, Classics, History of Art, and Near Eastern Studies. The Archaeology Program itself also offers:

203 Early People: The Archaeological and Fossil Record (also Anthropology 203)
Fall. 3 credits.
T R 11:40-12:55. T. P. Volman.

Asian American Studies
110 Introduction to Asian American Studies
See Special Programs and Interdisciplinary Studies.

Asian Studies
211 Introduction to Japan
Fall. 3 credits.
M W 11:15; disc., see course roster.
N. Sakai.

212 Introduction to China
Spring. 3 credits (4 credits with a special project; consult instructor for information).
T R 1:25 plus disc. R 2:30 (3 sections), or
F 10:10 (2 sections), 11:15, or 1:25
(1 section). E. M. Gunn.

215 Introduction to South Asian Civilizations
Fall. 3 credits (4 credits with a special project; consult instructor for information).
M W F 11:15. C. Minkowski.

218 Introduction to Korea
Spring. 3 credits.
T R 1:25. Sections to be arranged.
D. McCann.

Astronomy
[490 Senior Seminar—Critical Thinking
Spring. 3 credits. Prerequisite: permission of instructor. Not offered 1990-91. Hours to be arranged. C. Sagan.]

Classics
211 The Greek Experience
Fall. 3 credits.
M W F 11:15. F. Abl.

212 The Roman Experience
Spring. 3 credits.
English
See, in the department’s listing, “Courses Primarily for Nonmajors.”

Geological Sciences

101 Introductory Geological Sciences
Fall, spring. 3 credits.
2 lecs, 1 lab, field trips, evening exams in the fall term. Fall, W. B. Travers; spring, J. M. Bird.
This course teaches observation and understanding of the earth, including oceans, continents, coasts, rivers, valleys, glaciated regions, earthquakes, volcanoes, and mountains; theories of plate tectonics; the origin, discovery, and development of mineral and water resources. The lab teaches use of topographic and geologic maps and recognition of minerals and rocks and includes field trips to Cascadilla Gorge, Fall Creek, and Enfield Glen.

102 Evolution of the Earth and Life
Spring. 3 credits. Geological Sciences 101 recommended.
2 lecs, 1 lab, field trips, weekly quizzes, no midterm. J. L. Gisler.
The story of the earth and life in terms of evolutionary processes and the global economy and material. The planet as a by-product of stars’ evolution. Plate tectonics, continental drift, and their implications for life, fossil fuels, and climate. The greenhouse effect and its few-billion-year history. Evolution of life; human ancestry; dinosaurs. Lab Examining the rocks and fossils that tell the story. Field trips to fossil-collecting sites and to Taughannock Gorge.

103 Geology in the Field
Fall. 3 credits. Limited to 35 students.
1 lec, 1 field trip or lab, 1 rec. A. L. Bloom.
The subject matter of Geol 101, Introductory Geological Sciences, taught as much as possible by field trips in the campus and vicinity on foot and by bus. Weekly field trips until November introduce most of the major topics of the course, supplemented by lectures, recitations, and labs later in the term.

104 Introduction to Oceanography
Spring. 3 credits.
2 lecs, 1 lab. W. M. White.
The oceans remain one of the last frontiers for man, yet they affect our lives in many subtle ways. This course presents a survey of what is known of the physics, chemistry, geology, and biology of the oceans and is intended for both science and non-science majors. Topics include: sea-floor spreading and plate tectonics; geology and biology of mid-ocean ridges; biological and geological controls on the chemistry of seawater; ocean currents and circulation; the oceans and climate; including El Nino; the greenhouse effect, and the ice ages; ecology of open ocean, ocean bottom, and near-shore communities; coastal processes; marine pollution and waste disposal; mineral and biological resources of the sea, Law of the Sea. Presented at the level of Scientific American.

111 To Know the Earth
Fall. 3 credits.
2 lecs, 1 lab, and field trips. J. E. Oliver.
A course to acquaint the non-scientist with the earth. Geology as an intellectual challenge, a provider of resources, an environment, a danger, a base for culture, and a science among sciences. The story behind landscapes, mountains, earthquakes, volcanoes, oceans, gold, petroleum, and icecaps. The record of the past, the context of the present, the forecast for the future.
Sociology

101 Introduction to Sociology
Fall or spring. 3 credits
M W 11:15-12:05 plus one section. Fall, S. Caldwell; spring, M. Hannan. With a focus on public issues that might in any scenario involve crime, violence, markets and organizations, and social policies aimed at lowering the rate of poverty, this course provides an introduction to theory and research in sociology and demonstrates how the insights and methods of sociological analysis can be brought to bear in understanding major issues of public life. The goal is to convey a sense of the interrelations between the formulation of theories about social behavior and the collection and analysis of data in order to evaluate those theories. Instead of simply describing research, this course provides "hands-on" experience in analyzing sociological problems. Students undertake guided research exercises that involve using computers to analyze actual data. No prior background is presumed; necessary skills are covered in class and section meetings.

104 Class, Race and Ethnicity
Spring. 3 credits
T R 10:10-11:25. S. Olzak. What is the relationship between race and social class? To what extent does discrimination produce barriers to achievement and attainment for African Americans, Hispanics, Asians, and other immigrants in American society? Why are some groups more likely to become ethnic minorities than others? This course uses sociological analyses to answer these questions about the nature of race, ethnicity, and social class in our society and others. This course is designed as an introduction to the sociology of inequality and is primarily for freshmen and sophomores.

106 Family and Work
Fall. 3 credits
T 10:10-11:25, plus one section to be arranged. L. Smith-Lovin. The events of the past 30 years have profoundly transformed arrangements governing love, work, and their routinization in households and employment. In this course, students will look at data from census and time use studies showing what has changed and what has remained relatively stable. Sociological theories that explain these trends will be examined. Students will have the opportunity to test their own ideas with analyses of data from a national survey. The impact of sociological ideas for public issues like child care, welfare policy, sex discrimination statutes, and comparable worth will be discussed. This course is primarily for freshmen and sophomores.

202 Writing in the Social Sciences (also Writing 202)
Fall or spring. 3 credits. Limited to 17 students each section. Prerequisite: one social sciences course.
Fall. T R 11:40-12:55, Spring: T R 10:10-11:25. K. Hjortshoj. This course helps students write and read with more confidence and skill, especially in the social sciences. The course investigates the ways in which social scientists use language. How and why do their writing vary? How do their theories, objectives, methods, and audiences affect their writing? We will address these questions through discussion and writing about works by social scientists in various fields. Both discussion and writing will aim to strengthen the composition skills that are important in academic work: analysis, comparison, and summary of texts; description and argument; handling of evidence, reference and quotations, and strategies for revision. Instruction will include frequent individual conferences on finished essays and work in progress. Students will write, and often revise, short papers—about 30 pages of finished work.

310 Sociology of War and Peace
Fall. 4 credits. Prerequisite: a course in sociology or government.
T R 1:25-2:40. R. M. Williams, Jr. Every human group, community, or society presents many examples of altruism, helping, cooperation, agreement, and social harmony. Each grouping or society also manifests numerous examples of competition, rivalry, opposition, disagreement, conflict, and violence. Both conflict and cooperation are permanent and common aspects of the human condition. Collective conflicts, especially wars and revolutions, are frequent and dramatic events. But "peace" and "war" are equally active social processes, not passive happenings. This course describes various commonly accepted but erroneous notions of the causes and consequences of war and deterrence. It deals with the major theories concerning the sources of war in international and intranational social systems. The last half of the course analyzes the modes, techniques, and outcomes of efforts to restrict, regulate, and resolve international conflicts.

335 Industrial and Post-Industrial Society
Spring. 4 credits. Open to juniors and seniors in any department. No prerequisites.
T R 1:25-2:40. D. Weakliem. Service and information based industries are steadily growing in all modern societies. Many people claim that this development fundamentally changes social structure, social conflict, politics, and culture. Others say that post-industrial society is just a continuation of industrial society. This course will explore issues central to post-industrial society, for example, are traditional social categories such as class or religion giving way to new divisions? It will explore theories of post-industrial society and allow students to test them with data on recent changes in social conditions.

365 Comparative Perspectives on Socialist Societies and Economies
Fall. 3 credits. Open to juniors and seniors in any department. No prerequisites. Not offered 1990-91.
W 3:30-4:25. V. Nee. This course focuses on analyzing the relationship between state, economy, and society in socialist societies. Particular attention is given to the tensions between planning and market, equality and equity, center and locality, bureaucratic domination and individual choice, and ideology and dissent. What are the problems in state-socialist societies and what are the dynamics and limits of reform movements? This course considers the differences and convergence in the patterns of state, market, and household relations in capitalist and socialist societies? Readings will draw primarily on case studies of the Chinese, Eastern European, and Soviet experiences.

American Studies

The Major
The major in American Studies, appropriate for a wide variety of future vocations, is basically a program of coordinated study in the history and literature of the United States. It is not a "double major." The prerequisites are minimal: one course in European, British, or American history at the 100 or 200 level and one course in British or American literature at the 200 level. The major itself is structured and demanding, and students who expect to become American studies majors should apply to the chair to arrange for a major adviser. In consultation with their advisers, American studies majors elect 32 credits (or eight courses) of work in the history and literature of all three large periods into which an account of the nation's development can be divided, defined for the purposes of the program as colonial, nineteenth century, and twentieth century. To gain both depth and breadth, they select as an area of concentration either a single period (or the connections between two of the periods) and take either 16 credits in one period and 8 credits in each of the other two, or 12 credits in each of the two periods whose connections constitute the focus of the study and 8 credits in the third. In addition, they take one of the adviser-approved interdisciplinary seminars at the 400 or 600 level. When the subject matter is appropriate, such a seminar may count toward the satisfaction of the period requirements. Students may divide the work between history and literature in whatever proportion serves their interests, provided that they take no more than 12 credits in any one department.

Beyond the basic requirements in American history and American literature, 12 credits above the elementary level are required in allied subjects. Eight credits of work are in the history or literature, or both, of another related culture, and 4 credits are in American thought, society, or culture studies from the perspective of another discipline such as anthropology, economics, government, history of art, or sociology. (This last 4-credit requirement may be satisfied outside the college.)

Courses in American history that will satisfy the 32-credit requirement described in the second paragraph are offered by the Department of History; those in American literature are offered by the Department of English, the Department of Theatre Arts, and the Africana Studies and Research Center. Occasionally a course that fits an individual student's program may be offered elsewhere. Substitution will depend on the adviser's approval. Advisers determine which courses count for the interdisciplinary seminar.

Honor. Candidates for honors must maintain an average of B+ in courses pertinent to the major. To be eligible for a degree with honors in American Studies, a student must in the
Together, the three branches of the discipline offer an integrated approach to the immense diversity of human experience. Through its subject matter, theories, and methods, anthropology also offers students a chance to integrate the three divisions of the university: the humanities, social sciences, and natural sciences. Each branch of anthropology involves these three subject areas in different ways. For purposes of distribution requirements in the College of Arts and Sciences, courses in anthropology count toward the social science requirement.

The major is designed to offer students opportunities to study all three branches of anthropology, through courses on particular topics (e.g., agriculture, religion, or economics), on world areas, and on theoretical problems. The requirements for majors are outlined below. Within the major, students may design their own specialties in consultation with a faculty adviser. Specialties may be developed through any combination of 300- and 400-level courses in the department, independent study, courses in related fields, and honors work.

The Distribution Requirement
The social science requirement is met by completing Anthropology 102 and any full course (3 or 4 credits) in categories III, IV, V, and VI from the listings below, or any two courses in those categories.

Students who qualify for advanced placement in biology (a score of 4 or 5) may satisfy the biological science distribution requirement by taking Anthropology 101.

The expressive arts requirement is met by completing any two of Anthropology 450, 451, 452, 453, or 455.

The Major
1) Applicants for the major in anthropology must complete Anthropology 101 and 102. Preferably, these courses will be taken in the freshman or sophomore years.
2) Students who major in anthropology:
 a) Take Anthropology 300, preferably no later than their sophomore year.
 b) Take Anthropology 420, preferably in the fall term of their senior year.
 c) Take at least one course at the 200 level or above in each of categories III, IV, V, and VI from the listing below.
 d) Develop one or more areas of specialization within the discipline in consultation with his or her faculty adviser. Examples of such specializations include sociocultural anthropology, sociocultural archaeology, theory and history, and biological anthropology.
 e) Take a total of 32 credits of course work, in addition to Anthropology 300 and above the 100 level. Up to 8 credits of course work may be in cognate and may be related to the student's specialization may be accepted for the major with the permission of the faculty adviser.
 f) When appropriate, special provisions for meeting major requirements may be arranged with the faculty adviser's approval.

Honors. Anthropology majors interested in the honors program should consult the director of undergraduate studies before the beginning of their senior year and apply for admission to the program. Candidates for the degree of Bachelor of Arts with honors in anthropology must complete a thesis in the final term of the senior year. Students may enroll in Anthropology 491 or 492, Honors Thesis, after obtaining the consent of the Honors Committee. The decision to award honors and in what degree is based on the quality of the thesis and the student's overall record.

Facilities
The anthropology laboratory contains a small statistical and reference library as well as basic drafting and photographic equipment. In addition, the department has a collection of archaeological and ethnomethodological materials used in teaching and research.

Special Programs
Specialized individual study programs are offered in Anthropology 497-498, Topics in Anthropology, open to a limited number of juniors and seniors who have obtained consent of the instructor. Undergraduates should also note that most 500-level courses are open to them if consent of the instructor is obtained.

The Department of Anthropology holds colloquia throughout the academic year. Faculty members from Cornell and other universities participate in discussions of current research and problems in anthropology. Students are encouraged to attend.

Anthropology majors have also established an Anthropology club, which sponsors educational and social events in conjunction with graduate students and faculty in the department.

I. Introductory Courses (Including Freshman Writing Seminars)
Note: For additional freshman writing seminars in anthropology, see "Freshman Writing Seminars" and the John S. Knight Writing Program's special brochure.

101 Introduction to Anthropology: Biological Perspectives on the Evolution of Humankind
Fall, 3 credits
The evolution of humankind is explored through the fossil record, studies of the biological differences among current human populations, and a comparison with our closest relatives, the primates. This course investigates the roots of human biology and behavior with an evolutionary framework.
102 Introduction to Anthropology: The Comparison of Cultures
Spring. 3 credits.
An introduction to cultural anthropology through ethnographies, or the descriptive accounts of anthropologists. Through readings and lectures students acquaint themselves with a number of cultures from several parts of the world. The cultures range in form from those of small-scale tribal societies to those of state societies. Throughout the course we attempt to make sense of exotic cultures in their own terms. Attention is focused on variation in cultural patterns as they are expressed in social, economic, and ritual practices. In this encounter the principles of anthropology, as a comparative enterprise that poses distinct cultural systems in relief, will be developed. Fiction, films, and exercises supplement the formal anthropological materials.

121 Encounters with Other Cultures
Spring. 3 credits. Freshman writing seminar.
MWF 2:30. B. Lambert.
The main texts are novels and biographies that show how indigenous cultures have adapted to change and yet retained their identity and beauty. Books by anthropologists tell of their experiences as participants in other societies and as interpreters of other cultures (including American subcultures). There is an exploration of cultural symbolism through fantasy. Students discuss and write about ways of playing the outsider’s role and about changes in the traveler’s own outlook.

II. Courses Intended Primarily for Majors

300 The Discipline of Anthropology
Fall. 4 credits. Limited to, and required of, anthropology majors, who must take this course in their sophomore year or no later than the fall term of the junior year.
TR 1:25–2:40. A. T. Kirsch with the anthropology faculty.
The course is an overview of the field of anthropology: it provides a systematic treatment of the discipline, the concepts that are used, the persistent questions that are asked, the specializations within the field, and the shared viewpoints. The course is intended to help majors plan their course work.

420 Development of Anthropological Thought
Spring. 4 credits.
An examination of the history and development of anthropological theory and practice. The course will focus on the differences and continuities among the various national and historical approaches that have come to be regarded as the schools of anthropology.

491 Honors Thesis
Fall. 4 credits. Prerequisite: consent of the Honors Committee. Intended for majors graduating in mid year.
Hours to be arranged. Staff.
Independent work under the close guidance of a faculty member selected by the student.

492 Honors Thesis
Spring. 4 credits. Prerequisite: consent of the Honors Committee.
Hours to be arranged. Staff.
Independent work under the close guidance of a faculty member selected by the student.

485 Social Relations Seminar (also Sociology 497)
Spring. 4 credits. Limited to seniors majoring in social relations.

497–498 Topics in Anthropology
Fall: 497, Spring: 498. Credit to be arranged.
Hours to be arranged. Staff.
Independent reading course in topics not covered in regularly scheduled courses. Students select a topic in consultation with the faculty member who has agreed to supervise the course work.

III. Archaeological Courses
See also courses listed under Archaeology.

203 Early People: The Archaeological and Fossil Record (also Archaeology 203)
Fall. 3 credits.
A survey of the archaeological and fossil record of human evolution. Contributions by researchers from a variety of scientific disciplines are highlighted, as are the discoveries, personalities, and controversies that have enlivened the study of human evolution for more than a century. Critical evaluation of evidence and interpretations will be stressed. Demonstrations and films supplement the lectures.

216 Ancient Societies
Fall. 3 credits (4 by arrangement with instructor). Not offered 1990–91.

352 Interpretation of the Archaeological Record
Fall. 4 credits. Not offered 1990–91.

354 The Peopling of America
Fall. 4 credits.
Prehistoric discovery of the New World, beginning with American Indian origins in Asia and ending with the largely unrecorded European medieval contact with North America. Major topics include the Bering land bridge, big-game hunting and extinctions, postglacial adaptations to changing environments, diversified subsistence in the eastern woodlands, agricultural civilizations of the Midwest and Southwest, and Eskimo and Norse exploration and settlement across the Arctic and North Atlantic.

355 Archaeology of Mexico and Central America
Spring. 4 credits.
TR 8:40–9:55. J. S. Henderson
A survey of the cultural history of ancient Mexico and Central America, emphasizing Aztec and Maya civilizations. The use of ethnographic and historical information to enrich archaeological interpretation is a general theme. Specific topics include the emergence of settled farming life, the rise of civilization and the state, and the development of mechanisms that linked the many societies in the region into a single sphere of interaction.

356 The Archaeology of South America
Spring. 4 credits.
Origins and development of South American peoples, subsistence systems, cultures, and civilizations, with special attention to Peru, Bolivia, Chile, and Ecuador. Major topics include the question of the first inhabitants, the domestication of plants and animals, the rise of and regional interaction, and the formation of militaristic polities and the Inca state.

358 Archaeological Research Methods (also Archaeology 358)

361 Field Archaeology in South America (also Archaeology 361)

402 Archaeological Research Design (also Archaeology 402)
Fall. 4 credits. Prerequisite: permission of instructor.
W 2:30–4:25. J. S. Henderson,
T. P. Volman.
Archaeological research design introduces careful definition of research objectives and appropriate strategies before excavation or other fieldwork begins. Critical information lies in the arrangement and associations of objects and structures; this context should be a basic concern of any field investigation, particularly when it is destroyed by excavation. The course relies on case studies to illustrate how surveys, excavations, and analytical techniques must be tailored to solving specific problems.

404 Approaches to Archaeology (also Archaeology 404)
Fall. 4 credits. Not offered 1990–91.

435 Investigation of Andean Institutions: Archaeological Strategies
Fall. 4 credits.
Hours to be arranged. C. Morris.
The role of archaeology in the study of major questions regarding native Andean societies. Topics of current interest will be approached by selecting specific written sources that are archaeologically pertinent. Ways will be explored of using archaeological Andean data to test and extend the written material. Past archaeological contributions to the understanding of Andean institutions will also be examined.

493 Seminar in Archaeology: The Aztecs (also Archaeology 493)
Fall. 4 credits.
R 1:25–3:00. J. S. Henderson. Examines the Aztec empire as it was at the time of the European conquest of Mexico and examines the astonishingly rapid transformation of Aztec society from foraging bands into imperial city-dwellers. Theoretical emphasis is on integrating historical and archaeological data to reconstruct ancient societies.

494 Seminar in Archaeology: The State (also Archaeology 494)
Spring. 4 credits.
TR 8:40–9:55. J. S. Henderson. Examines the nature of complex societies and the ways that key institutions and organizational features of states and chiefdoms—kinship, chiefs, polity boundaries, economic spheres, markets, redistribution, palaces, stratification, ranking, occupational specialization—are reflected in the archaeological record.
IV. Biological and Ecological Anthropology

[208 Gender, Race, and Medical "Science" (also Africana Studies 208 and Women's Studies 208)
Fall. 3 credits. Not offered 1990-91

[214 Humankind: The Biological Background
Spring. 3 credits (4 by arrangement with instructor). Not offered 1990-91

275 Human Biology and Evolution (also Biological Sciences 275 and Biology and Society 275)
Fall. 3 or 4 credits (4 credits with discussion). S-U grades optional, with permission of instructor.
MWF 10:10, optional disc, day and time to be arranged. K. A. R. Kennedy, J. D. Haas.

An introduction to the biology of Homo sapiens through an examination of human evolution, biological diversity, and modes of adaptation to past and present environments. Evolutionary theory is reviewed in relation to the current evidence from the fossil record and studies of the evolution of human behavior. A survey of human adaptation covers a complex of biological and behavioral responses to environmental stress. Human diversity is examined as the product of long-term evolutionary forces and short-term adaptive responses. Topics such as creativeness, the Piltdown fraud, the sociobiology debate, genetic engineering, race and IQ, and racism are presented as examples of current issues in human biology. These topics and others are the focus of the optional one-hour weekly discussions.

[371 Human Paleontology (also Biological Sciences 371)
Fall. 4 credits. Not offered 1990-91

390 Primate Behavior and Ecology
Spring. 4 credits. Prerequisite: Anthropology 101 or permission of instructor. Limited to 25 students.
The course will investigate all aspects of nonhuman primate life. Based on the fundamentals of evolutionary theory, group and inter-individual behaviors will be presented. In addition, an understanding of group structure and breeding systems will be reached through an evaluation of ecological constraints imposed on primates in different habitats. Subjects include: primate taxonomy, diet and foraging, predation, cooperation and competition, social ontology, kinship, and mating strategies.

474 Laboratory and Field Methods in Human Biology (also Biological Sciences 474)
Spring. 4 credits. Prerequisite: one year of introductory biology or Anthropology 101 or permission of instructor. Offered alternate years.
Lecs, T R 10:10-12:05; additional lab hours to be arranged. Independent research project required. K. A. R. Kennedy.
Practical exercises and demonstrations of modern approaches to the methodology of physical anthropology. Emphasis on comparative human anatomy, osteology, description of skeletal and living subjects, paleopathology, skeletal maturation, and related field techniques for the archaeologist and forensic anthropologist. This course includes dissection of a profused nonhuman primate.

490 Primates and Evolution
Spring. 4 credits. Prerequisite: Anthropology 390 or permission of instructor. Limited to 10 students.
MWF 7:30-9:30 p.m. M. F. Small.
This seminar will focus on one current controversy in primatology. Through readings and discussion the issues will be subject to critical evaluation. Current topics might include: social intelligence, primates as predators and prey, primate conversation, sexual selection theory, reproductive success, dominance, etc.

V. Sociocultural Anthropology

205 Ethnographic Films
Fall or spring. 2-3 credits.
W 7:30-9:25 p.m. Staff.
Human cultural and social variability is explored through a series of ethnographic films, and readings and lectures relating to these films. The films are chosen to show peoples living in a variety of ecological situations and at different levels of social complexity in various parts of the world (i.e., Africa, Asia, Australia, the Americas). Readings and lectures will use the concepts and theories of cultural anthropology to interpret the significance of the different modes of life shown in the films.

211 Nature and Culture
Spring. 3 credits (4 by arrangement with instructor).
MWF 9:05. Staff.
Cultural anthropology, because it encompasses the comparative study of man in society, provides a unique vantage on the nature of man. One of the focal questions of the discipline is the relationship between the physical/biological and symbolic/natural worlds in which we live. This inquiry places anthropology squarely at the center of social theory, since all social theories and political ideologies are founded on premises regarding human nature. Through study of a variety of issues and debates (e.g., "sociobiology," the origin and meaning of the incest taboo), this course examines a variety of past and current attempts to explain the relationships between nature and culture in human life.

[212 Social Anthropology
Fall. 3 credits (4 by arrangement with instructor). Not offered 1990-91

[305 Emotion, Cognition, and Culture (also Women's Studies 305)
Fall. 4 credits. Not offered 1990-91

[306 Ethnographic Description
Spring. 4 credits. Not offered 1990-91

313 Anthropology of the City
Spring. 4 credits.
An examination of the sociocultural structure and process in urban settings, with emphasis on the role of rural migrants, the relationship of urbanism to political and economic development, the role of voluntary associations, and the adjustment of family and kinship groups to urban life. Asian, African, and Latin American urban centers are emphasized.

[314 Applied Anthropology
Fall. 4 credits. Not offered 1990-91

321 Sex and Gender in Cross-Cultural Perspective (also Women's Studies 321)
Fall. 4 credits.
An introduction to the study of sex roles cross-culturally and to anthropological theories of sex and gender. The course examines various aspects of the place of the sexes in social, political, economic, ideological, and biological systems to emphasize the diversity in gender and sex-role definition around the world.

[322 Magico, Myth, Science, and Religion
Spring. 4 credits. Not offered 1990-91

323 Kinship and Social Organization
Spring. 4 credits.
MWF 11:15. B. Lambert.
The course begins with a discussion of the evidence for the prehistory of the family. It then examines forms of the family, descent groups, and marriage systems and the role that age and gender play in social structures. The last part is devoted to a history of the British and American family and its fate in utopian communes.

[326 Economic Anthropology
Fall. 4 credits. Not offered 1990-91

[328 Law and Culture
Spring. 4 credits. Not offered 1990-91

[329 Power and Culture
Spring. 4 credits. Not offered 1990-91

406 The Culture of Lives (also Women's Studies 406)
Spring. 4 credits.
This seminar will look at persons, lives, cultures, and methods in anthropological life history materials. Throughout the seminar we will attend to the evolution of interest in, forms of, and uses for life history materials in anthropology, with special attention to differences in men's and women's lives and life (re)presentations.

408 Gender Symbolism (also Women's Studies 408)
Spring. 4 credits.
This seminar explores the propositions that gender is (1) not a collage of cultural universals, but nevertheless is elemental to the construction of culture, and (2) is not simply or transparently about the sexes, but still is integral to the construction of self and society. We will look at various cultures of gender, the processes and concomitants of their formation, and the place of the people who live and believe in them. In particular we will try to look beyond Western constructions of mutually exclusive, hierarchically related, and universally applied gender.
412 Contemporary Anthropological Theory
Fall. 4 credits.
M W F 11:15. B. Lambert.
A survey of the assumptions anthropologists make concerning the nature of society and culture, and the explanations they have proposed for social behavior, values, belief systems, and ritual. Problems of social continuity and change will be addressed by way of theories of process, conflict, and transaction. Problems of cross-cultural understanding will be explored through interpretative and structural studies of symbolism, ritual, mythology, concepts of the person, and cultural logic. Examples will be drawn from Western and non-Western societies, past and present.

424 Myth, Ritual, and Sign
Fall. 4 credits.
We will treat myth, ritual, and sign in their theoretical and practical dimensions, looking at them in the views of various social theorists and as described by ethnographers.

426 Ideology and Social Reproduction
Spring. 4 credits.
M 7:30-9:30 p.m. P. S. Sangren.
What is the logic of the process that links culture and social institutions? Why do all cultural systems (including "science") embody an element of logical circularity or delusion? How do theories of society, economy, and nature relate to values, authority, power, and legitimacy? Anthropology's comparative perspective and interest in ideology form the focus of this course. Students will read and evaluate analyses of both familiar and exotic societies that focus on the dialectical relationship between ideas and institutions. The course will maintain a critical perspective toward contending theoretical positions (e.g., structuralist, Marxist, deconstructive) and encourage attention to the ideological dimensions of critical theory itself.

427 The Anthropology of Everyday Life
Fall. 4 credits. Not offered 1990-91.

428 Spirit Possession, Shamanism, Curing, and Witchcraft
(also Women's Studies 428)
Spring. 4 credits.
Prerequisite: background in anthropology or women's studies. Enrollment limited.
T R 8:40-10:40. D. H. Holmberg.
An anthropological consideration of witchcrafts, shamanism, curing, and cults of spirit possession with special attention to the play of gender. Classic anthropological accounts of non-Western societies will be considered along with ethnographic and historical accounts of Western societies. The course also addresses general problems in the study of women and gender and the anthropology of myth, ritual, and symbolism.

434 Anthropology and Colonialism
Spring. 4 credits. Not offered 1990-91.

435 Visual Anthropology
Fall. 4 credits. Enrollment limited by appropriate space for showing work. S-U grades only.
The expression of ideas about the human condition through original drawings, graphics, paintings, photographs, cinema, sculpture, and video that take the person as subject. Writing can be combined with visual expression, as, for example, in concrete poetry or photographic essays. Projects must conform to two general guidelines: (1) the student must have prior knowledge of the medium chosen or concurrent course work in it, and (2) the project must be one that can be developed throughout the course and benefit from its particular setting. In the first half, the creative work of others is studied. For example, we read Spiegelman's MAUS and view films made by both anthropologists and the people whom they visit. The second half is devoted to hour-long progress reports and discussions of the work of people in the course.

455 Theatre of Anthropology
Spring. 4 credits. Not offered 1990-91.

480 Toward an Anthropology of the Female Body
(also Women's Studies 480)
Spring. 4 credits. Not offered 1990-91.

VI. Area Courses

220 Cultures of Native North America
Fall. 4 credits.
M W F 2:30. B. Lambert.
A survey of the principal Eskimo and American Indian culture areas north of Mexico. Selected cultures will be examined to bring out distinctive features of the economy, social organization, religion, and worldview. Although the course concentrates on traditional cultures, some lectures and readings deal with changes in native ways of life that have occurred during the period of European-Indian contact.

331 The United States
Spring. 4 credits. Not offered 1990-91.

333 Ethnology of the Andean Region
Spring. 4 credits. Not offered 1990-91.

335 Peoples and Cultures of Mainland Southeast Asia
Fall. 4 credits. Not offered 1990-91.

336 Peoples and Cultures of the Pacific
Fall. 4 credits. Not offered 1990-91.

339 Peoples and Cultures of the Himalayas
Fall. 4 credits.
A comprehensive exploration of the peoples and cultures of the Himalayas. Ethnographic materials drawn on the lifeways of populations living in the Himalayan regions of Bhutan, India, Nepal, and Tibet. Some of the cultural issues to be examined through these sources include images of the Himalayas in the West, forms of social life, ethnic diversity, political and economic history, and religious complex.

342 Cultures and Societies of India, Nepal, and Sri Lanka
Fall. 4 credits. Not offered 1990-91.

343 Religion, Family, and Community in China
Fall. 4 credits. Not offered 1990-91.

345 Japanese Society
Fall. 4 credits.
A survey of the social structure of Japan and a discussion of trends in urban and rural life during the past century. Topics to be emphasized include the family, ancestor worship, community and social organization, and urbanism and modernization.

346 Religion and Ritual in Chinese Society
Fall. 4 credits. Not offered 1990-91.

477 Ethnology of Island Southeast Asia
Spring. 4 credits.
Peoples and cultures of Indonesia and the Philippines will be discussed, focusing on politics in its linguistic dimensions, as well as economic and cultural processes.

VII. Graduate Seminars

600-602 The Teaching of Anthropology
Fall, 602; spring. 2 credits. Enrollment limited. Letter grade only.

Southeast Asia Seminar: Burma
(Asian Studies 601)
Fall. 4 credits. Not offered 1990-91.

Southeast Asia Seminar: Philippines
(Asian Studies 602)
Fall. 4 credits. Not offered 1990-91.

603 Production, Exchange and Value
Fall. 4 credits. Not offered 1990-91.

Contemporary Sociological Theories of Development
(Rural Sociology 606)
Fall. 4 credits. Not offered 1990-91.

607-608 Special Problems in Anthropology
Fall, 607; spring, 608. Credit to be arranged. Hours to be arranged. Staff.

610 Language of Myth
(also Classics 610 and Comparative Literature 615)
Spring. 4 credits.
An analysis of the theories on language leading to Levi-Strauss and Derrida. Myth and the notion of "the father."

612 History of Anthropological Thought
Spring. 4 credits. Not offered 1990-91.

Methods of Assessing Physical Growth in Children (Nutritional Sciences 612)
Fall. 4 credits. Not offered 1990-91.

ARTS AND SCIENCES
614 Reading Ethnography
Spring. 4 credits.
R 1:30-3:30. D. H. Holmberg.
This seminar concentrates on reading representative ethnographic texts, particularly those by anthropologists who have played focal roles in the development of anthropological theory. On the one hand, the course is designed for students to read systematically some of the “classics” of ethnography and on the other to raise questions about ethnography as a discipline and the close and necessary relation of ethnography to theory in anthropology.

[616 The Cultural Production of the Person
Spring. Not offered 1990-91.]

[619 Anthropological Approaches to the Study of Buddhisms in Asia
Fall. 4 credits. Not offered 1990-91.]

[623 Himalayan Issues, Problems, and Prospects
Spring. Credit to be arranged. Not offered 1990-91.]

[626 Problems in Economic Anthropology
Fall. 4 credits. Not offered 1990-91.]

[627 The Anthropology of Law (also Law 702)
Fall. 4 credits. Not offered 1990-91.]

628 Political Anthropology
Fall. 4 credits.
A comparison of political rhetoric in the Indonesian Old and New Orders. The bearing of such phenomena as newspapers, magazines, television, and various types of theater, music, and fiction, on the shaping of accommodation or opposition to the political order will be examined. A reading knowledge of Indonesian is required.

Anthropometry and Body Composition (Nutritional Sciences 630)

[631 Kingship and Cultural Identity in Mesoamerica: Interpretive and Comparative Issues
Fall. 4 credits. Not offered 1990-91.]

[632 Andean Symbolism
Spring. 4 credits. Not offered 1990-91.]

633 Andean Research
Fall or spring. 4 credits.
Hours to be arranged. B. J. Isbell, C. Morris.

634-635 Southeast Asia: Readings in Special Problems
634, fall; 635, spring. Credit to be arranged. Hours to be arranged. Staff.

[636 Cognition and Classification
Fall. 4 credits. Not offered 1990-91.]

640-641 South Asia: Readings in Special Problems
640, fall; 641, spring. Credits to be arranged. Hours to be arranged. D. H. Holmberg, K. S. March.
Selected readings in society, religion, and culture in South Asia.

645 Japanese Ethnology
Spring. 4 credits.
Hours to be arranged. R. J. Smith.
This seminar is designed for advanced students who plan to conduct social science research in Japan. It deals with questions of historical continuity the relationship of the individual to society, and the nature of contemporary Japanese social organizations. A reading knowledge of Japanese is strongly recommended.

[651 Anthropological Boundaries: Seminar on Film
Spring. 4 credits. Not offered 1990-91.]

653 Myth onto Film (also Theatre Arts 653)
Fall and spring. 4 credits. Open to undergraduates and graduate students with permission of instructor. Enrollment limited by available studio space and equipment. Prerequisite: some knowledge of one of the following: anthropology, filmmaking, mythology, graphics, drawing, or painting.
T 2:4-2:25. R. Ascher.
In myths, whales fly, pebbles throw themselves across streams, and trees are transformed into women. Toward the end of visualizing myths—in particular the myths of other people—people explore the possibilities of animated film. The technique used is cameraless animation; that is, we draw and paint, frame by frame, directly onto movie film. The intellectual problem is to visualize the myths of others so that they are comprehensible to us but are not thought of as true. Reading includes introductory works on both myth and animation and there is background reading on the particular myth that is committed to film.

[656 Maya History
Fall. 4 credits. Not offered 1990-91.]

663 Hunters, Gatherers, and the Origins of American Agriculture
The transition from hunting and gathering to agricultural subsistence, with particular attention to demographic, ecological, and coevolutionary factors. Topics to be emphasized are the history of thought on agricultural origins, archaeological evidence bearing on these theories, contrasts and conflicts between Western and non-Western systems, and the effects of agricultural instability and environmental degradation, particularly in the Americas.

[664 Problems in Archaeology: “Early Man” in America
The peopling of the Western Hemisphere will be considered in historical perspective, as it has been dealt with by archaeologists, geologists, and paleoecologists. Emphasis will be on contextual analysis and environmental adaptations, as well as chronology, with topics drawn from both North and South American archaeology.

673 Human Evolution: Concepts, History and Theory (also Biological Sciences 673)
Fall. 3 credits. Prerequisite: one year of introductory biology, Anthropology 101, or permission of instructor. Offered alternate years.
Sem. W 7:30-9:30 p.m.; additional hours to be arranged. K. A. R. Kennedy.
The historical background of present-day concepts of man’s evolutionary variations and adaptations in space and time is surveyed. The formation of biological anthropology as an area of scientific inquiry within the social and biological sciences is reviewed. Students select their own topics within a broad range of readings in the history of Western concepts of human origins, diversity, and place in nature.

Design and Data Analysis in Development Research (Rural Sociology 715)

Social Movements in Agrarian Society
(Rural Sociology 723)

ARABIC AND ARAMAIC
See Department of Near Eastern Studies.

ARCHAEOLOGY

T. P. Vollman (archaeology; director of undergraduate studies), J. Whitehead (Classics)

Archaeology is an interdisciplinary field at Cornell, which is one of the few universities in the United States to offer a separate archaeology major. Program faculty members, affiliated with several departments, coordinate course offerings and help students identify opportunities for fieldwork, graduate study, and professional positions.

The Major

The basic introductory course for both majors and nonmajors is Archaeology 100. This course covers the broadest range of archaeology in terms of area and time and deals with method as well as results. Those with a fairly serious interest, particularly prospective majors, are encouraged to take the optional one-hour section, Archaeology 101, which provides practical experience with archaeological materials. Archaeology 402, which considers research design, and Archaeology 404, which examines interpretive frameworks, are especially recommended for majors.

Since the major draws on the teaching and research interests of faculty from many departments in order to present a broad view of the archaeological process, a student interested in the archaeology major should discuss his or her course of study with a participating faculty member as early as possible. In some areas of specialization, intensive language training should be coordinated with other studies as early as the freshman year.

As prerequisite to the major a student must complete Archaeology 100. Once admitted to the major, the student must take an additional 36 credits in courses from the archaeology list, chosen in consultation with the major adviser. These courses should provide exposure to a broad range of archaeologically known cultures and the methods of revealing and interpreting them. They must be distributed as follows:

1. 12 credits in courses from the archaeology major.
2. 12 credits in courses from other major field(s) of study.
3. 6 credits in language courses.

Students must complete courses in each of the following areas:

- Prehistory
- History
- Theory
101 Introduction to Archaeology, Section 1
Spring. 1 credit. Limited to 25 students.
Optional section to be taken concurrently with Archaeology 100. Prospective archaeology majors are encouraged to participate in this section, although it is open to all interested students.
R 11:40. T. P. Volman.
A series of practical and special topics. The section includes analysis of archaeological materials, demonstrations, and visits to campus facilities.

300 Individual Study in Archaeology and Related Field
Fall or spring. Credit to be arranged. Prerequisite: Archaeology 100 or permission of instructor.
Hours to be arranged. Staff. Students pursue topics of particular interest with the guidance of a faculty member.

481-482 Honors Thesis
Fall; 482, spring. 4 credits. Prerequisite: admission to Honors Program.
Hours to be arranged. Staff. The student, under faculty direction, will prepare a senior thesis.

600 Special Topics in Archaeology
Fall and spring. 4 (V) credits. Hours to be arranged. Staff. Students pursue advanced topics of particular interest under the guidance of a faculty member(s).

681-682 Master’s Thesis
681, fall; 682, spring. 4 (V) credits. Limited to students admitted to Master’s Program in Archaeology.
Students, working individually with a faculty member, prepare a Master’s Thesis in Archaeology.

B. Theory and Interdisciplinary Approaches

203 Early People: The Archaeological and Fossil Record (also Anthropology 203)
Fall. 3 credits. T R 11:40. T. P. Volman.
A survey of the archaeological and fossil record of human evolution. Contributions by researchers from a variety of disciplines are highlighted, as are the discoveries, personalities, and controversies that have enlivened the study of human evolution for more than a century. Critical evaluation of evidence and interpretations will be stressed. Demonstrations and films supplement the lectures.

285 Art, Isotopes, and Analysis (also MSE 285, Engineering 185, Physics 206, English 285, and Art 372)
Spring. 3 credits. J. W. Mayer.
The course will be based primarily on the analysis of paintings and rare books and the physical concepts underlying modern and analytical techniques. Each week a work of art will be described to include the historical and technical aspects of its creation and its modern analysis. Visual, infrared, and x-ray examination provide insight into the physical properties. Pigments are identified by the radiation emitted in electronic geographical origin of a particular pigment as well as by a dating method. The same analytical techniques are also discussed from the viewpoint of archaeological investigations.

308 Dendrochronology of the Aegean (also History of Art 309 and Classics 309)
Fall or spring. 4 credits. Limited to 10 students. Prerequisites: Archaeology 100 or Classics 220, and permission of instructor.
Participation in a research project of dating modern and ancient tree-ring samples from the Aegean and Mediterranean. Supervised reading and laboratory work. A possibility exists for summer fieldwork in Greece or Turkey.

317 Stone Age Archaeology
Fall. 4 credits. Not offered 1990–91. T. P. Volman.
A survey of recent approaches to the archaeological record of Stone Age peoples, from the earliest sites to those of recent times. Case studies are used to illustrate the nature of archaeological occurrences, excavation procedures, and analytical methods. Multidisciplinary efforts to expand our knowledge of prehistoric lifeways and behaviors are a major concern of the course.

358 Archaeological Research Methods (also Anthropology 358)
Fall or spring. 4 credits. Prerequisite: one course in archaeology. Not offered 1990–91. J. Coleman.

402 Archaeological Research Design (also Anthropology 402)
Fall. 4 credits. Prerequisite: permission of instructor.
Archaeological research demands careful definition of research objectives and appropriate strategies before excavation or other fieldwork begins. Critical information lies in the arrangement and associations of objects and structures; this context should be a basic concern of any field investigation, particularly when it is destroyed by excavation. The course relies on case studies to illustrate how surveys, excavations, and analytical techniques must be tailored to solving specific problems. A seminar especially recommended for undergraduate majors and graduate archaeologists but open to anyone with a serious interest in archaeology.

404 Approaches to Archaeology (also Anthropology 404)
Fall. 4 credits. Prerequisite: permission of instructor. Not offered 1990–91. J. S. Henderson, T. P. Volman.
An exploration of the concepts that have shaped modern archaeology. The course briefly examines the history of theoretical orientations in archaeology, then considers the variety of perspectives and interpretive frameworks that guide present-day investigations. Case studies illustrate the implications of the nature of the archaeological record for understanding subsistence and economic systems, trade, social and political organization, demography, and ideology. An undergraduate seminar especially recommended for undergraduate majors and graduate archaeologists but open to anyone with a serious interest in archaeology.
Seminar in Archaeology: The Aztecs (Anthropology 493) Fall. 4 credits.
R. J. S. Henderson.
Examines the Aztec empire as it was at the time of the European conquest of Mexico and examines the astonishingly rapid transformation of Aztec society from foraging bands into imperial city-dwellers. Theoretical emphasis is on integrating historical and archaeological data to reconstruct ancient societies.

Seminar in Archaeology: The State (Anthropology 494) Spring. 4 credits.
J. S. Henderson.
Examines the nature of complex societies and the ways that key institutions and organizational features of states and chiefdoms, kingship, chiefs, polity boundaries, economic spheres, markets, redistribution, palaces, stratification, ranking, occupational specialization—are reflected in the archaeological record.

Public Archaeology (Anthropology 496) Fall. 3 credits. Prerequisite: Anthropology 356 or permission of instructor. Not offered 1990–91.
J. Whitehead.

Old World Archaeology
Initiation to Roman Culture: Roman and Anti-Rome (Classics 218) Spring. 4 credits.
M. W. F. 10:10; plus one hour to be arranged. J. Whitehead, F. Ahl.
In this course two professors, an archaeologist and a literary critic, give an overview of the Roman Empire, and of modern attitudes to it, by discussing selected places, themes, and works of art and literature. We start with visual images, the amphitheater, for example, and consider not only their importance as cultural and artistic statements, but how they come to symbolize in literature and religious controversy the magnificence and decadence of Roman power. Similarly, we examine the poetry and official monuments (Trajan’s column and the great triumphal arches). Other topics include Roman attitudes to non-Romans, daily life and domestic art as seen in the ruins of Pompeii and Herculaneum, and the literature and art of political and religious dissent.

Minos-Mycenaean Art and Archaeology (also History of Art 221 and Classics 221) Fall. 3 credits. Students may not obtain credit for both this course and Classics 319. M. W. F. 10:10. P. I. Kuniholm.
The birth of civilization in Greece and the Aegean Islands during the Bronze Age. The main focus is on the rise and fall of Minoan Crete and Mycenaean Greece, with considerable attention given to the nature and significance of Aegean interactions with Egypt, the Near East, and Anatolia.

Archaeology in Action II (also Classics 233) Spring. 3 credits. Prerequisites: Archaeology 100 or Classics 220, and permission of instructor. Not offered 1990–91. P. I. Kuniholm.

Greek and Roman Mystery Cults and Early Christianity (Classics 239) Spring. 3 credits. Prerequisite: Classics 237 or permission of instructor. K. Clinton.
A study of the controversial question of religious continuity between paganism and early Christianity. After a brief survey of Classical mystery cults and Hellenistic religion, the course will focus on such Hellenistic cults as the mystery cults of Isis, Bacchus, and Attis and the Great Mother and on the distinctive features that contributed to their success. Discussion of Christian liturgy and beliefs both in the East and the West to determine what Christianity owed to its pagan predecessors and to isolate the factors that contributed to its triumph over the ”rival” pagan cults of late antiquity.

Etruscan Art and Archaeology (also Classics 250 and History of Art 223) Fall. 3 credits. Not offered 1990–91. J. Whitehead.

Mediterranean Archaeology (also Near Eastern Studies 267 and Classics 219) Fall. 3 credits. D. I. Owen.

Ceramics (also History of Art 423 and Classics 423) Fall. 4 credits. Prerequisite: permission of instructor. Not offered 1990–91. A. Ramage.
The Rise of Classical Greece (also Classics 434 and History of Art 434) Spring. 4 credits. Prerequisite: Classics 220 or 221 or History of Art 220 or 221 preferred. Not offered 1990–91. P. I. Kuniholm.
Minoan-Mycenaean Archaeology (Classics 318) Spring. 4 credits. Prerequisite: participants are expected already to have completed some course work in Mediterranean or classical archaeology (e.g., Classics 219/Near Eastern Studies 267 or Classics/History of Art 220). Students may not obtain credit for both this course and Archaeology/Classics/History of Art 221. Not offered 1990–91. J. Coleman.
Arts and Monuments of Athens (Classics 320 and History of Art 320) Spring. 4 credits. Prerequisite: Classics 220 or permission of instructor. Not offered 1990–91.
Greek and Their Neighbors (Classics 322 and History of Art 328) Fall. 4 credits. Prerequisite: Classics/History of Art 328; Classics/History of Art 220 or Classics/History of Art 221, or permission of instructor. Not offered 1990–91. J. Coleman.
Seminar on Roman Art (Classics 435 and History of Art 427) Fall. 4 credits. Prerequisite: permission of instructor. Not offered 1990–91. J. Whitehead.
Seminar in Classical Greek Archaeology: Graduate (Classics 630) Fall. 4 credits. Not offered 1990–91.
Ancient Greece from Homer to Alexander (History 265) Fall. 4 credits. Open to freshmen. Not offered 1990–91. B. Strauss.
Ancient Rome from Republic to Holy City (History 268) Spring. 4 credits. T R 10:10–11:25. B. Strauss.
ARTS AND SCIENCES

Introduction to Art History: The Art of the Classical World (History of Art 220 and Classics 220)

Spring. 3 credits.
MWF 10:10-11:05 A. Ramage.
The sculpture, vase painting, and architecture of the ancient Greeks, from the Geometric period through the Hellenistic and the art of the Romans from the early republic to the late empire.

Introduction to Art History: Monuments of Medieval Art (History of Art 230)

Spring. 3 credits.
An introduction to the approaches to art history through a study of selected works of art from the Middle Ages: architecture, sculpture, painting, manuscript illumination, metal work, and ivory.

Arts of the Roman Empire (Classics 350 and History of Art 322)

Fall. 4 credits. Prerequisite: History of Art 220 or permission of instructor.

Greek Vase Painting (History of Art 325 and Classics 325)

Spring. 4 credits. Prerequisite: previous enrollment in a History of Art or Classics course or permission of instructor. Not offered 1990-91.
A. Ramage.

Greek and Roman Coins (History of Art 327 and Classics 327)

Fall. 4 credits. Prerequisite: History of Art 220 or permission of instructor. Not offered 1990-91.
A. Ramage.

Architecture of the Middle Ages (History of Art 332 and Architecture 382)

Fall. 4 credits. Not offered 1990-91.
R. G. Calkins.

Seminar in Greek Sculpture (History of Art 431 and Classics 431)

Not offered 1990-91.

432 Sardis and the Cities of Asia Minor (History of Art 432 and Classics 432)

Fall. 4 credits. Prerequisite: permission of instructor. Not offered 1990-91.
A. Ramage.

Problems in Medieval Art and Architecture (History of Art 531)

Spring. 4 credits. Prerequisite: permission of instructor. Not offered 1990-91.
R. G. Calkins.

The History and Archaeology of Ancient Israel to 450 B.C.E. (Near Eastern Studies 243)

Spring. 4 credits. Recommended for students planning to participate in Near Eastern Studies 344, Introduction to Field Archaeology in Israel.

Agriculture and Society in the Ancient Near East (Near Eastern Studies 264)

Fall. 3 credits. Not offered 1990-91.
D. L. Owen.

Mediterranean Archaeology (also Near Eastern Studies 267 and Classics 219)

Fall. 3 credits. Not offered 1990-91.
D. L. Owen.

History and Archaeology of Ebla (also Near Eastern Studies 362)

Fall. 4 credits. Not offered 1990-91.
D. L. Owen.

History and Archaeology of Ancient Egypt (Near Eastern Studies 367)

Fall. 4 credits. Not offered 1990-91.
D. L. Owen.

Fall. 4 credits. Not offered 1990-91.

New World Archaeology

381 Field Archaeology in South America (also Anthropology 361)

Spring. 10 credits. Prerequisite: permission of instructor. Not offered 1990-91.

The Peopling of America (Anthropology 354)

Fall. 4 credits.

The Archaeology of South America (Anthropology 356)

Spring. 4 credits.

Maya History (Anthropology 656)

Fall. 4 credits. Not offered 1990-91.
J. S. Henderson.

ASIAN-AMERICAN STUDIES

See Special Programs and Interdisciplinary Studies.

ASIAN STUDIES

E. M. Guan, chair and director of undergraduate studies (388 Rockefeller Hall, 255-5095).

The Department of Asian Studies encompasses the geographical areas of East Asia, South Asia, and Southeast Asia and offers courses in most of the disciplines of the social sciences and the humanities. Asian studies courses through the 400 level (AS is the prefix) are taught in English and are open to all students in the university. Some of these courses may be counted toward majors in other departments; others fulfill the humanities distribution requirement. Courses listed under Asian Studies offered through other departments may fulfill distribution requirements in history, social sciences, and arts.
Asian studies must have completed at least one course or seminar at the intermediate or advanced level in a Southeast Asian language and to take a concentration in South Asia studies. The applicant for admission to the major in Southeast Asia Studies by completing at least 18 credits of further language study selected by the same major. Students may normally specialize in the language and culture of one country and often choose an additional major in a traditional discipline.

Concentration in South Asia Studies

A candidate for the Bachelor of Arts or Science degree at Cornell may take a concentration in South Asia Studies by completing at least 18 credits of course work, including Asian Studies 215 (Introduction to South Asia) and four courses or seminars at the intermediate or advanced levels, two of which may be South Asian language courses.

Students taking a concentration in South Asian studies are considered members of the South Asia Program and have an adviser from the program faculty. This adviser will be the student's concentration adviser and is not a substitute for a student's academic adviser in his or her major. One South Asian graduate course may be taken for the concentration with consent of both the instructor and the adviser. The same applies for any South Asia-related research paper on a South Asian subject. Additional courses may be added if offered with comparable South Asian content.

Concentration in Southeast Asia Studies

A candidate for the Bachelor of Arts or Bachelor of Science degree at Cornell may take a concentration in Southeast Asia studies by completing 15 credits of course work, including a history course and three courses or seminars at the intermediate or advanced level, two of which may be Southeast Asian language courses. Students taking a concentration in Southeast Asia studies are members of the Southeast Asia Program and are assigned an adviser from the program faculty. Such students are encouraged to commence work on a Southeast Asian language and to take advantage of the Cornell Language Program's Overseas Study Program.

Distribution Requirement for Nonmajors

Humanities: any two courses in Asian art, literature, or religion given by the Department of Asian Studies or listed there under the areas of China, Japan, South Asia, and Southeast Asia, excluding only freshman writing seminars and courses given outside the College of Arts and Sciences. A reasonable sequence is formed by taking any two courses in the same area or by following one with a course in the same area or by taking AS 211, 212, 215, or 218, followed by a social science course in that area.

History: any two courses in Asian history given by the Department of History and listed under the Department of Asian Studies under the areas of China, Japan, South Asia, and Southeast Asia, excluding only freshman writing seminars and courses given outside the College of Arts and Sciences. A reasonable sequence is formed by taking any two courses in the same area or by taking AS 211, 212, 215, or 218, followed by a history course in that area.

Honors: To be eligible for honors in Asian studies, a student must have a cumulative grade average of A- in all Asian Studies area courses, exclusive of language study only, and must successfully complete an honors essay during the senior year. Students who wish to be considered for honors should apply to the director of undergraduate studies during the second term of their junior year. The application must outline the proposed project and the endorsement of a faculty adviser. During the first term of the senior year the student does research for the essay in conjunction with an appropriate Asian studies course or Asian Studies 401. Students of China and Japan must also complete Asian Studies 611 or 612, respectively. By the end of the first term the student must present a detailed outline of the honors essay and have it approved by the faculty sponsor and the director of undergraduate studies. The student is then eligible for Asian Studies 402, the honors course, which entails writing the essay. At the end of the senior year, the student has an oral examination (with at least two faculty members) covering both the honors essay and the student's area of concentration.

Intensive Language Program (FALCON)

For those students desiring to accelerate their acquisition of Chinese, Japanese, or Indonesian, Cornell offers a full-time intensive language program, the Full-Year Asian Language Concentration (FALCON). FALCON students spend six hours a day, five days a week, for periods of up to a full year studying only the language and thus are able to complete as many as twelve hundred hours of supervised classroom and laboratory work in one year. For further information, students should contact the FALCON Program Office, Department of Modern Languages and Linguistics, 203 Morrill Hall (telephone: 607/255-6457).

Study Abroad

Cornell is a member of the Inter-University Centers for Chinese Language Study in Taipei and for Japanese Language Study in Yokohama and a member of the Council on International Educational Exchange offering study in China. These centers offer intensive training in both spoken and written forms of the languages. The Kyoto Center for Japanese Studies (KCSJ) is an undergraduate program for students who want to spend a year in Japan studying both language and culture.

Cornell is a class-A member of the American Institute of Indian Studies, which offers fellowships in India for intensive language study in Hindi, Bengali, and Tamil. Cornell also offers study abroad opportunities in South Asian studies at the School of Oriental and African Studies at the University of London. For further details, contact the South Asia Program office, 170 Uris Hall (telephone: 607/255-8493).

Other opportunities include a junior year abroad at IKIP-Malang, in Indonesia, or at the School of Oriental and African Studies, University of London. Many other options for study in Asia exist. Undergraduates should consult the Cornell Abroad Program; graduate students should inquire at the East Asia Program, the South Asia Program, or the Southeast Asia Program offices.

Freshman Writing Seminars

973 Revolutions and Social Values in Modern Chinese Literature

Fall. 3 credits.

103 realities and Values in Modern Chinese Literature

Fall. 3 credits.

MWF 1:25-2:15 (sec. 1) or TR 1:25-2:40 (sec 2). E. M. Gunn.

Noting the revolutions, rebellions, civil wars, and foreign incursions that have plagued China over the past century, a scholar of Asian studies once asked, "Is there a 'modern' Chinese literature?" This course is designed to probe into the twentieth-century literary scene, rich in its variety of experience, its power of description, and its intensity of emotion. We will trace themes through the dramatic turns of events and try to ascertain what has remained constant in the modern era as well as what has changed in the literature with the changes in political life. Preference will be given to the study of short fiction, but poetry, novel, and essay are also forms that we will consult as artifacts of revolutions and social values in modern Chinese literature.

The Major

To be eligible for honors in Asian studies, a student must have a cumulative grade average of A- in all Asian Studies area courses, exclusive of language study only, and must successfully complete an honors essay during the senior year. Students who wish to be considered for honors should apply to the director of undergraduate studies during the second term of their junior year. The application must outline the proposed project and the endorsement of a faculty adviser. During the first term of the senior year the student does research for the essay in conjunction with an appropriate Asian studies course or Asian Studies 401. Students of China and Japan must also complete Asian Studies 611 or 612, respectively. By the end of the first term the student must present a detailed outline of the honors essay and have it approved by the faculty sponsor and the director of undergraduate studies. The student is then eligible for Asian Studies 402, the honors course, which entails writing the essay. At the end of the senior year, the student has an oral examination (with at least two faculty members) covering both the honors essay and the student's area of concentration.

Intensive Language Program (FALCON)

For those students desiring to accelerate their acquisition of Chinese, Japanese, or Indonesian, Cornell offers a full-time intensive language program, the Full-Year Asian Language Concentration (FALCON). FALCON students spend six hours a day, five days a week, for periods of up to a full year studying only the language and thus are able to complete as many as twelve hundred hours of supervised classroom and laboratory work in one year. For further information, students should contact the FALCON Program Office, Department of Modern Languages and Linguistics, 203 Morrill Hall (telephone: 607/255-6457).

Study Abroad

Cornell is a member of the Inter-University Centers for Chinese Language Study in Taipei and for Japanese Language Study in Yokohama and a member of the Council on International Educational Exchange offering study in China. These centers offer intensive training in both spoken and written forms of the languages. The Kyoto Center for Japanese Studies (KCSJ) is an undergraduate program for students who want to spend a year in Japan studying both language and culture.

Cornell is a class-A member of the American Institute of Indian Studies, which offers fellowships in India for intensive language study in Hindi, Bengali, and Tamil. Cornell also offers study abroad opportunities in South Asian studies at the School of Oriental and African Studies at the University of London. For further details, contact the South Asia Program office, 170 Uris Hall (telephone: 607/255-8493).

Other opportunities include a junior year abroad at IKIP-Malang, in Indonesia, or at the School of Oriental and African Studies, University of London. Many other options for study in Asia exist. Undergraduates should consult the Cornell Abroad Program; graduate students should inquire at the East Asia Program, the South Asia Program, or the Southeast Asia Program offices.

Freshman Writing Seminars

103 Revolutions and Social Values in Modern Chinese Literature

Fall. 3 credits.

MWF 1:25-2:15 (sec. 1) or TR 1:25-2:40 (sec 2). E. M. Gunn.

Noting the revolutions, rebellions, civil wars, and foreign incursions that have plagued China over the past century, a scholar of Asian studies once asked, "Is there a 'modern' Chinese literature?" This course is designed to probe into the twentieth-century literary scene, rich in its variety of experience, its power of description, and its intensity of emotion. We will trace themes through the dramatic turns of events and try to ascertain what has remained constant in the modern era as well as what has changed in the literature with the changes in political life. Preference will be given to the study of short fiction, but poetry, novel, and essay are also forms that we will consult as artifacts of revolutions and social values in modern Chinese literature.

[104 Three Ways of Thought Not offered 1990-91.

108 Reality Criteria in Contemporary Vietnam

Fall. 3 credits.

This course will offer participants an opportunity to develop their writing skills while reading and responding to literary texts written by Vietnamese and by Americans that claim to represent something about the reality of modern Vietnam. Students will be encouraged to establish criteria for what is "real" and what is not in twentieth-century Vietnam while learning to write focused, analytical prose.
110 Ghosts, Demons, and Evil in Japan
Fall. 3 credits.
This course is an exploration of the interrelated Japanese conceptions of the sacred, the supernatural, the dead, the occult, and the problem of evil. Through a reading of "fantastic" literature narrative genres from different periods in Japanese history, we will focus on how the religious traditions in Japan have formulated an understanding of the interrelationship between the worlds of the living and the dead and between the realms of the sacred and human beings. Readings will include Buddhist "moral" narratives, miracle and ghost tales, and modern short stories. We will also see two Japanese films. Students will develop both nonfictional and creative writing skills.

211 Introduction to Japan
Fall. 3 credits.
M W 11:15, disc, see roster. N. Sakai.
An interdisciplinary introduction to Japanese society and its history especially designed for students not majoring in Asian Studies. The first part of the course focuses on the historical changes in Japanese society from the eighth century down to the nineteenth century; the second part analyzes modern society from a variety of perspectives. It also addresses the question of how Japan is represented in the U.S. mass media. Guest lecturers from five or six different fields offer their opinions on Japanese history, culture, and politics.

212 Introduction to China
Spring. 3 credits (4 credits with a special project; consult instructor for information).
T R 1:25, disc. R 2-30 (3 sections), F 10:10 (1 section), F 11:15 (2 sections), or F 1:25 (1 section). M. E. Gunn.
An interdisciplinary introduction to Chinese culture especially designed for students not majoring in Asian Studies.

215 Introduction to South Asian Civilization
Fall. 3 credits (4 credits with a special project; consult instructor for information).
M W F 11:15. C. Minkowski.
An interdisciplinary introduction to the culture and history shared by India and other states of South Asia. Designed for students not majoring in Asian Studies. Guest lecturers will provide the perspective of their disciplines to the general themes of the course: cultural diversity and the role of tradition in contemporary life.

218 Introduction to Korea
Spring. 3 credits. Weekly lecture and discussion meetings. Course enrollment limited to 25. T R 1:25, sections to be arranged. M. McCann.
A multidisciplinary introduction to Korean history and culture, including language, literature, art, and music. The course begins with an overview of Korean history from the Three Kingdoms Period to the Presidential Election of 1987. The course then focuses on major events in Korean history. The March 1, 1919, Independence Movement, the Korean War, the 1960 Student Revolution, the 1980 Kwangju Massacre, or others. Visiting lecturers will speak about Korea from a variety of disciplinary viewpoints, including linguistics, sociology, anthropology, political science, and law.

Asia—Literature and Religion Courses

250 Introduction to Asian Religions
Fall. 3 credits.
M W 10:10, sections to be arranged. J. M. (Swanson) Law.
A survey of the major religious traditions of India, China, and Japan, focusing on Vedic ritual and Brahmanical Hinduism; Indian, Chinese, and Japanese Buddhism; the native Chinese traditions of Confucianism and Taoism; and Shinto, Confucianism, and the new religions in Japan. Emphasis will be on the great traditions of these cultures, with frequent reference to the differing realms of popular religions.

313 The Japanese Film
Spring. 4 credits.
A study of the relationships between the main currents of Indian religion. The course will focus on the Hindu tradition and its holistic worldview within the context of the caste system. It will then describe the rise of Jainism and Theravada and Mahayana Buddhism, as well as Hindu and Buddhist Tantrism, as religious phenomena reflecting the emergence of individualism.

351 The Religious Traditions of India
Spring. 4 credits.
A study of the relationships between the main currents of Indian religion. The course will focus on the Hindu tradition and its holistic worldview within the context of the caste system. It will then describe the rise of Jainism and Theravada and Mahayana Buddhism, as well as Hindu and Buddhist Tantrism, as religious phenomena reflecting the emergence of individualism.

353 Chinese Religions
Fall. 4 credits. Not offered 1990-91.
An introduction (in English translation) to the great poets of modern Japan. This course will cover court poetry, linked verse, haiku, poetic memoirs, travel diaries, and poems written between the eighteenth and eighteenth centuries.

357 Modern Japanese Literature: From Meiji through the Pacific War
Fall. 4 credits. Not offered 1990-91.
B. de Bary.

377 Japanese Narrative Literature
Spring. 4 credits. Not offered 1990-91.

378 The Postwar and the Postmodern in Japanese Literature
Fall. 4 credits. Alternates with Asian Studies 375.
T R 10:10-11:25. B. de Bary.
The course will examine narrative, poetry, and drama produced in Japan from 1945 to the present, with special attention to the transition from "postwar" to "postmodern" as organizing categories of literary discourse. Topics will include the early postwar debate on subjectivity and the "I-novel," the writer's role in Hiroshima and Nagasaki, the critique of "the modern" in avant-garde movements such as the Red and Black Tens theaters, popular literature (cartoons, "light" literature) and the emergence of Japan as a high-level consumer society in the 1980s, literature and sexual politics, and science fiction as cultural criticism.

380 Vietnamese Literature in Translation
Spring. 4 credits.
This is a survey of Vietnamese literature in translation from the tenth century to the present. Attention will be given to different ways of reading this literature. Format will be primarily readings and discussion with some lecture-style presentations.

385 Cultural History of Viet Nam
Fall. 4 credits.
T R 2-5-4. K. Taylor.
This course will focus on the cultural and intellectual history of Viet Nam and its relationship to economy and society, government and politics, diplomacy and warfare, literature and religion/ideology from prehistoric times to the present. Both the traditional cultural heritage and the contemporary twenty-first-century experience will be given serious attention. This course will fulfill a humanities distribution requirement.

388 Asian-American Literature
Spring. 3 credits. Not offered 1990-91.

390 Comparative Sanskrit Myth and Epic (also Classics 390)
Spring. 4 credits. Not offered 1990-91.
391 Classical Indian Narrative (also Classics 391)
Spring. 4 credits.
T R 1:25. C. Minkowski.
Readings in translation from the principal story literature of ancient India. Sources will include the Vedas, the Jatakas, the Sanskrit epics, the Kathasaritsagara, the Pancatantra and related collections. Attention will be given to comparisons with early Greek narrative and to the diffusion of Indic narrative through the world’s literatures.

393 Images of Humanity in Medieval China (also History 393)
Fall. 4 credits.
The middle period in China’s history, essentially the Tang and Sung dynasties, feature some of the highest achievements of Chinese civilization. These centuries (the seventh through the thirteenth) are distinguished by the exceptionally high levels of literature, art, religious and secular thought, and proto-scientific development, as well as by fundamental changes in state, society, and the economy. This seminar will explore the China of this age by examining the lives of several representative figures—a politician, a poet, a Buddhist monk, a Taoist priest, an emperor, an empress, a “detective,” and others. The aim will be to reconstruct the inner and outer worlds of men and women perhaps not so far removed from ourselves in their basic motivations and daily concerns.

400 The Japanese Noh Theater and Modern Dramatists (also Comparative Literature 400)
K. Brazell.

410 Chinese Performing Arts
Fall. 4 credits.
Hours to be arranged. E. M. Gunn.
The course will survey drama, music, theater, and film in twentieth-century China. Some material will require knowledge of Chinese.

421 Religious Reflections on the Human Body
Fall. 4 credits.
One undeniable and inescapable fact of human life is that it is experienced in a body. How this fact is understood to define the parameters of religious experience and expression will be the topic of this course. While the format will be comparative, the majority of cases will be drawn from East Asian, primarily Japanese, sources. We will explore how such aspects of the human body as ecstasy, gender, sexual passion, illness, the dialectic of the physical and the spiritual, and corporeal ascetic discipline reveal models of religious reflection on this fact of human experience. Further, we will study how these models become represented in visual art, narrative, and ritual practice.

440 Meditation Schools of East Asian Buddhism
J. McRae.

454 Women, Revolution, and Socialism (also Women’s Studies 454)
C. White.

460 Indian Meditation Texts
D. Gold.

496 Tokugawa Literature and Thought
Fall. 4 credits.
N. Sakai.
An introduction (in English translation) to literary, theatrical, and intellectual works of the Tokugawa period (1600–1868). We will examine the characteristics of early Tokugawa literary and theatrical works and see how different they are from the literary works of the later Tokugawa period. We will also read the philosophical and philological works on the classics by writers such as Oggy Sorai and Motoori Norinaga to understand the ways contemporary Japanese intellectuals understood cultural activities and literature during the Tokugawa period.
Note: For complete descriptions of courses numbered 600 or above, consult the graduate faculty representative.

601 Southeast Asia Seminar: Burma
Fall. 4 credits.

602 Southeast Asia Seminar: Philippines
Spring. 4 credits.
Hours to be arranged. B. R. Anderson.

604 Southeast Asia Seminar
Not offered 1990–91.

607–608 The Plural Society Revisited
(also Government 653)
Fall. 4 credits. 607 may be taken independently for credit; 607 is a prerequisite for 608. Not offered 1990–91.

611 Chinese Bibliography and Methodology
Spring. 1 credit. Prerequisite: permission of instructor. Required of honors students and M.A. candidates.
F 1:25. M. C. Chou.

612 Japanese Bibliography and Methodology
Spring. 1 credit. Prerequisite: permission of instructor. Required of honors students and M.A. candidates.
F 2:30. S. Akiba.

621 South Asia Seminar

622 Seminar on South Asia: State Policy and State Practice: Views of the Subcontinent

801 Seminar in East Asian Literature
701, fall; 702, spring. 1–4 credits. Hours to be arranged. Staff.

703–704 Directed Research
For additional courses on Asian religion, see "Related Courses" in the China and Japan area courses listing.

Asia—General Courses

401 Asian Studies Honors Course
Fall. 4 credits. Intended for seniors who have been admitted to the honors program.
Staff.
Supervised reading and research on the problem selected for honors work.

402 Asian Studies Honors: Senior Essay
Fall or spring. 4 credits. Prerequisite: admission to the honors program. The student, under faculty direction, prepares an honors essay.

403–404 Asian Studies Supervised Reading
Fall. Credit to be arranged.
Prerequisite: permission of instructor. Open to majors and other qualified students. Intensive reading under the direction of a member of the staff.

703–704 Directed Research
703, fall or spring; 704, fall or spring. Credit to be arranged.

Staff.

Literature in Chinese

213–214 Introduction to Classical Chinese
Fall, 213; fall, 214; spring. 3 credits each term. Prerequisite: qualification in Chinese or permission of instructor. May be taken concurrently with Chinese 101–102, 201–202, 301–302. MWF 12:20. Tsu-Lin Mei, fall.

314 Classical Narrative Texts
Spring. 4 credits. Prerequisite: Chinese 214. A. Bailey.

420 T’ang and Sung Poetry
Fall. 4 credits. Prerequisite: permission of instructor.
Hours to be arranged. T. L. Mei.
Readings in the original Chinese, together with secondary works by Chinese and Western critics.

421–422 Directed Study
Fall or spring. 2–4 credits each term. Prerequisite: permission of instructor. Staff.

424 Readings in Literary Criticism
Fall or spring. 4 credits. Prerequisite: permission of instructor. Not offered 1990–91.

427 Approaches to Jin ping mei
Fall. 4 credits. Not offered 1990–91.
A. Yee.

428 Approaches to Hung lou meng
A. Yee.

435 Chinese Buddhist Texts
Spring. 4 credits.
Open to students with background in either Chinese or Japanese, this course will focus on the terminology, syntax, and religious doctrines of Buddhist texts in classical Chinese.
Note: For complete descriptions of courses numbered 600 or above, consult the appropriate instructor.

603 Seminar in Chinese Fiction and Drama
Fall or spring. 4 credits. Prerequisite: permission of instructor. Not offered 1990–91.
[605 Seminar in Chinese Fiction and Literature]
Fall. 4 credits. Prerequisite: permission of instructor. Not offered 1990–91.
E. M. Gunn.

[609 Seminar in Chinese Folk Literature]
Fall or spring, according to demand. 4 credits. Prerequisite: permission of instructor. Not offered 1990–91.
Staff.

[610 Chinese Cultural Criticism]
Fall. 4 credits. Not offered 1990–91.
E. M. Gunn.

621–622 Advanced Directed Reading: Chinese Historical Syntax
Spring. 2–4 credits. Prerequisite: permission of instructor.
T. L. Mei.

Literature in Japanese
406 Introduction to Classical Japanese Literature
Fall. 4 credits. Prerequisite: permission of instructor.
Hours to be arranged. K. Brazell.

421–422 Directed Readings
421, fall; 422, spring; credits to be arranged. Prerequisite: for Japanese 421, Japanese 402 or equivalent; for Japanese 422, Japanese 421 or equivalent.
Hours to be arranged. Staff.
Note: For complete descriptions of courses numbered 600 or above, consult the appropriate instructor.

426 Seminar in Medieval Japanese Literature
Fall or spring. 2–4 credits. Prerequisite: permission of instructor. Offered alternate years. Not offered 1990–91.
K. Brazell.

621 Advanced Readings in Pre-Modern Japanese Narrative Literature
Fall or spring. 4 credits. Prerequisite: permission of instructor. Offered alternate years.
K. Brazell.

Graduate-Level Reading Courses
622 Advanced Readings in Pre-Modern Japanese Poetry
Fall or spring. Credit to be arranged. Prerequisite: permission of instructor. Offered alternate years.
K. Brazell.

623 Advanced Readings in Pre-Modern Drama
Fall or spring. Credit to be arranged. Prerequisite: permission of instructor. Offered alternate years.
K. Brazell.

624 Advanced Readings in Modern Literature
Fall. 4 credits. Prerequisite: permission of instructor. Offered alternate years.
T. 10:30–12. B. de Bary.
Note: See courses listed under Asia—Literature and Religion Courses for Japanese literature courses in translation.

Japanese Language
See Modern Languages and Linguistics.

FALCON Program
255-6457; R. Sukle, 412 Morrill Hall, 255-0734; J. Whitman, 308 Morrill Hall, 255-0756.

614 Seminar in Modern Japanese Literature
Fall or spring. 2–4 credits. Prerequisite: permission of instructor. Offered alternate years.
N. Sakai.
Time and time again, one encounters the theme of death in modern Japanese literature. The course will examine literary discourse in which death as an aesthetic phenomenon is presented or discussed in relation to the Emperor system and the modern nation state. We will analyze the relationships among the modern idea of literature, the aestheticization of national community and the identification with the community through death. Readings will include critical essays by Rene Girard, Kobayashi Hideo, Philippe Lacoue-Labarthe, Yasuda Yojuro, Jean-Luc Nancy, and Jacques Derrida as well as novelistic works by Natsume Soseki, Oe Kenzaburo, Kojuma Nobuo, John Okada, and Mishima Yukio.

619 Seminar in Modern Japanese Drama
Fall or spring. Credit to be arranged. Prerequisite: permission of instructor. Offered alternate years.
K. Brazell.

Related Courses in Other Departments
Anthropology of the City (Anthropology 313)
Hierarchical, Ritual, and History (Anthropology 611)
Politics in Contemporary Japan
Politics of Industrial Societies
Not offered 1990–91.
Political Role of the Military
Graduate Seminar in Political Economy of Change: Rural Development in the World
Not offered 1990–91.
Introduction to Asian Civilizations (History 190)
Introduction to Asian Civilizations in the Modern Period (History 191)
Introduction to Art History: Asian Traditions (History of Art 280)
Politics in Contemporary Japan
Politics of Industrial Societies
Not offered 1990–91.
Political Role of the Military
Graduate Seminar in Political Economy of Change: Rural Development in the World
Not offered 1990–91.
Introduction to Asian Civilizations (History 190)
Introduction to Asian Civilizations in the Modern Period (History 191)
Introduction to Art History: Asian Traditions (History of Art 280)
Politics in Contemporary Japan
Politics of Industrial Societies
Not offered 1990–91.
Political Role of the Military
Graduate Seminar in Political Economy of Change: Rural Development in the World
Not offered 1990–91.
Introduction to Asian Civilizations (History 190)
Introduction to Asian Civilizations in the Modern Period (History 191)
Introduction to Art History: Asian Traditions (History of Art 280)
Politics in Contemporary Japan
Politics of Industrial Societies
Not offered 1990–91.
Political Role of the Military
Graduate Seminar in Political Economy of Change: Rural Development in the World
Not offered 1990–91.
Introduction to Asian Civilizations (History 190)
Introduction to Asian Civilizations in the Modern Period (History 191)
Introduction to Art History: Asian Traditions (History of Art 280)
Politics in Contemporary Japan
Politics of Industrial Societies
Not offered 1990–91.
Political Role of the Military
Graduate Seminar in Political Economy of Change: Rural Development in the World
Not offered 1990–91.
Introduction to Asian Civilizations (History 190)
Introduction to Asian Civilizations in the Modern Period (History 191)
Introduction to Art History: Asian Traditions (History of Art 280)
Politics in Contemporary Japan
Politics of Industrial Societies
Not offered 1990–91.
Political Role of the Military
Graduate Seminar in Political Economy of Change: Rural Development in the World
Not offered 1990–91.
Introduction to Asian Civilizations (History 190)
Introduction to Asian Civilizations in the Modern Period (History 191)
Introduction to Art History: Asian Traditions (History of Art 280)
Politics in Contemporary Japan
Politics of Industrial Societies
Not offered 1990–91.
Political Role of the Military
Graduate Seminar in Political Economy of Change: Rural Development in the World
Not offered 1990–91.
Introduction to Asian Civilizations (History 190)
Introduction to Asian Civilizations in the Modern Period (History 191)
Introduction to Art History: Asian Traditions (History of Art 280)
Politics in Contemporary Japan
Politics of Industrial Societies
Not offered 1990–91.
Political Role of the Military
Graduate Seminar in Political Economy of Change: Rural Development in the World
Not offered 1990–91.
Introduction to Asian Civilizations (History 190)
Introduction to Asian Civilizations in the Modern Period (History 191)
Introduction to Art History: Asian Traditions (History of Art 280)
Politics in Contemporary Japan
Politics of Industrial Societies
Not offered 1990–91.
Political Role of the Military
Graduate Seminar in Political Economy of Change: Rural Development in the World
Not offered 1990–91.
Introduction to Asian Civilizations (History 190)
Introduction to Asian Civilizations in the Modern Period (History 191)
Introduction to Art History: Asian Traditions (History of Art 280)
Politics in Contemporary Japan
Politics of Industrial Societies
Not offered 1990–91.
Political Role of the Military
Graduate Seminar in Political Economy of Change: Rural Development in the World
Not offered 1990–91.
Introduction to Asian Civilizations (History 190)
Introduction to Asian Civilizations in the Modern Period (History 191)
Introduction to Art History: Asian Traditions (History of Art 280)
Politics in Contemporary Japan
Politics of Industrial Societies
Not offered 1990–91.
Political Role of the Military
Graduate Seminar in Political Economy of Change: Rural Development in the World
Not offered 1990–91.
Introduction to Asian Civilizations (History 190)
Introduction to Asian Civilizations in the Modern Period (History 191)
Introduction to Art History: Asian Traditions (History of Art 280)
Politics in Contemporary Japan
Politics of Industrial Societies
Not offered 1990–91.
Japan—Language Courses

Elementary Course (Japanese 101-102)

Elementary Reading (Japanese 109-110)

Cantonese Elementary Course (Chinese 111-112)

Cantonese Elementary Speaking (Chinese 113-114)

FALCON (full-time course, Chinese 161-162)

Intermediate Chinese (Chinese 201-202)

Intermediate Cantonese (Chinese 211-212)

Advanced Chinese (Chinese 301-302)

Advanced Chinese Conversation (Chinese 303-304)

Advanced Cantonese (Chinese 311-312)

[LINGUISTIC STRUCTURE OF CHINESE I (CHINESE 401)
Not offered 1990-91]

[LINGUISTIC STRUCTURE OF CHINESE II (CHINESE 402)
Not offered 1990-91]

Readings in Modern Chinese (Chinese 411-412)

Chinese Reading Tutorials (Chinese 413-414)

[CHINESE DIAPET SEMINAR (CHINESE 607)
Not offered 1990-91]

Japan—Area Courses

Japanese Society (Anthropology 345)

Japanese Ethnology (Anthropology 645)

[BUSINESS AND LABOR IN POLITICS (GOVERNMENT 334)
Not offered 1990-91]

Politics in Contemporary Japan

(Government 346)

Comparative Politics Field Seminar

(Government 605)

Introduction to Asian Civilization in the Modern Period

(History 181)

[Japan and the West (History 192)
Not offered 1990-91]

State, Society, and Culture in Japan to 1750

(History 297)

State, Society, and Culture in Modern Japan

(History 298)

[THE IDEOLOGY OF THE MEIJI RESTORATION

(HISTORY 489)
Not offered 1990-91]

[SEMINAR IN JAPANESE THOUGHT (HISTORY 797-798)
Not offered 1990-91]

[THE ARTS OF JAPAN (HISTORY OF ART 384)
Not offered 1990-91]

South Asia—Area Courses

Food, Population, and Employment

(Agricultural Economics 660)

Peoples and Cultures of the Himalayas:

(Anthropology 339)

[Cultures and Societies of India, Nepal, and Sri Lanka (Anthropology 342)
Not offered 1990-91]

Anthropological Approaches to the Study

of Buddhism in Asia (Anthropology 619)

[HIMALAYAN ISSUES, PROBLEMS, AND

PROSPECTS (ANTHROPOLOGY 623)
Not offered 1990-91]

South Asia: Readings in Specific

Problems (Anthropology 640-641)

Architecture in Its Cultural Context

(Anthropology 667-668)

Introduction to South Asian Civilizations

(Asian Studies 215)
<table>
<thead>
<tr>
<th>Course Title</th>
<th>Year Offered</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction to Asian Religions (Asian Studies 250)</td>
<td>Not offered 1990-91.</td>
</tr>
<tr>
<td>The Religious Traditions of India (Asian Studies 351)</td>
<td>[South Asia Seminar: (Asian Studies 621)</td>
</tr>
<tr>
<td>The Global City (City and Regional Planning 101)</td>
<td>Not offered 1990-91.</td>
</tr>
<tr>
<td>Theories of Development and Underdevelopment (City and Regional Planning 777)</td>
<td>Not offered 1990-91.</td>
</tr>
<tr>
<td>Fictions of India (English 353)</td>
<td>Not offered 1990-91.</td>
</tr>
<tr>
<td>Agrarian Change in South Asia—Politics, Society, and Culture (Government 651)</td>
<td>Not offered 1990-91.</td>
</tr>
<tr>
<td>Rigveda (Linguistics 619)</td>
<td>Not offered 1990-91.</td>
</tr>
<tr>
<td>Introduction to Pali (Linguistics 639-640)</td>
<td>Not offered 1990-91.</td>
</tr>
<tr>
<td>Directed Research (Linguistics 701-702)</td>
<td></td>
</tr>
<tr>
<td>Rural Sociology and International Development (Rural Sociology 205)</td>
<td></td>
</tr>
<tr>
<td>Gender Relations and Social Change (Rural Sociology 425)</td>
<td></td>
</tr>
<tr>
<td>Developments in the Pacific Rim (Rural Sociology 492)</td>
<td>Not offered 1990-91.</td>
</tr>
<tr>
<td>Applications of Sociology to Development Programs (Rural Sociology 751)</td>
<td></td>
</tr>
<tr>
<td>Sociotechnical Aspects of Irrigation (Rural Sociology 644, Agricultural Engineering 754, and Agricultural Economics 754)</td>
<td></td>
</tr>
<tr>
<td>Elementary Sanskrit (Sanskrit 131-132, also Classics 131-132)</td>
<td></td>
</tr>
<tr>
<td>Intermediate Sanskrit (Sanskrit 251-252, also Classics 251-252)</td>
<td></td>
</tr>
<tr>
<td>Other courses dealing extensively with South Asia are Anthropology 321 and 611; Agricultural Economics 464; Communication Arts 626; History 190 and 191; History of Art 280, 482, 500, and 596.</td>
<td></td>
</tr>
<tr>
<td>South Asia—Language Courses</td>
<td></td>
</tr>
<tr>
<td>Elementary Bengali (Bengali 121-122)</td>
<td></td>
</tr>
<tr>
<td>Intermediate Bengali (Bengali 201-202)</td>
<td></td>
</tr>
<tr>
<td>Continuing Bengali (Bengali 203-204)</td>
<td></td>
</tr>
<tr>
<td>Elementary Course (Hindi 101-102)</td>
<td></td>
</tr>
<tr>
<td>Intermediate Hindi Reading (Hindi 201-202)</td>
<td></td>
</tr>
<tr>
<td>Intermediate Composition and Conversation (Hindi 203-204)</td>
<td></td>
</tr>
<tr>
<td>Advanced Readings in Hindi Language (Hindi 301-302)</td>
<td></td>
</tr>
<tr>
<td>Advanced Composition and Conversation (Hindi 303-304)</td>
<td></td>
</tr>
<tr>
<td>Elementary Course (Nepali 101-102)</td>
<td></td>
</tr>
<tr>
<td>Intermediate Nepali Conversation (Nepali 201-202)</td>
<td></td>
</tr>
<tr>
<td>Intermediate Nepali Composition (Nepali 203-204)</td>
<td></td>
</tr>
<tr>
<td>Elementary Course (Sinhalese 101-102)</td>
<td></td>
</tr>
<tr>
<td>Intermediate Sinhala Reading (Sinhalese 201-202)</td>
<td></td>
</tr>
<tr>
<td>Intermediate Composition and Conversation (Sinhalese 203-204)</td>
<td></td>
</tr>
<tr>
<td>Elementary Course (Tamil 101-102)</td>
<td></td>
</tr>
<tr>
<td>Southeast Asia—Area Courses</td>
<td></td>
</tr>
<tr>
<td>Microeconomic Issues in Agricultural Development (Agricultural Economics 664)</td>
<td></td>
</tr>
<tr>
<td>Sociotechnical Aspects of Irrigation (Agricultural Economics 754, Agricultural Engineering 754, Rural Sociology 754, and Government 644)</td>
<td></td>
</tr>
<tr>
<td>Ethnographic Description (Anthropology 306)</td>
<td></td>
</tr>
<tr>
<td>Ethnology of Island Southeast Asia (Anthropology 334)</td>
<td>Not offered 1990-91.</td>
</tr>
<tr>
<td>Myths and Mythology (Anthropology 610)</td>
<td>Not offered 1990-91.</td>
</tr>
<tr>
<td>Hierarchies, Ritual, and History (Anthropology 611)</td>
<td>Not offered 1990-91.</td>
</tr>
<tr>
<td>Anthropological Approaches to the Study of Buddhism in Asia (Anthropology 619)</td>
<td></td>
</tr>
<tr>
<td>Political Anthropology: Indonesia (Anthropology 628 and Government 647)</td>
<td></td>
</tr>
<tr>
<td>Southeast Asia: Readings in Special Problems (Anthropology 634-635)</td>
<td></td>
</tr>
<tr>
<td>Reality Criteria in Modern Viet Nam (Asian Studies 108)</td>
<td></td>
</tr>
<tr>
<td>Vietnamese Literature in Translation (Asian Studies 380)</td>
<td></td>
</tr>
<tr>
<td>History of Viet Nam (Asian Studies 385)</td>
<td></td>
</tr>
<tr>
<td>Vietnamese Literature in Translation (Asian Studies 470)</td>
<td></td>
</tr>
<tr>
<td>Southeast Asia Seminar: Burma (Asian Studies 601)</td>
<td></td>
</tr>
<tr>
<td>Southeast Asia Seminar: Philippines (Asian Studies 602)</td>
<td></td>
</tr>
<tr>
<td>Southeast Asia Research Training Seminar (Asian Studies 676)</td>
<td></td>
</tr>
<tr>
<td>Directed Research (Asian Studies 703-704)</td>
<td></td>
</tr>
<tr>
<td>The Viet Nam War in Historical Perspective (Government 342)</td>
<td></td>
</tr>
<tr>
<td>Government and Politics of Southeast Asia (Government 344)</td>
<td></td>
</tr>
<tr>
<td>Political Role of the Military (Government 349)</td>
<td></td>
</tr>
<tr>
<td>International Relations in South East Asia since 1945 (Government 648)</td>
<td></td>
</tr>
<tr>
<td>[Political Anthropology: Indonesia (Government 647 and Anthropology 628)</td>
<td>Not offered 1990-91.</td>
</tr>
<tr>
<td>Political Problems of Southeast Asia (Government 652)</td>
<td>Not offered 1990-91.</td>
</tr>
<tr>
<td>International Relations of Asia (Government 687)</td>
<td>Not offered 1990-91.</td>
</tr>
<tr>
<td>Introduction to Asian Civilization: Modern Period (History 191)</td>
<td></td>
</tr>
<tr>
<td>Southeast Asia to the Eighteenth Century (History 395)</td>
<td></td>
</tr>
<tr>
<td>Southeast Asian History from the Eighteenth Century (History 396)</td>
<td></td>
</tr>
<tr>
<td>Early Southeast Asia: Graduate Proseminar (History 695)</td>
<td></td>
</tr>
<tr>
<td>Modern Southeast Asia: Graduate Proseminar (History 696)</td>
<td></td>
</tr>
<tr>
<td>Seminar in Southeast Asian Paleontology (History 697)</td>
<td></td>
</tr>
<tr>
<td>Seminar in Southeast Asian History (History 795-[796])</td>
<td>[796 not offered 1990-91.]</td>
</tr>
<tr>
<td>Introduction to Art History: Asian Traditions (History of Art 280)</td>
<td>Not offered 1990-91.</td>
</tr>
<tr>
<td>The Arts of Southeast Asia (History of Art 396)</td>
<td></td>
</tr>
<tr>
<td>[Ceramic Art of China and Southeast Asia (History of Art 482)</td>
<td>Not offered 1990-91.</td>
</tr>
<tr>
<td>Labor in Developing Economies (Labor Economics 332/552)</td>
<td></td>
</tr>
<tr>
<td>Sociolinguistics (Linguistics 405-406)</td>
<td></td>
</tr>
<tr>
<td>Field Methods (Linguistics 600)</td>
<td></td>
</tr>
<tr>
<td>Old Javanese (Linguistics 651-652)</td>
<td></td>
</tr>
<tr>
<td>Seminar in Southeast Asian Linguistics (Linguistics 653-654)</td>
<td></td>
</tr>
<tr>
<td>Austronesian Linguistics (Linguistics 655-656)</td>
<td></td>
</tr>
</tbody>
</table>
ASTRONOMY 151

Cornell's astronomy faculty, research staff, and graduate students are active in diverse areas of modern astronomy ranging from theoretical astrophysics and general relativity to radio and radar astronomy, infrared and optical astronomy, and the exploration of the solar system. Cornell operates two local optical observatories, the world's largest radio telescope at Arecibo, Puerto Rico, and with two other institutions, the 200-inch optical telescope at Mt. Palomar in California. The department offers a number of courses to satisfy a general interest in astronomy. These courses have few or no prerequisites and are not intended for the training of professional astronomers. The 100-level courses are designed primarily for nonscience majors. The alternative introductory sequence Astronomy 211-212 is geared toward sophomores and requires at least one year of calculus and college physics as prerequisites. The other courses numbered below 400 have no college prerequisites at all.

Courses numbered above 400 are intended for students who have had two to three years of college physics and at least two years of college mathematics. Astronomy 440, Independent Study, permits students to engage in individual research projects under the guidance of a faculty member.

Interested students are encouraged to become members of the undergraduate Cornell Astronomy Club. The club has access to the Fuertes Observatory on campus and conducts regular observing and astrophotography sessions. All students are invited to visit the Space Sciences Building, see the exhibits on display there, and consult a faculty member about career plans or choice of courses.

The Major

The purpose of the major in astronomy is to provide in-depth knowledge and education about the nature of the universe. Similar to other disciplines in the sciences, astronomy relies heavily on preparation in physics and mathematics. Consequently, many courses in these fields are included as prerequisites. In preparation for the major, a student would normally elect the introductory physics sequence Physics 112-213-214 or 116-217-218 plus Physics 315 and 318 and the complementary pathway in mathematics, Mathematics 111-122-211,222 or 191-192-293-294 (or equivalent). The sophomore seminar Astronomy 233 "Topics in Astronomy and Astrophysics" will provide an introduction to current research in astronomy and astrophysics for prospective majors, but is not required of students who elect to major in astronomy after the sophomore year. Students are also urged to acquire computer literacy. Acceptance to the major will first be considered after completion of three semesters of introductory physics and mathematics and in general will require a GPA of 3.20 in physics and mathematics courses.

The major requirements stress the importance of building a strong preparation in physical science. The following upper level courses are normally required:

Physics 324, 326, 341, and 443
Mathematics 421 and 422 (or equivalent) Astronomy 410, 431, and 432.

Students are encouraged to supplement the above courses with any astronomy, physics, or other appropriate courses at or above the 400 level. Advanced seniors can enroll in astronomy graduate courses with the consent of the instructor. Students are also encouraged to work with faculty members on independent study projects (Astronomy 440).

Honors. A student may be granted honors in astronomy upon the recommendation of the Astronomy Advisers Committee of the astronomy faculty.

Double majors. A double major in astronomy and another subject is possible in many circumstances. However, the set of courses used to fulfill the requirements for each major must be completely independent.
Concentration. Students majoring in other fields but interested in astronomy are encouraged to supplement their major with a concentration in astronomy, an option that is somewhat less intensive than a major. Normally Astronomy 431 and 432 are required for a concentration.

Distribution Requirement

The distribution requirement in physical sciences is met by A101 or A211, plus A102 or A212, or A102 or A212, plus A352. A103 and A104, identical to A101–102 except for the omission of the laboratories, cannot be used to satisfy the distribution requirement for students in the College of Arts and Sciences.

Courses

101 The Nature of the Universe
Fall. 4 credits. No prerequisites. Labs and discussions limited to 20 students each. Lecs. M W F 11:15; labs, every other week. MT or W 2:30–5 or M T W or R 7:30–10 p.m.; disc, one hour every week. M or W 1:25, 2:30, 3:35, or 7:30 p.m., or T or R 2:30, 3:35, or 7:30 p.m. Y. Y. Lees; labs, P. D. Nicholson. The physical nature of existence. An examination of the universe and our place in it and the possible existence of life and intelligence elsewhere in the cosmos. The nature of stars, galaxies, and quasi-stellar sources. The birth, evolution, and death of stars and the formation of the chemical elements, including discussions of supernovae, pulsars, neutron stars, and black holes. The physical state and composition of the interstellar material and its influence on the evolution of our galaxy. An introduction to the special and general theories of relativity. The nature of time. Modern theories of cosmology and the structure and evolution of the universe.

102 Our Solar System
Spring. 4 credits. No prerequisites. Limited to 330 students (combined total with Astronomy 104: 430 students). Labs and discussions limited to 20 students each. Lecs. M W F 11:15; labs every other week. MT or W 2:30–5 or M T W or R 7:30–10 p.m.; disc, one hour every week. M or W 1:25, 2:30, 3:35, or 7:30 p.m., or T or R 2:30, 3:35, or 7:30 p.m. J. F. Veverka; labs, P. D. Nicholson. The evolution of our understanding of the formation and structure of the solar system will be discussed. Modern theories of the solar system will be compared with the results of the space program. The chemical basis of life and current theories of planetary life. The spontaneous appearance of life will be considered along with searches for life beyond the earth, both inside and outside the solar system.

103 The Nature of the Universe
Fall. 3 credits. Identical to Astronomy 101 except for omission of the laboratory (see description above). This course does not satisfy the distribution requirement in physical sciences for students in the College of Arts and Sciences.

104 Our Solar System
Spring. 3 credits. Limited to 100 students (combined total with Astronomy 102: 430 students). Identical to Astronomy 102 except for omission of the laboratory (see description above). This course does not satisfy the distribution requirement in physical sciences for students in the College of Arts and Sciences.

105 An Introduction to the Universe
Summer. 3 credits. M–F 11:30–12:45, evening labs to be arranged. Staff. How do we measure the size of our galaxy and the size of the universe? What is the universe round or flat? How are the stars born, why do they shine, and how do they die? What are the chemical elements, and how were they formed in stars? What are quasars, pulsars, and black holes? How was the solar system formed? What are the environments of other planets like? What is the basic structure of Earth and the other planets? Will man catastrophically alter the earth? Does life exist elsewhere in the universe? How can we find out? Each student has an opportunity to make observations with small telescopes.

106 Essential Ideas in Relativity and Cosmology
Summer. 3 credits. Prerequisites: high school algebra and trigonometry. S. S. M–F 10–11:15. Staff. Einstein’s theories of special and general relativity, which brought about a fundamental change in our conceptual understanding of space and time, will be studied. Correspondence to, and conflicts with, common sense will be pointed out. Applications to various areas will be studied: in special relativity—space travel, equivalence of mass and energy, nuclear fission and fusion, and thermonuclear processes in the sun; in general relativity—motion of light and particles in curved spacetime, cosmological models, and the question of whether the universe is open or closed.

107 Freshman Writing Seminar: The Universe of Modern Science
Fall and spring. 3 credits. Limited to 17 students. Students may enroll by Freshman Writing Seminar ballot only. TR 1:25–2:40. C. Hovis. Focusing on the development of the current scientific picture of the evolution of the universe, this course will survey the foundations and history of modern cosmology and elementary-particle physics. By preparing comparative, critical, and expository essays related to assigned readings from the works of scientists, historians, and philosophers, students will learn to write clearly and accurately about modern science, to identify problems and gaps existing in its views, and to think critically about how and why the constituent theories of our contemporary picture of cosmic evolution have emerged as the best explanations available in light of the evidence.

201 Our Home in the Universe
Spring. 3 credits. Prerequisite: some background in science. TR 2:35–4:10. C. Sagan. A comparison of the Earth with the other worlds of our solar system, with an emphasis on the nature and fragility of planetary environments. Topics to be discussed include the origin of life, species extinctions, the history of climate change, evolution of the atmosphere of the Earth and other planets, ecology and biological interdependency, and threats to the planetary environment—including ozone layer depletion, greenhouse warming, and nuclear winter. Possible solutions to these problems, including their economic and social costs and their ethical implications, will be considered. The course will attempt to develop skills in writing and in elementary physics and chemistry.

211 Astronomy: Stars, Galaxies, and Cosmology
Spring. 4 credits. Intended for engineering and physical sciences freshmen. Prerequisite: introductory calculus or coregistration in Mathematics 111 or 191. Lecs. M W F 10:10; rec., one hour each week to be arranged; plus some evening observing periods. J. Wasserma. The formation and evolution of stars. Supernovae, pulsars, quasars, and black holes. The interstellar medium. The structure and evolution of galaxies. Cosmology.

212 The Solar System: Planets, Satellites, and Rings
Fall. 4 credits. Intended for engineering and physical sciences freshmen. Prerequisite: introductory calculus or coregistration in Mathematics 111 or 191. Lecs. M W F 11:15; rec., one hour each week to be arranged; possible evening observing labs to be arranged. S. Squires. The origin of the solar system; celestial mechanics; tidal evolution; the physics and chemistry of planetary surfaces, atmospheres, and satellites; interiors; planetary rings; asteroids, comets, and meteorites; the search for other planetary systems.

233 Topics in Astronomy and Astrophysics
Fall. 2 credits. Prerequisites: Physics 112 and 213, Mathematics 112 and 221, or permission of instructor. TR 1:25–2:15. M. Haynes. A seminar course on advanced topics in astronomy and astrophysics designed for prospective astronomy majors. Content will vary from year to year, but will include topics from the fields of planetary, galactic, and extragalactic research.

321 Life in the Universe

332 Elements of Astrophysics

410 Experimental Astronomy
Fall. 4 credits. Prerequisites: Physics 214 (or 310 or 360), Physics 252 (or co-registration) or permission of instructor. Limited to 10 students. Hours to be arranged. S. Beckwith, J. Cordes, T. Huterer. Topics in experimental concepts in astrophysics. Major experiments will involve techniques in telescope operation, astronomical photogra phy. CCD (charge-coupled-device) imaging.
optical photometry, optical spectroscopy, and radio astronomy. Most of the experiments involve use of the 24-inch Hartung-Boothroyd Observatory. The radio astronomy experiments employ a radio telescope mounted on top of the Space Sciences Building. The laboratory covers the fundamentals of using astronomical instrumentation and performing data analysis applied to celestial phenomena, such as normal stars, neutron stars, and planetary nebulae.

431 Introduction to Astrophysics and Space Sciences I
Fall. 4 credits. Prerequisites: mathematics above the 200 level and physics above the 300 level; concurrent registration in Physics 341 and 443 is helpful.

A systematic development of modern astrophysical concepts for physical science majors. Atomic and electromagnetic processes in space. Introduction to star formation, stellar structure, stellar atmospheres, and the interstellar medium. At the level of Astrophysical Concepts, by Harwit.

432 Introduction to Astrophysics and Space Sciences II
Spring. 4 credits. Prerequisite: Astronomy 431 or permission of instructor.

Astrophysics is discussed in the context of cosmology. Cosmological subjects covered include the expansion of the universe, metrics, Friedmann equations, dark matter, cosmological tests, the early universe, formation of galaxies, and cosmological production of the elements. Astrophysical subjects drawn on include special relativity, radiative transfer, electromagnetism, quantum mechanics, gravitational physics, and nuclear physics. At the level of Astrophysical Concepts, by Harwit.

433 The Sun
Fall. 4 credits. Not offered 1990-91.

434 The Evolution of Planets
Fall. 4 credits. Not offered 1990-91.

440 Independent Study in Astronomy
Fall or spring. 2-4 credits. Prerequisite: permission of instructor. Recommended: familiarity with the topics covered in Astronomy 332, 431, or 434.

Hours to be arranged. Staff.

Individuals work on selected topics. A program of study is devised by the student and instructor. Students need to fill out an independent study form, have it signed by the instructor, and register in the department office, 510 Space Sciences Building.

460 Senior Seminar—Critical Thinking
Spring. 3 credits. Not offered 1990-91.

509 General Relativity (also Physics 553)
Fall. 4 credits. Prerequisite: knowledge of special relativity at the level of, for example, Classical Mechanics, by Goldstein.

A systematic introduction to Einstein's theory, with emphasis on modern coordinate-free methods of computation. Topics include review of special relativity, modern differential geometry, foundations of general relativity, laws of physics in the presence of a gravitational field, and experimental tests of gravitational theories. At the level of Gravitation, by Misner, Thorne, and Wheeler.

510 Applications of General Relativity (also Physics 554)
Spring. 4 credits. Prerequisite: Astronomy 509.

A continuation of Astronomy 509 with emphasis on applications to astrophysics and cosmology. Topics include relativistic stars, gravitational collapse and black holes, gravitational waves, and cosmology.

511 Physics of Black Holes, White Dwarfs, and Neutron Stars (also Physics 525)
Fall. 4 credits. Not offered 1990-91.

516 Galactic Structure and Stellar Dynamics
Fall. 4 credits.

J. Wasserman.

520 Radio Astronomy
Fall. 4 credits. Not offered 1990-91.

521 Radio Astrophysics
Spring. 4 credits. Not offered 1990-91.

523 Signal Processing and Data Analysis in Astronomy
Fall. 4 credits. Prerequisites: mathematical background equivalent to undergraduate physical science curriculum and familiarity with FORTRAN programming.

Topics will include Fourier analysis of discrete and continuous time series, spectral analysis, parameter estimation, probability theory, and stochastic processes image formation and coherence functions. The orientation will be toward applications in observational astronomy and astrophysics. Discussion of applications such as interferometry, image processing, scintillation theory, planetary radar, and pulsar studies. Course work will include application on the IBM 370.

525 Techniques of Optical and Infrared Astronomy
Fall. 4 credits.

Optical and infrared telescopes, their auxiliary instrumentation, solid state panoramic detectors; observing procedures and data analysis will be presented. The techniques of UV and X-ray astronomy will be discussed. Intended for students with a thorough understanding of undergraduate physics.

526 Infrared and Optical Astrophysics
Spring. 4 credits.

Hours to be arranged. S. Beckwith.

Most of the course will be devoted to results and interpretation of recent observations, including the announced astronomical satellite: Modern techniques and their limitations will be briefly discussed.

555 Theory of the Interstellar Medium (also Physics 665)
Spring. 4 credits. Not offered 1990-91.

556 Theory of Stellar Structure and Evolution (also Physics 667)
Fall. 4 credits. Not offered 1990-91.

570 Physics of the Planets
Spring. 4 credits. Not offered 1990-91.

571 Mechanics of the Solar System (also Theoretical and Applied Mechanics 673)
Spring. 3 credits. Prerequisite: an undergraduate course in dynamics.

Hours to be arranged. J. Burns, P. D. Nicholson.

575 Atmospheric and Ionospheric Physics (also Electrical Engineering 585)
Fall. 3 credits. Not offered 1990-91.

576 Solar Terrestrial Physics (also Electrical Engineering 586)
Spring. 3 credits. Not offered 1990-91.

579 Celestial Mechanics (also Theoretical and Applied Mechanics 673)
Spring. 3 credits. Not offered 1990-91.

590 Galaxies and the Universe
Spring. 4 credits.

Hours to be arranged. M. P. Haynes.

The universe, its constituents, its large-scale structure, and its history in the light of the major thrusts of extragalactic research. The morphology, photometry, dynamics, and kinematics of galaxies and their subsystems. Determination of masses, mass-to-light ratios, and the "missing mass." Activity in Seyferts, radio galaxies, and quasars. Binaries, groups, clusters, and superclusters. The extragalactic distance scale: Galaxy formation and evolution. Confrontation of cosmological theories with observational results.

599 Cosmology
Fall. 4 credits. Not offered 1990-91.

620 Seminar: Advanced Radio Astronomy
Fall. 2 credits. Not offered 1990-91.

621 Seminar: Planetary Radar Astronomy
Spring. 3 credits. Not offered 1990-91.

640 Advanced Study and Research
Fall or spring. Credit to be arranged.

Hours to be arranged. Staff.

Guided reading and seminars on topics not currently covered in regular courses. Students need to register in the department office, 510 Space Sciences Building.

660 Cosmic Electrodynamics (also Applied and Engineering Physics 668)
Spring. 2 credits. Not offered 1990-91.
ARTS AND SCIENCES

671 Seminar: The Planet Venus
Spring. 3 credits. Prerequisite: permission of instructors.
Hours to be arranged. D. Campbell, S. Squyres.
Course will review our current understanding of the planet with emphasis on the planet's surface and any information that can be derived about its interior. Results from the Magellan radar mapper mission to the planet will be discussed.

673 Seminar: Planetary Atmospheres
Fall. 2 credits. Not offered 1990–91.

680 Seminar: Cosmic Rays and High-Energy Electromagnetic Radiation

690 Seminar: Computational Astrophysics (also Physics 681)
Spring. 3 credits. Prerequisites: working knowledge of FORTRAN. Only those students who have completed the fundamental graduate physics courses should consider attending. Not offered 1990–91.

699 Seminar: Solid State Astrophysics (also Physics 681)
Fall. 2 credits. Hours to be arranged. E. Salpeter.
An informal seminar, meeting once a week, for advanced graduate students in astronomy or physics. Topics: Physics of Interstellar Dust Grains; Equations of State at High Density.

BIOLOGICAL SCIENCES

P. J. Bruns, director (169 Biotechnology Building, 255-5042); H. T. Stinson, associate director and director of undergraduate studies (200 Stimson Hall, 255-5233); R. M. Sparrow, Biology Center coordinator (Biology Center, 216–222 Stimson Hall, 255-3558); M. L. Cox, executive staff assistant (200 Stimson Hall, 255-6859)

Biology is a popular subject at many universities for a variety of reasons: It is a science that is in an exciting phase of development; it prepares students for careers in challenging and appealing fields such as human and veterinary medicine and environmental sciences; and it deals with the inherently interesting questions that arise when we try to understand human and the living world around us. Many of the decisions we face today deal with the opportunities and problems that biology has put before us.

The program of study in biology at Cornell is offered by the Division of Biological Sciences to students enrolled in either the College of Agriculture and Life Sciences or the College of Arts and Sciences. Student services in the division's office for academic affairs and the Behman Biology Center are available to students from either college.

The biology major is designed to enable students to acquire necessary scientific foundations, to study in a specific area of biology, and to obtain breadth by studying different aspects of modern biology. Programs of study include animal physiology and anatomy; biochemistry, botany; cell biology; ecology, systematics, and evolution; general biology; genetics and development; microbiology; and neurobiology and behavior. A special program of study is available for qualified students with an interest in nutrition. Students interested in the marine sciences may consult the Cornell Marine Programs Office (G14 Stimson Hall, 255-3771) for academic advice and career counseling. For more details about the biology curriculum see the section in this catalog on the Division of Biological Sciences.

BURMESE AND CEBUANO (BISAYAN)

See Modern Languages and Linguistics.

CHEMISTRY

The chemistry department offers a full range of courses in physical, organic, inorganic, analytical, theoretical, biorganic, and biophysical chemistry. In addition to their teaching interests, chemistry faculty members have active research programs. The link between teaching and research is a vital one in a continuously evolving scientific subject; it ensures that students will be provided with the most advanced information and perspectives, and offers opportunities for students to participate in research.

The Major

The chemistry major at Cornell provides a great deal of flexibility and prepares students for a large variety of career options. In recent years, chemistry students have gone on to graduate study in chemistry, medicine, law, and business management, as well as directly into positions with chemical, pharmaceutical, and other industrial companies. A major in chemistry can also provide the basis for significant work in related areas such as molecular biology, chemical physics, geochemistry, chemical engineering, materials science, solid state physics, and secondary education. The required courses for the major can be completed in three years, leaving the senior year open for advanced and independent work under the supervision of a professor.

The courses are arranged as a progression, with some (including mathematics and physics) prerequisite to those that are more advanced. During the first year, a student should normally register for general chemistry (preferably Chemistry 215–216 although Chemistry 207–208 is also acceptable), mathematics, a freshman writing seminar course, a foreign language if necessary, or physics. Chemistry 215–216 is aimed at those students with general preparation and a strong interest in chemistry. Students who do not know if their preparation is adequate should consult the instructor. In the second year the student should complete calculus and take physics and organic chemistry (Chemistry 359–360) is preferred to Chemistry 357–358). The second-year laboratory courses include 300, Quantitative Chemistry, if needed, and 301, Experimental Chemistry I. Chemistry 389–390, Physical Chemistry, and Chemistry 302–303, Experimental Chemistry II and III, should be completed in the third year. Chemistry 410 should be completed in the third or fourth year. Advanced work in chemistry and related subjects is based on permission to the fourth year and in the earlier years as well. The opportunity for independent research is also available. All students with questions about the major are encouraged to consult the chair of the Department of Chemistry or the chair's representative.

Entering students who are exceptionally well prepared in chemistry may receive advanced placement credit for Chemistry 207.

Prerequisites for admission to a major in chemistry are (1) Chemistry 215–216 or 207–208 plus 300, (2) Physics 207, and (3) Mathematics 111 or 191. Students are not encouraged to undertake a major in chemistry unless they have passed those prerequisite courses at a good level. Knowledge of simple computer programming is essential. This may be achieved either by self-study (a syllabus is available) or by taking courses such as Computer Science 100. The minimum additional courses that must be completed for a major in chemistry are listed below.

1) Chemistry 301, 302, 303, 359, 360 (or, if necessary, 357–358 may be substituted), 389, 390, and 410
2) Mathematics 112 plus 213; or 122 plus 221, 222, or 192 plus 293, 294
3) Physics 208

Potential majors electing to take Mathematics 213 are strongly urged to do so in their sophomore year to avoid scheduling conflicts with Chemistry 389 in their junior year.

The sequence described above is a basic program in chemistry that students can extend substantially in whatever direction suits their own needs and interests. Those going on to do graduate work in chemistry should recognize that these requirements are minimal and should supplement them where possible, with further courses such as Chemistry 405, 605, 606, 666, and 681. Even students not planning graduate work in chemistry should consider advanced work in physics and mathematics, courses in the biological sciences, and advanced work in chemistry as possible extensions of the basic program.

Honors. The honors program in chemistry offers superior students an opportunity to study independently in seminars and to gain additional experience on a supervised research during the senior year. It is particularly recommended to those who plan graduate work in chemistry. Prospective candidates should complete the introductory organic chemistry and physical chemistry sequences by the end of the junior year. However, failure to have completed those courses in the junior year does not in itself disqualify a student from the honors program. The program at a high level of performance leads to the degree of Bachelor of Arts with honors in chemistry. Students will be admitted to the program by invitation of the department. Selection will be based on an estimated cumulative average, including chemistry grades, and good performance in a prior research program.
Prospective candidates should discuss their plans with advisers by March 1 of their junior year. Particpants are notified by early January of their senior year. To be awarded honors, candidates must show outstanding performance in at least 8 credits of undergraduate research such as is offered in Chemistry 421, 433, 461, or 477. In addition, superior performance, including the writing of a thesis, in the honors seminar (Chemistry 498) is expected.

The Alternate Major
The alternate major is a flexible program that provides core coverage of chemistry around which students can design a program to meet their own career goals. Requirements consist of a core program along with four additional courses chosen by the student. The additional courses, one of which must be in chemistry at the 300 level or above, should represent a cohesive plan and must be approved by a departmental committee.

The Core Program
1) Chemistry 215-216 (or 207-208 plus 300), 253, 251, 287, 289, and 410 (Chem 357-358 or 359-360 can be substituted for Chem 253, or Chem 389-390 can be substituted for Chem 287, thereby fulfilling the requirement for an additional chemistry course)
2) Mathematics 111, 112; or 111, 122; or 191, 192
3) Physics 207-208

Additional Courses
Possible plans for the remaining three courses might include programs in Biochemistry; Biology; Physics; Computer Science; Polymers; Materials Science; Science, Technology, and Society; History and Philosophy of Science and Technology; Business and Management; Economics; Education; and others.

Premedical students and those interested in pursuing double majors might find the alternate major particularly attractive. The course requirements for admission to the alternate major are the same as those for the standard major.

Program for Science Teachers
Chemistry majors who wish to become teachers will be interested to know that Cornell University offers a certification program for teachers of secondary (grades 7-12) science. Interested students apply to the program during their sophomore or junior years. If accepted, students integrate some course work in Education with the rest of their undergraduate studies. All chemistry majors who enter this program will remain in the College of Arts and Sciences to complete the major.

After earning the bachelor's degree, certification students enter the Graduate Field of Education to complete a fifth year of study at Cornell. Following this fifth year, students are eligible for a master's degree from Cornell and a teaching certificate from New York State.

Financial support is available for qualified applicants. Additional information is available from Susan Blish, 106 Kennedy Hall, 255-9255 or Prof. Deborah Trumbull, 426 Kennedy Hall, 255-3108.

Laboratory Course Regulations
Students registered for laboratory courses who do not appear at the first meeting of the laboratory will forfeit their registration in that course.

Students and members of the teaching staff are required to wear safety goggles and lab aprons in all chemistry laboratories. Students are reminded to take their goggles and lab aprons to the first laboratory session. Those who fail to cooperate with the safety program will be asked to leave the laboratories.

Students are required to pay for glassware and any other items broken during their laboratory sessions. Students who fail to inventory their desks at the appointed time in the presence of their instructor are charged a $10 fee in addition to charges for any breakage.

Courses
Preliminary examinations for all courses may be given in the evening.

103-104 Introduction to Chemistry
103, fall or summer; 4 credits. 104, spring or summer; 3 credits. Enrollment limited. Prerequisite for Chemistry 104. Chemistry 103. Recommended for students who have not had high school chemistry and for those needing a less mathematical course than Chemistry 207-208.

An introduction to chemistry, with emphasis on the important principles and facts of inorganic and organic chemistry.

203 The World of Chemistry
Spring. 3 credits. This course plus Chemistry 103 or 207 or 211 satisfies the College of Arts and Sciences physical science distribution requirement.

This course will detail the historical, practical, and simple chemical aspects of such topics as food, food additives, vitamins, the diet cancer question, and drugs (including over-the-counter, prescription, and street drugs). In addition, the influence of the media on important science issues will be described along with science publishing, including aspects of fraud. Finally, plastics, water and air pollution, acid rain, cosmetics, the principles of combustion, biotechnology, and the chemistry of crime detection will be presented. Extensive use will be made of demonstrations and visual aids.

207-208 General Chemistry
207, fall or summer; 208, spring or summer. 4 credits each term. Enrollment limited. Recommended for those students who will take further courses in chemistry. Prerequisite for Chemistry 207: high school chemistry. Prerequisite for Chemistry 208: Chemistry 207 or 103-104.

The important chemical principles and facts are covered, with considerable attention given to the quantitative aspects and to the techniques important for further work in chemistry.

Second-term laboratory includes a systematic study of qualitative analysis.

Note: Entering students exceptionally well prepared in chemistry may receive advanced placement credit for General Chemistry by demonstrating competence in the advanced placement examination of the College Entrance Examination Board or in the departmental examination given at Cornell before classes start in the fall.

211 Chemistry for the Applied Sciences
Fall or spring. 4 credits. Recommended for those students who intend to take only one term of chemistry. Enrollment limited. Prerequisite: high school chemistry or permission of instructor. Corequisite: a calculus course at the level of Mathematics 111 or 191.

The important chemical principles and facts are covered with the objective of understanding the role of chemistry in other fields. Emphasis is on topics such as solid-state materials, periodic trends, and specific classes of compounds, such as polymers.

Note: Entering students exceptionally well prepared in chemistry may receive advanced placement credit for General Chemistry by demonstrating competence in the advanced placement examination of the College Entrance Examination Board or in the departmental examination given at Cornell before classes start in the fall.

215-216 General and Inorganic Chemistry
215, fall, 216, spring. Fall. 4 credits; spring, 5 credits. Recommended for students who intend to specialize in chemistry or in closely related fields. Enrollment limited. Prerequisites: good performance in high school chemistry and physics and in mathematics SAT. Corequisite: a calculus course at the level of Mathematics 111 or 191 for students who have not taken high school calculus. Prerequisite for Chemistry 216: Chemistry 215.

An intensive systematic study of the laws and concepts of chemistry, with considerable emphasis on quantitative problems. The course is required for students planning to enter the professions and recommended for those students who plan to enter graduate study. Credit is not given for both Chemistry 211 and 215.

Introduction to Experimental Organic Chemistry

Fall or summer. 2 credits. Recommended for non-chemistry majors. Enrollment limited.
Prerequisites: Chemistry 208 and coregistration in Chemistry 253 or 357, or Chemistry 104 and 253 with a grade of C or better. Students who have taken Chemistry 104 must complete Chemistry 253 before taking Chemistry 251.
LEC: M or F 8:00 (all students attend first lecture), lab, M T W R F 1:25-4:25, or T or R 8-11. Prelims: 7:30-9 p.m., Oct. 11, Nov. 15, T. Frey.
Introduction to the synthesis, separation, and handling of materials, including applications of many types of chromatography, simple and fractional distillation, crystallization, extraction, and others.

Elementary Experimental Organic Chemistry

Spring or summer. 2 credits. Recommended for non-chemistry majors. Prerequisite: Chemistry 251.
LEC: M 8:00; lab, M T W R F 1:25-4:25. Prelims: 8 a.m., March 4, April 15. T. Frey.
A continuation of Chemistry 251.

Elementary Organic Chemistry

Fall or summer. 4 credits. Primarily for students in the premedical and biological curricula. Prerequisite: Chemistry 104 with grade of C or better or Chemistry 208 or 216.
LEC: M W F 10:10; makeup lec, W 7:30 p.m. Prelims: 7:30-9 p.m., Sept. 27, Oct. 25, Nov. 13. D. A. Usher.
The occurrence and properties of organic molecules and the mechanisms of organic reactions, including a brief introduction to the organic chemistry of biological systems.
Note: Because of duplication of material, students are not permitted to earn both 4 credits for Chemistry 253 and 3 credits for Chemistry 251. LEC: M W F 8:00; M W F 10:11; or T or R 8-11. Prelims: 8 a.m., March 4, April 15. T. Frey.
A continuation of Chemistry 251.

Elementary Organic Chemistry II

Fall. 4 credits. Enrollment limited, preference given to chemistry majors. Prerequisite: Chemistry 251.
Instrumental methods of analysis, including optical spectroscopy, atomic absorption, NMR, mass spectrometry, gas chromatography, IR/ GC/MS, and electrochemical methods.

Introductory Physical Chemistry I

Fall. 4 credits each term. Prerequisites: Chemistry 208 or 216 and Mathematics 111-112, or permission of instructor. Prerequisite for Chemistry 288: Chemistry 287.
A systematic treatment of the fundamental principles of physical chemistry. In the spring there will be two lectures; lecture 02 will be oriented to the application of physical chemistry to biological systems. Chemistry 287 satisfies the minimum requirement for physical chemistry in the alternate chemistry major.

Introductory Physical Chemistry Laboratory

Quantitative and qualitative methods basic to the experimental study of physical chemistry.

Quantitative Chemistry

Fall. 2 credits. Prerequisite: Chemistry 208 or advanced placement in chemistry.
Gravimetric, volumetric, spectrophotometric, and potentiometric methods are emphasized. Lectures and problem sets stress the relationship between theory and applications.

Experimental Chemistry I

Spring. 4 credits. Prerequisite: Chemistry 216 or 300, and 253 or 357 or 359. Concurrent registration in Chemistry 253 is not recommended.
An introduction to the techniques of synthetic chemistry. A representative selection of the most important classes of organic reactions will be explored in the laboratory. The theoretical basis for these reactions and for the separation techniques used will be discussed in the lectures.

Experimental Chemistry II

Fall. 4 credits. Enrollment limited, preference given to chemistry majors. Prerequisite: Chemistry 301.
Instrumental methods of analysis, including optical spectroscopy, atomic absorption, NMR, mass spectrometry, gas chromatography, IR/ GC/MS, and electrochemical methods.

Experimental Chemistry III

Spring. 4 credits. Each lab limited to 24 students. Prerequisites: Chemistry 302, 389, 390; coregistration in the latter is permissible.
An introduction to measurement strategies in physical chemistry as applied to kinetics, spectroscopy, the dynamics of photo-excited states, and the dielectric properties of matter. The principles and assembly of electronic, optic, computer, and vacuum line equipment will be studied. A familiarity with computer programming is assumed.

Introductory Organic Chemistry

357, fall; 358, spring. 3 credits each term. Prerequisite for Chemistry 357. Chemistry 208 or 216 or advanced placement; recommended: concurrent registration in Chemistry 251 or 300. Prerequisite for Chemistry 358: Chemistry 357; recommended: concurrent registration in Chemistry 252 or 301.
A systematic study of the more important classes of carbon compounds—reactions of their functional groups, methods of synthesis, relations, and uses.
Note: Because of duplication of material, students are not permitted to earn both 4 credits for Chemistry 253 and 3 credits for Chemistry 357. In special situations (consult instructor for details), students should take Chemistry 255 for 2 credits after having earned 3 credits for Chemistry 357. Students will not be permitted to take Chemistry 358 after completing Chemistry 253.

Introductory Organic Chemistry I and II

359, fall; 360, spring. 4 credits each term. Recommended for students who intend to specialize in chemistry or closely related fields. Enrollment limited. Prerequisites: Chemistry 216 with a grade of B or better, Chemistry 208 with a grade of A or better, or permission of instructor. Prerequisite for Chemistry 360: Chemistry 359. Recommended: coregistration in Chemistry 300-301.
A rigorous and systematic study of organic and organometallic compounds, their structures, the mechanisms of their reactions, and the ways they are synthesized in nature and in the laboratory.

Physical Chemistry I and II

389, fall; 390, spring. 4 credits each term. Prerequisites: Mathematics 213 or, ideally, 221-222; Physics 208; Chemistry 208 or 216 or permission of instructor. Prerequisite for Chemistry 390: Chemistry 389.
The principles of physical chemistry are studied from the standpoint of the laws of thermodynamics, kinetics, statistical mechanics, and quantum chemistry.
405 Techniques of Modern Synthetic Chemistry
Spring. 3 or 6 credits. Enrollment limited.
Prerequisites: Chemistry 302 and permission of instructor.
Selection of students will be based on grades in Chemistry 301 and 302.
To receive these credits, students must perform a minimum of three two-week experiments. Six credits will be given for two additional experiments. Completion of five exercises in elementary glass-blowing will count as one experiment.
Lab time required: 16 hours each week, including at least two 4-hour sessions in one section (M W 1:25). First meeting will be at 1:30 on first class day of semester.LEC, first week only, at times to be arranged. J. M. Buritch.
The syntheses of complex organic, organometallic, and inorganic molecules are carried out with emphasis on the following techniques: vacuum line, high pressure, high-temperature solid state, inert atmosphere, nonaqueous solvents, radioactive labeling, sol-gel, photochemical and electrochemical methods, solid phase peptide synthesis, and polymer synthesis. Elementary glassblowing.
410 Inorganic Chemistry
Spring. 4 credits. Prerequisites: Chemistry 358 or 360, and 389.
Lecs, M W F 11:15. B. K. Carpenter.
A systematic study of the synthesis, structure, and reactivity of inorganic and organometallic compounds.
421 Introduction to Inorganic Research
Fall or spring. 2-4 credits. Prerequisites: Chemistry 303 or 389-390, or Chemistry 287-288, and Chemistry 289-290 with an average of B- or better, or permission of instructor. Selected faculty.
Research in inorganic chemistry involving both laboratory and library work, planned in consultation with a faculty member.
433 Introduction to Analytical Research
Fall or spring. 2-4 credits. Prerequisites: Chemistry 303 and 390 with an average of B- or better or permission of instructor. Selected faculty.
Research in analytical chemistry involving both laboratory and library work, planned in consultation with a faculty member.
461 Introduction to Organic Research
Fall or spring. 2-4 credits. Prerequisites: Chemistry 302 and 358 or 360 with a grade of B- or better or permission of instructor. Selected faculty.
Research in organic chemistry involving both laboratory and library work, planned in consultation with a faculty member.
477 Introduction to Physical Chemistry Research
Fall or spring. 2-4 credits. Prerequisite: Chemistry 300 with an average of B- or better or permission of instructor. Selected faculty.
Research in physical chemistry involving both laboratory and library work, planned in consultation with a faculty member.
488 Honors Seminar
Spring. No credit. Admission by departmental invitation. Additional prerequisites or corequisites: outstanding performance in either (1) two coherent 4-credit units of research in a course such as Chemistry 421, 433, 461, or 477 and summer research equivalent to at least 4 credits in the same subject.
Lecs, M W F 12.00. J. D. DiSalvo.
622 Chemical Communication (also Biological Sciences 632)
Fall. 3 credits. Limited to 30 students.
Prerequisites: Chemistry 358 or 360 and Biological Sciences 102. Intended primarily for research-oriented students. Offered alternate years. Not offered 1990-91.
The production, transmission, and reception of chemical signals in communicative interactions of animals, plants, and microorganisms. Communication involving insects is emphasized. Specific topics are treated, with varying emphasis on chemical, biochemical, neurobiological, ecological, and evolutionary principles.
625 Advanced Analytical Chemistry I
Fall. 4 credits. Prerequisite: Chemistry 288 or 390 or equivalent.
Lecs, M W F 8, problem sessions. T 7:30 p.m. C. F. Wilcox, F. W. McLaflin.
The application of molecular spectroscopy to chemical problems. Topics in infrared, NMR, and mass spectroscopy are discussed.
627 Advanced Analytical Chemistry II
Spring. 3 credits. Primarily for graduate students.
Prerequisite: Chemistry 288 or 390 or equivalent. Not offered 1990-91.
Lecs, T R 10:10; problem sessions and exams. T 7:30 p.m. F. W. McLaflin.
Modern analytical methods for molecular characterizations, including electron, Mossbauer, and Fourier spectroscopy, mass spectrometry; methods applicable to macromolecules; information theory.
628 Advanced Analytical Chemistry III
Spring. 3 credits. Primarily for graduate students.
Prerequisite: Chemistry 288 or 390 or equivalent. Not offered 1990-91.
Modern trace, micro, and surface methods of analysis, including atomic spectrometry, solid mass spectrometry, activation analysis, microscopes, microprobes, and electron spectroscopy.
629 Electrochemistry
Fall. 3 credits. Primarily for graduate students and upperclass undergraduates.
Prerequisites: Chemistry 390 or equivalent (Mathematics 213 helpful). Not offered 1990-91.
Fundamentals and applications of electrochemistry. Topics will include the fundamentals of electrode kinetics, electron transfer theory, the electrical double layer, and diffusion. A wide range of techniques and their application as well as instrumental aspects will be covered.
650-651 Organic and Organometallic Chemistry Seminar
650, Fall, 651, Spring. No credit. Required of all graduate students majoring in organic or bioorganic chemistry. Juniors and seniors are encouraged to attend.
M. T. Begley.
A series of talks representative of all fields of current research interest in organic and organometallic chemistry, given by research associates, faculty members, and distinguished visitors.
665 Advanced Organic Chemistry
Fall. 4 credits. Primarily for graduate students and upperclass undergraduates.
Prerequisites: Chemistry 253 or 358 or 360, and 390 or equivalents or permission of instructor.
A survey of reaction mechanisms and reactive intermediates in organic chemistry.
666 Synthetic Organic Chemistry
Spring. 4 credits. Primarily for graduate students and upperclass undergraduates. Prerequisite: Chemistry 665 or permission of instructor.
Lecs, T R 8:30-9:30. D. Collum
Modern techniques of synthesis; applications of organic reactions and mechanisms to the problems encountered in rational multistep synthesis, with particular emphasis on modern developments in synthesis design.

668 Chemical Aspects of Biological Processes
Fall. 4 credits. Prerequisite: Chemistry 358 or 360 or equivalents. Not offered 1990–91.
Lecs, T R 8:30–10. T. P. Begley
A representative selection of the most important classes of enzyme-catalyzed reactions will be examined from a mechanistic perspective. Topics discussed will include the chemical basis of enzymatic catalysis, techniques for the elucidation of enzyme mechanism, cofactor chemistry, the biosynthesis of penicillin, chlorophyll, melanin, terpenes, amino acids, and the biodegradation processes for the elucidation of enzyme.

671 Synthetic Polymer Chemistry (also Materials Science and Engineering 671 and Chemical Engineering 675)
Fall. 4 credits. Prerequisite: Chemistry 359–360 or equivalent or permission of instructor; recommended. Materials Science and Engineering 620.
Lecs, T R 8:30–10. J. M. Frechet
Modern concepts in synthetic polymer chemistry. The application of organic synthesis to the development of new polymers and copolymers and the control of their architecture. Chain and step-growth polymerizations, reactions of polymers, block and graft copolymers. A broad spectrum of applications from recent literature will also be discussed.

672 Kinetics and Regulation of Enzyme Systems
Fall. 4 credits. Primarily for graduate students in chemistry and biochemistry. Prerequisite: Chemistry 390, Biological Sciences 351, or equivalents or permission of instructor. Not offered 1990–91.
Lecs, M W F 7 p.m. B. A. Baird
Protein structure and dynamics; thermodynamics and kinetics of ligand binding; steady state and transient enzyme kinetics; enzyme catalysis and regulation; role of plasma membrane receptors in regulating cellular activities.

677 Chemistry of Nucleic Acids
Spring. 4 credits. Primarily for graduate students in chemistry and biochemistry. Prerequisite: Chemistry 390, Biological Sciences 351, or equivalents or permission of instructor. Not offered 1990–91.
Lecs, M W F 10:10. D. A. Usher
Properties, synthesis, reactions, and biochemical reactions of nucleic acids.

678 Thermodynamics
Spring. 4 credits. Primarily for graduate students. Prerequisite: Chemistry 288 or 390 or equivalents.
Lecs, T R 8:30–9:55. P. L. Houston
Principles of equilibrium thermodynamics. Thermodynamic functions, First and Second Laws; gases and condensed phases; solutions; phase equilibria, chemical equilibria; surface thermodynamics; electrolytes; statistical thermodynamics and the Third Law.

681 Physical Chemistry III
Fall. 4 credits. Prerequisites: Chemistry 288 or 390; Mathematics 213 and Physics 208; or equivalents.
Lecs, M W F 10:10. R. F. Porter
An introduction to the principles of quantum theory and statistical mechanics, atomic and molecular spectra, and elementary valence theory. At the level of Quantum Chemistry, by Levine.

686 Physical Chemistry of Proteins
Spring. 4 credits. Primarily for graduate students. Prerequisite: Chemistry 288 or 390 or equivalents. S-U grades. Letter grades for undergraduates. Offered alternate years.
Lecs, M W F 8, and occasionally W 7:30 p.m. H. A. Scheraga
Chemical constitution, molecular weight, and structural basis of proteins; thermodynamic, hydrodynamic, optical, spectroscopic, and electrical properties of protein and enzyme reactions; statistical mechanics of helix-coil transition in biopolymers; conformation of biopolymers; protein folding.

700 Baker Lectures
Fall, on dates to be announced. No credit.
Distinguished scientists who have made significant contributions to chemistry present lectures for periods ranging from a few weeks to a full term. This year's lecturer: R. Noyori, Nagoya Univ., Japan.

701-702 Introductory Graduate Seminar in Analytical, Inorganic, and Physical Chemistry
Fall, 701, spring, 702, spring. No credit. Required of all first-year graduate students majoring in analytical, Inorganic, physical, theoretical, and biophysical chemistry.
Hours to be arranged. H. D. Abrahams

716 Selected Topics in Advanced Inorganic Chemistry: Transition Metal Oxides (also Materials Science and Engineering 716)
Fall. 3 credits. Prerequisite: some elementary knowledge of chemistry and bonding. Not offered 1990–91.
Lecs, M W F 10:05.
This course will cover a range of properties of transition metal oxides. It will include a survey of their structure and synthesis and their defect and surface chemistry. Bonding and physical and materials properties, especially those relating to electronic structure, will be emphasized. This course will have a strong interdisciplinary flavor and should be of interest to solid-state and surface chemists, physicists, and materials scientists at the graduate Student and postdoctoral level.

745 Physical Polymer Science I (also Chemical Engineering 745)
Fall. 3 credits. Prerequisite: a graduate-level thermodynamics statistical course.
Lecs, to be arranged. C. Cohen

746 Physical Polymer Science II (also Chemical Engineering 746)
Fall. 3 credits. Prerequisite: a graduate level thermodynamics statistical course. Not offered 1990–91.
Lecs, T R 10–11:15. C. Cohen
Rheology and processing. Applications and limitations of various rheometers. Linear viscoelasticity; non-linear continuum models; kinetic theory of polymeric liquids. Pressurization, pumping, and the modelling of processing machines. Injection and compression molding; mold filling, simulations, structure, and orientation.

782 Special Topics in Organic Chemistry
Spring. 3 credits. Not offered 1990–91.
Lecs, M W F 9:05.
Topics vary.

786 Physical Organic Chemistry I
Spring. 4 credits. Primarily for graduate students. Prerequisite: Chemistry 665 or permission of instructor.
Lecs, M W F 10:10. C. F. Wilcox
Emphasis is on applications of reaction kinetics and isotope effects to gain an understanding of reaction mechanisms.

786 Physical Organic Chemistry II
Spring. 3 credits. Primarily for graduate students. Prerequisite: Chemistry 765 or permission of instructor. Not offered 1990–91.
Quantitative aspects of organic chemistry.

774 Chemistry of Natural Products
Fall. 3 credits. Primarily for graduate students. Prerequisites: Chemistry 665–666. Not offered 1990–91.
Lecs, T R 12:20.
Particular attention is devoted to methods of structure determination and synthesis as applied to selected terpenes, steroids, alkaloids, and antibiotics.

780 Principles of Chemical Kinetics
Fall. 4 credits. Prerequisite: Chemistry 681 or permission of instructor.
Lecs, M W F 9:05. B. A. Baird
Principles and theory of chemical kinetics; special topics such as fast reactions in liquids, enzymatic reactions, energy transfer, and molecular beams.

782 Special Topics in Biophysical and Bioorganic Chemistry
Spring. 3 credits. Not offered 1990–91.
Lecs, T R 11:15.
Topics vary from year to year.

789 X-ray Crystallography
Spring, offered only when sufficient registration warrants. 4 credits. Prerequisite: Chemistry 288 or 390 or permission of instructor. Not offered 1990–91.
Lecs, M W F 10:10. G. VanDuyne
A beginning course in the application of X-ray crystallography to structural chemistry. Topics include symmetry properties of crystals, diffraction of X-rays by crystals, interpretation of diffraction data, and refinement of structures. The chemical information available from a diffraction experiment is stressed, and theoretical aspects are illustrated by conducting an actual structure determination as a classroom exercise. At the level of Ladd and Palmer's Structure Determination by X-ray Crystallography.
Tannoudji's or equivalent and coregistration in Physics 432 but not essential. Not offered 1990-91.

Spring. 3 credits. Prerequisite: Chemistry 793.

Microstates, ensembles, partition functions, and statistical mechanics and light/matter interaction. Time-dependent phenomena in quantum mechanics; variational principle, Born-Oppenheimer approximation. At the level of Child's equilibrium statistical mechanics: density matrix and quantum spectra. Introduction to nonequilibrium phenomenon, does not aim at providing specific training in quantitative methods. At Cornell, we are deeply interested in the continuing study of classical and modern literary and historical humanities, including not only the traditional study of language, literature, and the humanities selected in consultation with the adviser.

Majors

The Department of Classics offers majors in Classics, Greek, Latin, and Classical Civilization.

Classics

Those who major in Classics must complete 24 credits in advanced Greek or Latin (numbered 201 or above) and 15 credits in related subjects selected in consultation with the adviser.

Classical Civilization

Those who major in Classical Civilization must complete (a) qualification in Latin and Greek or proficiency in either; (b) 24 credits selected from the courses listed under Classical civilization, Classical archaeology, Latin, and Greek, and Classical civilization programs, the range of instruction in that field, such as comparative study of Mediterranean civilizations and modern literary theory.

Although Classics, like other areas of humanistic study, does not aim at providing specific professional training, over the years Classics majors from Cornell have gone on to a wide variety of careers: in law, teaching, medicine, diplomacy, management, educational administration, government, and many others. The department offers courses in Bronze Age and Classical archaeology and is active in field archaeology in Classical lands. It recently sponsored an archaeological excavation at Alambra, in Cyprus, which served as a field training school for Cornell undergraduates and graduate students, and plans are under way for further excavation projects. On campus there are also collections of ancient artifacts, reproductions of ancient sculpture, and one of the few laboratories in the world to concentrate on the tree-ring dating of ancient monuments from Greece, Cyprus, and Turkey. The archaeology courses may be used to satisfy the requirements of the appropriate major study as given above and must also successfully complete the special honors courses 370, 471, and 472. Credit for honors courses may be included in the credits required for the major study. Students who wish to become candidates for honors, who have a cumulative average of B+ or better, and who have demonstrated superior performance in Classical courses (Greek, Latin, and Classical Civilization), submit an outline of their proposed honors work to the honors committee during the first month of their fifth semester. The chair will appoint a committee of three faculty members for each candidate, and the committee will be responsible for evaluating the candidate's proposal and subsequently supervising his or her work. At the completion of the honors thesis, which must demonstrate knowledge of the main bibliographical sources, give promise of scholarly talent, and show creativity, the committee will determine the level of honors to be awarded.

Latin

Requirements for the major in Latin parallel those of the major in Greek. Honors. Candidates for the degree of Bachelor of Arts with honors in Classics, Greek, Latin, or Classical civilization must fulfill the requirements of the appropriate major study as given above and must also successfully complete the special honors courses 370, 471, and 472. Credit for honors courses may be included in the credits required for the major study. Students who wish to become candidates for honors, who have a cumulative average of B+ or better, and who have demonstrated superior performance in Classical courses (Greek, Latin, and Classical Civilization), submit an outline of their proposed honors work to the honors committee during the first month of their fifth semester. The chair will appoint a committee of three faculty members for each candidate, and the committee will be responsible for evaluating the candidate’s proposal and subsequently supervising his or her work. At the completion of the honors thesis, which must demonstrate knowledge of the main bibliographical sources, give promise of scholarly talent, and show creativity, the committee will determine the level of honors to be awarded.
Study Abroad
Cornell participates in the Intercollegiate Center for Classical Studies in Rome, which offers courses in Latin, Greek, ancient history, art, archaeology, and Italian. Cornell is a member institution of the American School of Classical Studies at Athens, whose Summer Program is open to graduate students and qualified undergraduates. The American Academy in Rome, of which Cornell is also a member institution, offers full-year and summer programs for qualified graduate students. For graduate students the Department of Classics offers a few travel grants each year from the Townsend Memorial Fund. Detailed information on these programs is available in the Department of Classics Office, 120 Goldwin Smith Hall.

Summer Support for Language Study
The Beatrice R. Kanders Memorial Scholarship and a certain amount of aid made possible by gifts from the Constantinos C. Polychronis Foundation are normally available to students who want to enroll in Intensive Latin or Greek in the Cornell summer session. These six-week courses are designed to enable students to enter second-year Latin or Greek the following fall. Applications are due to the chair of the Department of Classics by April 12.

Placement in Latin
Placement of first-year students in Latin courses is determined by an examination given by the Department of Classics during orientation week or, if necessary, in the second half of the fall term.

Freshman Writing Seminars
These courses are offered as freshman writing seminars and as freshman electives but may not be used to satisfy the humanities distribution requirement. Consult John S. Knight Writing Program brochure and the summer session catalog for times, instructors, and descriptions.

109 The Art of Argument: An Introduction to Rhetoric (also English 109)
Summer. 3 credits.
113 Word Power: Greek and Latin Elements in the English Language
Summer. 3 credits.
114 Word Power for the Biological Sciences
Summer. 3 credits.
120 Latin Literature
Fall or spring. 3 credits.
121 Classical Archaeology
Fall or spring. 3 credits.
123 Comedy
Summer. 3 credits.
125 Tragedy
Fall. 3 credits.
126 The Trojan War
Fall. 3 credits.
150 Greek and Roman Myths
Fall or spring. 3 credits.

Classical Civilization
100 Word Power: Greek and Latin Elements in the English Language
Fall. 3 credits.
This course gives the student with no knowledge of Classical languages an understanding of how the Greek and Latin elements that make up over half our English vocabulary operate in both literary and scientific English usage. Attention is paid to how words acquire their meaning and to enlarging each student's working knowledge of vocabulary and grammar.

102 Word Power for the Biological Sciences
Summer. 3 credits.
H. Roisman.
A study of the Greek and Latin word elements that combine to form most of the specialized terms in the biological sciences. The student who learns the meanings of those elements and the rules of word formation usually can recognize the basic meaning of any unfamiliar word in that field. The class also gives attention to mispronunciations and words still in use that reflect outmoded scientific theories.

200 Classical Civilization
Fall. 3 credits.
F. Ahl.
Readings in translation from the Iliad, the Odyssey: the Aenid, and Greek and Roman drama, oratory, and history. An encounter with the texts that have shaped our humanistic tradition.

211 The Greek Experience
Fall. 3 credits.
M W F 11:15. F. Ahl.
This course takes us from Alexander the Great to Masada, exploring the written and visual accounts of their contacts and even their role in the creation of a new religion.

212 The Roman Experience
Spring. 3 credits.
This course will examine not only the intellectual life of the Romans but what it meant for men and women of all social classes to live in the Roman world. Selected readings in translation of works of literature, history, and philosophy, supplemented by slides and other visual materials.

215 Conquerors and Conquered: The Case of the Romans, Jews, and Greeks
Summer. 3 credits.
J. Roisman.
Romans, Jews, and Greeks: How did they first come into contact (and conflict) with each other? How did they view each other? What were their values, beliefs, and ambitions? Were they too different to allow peaceful coexistence? The course takes us from Alexander the Great to Masada, exploring the written accounts of their contacts and even their role in the creation of a new religion.

Classical Languages

217-218 Initiation to Greek and Roman Cultures
Limited to 18 students. These courses are intended especially for freshmen (a few exceptionally motivated sophomores or upperclass students may be accepted) and may be taken independently of one another. Apply in writing to the chair, Department of Classics, 120 Goldwin Smith Hall.

Knowledge of Greek or Latin is not necessary, since all texts are in translation. What is necessary is the willingness to participate in three one-hour seminars each week and also a supplementary one-hour (occasionally two-hour) session, during which the class will participate in workshops with specially invited guests.

217 Initiation to Greek Culture
Fall. 4 credits.
M W F 10:10, plus one hour to be arranged. P. Mitsis, P. Pucci.
This year's course will focus on Greek tragic drama and its relation to the Greek astrophysical environment. We will involve the analysis of individual tragedies as well as a close reading of some seminal criticism by thinkers such as Aristotle, Hegel, Nietzsche, and Derrida. We will also survey some selected modern productions of Greek tragedy on film and discuss problems that arise in the performance of Greek tragedy.

218 Initiation to Roman Culture: Rome and Anti-Rome
Spring. 4 credits.
M W F 10:10, plus one hour to be arranged. F. Ahl, J. Whitehead.
In this course two professors, an archaeologist and a literary critic, give an overview of the Roman Empire and of modern attitudes toward it, by discussing selected places, themes, and works of art and literature. We start with visual images, the amphitheater, for example, and consider not only their importance as cultural and artistic statements but how they come to symbolize in literature and religious controversy the magnificence and decadence of Roman power. Similarly, we examine the poetry and official monuments (Trajan's column and the great triumphal arches). Other topics include Roman attitudes to non-Romans, daily life and domestic architecture of Pompeii and Herculaneum, and the literature and art of political and religious dissent.

223 The Comic Theater (also Comparative Literature 223)
Spring. 3 credits. Students may not obtain credit for both this course and Classics 123.
The origins of comic drama in ancient Greece and Rome, and its subsequent incarnations especially in the Italian renaissance (Commedia erudita and Commedia dell'arte), Elizabethan England, seventeenth-century France, the English Restoration, and Hollywood in the thirties and forties. Chief topics will be: the growth of the comic theatrical tradition and conventions; techniques and themes of comic plots (trickster, parody, farce, caricature); and the role of comedy in society. All readings in English.

224 Greek Philosophy
Fall. 3 credits. Not offered 1990-91.
An introduction to the pre-Socratic philosophers and Plato.]
Discussion of Christian liturgy and beliefs both in the East and the West to determine what Christianity owed to its pagan predecessors and to isolate the factors that contributed to its triumph over the "rival" pagan cults of late antiquity.

245 Greek and Roman Historians
Fall. 5 credits.
M W F 9:05. J. Ginsburg.
Study of historical writing in antiquity through selected readings in translation from the Greek and Roman historians. Among topics to be examined are the interaction between the ancients, the method, narrative technique, and accuracy of the Greek and Roman historians; and their attitudes toward the events that they relate.

300 Greek and Roman Drama (also Comparative Literature 330)
Spring. 4 credits. Not offered 1990-91.
The tragedies of Aeschylus, Sophocles, and Euripides, read in translation. The main emphasis will be on the form of the drama and on their meaning in the five centuries B.C. and today.

333 Latin Foundations of Western Literature (also Comparative Literature 334)
Spring. 4 credits. Not offered 1990-91.
Selected readings in translation from the Latin literature of the Roman Empire, including the major art forms (epic poetry, tragedy, comedy, architecture, painting, and sculpture). The course will investigate the interaction of religion with these forms—an interaction that permeates both for the understanding of Greek religion and the forms themselves, some of which, like tragedy, originated in cult. A representative variety of cults and their history will be studied with special emphasis on mystery cults, such as the Eleusinian mysteries of Demeter and Persephone, the Kabiroi, the Great Gods of Samothrace, and Bacchic rites.

337 Ancient Philosophy of Science
Spring. 4 credits. Not offered 1990-91.
The aim is not only to provide an introduction to the comedy, satire, and other humorous writing in Greek and Roman literature, but to discuss the ancient works in light of modern theories of comedy and laughter. Discussion of the nature of laughter itself in light of both ancient and modern scholarship on the subject, from Plato's Philebus to Freud's Wit and Its Relations to the Unconscious and Koestler's The Act of Creation. Examination of select works and passages of Homer, Euripides, Aristophanes, Hierocles, Lucian, Plautus, Nonnus, Horace, Martial, Juvenal, and Petronius.

340 Ancient Greek Constitutions (also Government 340)
Spring. 4 credits. Prerequisite: one of the following: survey of Greek history, a course in Greek civilization, a course in political theory or comparative politics, or permission of instructor.
The Greek work politeia means "constitution," but not a single written document. It means the form of political life within a state. This course will survey briefly the variety of forms of political life in ancient Greece from the time of Homer to the Classical fourth-century Athenian democracy. The majority of time will be devoted to the history, functioning, and assessment of the Athenian democracy and Athenian law. The second major topic will be the constitution of Sparta and its role as the alternative to democracy. As each constitution is studied, the role of women and ideas of justice within the state will be considered.

Required readings will be in translation.

363 Representations of Women in Ancient Greece and Rome (also Women's Studies 363)
Fall. 4 credits. Not offered 1990-91.
M W 2:30-3:45. L. S. Abel, J. Ginsburg.
Classical authors created and left behind powerful images of women and of what women ought and ought not to be. These writers also provide fleeting insights into the real lives of women in antiquity. In this course, we will examine the ancient evidence in order to trace the origins of some Western attitudes about women and to analyze the assumptions that underlie the representations of women in ancient Greece and Rome. How are these images constructed and how do they work? How can we use the ancient evidence to assess the real lives and social roles of women in antiquity?

382 Greeks, Romans, and Victorians (also Society for the Humanities 382)
F. Ahl.
Modern popular and scholarly views of Greek and Latin literature were shaped in the Victorian years of the nineteenth century, when the years of Republican and Marxist revolution. This course explores some of the ways in which nineteenth-century social and intellectual upheavals, and changes in scholarly techniques and approaches, may have affected our understanding of the ancient world. The focus will be on poets and dramatists, and a few novelists in a variety of situations.

390 Comparative Sanskrit Myth and Epic (also Asian Studies 390)
Spring. 4 credits. Not offered 1990-91.
T R 12:55-1:45. C. Minkowski.
Readings in translation from the two Sanskrit epics, the Mahabharata and the Ramayana, and from the main cycles of the Puranas, the Sanskrit mythological literature. Special attention will be given to parallels and comparisons with Greek myth and epic, especially Homer and Hesiod. Classics 236 or 238 would be useful as background, but not presupposed.

391 Classical Indian Narrative (also Asian Studies 391)
Spring. 4 credits.
T R 12:55-1:45. C. Minkowski.
Readings in translation from the principal story literature of ancient India. Sources will include the Vedas, the Buddhist Jatakas, the Sanskrit epics, the Kathasaritsagara, the Pancatantra, and related collections. Attention will be given to comparisons with early Greek narrative, and to the diffusion of Indian narrative through the world's literatures.
opportunities for social mobility, the political set in motion by Alexander's invasion of the
This course will explore the sweeping changes of power through political and social revolu­
tion, the Augustan attempt to regulate family life and social relations by legislation, the relation of the emperor Tiberius with the members of the old ruling class, the growth of the imperial bureaucracy and the new opportunities for social mobility, the political opposition to Claudius and Nero, Nero's cultural and provincial policy, and the manipulation of the imperial cult. All readings will be in English.

Undergraduate Seminar in Classical Civilization: Origins of the Hellenistic World: Alexander the Great and His Legacy (also History 496 and Classics 602)
Spring. 4 credits. Prerequisite: some background in ancient history or permission of instructor.
This course will explore the sweeping changes (political, institutional, religious, and cultural) set in motion by Alexander's invasion of the Persian empire and the fierce contests over his heritage. The seminar requires active participation in the weekly discussions, two oral reports, and one research paper.

Graduate Seminar in Classical Civilization: Origins of the Hellenistic World: Alexander the Great and His Legacy (also Classics 496 and History 496)
Spring. 4 credits. Prerequisite: permission of instructor.
For description, see Classics 496.

Language of Myth (also Anthropology 610 and Comparative Literature 615)
Spring. 4 credits.
An analysis of the theories on language leading to Levi-Strauss and Derrida. Myths and the notion of “the father.”

Medieval Education and the Classical Tradition
Fall. 4 credits. Not offered 1990-91.
Hours to be arranged. W. Wetherbee.
An introduction to the institutions by which literary culture was shaped and transmitted in the medieval period. Starting from a review of the legacy of the schools of late antiquity, we will look at the evolving curricula of the medieval schools, ways in which classical and religious texts were read and glossed, the development of new literary forms in the schools, and the role of the classical traditions in shaping social ideology and defining a program for vernacular literature. Some knowledge of Latin will be useful.

Patristic Seminar: Graduate
Fall or spring. 4 credits. Not offered 1990-91.

Greek

101 Greek for Beginners
Fall. 4 credits. Prerequisite: Classics 212, History 268, or permission of instructor. W 2:30-4:30. J. Ginsburg.
An undergraduate seminar examining several important social and political changes in Roman society under Augustus and his successors, the Julio-Claudians. Topics to be investigated include Augustus's consolidation of power through political and social revolution, the Augustan attempt to regulate family life and social relations by legislation, the relation of the emperor Tiberius with the members of the old ruling class, the growth of the imperial bureaucracy and the new opportunities for social mobility, the political opposition to Claudius and Nero, Nero's cultural and provincial policy, and the manipulation of the imperial cult. All readings will be in English.

104 Intensive Greek
Summer. 6 credits.
An intensive introduction to the fundamentals of ancient Greek grammar. Prepares students in one term for 200-level Greek.

111-112 Modern Greek
111, fall; 112, spring. 3 credits each term. Fall: M W F 12:20. H. Kolias.

101 Attic Authors
Spring. 4 credits. Prerequisite: Classics 103 or 104 or equivalent.
M W F 1:25. K. Clinton.
Selected readings from Greek prose writers.

202 The New Testament (also Near Eastern Studies 220)
Spring. 3 credits. Prerequisite: at least one year of ancient Greek (Classics 101-103) or permission of instructor.
M W F 9:05. J. Rusten.
Selections in Greek from all four gospels and the letters of Paul, with special attention to Luke, Acts, and Corinthians I-II.

206 Herodotus
Spring. 3 credits. Prerequisite: Classics 103 or 104 or equivalent.
Selected readings from Herodotus' Histories.

209 Greek Composition
Fall. 3 credits. Prerequisite: Classics 203 or 204 or equivalent. Not offered 1990-91.

210 Greek Composition
Spring. 3 credits. Prerequisite: Classics 209 or equivalent. Not offered 1990-91.

Intermediate Modern Greek
Fall. 3 credits. Prerequisite: Classics 112 or placement by departmental examination.
M W F 2:30. H. Kolias.
This course, designed for students who have completed introductory modern Greek or have a reading knowledge of the language, will review modern Greek grammar and give attention to developing facility in conversa­tional and written expression, usually in connection with assigned readings in modern Greek prose and poetry. Audio- and videocassettes will be used from time to time to introduce contemporary Greek life and culture.

Readings in Modern Greek Literature
Spring. 3 credits. Prerequisite: Classics 213 or permission of instructor.
M W F 2:30. H. Kolias.

301 Greek Historians
Fall. 4 credits. Prerequisite: Classics 203 or 204 or equivalent. Not offered 1990-91.

302 Greek Tragedy
Fall. 4 credits. Prerequisite: Classics 203 or equivalent. Not offered 1990-91.

303 Readings in Greek Rhetoric
Fall. 4 credits. Not offered 1990-91.

305 Attic Comedy
Fall. 4 credits. Prerequisite: Classics 203 or 204 or equivalent. Not offered 1990-91.

306 Greek Lyric Poetry
Fall. 4 credits. Prerequisite: Classics 203 or 204 or equivalent. Not offered 1990-91.
A survey of selected "lyric" poems from Archaic to Hellenistic times.

307 Plato
Fall. 4 credits. Prerequisite: Classics 203 or 204 or equivalent. Not offered 1990-91.

308 New Testament Greek
Fall. 4 credits. Prerequisite: at least three terms of college-level Greek or permission of instructor. Not offered 1990-91.
Selected readings from the Gospels and other New Testament writings will aim at giving students the ability to translate Koine Greek with relative ease.

310 Greek Undergraduate Seminar: Sophocles' Oedipus
Spring. 4 credits. Prerequisite: two 200-level courses in Greek or permission of instructor. TR 10:10-11:25. F. Ahl.

311 Greek Philosophical Texts (also Philosophy 411)
Fall or spring. Up to 4 credits. Prerequisite: knowledge of Greek and permission of instructor. Not offered 1990-91.
Hours to be arranged. T. H. Irwin. Reading of Greek philosophical texts in the original.

313 Greek Epic
Fall. 4 credits. Prerequisite: Classics 206 or equivalent.
Reading in Homer's Iliad. Homer's literary technique will be emphasized, and there will be discussion of the archa­eological background of Homeric epic.

401-402 Independent Study in Greek, Undergraduate Level
401, fall; 402, spring. Up to 4 credits. Hours to be arranged. Staff.

417 Advanced Readings in Greek Literature: Aeschylus
Fall. 4 credits. For advanced undergraduates and graduate students. Prerequisite: two terms of 300-level Greek or permission of instructor. TR 11:40–12:55. H. Pelliccia

418 Advanced Readings in Greek: Homer
Spring. 4 credits. For advanced undergraduates and graduate students. Prerequisite: two terms of 300-level Greek or permission of instructor. TR 8:40–9:55. P. Pucci.

419 Advanced Greek Composition
Fall. 3 credits. Prerequisite: Classics 209–210 or equivalent.

442 Greek Philosophy
Fall or spring. 4 credits. Not offered 1990-91.
A survey of Greek literature in two semesters. Classics 605: Greek literature from Homer to the mid-fifth century. Classics 606: Greek literature from the late fifth century to the Empire.

671 Graduate Seminar in Greek: Ritual and Tragedy
Fall. 4 credits.
M 2:30-4:30. D. Shanzer.

672 Graduate Seminar in Greek: Plato
Spring. 4 credits.

701-702 Independent Study for Graduate Students in Greek
701, fall; 702, spring. Up to 4 credits. Hours to be arranged. Staff.

Latin
105 Latin for Beginners
Fall. 4 credits.
M T W F 9:05, L. B. Sellers; M T W F 11:15, R. Morello; M T W F 12:20, I. Hohendahl; M T W F 1:25, J. DeFilippo.

106 Elementary Latin
Spring. 4 credits.
A continuation of Classics 105, using readings from various authors.

107 Intensive Latin
Spring or summer. 6 credits.
Prepares students in one term for 200-level Latin.

205 Intermediate Latin
Fall or summer. Prerequisite: Classics 106, 107, or 108 or placement by departmental examination.
Fall. M W F 11:15, J. DeFilippo; M W F 1:25, H. Pelliccia.

207 Catullus
Spring. 3 credits. Prerequisite: Classics 106, 107, or 108 or one term of 200-level Latin. Not offered 1990-91.
M W F 11:15.

208 Roman Drama
Spring. 3 credits. Prerequisite: Classics 106, 107, or 108 or one term of 200-level Latin.
M W F 9:05. D. Shanzer.

218 Vergil
Spring. 3 credits. Prerequisite: Classics 106, 107, or 108 or one term of 200-level Latin.
M W F 1:25. J. Ginsburg.

241 Latin Composition
Fall. 3 credits. Prerequisite: Classics 106, 107, or 108 or equivalent.
M W F 2:30. J. Ginsburg.

[242 Latin Composition
Spring. 3 credits. Prerequisite: Classics 241 or equivalent. Not offered 1990-91.]
221 Minoan-Mycenaean Art and Archaeology (also Archaeology 221 and History of Art 221)
Fall. 3 credits. Students may not obtain credit for both this course and Classics 319.
The birth of civilization in Greece and the Aegean islands during the Bronze Age. The main focus is on the rise and fall of Minoan Crete and Mycenaean Greece, with consideration given to the nature and significance of Aegean interactions with Egypt, the Near East, and Anatolia.

[233 Archaeology in Action II (also Archaeology 233)]
Spring. 3 credits. Prerequisite: permission of instructor. Not offered 1990-91.
M 2:30; two labs to be arranged.
P. I. Kuniholm.
Objects from the Classical, Hellenistic, and Roman periods are "dug" out of Cornell basements, identified, cleaned, restored, catalogued, and photographed and are considered in their appropriate historic, artistic, and cultural contexts.

[250 Etruscan Art and Archaeology (also Archaeology 250 and History of Art 223)]
Fall. 3 credits. Not offered 1990-91.
J. Whitehead.
An examination of Etruscan culture for both its uniqueness and its diversity. The first part of the course will trace the history and the art of the Etruscans, beginning with questions of their origins and ending with their assimilation into the Roman state. Developments in artistic style run parallel to those in Greek art and illuminate the unique Etruscan character. The second half will focus on the individual cities and how strongly they differed from one another in their art, customs, practices, and relationship to Rome.

309 Dentrochrology of the Aegean (also Archaeology 308 and History of Art 309)
Fall or spring. 4 credits. Limited to 10 students. Prerequisite: permission of instructor.
M 12:20; two labs to be arranged.
P. I. Kuniholm.
Participation in a research project of dating modern and ancient tree-ring samples from the Aegean and Mediterranean. Supervised reading and laboratory work. A possibility exists for summer fieldwork in Greece or Turkey.

[319 Minoan-Mycenaean Archaeology]
Spring 4 credits. Prerequisite: participants are expected already to have completed some course work in Mediterranean or Classical archaeology (e.g., Classics 219/Near Eastern Studies 267, Classics/History of Art 220). Students may not obtain credit for this course and Archaeology/Classics/History of Art 221. Not offered 1990-91.
The art and archaeology of Greece and the Aegean in the Bronze Age (ca. 3500-1100 B.C.). Detailed treatment is given to the Minoan and Mycenaean civilizations of the middle and late Bronze Age. Other topics include the Neolithic "background" of Aegean civilization, the early Bronze Age in Greece, Crete and the Cycladic islands; the volcanic eruption of Thera; and Aegean interconnections with Cyprus and the Near East and, in particular, the evidence for Mycenaean shipping, trade, and immigration from 1400-1100 B.C. Two papers will be presented in class, and these will subsequently be handed in and graded.

[320 Arts and Monuments of Athens (also History of Art 320)]
Spring. 4 credits. Prerequisite: Classics 220 or permission of instructor. Not offered 1990-91.
MWF 1:25. J. Coleman.
Recent developments in the archaeology of Athens from the geometric period to late antiquity. Topics will include consideration of the nature of Athenian society and an assessment of the influence of Athens on the rest of the Greek world and beyond.

[321 Archaeology of Cyprus (also History of Art 321)]
Spring. 4 credits. Prerequisite: Classics 220 or permission of instructor. Not offered 1990-91.
Study of Cyprus from its first settlement in the Neolithic period until the end of the ancient world. Special emphasis on the Bronze Age, the acme of Cypriot culture, and the neighboring civilizations. Lectures and oral reports by students.

[322 Greeks and Their Neighbors (also History of Art 322)]
Fall. 4 credits. Prerequisite: Classics 220 or 221, or permission of instructor. Not offered 1990-91.
A study of the archaeological and other evidence for the interaction between Greek civilization and the eastern and western Mediterranean from the thirteenth to the fourth centuries B.C.E. The course will focus on Greek relationships with Phoenicia and the rest of the Levant, Cyprus, Anatolia, and the Etruscans in the post-Bronze Age period.

[323 Painting in the Greek and Roman World (also History of Art 323)]
Spring. 4 credits. Not offered 1990-91.
TR 1:25-2:40. A. Ramage.
Vase painting, wall painting, and mosaics from the ancient Mediterranean world will be studied in conjunction with the testimony of Greek and Roman sources. An attempt will be made to grasp concerns and achievements of the Classical painters.

[325 Greek Vase Painting (also History of Art 325)]
Spring. 4 credits. Prerequisite: previous enrollment in a History of Art or Classics course or permission of instructor. Not offered 1990-91.
MWF 10:10. A. Ramage.
A stylistic and iconographical approach to an art in which the Greeks excelled. The course will be arranged chronologically, from the early (eleventh century B.C.), anonymous beginnings to the "personal" hands of identifiable masters of the fifth and fourth centuries B.C. Styles other than Attic will be stressed.

[326 Art and Archaeology of Archaic Greece (also History of Art 326)]
Fall. 4 credits. Not offered 1990-91.
J. Coleman.
A study of the formative period of Classical Greek civilization, based primarily on the evidence of art and architecture. Attention is concentrated on the beginnings and early developments of architecture, sculpture, pottery, and painting.

[327 Greek and Roman Coins (also History of Art 327)]
Fall. 4 credits. Prerequisite: History of Art 220 or Classics 220 or permission of instructor. Not offered 1990-91.
MWF 11:15. A. Ramage.
The varied issues of Greek and the Roman state are examined. Coins are considered as art objects as well as economic and historical documents. The changes in design, value, and metals from the origins of coinage to the late Roman period are studied. Lectures, student presentations, and work with actual examples.

[328 Greek Architecture (also History of Art 324)]
Fall. 4 credits. Prerequisite: Classics 220 or permission of instructor. Not offered 1990-91.

[329 Greek Sculpture (also History of Art 329)]
Spring. 4 credits. Not offered 1990-91.
The course will examine ancient Greek sculpture, both three-dimensional and two-dimensional, from the Archaic period to the Hellenistic. We will study various aspects of the works: technological advances in handling materials, the changing ideology of the sculptors, regionalities of styles, and taste of individual patrons. Sculptures of marble and bronze will be considered, and comparisons with other ancient civilizations that influenced the Greek will be undertaken.

[330 Art in Pompeii: Origins and Echoes (also History of Art 330)]
Spring. 4 credits. Not offered 1990-91.

350 Arts of the Roman Empire (also History of Art 350)
Fall. 4 credits. Prerequisite: Classics 220 or permission of instructor.
The visual arts in the service of the first world state. The course starts with the Etruscan and Republican period but concentrates on monuments of the Imperial era in Italy and the provinces until the time of Constantine.

[356 Practical Archaeology (also Archaeology 356)]
Spring. 4 credits. Prerequisite: one course in archaeology. Not offered 1990-91.
MWF 11:15, plus workroom sessions to be arranged. J. Coleman.
The fundamentals of archaeological fieldwork, including techniques of excavation and recording. Hands-on experience with cataloging of ancient objects in the Herbert F. Johnson Museum of Art and the collection of the Department of Classics. No previous fieldwork required. Especially recommended for those planning to participate in summer field programs such as the Cornell project at Halai and East Lokris in Greece.

360 Field Archaeology in Greece (also Archaeology 360)
Summer. 6 credits. J. Coleman.
A six-week archaeological field training program in conjunction with the Cornell Halai and East Lokris Project. For information and application forms, contact Professor John F. Coleman, Department of Classics, 120 Goldwin Smith Hall.
[427 Homeric Philology (also Linguistics 613)]
Spring. 4 credits. Prerequisite: ability to read Homeric Greek. Not offered 1990–91.
Hours to be arranged. A. Nussbaum.
The language of the Homeric epics: dialect background, archaism, epics, modernization.
The notion of a Kunstsprache: its constitution, use, and internal consistency. The phonological and morphological aspects of epic compositional technique.

[429 Mycenaean Greek (also Linguistics 615)]
Fall or spring. 4 credits. Prerequisite: thorough familiarity with the morphology of Classical Greek. Not offered 1990–91.
A. Nussbaum.
An introduction to the epigraphy, language, and content of the Linear B tablets with special attention to their implications for Greek historical grammar and dialectology.

Sanskrit

[131–132 Elementary Sanskrit (also Sanskrit 131–132)]
131, fall; 132, spring. 3 credits each term. Not offered 1990–91; next offered 1991–92.
M W F 2:30. C. Minkowski.

251–252 Intermediate Sanskrit (also Sanskrit 251–252)
251, fall; 252, spring. 3 credits each term. Prerequisite: Classics 132 or equivalent.
Hours to be arranged. C. Minkowski.
Readings from the literature of Classical Sanskrit. Fall: selections from the two Sanskrit epics, the Mahabharata and the Ramayana. Spring: more selections from the epics, and from either Sanskrit story literature or from Sanskrit dramas. Also see Classics 390 and Classics 391 (Classical Civilization listings).

Honors Courses

[370 Honors Course]
Spring. 4 credits. To be taken in the junior year.
A program of reading and conferences centered on an author or topic chosen in accordance with the special interests of the student and instructor.

[471 Honors Course]
Fall. 4 credits. To be taken in the senior year. A continuation of Classics 370, with change of author or topic.

[472 Honors Course: Senior Essay]
Spring. 4 credits. For students who have successfully completed Classics 471. Topics must be approved by the student’s honors committee at the end of the first term of the senior year.
Related Courses in Other Departments
See listings under:
Archaeology
Comparative Literature
English
History
History of Art
Medieval Studies
Modern Languages and Linguistics
Near Eastern Studies
Philosophy
Society for the Humanities
Women's Studies

COMPARATIVE LITERATURE
G. Davis, chair (139 Goldwin Smith Hall, 255-4155); W. Cohen, graduate faculty representative (343 Goldwin Smith Hall, 255-6279); W. Kennedy, director of undergraduate studies (156 Goldwin Smith Hall, 255-6795); C. Arroyo, A. Caputi, C. Carmichael, D. Castillo, J. Culler, G. Davis, G. Gibian, D. Grossevogel, P. Hofendahl, W. Holdheim (Emeritus), J. Monroe, E. Rosenberg, L. Waugh

The Department of Comparative Literature provides a broad range of courses in European as well as non-European literatures. Courses variously stress significant authors, themes, problems, styles, genres, historical periods, and theoretical perspectives. The departmental offerings reflect current interdisciplinary approaches to literary study, hermeneutics, rhetorical analysis, semiotics, deconstruction, Marxism, reception aesthetics, feminism, formalism, and psychoanalysis.

The Major
The major enables students to develop an integrated knowledge of Western literature, to strengthen their reading and writing abilities, and to prepare for careers demanding analytical, interpretive, and evaluative skills. Prospective majors should consult with the director of undergraduate studies. After declaring a major, a student chooses an adviser from the department's faculty. The requirements for the major are designed to allow each student to follow a course of study that combines intellectual rigor with the pursuit of personal interests. The specific contours of such a program are worked out in consultation with the student's adviser.

Requirements for the Major
1) Five courses in Comparative Literature at the 200 level and above, including the core course listed below. A student may include up to two literature courses from other departments.
2) One core course in Comparative Literature (for 1990-91 the core courses are Comparative Literature 494 [fall] and Comparative Literature 401 [spring]), to be taken by all majors either in the spring term of their junior year or the fall term of their senior year. Students may enroll in both core courses.
3) Five courses in literature or other areas of the humanities at the 200 or higher level, to be taken in one or more foreign literature departments. Texts must be read in the original language. A student may offer one language course (conversation, composition, etc.).
4) A senior essay (Comparative Literature 493) of roughly fifty pages, to be written during the senior year under the direction of the student's adviser.

The department also encourages:
1) a program that includes broad historical coverage (e.g., Comparative Literature 201–202: Great Books, Comparative Literature 210: Ancients and Moderns); intensive study of a single genre (e.g., Comparative Literature 320: Introduction to Caribbean Poetry, Comparative Literature 353: European Drama, 1600-1900, Comparative Literature 363–364: The European Novel); analysis of problems in literary theory (e.g., Comparative Literature 302: Literature and Theory, Comparative Literature 381: Marxist Cultural Theory, and Comparative Literature 402: Theories of Rhetoric)
2) a second foreign language, especially for students interested in graduate work in literature.

Honors
A student who completes the requirements for the major is eligible for the degree of Bachelor of Arts with honors in comparative literature. The department bases its decision on the student's achieving grades of at least B+ in the senior essay and in course work for the major, and on overall academic performance at Cornell.

Freshman Writing Seminars
Most 100-level courses may be used toward satisfying the freshman writing seminar requirements. A full description of the freshman writing seminar program may be found on p. 22.

Courses
150 Introduction to Cultural Studies (also Society for the Humanities 150)
Fall. 4 credits. Does not satisfy the freshman writing seminar requirement, but will satisfy the distribution requirement.
An introduction not to culture but to the study of it. This course outlines an emergent field of inquiry concerned with the ultimately political character of meanings, values, subjectivity, and symbolization. Topics include cultural theory, mass culture, popular culture, cultures of resistance, and cultural imperialism. Examples are drawn primarily from the 1960s and their legacy. Emphasis is on responses to the Vietnam War: news coverage, documentaries, scholarship, memoirs and letters, architecture, fiction, poetry, theatre, comics, TV series, and especially popular music (Beatles, Dylan, Arlo Guthrie, Country Joe, etc.) and Hollywood films (e.g., Apocalypse Now; Coming Home, Deer Hunter, Full Metal Jacket, Platoon, Born on the Fourth of July—if available—and perhaps one Rambo movie).

201-202 Great Books
201, fall; 202, spring; summer, TBA. 4 credits. Comparative Literature 201 and 202 may be taken independently of each other.
Fall: MWF 11:15–12:05, W. J. Kennedy.
A reading each semester of seminal texts that represent and have shaped Western culture and hence form an essential part of the student's intellectual equipment. By analyzing, interpreting, and evaluating, students will develop critical reading abilities. 201: selections from the Bible, Homer, Dante, Racine; Shakespeare, and others. 202: selections from Moliere, Goethe, Blake, Faubert, Baudelaire, Kafka, Woolf, Conrad, Eliot, Garcia-Márquez and others.

210 Ancients and Moderns
Spring. Fall/Winter. W. J. Kennedy.
Key texts from the Bible, Greek civilization, and Roman antiquity have had an astonishing impact on Western culture in modern times. This course compares and contrasts a selection of important primary texts from the Greek and Roman worlds. They will be drawn from the Bible and Nietzsche, Aeschylus and Dostoievsky, and Homer and Joyce.

223 The Comic Theater (also Classics 223)
Spring. 3 credits. Students may not obtain credit for both this course and Classics 123.
Fall: 12:20–1:10. J. Rusten.
The origins of comic drama in ancient Greece and Rome and its subsequent incarnations especially in the Italian renaissance (commedia erudita and commedia dell'arte), Elizabethan England, seventeenth-century France, the English Restoration, and Hollywood in the thirties and forties. Chief topics will be the growth of the comic theatrical tradition and conventions; techniques and themes of comic plots (trickster, parody, farce, caricature), and the role of comedy in society. All readings in English.

235 Modern Greek Poetry and Politics (also Classics 235, 3 credits, and Government 335, 4 credits)
Fall: 3 credits.
The history of modern Greece has been marked by a series of political crises that have resulted in deep divisions in society. Greek poetry has reflected these crises and divisions; the poetry of nineteenth- and twentieth-century Greece will thus be interpreted in its historical and political context. It will concentrate on four periods in which the interaction has been particularly strong. The continuity of ancient Greek myths in modern Greek poetry will also be explored. Students taking this course as Government 335 for 4 credits must write an additional paper on a political topic.

236 Greek Mythology (also Classics 236)
Fall. 3 credits.
A survey of the Greek myths, with emphasis on the reconstruction of the content and significance of the myths in preliterate Mediterranean society, including the place of myths in Greek life and consciousness; the factors and influences involved in the creation of myths; and the use of myths for our understanding of Greek literature, religion, and moral and political concepts.
302 Literature and Theory (also English 302/702)
Fall. 4 credits.
M W 10:10; F sections, to be arranged.
J. Coller.
A study of issues in contemporary theoretical debates, with attention to structuralism, deconstruction, historicism, psychoanalysis, and feminism. Readings by R. Barthes, J. Derrida, M. Foucault, B. Johnson, J. Rose, and others. No previous knowledge of literary theory is assumed.

[320 Introduction to Caribbean Poetry
M W 10:10–11. G. Davis.
The primary aim of this course is to introduce major authors and themes in Caribbean poetry against the background of the historical and cultural interactions between Europeans and people of African descent in the New World. Select masterworks of four contemporary poets will be the main focus of our detailed readings: Derek Walcott, Edward Brathwaite, Aime Cesaire, and Nicholas Guillen. Topics to be explored in conjunction with the literary texts will include the relation of “creole” to metropolitan languages, the problem of cultural identity, colonizer/colonized relations, the amalgamation of European and African cultural traditions, and the quest for an “authentic” Caribbean voice. Wherever relevant to the understanding of the literary texts, examples of oral, popular culture (e.g., calypso and reggae lyrics) will receive appropriate consideration. In addition to the poetry, the class will study a small selection of West Indian novels and films that provide a concrete understanding of the social context (e.g., Jamaica Kincaid’s Annie John, Jean Rhys’s Wide Sargasso Sea; Eugene Pacy’s film Sugar-Cane Alley).

324 Selected Problems of Law and Religion
Fall. 4 credits. Limited to 20 juniors and seniors. A Common Learning course.
T R 8:40–9:55. C. M. Carmichael.
The experience of past generations in wresting with issues of perennial concern and how their efforts might enhance our contemporary understanding of them. Perspectives from biblical, Jewish, Greek, and Roman antiquity and from American legal and religious history will be brought to bear on such topics as abortion, bribery, civil disobedience, contraception, death, divorce, drunkenness, individual and communal responsibility, informal marriage, limitations on self-sacrifice, rebirth, resisting or appeasing an oppressor, suicide, and unwanted salvation.

326 Christianity and Judaism
Spring. 4 credits. Not open to freshmen.

328 Literature of the Old Testament
Fall. 4 credits. Not open to freshmen.
Analysis of selected material in translation.

354 Modern Drama (also Theatre Arts 327)
Spring. 4 credits.
Readings in European drama from Ibsen to the present.

362 The Culture of the Later Renaissance (also History 364)
Spring. 4 credits.
T R 10:10–11; disc. R and F to be arranged.
W. Kennedy, C. Kaslak.
Members of various departments will lecture on Luther, Michelangelo, Montaigne, Edmund Spenser, Monteverdi, Cervantes, Copernicus, and Galileo. Guest lecturers will include R. Harris-Warrick, music; Peter Dear, history; and C. Arroyo, romance studies. Lectures and discussion will undertake close reading of texts, literary and visual, and will introduce different methods of interpretation and of historical analysis. Written requirements: two short papers and a final examination.

363–364 The European Novel
363: Fall, 364, spring. 4 credits. Comparative Literature 363 and 364 may be taken independently of each other.
Close reading of some fifteen texts which essentially chart the course of the European novel. (The syllabus will follow generally but not strictly chronological lines, though the texts each term will be read in chronological order.) 363: Cervantes to Joyce. 364: Tolstoy to Mann. The novels to be studied include Voltaire, Goethe, Stendhal, Balzac, Dickens, Flaubert, Dostoevsky, George Eliot, Hardy, Gide, and Kafka; readings include Don Quixote, The Waves, and the Black, Madame Bovary, Crime and Punishment, Great Expectations, Middlemarch, The Mayor of Casterbridge, Portrait of the Artist as a Young Man, Death in Venice, and The Counterfeiter. Analysis of novelistic subgenres: picaresque fiction, moral fable, fantasy, philosophical novel, récit, detective story, Bildungsroman. All texts to be read in English; students who command the pertinent foreign languages may, of course, read the books in the original. Two or three papers, no final exam.

[372 Selections from Contemporary World Literature
Readings of celebrated texts by contemporary authors with attention to the local and global contexts of their literary production and reception. The course will include works in various genres by such authors as Christa Wolf, Marguerite Duras, Gunter Grass, Gabriel Garcia Marquez, Salman Rushdie, Raul Zurita, Milan Kundera, Wole Soyinka, and Toni Morrison.

394 Transatlantic Renaissance (also Spanish Literature 394)
Spring. 4 credits.
For description, see Spanish Literature 394.

403 History of Literary Theory (also Comparative Literature 603)
Spring. 4 credits. Core course for majors.
A survey of European literary theory since Aristotle. Emphasis on major texts and on the main currents of the history of literary theory. Some consideration of literary criticism as ideology, in relation to literature, philosophy, and social history. Readings from Longinus, Nietzsche, the Russian formalists, Barthes, and others.

404 History Into Fiction: Nazis and the Literary Imagination (also English 404 and NES 404)
Fall. 4 credits.
The twelve years of Hitler’s rule remain the most critical, “longest” years of the century. We shall read some seven or eight texts by Anglophone and Continental novelists (and a few playwrights) that explore salient features of the regime: Hitler’s rise to power (e.g., Mann’s “Mario and the Magician,” Hughes’s Fox in the Attic); civilian life in Nazi Germany (e.g., Isherwood’s Berlin Stories, Brecht’s Private Life of the Master Race; Grass’s Dog Years; World War II (Boll’s fiction); the Occupation (Sartre’s Flies or Camus’s Plague); Nabokov’s Aleph); the American brand (Lewis’s It Can’t Happen Here; Faulkner’s “Percy Grimm”); the persecution of the European Jews (Sartre’s “Childhood of a Leader,” selections from Julian Barnes’s novel History of the World, Jakov Lind’s Soul of Wood). Historical commentary; uses of documentary materials. Brief ancillary selections by Adorno, Sennett, Sartre. Two short papers; no exam.

410 Semiotics and Language (also French Romance 400 and Linguistics 400)
Spring. 4 credits. Prerequisite: some background in an area relevant to semiotics: e.g., linguistics, philosophy, psychology, anthropology, or literature; or permission of instructor.
Hours to be announced. L. Waugh.
An introduction to the study of semiotics in general and to particular semiotic theories (e.g., those of Saussure, Peirce, Jakobson) and to language as a semiotic system. The particular topics to be discussed will depend on the interest of the students.

416 Literary Translation in the West (also German Studies 416 and Romance Studies 416)
Spring. 4 credits. Prerequisite: good reading knowledge of German or French; any other language(s) desirable.
For description, see German Studies 416.

417 Fascism and Mass Culture (also German Studies 417, Society for the Humanities 417, and Theatre Arts 417)
Fall. 4 credits. Taught in English for advanced undergraduate and graduate students.
For description, see German Studies 417.

419–420 Independent Study
419, fall; 420, spring. Variable credit. Comparative Literature 419 and 420 may be taken independently of each other.
Hours to be arranged. Staff.

[421 Old Testament Seminar
Fall. 4 credits. Not offered 1990–91.
C. M. Carmichael.
Identification and discussion of problems in selected material from the Pentateuch.

426 New Testament Seminar
Spring. 4 credits. Limited to 20 students.

M W F 1:25. J. P. Bishop.

Close readings of representative texts from the New Testament in modern scholarly editions, with the help of appropriate commentary, introductory and specialized. The focus for 1990 will be on Pauline and Early Christian. All readings will be in English, but repeated reference to the Greek original will be made. Graduate students and undergraduates from other colleges who are interested in the material should not feel inhibited from enrolling. The approach will be primarily exegetical; that is, we will try to find out what the texts say and what they mean by what they say. Thus we can hope to stay open to scholarly and religious issues alike.

439 Oral and Written Traditions in Africa (also French Literature 439 and Sociology for the Humanities 439)

Fall. 4 credits.

Organized around but not limited to two major African oral cultures, Soundata and Chuku, this course will enable us to investigate the nature, the validity, and the implications of many Francophone African writers' claims to being modern versions of the griots of the oral tradition. Reading knowledge of French is recommended.

440 African Cityscapes: Urbanization and its Literary Representations (also Society for the Humanities 440 and French Literature 440)

Spring. 4 credits.

The course will seek to make sense of the evolving fate of the city in African literature in French: from being presented almost exclusively as a deathtrap for the colonized, the city has now become that ambiguous space in which it is increasingly difficult to say what it means to be African. Reading knowledge of French is recommended.

450 Renaissance Poetry (also Comparative Literature 450)

Fall. 4 credits.

451 Renaissance Epic (also Comparative Literature 451)

460 Rhetorical Conventions and European Lyric

Fall. 4 credits.

R 2:30–4:25. G. Davis.

This course will focus on a few major rhetorical strategies that have been central to the discourse of European lyric. On the assumption that these strategies may reflect universal principles of rhetoric, the class will analyze and compare lyric poetry from diverse cultural traditions (including anglophone and francophone post-colonial literatures) and historical periods (ranging from Classical Antiquity to the present). Our explorations of rhetoric across national and cultural boundaries will attend to conventions (especially recurrent topic) as well as to purely formal modes of organization. Examples of seminal devices we will study are the "primal," the "recusatio" (generic disavowal), and "hymnal style." Our discussion will take account of pertinent aspects of rhetorical theory—from Aristotle's Rhetoric to modern linguistics (especially speech act theory and pragmatics). Proficiency in at least one foreign language is required.

482 Latin American Women Writers (also Spanish Literature 492 and Women's Studies 481)

Spring. 4 credits. Taught in English.

This course will provide a sampler of novels and short stories by and about Latin American women. We will look at the question of self- construction and issues such as the social and political concerns involved in a specifically Latin American feminine identity. All works will be read in translation (romance studies students should read originals of the two works from the Spanish and Austro-Latin American author's native language). The works include writers like Luisa Valenzuela (Argentina) and Rigoberta Menchú (Guatemala), Helena Parente Cunha and Clara Lispector (Brazil), Helena Maria Viramontes and the Anzaldua/ Moraga anthology This Bridge Called My Back (U.S.A.), and Simone Schwarz-Bart (Guadalupe).

490 From Literary Criticism to Marxist Theory: The Early Georg Lukács (also German Studies 490 and Government 470)

Fall. 4 credits.

The course is designed for advanced undergraduates and graduate students.

The writings of the late Lukács have occasioned the interest of the young Lukács for the project of Western Marxism and critical theory. The seminar will reexamine the beginnings of neo-Marxist theory as it emerges out of the integration of neo-romantic cultural criticism and continental critical theory (Simmel, Weber). The analysis will focus on Lukács' seminal texts, especially on Soul and Form, Theory of the Novel, and History and Class Consciousness.

491 Mass Culture Revisited: From Popular Literature to the Culture Industry (also German Studies 491 and Society for the Humanities 491)

Fall. 4 credits.

For advanced undergraduates and graduate students; taught in English.

The purpose of this seminar is twofold: it is designed to engage in a critical dialogue with the transition from traditional forms of popular literature to its recasting after the industrial revolution. Special attention will be given to the relationship between established high culture and the mass media through an analysis of canon formation on the one hand and an examination of the critical and pedagogical discourse on popular literature on the other.

493 Senior Essay

Fall and spring. 8 credits.

C ITA. Staff.

Hours to be arranged individually in consultation with the Director of Undergraduate Studies. Approximately fifty pages to be written over the course of two semesters in the student's senior year under the direction of the student's advisor. Credit for the first semester will be awarded upon completion of the second semester.

494 Contemporary Fiction

Fall. 4 credits. Limited to 15 students. Core course for majors.

A survey of the period since the end of World War Two, focusing on the global impact and transformations of an originally European form. Emphasis on the power relations among various languages, nations, social systems, and continuities in the modern world system. Discussion of race and empire, as well as of gender and class. Viewing of a few films; reading in history, criticism, literary theory, and social theory.

497 Heidegger on Language, Art, and Poetry (also Romance Studies 497)

Fall. 4 credits.

T 2:30–4:25. C. Arroyo.

498 Language Poetry (also English 468)

The emergence in the United States in the 1970s and 1980s of "Language Poetry" or "Language Writing" as a challenge to more familiar modes of contemporary poetry raises fundamental questions about what poetry has been, is, and should be about the relationship between poetry, audience, and social transformation. Focusing on texts by Charles Bernstein, Bob Perelman, Ron Silliman, Rosmarie Waldrop, and others associated with the Language Poetry movement, we will explore the movement's acknowledged indebtedness to such precursors as Gertrude Stein, Louis Zukovsky, and Robert Creeley and to philosophical and theoretical writings by such figures as Ferdinand de Saussure, Valentin Voloshinov, and Ludwig Wittgenstein. Considering as well Language Poetry's critical reception over the past several years, we will attempt to arrive at an understanding of the movement's significance for theories of the avant-garde and the conditions of postmodern culture.
The Major

The major has three components: a core (a minimum of 42 credits), a group of electives in computer science and related fields (a minimum of 10 credits), and a concentration outside computer science (a minimum of 14 credits). The core focuses on the central topics within computer science: the logical design of programs, data structures, and algorithms. The remaining components of the major—the related electives and the outside concentration—provide a flexible extension to the core program. In consultation with their advisers, students are expected to choose electives and an outside concentration that best suit their graduate and career plans.

Students interested in pursuing an advanced degree in theoretical computer science should concentrate in mathematics. Students preparing for advanced work in scientific computation should take Computer Science 621 (instead of Computer Science 222) and Computer Science 622 (as a related elective) and concentrate in some branch of applied mathematics. Qualified students are encouraged to concurrently major in mathematics.

Admission

The prerequisites for admission to the major are:

1. Completion of Computer Science 100–211 (or 212–220) (or equivalent)
2. Completion of Mathematics 111–122–221 or Mathematics 191–192–293
3. A 2.75 grade-point average in all computer science and mathematics courses
4. Acceptance by the department’s admissions committee

After admission, students are expected to maintain at least a 2.75 grade-point average in their core courses. Any grade below C- in a core or related elective is not acceptable.

Core

The core consists of the following courses:

1. Calculus and linear algebra: Mathematics 111–122–221 or 191–192–293
2. Programming and systems: Computer Science 100, 211 (or 212), 314 and 410
3. Theory of computation: Computer Science 280, 381 (or 481), and 482. (One of the following may be substituted for Computer Science 280: Mathematics 332, 432, 434, or 481.)
4. Numerical analysis: Computer Science 222 or 421

Related Electives

The related electives requirement consists of three courses. One must be a computer science course or course/laboratory combination numbered above 400 that includes a substantial programming project, for example, Computer Science 412, 414/415, 417/418, 432/435 or 472/473; the other two are to be selected from the following:

- Electrical engineering courses numbered 230 or higher
- Operations research courses numbered 260 or higher
- Mathematics courses numbered 411 or higher

Concentration

This component encourages the student to study some discipline outside of computer science in reasonable depth. The concentration consists of an approved sequence of four courses (at least 14 credits) numbered 200 or higher in some field related to the theoretical or practical aspects of computing. A list of approved concentrations is available in the Computer Science Undergraduate Office, 303 Upson Hall. Students may also design their own concentrations, subject to the approval of their advisor.

Other Requirements

Computer science majors must also satisfy the College of Arts and Sciences and university requirements. In particular, the spirit of the 15-credit electives requirement will be strictly followed. This requirement helps ensure breadth of education, and consequently no computer- or mathematics-related course can be used toward its fulfillment. In general, no courses may be used to fulfill more than one requirement. There are two exceptions: first, appropriate core courses may be used to satisfy the group IV distribution requirement, and second, in the case of a double major, the same course may be applied to both majors.

Probability and statistics courses. Computer science majors are encouraged to include at least one course in the field of probability and statistics in their program of study. Although there is no formal department of statistics at Cornell, the Department of Mathematics and the School of Operations Research and Industrial Engineering offer a wide range of probability and statistics courses suitable for computer science majors, including the following introductory two-course sequences:

- Math 471, Basic Probability
- Math 472, Statistics
- ORIE 250, Introductory Engineering Probability
- ORIE 370, Introduction to Statistical Theory with Engineering Applications

A less rigorous but satisfactory one-semester introduction to probability and statistics is given in either of:

- Math 370, Elementary Statistics
- ORIE 270, Basic Engineering Statistics

Honors. A student may be granted honors in computer science on the recommendation of the Computer Science Academic Affairs Committee. The committee guidelines will generally be the following:

1. An overall grade-point average of not less than 3.25
2. A grade-point average for all computer science courses of not less than 3.5
3. Satisfactory completion of at least two computer science courses numbered above 600 or satisfactory completion of a significant special investigation (Computer Science 490).
Courses
For complete course descriptions, see the computer science listing in the College of Engineering section.

100 Introduction to Computer Programming (also Engineering 100)
Fall, spring, or summer. 4 credits. Students who plan to take both Computer Science 101 or 102 and 100 must take 101 or 102 first.
2 lecs, 1 rec (optional). 3 evening exams.

101 The Computer Age
Fall or summer. 3 credits. Credit is granted for both Computer Science 100 and 101 only if 101 is taken first.
2 lecs, 1 rec. 1 evening exam.

102 Introduction to Microcomputer Applications (also Agricultural Engineering 212)
Fall. 3 credits. Each lab section limited to 16 students. May be taken only for out-of-college credit by students in the College of Arts and Sciences. Not open to students in the College of Engineering or to students who have taken any prior computer courses at Cornell. Students in statutory colleges must enroll in Agricultural Engineering 102.
2 lecs, 1 lab. 2 evening exams.

107 An Introduction to SCHEME
Spring. 1 credit. Prerequisite: Introductory course in PASCAL, or equivalent programming experience.
1 lec.

172 An Introduction to Artificial Intelligence
Spring. 4 credits. Prerequisites: Computer Science 100 or 101, and precalculus level math.
3 lecs, 2 evening exams.

211 Computers and Programming (also Engineering 211)
Fall, spring, or summer. 3 credits. Prerequisite: Computer Science 100 or equivalent programming experience. Credit will not be granted for both Computer Science 211 and Computer Science 212.
2 lecs, 1 rec. 2 evening exams.

212 Modes of Algorithmic Expression
Fall. 4 credits. Prerequisite: Computer Science 100 or equivalent programming experience. Credit will not be granted for both Computer Science 211 and Computer Science 212.
2 lecs, 2 recs. 2 evening exams.

222 Introduction to Scientific Computation (also, Engineering 222)
Spring. 3 credits. Prerequisites: Computer Science 100 and Mathematics 112, 122, or 102.
2 lecs, 1 rec. 2 evening exams.

280 Discrete Structures
Fall or spring. 4 credits. Prerequisite: Computer Science 211 or 212 or permission of instructor.
3 lecs.

314 Introduction to Computer Systems and Organization
Fall, spring, or summer. 4 credits. Prerequisite: Computer Science 211 or 212 or equivalent.
2 lecs, 1 sec. 2 evening exams.

381 Introduction to Theory of Computing
Fall. 4 credits. Prerequisite: Computer Science 280 or permission of instructor.
3 lecs.

400 The Science of Programming
Spring. 4 credits. Prerequisite: Computer Science 280 or equivalent.
3 lecs.

405 Science and the Computer
Fall. 4 credits. Prerequisites: Juniors and seniors only, some scientific computing experience recommended. Not offered every year.
2 lecs, 2 evening exams.

410 Data Structures
Fall or spring or summer. 4 credits. Prerequisite: Computer Science 280 or permission of instructor.
2 lecs. 2 evening exams.

411 Programming Languages and Logics
Spring. 4 credits. Enrollment limited. Prerequisites: Computer Science 410 or permission of instructor. Not offered every year.
2 lecs.

412 Introduction to Compilers and Translators
Spring. 4 credits. Prerequisites: Computer Science 314, 381, and 481. Not offered every year.
3 lecs.

414 Systems Programming and Operating Systems
Fall. 3 credits. Prerequisite: Computer Science 314 or permission of instructor.
2 lecs. 2 evening exams.

415 Practicum in Operating Systems
Fall. 2 credits. Prerequisite: Computer Science 410. Corequisite: Computer Science 414.
1 lec.

417 Computer Graphics (also Architecture 374)
Fall. 3 credits. Prerequisite: Computer Science 211 or 212. Not offered every year.
2 lecs. 1 lab.

418 Practicum in Computer Graphics (also Architecture 375)
Fall. 2 credits. Prerequisite: Computer Science 211 or 212. Recommended: Computer Science 314. Corequisite: Computer Science 417. Not offered every year.
1 lab.

421 Numerical Solution of Algebraic Equations
Fall. 4 credits. Prerequisites: Mathematics 294 or 222, one additional mathematics course numbered 300 or higher, and knowledge of FORTRAN at the Computer Science 222 level.
3 lecs.

432 Introduction to Database Systems
Spring. 3 credits. Prerequisites: Computer Science 211 or 212 and Computer Science 410, or permission of instructor. Recommended: Computer Science 314.
2 lecs. 1 rec.

433 Practicum in Database Systems
Spring. 2 credits. Corequisite: Computer Science 432.
1 lab.

472 Foundations of Artificial Intelligence
Fall. 3 credits. Prerequisite: Computer Science 410. Open to juniors, seniors, and graduate students.
2 lecs, 1 sec.

473 Practicum in Artificial Intelligence
Spring. 2 credits. Prerequisites: Computer Science 107 or 212, Computer Science 280 and 410. Corequisite: Computer Science 472.
1 lab.

481 Introduction to Theory of Computing
Spring. 4 credits. Prerequisite: Computer Science 280 or permission of instructor. Credit will not be granted for both Computer Science 381 and Computer Science 481.
3 lecs.

486 Applied Logic (also Mathematics 488)
Spring. 4 credits. Prerequisites: Mathematics 222 or 294, Computer Science 100, and an additional course in mathematics or theoretical computer science.
2 lecs, 1 lab to be arranged.

500 Independent Reading and Research
Fall or spring. 1-4 credits.

600 Computer Science and Programming
Fall. 1 credit. Prerequisite: graduate standing in computer science or permission of instructor.
1 lec.

611 Introduction to Programming Logics
Spring. 1 credit. Prerequisite: graduate standing in computer science or permission of instructor.
1 lec.

612 Compiler Design for High-Performance Architectures
Spring. 4 credits. Prerequisites: Computer Science 410, and 381 or 481, or permission of instructor.
3 lecs.

613 Concurrent Programming
Spring. 4 credits. Prerequisites: Computer Science 414 and 600 or permission of instructor.
3 lecs.

614 Advanced Systems
Spring. 4 credits. Prerequisite: Computer Science 414 or permission of instructor.
2 lecs.

615 Machine Organization
Spring. 4 credits. Prerequisite: Computer Science 314 or permission of instructor. Not offered every year.

616 RISC Microprocessor Design
Spring. 4 credits. Prerequisite: permission of instructor. Not offered every year.
2 lecs.
621 Matrix Computations
Fall 4 credits. Prerequisites: Mathematics 411 and 431 or permission of instructor.
3 lecs.

622 Numerical Optimization and Nonlinear Algebraic Equations
Spring. 4 credits. Prerequisite: Computer Science 621.
3 lecs.

632 Database Systems
Fall 4 credits. Prerequisites: Computer Science 410 and Computer Science 432 or permission of instructor.
2 lecs.

635 Automatic Text Processing and Information Retrieval
Spring. 4 credits. Prerequisite: Computer Science 410 or equivalent or permission of instructor.
2 lecs.

643 Design and Analysis of Computer Networks
Fall 4 credits. Prerequisite: Computer Science 414 or permission of instructor. Not offered every year.
2 lecs.

655 Mathematical Foundations for Computer Modeling and Simulation (also Mathematics 655)
Fall 4 credits. Prerequisites: Mathematics 431 and 432, or the equivalent in both content and level of mathematical sophistication or permission of instructor. Not offered every year.
3 lecs.

661 Robotics
Fall 4 credits. Prerequisite: Computer Science 482 and permission of instructor. Not offered every year.
3 lecs.

662 Robotics Laboratory
Fall 1 credit. Prerequisite: graduate standing or permission of instructor. Not offered every year.
1 lab.

664 Machine Vision
Spring. 4 credits. Prerequisites: undergradate-level understanding of algorithms, knowledge of differential equations, and differential and transmathematical geometry are helpful.
3 lecs.

671 Introduction to Automated Reasoning
Fall 4 credits. Prerequisites: Computer Science 611 and 681 and Mathematics 581. Not offered every year.
3 lecs.

672 Artificial Intelligence Programming
Spring. 4 credits. Prerequisite: Computer Science 472 or permission of instructor.
3 lecs.

681 Analysis of Algorithms
Fall 4 credits. Prerequisite: Computer Science 381 or 481, or permission of instructor.
3 lecs.

682 Theory of Computing
Spring. 4 credits. Prerequisite: Computer Science 381 or 481, or permission of instructor.
3 lecs.

709 Computer Science Graduate Seminar
Fall or spring. 1 credit. S-U grades only. For staff, visitors, and graduate students interested in computer science.

711 Topics in Programming Languages and Systems
Spring. 4 credits. Prerequisites: Computer Science 381 or 491 and Computer Science 611, or permission of instructor. Not offered every year.
2 lecs.

712 Topics in Programming Languages and Systems
Spring. 4 credits. Prerequisite: Computer Science 612 or permission of instructor. Not offered every year.
2 lecs.

713 Seminar in Systems and Methodology
Fall or spring. 4 credits. Prerequisites: Computer Science 414 and an advanced systems course such as CS613, 614, 632, or 643, or permission of instructor. Not offered every year.
2 lecs.

714 Distributed Computing
Spring. 4 credits. Prerequisites: Computer Science 414 and an advanced systems course (e.g., Computer Science 613, 614, 632, or 643) or permission of instructor. Not offered every year.
2 lecs.

715 Seminar in Programming Refinement Logics
Fall or spring. 4 credits. Prerequisite: permission of instructor.

717 Topics in Parallel Architectures
Fall. 4 credits. Prerequisite: Computer Science 612 or permission of instructor. Not offered every year.
2 lecs.

719 Seminar in Programming Languages
Fall or spring. 4 credits. Prerequisite: Computer Science 611 or permission of instructor. S-U grades only.

721 Topics in Numerical Analysis
Fall. 4 credits. Prerequisite: Computer Science 621 or 622, or permission of instructor. Not offered every year.
2 lecs.

722 Topics in Numerical Analysis
Spring. 4 credits. Prerequisite: Computer Science 621 or 622 or permission of instructor. Not offered every year.
2 lecs.

729 Seminar in Numerical Analysis
Fall or spring. 1-4 credits (to be arranged). Prerequisite: permission of instructor. S-U grades only.

733 Selected Topics in Information Processing
Not offered every year.
2 lecs.

734 Seminar in File Processing
Fall. Credit to be arranged. Prerequisite: Computer Science 733 or permission of instructor. Not offered every year.

739 Seminar in Text Processing and Information Retrieval
Fall or spring. Credit to be arranged. Prerequisite: Computer Science 635 or permission of instructor. S-U grades only.
ECONOMICS

The study of economics provides an understanding of the way economies operate and an insight into public issues. The department offers a broad range of undergraduate courses in such fields as money and banking international and comparative economics; econometrics; theory; history; growth and development; and the organization, performance, and control of industry.

Social Science Distribution Requirement

The microeconomics distribution requirement can be fulfilled with any of the following:

- Economics 101, Economics 201, or Economics 203.

The macroeconomics distribution requirement can be satisfied with any of the following:

- Economics 102, Economics 202, or Economics 204.

The Major

Students who wish to major in economics must have completed Economics 101 or Economics 201 and Economics 102 or Economics 202 or equivalent courses, and Mathematics 111, or its equivalent. A grade below a C will not be accepted for any of the above. Economics 201 satisfies both the introductory micro (Economics 101) and the intermediate micro (Economics 313) requirement. Similarly Economics 204 satisfies both the introductory macro (Economics 102) and intermediate macro (Economics 314) requirement.

Prospective majors should apply at the department office.

The requirements for the major beyond the introductory courses and Math 111 are:

1. Economics 313 or Economics 203, (2) Economics 314 or Economics 204, (3) Economics 319 or Economics 321, and (4) 20 credits of other economics courses listed by the Department of Economics, except that Economics 399 will not count toward the 20-credit requirement. With the permission of the major adviser, one or in exceptional cases two economics courses offered outside the College of Arts and Sciences may be applied to fulfill this requirement. Only courses in which a student receives a grade of C- or better will be counted towards satisfying the major requirements.

An honors program is currently being offered. Students should consult the director of undergraduate studies before May of their junior year for more information.

Students planning graduate work in economics or business are strongly encouraged to prepare themselves well in mathematics and econometrics. These students are strongly encouraged to enroll in Economics 319-320 rather than Economics 321.

Courses

101 Introductory Microeconomics

Fall, spring, or summer. 3 credits. Economics 101 is not a prerequisite for 102.

Lec. and disc.

Explanation and evaluation of how the price system operates in determining what goods are produced, how goods are produced, and who receives income, and how the price system is modified and influenced by private organizations and government policy.

102 Introductory Macroeconomics

Fall, spring, or summer. 3 credits. Economics 101 is not a prerequisite for 102.

Lec. and disc.

Analysis of aggregate economic activity in relation to the level, stability, and growth of national income. Topics discussed may include the determination and effects of unemployment, inflation, balance of payments, deficits, and economic development, and how these may be influenced by monetary, fiscal, and other policies.

105 Principles of Accounting

Summer only. 3 credits.

The principles of accounting essential to an understanding of cost control. Cost accounting: analysis and interpretation of financial statements.

201 Introduction to the American Economy

Fall. 3 credits. Prerequisites: not open to freshmen or to students who have taken any prior economics courses at Cornell.

This course is intended for students who do not plan to take advanced courses in economics. The sequence Economics 201–202 covers the same topics as are taught in Economics 101–102. The course is designed to teach the basic knowledge of economics needed to understand how economic systems function, but it will emphasize analysis of current issues. The meetings of the class are arranged by topic and will be taught by senior faculty members who specialize in the particular topics.

202 Introduction to the World Economy

Spring. 3 credits. Prerequisites: not open to freshmen or to students who have taken any prior economics courses at Cornell.

This course is intended for students who do not plan to take advanced courses in economics. A continuation of Economics 201 with a focus on international issues.

203 Microeconomics

Fall. 4 credits. Prerequisite: calculus.

Intended for students with strong analytical skills who have not taken Economics 101, 102, 201, or 202. Can be used to replace both Economics 101 and 313. This course covers the topics taught in Economics 101 and 313. An introduction to the theory of consumer and producer behavior and to the functioning of the price system.

204 Macroeconomics

Spring. 4 credits. Prerequisite: calculus.

Intended for students with strong analytical skills who have not taken Economics 101, 102, 201, or 202. Can be used to replace both Economics 102 and 314. This course covers the topics taught in Economics 102 and 314. An introduction to the theory of national income determination, unemployment, growth, and inflation.

205 Managerial Accounting for Planning and Control

Summer only. 3 credits. Prerequisite: a course in accounting or equivalent experience or permission of instructor.

An extension of Economics 105. Considers the accounting process primarily from a managerial rather than a financial point of view. The basics of accounting systems and financial statements are reviewed and extended to provide a basis for comparing financial and managerial perspectives. Manufacturing cost systems, operational budgeting, standards, costing, and short-term managerial decision making.

301 Economics of Market Failure

Fall. 4 credits. Prerequisites: Economics 101–102.

The course will review briefly the welfare properties of the perfectly competitive market model and will then consider a range of situations in which these properties are modified and where there may be a case for some form of government intervention. The cases to be considered will include (a) the presence of externalities, pollution, and the economics of the environment; (b) the provision of public goods, the free-rider problem; (c) uncertainty and imperfect information, an analysis in the context of labor and insurance markets, and the market for medical care; (d) the regulation of natural monopoly and public utility pricing; (e) the failure of the market to achieve desired redistributive objectives; (f) direct and indirect taxation as instruments of redistribution.

302 The Impact and Control of Technological Change (also Government 302 and City and Regional Planning 440)

Spring. 4 credits.

Examines social, environmental, and economic implications of technological change in the United States in the context of possible policies and strategies of control. Several specific cases will be considered in detail, followed by a broader investigation of the problems of a modern technological society. Alternative political-economic solutions will be explored.

303 Positive and Normative Theories of Income Distribution

Spring. 4 credits. Enrollment limited.

Prerequisite: permission of instructor. Cannot be applied to the major.

After examining the distinction between the terms positive and normative as used in economics, this course will explore three main questions: (1) Why is income distributed the way it is? (2) How should income be distributed? (3) What is the relationship between 1 and 2? Particular emphasis will be given to those theories of income distribution, both positive and normative, that tend to dominate discussion of these topics in America.
304 Economics and the Law
Fall. 4 credits. Prerequisite: Economics 101 is required; Economics 311 or 313 or their equivalent is recommended.
An examination, through the lens of economic weapons systems. Topics covered include an analysis, of legal principles drawn from a variety of legal fields, including contracts, property, torts, and procedure. No legal training is required.

306 Economics of Defense Spending
Spring. 4 credits. Prerequisites: Economics 101–102.
The economic aspects of defense spending are analyzed. Emphasis is on the procurement of weapons systems. Topics covered include an overview of the defense budget, special characteristics of the defense market, the structure of the defense industry, and the economic behavior of defense firms.

308 Economic Analysis of Government (also Civil and Environmental Engineering 322)
Spring. 4 credits. Prerequisites: calculus plus Economics 313 or equivalent or Civil and Environmental Engineering 322.
Analysis of economic bases for government intervention in a market economy. Topics include public goods, cost-benefit analysis, public finance, environment regulation and risk management, and macroeconomic topics.

311 Intermediate Microeconomic Theory
Summer only. 4 credits. Prerequisites: Economics 101–102 or permission of instructor.
The pricing processes in a private enterprise economy are analyzed under varying competitive conditions, and their role in the allocation of resources and the functional distribution of national income is considered.

312 Intermediate Macroeconomic Theory
Summer only. 4 credits. Prerequisites: Economics 101–102 or permission of instructor.
The theory of national income determination and economic growth in alternative models of the national economy is introduced. The interaction and relation of aspects of these models of empirical aggregate economic analysis is examined.

313 Intermediate Microeconomic Theory
Fall, spring, or summer. 4 credits. Prerequisites: Economics 101–102 and calculus.
For description see Economics 311.

314 Intermediate Macroeconomic Theory
Fall, spring, or summer. 4 credits. Prerequisites: Economics 101–102 and calculus.
For description see Economics 312.

315 History of Economic Analysis
Fall. 4 credits. Prerequisites: Economics 101–102 or permission of instructor.
Early writings in economics and their relationship to current economic analysis and policy issues, for example, ancient and medieval philosophies of justice in exchange; mercantilist arguments for trade protection; early theories about the effect of monetary inflation (D. Hume); the role of the entrepreneur (Cantillon); and general competitive equilibrium (the Physiocrats). The most recent reading assignment in this course is Adam Smith’s Wealth of Nations but the emphasis is on the relationship between the precursors of Adam Smith and his Wealth of Nations. A topic in economic analysis and current efforts to answer some of the questions raised in the early writing on economics.

317 Intermediate Mathematical Economics I
Fall. 4 credits.
Introduction of calculus and matrix algebra; problems of maximization of a function of several variables. Economic examples are used to illustrate and teach the mathematical concepts.

318 Intermediate Mathematical Economics II
Spring. 4 credits.
Advanced techniques of optimization and application to economic theory.

319 Introduction to Statistics and Probability
Fall or summer. 4 credits. Prerequisites: Economics 101–102 and calculus (Mathematics 111 or equivalent).
This course provides an introduction to statistical inference and to principles of probability. It includes descriptive statistics, principles of probability, discrete and continuous distributions, and hypothesis testing (of sample means, proportions, variance). Regression analysis and correlation are introduced.

320 Introduction to Econometrics
Spring or summer. 4 credits. Prerequisites: Economics 101–102, 319, or equivalent.
Introduction to the theory and application of econometric techniques. How econometric models are formulated, estimated, used to test hypotheses, and used to forecast; understanding economists’ results in studies using regression model, multiple regression model, and introduction to simultaneous equation models.

321 Applied Econometrics
Fall or spring. 4 credits. Prerequisites: Economics 101–102 and calculus.
This course provides an introduction to statistical methods and principles of probability. Topics to be covered include analysis of data, probability concepts and distributions, estimation and hypothesis testing, regression, correlation and time series analysis. Applications from economics are used to illustrate the methods covered in the course.

322 American Economic History
Fall. 4 credits. Prerequisites: Economics 101–102 and calculus.
Problems in American economic history from the first settlements to early industrialization are surveyed.

323 Microeconomics
Spring. 4 credits. Prerequisites: Economics 101–102 or permission of instructor.
Survey of problems in American economic history from the Civil War to World War I.

324 Economic History of Latin America
Spring. 4 credits. Open to upperclass students with some background in economics or history, or with permission of instructor.
History of the changing structure of American business from 1800 to the present, with major emphasis upon developments after the Civil War. The focus of the course will be the changing structure of challenges (for example, the rise of unions, development of a national capital market, changing role of government) and the various responses of business organizations and entrepreneurs to those challenges.

325 Economic History of Latin America
Spring. 4 credits. Prerequisites: Economics 101–102 or equivalents.
Survey of economic problems raised in the early writings on economics. Early writings in economics and their relationship to current economic analysis and policy issues, for example, ancient and medieval philosophies of justice in exchange; mercantilist arguments for trade protection; early theories about the effect of monetary inflation (D. Hume); the role of the entrepreneur (Cantillon); and general competitive equilibrium (the Physiocrats). The most recent reading assignment in this course is Adam Smith’s Wealth of Nations but the emphasis is on the relationship between the precursors of Adam Smith and his Wealth of Nations. A topic in economic analysis and current efforts to answer some of the questions raised in the early writing on economics.

326 History of American Enterprise
Spring. 4 credits. Prerequisites: Economics 101–102 and calculus.
A survey of problems in American economic history from the Civil War to World War I.

327 Economic History of Latin America
Spring. 4 credits. Open to upperclass students with some background in economics or history, or with permission of instructor.
History of the changing structure of American business from 1800 to the present, with major emphasis upon developments after the Civil War. The focus of the course will be the changing structure of challenges (for example, the rise of unions, development of a national capital market, changing role of government) and the various responses of business organizations and entrepreneurs to those challenges.

328 Microeconomics
Spring. 4 credits. Prerequisites: Economics 101–102 and calculus.
Survey of problems in American economic history from the Civil War to World War I.

329 Eastern Europe Today: Economics, Government, Culture (also Government 326 and Russian 329)
Fall. 4 credits.
Economics majors cannot use this course to fulfill major requirements. Introductory interdisciplinary survey of Poland, Hungary, Czechoslovakia, and Yugoslavia since World War II, with emphasis on contemporary development. The goals of the course are to examine differences (the variety of backgrounds) among East European countries, the common elements (for example, political relations with the USSR), domestic situations, the economy, and culture.

330 The Soviet Union: Politics, Economics, and Culture (also Government 330 and Russian 330)
Spring. 4 credits.
Economics majors cannot use this course to fulfill major requirements. Interdisciplinary survey of the USSR since the Revolution, with emphasis on contemporary developments.

331 Money and Credit
Fall. 4 credits. Prerequisites: Economics 101–102.
A systematic treatment of the determinants of the money supply and the volume of credit. Economic analysis of credit markets and financial institutions in the United States.

332 Theory and Practice of Asset Markets
Spring. 4 credits. Prerequisites: Economics 311 or 313, or 312 or 314, or their equivalents.
The theory and decision making in the presence of uncertainty and the practical aspects of particular asset markets are examined.

333 Public Finance: The Microeconomics of Government
Fall. 4 credits. Prerequisites: Economics 101–102 and 313, or their equivalent, and one semester of calculus, or permission of instructor.
The role of government in a free market economy is analyzed. Topics covered include public goods, market failures, allocation mechanisms, optimal taxation, effects of taxation, and benefit-cost analysis. Current topics of an applied nature will vary from term to term.

337 Public Finance: Decision Making and Fiscal Policy
Spring. 4 credits. Prerequisites: Economics 101–102, 313 or their equivalent and one semester of calculus, or permission of instructor.
A continuation of Economics 335 covering macroeconomics and special topics. Subjects covered include the federal debt, the budget, and government regulation and transfers, as well as problems like local public goods, the hierarchy of governmental structure, plus a variety of applied problems.

338 Macroeconomic Policy
Fall or spring. 4 credits. Prerequisite: Economics 312 or 314 or equivalent.
The use of fiscal and monetary policies for achieving full employment, price-level stability, and appropriate economic growth are studied.

341 Labor Economics
Fall. 4 credits. Prerequisites: Economics 101–102.
342 Economic Analysis of the University
Spring. 4 credits. Prerequisite: ILR 240 or Economics 311 or 313 or their equivalent.
This course seeks to illustrate the complexity of decision making in a nonprofit organization and to show how microeconomic analysis in general, and labor market analysis in particular, can be usefully applied to analyze resource allocation decisions at universities. Among the topics covered are financial aid, tuition, and admissions issues concerning enrollment policies, faculty salary determination, the tenure system, mandatory retirement policies, merit pay, affirmative action, comparable worth, collective bargaining, resource allocation across and within departments, undergraduate versus graduate education, research costs, libraries, athletics, and "socially responsible" policies.

347 Economics of Evaluation
4 credits.
An introduction to the methodologies used by economists to evaluate the impacts of social-action programs and legislation. General evaluation methodology, cost-benefit analysis, and econometrics are discussed. Case studies are considered to illustrate the uses of these techniques. The student with major current government programs and legislation, and to estimate these programs" economic impacts. Throughout, the primary analytic framework used by the instructor is microeconomics.

351 Industrial Organization
Fall. 4 credits. Prerequisite: Economics 101 is recommended.
A study of markets that differ from the ideal of perfect competition (e.g., monopoly and oligopoly) and the efforts of our legal system through the antitrust laws to deal with the kinds of problems that arise in such markets. Specific topics covered include mergers, price fixing, price discrimination, predatory pricing, and vertical restraints such as resale price maintenance.

352 Advanced Topics in Industrial Organization
Spring. 4 credits. Prerequisites: Economics 101 and 351 and some knowledge of calculus.
Recommended strongly: Economics 311, or equivalent.
The course is an extension of 351 and will emphasize (a) more-advanced topics in the theory of industrial organization with special attention to recent developments in the literature; and (b) empirical analysis of numerous issues relating to the structure of markets and their performance.

354 Economics of Regulation
Fall or spring. 4 credits. Prerequisite: Economics 315 or equivalent or Civil and Environmental Engineering 321.
Explores technological bases for government intervention in the private market economy, which include decreasing cost industries (natural monopolies) and technical externalities (pollution and risk). The economic implications of regulating electric, gas, and telecommunications and transportation utilities, including pricing, service quality, efficiency incentives, and long-range planning issues, are examined in detail. Topics on environmental protection and societal risk management are also explored.

355 Departures from Rational Choice
Fall. 4 credits. Prerequisites: Economics 313 and 314, or their equivalents.
This course examines behaviors that appear inconsistent with the traditional theory of rational choice. These behaviors fall under two broad categories: (1) irrational behavior with regret, and (2) irrational behavior without regret. The first category includes, but is not limited to, behaviors that result from cognitive errors. Once people are made aware of these errors, they typically express a desire to modify their behavior in the directions called for by rational choice theory. The second category represents a deeper challenge to the traditional model. It consists of behaviors that people generally express no desire to modify despite their inconsistency with rational choice theory.

357 Economics of Imperfect Information
Spring. 4 credits. Prerequisites: Economics 101-102 and calculus.
This course covers a variety of topics in the economics of uncertainty, including basic decision theory, search theory, risk insurance, and equilibrium price dispersion.

358 Current Economic Issues
Fall or spring. 3 or 4 credits. (A research paper will be required if the 4-credit option is chosen.) Prerequisites: Economics 101-102.
The emphasis will be on the application of simple microeconomics and industrial organization concepts to the formulation of public policy in the present and recent past. Among the topics likely to be covered will be policies relating to energy, communications, and transportation; the financing and delivery of medical care, public utility, and other kinds of regulation; and the economics of inflation.

361 International Trade Theory and Policy
Fall. 4 credits. Prerequisites: Economics 101-102, 314, and calculus.
This course surveys the sources of comparative advantage. It studies commercial policy and analyzes the welfare economics of trade between countries. Some attention is paid to the institutional aspects of the world trading system.

362 International Monetary Theory and Policy
Spring. 4 credits. Prerequisites: Economics 101-102, 314, and calculus.
This course surveys the determination of exchange rates and theories of balance of payments adjustments. It also explores open economy macroeconomics, and it analyzes some of the institutional details of foreign exchange markets, balance of payments accounting, and the international monetary system.

363 International Economics
Fall. 4 credits. Prerequisite: Economics 101-102 or equivalent.
This course surveys international economics in one semester. First, it surveys the sources of comparative advantage, and it analyzes commercial policy and the institutional aspects of the world trading system. Second, it discusses exchange rates, and it studies theories of balance of payments adjustments. This course is intended primarily for government majors who are comfortable with a less technical approach to international economics.

365 Japanese Economy
Summer only. 4 credits. Prerequisites: Economics 101-102 or a course in Far Eastern history or Far Eastern politics.
The history and the present structure of the Japanese economy, concentrating on its two periods of "miraculous" growth and development and on contemporary Japanese-American economic relations.

366 The Economy of the Soviet Union
Fall. 4 credits. Prerequisites: Economics 101-102.
A survey of the Soviet economic system and Soviet economic development since 1917. Both institutional and theoretical aspects will be considered. Emphasis will be on current developments, including East-West economic competition, economic relations with the Eastern Bloc and with Western Europe, and foreign trade.

367 Comparative Economic Systems: Soviet Union and Europe
Fall. 4 credits. Prerequisites: Economics 313-314, or equivalents, or permission of instructor.
Discussion of approaches to comparison of economic systems. Consideration of abstract models (market economy, central planning, decentralized socialist market) as well as national economies (France and Sweden, Yugoslavia, and Soviet Union). Possibility of convergence of economic systems is explored.

368 Comparative Economic Systems: United States, Europe, and the Soviet Union
Spring or summer. 4 credits. Prerequisites: Economics 101-102.
Intended for students who are not majoring in economics. European and Soviet economies after the Second World War are surveyed. The European countries studied include France and Sweden in the West, and Yugoslavia plus another country in the East. A descriptive and institutional approach is used.

369 The Economy of China
Fall. 4 credits. Prerequisite: Economics 101-102 or permission of instructor.
Examines the development of the Chinese economy and the evolution of China's economic system since 1949.

370 Issues in Poverty and Development
Fall or spring. 4 credits.
The course will introduce current issues and controversies in the field of development economics. Questions to be discussed will include: What are the obstacles to development according to the different schools of thought? Which countries have made significant progress in the last three decades and why? What are the policies that have been pursued, and how successful have they been? The required readings will be supplemented with outside speakers and film presentations.

371 Economic Development
Fall. 4 credits. Prerequisites: Economics 313 or equivalent.
Study of the problem of sustaining accelerated economic growth in less-developed countries. Trade-offs between growth, welfare, and equity; the legacy of colonialism; relevance of history and economic theory; problems of capital formation, economic planning and international specialization; and the interaction of industrialization, agricultural development, and population change are emphasized.
Fall or spring. 4 credits. Prerequisite: Economics 311, 313, or equivalent.

373 International Specialization and Economic Development
Fall or spring. 4 credits. Prerequisites: Economics 101–102 or permission of instructor. The assessment of the gains and risks and the appropriate role for specialization and trade in economic development; management of the external disequilibrium attending serious economic development; and the processes, institution, and opportunities for innovation in transferring income from the relatively developed countries to those less developed.

374 National and International Food Economics (also Nutritional Sciences 457)
Spring. 3 credits. Prerequisites: a college course in economics and junior standing or permission of instructor. The analysis of the world food economy. Review and analysis of (a) the major economic factors determining the demand for and supply of food, including food consumption and nutritional intake; and (b) the major economic factors affecting food production and supply. Examination and evaluation of the effectiveness of various food policies and programs in altering food consumption patterns. Principles of nutritional planning in developing countries within the context of the process of economic and social development.

378 Economics, Population, and Development
Fall or spring. 4 credits. The economic aspects of population and the interaction between population change and economic change are introduced. Particular attention is paid to economic views of fertility, mortality, and migration, and to the impact of population growth on economic growth, development, modernization, resources, and the environment.

381 Economics of Participation and Workers' Management
Spring. 4 credits. Prerequisites: Economics 101–102 or permission of instructor. The theory of labor-management economies is developed systematically, and literature on that and related subjects surveyed. Theories of the participatory firm, industry, and general equilibrium are covered together with a microeconomic theory and analysis of special dimensions of the system. Efficient decision-making processes within the firm are also studied. Illustrative references to Yugoslavia and other real instances of labor participation are made throughout.

382 The Practice and Implementation of Self-Management
Fall. 4 credits. A broad introduction to the subject of workers' self-management intended for both economists and non-economists. It contains no technical tools nor does it require prior professional knowledge: thus there are no prerequisites. The course objective is to answer 5 broad questions: (1) What is self-management? (2) Where and in what form does it occur? (3) What is its history? (4) How does it work? and (5) How is a cooperative enterprise/economy started/operated?

383 Marxist Political Economy
Summer only. 4 credits. Prerequisites: Economics 101–102 or permission of instructor. An intensive introduction to Marxist political economy. Close reading of selected original writings of Marx and Engels. An investigation and analysis of the historical development and current theory and method of Marxist political economy. Applications of that analysis, and current debates over issues such as crisis theory and Marxist-feminist analysis.

399 Readings in Economics
Fall or spring. Variable credit. Independent study.

416 Intertemporal Economics
Fall. 4 credits. Prerequisites: Economics 313 or equivalent, and calculus. This course is intended for advanced economics majors who are especially interested in economic theory. Topics to be covered: (a) review of the one good Ramsey model of optimal savings and accumulation; conditions for intertemporal efficiency in production; comparative dynamics and sensitivity analysis; (b) some earlier models of capital accumulation; the roles of present value and internal rate of return in guiding investment decisions; (c) growth, exhaustible resources, pollution and conservation: discussion of the trade-offs facing a society.

419 Economic Decisions under Uncertainty
Fall. 4 credits. Prerequisites: Economics 319 and calculus. This course provides an introduction to the theory of decision making under uncertainty with emphasis on economic applications of the theory.

445 Topics in Microeconomic Analysis—Markets and Planning
Fall or spring. 4 credits. Prerequisites: Economics 311, 313, or equivalent and one term of calculus. This is a course of economic theory designed for upperclass undergraduates. Course contents may vary from year to year. Issues that may be examined include (1) How can economic systems, especially organized through the market mechanism? Why is the presence of many traders essential to efficiency? (2) What can be done if the indivisibility in production processes becomes an important hindrance to competitive pricing? (3) How can economic planning be decentralized efficiently? This course serves two purposes: (1) to introduce concepts that are novel to undergraduates and relevant to public policy but require only a modicum of analytic tooling up, and (2) to illustrate the deductive approach of modern economic analysis—how to define concepts unambiguously, how to form propositions in clear-cut fashion, and how to follow up logical implications sequentially to the conclusion.

446 Topics in Macroeconomic Analysis—Is Keynesianism Dead?
Fall or spring. 4 credits. Prerequisites: Economics 312, 314, or equivalent and one term of calculus. The coverage of this course may vary from term to term. Presently the content of the course deals with the range of criticisms against Keynesian theory by the New Classical Economic School, the Rational Expectations School, alias the Equilibrium School, alias the Rational Expectations School. Despite the fact that almost all intermediate macroeconomic textbooks are Keynesian in perspective, clearly Keynesian economics is currently at bay. We shall review critically, critiques to Keynesian theory.

448 Deficits, Debt and the Monetary System
Fall or spring. 4 credits. Prerequisites: Economics 313 and 314 or their equivalent. History has witnessed many instances of fast growth of public debt—mostly the result of wars and depressions in the past, but also of peace-time deficits in recent times. Economic analysis has devoted a growing body of theoretical literature to examining the effects and the eventual outcomes of processes of debt accumulation: the variety of the results matches that of historical experiences.

The purpose of the course is to survey the relevant strands of theory, old and new, trying however to keep in touch with reality and history. The sustainability of debt growth is an elusive notion that will be critically examined with reference to alternative models and "regimes." Debt growth establishes an important intertemporal link between deficits and inflation that will be considered by studying the notion and the role of seigniorage. The policy problems posed by debt growth will be examined from these perspectives: means and ends of debt management; stabilization plans; the coexistence of high and low debt countries under an exchange rate agreement such as the European Monetary System.

473 Economics of Export-led Development
Fall or spring. 4 credits. Prerequisites: Economics 313, 314, or their equivalent. This course will examine the phenomenon of export-led development from both the theoretical and empirical points of view. Concentration will be on experiences within the West Pacific Rim.

481 Economic Effects of Participation and Labor-Managed Systems
Fall or spring. 4 credits. Prerequisites: Economics 381 and 382. This course applies microeconomic theory to analyzing the performance of firms in which employees either participate in the decision-making process or make all the important decisions. If a specialist in the area is lacking, Prof. Vanek may give the course as a seminar with primarily grade students who discuss topics in the literature selected through consensus of the participants.

482 Practical Aspects of Business Management of Worker Enterprises
Fall or spring. 4 credits. Prerequisite: should be taken concurrently with or following Economics 382/582, or by permission of instructor.

This course is designed to further and deepen undergraduate and graduate students' knowledge of workers' self-management democratic enterprises. It will be based primarily on dialogue and participants' own presentations of their research in relevant areas such as cooperative business law, finance, accounting, or internal work organization. The instructor will act primarily as a coordinator and resource person. Whenever possible an attempt is made to form and incorporate a self-managing cooperative enterprise. Students who have taken all three courses, Economics 381/681, 382/682, and 482, both graduate and undergraduate, are welcome to participate as teacher-student interns. They may receive additional independent study credit for this work.
483 The Technological and Product Base of Worker Enterprises, with Special Emphasis on Ecology and Solar Energy Applications
Fall or spring. 4 credits. Prerequisite: may be taken concurrently with or following Economics 382/582, or with permission of instructor. This course is designed to deepen undergraduate and graduate students' knowledge of workers' self-management and cooperation, through learning about and construction of simple energy-related technologies, to be produced in workers' enterprises. Size of the class is limited by technical, space, and instruction resources. Some of the technologies may serve as a basis for projects to be undertaken in Economics 482.

499 Honors Program
Fall and spring. 8 credits. Consult the Director of Undergraduate Studies for details. Interested students should apply to the program in the spring semester of their junior year.

Graduate Courses and Seminars

504 Economics and the Law
Fall. 4 credits. For description see Economics 304.

509 Microeconomic Theory I
Fall. 4 credits. Topics in consumer and producer theory.

510 Microeconomic Theory II
Spring. 4 credits. Topics in consumer and producer theory, equilibrium models and their application, externalities and public goods, intertemporal choice, simple dynamic models and resource depletion, choice under uncertainty.

513 Macroeconomic Theory: Static Income Determination
Fall. 4 credits.

514 Macroeconomic Theory: Dynamic Models, Growth, and Inflation
Spring. 4 credits.

516 Applied Price Theory
Spring. 4 credits. The course emphasizes the applications of the principles of price theory to a variety of problems taken from concrete, practical settings.

517 Intermediate Mathematical Economics I
Fall. 4 credits.

518 Intermediate Mathematical Economics II
Spring. 4 credits.

519 Econometrics I
Fall. 4 credits. Prerequisites: Economics 319–320 or permission of instructor. This course gives the probabilistic and statistical background for meaningful application of econometric techniques. Topics to be covered are (1) probability theory: probability spaces, random variables, distributions, moments, transformations, conditional distributions, distribution theory and the multivariate normal distribution, convergence concepts, laws of large numbers, central limit theorems, Monte Carlo simulation, (2) statistics: sample statistics, sufficiency, exponential families of distributions. Further topics in statistics will be considered in Economics 520.

520 Econometrics II
Spring. 4 credits. Prerequisite: Economics 519. This course is a continuation of Economics 519 (Econometrics I) covering (1) statistics: estimation theory, least squares methods, method of maximum likelihood, generalized method of moments, theory of hypothesis testing, asymptotic test theory, and nonnested hypothesis testing and (2) econometrics: the general linear model, generalized least squares, specification tests, instrumental variables, dynamic regression models, linear simultaneous equation models, nonlinear models, and applications.

523 American Economic History
Fall. 4 credits. For description see Economics 323.

524 American Economic History
Spring. 4 credits. For description see Economics 324.

525 Economic History of Latin America
Spring. 4 credits. For description see Economics 325.

535 Public Finance: Resource Allocation and Fiscal Policy
Fall. 4 credits. For description see Economics 335.

536 Public Finance: Resource Allocation and Fiscal Policy
Spring. 4 credits. For description see Economics 336.

548 Deficits, Debt and the Monetary System
Fall or spring. 4 credits. For description see Economics 448.

551 Industrial Organization
Fall. 4 credits. For description see Economics 351.

552 Public Regulation of Business
Spring. 4 credits. For description see Economics 352.

554 Economics of Regulation
Fall or spring. 4 credits. For description see Economics 354.

555 Politics and Markets
Fall. 4 credits. For description see Economics 355.

557 Economics of Imperfect Information
Spring. 4 credits. Prerequisites: Economics 509 and statistics. The purpose of the course is to consider some major topics in the economics of uncertain information. Although the precise topics considered will vary from year to year, subjects such as markets with asymmetric information, signalling theory, sequential choice theory, and search theory will be discussed.

561 International Trade Theory and Policy
Fall. 4 credits. For description see Economics 361.

562 International Monetary Theory and Policy
Spring. 4 credits. For description see Economics 362.

565 Economic Problems of Latin America
Spring. 4 credits.

567 Comparative Economic Systems: Soviet Union and Europe
Fall. 4 credits.

569 The Economy of China
Fall. 4 credits. For description see Economics 369.

571 Economic Development
Fall. 4 credits. For description see Economics 371.

572 Applied Economic Development
Fall or spring. 4 credits. For description see Economics 372.

573 International Specialization and Economic Development
Fall or spring. 4 credits. For description see Economics 373.

578 Economics, Population, and Development
Fall or spring. 4 credits. For description see Economics 378.

581 Economics of Participation and Worker Management
Spring. 4 credits. For description see Economics 381.

582 The Practice and Implementation of Self-Management
Fall. 4 credits. For description see Economics 382.

599 Readings in Economics
Fall or spring. Variable credit. Independent study.

603 Seminar in Peace Science
Fall. 4 credits. Among topics to be covered at an advanced level are game theory, coalition theory, bargaining and negotiation processes, cooperative procedures, microbehavior models, macrosocial processes, and general systems analysis.

605 Advanced Social Theory for Peace Scientists
Spring. 4 credits. Prerequisites: Economics 505 and knowledge of microeconomic theory. Study of diverse social science hypotheses and theories as they relate to, and can be synthesized within, multiregional, multinational, and generally multigroup conflict and cooperative frameworks. Particular attention will be given to developments stemming from microeconomics and general systems theory. Dynamic analyses will be emphasized.

610 Stochastic Economics: Concepts and Techniques
Spring. 4 credits. Prerequisites: Economics 509, 510, 513, 514, 519, and 520. This course will review a number of techniques that have been useful in developing stochastic models of economic behavior. Among these are (a) discrete-time Markov processes, (b) dynamic programming under uncertainty, and (c) continuous-time diffusion processes. Examples of economic models will be drawn from recent literature on optimal capital accumulation and optimal savings and portfolio selection problems: permanent income hypothesis; dynamic models of price adjustment, etc. Advanced graduate students contemplating work in economic theory and econometric theory will be able to get some exposure to current research.

611 Advanced Microeconomic Theory
Fall. 4 credits.
612 Advanced Macroeconomic Theory
Fall. 4 credits.

617 Mathematical Economics
Spring. 4 credits.

618 Mathematical Economics
Fall. 4 credits.

619 Advanced Topics in Econometrics I
Fall. 4 credits. Prerequisites: Economics 519-520 or permission of instructor.
Advanced topics in econometrics, such as asymptotic estimation and test theory, robust estimation, Bayesian inference, advanced topics in time-series analysis, errors in variable and latent variable models, qualitative and limited dependent variables, aggregation, panel data, and duration models.

620 Advanced Topics in Econometrics II
Spring. 4 credits. Prerequisites: Economics 519-520 or permission of instructor.
For description see Economics 619.

623 American Economic History
Fall or spring. 4 credits.

624 American Economic History
Fall or spring. 4 credits.

626 Methods in Economic History
Fall or spring. 4 credits.

631 Monetary Theory and Policy
Fall. 4 credits.

632 Monetary Theory and Policy
Spring. 4 credits.

635 Public Finance: Resource Allocation and Fiscal Policy
Fall. 4 credits.

636 Public Finance: Resource Allocation and Fiscal Policy
Spring. 4 credits.

637 Location Theory and Regional Analysis
Fall. 4 credits. Prerequisites: Economics 509 and 517 and Econometrics.
Economic principles influencing the location of economic activity, its spatial equilibrium structure, and dynamic forces. Topics include spatial pricing policies, price competition, and relocation by firms; residential location patterns; patterns of regional growth and decline; and patterns of urbanization.

638 Public Finance: Local Government and Urban Structure
Fall or spring. 4 credits.

641 Seminar in Labor Economics
Fall. 4 credits.

642 Seminar in Labor Economics
Spring. 4 credits.

644 The Labor Market and Public Policy: A Comparative View
Fall or spring. 4 credits.

647 Economics of Evaluation (also Industrial and Labor Relations 647)
Spring. 4 credits. For description see Industrial and Labor Relations 647.

648 Issues in Latin America
Fall or spring. 4 credits.

651 Industrial Organization and Regulation
Fall. 4 credits.

652 Industrial Organization and Regulation
Spring. 4 credits.

653 Public Policy Issues for Industrial Organizations
Spring. 4 credits. Prerequisites: Economics 509, 510, and 651.
The course takes an in-depth view of the interaction between the government and business. Methods of business control, including antitrust, price regulation, entry regulation, and safety regulation. Emphasis will be not only on the economic effects on business, but on the economics of selecting and evolving the method of control.

655 Rivalry and Cooperation
Fall. 4 credits. Prerequisites: Economics Graduate Core or instructor's permission.
In standard models, economic interaction is impersonal. Agents respond to price signals and measure their own welfare not in relative but in absolute terms; and cooperative behavior emerges only when it coincides with narrow self-interest. This course will explore the details of rivalry and cooperation in an effort to synthesize broader views of economic interaction. Topics will include the effect of concerns about relative income on wage rates, consumption, savings, and regulation; the effect of concerns about fairness on prices and wages; the conditions that foster trust and cooperation; and the role of positional competition in the distribution of economic rewards.

661 International Economics: Pure Theory and Policy
Fall. 4 credits.

662 Seminar in International Economics
Spring. 4 credits. Prerequisites: Economics 601, acquaintance with conventional trade analysis, or permission of instructor.
The course will cover advanced topics in international economics normally covered in International Economics 661.

664 International Economics: Balance of Payments and International Finance
Fall or spring. 4 credits.

670 Economic Demography and Development
Fall or spring. 4 credits.

671 Economics of Development
Spring. 4 credits.

672 Economics of Development
Fall. 4 credits. Prerequisites: first-year graduate economic theory and econometrics. Analytical approaches to the economic problems of developing nations. Topics to be covered include: some old and new directions in development economics thinking, the welfare economics of poverty and inequality, empirical evidence on who benefits from economic development, labor market models, project analysis with application to the economics of education, and development policy.

673 Economic Development
Fall or spring. 4 credits. Prerequisites: Economics 509 and 520.
The course is concerned with theoretical and applied works that seek to explain economic development, or lack thereof, in countries at low-income levels. Specific topics vary each semester.

674 Economic Systems
Spring. 4 credits.

675 Comparative Economic Organization and Institutions
Fall. 4 credits. Prerequisites: Economics 314 and 351-352 or equivalent.
This course addresses problems of coordination, management, finance, and organizational structure in firms and, to some extent, economies. It covers topics such as coordination mechanisms for production activity, problems arising in the control of subordinate agents' behavior, decision making within firms, internal firm organization, financial institutions and loan contracts, and the market for firm control. Course material draws from literature on mechanism design and from the fields of industrial organization, finance, and comparative systems.

678 Economic Growth in Southeast Asia
Fall or spring. 4 credits.

679 The Theory of Quantitative Economic Policy
Fall or spring. 4 credits.

681 Economics of Participation and Self-Management
Fall. 4 credits. Prerequisites: Economics 101-102, or permission of instructor.
For description see Economics 381. Economics 681 is given on a more advanced graduate level.

682 Seminar on Economics of Participation and Labor-managed Systems
Fall. 4 credits.

684 Seminars in Advanced Economics
Fall and spring. 4 credits.
ENGLISH

The Department of English offers a wide range of courses in English, American, and Anglophone literature as well as in creative writing, expository writing, and film. Literature courses focus variously on the close reading of texts, the study of particular authors and genres, questions of critical theory and method, and the relationship of literary works to their historical periods and to other disciplines. The department seeks not only to foster analytical reading and lucid writing but also, through the study of literary texts, to teach students to think about the nature and value of human experience.

Students who major in English develop their own programs of study in consultation with their advisers. Some focus on a particular historical period or literary genre. Others pursue special interests in such areas as women’s literature, Afro-American literature, or creative writing.

The Major

Any student considering a major in English should meet with the department’s director of undergraduate studies to discuss the major and be assigned a major adviser. Copies of a brochure containing suggestions for English majors and prospective English majors are available in the department office, 250 Goldwin Smith Hall.

The Department of English recommends that its students ready themselves for the major by taking at least one preparatory course. Freshmen interested in majoring in English are encouraged to take one of the following freshman seminars: The Reading of Fiction (English 270), The Reading of Poetry (English 271), or Introduction to Drama (English 272). First-term freshmen with a score of 700 or above on the CEEB College Placement Tests in English composition or literature or 4 or 5 on the CEEB Advanced Placement Examination in English may enroll in English 270, 271, 272 as space permits (all students who have taken one honors seminar are permitted to enroll in these courses as space permits).

In addition, The American Literary Tradition (English 275), Close Reading (English 204), and Creative Writing (English 280 or 281) are especially suitable in preparation for the major.

Requirements

Each English major must complete with passing letter grades at least 36 credits in courses approved for the major. Students may count up to four courses for the major from the category entitled "200-level Courses Approved for the Major." All English courses numbered 300 or above count toward the major.

Courses for Nonmajors

For students not majoring in English, the department makes available a variety of courses at all levels. Some courses at the 200 level are open to qualified freshmen, and all of them are open to sophomores. Courses at the 300 level are open to juniors and seniors and to underclass students with permission of the instructor. The suitability of courses at the 400 level for nonmajors will vary from topic to topic, and permission of the instructor is required.

Freshman Seminars

As part of the Freshman Writing Seminar Program, the Department of English offers many one-semester courses concerned with various forms of writing (narrative, biographical, expository), with the study of specific areas in English and American literature, and with the relation of literature to culture. Students may elect any of these courses during their first year to satisfy the Freshman Seminar requirement. Descriptions of Freshman Writing Seminar offerings may be found in the Freshman Seminar Program listings, available from college registrars in August for the fall term and in November for the spring term.

Especially well-qualified students who are considering a major in English are encouraged to enroll in English 270, 271, or 272. Students who have scored 4 or 5 on the Princeton exam or 700 or better on the English Composition or CEEB test are eligible to enroll in the fall semester (space permitting) in any of these courses. Students with a score of 4 or 5 on the English 270, 271, and 272 will be open to all freshmen in the spring semester who have satisfactorily completed one freshman seminar. Registration is handled by the Freshman Writing Seminar Program during freshman registration.

270 The Reading of Fiction

Fall, spring, each summer. 3 credits. Each section limited to 17 students. Freshman Seminar. Recommended for prospective majors in English.

Forms of modern fiction, with emphasis on the short story and novella. Critical study of works by English, American, and Continental writers from 1880 to the present.

271 The Reading of Poetry

Fall, spring. 3 credits. Each section limited to 17 students. Freshman Seminar. Recommended for prospective majors in English.

Designed to sharpen the student’s ability to understand and respond to poetry, readings in the major periods, modes, and genres of poetry written in English.

272 Introduction to Drama

Fall, spring. 3 credits. Each section limited to 17 students. Freshman Seminar. Recommended for prospective majors in English.

Selected works by such playwrights as Sophocles, Shakespeare, Ibsen, and Brecht introduce the chief idioms and styles of drama. The course work will consist of discussions and papers and may include a special project related to the plays being produced by the Department of Theatre Arts.

Courses for Sophomores

Although courses numbered in the 200s are primarily for sophomores, some of them are open to qualified freshmen and to upperclass students. Students may count up to four 200-level courses toward the major from...
Courses Recommended for Prospective Majors

275 The American Literary Tradition
Fall, spring. 3 credits. Recommended for prospective majors in American studies. This is not a Freshman Seminar.
Fall. MWF 1:25–2:15. R. Gilbert.
A sequence of prominent texts from the early nineteenth through the late twentieth century, chosen to exhibit what has been accomplished in fiction, long or short, autobiography, and poetry by some American writers, male and female, black and white. A representative syllabus might include such names as Hawthorne, Whitman, Douglass, Melville, Alcott, James, Hemingway, Salinger, and Morrison.

280–281 Creative Writing
Fall. 2 credits. Spring, winter session. 3 credits. Limited to 18 students each section.
Please note the following registration procedure for Creative Writing 280–281: (Fall and spring) enrollment is by ballot only. Students interested in Creative Writing must come to the Grand Course Exchange to fill out a ballot. A no-pre-registration for 280–281 will be accepted. Further details will be available in registration packets and at the Grand Course Exchange.
Recommended for prospective English majors. An introductory course in the theory and practice of writing narrative prose, poetry, and allied forms. English 280 is not a prerequisite for English 281.

Courses Primarily For Nonmajors

205–206 Readings In English and American Literature
205, fall, 205, spring. 3 credits each term.
Open to all undergraduates. English 205 is not a prerequisite for 206.
206. Fall, MWF 10:10–11:00. S. Parrish.
206. Covers literature since the mid-nineteenth century. Novels by such authors as Emily Bronte, Conrad, Hardy, Hemingway, Faulkner, Vonnegut, and others; poems by Browning, Housman, and Frost; plays by Shaw; and one or two contemporary writers such as Arthur Miller. Two lectures and one discussion section each week. Two short papers, two prelims, no final examination.
205; Spring, MWF 11:15–12:05. R. Farrell.
205. An introduction to some of the major texts from the beginning of the literature through the eighteenth century. The first weeks will be devoted to Beowulf and two selections from Chaucer’s Canterbury Tales as samples of early yet readily understood literature. Readings from other authors include Shakespeare, Jonson, Marlowe, Donne, Pope, Swift, and Johnson.

[208 Forms of Poetry
3 credits. Not offered 1990–91]

[210 Medieval Romance: The Voyage to the Otherworld
3 credits. Not offered 1990–91]

227 Shakespeare
Fall, spring. 3 credits. Each section limited to 25 students.
A critical study of representative plays from the principal periods of Shakespeare’s career.

263 Forms of Hollywood Comedy: The 1930s and 1940s
Fall. 3 credits. Enrollment limited to 20 students.
This seminar will focus on American film comedies in their relation to the historical moments that produced them and to the Hollywood production system. We will discuss comedy’s social functions, its structures, its visual styles. The 1930s brought the end of silent slapstick or vaudeville comedies that relied heavily on physical humor, though artists like Charlie Chaplin (in Modern Times) continued to work in silents, while the Marx brothers transformed them into sound films like A Day at the Races and Duck Soup. With screwball comedy, a strong verbal and psychological comedy’s social functions, its structures, its visual styles. The 1930s brought the end of silent slapstick or vaudeville comedies that relied heavily on physical humor, though artists like Charlie Chaplin (in Modern Times) continued to work in silents, while the Marx brothers transformed them into sound films like A Day at the Races and Duck Soup. With screwball comedy, a strong verbal and psychological

285 Art, Isotopes, and Analysis (also MS&E 285)
Spring. 3 credits.
The analysis of paintings and rare books and the physical properties of some of the main works of art will be discussed, focusing on the historical and technical aspects of its creation and modern analysis of it. Visual, infra-red, and x-ray examinations provide insight into the physical properties. Pigments are identified by the radiation emitted in electronic transitions. The ratio of isotopes can be used to identify the geographical origin of a particular pigment as well as being used as a dating method.
Examples will be given of authentication and conservation.

286 Writing in the Humanities (also Writing 201)
Fall or spring. 3 credits. Limited to 17 students.
Registrants must have completed freshman writing requirements. 5-U grades with permission of instructor. Carries distribution credit as English 286.
Fall. TR 11:40–12:55. S. Davis.
Writing 201. English 286 helps students strengthen both their reading and writing skills. It builds on the experience they will have gained in their first-year courses and allows them to apply that skill in all disciplines and particularly appropriate to the humanities. It also encourages them to reflect on what they do when they interpret and write about works of literature, philosophy, and visual art. Just what happens when we “read” such works—and what do we mean when we claim to understand them? What audience do our interpretations address, and how can we convey them in writing that is engaging and forceful? How are conflicts of interpretation resolved? How do historical knowledge and theory affect our interpretations? What kinds of knowledge and self-awareness does study in the humanities yield?
Works studied in the course challenge our understanding by their strangeness or their uncanny familiarity. They show Western reason in conflict with its real or supposed opposites—alien humanity, artistic inspiration, illusion, madness, the divine, and the will to power. Readings/week may include paintings by da Vinci and Velasquez, novels by Nabokov, Conrad, and Achebe; parables by Maxine Hong Kingston, Kafka, and Jesus; Plato’s Gorgias or Phaedrus; Nietzsche’s Birth of Tragedy, and Euripides’ Bacchae.
Students in the course write (and often rewrite) 40 pages of papers and confer frequently with the instructor.

288–289 Expository Writing
288, fall; 289, spring. 3 credits each term. Each section limited to 16 students.
Hours to be arranged. N. Kaplan and staff.
This course offers guidance and an audience for undergraduates who wish to gain skill in a variety of forms of expository writing. Students write personal, argumentative, and investigative essays on topics related to their interests, reading critical and published work in these forms and frequently reviewing each other’s writing in large or small group meetings. A substantial amount of new writing or a revision of an earlier essay will be expected each week. Writing classes is the primary audience for student writing, regular attendance and participation are required. Instructors and students hold regular individual conferences.
200-Level Courses Approved for the Major
Students may take up to four of the following 200-level courses for credit toward the English major.

201-202 The English Literary Tradition
Fall and spring. 4 credits. Open to all undergraduates. English 201 is not a prerequisite for 202.

202: Spring. M W F 11:15-12:05. P. Sawyer, F. Bogel. Includes Dryden, Swift, Pope, Johnson, Blake, the major Romantic and Victorian poets, and Yeats. The course will be conducted by a combination of lectures and seminars.

204 Close Reading: An Intensive Introduction
Spring. 4 credits. Limited to 20 students per section.

Section 1: TR 11:40-12:55. F. Bogel. This course is designed to introduce students to the ways language operates in written texts and to the various acts we perform when we read these texts. Its aim is to prepare students for advanced work in literary studies and for a more imaginative relation to their entire verbal environment.

The course will explore poems, plays, stories, and nonfictional prose, along with a variety of everyday writings: advertisements, billboards, political slogans, bumper stickers, sweatshirts, and more.

We will explore such questions as: How do literary critics interpret texts, and how do their interpretations differ from other kinds of reading? Is literary criticism appropriate to all sorts of text, or just those designated as "literature"? Can the same text be literature at some times but not at others? Do readers create or discover the meanings of texts, and how can we distinguish between legitimate and illegitimate—or convincing and unconvincing—interpretations?

Writing assignments will be exploratory, focusing on details of the language of texts and taking forms other than that of the standard critical essay. Class will be conducted as a discussion.

227 Major Nineteenth-Century Women Novelists

253 The Modern Novel
Fall. 4 credits.

255 African Literature
Fall. 4 credits. TR 10:10-11:25. B. Jeyifo. An introduction to major African writers and literary traditions. Authors studied may include Achebe, Soyinka, Clark, Amah, Ngugi, and Amecheta.

262 Asian American Literature
Spring. 3 credits. TR 1:25-2:40. Staff. This course explores the diverse worlds of past and present Asian American literature. It is designed to help students locate and develop their own points of view with regard to America as a pluralistic society with a diverse and evolving literary heritage. Topics covered include the oral tradition, the creative process for Asian American writers, incarceration and resistance; generation, gender, and community; and diversity and evolution. Students will keep a reading journal with entries focusing on connections among what is read, class discussion, and perceptions of life.

264 Ethnic Literature: Bridges and Boundaries
Spring. 4 credits. TR 1:25-2:40. H. Mullen. The American language that, William Carlos Williams noted, came "from the mouths of Polish mothers" has also been shaped by the oral and written traditions of Native Americans, Afro-Americans, Chicanos, and Asian Americans whose literary production will be examined in this course. Works by writers in these traditions will be studied as sites marking the emergence of a contemporary American language and literature capable of representing the diverse and particular realities of a multicultural nation. This course will focus especially on how each ethnic tradition uses the contested territories of geography, language, and gender in texts that both refer to and imaginatively construct communities and traditions based on collective experience. Discussion will focus on how each text makes connections and distinctions between individuals as well as within and among communities bound together by shared linguistic, geographical, and cultural traditions.

[255 African Literature 3 credits. Not offered 1990-91]

268 The Culture of the 1960s
Spring. 4 credits. M W F 1:25-2:15. P. Sawyer. The 1960s survive today as a quasi-mythical period and as an ongoing debate. Was it a time of dangerous experimentation with drugs, sex, and alternative "lifestyles" on the part of a pampered generation that gradually learned to straighten up and join the mainstream? Or was it a time of revolutionary hopefulness, when the Civil Rights movement and the Vietnam War stimulated a passionate critique of the racist and imperialist structures of American society? The course addresses these and other questions about a turbulent decade through a reading of novels, poems, plays, films, journalism, and historical works. Throughout, we will be attentive to ways the 1960s have been converted into nostalgia and otherwise revised by the media. Texts will be drawn from Catch-22, The Autobiography of Malcolm X, The Port Huron Statement, The Feminine Mystique, The Armies of the Night, poetry by Sylvia Hiah and Robert Lowell, the art of Andy Warhol, the songs of Bob Dylan, and films such as Dr. Strangelove, Hearts and Minds, and The Big Chill.

290 Literature and Value
Spring. 4 credits. TR 2:55-4:10. J. McConkey. Each week a different member of the faculty discusses a poem, group of poems, story, play, or novel that is of particular importance to him or her, perhaps as a work that contributed to the person's decision to devote a lifetime to the study of literature or to the writing of fiction or verse, perhaps as a work that has affinity with present-day concerns. In following meetings that week, class members will discuss in detail the same or related works. Students will be encouraged to explore, in their papers for the course as well as in their discussions, the relationships between specific texts and their own experience, attitudes, and values.

Courses for Sophomores, Juniors, and Seniors
Courses at the 300 level are open to juniors and seniors and to others with the permission of the instructor. There are no specific prerequisites except as noted for English 382-383 and 384-385.

302 Literature and Theory (also English 702 and Comparative Literature 702)
Fall. 4 credits. M W 10:10-11:00 and discussion section on Friday (time to be arranged). J. Culler. Study of issues in contemporary theoretical debates, with particular attention to structuralism, deconstruction, psychoanalysis, and feminism. Readings by Barthes, Derrida, Foucault, B. Johnson, J. Rose, and others. No previous knowledge of literary theory is assumed.

310 Old English Literature in Translation

319 Chaucer
Fall. 4 credits. M W F 11:15-12:05. R. Farrell. The course will center on a close reading of the major stories from the Canterbury Tales, Troilus and Criseyde, and some of the minor works. Students will be given ample opportunity to learn Chaucer's language, so that all dimensions of the poems will be available to them. Prior knowledge of Middle English is neither expected nor required; course participants will be encouraged to follow up their own interests in class reports and papers.

320 The Sixteenth Century—Tudor Culture

321 Spenser and Malory

322 The Seventeenth Century

325 The Culture of the Later Renaissance (also Comparative Literature 362, and History 364)
Spring. 4 credits. TR 10:10-11:00. C. Kaske. Members of various departments will lecture on Luther, Michelangelo, Montaigne, Edmund Spencer, Monteverdi, Cervantes, Copernicus, and Galileo. Guest lecturers will include R. Harris, Warrick, music, Art and Library, and C. Arroyo, romance studies. Lectures and
discourse will introduce different methods of interpretation and of historical analysis. Written requirements: two short papers and a final examination.

327 Shakespeare
Fall. 4 credits.
An introduction to the works of Shakespeare based on a selection of major plays and sonnets designed to illustrate the range of his artistic achievement. Plays to be examined include Romeo and Juliet, Hamlet, Othello, King Lear, Macbeth, As You Like It, The Taming of the Shrew, The Merchant of Venice, Richard II, Richard III, The Winter's Tale, and The Tempest. Regularly scheduled showings of videotape productions of plays treated in lectures.

329 Milton

330 Restoration and Eighteenth-Century Literature
Fall. 4 credits.
M W F 1-10-12-55. F. Bogel.
This course will explore the canonical writers of the age through an examination of the first major era of English imperialism, juxtaposing texts by Dryden, Behn, Defoe, Swift, and others, with contemporary documents and comments on trade, exploration, and colonialism in Africa and the New World. The main theme of the course will include a definition of the structure and function of imperialist ideology, its connection with matters of literary form including the decline of drama, the development of the novel, and the rise of the novel of sentiment; its relevance to issues of racism and abolitionism; and its relation to the representation of women.

333 The Eighteenth-Century English Novel
Spring. 4 credits.
The rise of the English novel. We will place the emergence of the novel as a dominant literary genre in the context of other intellectual and cultural developments in eighteenth-century England and will discuss what the novel's changing form can tell us about the nature of fiction and the problems of representation. Novels by Defoe, Richardson, Fielding, Smollett, Sterne.

335 American Drama and Theatre (also Theatre Arts 335)
Spring. 4 credits. Limited to 15.
M W F 1-25-2-40. E. Gainer.
Major dramatists of the contemporary American theatre.

340 The English Romantic Period
Fall. 4 credits.
M W F 1-15-12-05. S. Parrish.
Readings in the major poets—Blake, Wordsworth, Coleridge, Byron, Shelley, and Keats—along with a few related letters and critical essays. By the end of the readings we will try to arrive at an understanding of what we call "the romantic revolution."

345 The Victorian Period

346 The Female Literary Tradition: Woolf/Woolf to Woolf (also Women's Studies 346)
Spring. 4 credits.
A course designed to survey and investigate the nature of a British "female literary tradition" from the late eighteenth century to the early twentieth century, read in the light of the rich and varied feminist criticism it has attracted. Questions: What might constitute a female literary tradition? How is it transmitted? Forgotten? Recovered? Defined as "female" in the first place? Starting with late-eighteenth-century women novelists such as Inchbald, Burney, and Radcliffe, we will move by way of Woolf and Woolf's writing to Austen, Edgeworth, and Mary Shelley. Mid-nineteenth-century authors will include writing by the Brontes, Gaskell, Barrett Browning, and George Eliot, as well as sensation novels such as Braddon and Wood. We will look at some of the "new women" authors of the 1890's (Egerton, Schreiner) before turning to early twentieth-century novelists including Woolf, Radcliffe Hall, and H.D. The dual emphasis will be on an atypical or non-canonical selection of authors and texts where possible, and on feminist literary criticism; a valuable (although not essential) prerequisite might be a 200- or 300-level course on novels of the period covered, such as Austen, the Brontes, or Eliot, or in feminist literary theory.

350 The Early Twentieth Century (to 1930)
Fall. 4 credits.
Critical study of major works by Hardy, Conrad, Lawrence, Joyce, Woolf, Eliot, Yeats, Hopkins, Wilde, and others. While the emphasis will be on close reading of individual works, some attempt will be made to place the authors and works within the context of literary and intellectual history. The course will seek to define the development of literary modernism (mostly but not exclusively in England), and relate literary modernism to other intellectual developments, including those in painting and sculpture.

351 Modern Literature since 1914

353 Post-Colonial Literature

356 Postmodernist Fiction
Spring. 4 credits.
Experimental fiction written in the post-1960 period, ranging from the encyclopedic (Pynchon's V, Lessing's The Golden Notebook, Rushdie's The Satanic Verses) to the gnomic (short stories by Barth, Barthelme, and Coover), and taking in along the way Atwood's Lady Oracle, Nabokov's Pale Fire, and Russ's The Female Man. The class will be particularly concerned with ways in which these fictions address the conventions of realism and modernism, with the strategies of reading that they elicit—or seem to elicit—and with questions of canonicity and gender.

361 Early American Literature
Fall. 4 credits.
American writing from the 1630s to the 1830s, including prose and poetry of the Puritans, Edwards, Franklin, Crevecoeur, Brocken Brown, Irving, Bryant, and Cooper and the early work of Poe, Hawthorne, and Emerson.

363 The American Renaissance
Fall. 4 credits.
The major literary achievements of Emerson, Thoreau, Hawthorne, Melville, Whitman, and Dickinson. Other texts, and especially works of women and Afro-American authors, will be read in relation to the dominant texts of the American Renaissance.

364 The Age of Realism and Naturalism
4 credits. Not offered 1990-91

365 American Literature since 1945
Fall. 4 credits.
This course will alternate with English 364, which surveys American literature between the two world wars. Most of the writers we will study still live and write and change. Consequently, the verdict will not be in. Fiction writers will most likely include Bellow, Nabokov, Barth, Ellison, Wright Morris, John Hawkes, Toni Morrison, and Donald Barthelme. From an anthology of contemporary American poetry we will read Robert Lowell, A. R. Ammons, Sylvia Plath, Gary Snyder, Theodore Roethke, and others. If we have time we will look at the personally engaged journalism of Norman Mailer and Joan Didion. Writers will be chosen who will give us as keen and varied and provocative a view of ourselves as possible.

366 The Nineteenth-Century American Novel (formerly The Earlier American Novel)
Fall. 4 credits.
M W F 2:30-3:25. D. McCall.
Hawthorne, Melville, James, and Mark Twain.

367 The Modern American Novel
Spring. 4 credits.
M W F 10-10-11-00. D. Fried.
Close study of selected novels and some short stories, 1920-1945. Focus will be on such writers as Wharton, Cather, Fitzgerald, Hemingway, and Hurston, with some attention to the detective fiction of Chandler and Cain, and to the material culture of the period, including photography, movies, urban design, and the New York World's Fair of 1939/40.

368 The Contemporary American Novel

370 The Nineteenth-Century English Novel
Fall. 4 credits.
A study of representative works by major English novelists from Austen to Hardy. The course will view these works from a number of different perspectives, focusing on the individual texts as well as on the question of what is involved in reading them (or any other novels). The reading list will include Austen, Pride and Prejudice, Thackeray, Vanity Fair, Bronte, Wuthering Heights, Dickens, Bleak House, Eliot, Middlemarch, and Hardy, Jude the Obscure.

371 American Poetry from Emerson to Stevens
182

ARTS AND SCIENCES

372 English Drama
Spring. 4 credits.
Major events in the English theater from the Middle Ages to the beginning of the twelfth century. Plays by the Wakefield master, Marlowe, Shakespeare, Jonson, Dryden, Wycherley, Congreve, Sheridan, Shelley, Shaw, and others. Dramatic texts, theatrical conventions, social conditions, and their interrelationships.

376 Afro-American Literature
Spring. 4 credits.
M W F 12:20–1:10. Staff.
A study of representative works of Afro-American writers. The course will cover the broadest range of periods, genres, and styles.

Creative and Expository Writing.

381 Reading as Writing
Fall. 4 credits. Limited to 15 students by permission of instructor on the basis of writing samples (prose) submitted in advance, preferably during preregistration.
A course in writing about texts from a range of genres. Includes how not necessarily limited to, the epic, the satire, the novel; for English majors or nonmajors who have enjoyed and done well in such courses as English 270–272, 286, 288–289, 388–389 (as well as courses in English, American, and other literatures), and who have an interest in the processes by which our solitary experiences as readers evolve into written commentary accessible to the understanding and judgment of others. The course emphasizes close reading as the initial stage of an interpretive continuum that culminates in essays about individual texts. Students should be prepared to read a small group of works attentively and repeatedly, to present their readings to the class both orally and in writing and, by means of these activities, to develop a portfolio of well-crafted prose for final submission at the end of term.

382-383 Narrative Writing
Fall, 382; spring, 383. 4 credits each term. Each section limited to 15 students. Students are encouraged to take English 289–291 previously. Prerequisite: permission of instructor, normally on the basis of a manuscript.

388-389 The Art of the Essay
Fall, 388; spring or summer, 389. 4 credits each term. Limited to 15 students. Prerequisite: permission of instructor.

Spring. 4 credits.

Interested students should submit a writing sample to Professor Fakundiny before the beginning of the term.

For both English majors and nonmajors who have done well in freshman writing seminars, or in such courses as English 288–289 or 280, and who desire intensive practice in writing essays. Prerequisite: permission of instructor. Compulsory, but not exclusive, emphasis on expository techniques of analysis and persuasion.

Courses For Advanced Undergraduates

402 Video Verite: Televised Reality, Docudrama, and the Response of Multi-Cultural Video (also Society for the Humanities 402) Fall. 4 credits.
The course will study different forms of documenting everyday life on television and video. How do we draw the line between fiction and reality in the broadcast news, the television docudrama, and the video essay? In analyzing the narrative and psychoanalytic conventions of video dramatized news, we will give special consideration to video by multi-cultural artists who probe the relation of video and text and the representation of cultural difference (race, nationality, sexuality, and class). How do multi-cultural artists profit from mixing media that have served as the technological tools of colonializing systems of representation? How does multi-cultural experimentation with film and video contribute to the theoretical understanding of the media?

404 History into Fiction: Nazis and the Literary Imagination (also Comparative Literature 404 and Near Eastern Studies 404) Fall. 4 credits.
The twelve years of Hitler's rule remain the most critical, "longest" years of the century. We shall read some seven or eight texts by Anglophone and Continental novelists (and a few playwrights) that explore salient features of the regime: Hitler's rise to power (e.g., Mann's "Mario and the Magician," Hughes's "Fox in the Attic"), civilian life in Nazi Germany (e.g. Isherwood's 'Berlin Stories,' Brecht's 'Private Life of the Master Race,' Grass's 'Dog Years'), World War II (Boll's fiction); the Occupation (Sartre's "Hisor Camus's 'Pelage,' Nabokov's 'Aleaf,'" the American brand (Lewis's 'It Can't Happen Here,' Faulkner's 'Percy Grimm'); the persecution of European Jews (Sartre's "Childhood of a Leader," selections from Julian Barnes's novel 'History of the World, Jakov Lind's 'Soul of Wood'); Historical commentary; uses of documentary materials. Brief ancillary

selections by Adorno, Arendt, Sartre. Two short papers; no exam.

405 The Politics of Contemporary Criticism
Fall. 4 credits.
Limited to 15 students. Open only to undergraduates. Prerequisite: permission of instructor. Background in literary studies will be expected, but no training in critical theory will be presumed.

An introduction to some of the major issues in contemporary criticism through an examination of the relationship between two influential movements in critical theory—hermeneutics and deconstruction. Adherents of both movements seem to agree about the fundamental opposition between their respective approaches and conclusions. We shall try to understand the issues at stake in this opposition, exploring such questions as: what is a (literary) text? What is interpretation and what are its limits? What political issues underlie particular critical strategies and methodological choices? We shall negotiate between the competing claims of each position and focus on the implications of answers to such questions in actual critical analysis. Primary readings from some of the chief exponents of the two movements, particularly Philip Conkey, Hans-Georg Gadamer, and Jacques Derrida. Additional readings, from a variety of critical and philosophical traditions, including such authors as Rorty, Eagleton, Felman, Foucault, and Jameson.

409 Images of Fetishism, Narratives of Curiosity (also Society for the Humanities 409) Fall. 3 credits.
R 10:10–12:00. L. Mulvey.
The seminar will take the question of fetishism as its point of departure, considering the concept as a symptom both of the language of the unconscious and of the circulation of commodities. Using images and narratives from popular culture, the seminar will also place the processes of displacement and denial associated with fetishism in juxtaposition with narrative mechanisms activated by enigma and curiosity.

410 Contemporary Film Theory (also Society for the Humanities 410) Fall. 3 credits.
This course will survey the major figures and ideas that have shaped contemporary film theory. Christian Metz's semiotics of the cinema, Raymond Bellour and Thierry Kuntzel's textual analyses of film, Jean-Louis Baudry's "Apparatus" theories, Stephen Heath's work on narrative and ideology, and Laura Mulvey's feminist and psychoanalytic approach to describing spectatorship. In addition, the course will cover the most important revisions and refutations of those theories by feminists, Marxists, neo-feminists, deconstructionists, cognitive theorists, cultural studies and popular culture scholars, and so on. Attention will also be given to the social and institutional forces that have shaped this relatively new and volatile discipline.
The aim of the course is to teach students to read Old English as accurately and fluently as possible. While the primary emphasis is on acquiring a reading knowledge of the language, we will also be concerned with the linguistic and literary problems presented by the texts we cover.

412 Beowulf (also English 612)
Spring. 4 credits.
M W F 12:20–1:10. R. Farrell. Prerequisite: English 411 or equivalent knowledge of Old English.
A close reading of Beowulf. Attention will be given to relevant linguistic and literary problems.

414 Modernity, Femininity, Consumerism (also Society for the Humanities 414)
Spring. 3 credits.
The tradition of literary modernity is generally seen as opposed to consumerism, whether considered as an exclusive focus on materials and monetary values, or (rather differently) as a feminine capitulation of the lures of a homogeneous mass culture. This course will question the implications and the validity of that dichotomy by looking in detail at representations of the woman, the artist, the consumer culture in literary, theoretical, and popular texts by authors such as Baudelaire, Barthes, Benjamin, Freud, Friedman, Nabokov, Wilde, and Woolf.

415 The English Language (also English 615)

419 Bodies, Technologies, Mass Culture (also Society for the Humanities 419)
Fall. 4 credits.
The seminar proposes an interdisciplinary investigation of the relays between forms of cultural and technological production in America between 1870 and 1930. Turn-of-the-century American culture has been described alternatively as naturalist, as the culture of consumption, and as machine culture. What binds together these apparently alternative descriptions is the "discovery" that bodies and persons are things that can be made. This course will investigate the consequences—social, representations, and theoretical—of such a discovery. The focus will be on the representation of bodies and technologies in the discourse (written and visual) of the period. Some of the questions we will consider are: How are the sieve-like categories of the body and the machine and of the natural and the cultural reconceived in this period? What are the literary, social, and formal consequences of such a reconception? How are the life process and the machine process rewritten in this period and how do literary and visual practices register such a rewriting? What do the bodies and machines of machine culture look like and what appeals and anxieties do these representations generate?

420 Spenser and Milton
Fall. 4 credits.
Spenser’s Mutipotamos, Faure Hymnes, Shepheardes Calender; July, October, and November; Faerie Queene; and III entire and selections from II and IV. Letter to Raleigh, Mutabilite Cantos. Milton’s Lycidas, references to the writing of Paradise Lost; selections from the Divorce Tracts and Areopagitica and, finally, a reading of almost all of Paradise Lost. Lecture and informal discussion. One 8–10 page paper on each author and one final exam consisting of a choice from a wide range to topics comparing the two authors. Some themes of the course will be: the moral and aesthetic value of physical combat; the genres epic and pastoral and the world-views they entail; the construction of gender; the grand style, and the interweaving of egalitarian and hierarchical paradigms.

422 The Faerie Queene

423 Seventeenth-Century Lyric
Spring. 4 credits.
A study of representative seventeenth-century English poets, both major and minor, male and female, secular and religious. In addition to giving attention to formal aspects of the poetry, we will consider questions of historical contextualization and notions of the self and of the poetic role. As we shall see in our readings, these seventeenth-century poets are both producers and products of their culture. We will also study the critical reception of seventeenth-century poetry and its place in contemporary English studies.

424 Lyric Sequences

427 Studies in Shakespeare
Fall. 4 credits.
A study of themes and patterns in Shakespeare’s later history plays (Richard II, Parts I and II, Henry IV, and Henry V) in the perspective afforded particularly by Castiglione’s Book of the Courtier, Elyot’s The Governour, A Mirror for Magistrates, and Sidney’s The Countesse of Pembroke Arcadia. Among topics to be explored are growth, responsibility, play, order, and community.
Spring. 4 credits.
A reading of major plays from the later fifteenth-nineties to the end of Shakespeare’s career, including As You Like It, Hamlet, Henry V, King Lear, Antony and Cleopatra, Measure for Measure, and The Winter’s Tale. Particular attention to the theory of theatre and the acting implied by these texts.

428 Elizabethan and Jacobean Drama

437 Fictions of Apartheid and Modes of Liberalism
Spring. 4 credits.
This course involves a study of selected works of four major contemporary white South African authors: Athol Fugard, Nadine Gordimer, Andre Povink, and J. M. Coetzee. The genres include drama, fiction, the essay. Issues examined include modernity and Apartheid, constructions and deconstructions of racialized identity, ideological interrogations of subjectivity by jurisdiction and cultural texts, revolutionary optimism and philosophical pessimism.

438 Inventing Human Nature: Passion and Experience in the Seventeenth and Eighteenth Centuries

440 English Romanticism after the Revolution
Spring. 4 credits.
A selection of verse and prose writings, including one or two novels and plays, from the later Romantic period, with emphasis on works by Keats, Mary Shelley, Percy Shelley, Byron, Hazlitt, DeQuincey, Austen, and Scott. Though the focus will be primarily on such works, readings and discussion will also involve developing critical and cultural traditions in the wake of the French Revolution, with special attention to the ways British writers and critics imagine and commemorate the Revolution and the Napoleonic aftermath.

443 Caricature, Comedy, and Social Criticism
Fall. 4 credits.
T R 1:25–2:40. S. Siegel.
This seminar, which will focus on selected plays and prose of Wilde, Synge, and Shaw, will consider Irish Celtic responses to Anglo-Saxon ethnocentrism and views of race. We will conduct our discussions against the background of the politics of Anglo-Irish social relations during the mid- and late-nineteenth century. Texts and visual representations will be drawn from, among others, Mill, Marx, Darwin, Lubbock, Mueller, Clodd, Lang, Frazer, as well as the periodical literature. Literary texts will include Lady Windermere’s Fan and The Importance of Being Earnest, Playboy of the Western World, John Bull’s Other Island, Pygmalion, and the tales of Handy Andy.

450 The History of the Book
Fall. 4 credits. Limited to 20 students.
Prerequisite: permission of instructor.
A study of the physical aspects of books printed during the last six centuries. Included are papermaking, typography and printing, bookbinding, and the history of book illustrations, the transmission of texts and bibliographical descriptions of hand-printed and modern trade books. Above all, this is the study of the book as a work of art.

451 The Long Poem in America
At first glance, these two writers might appear to have little in common beyond their status as major figures in contemporary fiction. They belong to—and identify themselves with—different generations (Lessing was born in 1919, Pynchon in 1937) and different nationalities (Lessing is an English colonial, Pynchon an American). They manifestly appeal to very different kinds of reader, at least in part because they became writers by very different routes (Lessing is largely self-taught through her own reading and political involvements, whereas Pynchon is a Cornell alumnus whose first declared major was Engineering Physics). And of course Lessing is female whereas Pynchon is male. But the similarities are worth pursuing. Both have been pioneers in the development of the encyclopedic narrative in the postmodern period, and both have used encyclopedism as a vehicle for far-reaching and evolving political concerns that have made them controversial throughout their writing careers. And both are visionaries, notoriously “difficult” because of the scope and range of their imaginative enterprises.

This class will take on the most ambitious of the novels: Lessing’s The Golden Notebook and Pynchon’s V., Gravity’s Rainbow, and Vineland. Additional readings include a play and several short stories by Lessing and several short stories by Pynchon. Seminar format, with student presentations, a number of in-class writings, and two major papers.

452 Doris Lessing and Thomas Pynchon
Spring. 4 credits.
At first glance, these two writers might appear to have little in common beyond their status as major figures in contemporary fiction. They belong to—and identify themselves with—different generations (Lessing was born in 1919, Pynchon in 1937) and different nationalities (Lessing is an English colonial, Pynchon an American). They manifestly appeal to very different kinds of reader, at least in part because they became writers by very different routes (Lessing is largely self-taught through her own reading and political involvements, whereas Pynchon is a Cornell alumnus whose first declared major was Engineering Physics). And of course Lessing is female whereas Pynchon is male. But the similarities are worth pursuing. Both have been pioneers in the development of the encyclopedic narrative in the postmodern period, and both have used encyclopedism as a vehicle for far-reaching and evolving political concerns that have made them controversial throughout their writing careers. And both are visionaries, notoriously “difficult” because of the scope and range of their imaginative enterprises.

This class will take on the most ambitious of the novels: Lessing’s The Golden Notebook and Pynchon’s V., Gravity’s Rainbow, and Vineland. Additional readings include a play and several short stories by Lessing and several short stories by Pynchon. Seminar format, with student presentations, a number of in-class writings, and two major papers.

452 Dickinson and Thoreau

453 Public Aesthetics: Art, Video, and Spectacle in the Age of Technology

454 Slave Narratives and the Production of Black Literature

455 Literature of 1890s
Spring. 4 credits.
The last decade of the century, the so-called mauve decade, embraces the end of the aesthetic movement, the end of Victorian England, and the beginnings of modernism. To sample its rich variety, readings in Wilde, Housman, Hopkins, some of the “decadent” poets of the Rymers Club, and minor novelists like Gissing and George Moore will be ranged alongside some major voices like Conrad, Shaw, Hardy, and the early Yeats.

456 Edith Wharton, Willa Cather, and Eudora Welty (also Women’s Studies 456)
Fall. 4 credits.
TR 1:25–2:40. J. Blackall.
A representative selection of the best fiction of three distinguished American women writers, with particular regard for their representation of women in relation to environment, for their characteristic themes and materials, and for their practice of the craft of fiction. Readings: Wharton, The House of Mirth, Summer, Age of Innocence; and selected short stories; Cather, O Pioneers!, A Lost Lady, The Professor’s House, and selected short stories; Welty, The Robber Bridegroom, The Golden Apples, The Optimist’s Daughter, and selected short stories. Discussion format with three essays.

456 Dickinson and Thoreau

456 Memory, Nostalgia, and Repetition in Modern Poetry and Poetics

456 Black Women Writers

465 Proseminar in American Studies (also American Studies 465)
Spring. 4 credits.

466 Wallace Stevens, T. S. Eliot, and the Making of the High Modern Tradition
Spring. 4 credits.
A close reading of two major twentieth-century poets in the context of literary and cultural modernism, including developments in the visual arts, such as cubism. Although more time will be spent on Stevens than Eliot, major works of both figures will be discussed in detail. We shall discuss how Eliot, an expatriate and neoclassicist, contributed to the making of the modern poetic. We shall then turn to Stevens who will be examined as an American figure, as a high modernist, and as an heir to the Romantic tradition.

467 Afro-American Literature—1960s

468 Language Poetry (also Comparative Literature 498)
Spring. 4 credits.
The emergence in the United States in the 1970s and 1980s of “Language Poetry” or “Language Writing” as a challenge to more familiar modes of contemporary poetry raises fundamental questions about what poetry has been, is, and should be and about the relationship between poetry, audience, and social transformation. Focusing on texts by Charles Bernstein, Bob Perelman, Ron Silliman, Rosmarie Waldrop, and others associated with the Language Poetry movement, we will explore the movement as acknowledged indebtedness to such precursors as Gertrude Stein, Louis Zukofsky, and Robert Creeley and to philosophical and theoretical writings by such figures as Ferdinand de Saussure, Valentin Voloshinov, and Ludwig Wittgenstein. Considering as well Language Poetry’s critical reception over the past several years, we will attempt to arrive at an understanding of the movement’s significance for theories of the avant-garde and the conditions of postmodern culture.

469 William Faulkner
Spring. 4 credits.
This course will examine selected writings of William Faulkner, beginning with some of the early novels (The Sound and the Fury, Light in August, Absalom, Absalom!) and concluding with A Fable. We will consider Faulkner’s impact as a maker of myth and as one of the leading figures of a literary discourse that creates a modernist sensibility in American letters. As a southern writer, Faulkner is traditionally confined to the character study of exotic types, but his systemic fictional exploration of “violence and the sacred” provides a powerful clue to the larger issue of a national identity. Faulkner in his own terms, dared to imagine “culture” as a problem for fiction. This course will attempt to consider the outcome.

470 Studies in the Novel: Joyce’s Ulysses
Fall. 4 credits. Limited to 15.
A thorough episode-by-episode study of the art and meaning of Joyce’s Ulysses. We shall place Ulysses in the context of Joyce’s canon, Irish culture, and literary modernism, including painting and sculpture. We shall explore the relationship between Ulysses and other experiments in modernism and show how it rede fines the concepts of epic, hero, and reader. We shall discuss how Ulysses raises major issues in literary study and tests various critical and scholarly approaches. Such a self-conscious inquiry into theories and methods should prepare students to confront other complex texts.

472 Irish Culture
Spring. 4 credits. Limited to 15.
Intensive study of a small number of major poems by Yeats, usually one or two per week. The texts will be seen in the context of Yeats’s Irish and occult interests. Some attention will be given also to the plays and A Vision.

475 Feminist Literary Criticism

477 Children’s Literature

480-481 Seminar in Writing
Fall and spring. 4 credits. Each section limited to 15 students. Students are encouraged to take English 280–281 and either 382–383 or 384–385 previously. Prerequisite: permission of instructor, normally on the basis of a manuscript.

Intended for those writers who have already gained a basic mastery of technique. Students normally enroll for both terms and should be capable of a major project—a collection of stories or poems, a group of personal essays, or perhaps a novel—to be completed by the end of the second semester. Seminars are used for discussion of the students’ manuscripts and published works that individual members have found of exceptional value.

485 Children’s Literature
491 Honors Seminar I
Fall. 4 credits. Prerequisite: permission of Director of the Honors Program.
Section 1. Renaissance Texts: Power and Identity.
M W 2:30-3:45. B. Correll.
The course will deal with a lively body of Renaissance cultural texts from English and Continental authors, some of whom are well known and others who should be better known. Our concern will be with changing relations of power in early modern Western society, the question of the relationship between literature and political life, the theme of self-fashioning and masculine subject formation in which a discourse on women figures prominently. We will also investigate the critical and scholarly treatments of these cultural issues.

Section 2. Hawthorne and his Contemporaries.
An intensive study of Hawthorne's major works, especially in terms of their response to the contemporary background of utopian nationalism, and abolition. We will read The Scarlet Letter, The House of the Seven Gables, The Blithedale Romance, and a number of Hawthorne short stories. And we will also read selected works by Hawthorne's contemporaries, such as Margaret Fuller, Catherine Sedgwick, and Lydia Maria Child.

492 Honors Seminar II
Spring. 4 credits. Prerequisite: permission of Director of the Honors Program.
Section 1. Sex and Gender and the Power of Words: Novels of Charlotte Bronte.
T R 1:25-2:40. C. Chase.
An introduction to the close reading of fiction and literary criticism and theory. How does the first person narrative voice in Jane Eyre reflect and create what it is to be a woman—and a person—in the nineteenth century, and since? In this seminar we will read intensively the fiction of Charlotte Bronte and critical and theoretical writing that will help us to grasp the ways in which her fiction constructs connections between subjectivity and femininity and masculinity. We will also read, for comparative purposes, Mary Shelley's Frankenstein or George Eliot's Adam Bede, with their quite different approaches to the question of how being human relates to being of a particular sex. The aim of the seminar will be to read a few works thoroughly and to explore the effectiveness of different interpretive procedures and theoretical arguments. Requirements include frequent short writing assignments providing the basis for class discussions, early in the course, and a final paper which may be written by two students working together.
Section 2. Mayhem, Myth and Modernism.
Vision and form in major texts from the period between the world wars. An exploration of the search for values in a troubled era and of concomitant formal experiments. The syllabus will include Lawrence, Women in Love: Joyce, Ulysses (selections); Pound, Hugh Selwyn Mauberley and The Cantos; Eliot, The Waste Land and Four Quartets; Woolf, Mrs. Dalloway and To the Lighthouse; Hemingway, The Sun Also Rises; and Yeats, The Tower and Last Poems. Some attention will be given to parallel developments in the visual arts and to the work of Frazer in anthropology and Jung in psychology.

493 Honors Essay Tutorial I
Fall or spring. 4 credits. Prerequisite: senior standing and permission of Director of the Honors Program.

494 Honors Essay Tutorial II
Fall or spring. 4 credits. Prerequisite: English 493 and permission of Director of the Honors Program.

495 Independent Study
Fall or spring. 2-4 credits.

Courses Primarily for Graduate Students
Permission of the instructor is a prerequisite for admission to courses numbered in the 600s. These are intended primarily for graduate students, although qualified undergraduates are sometimes admitted. Undergraduates seeking admission to a 600-level course should consult the instructor. The list of courses given below is illustrative only: a definitive list, together with course descriptions and class meeting times, is published in a separate department brochure before course enrollment each term.

Graduate English Courses 1990-91
Fall.
600 Colloquium for Entering Students
611 Introduction to Old English (also 411)
R. Farrell.
619 Chaucer
W. Wetherbee.
627 Shakespeare
S. McMillen.
632 Reading Swift's Poetry
F. Bogel.
642 Romantic Poetry
M. Jacobus.
645 Nineteenth-Century Prose
P. Sawyer.
663 American Fiction 1870-1915
J. Porte.
664 Post-war American Poetry
R. Gilbert.
683 Comparative African and African-American Twentieth-Century Critical Theory
B. Jeyifo.
685 Slave Narrative and Production of Afro-American Literature
H. Mullen.
702 Literature and Theory (also English 302)
J. Culler.
759 Virginia Woolf
M. Hite.
780.1 MFA Seminar: Poetry
P. S. Janowicz.
780.2 MFA Seminar: Fiction
S. Vaughan.
785 Reading of Fiction
Spring.
A. Lurie.
ARTS AND SCIENCES

GEOLICAL SCIENCES

As an intercollege unit, the Department of Geological Sciences has degree programs in both the College of Arts and Sciences and the College of Engineering.

Within the past few years, studies of the earth have become increasingly important. The need for increased understanding of plate tectonics, limited energy and mineral reserves, awareness of natural hazards such as earthquakes and volcanic eruptions, and an increasing concern for our environment encourage studies of the earth by geologists. Consequently, interest in geology courses has greatly increased.

There are eighteen faculty members, including Cornell’s president, in the department, and twenty-five undergraduate majors. A variety of courses provides our students with a broad and solid foundation. The department is particularly strong in geophysics, petrology and geochemistry, structural geology, and tectonics. Students study the deeper parts of the earth’s crust using many techniques but concentrating on seismic methods. High-pressure, high-temperature mineralogy research uses the diamond anvil and Cornell’s synchrotron as research tools. Undergraduates have served as field assistants for faculty and graduate students who work in Greenland, British Columbia, the Aleutian Islands, Scotland, Barbados, the South Pacific, South America, and various parts of the continental United States. Undergraduates are encouraged to participate in research activities, sometimes as paid assistants.

Students who major in geological sciences are encouraged to take courses appropriate to their interests in the other sciences and mathematics. To develop skills in observing the natural earth, geology majors attend a summer field camp, usually during the summer following their junior year.

The Major

The prerequisites for admission to a major in geological sciences in the College of Arts and Sciences are two two-semester sequences. Mathematics 191–192 and Physics 112–113, or their equivalents, and an additional semester course in chemistry or biological sciences, such as Chemistry 207. Geological Sciences 101,103,111, or 201 followed by 102, 104, or 202 are recommended, but a student with a strong foundation in mathematics and science may be accepted as a major without completion of an introductory sequence.

Majors take Geological Sciences 210 and 214, the five core courses in geological sciences, a summer field geology course, 6 credits of additional course work from geological sciences courses numbered 300, 400, or 600, plus an additional course in mathematics, computer science, physics, chemistry, or biology at an intermediate or advanced level.

Core Courses

326 Structural Geology
355 Mineralogy
356 Petrology and Geochemistry
375 Sedimentology and Stratigraphy
388 Geophysics and Geotectonics

Prospective majors should consult one of the following departmental major advisers—W. A. Bassett, A. L. Bloom, L. M. Cathles, J. L. Cisne, or B. L. Isacks—as early as possible for advice in planning a program. Students majoring in geological sciences may attend the departmental seminars and take advantage of cruises, field trips, and conferences offered through the Department of Geological Sciences.

Courses offered at the 100 and 200 level are open to all students. Certain 300-level courses in geology may be of particular interest to students of chemistry, biology, ecology, and physics. Students are encouraged to inquire about courses that interest them at the department office in Snee Hall.

Honor%s An honors program is offered by the Department of Geological Sciences for superior students. Candidates for honors must maintain an overall 3.0 grade-point average and a cumulative average of 3.5 in the major and complete an honors thesis (Geological Sciences 490). Students interested in applying should contact the director of undergraduate studies during the second semester of the junior year.

Courses

For course descriptions, see the Geological Sciences listing in the College of Engineering.

101 Introductory Geological Sciences
Fall, spring, or summer. 3 credits.
2 lecs, 1 lab, field trips, evening exams. Fall: W. B. Travers, spring: J. M. Bird. This course teaches observation and understanding of the earth, including oceans, continents, coasts, rivers, valleys, and glaciated regions; earthquakes, volcanoes, and mountains; theories of plate tectonics; the origin, discovery, and development of mineral and water resources. The lab teaches use of topographic and geologic maps and recognition of minerals and rocks and includes field trips to Cascadilla Gorge, Fall Creek, and Enfield Glen.

102 Evolution of the Earth and Life

103 Geology in the Field

104 Introduction to Oceanography

107 Frontiers of Geology I

108 Frontiers of Geology II

111 To Know the Earth

201 Introduction to the Physics and Chemistry of the Earth

202 Environmental Geology

210 Introduction to Field Methods in Geological Sciences

212 Special Field Trip

213 Marine and Coastal Geology

214 Western Adirondack Field Course

326 Structural Geology

355 Mineralogy

356 Petrology and Geochemistry

375 Sedimentology and Stratigraphy

388 Geophysics and Geotectonics

401 Field Geology

412 Experiments and Techniques in Earth Sciences

424 Petroleum Geology

431 The Earth’s Crust: Structure, Composition, and Evolution

432 Digital Processing and Analysis of Geophysical Data

433 Exploration Seismology I: Data Acquisition and Processing

434 Exploration Seismology II: Analysis and Interpretation

441 Geomorphology

442 Glacial and Quaternary Geology

445 Geohydrology

452 X-Ray Diffraction Techniques

453 Modern Petrology

454 Advanced Mineralogy

456 Geochemistry

474 Modern Depositional Systems

476 Sedimentary Basins: Geomorphology and Mechanics

478 Advanced Stratigraphy

479 Paleobiology

487 Geophysical Prospecting

489 Earthquakes and Tectonics

490 Senior Thesis

491-492 Undergraduate Research

500 Design Project in Geohydrology

501 Geohydrology Design Project Seminar

502 Case Histories in Ground Water Analysis

621 Marine Tectonics

622 Advanced Structural Geology I

624 Advanced Structural Geology II

625 Tectonic History of Western North America from Craton to Terranes

628 Geology of Orogenic Belts

635 Advanced Geophysics I

637 Advanced Geophysics II

655 Isotope Geochemistry

681 Geotectonics

687 Seismology

695 Computer Methods in Geological Sciences

700-799 Seminars and Special Work

721 Tectonic and Stratigraphic Evolution of Sedimentary Basins

722 Advanced Topics in Structural Geology
The German Area Studies Major

The German area studies major is intended for students who are interested in subject matter related to German-speaking countries but not necessarily or not exclusively in German literature or linguistics. Students will select appropriate courses offered in history, government, economics, music, theater arts, or other suitable subjects. Minimum course requirements for the German area studies major are the same as for the German major. These students will select a committee of two or more faculty members to help them design a program and supervise their progress. One committee member must be from the German faculty of either the Department of Modern Languages and Linguistics or the Department of German Studies. The other member(s) should represent the student's main area of interest.

The student majoring in German area studies is expected to become competent in the German language. Such competence is normally demonstrated by the successful completion of German 304. Placement of German majors who have done no work in German at Cornell will be determined by the level of preparation they have obtained elsewhere. For information, students should consult the director of undergraduate studies, G. Waite, or W. Harbert.

The German Major

Students majoring in German are encouraged to design their programs in a manner that will allow for diversity in their courses of study. It should enable them to become acquainted with an adequate selection of major works, authors, and movements of German literature and to develop their skill in literary analysis. Students majoring in German will normally proceed through German 201, 202, 203, 204. Students who, because of previous training, are qualified to enroll in 300- or 400-level courses will be permitted to do so. For details, students may consult the director of undergraduate studies, G. Waite, in the Department of German Studies, or W. Harbert, in the Department of Modern Languages and Linguistics. Students majoring in German are expected to complete successfully a minimum of six 300- and 400-level courses in addition to German 303–304. Some 200-level courses offered by this department (such as German Studies 211 and 283) and related departments will count toward the major as well, please consult your adviser. These courses should be a representative selection of subjects in German literature, Germanic linguistics, or both. The attention of students majoring in German is called to the courses offered by departments and programs such as Comparative Literature, History, History of Art, Government, Music, Society for the Humanities, Theatre Arts, and Women's Studies, many of which complement the course offerings in German.

Students majoring in German are expected to become competent in the German language. This competence is normally demonstrated by the successful completion of German 304. Placement of German majors who have done no work in German at Cornell will be determined by the level of preparation they have obtained elsewhere. For information, students should consult the director of undergraduate studies, G. Waite, or W. Harbert.

The German Studies 187
This course will be based on complete works will be fruitful for the development of writing—especially in the German romantic tradition—primarily from the nineteenth century. Although dealing with works of great popular (in English translation) by four representative skills. There will be regular conferences between students and their instructors to discuss the papers.

What are movies, how do they function in society. We place special emphasis on student with literary forms and the tools of reading, writing, speaking, and listening skills. Grammar and expansion of vocabulary. Supplementary reading from contemporary authors. Such as Tieck, Gotthelf, Hofmannsthal, Mann, and Grass.

An investigation of the development of the German Novelettes as a major literary genre during the nineteenth and twentieth centuries. We will discuss the Novelette as a genre in relation to the changing literary and cultural context. Readings will include works by Goethe, Kleist, Tieck, Gotthelf, Hofmannsthal, Mann, and Grass.
We'll read, closely, some contemporary Bachmann, and selected German women's German-language women novelists, including or permission of instructor. Taught in German. Fall. 4 credits. Prerequisite: German 201-202 Plenzdorf, Volker Braun, and others. Heinrich Boll, Gunter Grass, Peter Handke, Ingeborg Bachmann, Christa Wolf, Ulrich Kafka, Thomas Mann, Hermann Hesse, to the present. Authors to be treated include historical pressures, and the problems of defining or question contexts of tradition, discontinuity, modernism, poetic canons, and hermeneutics. In examining German Symbolism and Expressionism and their continuing traces, political and willfully non-political poetry, exile and Holocaust writing, and the late reception of Holderlin, we shall attempt to understand the legacy of colonialism, class culture and the role of organized labor, immigrant workers and ethnic minorities, problems of national identities, new social movements (e.g., the "Greens" in West Germany), and European perceptions of the United States. The course will pursue these themes and others through representative poetic texts (Lieder by Muller/ Schubert, Heine/Schumann, Mörke/Wolf, and Rückert/Mahler.)

German Lyric Poetry of the Nineteenth Century
Fall. 4 credits. Prerequisite: German 201-202 or permission of instructor. Not offered 1990-91.

German Poetry of the Twentieth Century
Fall. 4 credits. Prerequisite: German 201-202 or permission of instructor. Not offered 1990-91.

Non-European Studies
465

360 Naturalism and Feminism
Not offered 1990-91.

362 Modern German Literature II: Twentieth-Century Prose
Not offered 1990-91.

364 Contemporary Literature
Not offered 1990-91.

366 German Lyric Poetry of the Nineteenth Century
Fall. 4 credits. Prerequisite: German 201-202 or permission of instructor. Taught in German. Not offered 1990-91.

This course will cover the period from the mid-1970s to the mid-1990s and interpret major texts from the mature Goethe to the young Hofmannsthal. Readings and discussions will illuminate the development of individual poets in their time, the transformation of poetic speech, and the history of forms. Questions of poetics, forms, reception, canon, and influence; the problem of epoch designation; and the role of poetry and the poet in society will complement our study. In the context of the development of musicalized poetry we will hear musical settings of representative poetic texts (Lieder by Muller/Schubert, Heine/Schumann, Mörke/Wolf, and Rückert/Mahler.)

365 German Poetry of the Twentieth Century
Fall. 4 credits. Prerequisite: German 201-202 or permission of instructor. Not offered 1990-91.

The course will focus on exemplary lyric texts by Rilke, Trakl, Benno Brecht, and Celan, and include others by poets such as Lasker-Schüler, N. Sachs, and Bachmann, whose work helps define or question contexts of tradition, discontinuity, modernism, poetic canons, and hermeneutics. In examining German Symbolism and Expressionism and their continuing traces, political and willfully non-political poetry, exile and Holocaust writing, and the late reception of Holderlin, we shall attempt to understand the legacy of colonialism, class culture and the role of organized labor, immigrant workers and ethnic minorities, problems of national identities, new social movements (e.g., the "Greens" in West Germany), and European perceptions of the United States. The course will pursue these themes and others through representative poetic texts (Lieder by Muller/Schubert, Heine/Schumann, Mörke/Wolf, and Rückert/Mahler.)

From Thomas Mann to Christa Wolf
Fall. 4 credits. Prerequisite: German 201-202 or permission of instructor. Taught in German.

T R 11:40-12:55. D. Battick
Students in this course will interpret and analyze selected texts from twentieth-century German literature. The works will be studied within the historical context in which they emerged and will cover the period from 1900 to the present. Authors to be treated include Franz Kafka, Thomas Mann, Hermann Hesse, Bertolt Brecht, Marielese Fleissier, Paul Celan, Heinrich Böll, Günter Grass, Peter Handke, Ingeborg Bachmann, Christa Wolf, Ulrich Plenzdorf, Volker Braun, and others.

398 German Women Writers
Fall. 4 credits. Prerequisite: German 201-202 or permission of instructor. Taught in German. Not offered 1990-91.

We'll read, closely, some contemporary German-language women novelists, including Christa Wolf, Irmtraud Morgner, Ingeborg Bachmann, and selected German women's poetry.

Courses in English Translation

283 Contemporary European Society and Culture (also Government 343 and History 283)
Fall. 3 credits.
The crisis of communist regimes in Eastern Europe has brought an end to the postwar division of Europe. At the same time, the European community is emerging as a major economic and political power in the world. This course explores these dramatic new developments against the background of an interdisciplinary comparative investigation of postwar European politics, society, and culture. Topics include generational change, class structure, economic and social policy, new social movements, family and community life, film, and cultural criticism.

285 Contemporary European Society and Politics (also History 285 and Government 285)
Fall. 4 credits. Not offered 1990-91.
T R 2:30-3:45. S. L. Gilman, J. Pontoussin.
This course will pursue these themes and others through representative poetic texts (Lieder by Muller/Schubert, Heine/Schumann, Mörke/Wolf, and Rückert/Mahler.)

314 Nietzsche, the Man and the Artist
Spring. 4 credits. Not offered 1990-91.
An intensive reading of selections from Nietzsche's poetry, letters and philosophical writings: The Birth of Tragedy, The Gay Science, Thus Spake Zarathustra, Beyond Good and Evil, Ecce Homo. This course will examine Nietzsche's ideas in relation to the life and intellectual circumstances in which the texts under discussion were written. In spring 1991 we will include twentieth-century German and German-Jewish writers and postwar West-German writers.

320 Postwar German Novel
Spring. 4 credits.
A reading, in English translation, of such post-1945 German novelists as Grass, Böll, Johnson, and Christa Wolf. This course is recommended for the concentration in modern European studies.

322 Medicine and Civilization (also Biology and Society 322 and HPST 322)
Spring. 4 credits. Not offered 1990-91.
What is sickness? What is health? Who is the physician? Is a physical illness different from mental illness? Where is medicine practiced? Is being a patient or a doctor different from culture to culture and from age to age? This course will introduce the undergraduate student to the historical and cultural context of medicine. Our sources will range from the texts of ancient Greek medicine to contemporary films and novels dealing with medicine. We will examine the historical and social context of mental illness as well as physical illness from the standpoint of patient, physician, and "society." All of the primary readings are available in English.

327 Health and Disease (also Biology and Society 327 and Psychology 387)
Fall. 3 credits. Not offered 1990-91.
Everyone knows what health and disease are or do they? This Common Learning course on health and disease will explore some of the cultural, psychological, philosophical, anthropological, medical, economic, and political dimensions of these concepts to show how various models of disease function in contexts from business to engineering, from the military to the medical profession. The course will be divided into two segments: the first will examine the general implications of concepts of health and illness; the second will study these general principles as reflected in the definition, treatment, and mythmaking surrounding one specific disease: schizophrenia. The course will draw on specialists from throughout the university.

336 Nineteenth-Century Drama
Fall. 4 credits. Prerequisite: German 201-202 or permission of instructor. Not offered 1990-91.

We will read, in German and with close attention, a selection of plays spanning the century. The list of authors includes Franz Grillparzer, Friedrich Hebbel, Georg Büchner, and ends with Gerhart Hauptmann.

346 German Women Writers in Translation (also Women's Studies 346)
Spring. 4 credits.
The course will involve careful readings of the work of specific authors, (authors to change each semester); feminist discussions of the concept of "Women's Writing" and concluding with the Studies in Hysteria and concluding with Freud's reading of the Schreber autobiography). These readings will be placed within the tension existing at the turn of the century between the concepts of the biology of race and the biology of gender. Close attention will be paid to the cultural, scientific, as well as polemical literature on the ideas of race and gender from the biological writings of the late nineteenth century. The course will also provide an introduction to the basic concepts of Freudian psychoanalytic theory.)
A study of women and their roles in the social order as portrayed in the literature of the Middle Ages. Readings will illustrate the range of attitudes toward women from asceticism and antifeminism to their idealization in courtly love lyric and romance. We will examine women's putative influence in literature, both positive and negative, and on man and society, and the debates over woman's "proper" attitude and role. Works in English translation will include a play by Hroswitha of Gandersheim, the Nibelungenlied, Wolfram von Eschenbach's Parzival, and Tristan und Isolde.

Comparative Literature 349 and Women's Studies 349

Fall. 3 credits. Reading knowledge of German helpful, though courses in Modern Drama and Women's Studies (also Theatre Arts 327 and Comparative Literature 354) will include operas by Mozart, Verdi, Wagner, Puccini, and Strauss.)

Comparative Literature 381

Fall. 4 credits. Not offered 1990-91.

A historical survey of leading European Marxist thinkers, offering a critical perspective on culture, particularly in relation to ideology. Mainly a close reading of selected texts, but with consideration of historical contexts as well. Some emphasis on aesthetics and especially literary theory. Readings from Marx, Engels, Lukács, Gramsci, Brecht, Benjamin, Horkheimer, Adorno, Marcuse, Sartre, Althusser, and Williams.

Comparative Literature 396 and Theatre Arts 396

Fall. 4 credits. Requirements: participation in class discussion, one paper, midterm, and final. Not offered 1990-91.

TR 11:40-12:55; screening, T 4:30.

D. Bathrick.

The goal of the course is to explore the form and context of German film in relation to the cultural and sociopolitical context of which it is a part. Accordingly, the material discussed will be divided into three major periods: Weimar (1918-1933), Nazi film (1933-1945), Postwar (1945-present). Readings and lectures will be devoted to the topic of the Holocaust. Works to be studied as part of the historical survey of German film as well as interpretative analysis of selected individual films.

German Film (also Comparative Literature 396 and Theatre Arts 396)

Fall. 4 credits. Prerequisite: permission of instructor. Taught in German.

The topic will be the novels of the German-American writer Edgar Hilsenrath. Hilsenrath has written three major novels, including the best-selling, The Nazi and the Barber, on the topic of the Holocaust. His work is unique in that it uses black humor and satire to represent the world of the Holocaust. The seminar will cover the general literature on the writing of the Holocaust and look at the problems of Hilsenrath's work in the light of contemporary criticism (Langer, Des Prés, Steiner).

German Literature I

Fall. 4 credits. Prerequisite: permission of instructor. Taught in German.

MWF 11:15-12:05. L. M. Olschner.

We will study themes and responses of two popular postwar genres to historical and societal tensions and literary developments from 1945 to the present. Readings by major authors from both Germany, Austria, and Switzerland will include Böll, Bachmann, Eich, Dürenmatt, Wolf, and Plenzdorf. We will also examine the social and political climate surrounding their work by reading recent newspapers as well as literary and theoretical periodicals.

German Literature II

Spring. 4 credits. Prerequisite: German 405 or equivalent.

MWF 9:05-9:55. A. Groos.

The course will cover the Classical period, emphasizing the works of Schiller, Goethe, and Heinrich von Kleist. We will consider them as autonomous works and as witnesses to the development of a brotherhood of artists that illuminates not only a model of psychological tensions but highly significant cultural and political configurations of a decisive time in German history. This is indeed "a brotherhood in which German history was mirrored . . . in all its agony." Essayistic and publicistic texts of both brothers will also be analyzed along with some of their correspondences. We will also read some background material to provide the needed social, political, and intellectual context.

East and West German Drama:

Post-1945 (also Theatre Arts 438/648)

Fall. 4 credits. Not offered 1990-91.

This course will cover the major historical and textual developments in German theater from the end of World War II to the present. Leading dramatists from West and East Germany, Switzerland, and Austria (Brecht, Frisch, Dürenmatt, Weiss, Hochhuth, Müller, Braun, Kroetz, Handke, and others) will be treated in light of the political events and aesthetic-dramaturgical traditions from which they emerge and with which they are taking issue.

East and West German Drama:

Post-1945 (also Theatre Arts 438/648)

Fall. 4 credits. Not offered 1990-91.

This course will cover the major historical and textual developments in German theater from the end of World War II to the present. Leading dramatists from West and East Germany, Switzerland, and Austria (Brecht, Frisch, Dürenmatt, Weiss, Hochhuth, Müller, Braun, Kroetz, Handke, and others) will be treated in light of the political events and aesthetic-dramaturgical traditions from which they emerge and with which they are taking issue.

East and West German Drama:

Post-1945 (also Theatre Arts 438/648)

Fall. 4 credits. Not offered 1990-91.

This course will cover the major historical and textual developments in German theater from the end of World War II to the present. Leading dramatists from West and East Germany, Switzerland, and Austria (Brecht, Frisch, Dürenmatt, Weiss, Hochhuth, Müller, Braun, Kroetz, Handke, and others) will be treated in light of the political events and aesthetic-dramaturgical traditions from which they emerge and with which they are taking issue.

East and West German Drama:

Post-1945 (also Theatre Arts 438/648)

Fall. 4 credits. Not offered 1990-91.

This course will cover the major historical and textual developments in German theater from the end of World War II to the present. Leading dramatists from West and East Germany, Switzerland, and Austria (Brecht, Frisch, Dürenmatt, Weiss, Hochhuth, Müller, Braun, Kroetz, Handke, and others) will be treated in light of the political events and aesthetic-dramaturgical traditions from which they emerge and with which they are taking issue.
become "original" writing. The course will be divided into three parts. The first is historical and theoretical with emphasis on, though not confined to, the German tradition; readings from Dryden, Shakespeare, Benjamin, Buber, Steiner, and Derrida, among others, will define our context. The second part is analytical and will attend to the interpretation of translations in prose, poetry, and drama, especially those by writers themselves; among the authors we will read are Shakespeare, Hölderlin, Rimbaud, Mandelstam, Beckett, Joyce, and Valéry. The third part is a practical and experimental exercise of translating texts, to be chosen by our group, into the languages the course participants know best; the emphasis is on critical translation, and students will explicate their translations as a reflection on the translation process.

417 Fascism and Mass Culture (also Comparative Literature 417, Society for Comparative Literature 417, and Theatre Arts 417)
Fall. 4 credits. Taught in English. For advanced undergraduate and graduate students.
In this course we will study the role and evolution of mass culture in the Third Reich between 1933 and 1945. In so doing, we will seek to demonstrate why and how the Nazis were able to use forms of aesthetic representation and mass media communication to establish and maintain political control during this period. Three things will be emphasized: (1) A comparative approach that will explore the similarities and differences in the developments of mass-mediated culture during the 1930s within liberal/capitalist, communist/ Stalinist and fascist societies. (2) A focus upon the "aestheticizing of politics" (Walter Benjamin) by the Nazis as the key to understanding their appropriation of mass culture as a mode of domination. (3) Finally, as a main part of the course, a study of individual cultural documents of mass culture. This will include careful interpretive analysis of films (jud Stürz, Triumph of the Will, Baron Münchhausen), literature (popular novels, utopian novels, poetry, etc.) theater (the Nazi use of the classics such as Shakespeare, Goethe, Schiller; Nazi plays), and art (a study of Nazi painters: Arno Brekker, etc.).

451–452 Independent Study
451; fall; 452, spring. 1–4 credits each term. Prerequisite: permission of instructor. Hours to be arranged. Staff.

490 From Literary Criticism to Marxist Theory: The Early Georg Lukács (also Comparative Literature 490 and Government 470)
Fall. 4 credits. For advanced undergraduates and graduate students.
The writings of the late Lukács have occasion­ally obscured the importance of the young Lukács for the project of Western Marxism and Critical Theory. The seminar will reexamine the beginnings of neo-Marxist theory as it emerges out of the confluence of neo-romantic cultural criticism and contemporary social theory (Simmel, Weber). The analysis will focus on Lukács' seminal texts, especially on Sozialform, Theory of the Novel, and History and Class Consciousness.

491 Mass Culture Revisited: From Popular Literature to the Culture Industry (also Comparative Literature 491 and Society for the Humanities 491)
Fall. 4 credits. For advanced undergraduates and graduate students; taught in English. Reading knowledge of German required. T 1:25–3:20. P. U. Hohendahl.
The purpose of this seminar is twofold: it is designed to engage in a critical dialogue with older and recent theoretical writings on mass culture (Adorno, Bausinger, C. Bürger, Howe, Huysssen, Jameson, L. Levine, MacDonald, Schencl); also, it is intended to investigate the emergence of modern mass culture in Germany. Historically, the course will focus on the period between 1830 and 1900 by tracing the transition from traditional forms of popular culture to its recasting after the industrial revolution. Special attention will be given to the relationship between established high culture and popular culture through an analysis of canon formation on the one hand and an examination of the critical and pedagogical discourse on popular literature on the other. Readings will be taken from the works of popular novelists such as Marliett, Courths-Mahler, Karl May, and Ganghofer. The discussion of their texts will include structural as well as contextual problems (literacy, reading public, book market).

495 The Aesthetic Theory of the Frankfurt School (also Comparative Literature 495)
This course is designed as an introduction to the history of the Frankfurt School and the essential concepts of critical theory. The emphasis will be placed on the theory of culture and its application to the understanding of literature and aesthetics. The reading material will be taken from the works of Max Horkheimer, Theodor W. Adorno, Walter Benjamin, and Jürgen Habermas.

497/697 The Hermeneutic Tradition (also Comparative Literature 497/697)
Hermeneutics not so much a particular philosophy as an abiding yet developing tradition of reflexivity. The course will place this approach into a historical perspective, tracing it back to antiquity (St. Augustine), then following its development from eighteenth-century rationalism via romantic hermeneutics (Schleiermacher, E. A. Poe) and the contribu­tion of the Historical School (Droysen) to Geisteswissenschaften (Dilthey). Finally, there will be a discussion of various twentieth-century trends (Bultmann, Ricoeur, Gadameter) reflecting the influence of Heideggerian phenomenology.

Seminars
Note: For complete descriptions of courses numbered 600 or above consult the appropriate instructor.

605 Introduction to Modern German Literary Theory with an Emphasis on Contemporary Criticism (also Comparative Literature 605)
The seminar will offer a survey of German criticism from 1900 to the present. Emphasis will be placed on the period from 1945 to the present. The aim of the course is to familiarize incoming graduate students with the main currents of German criticism. Readings will be taken from Heidegger, Staat, Käte Hamburger, Szondi, Adorno, Jauss, and others.

611 Seminar in Old Icelandic Literature I (also English 612)
Not offered 1990–91.

612 Seminar in Old Icelandic Literature II (also English 612)
Not offered 1990–91.

623 Seminar in Medieval German Literature I (also Medieval Studies 601)
Topic: Minnesang.

624 Seminar in Medieval German Literature II
Topic: Parzival.

625 The Northern Renaissance and Reformation
Topic: disease and society in fifteenth- and sixteenth-century Germany. The course will center on the function of metaphors of disease in writers such as Erasmus, Luther, and Hutten and the relationship between these metaphors and the social perception of illness, especially the syphils epidemics of the late fifteenth and early sixteenth centuries. Readings in German and Latin of major texts in intellectual and medical history.

626 Nuremberg
An introduction to Nuremberg, in the late fifteenth and sixteenth centuries, with emphasis on its significance as an urban cultural center. Topics include the city's development and social structure, printing, the Reformation, Meistersang, and major cultural figures such as Albrecht Dürer, Hans Sachs, Willibald and Caritas Pirkheimer. The last part of the course will deal with the modern reception of "Nuremberg" by Goethe, the Romantics, Lortzing, and Wagner.

627 Baroque
The seminar will focus on the development of German literature from 1630 to 1700 with an emphasis on its critical and historical assessment. The readings will stress the special nature of the Baroque period, i.e., its political and social structure, as well as its major religious and aesthetic tendencies, as a transition from feudalism to the early absolut­ism. The discussion will highlight the role of the poet, the function of literature, and the composition of the audience. All major genres (poetry, drama, novel) will be examined.
Among the authors to be read will be Fleming, Grimmelshausen, Gryphius, Hofmannswaldau, Opitz, and Zigler.
[629 The Enlightenment
Fall. 4 credits. Not offered 1990-91.
The seminar will focus on eighteenth-century German literature and philosophy from 1730 to 1790. Focus will be placed on the concept of Aufklärung and its meaning for the development of German thought. The discussions will stress major areas of critical inquiry, such as religion, philosophy, and literature. Readings will be taken from authors like Forster, Gellert, Gottsched, Kant, Lessing, and Wieland. The critical literature will include the writings of Adorno, Foucault, Habelmas, Horkheimer, and Korselbeck.]

[630 Classicism and Idealism
Spring. 4 credits. Texts in German, discussion in English.
A purpose of this seminar is to introduce some of the major poetic and philosophical texts generally considered to be in the canon of “Classicism” (roughly 1786–1832), while at the same time giving reasons to call the notion of a canon into question. We will consider especially the two great principles of the period: Goethe’s symbol and Hegel’s dialectic, and how they come together in the problem of romanticy. We will also submit these principles to their subsequent critique by such writers as Adorno, Benjamin, Dick, Foucault, Gombrich, Hyppolite, Kittler, Kojève, Lenin, Lukács, Mao, and M. Rosen.]

[632 Faust
Fall. 4 credits. Prerequisite: permission of instructor. Not offered 1990–91.
An intensive analysis of parts I and II. Our task will be to combine techniques of close reading and attention to textual nuance with a concern for the history of the reception and appropriation of the text, including contemporary theory (e.g., hermeneutics, deconstruction, semiotics, feminism, and historical materialism).]

[633 Hölderlin (also Comparative Literature 633)
Spring. 4 credits. Conducted primarily in English, may be taken in German, good reading knowledge of French useful, not required. Not offered 1990–91.
We will read Hölderlin’s major writings and some representative secondary scholarship.]

[635 Backgrounds of German Realism
Not offered 1990–91.]

[636 Seminar on Richard Wagner (also Music 678)
Not offered. Not offered 1990–91.]

[637 Freud and the Fin de Siècle
Fall. 4 credits. Reading knowledge of German necessary. Not offered 1990–91.
A survey of major late nineteenth- and early twentieth-century works reflecting the adoption of the biological mode as a central metaphor in German thought. Central to the course will be Freud’s early work (Studies in Hysteria, Interpretation of Dreams: Three Essays). Other writers to be read include Nietzsche, Haeckel, Andreas-Salomé, Wedekind, Hauptmann, Schnitzler, and Lombruso.]

[638 Nineteenth-Century Poetry
Not offered 1990–91.]

[639 German Poetry of the Twentieth Century
The seminar will focus on the readings of exemplary poetic and theoretical texts. George, Hofmannsthal, and especially Rilke will provide the foundation on which aspects of tradition, modernism, avant-gardism, and hermeticism can be defined and differentiated. Expressionism, Dada, Surrealism, traditional and recent nature poetry, political poetry from the right and left, Holocaust poetry, poetry of Innerlichkeit, and concrete poetry are the areas of primary interest.]

[641 The Modern German Novel
Not offered 1990–91.]

[642 Bertolt Brecht in Context (also Comparative Literature 679 and Theatre Arts 678)
Spring. 4 credits. Requirements: seminar paper that will form the basis for an oral presentation for class discussion. Not offered 1990–91.
Brecht’s theory and dramatic praxis will be examined in the light of a two-fold context: (1) the relation of selected plays and writings to the historical contingencies of the Weimar and exile periods in which they emerged, (2) in later periods: an analysis of the reception and various readings of these same works by later writers and critical publics in West Germany, East Germany, and the United States as a way of understanding changing nature of aesthetic values in the postwar period. Special attention will be given to the importance of Marxism for Brecht’s art, as well as to the author’s role as a representative of the cultural avant-garde.]

[643 Mann and Myth
Fall. 4 credits. Prerequisite: permission of instructor. Not offered 1990–91.
An examination of Thomas Mann’s use of mythical (including biblical) sources and traditions, centering on a reading of the Joseph-tetralogy and the correspondence between Mann and Karl Kerényi.]

[644 The Holocaust Survivor as Author (also Near Eastern Studies 444)
For description, see German Studies 444. Not offered 1990–91.]

[645 West German Literature, 1945–1970
Spring. 4 credits. Open to qualified undergraduates with permission of instructor. Not offered 1990–91.
This course will treat major developments in the area of German culture (literature, cinema, painting) between 1900 and 1933. Individual representative texts will be studied and discussed in their relation to the cultural, political, and social contexts out of which they emerge. Lectures and discussions will focus both on detailed interpretation of individual works as well as on the general historical background and developments of the period.]

[646 East German Novel of the Seventies and Eighties
Fall. 4 credits. Not offered 1990–91.
The course will explore the thematic and formal developments of the novel in the GDR since the publication of Christa Wolf’s Nachdenken über Christa T. (1968) in the light of radically changing cultural and political norms (women, dissent, Jewish question, "subjectivity," socialist realism, etc.) in the society as a whole.]

[647 Paul Celan in Tradition and Context
Spring. 4 credits. Open to qualified undergraduates with permission of instructor. Not offered 1990–91.
Paul Celan, now widely recognized as one of the most important European poets in this century, has complex origins: belonging to the Ashkenazim in Rumania, who spoke German at home, Celan never lived in a German-speaking environment after moving to Paris in 1948. Having lost his parents in a concentration camp, he lived the fractured existence of writing in the language of the murderers. The seminar examines Celan’s cultural background in Czernowitz and his indebtedness to romanticism, symbolism, and Surrealism; the context of the Cabala and the Holocaust; intertextual connections with Hölderlin, Rilke, and Mandelstam, as well as dialogues with Heidegger, Benn, and N. Sachs; his translations from seven languages; and poems and the reception of his poetry, especially in the conservative climate of the Federal Republic of Germany.]

[648 East and West German Drama: Post-1949 (also Theatre Arts 438/648)
For description, see German Studies 438. Not offered 1990–91.]

[649 Contemporary German Women Writers
Not offered 1990–91.]

[650 Culture in the Weimar Period (also Theatre Arts 650)
This survey course will treat major developments in the area of German culture (literature, cinema, painting) between 1900 and 1933. Individual representative texts will be studied and discussed in their relation to the cultural, political, and social contexts out of which they emerge. Lectures and discussions will focus both on detailed interpretation of individual works as well as on the general historical background and developments of the period.]
660 Visual Ideology (also Comparative Literature 660 and Theatre Arts 660)

Spring. 4 credits.

Some of the most powerful approaches to visual praxis have come from outside or from the peripheries of the institution of art history and criticism. This seminar will analyze the interactions between academically sanctioned disciplines (such as iconography and connoisseurship) and innovations coming from philosophy, psychoanalysis, historiography, sociology, literary theory, mass media criticism, feminism, and Marxism. We will try especially to develop: (1) a general theory of "visual ideology" (the gender, social, racial, and class determinations on the production, consumption, and appropriation of visual artifacts under modern and modernist conditions); and (2) a specific practice of the "dialectical image" to articulate these determinations. Readings taken from Althusser, Barthes, Bataille, Baxandall, J. Berger, Benjamin, Brecht, Burgin, De Lauretis, Derrida, Eisenstein, Foucault, Freud, C. Ginzburg, C. Harvey, Heartfield, Irigaray, Kristeva, Lacan, Maravall, Marin, Merleau-Ponty, Modleski, Panofsky, Passolini, M. Raphael, Sontag, Warburg, P. Weiss. Examples will be drawn primarily from the history of oil painting, but expanded to the interests of the class) from architecture, city planning, photography, film, and other mass media.

664 Late Nineteenth Century: Fin de Siecle

Fall. 4 credits.
The seminar/anchor course will focus on late-nineteenth-century literary, cultural, and social texts, with emphasis on the period between 1880 and 1910. Course will pay particular attention to the meanings and effects of "Naturalism," as well as to the literary-cultural production and debates over "the social question," "the Jewish question," and "the woman question." Readings will be taken from authors such as Nietzsche, Freud, Hauptmann, Rilke, Doan, Wedekind, Schnitzler, Haeckel, and von Reventlow. Critical literature will include writings of a range of contemporary critics.

685 The Search for German Cultural Identity, 1850-1920

Spring. 4 credits. Not offered 1990-91.
The seminar will concentrate on the period between the Revolution of 1848 and World War I, emphasizing the discourse on German national identity. The texts will be drawn from various areas, including history, music, criticism, philosophy, and literature. Authors to be considered are Heine, Wagner, Nietzsche, and Thomas and Heinrich Mann.

684 Opera (also Music 274/674 and Italian 374)

Not offered 1990-91.
For description, see German Studies 374.

687 New German Cinema (also Theatre Arts 677)

Spring. 4 credits. Not offered 1990-91.
The course will examine in depth major films and filmmaking trends who are considered a part of the New German wave cinema (Fassbinder, Schlondorff, Von Trotta, Kluge, Sander, Herzog, Wenders, etc.). Of special interest will be the differing impact of these films in the contexts of West Germany, Europe, and the United States.

677 Mozart (also Music 677)

Fall. 4 credits. Not offered 1990-91.
T 1:25-4. N. Zaslav.

678 Theory and Practice of Modern Drama (also Theatre Arts 678)

Spring. 4 credits. Not offered 1990-91.
The course will examine different theories of modern drama (Szondi, Brecht, Artaud, etc.) and discuss their basis in a number of representative works of modern drama. The point will be to trace the interchange between theory formation and dramatic practice.

679 Bertolt Brecht In Context (also Comparative Literature 679 and Theatre Arts 679)

Spring. 4 credits. Requirements: seminar paper that will form the basis for an oral presentation for class discussion. Not offered 1990-91.
Brecht's theory and dramatic praxis will be examined in the light of a two-fold context: (1) the relation of selected plays and writings to the historical contingencies of the Weimar and Nazi periods in which they emerged; (2) Later periods and the reception and various readings of these same works by later writers and critical publics in West Germany, East Germany, and the United States as a way of understanding the changing nature of aesthetic values in a post-war period. Special attention will be given to the importance of Marxism for Brecht's art, as well as to the author's role as a representative of the cultural avant-garde.

684 Heidegger: A Reading of Being and Time

Not offered 1990-91.

685 Gramsci and Cultural Politics (also Comparative Literature 685 and Government 675)

Spring. 4 credits. Not offered 1990-91.
The modern transnational-capitalist state rules not only by domination and coercion but by the "noncoercive coercion" of cultural hegemony. What is the proper role of intellectuals (and who and what is an intellectual)? in cultural politics? How do "leftist" cultural critics, theorists, and artists living under late capitalism relate as individuals and collectively to nascent socialist countries? What is the relationship of intellectuals to political parties? We will deal with the political and cultural writings of Antonio Gramsci—whether Gramsci is best understood as a "Western Marxist" or as an extension of Leninist "orthodoxy"—and with the response of critical theory and cultural practices to Gramsci's challenge: the neorealist film La Terra traema, Griffith's drama Occupations, the paintings of Cremonini, Fowles's novel Daniel Martin, Passolini's poem cycle "Ashes for Gramsci," the analyses of Parenti (Inventing Reality) and Kukarkin (The Passing Age), the political philosophy of Laclau and Mouffe (Hegemony and the Socialist Strategy), the theory and practice of "low-intensity conflict" as developed by the CIA and the NSC, and the cultural theories of Williams (Marxism and Literature) and Said (The World, the Text, and the Critic).

688 Theodor W. Adorno: Mass Culture and the Avant-Garde (also Comparative Literature 688 and Theatre Arts 688)

Fall. 4 credits. Not offered 1990-91.
In this country Adorno is primarily known for his philosophical writings and his music criticism. His literary criticism and his contributions to aesthetic theory, on the other hand, remain to be discovered. The seminar will explore Adorno's importance for contemporary criticism; it will focus on Adorno's theory of art as well as his literary and music criticism, especially those parts concerned with the avant-garde and its role in the age of modern mass culture. The readings will be taken from Adorno's essays as well as from Minima Moralia, Dialectic of Enlightenment, Philosophy of Modern Music, Prisms, and Aesthetic Theory.

689 Art and Truth: The Aesthetic Theory of Theodor W. Adorno (also Comparative Literature 689)

Spring. 4 credits. Not offered 1990-91.
The seminar will focus on the aesthetic writings of Adorno, beginning with his chapter "Esthetics and Dialectic" from Dialectic of Enlightenment, as well as selected essays on European literature and music. The emphasis then will be placed on Adorno's major posthumous work, Aesthetic Theory (1970). The aim is a close reading of Adorno's theory in the context of the Kantian and Hegelian tradition.

690 German Feminist Criticism and Theory (also Women's Studies 690)

Spring. 4 credits. Open to qualified undergraduates with permission of instructor. Reading knowledge of German required. Not offered 1990-91.
This course is designed to explore developments in feminist literary theory with particular attention to the field of German literature. We will consider competing critical strategies and their political implications by working through different readings of specific literary texts and by raising questions about the implications for feminism of competing theoretical strategies in the general field of literary theory; the tension in feminist Germanistik between critical attention to the "male canon" and the construction of a female literary tradition; the impact of French and American feminist work in the field of German; the impact and treatment of the Nazi period; the effects of the East-West divide on development in both Germanys; the impact on feminist literature and criticism of Third World women in Germany, and approaches in West and East Germany to imperialism and racism.

694 Seminar in Literary Theory: Aesthetics of Reception and Reader Response Theory (also Comparative Literature 694)

Fall. 4 credits. Not offered 1990-91.
The interest in the reception of literature and reader response has become a major focus for the development of literary theory since 1970. The seminar will concentrate on the emergence of the aesthetics of reception in both West and East Germany during the late seventies and early eighties. These approaches will be compared with the emerging reader response theory in the United States. The reading material will be taken from the writings of Jauss, Iser, Naumann, Weinmann, Stanley Fish, and Norman Holland.
This course will explore in depth the writings and practices of two major 20th-century theatrical artists, Bertolt Brecht and Antonin Artaud, to (a) map out differences and similarities between the two as representatives of avant-garde theatre; (b) situate their respective work in the political and cultural contexts out of which they emerged; and (c) explore their impact upon succeeding movements and artists of modern drama and cinema. A central focus of the course will be to explore the differing and changing notions of "avant-garde theatre" as demonstrated in the work and reception of Brecht and Artaud. The face-off between the two will serve methodologically both to delineate and to interrogate critically what have become two discrete "models" of avant-garde theatre as well as to consider ways in which these two models have been and could be synthesized.

The Hermeneutic Tradition

Not offered 1990-91.

For description, see German Studies 497.

German Film Theory

Spring. 4 credits. Not offered 1990-91.

This course will examine critically the writings of major German film theorists from the Weimar period to the present. Works by Bela Balazs, Rudolf Amhelm, Siegfried Kracauer, Walter Benjamin, Theodor Adorno, Max Horkheimer, Alexander Kluge, H. J. Syberberg, Gertrud Koch, Thomas Elsaesser, and others will be read and discussed in light of the following considerations: What are the aesthetic and philosophical premises underlying these theories? What are the cultural and political contexts out of which these ideas emerge and how are these theories addressing these contexts? How do these theories relate to the work coming out of other national traditions at the same time or to current debates in Feminism, formalist, post-modern, or post-structuralist film theory? There will be film showings.

Tutorial in German Literature

Fall and spring. 1-4 credits per term.

Prerequisite: permission of instructor. Hours to be arranged. Staff.

Related Courses in Other Departments

German 401: Introduction to Germanic Linguistics

Harbert.

German 406: Runicology

Harbert.

German 407: Applied Linguistics

Kufner.

German 603: Old High German, Old Saxon

Harbert.

Government 376: Marx

S. Buck-Morss.

Government 669-670: Modern Social Theory

Buck-Morss.

Music 297: Mozart

N. Zaslav.

European Studies Concentration

Government majors may elect to group some of their required and optional courses in the area of European studies, drawing from a wide variety of courses in relevant departments. Students are invited to consult Professors P. Katzenstein, Scheinman, and Tarrow for advice on course selection and foreign study programs.

International Relations Concentration

See the description under "Special Programs and Interdisciplinary Studies."

Honors

Each fall a small number of seniors enter the honors program. To apply, junior majors submit applications in May. Along with a fuller description of the honors program, application forms are available in 125 McGraw Hall. The three courses comprising the honors sequence (honors courses) are described below.

Introductory Courses

Students registering for introductory courses should register for the lecture only. Sections will be assigned during the first week of class. Introductory courses are also offered during summer session.

The Major

To be admitted to the major, a student must have already received a passing grade in at least three government department courses and received a grade of B or better in at least two such courses.

To complete a major in government, a student must (1) pass at least two of the introductory courses and an additional course in one of the remaining government subfields (American Government, Comparative Government, Political Theory, International Relations); (2) accumulate an additional 24 credits of government coursework at the 300-level or above; (3) successfully complete at least one seminar-style course in government (which may be applied toward the 24 credits); (4) accumulate at least 16 credits in related fields, again at the 300-level or above. All courses used to fulfill a government major must be passed with a letter grade. Majors are urged to complete the introductory course requirement early.

Seminars are those courses numbered 400, 490, and 500, plus whatever additional courses the director of undergraduate studies may designate. To be admitted to a seminar, students apply during the course scheduling period held the previous semester. Related fields normally include courses offered by these departments: Anthropology, Economics, History, Psychology, and Sociology. Majors should discuss their selection of related courses with their advisers. When approved by an adviser or by the department, courses from other departments may be used to fulfill this requirement.

Cornell-in-Washington Program

Government majors may apply to the Cornell-in-Washington program to take courses and undertake a closely supervised externship during a fall or spring semester.

Freshman Writing Seminars

Free Placement Seminars

Fall, spring, or summer admission. 3 credits. Students who have not been placed in the seminar will be enrolled in the seminar only. Placement in this seminar is determined by the Department of English, and is based on students' work in English 111, 112, and 113, or other placement exams. Students who wish to be placed in the seminar should register for the seminar only. Students may not register for both the seminar and the Freshman Writing Seminars in the same term.

100 Freshman Seminars

Fall, spring, or summer. 3 credits. Seminars will be offered in fall, spring, and summer terms. Consult the listings for the Freshman Seminar Program in the section "Special Programs and Interdisciplinary Studies."
Major Seminars

306 Sex Discrimination: Law and Social Policy (also Women's Studies 372 and Sociology 372)
Fall. 4 credits.
C. Bohmer.
This course will cover the current legal and social trends in the area of sex discrimination. The relationship between feminist consciousness and organization and developments in gender-related constitutional law and legislation will be examined. Focusing on such topics as education, employment, gay rights, and reproductive control, the course will analyze the relationship between legal change and sociopolitical change as it affects equal rights.

308 Class, Race, and Interest Groups in U.S. Politics
Fall. 4 credits.
M. Goldfield.
The American polity is often characterized as a democracy, sometimes as a representative democracy, sometimes as a pluralist democracy. While most people recognize the existence of a great deal of corruption, unequal benefits, special advantages to the wealthy, and even the political exclusion of the "poor" and "minorities," these phenomena are usually viewed as aberrations or imperfections that do not fundamentally define either the distribution of power or the democratic functioning of the political processes. In this course we will entertain the proposition that issues of class and race are central to the shaping of politics in this country. While the course will spend some time examining the dominant paradigms in U.S. politics, the bulk of our attention will be devoted to more critical readings.

312 Urban Affairs Laboratory

313 The Nature, Functions, and Limits of Law
Spring. 4 credits.
J. K. Cleary.
A general education course for students at the sophomore and higher levels. Law is presented not as a body of rules but as a set of varied techniques for resolving conflicts and dealing with social problems. The roles of courts, legislatures, and administrative agencies in the legal process is analyzed, considering also the constitutional limits on their power and practical limits on their effectiveness. Readings consist mainly of judicial and administrative decisions, statutes and rules, and commentaries on the legal process.

316 The American Presidency
Spring. 4 credits.
A. Dotson.
Analysis of the politics of the presidency and the executive branch with emphasis on executive-legislative relations, executive branch policymaking, and the problems of the modern presidency.

317 Campaigns and Elections
Fall. 4 credits. Prerequisite: Government 111 or permission of the instructor.
W. Mebane.
This course examines popular campaigns and elections, focusing primarily on the United States. Topics covered include the effects of election-related manipulations on the economy and vice versa; why members of the U.S. House of Representatives run for reelection almost never lose; how individuals decide whether to vote and, if so, for whom; and why political parties play such minor roles in American electoral campaigns. Among the required assignments is a paper, based on original primary research, in which the results of the 1980 U.S. House and Senate elections are explained.

320 Public Opinion and Public Choice
Spring. 4 credits. Prerequisite: Government 111 or permission of the instructor.
W. Mebane.
This course develops the apparent paradox that a government the people control will only rarely do what the people want. Through a variety of theoretical lenses, but especially that provided by the formal theory of social choice, we examine several of the most important institutions through which people control government in the United States, including elections, legislatures, and bureaucracy. A contrast is systematically developed between the paradoxes evident in such institutions actually operate and the notions of democratic consensus expressed by the theory of public opinion. A completed paper based on original case study research is among the course assignments.

322 Constitutional Politics: The United States Supreme Court
Fall and summer. 4 credits.
This course investigates the role of the Supreme Court in American politics and government. It traces the historical development of constitutional doctrine and the institutional role the court has played in American politics.

323 The "Fourth" Branch

327 Civil Liberties in the United States

332 The Nature of American Politics
Fall. 4 credits. Prerequisite: Government 111 or permission of the instructor.
M. Katzenstein.
The course examines the aims and strategies of the feminist movement in the United States and the response of both society and the state to feminist claims. It is thus a course about political protest and the capacity of American political institutions to promote and shape as well as to counter social change. In examining the law and public policy on such issues as job discrimination, wife battery, rape, abortion, etc., the course explores the contradictions between, and the congruence of, the dual ideals of individual choice and group equality.

353 Feminism, the State, and Public Policy (also Women's Studies 353)
Spring. 4 credits.
M. Katzenstein.
The course examines popular campaigns and elections, focusing primarily on the United States. Topics covered include the effects of election-related manipulations on the economy and vice versa; why members of the U.S. House of Representatives run for reelection almost never lose; how individuals decide whether to vote and, if so, for whom; and why political parties play such minor roles in American electoral campaigns. Among the required assignments is a paper, based on original primary research, in which the results of the 1980 U.S. House and Senate elections are explained.

403 Cleavages and Conflicts in Contemporary American Politics
196

ARTS AND SCIENCES

[Image 0x0 to 589x790]

196

[Image 0x0 to 589x790]

[Image 0x0 to 589x790]

196

[Image 0x0 to 589x790]
343 Contemporary European Society and Politics (also History 285 and German Literature 285)
Fall. 4 credits.
J. Pontusson.
The crisis of communist regimes in Eastern Europe has brought an end to the postwar division of Europe. At the same time, the European Community is emerging as a major economic and political power in the world. This course explores these dramatic new developments against the background of an interdisciplinary and comparative investigation of postwar European politics, society, and culture. Topics include generational change, class structure, economic and social policy, new social movements, family and community life, film, and cultural criticism.

[344 Government and Politics of the Middle East]

[345 Contemporary European Society and Politics (also German Literature 285 and History 285)]

346 Politics of Contemporary Japan
Fall. 4 credits.
T. J. Pempel.
The focus will be on the political, social, and economic delimiters of policymaking in postwar Japan, with some particular attention given to ideological conflict, political parties and elections, the bureaucracy, the consumer movement, student protest, defense policy, and economic penetration of Southeast Asia.

347 Government and Politics of China
Fall. 4 credits. No prerequisites.
Jia Quingguo.
An introduction to the main currents in China's domestic politics over the last fifty years. Topics include Maoist philosophy; the Communist Party's revolutionary rise to power; peasants, communes, and village politics; ultra-left socialist idealism and mass mobilization; intra-bureaucratic politics; the conditions for military and industrial modernization; and the recent turn toward "market socialism."

[348 Politics of Industrial Societies]

[349 Political Role of the Military]

[350 Comparative Revolutions]

351 India: Social and Economic Change in a Democratic Polity
Spring. 4 credits.
M. Katzenstein.
This course explores the social, economic, and political forces that have shaped India's development since independence. It considers why democratic political institutions in India have proved so resilient and what effect these institutions have on the economic and social policies that are pursued. The importance of international as well as domestic forces in shaping Indian economic and political choices is also assessed.

352 Topics in the Middle East: Islam and the State in the Middle East (also Near Eastern Studies 397)
Spring. 4 credits.
M. Winter.
The seminar aims to survey and analyze the problematic relationship between Islam and the modern nation-state in the Middle East, against the historical background of the region. The first part of the course will address the pervasive patterns of this relationship. The second part will be devoted to case studies of the various countries in the Middle East: the Arabs and the Palestinian Arabs, Turkey and Iran.

[354 America in the World Economy]

[355 Contemporary Revolutions]

356 Elites and Society: The Political Economy of Power
Spring. 4 credits.
N. T. Uphoff.
For students who have an interest in the nature and uses of power in politics. Consideration of how power has been treated by earlier political thinkers and by contemporary social scientists. Propositions will be formulated and critiqued about the distribution and consequences of power in America, in other industrialized societies, and in the Third World, and their implications for the making of public policy. A game simulation, Third World Power Play, is undertaken at the end of the course.

[357 Political Development in Western Europe]

358 Modern History of the Middle East: Changing Politics, Society, and Ideas (also Near Eastern Studies 294)
Fall. 4 credits.
M. Winter.
This introductory course is designed to acquaint students with the main political, social, and cultural trends that have shaped the modern and contemporary history of the Middle East. While discussing developments in the region during the nineteenth and twentieth centuries, the lectures will focus on such themes as modernization, nationalism, Islamic response, and Arab politics in the global and regional contexts. The course does not presuppose the knowledge of Middle Eastern languages.

359 Soviet Foreign Policy
Spring. 4 credits.
J. Goldgeier.
This course will examine the development of Soviet foreign policy from the Bolshevik Revolution to the present. We will study the influence of culture and history, the effect of changes in the domestic and international systems, and the role of individual leaders in shaping foreign policy. We will be chiefly concerned with understanding how the Soviet Union over time has tried both to change the international system and adapt to it.

[356 Social Movements and Politics in Industrial Societies]

[430 The Politics of Productivity: Germany and Japan]

431 Political Economy of Japan
Spring. 4 credits.
T. J. Pempel.
This course will focus on the intersection of politics and economics in Japan. It will concentrate on postwar Japan, but will introduce the political economy of Japanese modernization and industrialization during the late nineteenth and early twentieth centuries as background. Included as principal topics will be the political economy of Japanese industrial policy, trade, finance and marketing, as well as more micro-level policies that involve worker management relations, the Japanese firm, technology development, R&D, and women in the workforce. The key concern throughout will be to examine the political causes and consequences of the Japanese economy, with an eye toward situating Japan comparatively as well as isolating certain elements of its uniqueness. Both domestic and international dimensions will be considered.

[432 Labor and Politics]

433 Liberal Democratic State Structures
Fall. 4 credits.
W. Garst.
This course will analyze the emergence of liberal democratic institutions. It will focus on two topics: the conditions that promoted and constrained liberal democratic political development in Europe up to World War II and the recent democratic revolutions in Eastern Europe.

[434 State and Economy in Advanced Capitalism]

[435 Collective Action and Politics in Modern Europe (also History 435)]

[439 Formation of European Nation-States]

[443/643 Socialism and the Market in China]

[446 Comparative Communism]

449 State Institutions and Social Coalitions
Fall. 4 credits.
T. J. Pempel.
This seminar will focus on macro-historical analysis of states currently considered "advanced industrial democracies." Central to the seminar will be an examination of the formation of different social coalitions, and the ways in which these coalitions have been shaped by and, in turn, have shaped, political institutions. Thus one concern will be the evolution of different types of social—liberal, fascist, corporatist, socialist, and the like. The seminar will also explore broad policy choices and directions that result from such interactions—guns vs. butter, internationalist vs. domestic economies, public vs. private responsibilities, etc. Finally, it will consider ways in which different regimes respond differently to common international stimuli such as war, recession, territorial aggravation, and trade.
American ideology. these critics and speculate on the possible optimism, Freudianism, and feminism. This course will discuss the historical context of U.S. policies toward Latin America, as well as the impact of various influences, such as public opinion, partisan competition, and organized interest groups on the U.S. policymaking process.

[454 The Herodotean Moment: The Uses and Abuses of "Western Civilization" (also History 454)] 4 credits. Prerequisite: permission of instructor. Not offered 1990-91.

[361 Modern Ideologies: Liberalism and Its Critics] Fall. 4 credits.

L. Krannick.

Since the rise of capitalism, one political ideology has been dominant in the Western world—liberalism. However, its hegemony has been questioned by a series of critics: democracy, socialism, anarchism, conservatism, Freudianism, and feminism. This course will study the tensions between liberalism and these critics and speculate on the possible survival or extinction of this venerable and very American ideology.

[362 Directions in Feminist Theory (also Women's Studies 365)] 4 credits. Not offered 1990-91.

[366 Lesbian Writing and Theory (also Women's Studies 366)] Spring. 4 credits.

C. A. Martin.

This course will begin by investigating the histories and implications of the categories in the course title. Though the focus will change from year to year, there will be a strong emphasis on "lesbian writing" and theory since the late 1960s. We will consider the relations between lesbian and gay male writing and theory as well as theory and writing that addresses itself explicitly to the intersections of race, gender, sexuality, and class. Writers, critics, and theorists will include, but not be limited to Audre Lorde, Esther Newton, Mab Segrest, Barbara Smith, Cherrie Moraga, Adrienne Rich, Gloria Anzaldua, Alison Bechdel, Teresa de Lauretis, Judith Butler, Diana Tuss, Martha Vicinus, Michel Foucault, Allan Bérubé, and Martin Duberman.

[376 Marx] Fall. 4 credits.

S. Buck-Morss.

The meaning and contemporary relevance of the central concepts of Marxist theory: dialectics, class, ideology, history, social revolution, the state, the family, imperialism, modes of production, the "iron laws" of capitalism, and the communist goal. Readings in the original texts.

[465 Philosophy of Social Science] Spring. 4 credits.

M. Goldfield.

Our investigations in this course will focus on several general questions: Is the scientific study of society (or political science) possible and, if so, in what ways and, if not, how can one legitimately study it? The first part of the course will examine general philosophers of science, including Hempel, Kuhn, Lakatos, and Miller. The majority of the course will examine issues specific to social science, including historical explanation, functional explanation, rational choice, and theories of interpretation.

[466 The Repressed Feminine in the Writings of Marx (also Women's Studies 466)] 4 credits. Not offered 1990-91.

[468 The Theory and Politics of Liberal Feminism (also Women's Studies 468)] 4 credits. Not offered 1990-91.

[469 Limiting War (also Philosophy 369)] Fall. 4 credits.

H. Shue.

Modern states employ or threaten violence not only through conventional war but in various other forms including "low-intensity warfare," chemical and biological warfare, terrorism, and nuclear deterrence. This course critically examines the best arguments about limiting or prohibiting various contemporary means and methods of fighting one's enemies, arguments with conclusions ranging from pacifism to "realism." Have traditional doctrines about just war been overtaken by 20th-century events and technologies, or is it still possible to provide a reasonable justification for limiting war? If so, how? Special emphasis is given to moral issues about nuclear weapons. Readings include the U.S. Catholic Bishops' Pastoral Letter on Nuclear Deterrence, Just and Unjust Wars, by Walzer, and Nuclear Deterrence, Morality and Realism, by Finnis, Boyle, and Grisez.

[470 From Literary Criticism to Marxist Theory: The Early Georg Lukacs (also German Studies 490 and Comparative Literature 490)] Fall. 4 credits.

P. U. Hohenadl.

The writings of the late Lukacs have occasion­ally obscured the importance of the young Lukacs for the project of Western Marxism and Critical Theory. The seminar will reexamine the beginnings of neo-marxist theory as it emerges out of the integration of neo-romantic cultural criticism and contemporary social theory. Simmel, Weber, and Husserl will focus on Lukacs' seminar texts, especially on Soul and Form, Theory of the Novel, and History and Class Consciousness. The course is designed for advanced undergraduates and graduate students.

International Relations

Government 181 is recommended.

[381 The Politics of Defense Spending] Spring. 4 credits.

J. Reppy.

An analysis of U.S. military programs and budgets in the post-World War II period. Topics covered will include an overview of the defense budget process, special characteristics of the defense market, behavior of defense firms, and domestic factors shaping the arms race. There will be occasional guest lectures by visitors to the Peace Studies Program.

[384 War and Peace in the Nuclear Age (also Physics 206)] 4 credits. Not offered 1990-91.

[385 Contemporary American Foreign Policy] Spring. 4 credits.

S. Telhami.

In this course, we will examine the evolution of American foreign policy since World War II. In part I of the course, we will study the theoretical literature linking international and domestic variables to American foreign policy. In part II, we will explore several cases of American foreign policy, in an attempt to test the utility of the various theoretical ap­proaches. The cases selected pertain primarily to Soviet-American relations and to American responses to social and political change in the Third World.

The purpose of this course is to provide a broad comparative introduction to the political development of modern Germany and Great Britain. In particular, we will address the following questions: What accounts for the greater fragility of democratic institutions in Germany prior to 1945? Why has right-wing free market ideology found greater acceptance in Britain during the 1980s? And how will German national identity change in the wake of the recent upheaval in East Germany?

This course will explore the historical development of the international system. We will begin with the ancient Greek interstate war and peace in the ancient Mediterranean world in light of modern theories of international relations. The course will test the validity of modern theories against ancient models and will ask what the ancient experience can contribute to modern theory and practice. Case studies include the Peloponnesian War, the second Punic War, Alexander's conquests, and the defense of the Roman Empire.

A study of war and peace in the ancient Mediterranean world in light of modern theories of international relations. The course will test the validity of modern theories against ancient models and will ask what the ancient experience can contribute to modern theory and practice. Case studies include the Peloponnesian War, the second Punic War, Alexander's conquests, and the defense of the Roman Empire.

The course will explore the historical development of the international system. We will begin with the ancient Greek interstate system, then examine the emergence of the balance of power, sovereignty, and diplomatic institutions in early modern Europe, and finish by comparing Anglo-American hegemony in the world economy. Along the way, we will consider the relevance of selected "great works" of political philosophy for these topics.

The purpose of this course is to consider various theoretical explanations of the interrelated phenomena of empires and imperialism in different historical contexts. Particular topics examined will include various ancient empires, European imperialism between the sixteenth and twentieth centuries, and the rise and decay of the post-World War II Soviet Empire.

The purpose of this course is to consider various theoretical explanations of the interrelated phenomena of empires and imperialism in different historical contexts. Particular topics examined will include various ancient empires, European imperialism between the sixteenth and twentieth centuries, and the rise and decay of the post-World War II Soviet Empire.

This course offers a comprehensive review of the Chinese foreign policy: its historical and cultural background, its evolution to date, China's relations with major states and regions, and major factors that have shaped China's foreign policy. It attempts to give students both a general picture of this policy and some in-depth analysis of the complicated and subtle process of its formulation and development.

This course offers a comprehensive review of the Chinese foreign policy: its historical and cultural background, its evolution to date, China's relations with major states and regions, and major factors that have shaped China's foreign policy. It attempts to give students both a general picture of this policy and some in-depth analysis of the complicated and subtle process of its formulation and development.
Supervised Study
Except under very unusual circumstances, supervised study, Government 495, is open only to government majors doing superior work in the major. The application form may be obtained in 125 McGraw Hall and must be approved by the director of undergraduate studies for credit to be granted. There is no limit established for the total number of credits a government major may take in Government 495 while at Cornell, but he or she may count no more than 4 credits toward fulfillment of the major. Students who want to continue taking the course for more than one semester may select a new theme or subject each semester, and applicants must present a well-defined program of study that cannot be satisfied by taking regular courses. Credit can be given only for work that results in a satisfactory amount of writing. Emphasis is on the capacity to subject a body of related readings to analysis and criticism. Permission of the instructor is required.

499 Readings Fall or spring.
1–4 credits.
Staff.

Graduate Seminars
Qualified undergraduates are encouraged to apply for seminars listed with 600 course numbers but may only register with the permission of the instructor. Students may consult the supplement that lists graduate courses, available in the department office.

Field Seminars
601 Scope and Methods of Political Analysis
Fall. 4 credits.
S. Jackson.
This seminar offers an overview of the main problem areas and theoretical orientations in the four subfields of contemporary political analysis: political theory, American politics, comparative politics, and international relations. Selected topics, including questions of research design, are treated through a reading of the best contemporary literature. The broad issues of the philosophy of social science or specific techniques of analysis may also be addressed.

602 Field Seminar in Political Methodology

603 Field Seminar in American Politics
Fall. 4 credits.
T. J. Lowi.
The basic issues and institutions of American government and the various subfields of American politics are introduced. The focus is on substantive information and theoretical analysis and problems of teaching and research.

604 Field Seminar in Public Policy

605 Field Seminar in Comparative Politics
Spring. 4 credits.
T. J. Pempel.
An introduction to selected theoretical problems in the study of comparative politics and to their application in empirical analysis. Basic problems are social class and politics, authority and legitimacy, participation and mobilization, economic development and democracy, authoritarian and totalitarian politics, corporatism and pluralism, and nation building and political integration.

606 Field Seminar in International Relations
Fall. 4 credits.
R. N. Lebow.
A general survey of the literature and propositions of the international relations field. Criteria are developed for judging theoretical propositions and are applied to the major findings. Participants will be expected to do extensive reading in the literature as well as research.

607 Field Seminar in Political Thought
Fall. 4 credits.
J. Kramer.
An introduction to political theory through a reading of selected classics in political thought from Plato to Marx.

American Government and Institutions
613/413 Politics and Economics in Local Areas
Spring. 4 credits.
W. Mebane.
For course description, see American Government and Institutions.

614/414 The Administrative State
Fall. 4 credits.
J. Rabin.
For course description, see American Government and Institutions.

618/418 Labor in American Politics
Spring. 4 credits.
M. Goldfield.
For course description, see American Government and Institutions.

620/420 American Political Development
Fall. 4 credits.
M. Goldfield.
For course description, see American Government and Institutions.

624 Political Change in the United States
Spring. 4 credits.
M. Schett.
This seminar analyzes the sources and consequences of major realignments in American politics.

625 Models for Research on Politics
Fall. 4 credits.
W. Mebane.
This practically oriented course examines a number of relationships between model specification and nonexperimental empirical research design. Issues given sustained attention include level-of-analysis problems, problems of dynamics and cross-sections, problems of measurement, and problems of sampling and other case selections. The course is intended for advanced graduate students wishing to write a Ph.D. thesis and will not be discouraged from doing so, however.

628 Politics of Technical Decisions I
Fall. 4 credits.
J. Goldger.
The processes of change on the European continent are a lens through which we can reexamine many of our concepts about the nature of international relations, drawing both on history and theory as our guide. What lessons can we draw about the pitfalls that may be encountered by studying past attempts at cooperation such as the Concert of Europe and the League of Nations? What do international relations theories about balance-of-power, regimes, and supranational integration, tell us about the requirements for continued stability on the continent? We will examine a number of issues including the role of the superpowers, the nature of alliances, the nature of international stability, arms control, German unification, environmental problems, and the process of European integration.

632 Politics and Society in France, Italy, and Britain

636 Political Development of the European Welfare State

637 Peasantry, State, and Revolutionary Socialism

639 Politics of the Soviet Union

642 The Future of European Security
Spring. 4 credits.
J. Goldger.
The processes of change on the European continent are a lens through which we can reexamine many of our concepts about the nature of international relations, drawing both on history and theory as our guide. What lessons can we draw about the pitfalls that may be encountered by studying past attempts at cooperation such as the Concert of Europe and the League of Nations? What do international relations theories about balance-of-power, regimes, and supranational integration, tell us about the requirements for continued stability on the continent? We will examine a number of issues including the role of the superpowers, the nature of alliances, the nature of international stability, arms control, German unification, environmental problems, and the process of European integration.

643/443 Socialism and the Market in China

644 Sociotechnical Aspects of Irrigation
(also Agricultural Economics 754, Agricultural Engineering 754, and Rural Sociology 754)
Spring. 2–3 credits.
N. Uphoff, N. Walter, R. Barker, and W. Coward.
Examines irrigated agriculture and its relation to agricultural development. Emphasis on social processes within irrigation systems and interactions with the social setting, including political and administrative aspects. Provides an opportunity to examine systematically the institutional and organizational policy issues associated with the design and operation of systems of irrigated agriculture in developing countries.
[645 Chinese Politics]

[647 Political Anthropology: Southeast Asia]

[648 Political Economy of Change: Rural Development in the Third World]
Fall. 4 credits.
N. T. Uphoff.
The seminar analyzes strategies for economic, social, and political change, using an approach that integrates economic, social, and political factors into a common framework dealing with policy choices and political action. Attention focuses particularly on developing local capacities for initiative and implementation, with broader participation from rural communities.

[649 State Institutions and Social Coalitions]

[651 Agrarian Change in South Asia: Politics, Society, and Culture]

[652 Southeast Asia Seminar: Philippines (also Asian Studies 601)]
Spring. 4 credits.
B. Arison.
A broad range of problems are dealt with. The focus of the seminar is on the Philippines.

[653 The Plural Society Revisited (also Asian Studies 607)]

[655 Latin American Politics]
Fall. 4 credits.
E. Kenworthy.
An overview of major issues in the study of contemporary Latin American politics, including recent writings on dependency, authoritarian rule, transitions to democracy, class and the state.

[656 Comparative Political Economy]
Fall. 4 credits.
J. Pontusson.
This seminar seeks to identify the issues and analytical premises of comparative political economy as a subfield of political science. It explores the theoretical debates among political scientists doing political economy as well as the relationship of this literature to institutional economics and Marxist political economy. The readings deal primarily with advanced capitalist countries, and special emphasis is placed on Western Europe.

[658 Indonesia]

[659 Politics in Western Europe: Transitions to Democracy]
Fall. 4 credits.
S. Tarrow.
This course will deal with regularities and differences in the causes, processes, conflicts, and outcomes of some nineteenth- and twentieth-century cases of successful and unsuccessful transitions to democracy. Nineteenth-century cases include the gradual transitions to democracy of Britain and the rapid one of France (in 1871). Twentieth-century cases include Scandinavia early in the century, Italy in 1945; other southern European cases in the 1970s; and Poland and/or Hungary in the later 1980s. Students will use the comparative methods to analyze the causes, processes, conflicts, and outcomes of several transitions (or failed transitions) to democracy in Europe or elsewhere, applying the theoretical perspectives and methodologies examined in the course to their cases.

[660 Social Movements, Collective Action, and Reform]
Spring. 4 credits.
S. Tarrow.
This is a research seminar on the relationships among politics, organized social movements, and periods of mass mobilization like those that swept through Western Europe and the U.S. in the 1960s and in Eastern and Central Europe today. The seminar begins with a theoretical introduction to major approaches to social movements and collective action, concentrating on the factors that induce masses of people to adopt disruptive forms of collective action. It moves from there to a historical section focusing on cycles of protest in the recent and not-so-recent past. It continues with case materials that illustrate a series of theoretical problems in the study of movements and collective action—particularly that of the relations between protest and reform. Students will write term papers on particular cycles of protest and reform.

[662 The Political Theory of the American Founding]
Fall. 4 credits.
I. Kramnick.
This seminar will look at political thought in the American founding generation. It will investigate the ideology of the American revolution as well as the debates over the Constitution. Readings will include John Adams, Tom Paine, Thomas Jefferson, James Madison, The Federalist Papers, anti-Federalist Tracts, and Alexander Hamilton. Efforts will be made to place the political thought of the founding period in its broader European context as well as to trace its impact on nineteenth- and twentieth-century American political thought.

[663 American Political Thought]

[666 Modern Political Philosophy]

[669 Modern Social Theory I]
Fall. 4 credits.
S. Buck-Morss.
Readings vary, but topics are drawn from the traditions of Marx, Weber, Durkheim, the Frankfurt School, and Freud. They include political economy, the transformation to "modernity," ideology as the legitimation of power, and social institutions as social constraints. The methods of critical theory, structuralism, poststructuralism, and feminism will be considered.

[670 Modern Social Theory II]
Spring. 4 credits.
S. Buck-Morss.
Issues raised by neo-Marxism, critical theory, poststructuralism, and feminism.

[678 Classics in Political Thought: Nietzsche]
Fall. 4 credits.
W. J. Dannhauser.
An attempt to articulate Nietzsche's political philosophy by way of an examination of his two most political works, Beyond Good and Evil and On the Genealogy of Morals.

[679/479 Dependencia and the State]
Spring. 4 credits.
S. Jackson.
For course description, see International Relations.

[680 International Security]
Spring. 4 credits.
R. N. Lebow.
The superpowers have possessed nuclear weapons for almost forty years. Even so, there is no consensus about the political utility of these weapons. Some students of strategy argue that nuclear deterrence is the principal reason why World War III has not broken out. Others insist that the competition to acquire ever more sophisticated weapons and with it, the growing insecurity of both superpowers, is likely to be the primary cause of World War III. Opinion also differs about the diverse causes of strategic competition, the definition and meaning of the nuclear balance, the value of nuclear deterrence as a means of protecting third parties, and the relationship between different force structures, strategies, targeting doctrines, and deterrence. We will take up these and other questions in the course of a review of the history of the nuclear arms race and of the most important theoretical literature written about it.

[682 International Relations of the Middle East (also Near Eastern Studies 682)]
Spring. 4 credits.
The focus of this seminar will be the contemporary international relations of the Middle East, with special attention paid to patterns of relations among states of the Middle East, and to the international and domestic variables that could account for these patterns. In part I of the seminar, we will study a) the ways in which superpower competition and changing objectives affect the relations of states in the Middle East, b) the extent to which a change in the distribution of political, military, and economic power in the Middle East alter politics in the region; and, c) the impact of domestic variable on the foreign policies of states in the Middle East. In part II, we will examine three major international crises in the Middle East: the Arab-Israeli conflict; the Iran-Iraq conflict; and the crisis in Lebanon.

[683 Nuclear Arms Control—Theory and Practice]

[684 Politics of the Arms Race]
685 International Political Economy
Fall. 4 credits.
P. Katzenstein.
An exploration into a range of contemporary theories and research topics in the field of international political economy. The seminar will cover different theoretical perspectives and a number of substantive problems.

[686 International Strategy
4 credits. Not offered 1990–91.]

Independent Study
This course is NOT open to undergraduates. Undergraduates wishing to conduct supervised study should register for Government 499.

799 Independent Study
Fall or spring. 4 credits.
Staff.
Government 799 is a course of individualized readings and research for graduate students. Topics, readings, and writing requirements will be designed through consultation between the student and the instructor. Graduate students in government who are looking to use this as an option to fulfill their course requirements should check with their chair to be certain that the program of study is acceptable for this purpose. Applications must be completed and signed by the instructor and by the chair members of their special committees. They are available from, and must be returned to, the graduate secretary in 125 McGraw Hall.

GREEK
See Department of Classics.

HEBREW
See Department of Near Eastern Studies.

HINDI-URDU
See Modern Languages and Linguistics.

HISTORY
The popularity of history among Cornell students is due to its usefulness as preparation for graduate, professional, or law school and for any career that requires critical thinking and good writing; the reputation of the faculty for scholarship, teaching, and advising; and most of all, the intrinsic interest of the discipline. A wide variety of introductory and advanced courses are offered. The department is particularly strong in ancient, medieval, and modern European history; in American, Latin American, Chinese, and Southeast Asian history; and in the history of science.

The Major
To complete the history major, a student must fulfill the requirements listed below:
1) Complete the prerequisite requirement by taking either Introduction to Western Civilization (History 151-152) or Introduction to Asian Civilizations (History 190-191) or, alternatively, three courses in European history—one in ancient history; one in medieval, Renaissance, or early modern history; and one in modern history.
2) Take history department courses totaling 36 credits (which may include the prerequisite courses) and complete all these courses with a grade of C or better. Of the 36 credits, a minimum of 20 must be taken in courses numbered 250 and above.
3) Take a minimum of 8 credits in each of two of the following fields: American, European, Asian, or Latin American history or history of science. Alternatively, a student may elect to take a total of 16 credits in one of these fields. Credits taken to fulfill the prerequisite requirement (see item 1, above) do not count toward this requirement.
4) Take at least one course at the advanced (400 or higher) level.
5) Take two courses above the elementary level offered by other departments that relate to the student's area of special historical interest. Prospective majors may want to discuss their projected program with the director of undergraduate studies before formally enrolling with the department.

Honors.
History majors with an overall B+ average in all their history courses are eligible to enroll in History 400, Honors Proseminar, which is normally taken in the junior year or, at the latest, in the fall of the senior year. (Honors candidates are strongly encouraged to take an additional 400-level seminar during their junior year.) Successful completion of the Honors Proseminar is required for graduation with honors in history. A senior honors thesis is also required. Before the beginning of the candidate's senior year, he or she presents in conversation or in writing a thesis proposal to an appropriate member of the faculty of history. The faculty member who approves the proposal is usually the chair of the honors committee and the student's supervisor. Two copies will be due during the third or fourth week of April. In May each honors candidate will be given an oral examination administered by the supervisor and the First Reader (who is ordinarily the same person as the co-examiner who served at the end of the senior-year seminar). The examination will focus on the specific issues of the essay as well as the broad field of history in which the student has concentrated his or her research (e.g., Periclean Athens, seventeenth-century science, nineteenth-century America). To qualify for a Bachelor of Arts degree with honors in history, a student must (1) take a minimum of 8 credits in three of these fields. Credits taken to fulfill the prerequisite requirement (see item 1, above) do not count toward this requirement.

1) Take at least one course at the advanced (400 or higher) level.
2) Take two courses above the elementary level offered by other departments that relate to the student's area of special historical interest. Prospective majors may want to discuss their projected program with the director of undergraduate studies before formally enrolling with the department.

Honors.
History majors with an overall B+ average in all their history courses are eligible to enroll in History 400, Honors Proseminar, which is normally taken in the junior year or, at the latest, in the fall of the senior year. (Honors candidates are strongly encouraged to take an additional 400-level seminar during their junior year.) Successful completion of the Honors Proseminar is required for graduation with honors in history. A senior honors thesis is also required. Before the beginning of the candidate's senior year, he or she presents in conversation or in writing a thesis proposal to an appropriate member of the faculty of history. The faculty member who approves the proposal is usually the chair of the honors committee and the student's supervisor. Two copies will be due during the third or fourth week of April. In May each honors candidate will be given an oral examination administered by the supervisor and the First Reader (who is ordinarily the same person as the co-examiner who served at the end of the senior-year seminar). The examination will focus on the specific issues of the essay as well as the broad field of history in which the student has concentrated his or her research (e.g., Periclean Athens, seventeenth-century science, nineteenth-century America). To qualify for a Bachelor of Arts degree with honors in history, a student must (1) sustain at least a B+ cumulative average in all history courses and (2) earn at least a cum laude grade on the honors essay and on the oral examination.

Students considering the honors program should consult the department during the second term of their sophomore year or early in their junior year.

Course Offerings
Freshman writing seminars
Comparative history
History of science
American history
Latin American history
Asian history
Ancient European history
Medieval, Renaissance, and early modern European history
Modern European history
Honors and research courses

Course Numbering System
100-level courses are very general introductory courses (like 151–152, 190–191) and freshman writing seminars. 200–249-level courses are similar to freshman writing seminars, except that there is greater emphasis on subject matter and less on writing.
Freshman Writing Seminars

[104 Communes and Utopias: Alternative Life-Styles in American History]
Not offered 1990-91.
G. C. Altschuler.
This course examines individual and group critiques of American society and experiments with alternative lifestyles. Topics include the Puritans, the Oneida community, the Mormons, Walden, the Ferrer Colony and Modern school, Vedanta monasteries, Walden II, and contemporary communes.

[106 Democracy and Education: History of Learning in America]
Fall. 3 credits. Not offered 1990-91.
M W F 11:15. G. C. Altschuler.
A survey of the history of educational thought and institutions from Puritan times to the present, with emphasis on the nineteenth and twentieth centuries. Topics include the family and church as educational institutions, the democratization of education, the emergence of the university, educational testing, and vocational education. John Dewey and progressive education, "alternate education," student radicalism.

[107 The Family In American History]
Not offered 1990-91.
M. B. Norton.
An examination of the American family in the context of changing times from the seventeenth century to the present day. Readings include both primary and secondary sources. Students research the past experience of their own families as part of the course.

[108 Civil Liberties in the United States]
Spring. 3 credits. Prerequisite: permission of instructor. Not offered 1990-91.
T R 2:30-3:45. R. Polenberg.
Freedom of speech and dissent from Jefferson's time to the present, with emphasis on the twentieth century. Topics include Jefferson and Madison, Lincoln and martial law, Holmes, Brandeis, and the Supreme Court; the relocation of Japanese Americans; the cold war and McCarthyism; religious cults and "brainwashing"; censorship and obscenity; John Milton, John Stuart Mill, and the critique of libertarianism.

[112 The North Atlantic Community and the Wider World]
Not offered 1990-91.
T. H. Holloway.
The relationship between the attitudes and values of Europeans and the emergence of the global economic and political network since the Age of Discovery. The voyages of exploration, commercial expansion, and the consolidation and dissolution of modern empires are considered. Texts contemporaneous with these periods will be read and discussed to explore ways members of the North Atlantic community have explained and justified their emerging world influence in religious, racial, technological, and cultural terms.

[120 Local History: The Smallest History]
Fall or spring.
In this seminar students will investigate the history of Cornell University. The course will focus on Cornell's place in the history of American education, on Ithaca as the site of a major university, and on the development of the Cornell idea. Highlighted will be the founders, the students, teachers, courses, and activities at Cornell. Readings will be drawn from the documentary history of the University and will also include a host of Cornell authors: Carl Becker, Morris Bishop, Charlotte Conable, K.C. Parsons, D.B. White, and others. Paper assignments will include speculative essays about education, and universities, and research topics requiring the use of diaries, manuscripts, and other archival materials.

[176 Britain and the Second World War]
3 credits. Prerequisite: permission of instructor. Not offered 1990-91.
The aim is to uncover the true facts of Britain's conduct and situation from 1936 to 1946. Emphasis is on the fighting on land, sea, and in the air, but preparedness, economic warfare, diplomacy, and imperial power are considered. Topics include the Battle of Britain, the Battle of the Atlantic, and strategic bombing.

[192 Japan and the West]
Fall. 3 credits. Prerequisite: permission of instructor. Not offered 1990-91.
J. V. Koschnmann.

[205 The Growth of Political Democracy in the United States]
Fall. 3 credits. Limited to 14 students.
Prerequisite: permission of instructor. Not offered 1990-91.
An examination of the democratization of American political life since the American Revolution. Such topics as the expansion of white, black, and women's suffrage and the changing concepts of participation and leadership in American politics will be explored. A number of books and documents covering the topic will be read and discussed and several short papers written.

[210 Freshman Seminar: History of North American Indians]
Spring. 3 credits. Limited to 18 students.
Not offered 1990-91.
D. H. Usner.
This seminar examines major themes in Native American history from colonial times to the present. Discussions will consider the cultural histories of particular tribes as well as the comparative elements of Indian relations with non-Indians.

Comparative History

274 Foodways: A Social History of Food and Eating
Spring. 4 credits.
An interdisciplinary examination of the validity of the adage "man is what he eats." Among the topics: food and nutrition, food and social structure, the politics of food control, food and modernization, taste making, and food in religion and literature. Cases will be drawn widely across space and time, from Pharaoh's Egypt to the 1980s.

280 Early Warfare, East and West
Spring. 4 credits. Not offered 1990-91.
M W F 1:25. C. A. Peterson.
A study of the principal modes of warfare found both in the East and the West from ancient times up to the eighteenth century. Tactical evolution and the impact of innovations are stressed, but attention is also paid to the general social background and the role of nonmilitary factors.

293 Images of Humanity in Medieval China (also Society for the Humanities 428)
Fall. 4 credits. Not offered 1990-91.
For description see History of Science.

405 Population and History
R 2:30-4:30. S. L. Kaplan.
Seminar format. An examination of the impact of the methodology and findings of demography on historical scholarship and the implications of historical research for the study of population. Focus will be on the relation of population to family and social structure, economic growth, political stability, collective mentality, etc. Readings in European and American history from the Black Plague through the Industrial Revolution.

407 Death in Past Time
S. L. Kaplan.
Every culture has felt an urgent need to deal with death to disarm, rationalize, and integrate it by giving it sense. How a culture perceives and propitiates death reveals a great deal about its social and political structure, religious and artistic values, and economic and scientific goals. The nature of death is considered using a wide variety of examples drawn from throughout history.
[409 Seminar on Work in Europe and America
Fall. 4 credits. Not offered 1990-91.
W 2:30-4:30. S. L. Kaplan.
A comparative study of the meaning of work in different societies from premodern times to the present. Emphasis on the "representations" of work of the actors themselves who worked, as well as of those who for various critical reasons did not work. The seminar will examine not only ideology but also the organization, practice, and physical place of work. It will explore theory as well as "cases," and draw on anthropological and sociological as well as historical materials.]

413 The History and Economics of Whaling in North America (also Agricultural Economics 454 and Society for the Humanities 413)
Spring. 4 credits.
To be arranged. D. Usner, J. Conrad.
The whaling industry of nineteenth-century America is a rich source of documents and data describing the people, resources, and technology that contributed to the development of the United States. Social relations, cross-cultural influences, economic motivations, prices, markets, resource dynamics, and technical change will be examined during the rise and fall of this unique American industry.

432 The City in History
Spring. 4 credits. Limited to 12 students.
Prerequisite: permission of instructor.
TR 2:30-4:30. S. Blumin.
Readings and discussions of the rise, role, and character of cities in medieval and early-modern Europe, and in modern Europe and America. Further reading on a topic of the student's own choice.

451 Lord and Peasant in Europe: A Seminar in Social History
4 credits. Prerequisite: permission of instructor. Not offered 1990-91.
S. L. Kaplan.

[454 The Herodotean Moment: The Uses and Abuses of "Western Civilization" (also Government 454)
Fall. 4 credits. Limited to 20 students.
Prerequisite: permission of instructor. Not offered 1990-91.
The basic premise of the seminar is the concept of "Western civilization" as a problematic one in need of critical analysis. The course will examine the historical evolution of the concept as seen in selected moments of actual and perceptual encounter with other civilizations. It will also inquire into the political uses and abuses of the concept, as well as its discursive, psychological, and anthropological dimensions.

471 Black Emancipation in Comparative Perspective (also African Studies 471; Society for the Humanities 426)
Fall. 4 credits. Prerequisite: one course in American, Afro-American, or African history.
This course will explore the black emancipation experiences in comparative perspective. Primaries will be in Africa and the United States; secondary focus will be the Caribbean and Latin America. The African component will investigate social consequences of emancipation, the transformations accompanying that process and the experiences of former slaves. Perspectives on the Americans will include the complexities of emancipation, its socio-economic results and the legacy of race relations.

[476 Documenting the Depression: Film, Literature, and Memory
Not offered 1990-91.
For description see Modern European History.]

[621 Social Memory and the Transformation of Tradition in American Culture
For description see American History. Not offered 1990-91.]

[708 Seminar in the Research on the History of Food
Not offered 1990-91.
S. L. Kaplan.]

History of Science

233 Agriculture, Science, and Society: From Squanto to Biotechnology
Fall. 4 credits.
This course will survey the major themes in the development of agriculture and agribusiness in the United States in the nineteenth and twentieth centuries. These include particular individuals (such as Liberty Hyde Bailey, Luther Burbank, G. W. Carver, Henry A. Wallace, and Norman Borlaug), the rise of government support and institutions (including U.S.D.A. and Cornell), noteworthy events (the Dust Bowl, World War II, and the environmental movement), and the achievements of the recent Green and "Gene" Revolutions.

281-282 Science in Western Civilization
281, fall; 282, spring. 4 credits each term.
History 281 is not a prerequisite to 282.
TR 11:40-12:55 plus disc to be arranged.
P. R. Dear.
These courses aim to make comprehensible both to science majors and to students of the humanities the historical structure and development of modern science and to show science as a cultural phenomenon. Changing perceptions of nature and human knowledge from Greek Antiquity to the twentieth century form the framework for current Western views of the world, while the roots of the present-day dominance of "science" as a symbol of progress and modernity lie in an alliance between knowledge of nature and power over nature that took shape in the nineteenth century after a long period of emergence. 281 runs chronologically up to the death of Isaac Newton and focuses on the cultural traditions of Christian Europe and its selective appropriation of a Greek heritage; 282 covers the eighteenth, nineteenth, and early twentieth centuries.

287 Evolution (also Biological Sciences 207)
Fall. 3 credits.
TR 10:10-11; disc to be arranged.
P. R. Dear.
Evolution is the most central concept in biology. This course examines evolution in historical and cultural context. Aims of the course include understanding of the major issues in the history and current status of evolutionary biology, and exploration of the implications of evolution for culture. Issues range from controversies over mechanisms of evolution in natural populations to the conflict between creationists and evolutionists.

[288 History of Biology (also Biological Sciences 202 and Biology and Society 288)
Spring. 3 credits. Prerequisite: one year of introductory biology.
An examination of the history of biology, emphasizing the interaction of biology and culture. Original writings of biologists constitute the bulk of reading assignments. This course covers the period from Classical antiquity to the present, but primary emphasis is on twentieth-century biology.]

[380 Social History of Western Technology
Fall. 4 credits. Not offered 1990-91.
T R 10:10-11:25, disc to be arranged.
J. H. Weiss.
Studies in the interaction between technological changes and social changes in Western Europe and America since the eighteenth century. Readings and lectures will deal both with instances of social transformation that accompanied technological changes and with the role of technology in social thought and cultural expression. Special attention to three periods: Britain during the Industrial Revolutions, America in the nineteenth century, and America during the Vietnam War.]

433 Comparative History of Science
Spring. 4 credits.
A survey of the major scientific institutions in the United States and in foreign nations, including developing countries. The course covers the period 1660 to the present and gives some attention to who in each country becomes a scientist, who rises to the top, and who emigrates. Weekly readings and a research paper.

444 Historical Issues of Gender and Science (also Women's Studies 444)
Spring. 4 credits. Open to sophomores.
One-semester survey of women's role in science and engineering from antiquity to the 1980s with special emphasis on the United States in the twentieth century. Readings will include biographies and autobiographies of prominent women scientists, educational writings and other primary sources, and recent historical and sociological studies. By the end of the semester, we shall have attained a broad view of the problems that have faced women entering science and those that still remain.

[447-448 Seminar in the History of Biology (also Biology and Society 401-402)
]

482 The Origins of Modern Science
Spring. 4 credits.
T 2:30-4:30. P. R. Dear.
A seminar focusing on the changes in the European conception of nature and of human knowledge that created modern science. A new way of perceiving the world, and a new ideology justifying its experimental manipulation, transformed the finite, earth-centered, organic universe of 1500 into the infinite, mechanical universe of Isaac Newton. The course traces these developments above all through the study of primary materials, using the writings of Copernicus, Galileo, Descartes, Newton, and other lesser-known figures to
discover how technical and philosophical innovations emerged from the changing worldview of early modem Europe.

487 Science, Technology, and Strategy in the Post-Napoleonic World
Spring. 4 credits.
T 2:30-4:30. L. P. Williams.
An examination of the effects of modern science and modern technology on strategy in modern war. Students will be expected to do one major research paper examining, in both historical and technological detail, some aspect of the strategic effects of science and technology.

488 The Golden Age of French Sciences: 1789-1830
Fall. 4 credits.
T 2:30-4:30. L. P. Williams.
In 1789, Antoine Laurent Lavoisier published his great *Elementary Treatise on Chemistry*, which created modern chemistry. In 1827, Pierre Simon de Laplace died. In between, such great French scientists as Lamarck, Cuvier, Ampere, Poisson, Biot, Bichat, Cabanis, and Pinel did their most important work. This seminar will deal with their original texts.

680 Seminar in Historiographical Approaches to Science
Fall. 4 credits.
T 2:30-4:30. P. R. Dear.
Examines philosophical, sociological, and methodological dimensions of recent historiography of science.

[681 Seminar in the History of Nineteenth-Century Physical Sciences]
Fall. 4 credits. Not offered 1990-91.

687 Seminar in the History of Agricultural Sciences
Fall. 4 credits. Permission of instructor required.
Hours to be arranged. M. Rossiter.
Weekly readings and a research paper.

[781 Advanced Seminar in the History of Nineteenth-Century Physical Science]
Fall and spring. 4 credits each term. Prerequisite: permission of instructor. Not offered 1990-91.
L. P. Williams.

American History
101-102 Introduction to American History
101, fall; 102, spring. Summer. 3 credits each term. 101 is not a prerequisite to 102.
M W F 11:15. G. C. Atchucks.
A survey of U. S. history designed to introduce students to major themes and interpretations. History 101 traces the origins and evolution of the nation through 1865. Topics include Puritanism, the American Revolution, the Constitution, Jacksonian democracy, and the Civil War. History 102 covers the period from the Civil War to the present. Topics include the Reconstruction, the Gilded Age, the world wars, the 1960s, Vietnam, and Watergate.

208 The Era of Franklin D. Roosevelt
Fall. 4 credits. Primarily for sophomores. Prerequisite: permission of instructor.
The impact of the Great Depression and World War II on American politics, law, and culture.

[209 Political History of Indians in the United States]
Fall. 4 credits. Not offered 1990-91.
An investigation of political organization and change among Native American societies. Discussions and assignments examine forms of tribal government, diplomacy, and warfare, as well as political relations with European colonies and the United States. Specific topics include pan-Indian Confederacies, Indian policy, struggles over sovereignty, and Indian strategies of autonomy and resistance.

[210 The Supreme Court and Civil Liberties]
Fall. 4 credits. Primarily for sophomores. Enrollment limited to 15 students. Prerequisite: permission of instructor. Not offered 1990-91.
The development of free speech doctrine from the era of Holmes and Brandeis to the present, with special attention to the controversies over such issues as dissent, libel, and censorship.

[214 Seminar on American Foreign Policy]
Fall. 4 credits. Open to freshmen and sophomores. Enrollment limited to 14 students; preference will be given to non-history majors. Prerequisite: permission of instructor. Not offered 1990-91.
T 2:30-4:30. W. LaFeber.

227 Historical Perspectives on Modern American Sex Roles (also Women's Studies 227)
Spring. 4 credits. Limited to 20 students. Intended primarily for sophomores.
A reading and discussion course. The class will begin by examining sex roles in the United States in the 1980s, looking at a variety of sources such as popular magazines and contemporary commentaries. We will then move backwards in time in an attempt to uncover the roots of current attitudes. The students will help determine which topics the class will investigate in detail.

255 The American Dream
Fall. 4 credits.
The culture of the United States is marked by different from that of the rest of the English-speaking world. What makes Americans distinct? Lacking from the beginning the British and French political, economic and cultural traditions, Americans have been primarily a set of promises: the American Dream. The emphasis of the course will be on the ironic contrast between this vision at its most grandiose and present American realities.

[256 African-American History, 1945-85]
Spring. 4 credits. Open to freshmen with permission. Not offered 1990-91.
This course focuses on the history, culture, and literature of African-American people during the post-World War II, civil rights, and revolutionary nationalist period. It is an introductory course that examines key issues, themes, and events in a context of contemporary relevance. Emphasis will be on the historical evolution of the modern Black community, Black institutions, and the impact of modern economic and political institutions on Black life and thought. Topics include the impact of the Cold War on Black leaders and the Black press, integration and Black nationalism, the relevance of socialism and internationalism, the status of Black women, the African-American literary scene, the emergence of Black liberation theology, and the effects of contemporary Black politicization on the total society.

[273 Women in American Society, Past and Present]
Spring. 4 credits. Not offered 1990-91.
A survey of women's experiences in America from the seventeenth century to the present. Among the topics to be discussed are women's familial roles, the class nature of household work, the women's rights movement, employment of women outside the home, and racial and ethnic differences in women's experiences, and contemporary feminism.

[275 Crime and Punishment: From the Puritans to Mickey Spillane]
Spring. 4 credits. Not offered 1990-91.
A cultural investigation of the American historical imagination that deals with the transgressor in novels, short stories, plays, and movies. Readings on murder, guilt, and retribution on land and sea, from the frontier to the urban jungle. Emphasis on the intellectual and social context of moral values.

276-277 American Indian History
276, fall; 277, spring. 4 credits each term.
A survey of North American Indians from the beginning of European contact to the present. Cultural, political, and economic changes experienced by particular societies will be covered. Emphasis will be given to general themes of Indian-white relations, comparative tribal histories, and the role of Native Americans in the overall history of the United States.

303 African-American Women in Slavery and Freedom
Spring. 4 credits.
Historical exploration of African-American women from a sociopolitical perspective. Topics include women in Africa, slavery and freedom, sexuality, labor, the family, feminism, and racism.

[307 The Jewish Immigrant Experience]
Fall. 4 credits. Enrollment limited. Prerequisite: permission of instructor. Not offered 1990-91.
R 2-4. F. Somkin.
In the half century after 1880 several million Eastern European Jews entered the United States with profound cultural consequences for themselves, their descendants, and the dominant Anglo-Saxon capitalist society they encountered here. Through a study of selected fiction and nonfiction materials this course examines what America made of these immigrants and what they made of it.

311-312 The Structure of American Political History
311, fall; 312, spring. 4 credits each term.
311 examines the course of American politics from 1787 to the Civil War, focusing on the nature of decision making, popular and legislative voting behavior, and the role of interest groups, political parties, and political elites in shaping our political history. 312 examines the course of American politics from 1865 to the present.
[313 U.S. Foreign Relations, 1780-1912
Fall. 4 credits. Open to freshmen with permission of instructor. Not offered 1990-91.
T R S 11:15 plus optional sec.
W. LaFeber.
Examines policymakers and their policies from Benjamin Franklin to Woodrow Wilson. Emphasis is placed on domestic events that shaped foreign policy.]

[314 History of American Foreign Policy, 1912 to the Present
Fall. 4 credits. Open to freshmen with permission of instructor.
T R S 11:15 plus disc.
W. LaFeber.
Subjects include major political and economic events and the assumptions of the major policymakers (Wilson through Reagan). Important themes include the American response to a revolutionary world since 1912, the increasingly dominant role of the president in the making of U.S. foreign policy, and the changing American position in the international economy. A special section, numbered 301-13, offers an additional 2 credits. Open only to juniors and seniors, it is limited to 15 students. Students will meet weekly and provide an opportunity to write supervised papers on U.S. foreign relations, 1912 to the present. Permission is required.

[318 American Constitutional Development
Spring. 4 credits. Open to freshmen with permission of instructor.
M W 10:10; disc F 10:10 or 12:20.
M. B. Norton.
A study of the major themes of the constitutional history of the United States. Among the topics to be considered are the drafting of the Constitution, the Marshall and Taney courts, the constitutional crisis caused by slavery and emancipation, the rise of substantive due process, the expansion of civil rights and liberties for women and men in the twentieth century, and the contemporary court.

[319 The Frontier in American Thought and Culture
D. H. Usner.
As a kind of place and a cluster of symbols, the West has deeply influenced ideology and intellectual life in the United States. Using fiction, art, popular culture, and social sciences as primary texts, this course examines how concepts about race and class, society and environment, national destiny and development were fused into various forms of a frontier mythology.

[321 The Origins of American Civilization
Spring. 4 credits.
M W F 1:25-2:15.
M. Kammen.
The colonial genesis of American culture and society, with emphasis on the emergence of distinctive institutions, attitudes, and social patterns. Topics include race relations, religion, politics, movements of protest, and cultural developments. Open to qualified freshmen.

[325 Age of the American Revolution, 1763-1815
Fall. 4 credits. Open to freshmen with permission of instructor.
T R 10:10-11:25.
M. B. Norton.
An examination of the process by which the thirteen English colonies became an independent and united nation, with emphasis on political thought and practice, social and economic change, and cultural development. Attention will be paid to the impact of the American Revolution on women, Blacks, and Indians as well as on white males.

[327-328 American Frontier History
327, fall; 328, spring. 4 credits each term. Not offered 1990-91.
D. H. Usner.
Survey of exploration, settlement, and expansion across North America since the sixteenth century. The first term covers international rivalry over territory, frontier trade systems, Indian-colonial relations, and the economic administration of U. S. territories. Topics in the second term include the evolution of land and Indian policies, life in frontier communities, and political movements and economic change in the American West.

[330 The United States in the Middle Period, 1815-1850
Fall. 4 credits. Not offered 1990-91; next offered 1991-92.
M W F 10:10.
J. H. Silbey.
An analysis of American society from the end of the second war with England with the crisis of 1850, stressing the developing trends of nationalism and sectionalism, the rise and results of Jacksonian democracy, and the internal tensions produced by physical growth and slavery.

[331 The American Civil War and Reconstruction
Spring. 4 credits. Not offered 1990-91.
M W F 10:10.
J. H. Silbey.
An analysis of the factors leading up to the breakup of the Union, the impact of the war in North and South, and the problems of restoration and reconstruction of the seceded states.

[332-334 The Urbanization of American Society
332, fall; 333, spring; 4 credits each term. 332 is not prerequisite to 333.
M W F 1:15; disc F 10:10 or 11:15.
S. Blumin.
America was born in the country and moved to the city. This course examines the profound effects on American society of the growth and multiplication of cities and of the massive transfer of population from rural to urban and suburban milieux. It is also a history of the city itself, from the small, preindustrial ports of the initial European settlements to the industrial metropolises and urban corridors of the present. Fall term, 1600-1860; spring term, 1860-present.

[333 U.S. Politics and Foreign Policy since 1945
Fall. 2 credits.
T or R 10:10-11:25.
G. McGovern.
An examination of the major issues, domestic political conditions, and historical forces that have shaped American foreign policy from the end of World War II until the present time. Special attention will be given to the cold war as a central factor in U.S. foreign relations.

[335 African-American History from Slavery to Freedom
Fall. 4 credits.
T R 11:40-12:55.
M. Washington.
Introductory course on African-Americans from 1619 to 1865. Emphasis will be on life in bondage, the free black communities and racism. Other topics include African cultural heritage, the slave trade, religion, the family, and the black freedom struggle.

Fall. 4 credits. Not offered 1990-91.
M W 11:15 plus disc to be arranged.
S. Blumin.
An examination of capitalism as a developing economic system, and as a force that shaped American society in the most crucial ways. Beginning in the pre-industrial, predominantly rural era of the American Revolution, we will trace the emergence and development of industrial and corporate institutions, and the changing social experiences of working, middle, and upper classes, and the evolving ethos of “free enterprise” in the competitive society of the nineteenth century.

[337 The Industrial Transformation of American Society, 1865-1900
Spring. 4 credits. Not offered 1990-91.
M. W 11:15 plus disc to be arranged.
S. Blumin.
A history of American society since the Civil War, with emphasis on the transforming effects of industrial development, urbanization, large-scale foreign immigration, and new technologies of transportation and communication, on the social lives of “anonymous Americans.”

[340 Recent American History, 1917 to 1945
Fall. 4 credits. Not offered 1990-91.
T R 12:20-1:10; disc to be arranged.
R. Polenberg.
Topics include civil liberties and dissent in World War I; individualism and conformity in the 1920s; radicalism and reform in the New Deal; class, race, and ethnicity; Franklin Roosevelt, World War II, the Holocaust; and the atomic age.

[341 Recent American History, 1945 to the Present
Spring. 4 credits.
T R 12:20-1:10; plus disc to be arranged.
R. Polenberg.
Topics include the Cold War and civil liberties; the Supreme Court and civil rights; Kennedy, Johnson, and social reform; the Vietnam War; the Carter and Reagan presidencies; and class, race, and ethnicity in modern America.

[344 American Ideas from the Puritans to Darwin
M W F 1:25.
F. Somkin.
[345 The Modernization of the American Mind
Fall. 4 credits.
M W F 12:20-1:10; disc to be arranged.
R. L. Moore.
American thought and culture from 1890 to the present. Emphasizes the intellectual impact of major political and economic events and the adaptation of social ideas and values to new conditions.

[346 Religion and the Cultural Life of Nineteenth-Century Americans
Spring. 4 credits.
T R 11:40-12:55.
R. L. Moore.
An examination of religion as a basic component of popular cultures. The emphasis is not on churches but on how religious attitudes reached beyond formal organizations to shape the ways in which various American ethnic and racial groups organized, understood, and enjoyed their lives.
411 Undergraduate Seminar in American Political History
Fall. 4 credits. Prerequisite: permission of instructor.
Instructor.
Fall. 4 credits. Not offered 1990-91.
R 2:30-4:15. W. LaFeber.
Topic to be announced.

414 Motivation of American Foreign Policy
Fall. 4 credits. Prerequisite: Permission of instructor.
R 2:30-4:15. W. LaFeber.
The course will analyze diplomatic relations between the United States and Russia between 1780 and 1914. Special attention will be given to the causes of the friendship of the early decades and why it changed to animosity. The domestic origins of the foreign policies of both nations will be stressed. Extensive individual research projects will be assigned.

415 The United States and Russia, 1780 to 1914
Fall. 4 credits. Enrollment limited to 16 students. Primarily for juniors and seniors. Prerequisite: permission of instructor. Not offered 1990-91.
R 2:30-4:15. W. LaFeber.

416 Six Americans
Spring. 4 credits. Not offered 1990-91.
R 2–4. F. Somkin.
A study of the lives and ideas of John Adams, Joseph Smith, Mark Twain, Jane Addams, Louis Sullivan, and Oliver Wendell Holmes, Jr., emphasizing the relationship of personality to intellect within the context of dominant American ideals.

418 Undergraduate Seminar in the History of the American South
Spring. 4 credits. Prerequisite: permission of instructor.

419 Seminar in American Social History
Fall. 4 credits. Prerequisite: permission of instructor. Not offered 1990-91.
R 2:30-4:30. S. Blumin.

421 American Collective Memory in Comparative Perspective
Spring. 4 credits. Prerequisite: permission of instructor.
T 2:30-4:30. M. Kammen.
Every society has traditions and myths concerning its evolution and identity. The focus of this seminar will be to examine the role of tradition and memory in the United States—in comparative perspective. The so-called "problem of American exceptionalism" will be explored in depth.

429 Undergraduate Seminar in Reconstruction and the New South
Fall. 4 credits. Prerequisite: permission of instructor.

430 Undergraduate Seminar in Law and Authority in American Life
Fall. 4 credits. Limited to seniors (any field) with 3.0 GPA or higher. Prerequisite: permission of instructor.
T 2:00-4:30. F. Somkin.
Ours is a highly legalistic society, probably having more laws, rulings, hearings, re-hearings, trials, re-trials, appeals, decisions, and lawyers than any civilization in history. At the same time we are accustomed to a level of social violence known elsewhere only in the most murderous lawless environments. Obviously, a suffocating legalization and lives that are nasty, brutish, and short may coexist in an atmosphere of self-congratulation about the blessings of liberty. This course examines the nature of our legal system and its characteristic style of reasoning, with their underlying assumptions, myths, and illusions.

439 Undergraduate Seminar in Reconstruction and the New South
Fall. 4 credits. Prerequisite: permission of instructor.

440 Undergraduate Seminar in American History
Fall. 4 credits. Prerequisite: permission of instructor.
T R 2:30-4:30. R. Polenberg.
Topic: Benjamin N. Cardozo and the Supreme Court.

442 Popular Culture in the United States
Fall. 4 credits. Prerequisite: one year of course work in American history.
A reading and research seminar concerned with popular culture in nineteenth-century America (publications, performances, and audiences).

471 Black Emancipation in Comparative Perspective (Marcham Seminar: also Africana Studies 471; Soc Hum 426)
For description see Comparative History.

610 Afro-American Historiography
Spring. 4 credits.
Reading and discussion course focusing on the way historians write and interpret the black experience in America. Students will be concerned with individual historians, various schools of thought, and historical approaches.

613-614 Seminar on American Diplomatic History
Fall. 613; fall, 614; spring. 4 credits each term. Prerequisite: permission of instructor. Not offered 1990-91.
R 2:30-4:15. W. LaFeber.

615-616 Seminar in American Cultural and Intellectual History
Fall. 615; fall, 616; spring. 4 credits.

617-618 Seminar in Recent American Cultural History
Fall. 617; fall, 618; spring. 4 credits each term. Not offered 1990-91.
A reading and research seminar concerned with popular culture in nineteenth-century America (publications, performances, and audiences).

619 Seminar in American Social History
Fall. 4 credits. Not offered 1990-91.
R 2:30-4:30. S. Blumin.

620 Seminar in American History
Fall. 4 credits.
R 3:30-6. M. Kammen.

624 Graduate Seminar in American Indian History
Fall. 4 credits. Not offered 1990-91. M. Kammen.

625 Graduate Seminar in the History of American Women
Fall. 4 credits. Not offered 1990-91.
A reading and research seminar intended primarily for graduate students. Major works in American women's history will be carefully scrutinized, and each student will prepare a lengthy research paper.

627 Graduate Seminar in Early American History
Fall. 4 credits.

633 Seminar in Nineteenth-Century American History
Fall. 4 credits. Prerequisite: permission of instructor. Not offered 1990-91.

634 Seminar in Nineteenth-Century American History

640 Graduate Seminar in Recent American History
Spring. 4 credits. Prerequisite: permission of instructor.
Hours to be arranged. R. Polenberg.

710 Colloquium in American History
Spring. 4 credits. Required of all first-year American history graduate students.
M 2:30-4:30. J. Silbey.
Examination of the major themes, epochs, and interpretations of American history.
Latin American History

295 Colonial Latin America
Fall. 4 credits. M W F 10:10. T. H. Holloway.
Survey of Latin America from the rise of pre-Columbian civilizations through the European conquest, the establishment of the Spanish and Portuguese colonial societies, imperial rivalries in the New World, the background of the independence movements, and the achievement of political independence.

296 Latin America in the Modern Age
Survey of the Latin American nations from independence to the present. Major themes include the persistence of neocolonial economic and social institutions, the development of nationalist and populist politics, revolutionary movements of the twentieth century, and United States–Latin American relations.

347 Agrarian Societies in Latin American History
The development of rural patterns of wealth, status, and power, focusing on the role of country people in the larger society. Topics include disruption of the conquest, evolution from encomienda to hacienda, rise of plantation agriculture and export enclaves, decline of Indian communities, peasant protest, and land reform and development programs of the recent past.

348 Contemporary Brazil
Fall. 4 credits. T R 10:10–11:25. T. H. Holloway.
With some historical background, the course focuses on the twentieth century. Topics include the export-led growth model, contradictions leading to military rule 1964–1985, transition to competitive politics, debt, ecology, regional and social disparities. Some comparisons are made to other Latin American countries.

449 Undergraduate Seminar in Latin American History
Spring. 4 credits. Prerequisite: permission of instructor. M 2:30–4:25. T. H. Holloway.
Topic: History of Central America.

[649 Seminar in Latin American History
Not offered 1990–91. T. H. Holloway.]

Asian History

190 Introduction to Asian Civilizations
An introduction to the distinctive cultures of China, India, Japan, and Southeast Asia that features an intensive examination of selected topics and periods of particular significance in the history of each.

191 Introduction to Asian Civilizations in the Modern Period
Fall. 4 credits. W F 11:15; disc M 11:15, 1:25, or 2:30. S. Cochrane, D. K. Wyatt.
The history of Asian civilizations in modern times is introduced, focusing on the relationship between key figures and societies. English translations of autobiographies, novels, short stories, diaries, and other documents written by Asians are used to assess the perspectives, social priorities, and historical significance of intellectual and political leaders.

240 Social and Political Foundations of Modern South Asia
A survey of the social and political history of South Asia in the nineteenth and twentieth centuries. The course will concentrate on the social and political foundations of the three major South Asian countries—India, Pakistan, and Bangladesh—during the colonial period with particular focus on the role of the masses in the anticolonial struggle. It will emphasize the nature of response and reaction to colonial rule by the different classes and communities in the subcontinent and will explore how they interacted with each other and joined hands in the common struggle for freedom. It will conclude with some reflections on the recent social and political developments in the three countries.

243 China and the West before Imperialism
Fall. 3 credits. Open to freshmen and sophomores. Prerequisite: permission of instructor. Limited to 15 students. T 2:30–4:20. C. A. Peterson.
A survey of the principal developments in the history of China from the earliest times to the eighteenth century that also undertakes a topical introduction to Chinese culture and civilization, in part by the use of visual materials.

294 History of China in Modern Times
A survey that concentrates on the rise of the last imperial dynasty in the seventeenth and eighteenth centuries, the upheavals resulting from domestic rebellions and foreign imperialism in the nineteenth century, and the twentieth-century efforts to achieve social mobilization and political unity.

297 Premodern Japan: Historical Perspectives
Fall. 4 credits. T R 1:25 plus disc, R 2:30. J. R. Piggott.
This course explores the premodern civilization of Japan from a variety of historical perspectives. A text, readings from primary sources and literature, several historical essays, and a catalog of art treasures will be assigned. Students will gain familiarity with the high points of premodern Japanese history and consider a number of comparative questions about Japan's premodern evolution compared with that of Europe and China.

298 State, Society, and Culture in Modern Japan
A survey of Japan from the middle-eighteenth century to the present, with special attention to changing configurations of institutional structure, knowledge, agency, and conceptions of history. Japanese works in translation will be read and discussed in addition to secondary sources.

[342 Hiroshima and Nagasaki
The biological, psychological, and social impact and lasting significance of the atomic bombings of Japan during World War II are reconsidered through historical and scientific studies, first-person memoirs, literature, and film. Evaluation of recent historical research on the American decision to use the bombs. Consideration of the relevance of Hiroshima and Nagasaki to the present American defense strategy and the danger of nuclear war.]

[360 Early Warfare, East and West
Spring. 4 credits. Not offered 1990–91. For description see Comparative History.]

393 Images of Humanity in Medieval China (also Society for the Humanities 425)
For description see Comparative History.

395 Southeast Asia to the Eighteenth Century
A survey of the earlier history of Southeast Asia, concentrating particularly on regional movements of economic, social, cultural, and political change and using, to the extent possible, readings in primary sources.

396 Southeast Asian History from the Eighteenth Century
A survey of the modern history of Southeast Asia with special attention to the formation of modern states (colonial as well as national), changing economic and social structure, and consciousness. Primary texts will be read in translation whenever feasible.

398 The Tale of Genji in Historical Perspective: Japan in the Year 1000
The Tale of Genji is a classic of premodern Japanese literature and is often cited as the earliest novel in world literary history. It was written by a female courtier, Murasaki Shikibu, around the year 1000 A.D. The Tale gives readers a broad window into Japan's courtly society at a time when many of the component elements of Japan's classical tradition were in the making.

[399 War as Myth and History in Postwar Japan (also Asian Studies 381)
How is the "war story" told in postwar Japan? The course will examine persisting representations of the war memory in contemporary Japanese cultural life, with emphasis on ways in which the story of World War II has been retold, reinterpreted, and given new symbolic and factual significance in light of changing historical circumstances. Class discussion will focus on the interpretation of texts, ranging from political thought and history to fiction, film, and poetry.]

[404 Topics in Premodern Japanese History
[417] Islam in South Asia
Fall. 4 credits.
This course will examine the dominant features of South Asian Islam, including the nature of beliefs and practices, the rituals and institutions in their different local contexts. One of the major objects of this course is to demonstrate that Islam never functioned as a monolithic system in South Asia and developed its own traditions in different local contexts, which did not necessarily conform to the orthodox interpretations by the ulema. It will conclude with a consideration of the major Islamic movements in South Asian Islam in more recent times.

[423] Seminar in Premodern Japanese History: Rise of the Samurai—Warrior Government and Culture in Japan
Spring. 4 credits.
The seminar traces warrior institutions and culture from the Heian period (794-1185) through the Tokugawa age (1600-1868). This millennium spans the classical, medieval, and early modern ages. Because warriors governed Japan during much of this time, the story of warrior development opens a broad window onto premodern society. Students will read a variety of original sources in translation as well as analytical essays, and preliminary consultation with the instructor is advised.

[434] The Social and Religious Movements in Colonial India
Spring. 4 credits.
Hours to be announced. R. Ahmed.
A study of the social and religious movements in colonial South Asia, which arose as a response and reaction to British rule in the subcontinent. These movements were not confined to the elite or to any particular community, but touched almost every section of the Indian society. Although these movements were basically social and religious in character, in reality many of these had specific political objectives and influenced the nature and course of the anticolonial struggle. We will concentrate on specific movements and examine the social and economic background of their participants and their programs and strategies. We also explore how these movements created conditions for communal polarization by transforming the attitudes of the masses towards each other on a communal basis.

[479] Continuity and Change in South Asian History: Society and Politics in the Post-Colonial Period
Spring. 4 credits.
M W 11:15-12:05, plus disc to be arranged. R. Ahmed.
The British left India in 1947 but did not take with them the colonial structure built over two hundred years of their rule in the subcontinent. The indigenous elites, including leaders such as Gandhi, Nehru, and Jinnah, who took over reins of the new states, were themselves the products of the colonial system and did not envisage any basic change in the structure of the states even after independence. They also had to address themselves to the pressing social and economic problems faced by the new states and satisfy the rising expectations of the new elites and also of the peasantry. How far did they succeed? Did their attempts make any major break with the past? We will concentrate on the social, economic, and political developments in the three major countries of South Asia—India, Pakistan, and Bangladesh—in the post-colonial period and will examine the nature of changes that have shaped the history of region since 1947.

[489] Undergraduate Seminar in Modern Japanese History
Fall. 4 credits. Prerequisites: History 297 (formerly 397) or 298 (formerly 398) or equivalent, and permission of instructor.
J. V. Koschmann. Not offered 1990-91.

[492] Undergraduate Seminar in Medieval Chinese History
Fall. 4 credits. Prerequisite: History 393 or 360 or permission of instructor. Not offered 1990-91.
Hours to be arranged. C. A. Peterson.

[493] Self and Society in Late Imperial and Twentieth-Century China
Fall. 4 credits. Prerequisite: History 191 or 394 or permission of instructor. Not offered 1990-91.
R 2:30-4:30. S. Cochran.
Conceptions of self and relations between the individual and society in China from the seventeenth century to the present.

[498] Japanese Kingship in Comparative Perspective
In this seminar we will examine the early and medieval development of one of the oldest ruling institutions in the world today. Theoretical and comparative readings from premodern societies in Europe and Asia will provide a frame of reference. Prospective seminar members should have completed some study of premodern Japanese history and preliminary consultation with the instructor is advised.

[499] Art and Society in Modern China
Spring. 4 credits. Not offered 1990-91.
W 2:30-4:30. S. Cochran, M. Young.
The relation between the visual arts and social change in China from the seventeenth century to the present. The value of art as a reflection of social reality and as an agent for social reform is analyzed on the basis of a variety of visual materials that range from calligraphy, paintings, and porcelains of the seventeenth and eighteenth centuries to woodblock prints, photographs, and films of the nineteenth and twentieth centuries.

[691] Chinese Historiography and Source Materials
Fall. 4 credits. Prerequisite: permission of instructor.
Hours to be arranged. C. A. Peterson.

[693-694] Problems in Modern Chinese History
693, fall; 694, spring. 4 credits. Prerequisite: permission of instructor.
R 2:30-4:25. S. Cochran.

[695] Early Southeast Asia: Graduate Proseminar
Fall. 4 credits.
Introduction to the history of Southeast Asia for graduate students. Students will be expected to attend the lectures and complete the readings for History 395, and they will meet separately as a group to further explore selected topics.

[696] Modern Southeast Asia: Graduate Proseminar
Spring. 4 credits.
Introduction to the modern history of Southeast Asia for graduate students. Students will be expected to attend the lectures and complete the readings for History 396, and they will meet separately as a group to further explore selected topics.

[697] Seminar in Southeast Asian Paliography
Fall. 4 credits.
Hours to be arranged. D. K. Wyatt.
Examination of the writing systems of Southeast Asia, paying particular attention to premodern sources, including manuscripts and inscriptions. Topic for 1990: Tai scripts, including Tai Yuan, Khoen, Lü, Lao, Shan, and Tai Dam.

[701-702] Seminar in Medieval Chinese History
701, fall; 702, spring. 4 credits each term. Prerequisite: permission of instructor. Not offered 1990-91.
C. A. Peterson.

[703-704] Seminar in Modern Chinese History
703, fall; 704, spring. 4 credits each term. Prerequisite: permission of instructor. Not offered 1990-91.
Hours to be arranged. S. Cochran.

[705] Seminar in Modern Southeast Asian History
Fall. 4 credits. Prerequisite: History 696.
Hours to be arranged. D. K. Wyatt.
Advanced seminar in modern Southeast Asian history.

[706-707] Seminar in Southeast Asian History
706, fall; 707, spring. 4 credits each term. Not offered 1990-91.
Hours to be arranged. J. V. Koschmann.

Ancient European History

[265] Ancient Greece from Homer to Alexander the Great
Fall. 4 credits. Open to freshmen. Not offered 1990-91; next offered 1991-92.
A survey of Greece from the earliest times to the end of the Classical period in the late fourth century B.C. The course focuses on the Greek genius: its causes, its greatness, its defects, and its legacy. The Heroic Age, the city-state, ancient democracy, and the intellectual ferment of the Greek Enlightenment are the main topics of study. Readings in translation from Homer, Aristotle, Thucydides, Plato, and from the evidence of ancient inscriptions, coins, art, and architecture.
266 War and Peace in Greece and Rome
(Also Government 393)
Fall. 4 credits. Open to freshmen.
TR 10:10-11:25; disc. M 8:30, R 8:12; or 2:30. B. Strauss.
A study of war and peace in the ancient Mediterranean world in light of modern theories of international relations. The course will test the validity of modern theories against ancient models and will ask why the ancient experience can contribute to modern theory and practice. Case studies include the Peloponnesian War, the second Punic War, Alexander's conquests, and the defense of the Roman empire.

268 A History of Rome from Republic to Holy
Spring. 4 credits. Open to freshmen.
A survey of Rome from the founding of the Republic to the fall of the Western Empire. The focus is on the Roman conquests of the Mediterranean world and on the cultural reenactment of Rome by the vanquished. Roman politics, peasant society, Imperialism, and propaganda and major topics of the first half. The government of the Caesars, society during the Roman peace, and the fertile interaction of Romans, Jews, and Greeks that produced Christianity are the main topics of the second. Readings in translation include Cicero, Polybius, Josephus, Tacitus, Petronius, Plutarch, and Saint Augustine.

[373 The Greek City from Alexander to Augustus
TR 10:10-11:00; disc. to be arranged. B. Strauss.
A twofold search for Alexander the conqueror and the man and for the culture of the world he created, in which the Greek city was planted as far as Egypt and India. These new cities saw a change from republicanism to monarchy, from community values to individualism, from particularism to ecumenism; embraced the new philosophies of Stoicism and Epicureanism; and were the hothouses of a new religion: Christianity. Readings in translation include Arrian, Plutarch, Athanaseus, Menander, Theocritus, Polybius, the Book of Maccabees, Epictetus, and Lucrèce.

452 The Tragedy of Classical Athens, 463-404 B.C.
Spring. 4 credits. Prerequisite: permission of instructor.
T 2:30-4:30. B. Strauss.
The nature of Athenian democracy, society, and culture in the "golden age" of Athens. The course will examine the influence of Athenian political life on the great tragedians of the age and the influence of tragedy on the Athenians' conception of their character and history. Readings from Herodotus, Thucydides, Aeschylus, Socrates, Sophocles, Euripides, Aristophanes, Plato, Aristotle, and Plutarch.

[453 Crisis of the Greek City-State, 415-336 B.C.
Spring. 4 credits. Prerequisite: permission of instructor. Not offered 1990-91.
M 2:30-4:30. B. Strauss.
The fortunes of the city-state and citizen in an age of uncertainty. The focus is on Athens with some attention paid to the wider Greek world. Topics include the nature of Athenian politics, Athenian society, cultural change, the war between the city-states, crisis as a historical concept, and anthropology and ancient Greece. Readings in translation include Thucydides, Sophocles, Euripides, Aristophanes, Plato, Aristotle, Demosthenes, and Xenophon.

455 The Family and Politics in Ancient Greece and Rome
Fall. 4 credits. Prerequisite: History 265, 268, or 461 or permission of instructor.
T 2:30-4:30. B. Strauss.
If Greece and Rome are the foundation, at least symbolically, of Western civilization, then the family is the foundation of Greece and Rome. We shall consider such topics in the ancient family as parents and children, sibling rivalry, marriage, gender roles, birth control, the family and social crisis, the family and politics, and the family in the early church. Wherever possible, analogies to, comparisons with, and the implications for, the United States in the 1980s will be suggested. Readings include legal and political speeches, comedy, tragedy, philosophy, sermons and religious texts, inscriptions, and modern scholarship.

[461 The Greek-Roman World in Late Antiquity and Early Byzantine Times, A.D. 306-565
For description see Medieval, Renaissance, and Early Modern European History.

496 Origins of the Hellenistic World: Alexander the Great and his Legacy
(Also Classics 496 and Classics 602)
Spring. 4 credits. Prerequisite: permission of instructor.
This course will explore the sweeping changes (political, institutional, religious, and cultural) set in motion by Alexander's invasion of the Persian empire and the fierce contest over his heritage. The seminar requires active participation in the weekly discussions, two oral reports, and one research paper.

Medieval, Renaissance, and Early Modern European History

151 Introduction to Western Civilization
Fall. 4 credits.
TR 11:15-12:05, plus one disc section per week. L. P. Williams.
History 151 is offered in two distinct sections: History 151W (W is for writing) and 151R (R is for reading). The lectures are the same for both sections. History 151 will examine the basic political, social, economic, and intellectual institutions of western civilization from antiquity to 1600 AD. In History 151W this is done through selections from original and secondary sources; in History 151R, some of the great contemporary works will be read in toto. Among these will be the Egyptian Memphite theology, Plato's Apology, Augustine's Confessions, and Thomas Moore's Utopia. Students in History 151W will write weekly 1000-word essays until they receive two B+ grades in a row, after which the papers become optional. Students in 151R will write one critical review of 750 words of one of the works read by them. All freshmen must take History 151W.

152 Introduction to Western Civilization
Spring. 4 credits.
For description see Medieval European History.

222 Public Life and Literature in Tudor England
Fall. 4 credits. Prerequisite: permission of instructor.
A study of the chief developments in the political, governmental, and religious life of England in the sixteenth century and weekly discussions of a selection of Tudor prose, poetry, and drama.

257 English History from Anglo-Saxon Times to 1485
Spring. 4 credits.
M W F 11:15-12:05. P. Hyams.
A survey of the government, social organization, and cultural and religious experience of the English people. Particular stress is laid on the unification of the realm, the emergence of new states such as parliament, and changes in economic organization (manors, towns and commerce). The approach will be comparative within a context of contemporary European developments.

[259 The Crusades
Fall. 4 credits.

This lecture course examines the Crusading Movement and the states it produced from the eleventh century to the fall of the mainland Kingdom of Jerusalem in 1292. Central themes include: the history of the Church and its conceptual intellectual history, political narrative and military history, social and economic analysis of Europes in Outremer (the Mid-East), and the conflict of cultures and religions during a formative period in Western civilization.

263 The Earlier Middle Ages
Spring. 4 credits.
A survey of Medieval civilization from ca. 300 to ca. 1100 dealing with religious, intellectual, political, and economic developments in Western Europe.

264 The High Middle Ages
Fall. 4 credits.
M W F 11:15-12:05. P. Hyams.
A survey of Medieval civilization from ca. 1100 to ca. 1450 dealing with religious, intellectual, political, and economic developments in Western Europe. Lectures and class discussions.

[350 Early Renaissance Europe
Fall. 4 credits. Not offered 1990-91.
An exploration of intellectual, cultural, and religious developments in Western Europe, but with special attention to Italy, from the age of Dante and Marsilio, through the several stages of Italian humanism from Petrarch to Alberti to Pico, down to the generation of Machiavelli, More, and Erasmus. The course will seek to problematize the notion of a "Renaissance" in the period's ambivalent attitudes toward history, learning, culture, language, and the role of intellectuals in politics and society. Emphasis will be placed on the close reading of primary sources and on issues of interpretation.]
351 Machiavelli
Spring. 4 credits.
This course will present Machiavelli in a variety of sixteenth century currents and popular culture; and the Renaissance humanism, political thought, and principate; Machiavelli's own career in European and Italian politics in the early works (including the letters, The Prince, the Florentine Spring, 4 credits. TR 10:10-11:25. J. M. Najemy. Florentine politics and society from the communal period through the age of Dante, the rise and decline of the guild republic, the age of the civic humanism, and the rise of the Medici to the time of Machiavelli. Economic structures and social classes, corporate politics, family history, and political and historical ideas are considered in the context of the emergence and transformation of Republican government.

364 The Culture of the Later Renaissance (also Comparative Literature 362 and English 325) Spring. 4 credits.
T R 10:10-11; disc R and F to be arranged. C. Kaske. Members of various departments will lecture on Luther, Michelangelo, Montaigne, Edmund Spenser, Monteverdi, Cervantes, Copernicus, and Galileo. Guest lecturers will include R. Harris-Warrick, music; Peter Dear, history; and C. Arroyo, romance studies. Lectures and discussion will undertake close readings of texts, literary and visual, and will introduce different methods of interpretation and of historical analysis. Written requirements: two short papers and final examination.

366 Medieval Culture, 1100-1300 Spring. 4 credits. Prerequisite: History 264 or permission of instructor.
The origin and development of the universities will be studied as background for a consideration of the scholastic mentality and its influence on the art, literature, philosophy, science, script, and theology of the period. Readings from Abelard, Hugh of St. Victor, Bonaventure, Thomas Aquinas, Dante, and others.

367 Feudalism and Chivalry: Secular Culture in Medieval France, 1000-1300 Fall. 4 credits. No prerequisites; History 263 or 264 would help.
M 2:30-4:25. P. R. Hyams. An upper-level reading survey of the main currents of noble lay culture in France, which led European fashions in love, warfare, entertainment, and environment through most of the period. There will be heavy emphasis on contemporary sources (in English), including lively and complete readings from epic literature (the Song of Roland), lives, and chronicles.

368 Marriage and Sexuality in Medieval Europe Spring. 4 credits.
M W F 2:30-3:25. P. R. Hyams. This seminar examines the forces defining and enabling marriage, as a cultural event in every person's life and career. Its focus ranges from Church prescriptions, in canon law and theology that still affect twentieth-century attitudes, to sexual peculiar practice.

369 The History of Florence in the Time of the Republic, 1250-1530 Fall. 4 credits.
T R 10:10-11:25. J. M. Najemy. Florentine politics and society from the communal period through the age of Dante, the rise and decline of the guild republic, the age of the civic humanism, and the rise of the Medici to the time of Machiavelli. Economic structures and social classes, corporate politics, family history, and political and historical ideas are considered in the context of the emergence and transformation of Republican government.

371 History of England under the Tudors and Stuarts Fall. 4 credits. Not open to freshmen except by permission of instructor.
T R 2:55-4:10. P. Lake. A survey of the period of reformation and revolution in which many historians have discerned the emergence of modern society. The course takes account of the relations of England with other parts of the British Isles and Europe, but emphasizes the workings of the political system as well as the impact of religious conflict and ideological change.

372 Religion and Society in Early Modern England Spring. 4 credits. Not open to freshmen except by permission of instructor.
T R 2:55-4:10. P. Lake. An examination of religious change from the late middle ages to the late 17th century—from Catholic unity to pluralist Protestantism—with attention to the way this change influenced a wide range of social and cultural contexts. Among the manifestations to be looked at are: the growth of literacy, social and cultural differentiation, and the "reformation of manners."

374 War, Trade, and Empire, 1500-1815 Spring. 4 credits. Not offered 1990-91. Next offered fall 1991.
M W 2:30-4. D. A. Baugh. Maritime enterprise, imperial policy, and naval power in the age of expansion. The rise and decline of the Portuguese and Spanish empires are considered, but the emphasis is on English, French, and Dutch rivalry in the Atlantic and Caribbean.

387 Social and Cultural History of Sixteenth-Century Europe Fall. 4 credits.
M W 1:25-2:15 plus disc W 2:30 or 3:35. D. Sabean. This course examines social processes and perceptions of change during the Reformation era. Topics include social differentiation in the countryside, forms of aristocratic domination, court society, rural and urban attempts at resistance and rebellion, violence, the exercise of state power and its representation, religion and political ideology, popular culture, and the reform of manners.

388 Social and Cultural History of Seventeenth-Century Europe For description, see Modern European History.

405 Population and History Not offered 1990-91. For description see Comparative History.

409 Seminar on Work in Europe and America Not offered 1990-91. For description see Comparative History.

437 Church and State during the Middle Ages Fall. 4 credits.
T R 11:40-12:55. B. Tierney. Relationships between ecclesiastical and secular authorities and the ways in which these relationships influenced the growth of government in the Middle Ages are considered. Particular attention is given to the growth of Medieval constitutionalism.

438 Francis of Assisi and the Franciscans Fall. 4 credits. Not offered 1990-91. T 2:30-4:30. B. Tierney. A seminar with lectures, class papers, and class discussions. The course will begin with a detailed study of the early lives of Francis in translation, then consider the impact of the Franciscans on the medieval church and vice versa.

451 Lord and Peasant in Europe: A Seminar in Social History Not offered 1990-91. For description see Comparative History.

461 The Greco-Roman World in Late Antiquity and Early Byzantine Times, A.D. 306-565 Spring. 4 credits. Prerequisite: History 263, 265, or 268 or permission of instructor. Not offered 1990-91. T 2:30-4:30. B. Strauss. A seminar in the cultural, socioeconomic, and political history of the period. Topics include the interaction of paganism and Christianity; art, form, civic life, and the individual; the family, Julian and Justinian, and the concept of decline and fall.

463 Seminar on Europe during the Age of Absolutism Fall. 4 credits. Permission of instructor required.
M 2:30-4:30. D. Sabean. This seminar examines different topics on the social and cultural history of Europe during the sixteenth and seventeenth centuries. It will be concerned with issues of power and state practice, popular culture, religion, rituals of domination and resistance, and the ideology of statecraft. Readings will include primary and secondary text. The topic for fall 1990 is the witch persecution.

468 Undergraduate Seminar in Renaissance History Fall. 4 credits. Not offered 1990-91. J. M. Najemy.
218 The Russian Military Effort and Foreign Policy
Fall. 3 credits.
An examination of the interrelation of the Imperial Russian military effort and Russian foreign policy. Examples will be taken from various periods ranging from the early Muscovite period to the First World War. Students will write 6 or 7 short papers, do extensive reading, and participate in class discussion.

226 Public Life and Literature in Twentieth-Century Great Britain
Spring. 4 credits. Prerequisite: permission of instructor.
A study of British political, social, and constitutional history is paralleled by the reading of plays. Both history and literature are considered. The development of parliamentary democracy in Great Britain, the consequences for her of the two world wars, the emergence of the welfare state, the application to the economy of nationalization, and Great Britain’s withdrawal from imperialism are presented. Among the writers read and discussed are Shaw, Maugham, O’Casey, Sherriff, and Osborne.

229 A History of European Childhood
N. Karwan–Cutting.
Surveys the history of childhood in Europe from the mid-seventeenth century to the present. Comparisons are made across Western, Eastern, and Mediterranean European Societies. The course delineates those cultural, demographic, religious, political, and economic factors that shaped childhood, both in periods of transition and in times of violent instability. Changing perceptions of childhood are treated in the context of, for example: religious conflict, urbanization, development in science and technology, war, and occupation. All readings are in English.

242 Europe since 1789
An introduction to major themes, problems, and interpretations in European history from the French Revolution to the consolidation of the Common Market in our own day. The organization will be chronological, but focus will be on the varying forms of political and industrial revolution, liberalism, conservatism, socialism, nationalism, imperialism, fascism, and world war. Readings will include primary materials in political and social theory (Marx and Mill) as well as literature (Thomas Mann, Peter Schneider).

252 Russian History to 1800
Fall. 4 credits.
The origins and development of the fundamental social, political, economic, and cultural institutions that have determined the nature of contemporary Soviet society.

253 Russian History since 1800
Spring. 4 credits. First preference will be given to students who have taken History 252 if enrollment permits.
Nineteenth- and twentieth-century Russia, with emphasis on the major social, political, and economic changes that have transformed Russia since the mid-nineteenth century.

258 English History from the Revolution of 1688 to the Present
An introduction to British history emphasizing political, social, economic, imperial, and constitutional developments. Major themes are the significance of 1688, eighteenth-century society and politics, the rise and decline of liberalism, the Irish Question, the impact of the two world wars, and the challenges and achievements of the welfare state.

283 Contemporary European Society and Culture (also Government 343; Ger Lit 283)
Fall. 4 credits.
T R 2:55–4:10; disc to be arranged.
The crisis of communist regimes in Eastern Europe has brought an end to the postwar division of Europe. At the same time, the European Community is emerging as a major economic and political power in the world. This course explores these dramatic new developments against the background of an interdisciplinary and comparative investigation of postwar European politics, society, and culture. Topics include generational change, class structure, economic and social policy, new social movements, family and community life, film, and cultural criticism.

352 The End of the Austro-Hungarian Monarchy, 1848–1919
Fall. 4 credits. Open to freshmen with permission of instructor. Not offered 1990–91.
M W 9:05; disc, W 10:10 and 2:30.
I. V. Hull.
The decline and fall of the multinational empire. Emphasis is on the political and social problems presented to the monarchy both by industrialization and by the increasingly restive subject nationalities (Poles, Czechs, Serbs, Croats). How did the monarchy handle these problems? Why did it fail? Focus is on cultural matters. Readings are drawn from Freud, Schnitzler, Hofmannsthal, Karl Kraus, Joseph Roth, and others.

353 Nineteenth-Century European Intellectual History
Fall. 4 credits. Not offered 1990–91.
The focus is on social and cultural thought in France, Germany, and England. Topics include reactions to the French Revolution and industrialization; the definition of conservative, liberal, and radical perspectives; and the relation between literature and social thought. Readings include Tocqueville, Mill, Hegel, Marx, Stendhal, Flaubert, Dostoevsky, Nietzsche, and Durkheim.

354 Twentieth-Century European Intellectual History
Fall. 4 credits.
This course examines significant currents in twentieth-century thought in France, Germany, and England. Topics include the varieties of existentialism, the development of the social sciences, psychoanalysis, the modern novel, structuralism, and poststructuralism. Readings include Weber, Freud, Heidegger, Sartre, Camus, Woolf, Foucault, and Derrida.
The "German problem" is examined. Major focus will be on the meaning of the revolutionary experience, the tension between the desires to destroy and to create, and the implications of the Revolution for the modern world.

A study of the failure of the traditional system, from the devastation of the First World War, destruction and to create, and the implications of the Revolution for the modern world.

Survey of German History, 1848-1890
Fall. 4 credits. Open to freshmen with permission of instructor. Not offered 1990-91. Next offered Fall 1991.

An examination of the social, political and intellectual life will be stressed, with an emphasis on primary materials (discursive works as well as painting, music, opera, architecture, and cultural festivals and institutions.)

[379 War and Society: The Origins of the First World War, 1870-1919
Fall. 4 credits. Open to freshmen with permission of instructor. Not offered 1990-91. Next offered Spring 1992.

The First World War destroyed the European world: its hegemony in international politics, its international balance, its social and economic structures, its intellectual certainties. This course examines the long-term and immediate causes of this cataclysm, with special focus on the relations between the various countries' domestic politics and their foreign policies, the changing balance of power, economic rivalries, imperialism, the growth of extreme nationalism, and the arms race. It ends by considering why the war was so long and destructive and why, afterwards, no one could put the pieces back together again.

[380 Social History of Western Technology
Fall. Not offered 1990-91. For description see History of Science.

Europe, 1900-1945
Fall. 4 credits.

The war and its alternatives. Topics include the reorientation of liberalism and socialism, the transformation of the modern political and intellectual life. The course will be an examination of the political and ideological influences of the war and its aftermath, and the interaction between politics and social structure.

Europe, 1945-1968
Spring. 4 credits.

In this course, we will examine the causes, dynamics, and outcomes of social movements in modern and contemporary Europe. Ranging from the collapse of the Soviet empire in Eastern Europe to the student, peace, and women's movements of the present, these movements have deeply marked the development of contemporary European society. Cases will be drawn mainly from Europe with ventures into America and the non-Western world. Our ambition is to assess the ways in which popular collective action both shaped and was shaped by the development of the modern state. A senior seminar in modern European studies.

Seminar in the European Enlightenment
Spring. 4 credits. Prerequisite: permission of instructor.

This seminar examines the eighteenth-century Enlightenment from a number of different vantage points: its intellectual debates, the social bases carrying it, the institutions (state, social, and economic) that spread it, and the ways historians have (re-)interpreted it over the years. The reading is primarily sources (major thinkers of the period in England, Germany, Italy, and France) with secondary works as well as painting, music, opera, architecture, and cultural festivals and institutions.

Survey of German History, 1890 to the Present
Spring. 4 credits. Open to freshmen with permission of instructor.

The "German problem" is examined. Major topics include tensions caused by rapid industrialization presided over by a presidencial, political elite: origins of World War I; growth of anti-Semitism; social dislocations of World War I; failure of the socialist revolution of 1918-1920; growth of extreme nationalism, and the rise of the Nazis; the Nazi state; World War II; and the two Germanies.

European Cultural History, 1870-1945

The question of the "crisis of modern culture," in its ideological and critical manifestations, from the various European "fins-de-siecle" to the two world wars.

European Cultural History, 1815-1870

An analysis of major problems and themes associated with the construction and interpretation of European modernity, from the Enlightenment and the French and industrial revolutions to the unification of Germany. The interplay between political change and cultural and intellectual life will be stressed, with emphasis on primary materials (discursive works as well as painting, music, opera, architecture, and cultural festivals and institutions.)

European Cultural History, 1790-1815

A political and social history of Europe between the fall of fascism and the political crises of 1968. Emphasis on the comparative study of the elaboration of democratic institutions and ideologies. Topics include the origins of the Cold War in Western and Eastern Europe, Gaulism and Christian democracy, the emergence of welfare states, liberal-democratic and Communist culture, the end of colonial empires in the West, opposition movements in Eastern Europe, and the general upheaval of 1968.

Europe, 1966-1990
Fall. 4 credits. Not offered 1990-91.

This course examines the eighteenth-century Enlightenment from a number of different vantage points: its intellectual debates, the social bases carrying it, the institutions (state, social, and economic) that spread it, and the ways historians have (re-)interpreted it over the years. The reading is primarily sources (major thinkers of the period in England, Germany, Italy, and France) with secondary works as well as painting, music, opera, architecture, and cultural festivals and institutions.

Population and History
Not offered 1990-91.

For description see Comparative History.

The People in the French Revolution
Spring. 4 credits.

The Revolution was nothing if not a mass event. Mass action played a critical part in shaping its course. The "re-invention" of France affected the population down to each village and demanded decisions from virtually every adult. This course will focus on the people as actors: their collective memory, their ideologies, their repertoire of intervention, the formation of a popular political culture. It will examine the encounters between the people (in their multiple incarnations) and the revolutionary elites who sought to articulate and appropriate the Revolution. A major theme will be the tension between the ambitions to achieve liberty and equality.

Seminar on Work in Europe and America
Not offered 1990-91.

For description see Comparative History.

Collective Action and Politics in Modern Europe (also Government 435)
Fall. 4 credits. Not offered 1990-91.

An interdisciplinary seminar examining the causes, dynamics, and outcomes of social movements in modern and contemporary Europe. Ranging from the collapse of the Soviet empire in Eastern Europe to the student, peace, and women's movements of the present, these movements have deeply marked the development of contemporary European society. Cases will be drawn mainly from Europe with ventures into America and the non-Western world. Our ambition is to assess the ways in which popular collective action both shaped and was shaped by the development of the modern state. A senior seminar in modern European studies.

Seminar in the European Enlightenment
Spring. 4 credits. Prerequisite: permission of instructor.

This seminar examines the eighteenth-century Enlightenment from a number of different vantage points: its intellectual debates, the social bases carrying it, the institutions (state, social, and economic) that spread it, and the ways historians have (re-)interpreted it over the years. The reading is primarily sources (major thinkers of the period in England, Germany, Italy, and France) with secondary works as well as painting, music, opera, architecture, and cultural festivals and institutions.
[450 Seminar in European Imperialism (Habermas)]

[451 Lord and Peasant in Europe: A Seminar in Social History (Habermas)]
Not offered 1990–91. For description see Comparative History.

[457 Seminar in European Fascism (Habermas)]

[459 The Making of the English Ruling Class, 1650–1700 (Habermas)]
Spring. 4 credits. Not offered 1990–91. M 2:30–4:30. D. A. Baugh. Perspectives on the landed aristocracy's continuing domination of politics. Topics include the political system, political and social thought, aristocratic lifestyle, religion, crime and criminal justice, the Old Poor Law, land and commerce, the role of London, and relations with Scotland, Ireland, and America. Readings are drawn from both modern historians and eighteenth-century authors.

[464 Russian Social History (Habermas)]
Spring. 4 credits. Prerequisite: one semester of Russian history or permission of instructor. W 12:20–2:20. W. M. Pinter. A seminar devoted to an examination of the diverse social groups that comprise imperial Russia and Soviet society. Includes systematic comparison with other countries.

[465 Seminar on Modernity and Modernism (Habermas)]
Spring. 4 credits. Not offered 1990–91. M. P. Steinberg. An exploration of the definitions of "modernity" from the Enlightenment to the present and of the varied responses, political, cultural, and aesthetic, known as "modernism." Discussion as well of the questions of the end of modernity, of the post-modern, and their implications.

[467 Seminar in Modern European Political History (Habermas)]

[470 Social and Cultural History of Contemporary Europe (Habermas)]
Spring. 4 credits. Prerequisite: one course on contemporary Europe or permission of instructor. T R 2:55. J. H. Weiss. Topic: the "other Europe": language, culture, and national and minority peoples of Europe. A comparative investigation of the development of the cultural and historical identity of non-dominant European ethnic groups and their relation to the formation and policies of European national states: the Basques, the Welsh, the Catalans, the Bretons, the Occitans, the Gaelic Irish, the Faraose, the Gypsies, the Romansh, and others. The course will combine historical, literary, and sociolinguistic approaches.

[473 History of Sexuality (Habermas)]
Fall. 4 credits. Not offered 1990–91. W 12:30–2:30. B. L. Raider. A seminar devoted to recent historical approaches to the history of sexuality in Europe from late antiquity to the present, looking at issues of politics, power, ideology, perception, representation, and gender.

[474 Topics in Modern European Intellectual History (Habermas)]
Spring. 4 credits. Prerequisite: permission of instructor. T 2:30–4:30. D. LaCapra.

[476 Seminar on the Politics of the Enlightenment (Habermas)]
Fall. 4 credits. W 2:30–4:30. S. L. Kaplan. An inquiry into the historical origins of European (especially French) political, social, and economic thought, beginning in the 1680s, at the zenith of Louis XIV's absolutism, and culminating in the French Revolution a century later. Emphasis is on the relation of criticism and theory to actual social, economic, religious, and political conditions. An effort is made to assess the impact of enlightened thought on the eighteenth-century world and to weigh its implications for modern political discourse. Readings in translation from such authors as Montesquieu, Voltaire, Rousseau, Diderot, and others as well as from modern scholarly and polemical literature.

[478 Seminar in Eighteenth-Century French Social History (Habermas)]

[480 Twentieth-Century Britain (Habermas)]
Fall. 4 credits. Open to sophomores, juniors, and seniors. T R 1:25–2:40. D. A. Baugh. A seminar course with some lectures, focusing on political history. The main emphasis is on the two world wars and their role in British economic and imperial decline. The course also looks at such great personages—Lloyd George, Churchill, and Bevin—and the major political and social transitions, taking departure from Edwardian Liberalism. It examines the rise of the welfare state, the special attributes of the British labor movement and British socialism, and the significance of Thatcherite Conservatism.

[483 Seminar in Modern European Social History (Habermas)]

[489 German Cultural and Social Theory, 1870–1945 (Habermas)]
4 credits. Prerequisite (for undergraduates): History 363 or instructor's permission. Not offered 1990–91. Next offered 1991–92. M. P. Steinberg. The production and critique of cultural ideology in political and cultural contexts from Nietzsche and Wagner to the Austrian "fin-de-siècle" and the rise of German sociology and the new art history; to the attempt at integrated cultural criticism of the Frankfurt School.

[605 Graduate Seminar in European Cultural and Intellectual History (Habermas)]
Spring. 4 credits. Not offered 1990–91. Hours to be arranged. M. P. Steinberg. Analysis and evaluation of Walter Benjamin's historical thinking as a paradigm of a historical theory of modernity. Focus will be on the interplay of political, cultural, and aesthetic methods and objects of analysis, in Benjamin's work as well as that of contemporaries (Adorno, Cassirer, Warburg), models (Goethe, Hofmannsthal, Baudelaire), and inheritors (Habermas).

[655 Seminar in Eighteenth-Century British History (Habermas)]

[656 Seminar in Nineteenth-Century British History (Habermas)]
Spring. 4 credits. Not offered 1990–91. Hours to be arranged. D. A. Baugh.

[661 Graduate Seminar in Twentieth-Century German History (Habermas)]
Fall. 4 credits. Prerequisite: permission of instructor. Not offered 1990–91. T 4–6. I. V. Hull. This course explores selected topics in the political, social, and cultural history of Germany from 1900 to the present. It is designed to introduce graduate students to the history and historiography of modern Germany and to allow those with sufficient preparation to pursue directed research during the semester.

[671 Seminar in the French Revolution (Habermas)]

[672 Seminar in European Intellectual History (Habermas)]
Fall. 4 credits. Hours to be arranged. D. LaCapra.

[673 Seminar in European Intellectual History (Habermas)]
Spring. 4 credits. Hours to be arranged. D. LaCapra.

[674 Graduate Seminar in German History, 1789–1918 (Habermas)]
Spring. 4 credits. Not offered 1990–91. M 12:20–2:15. I. V. Hull. This course explores selected topics in the political, social, and cultural history of Germany from 1770 to 1918. It is designed to introduce graduate students to the history and historiography of modern Germany and to allow those with sufficient preparation to pursue directed research during the semester.

[677 Seminar in Russian History (Habermas)]
Spring. 4 credits each term. Hours to be arranged. W. M. Pinter.

[687 Seminar in Modern European Social History (Habermas)]
Spring. Not offered 1990–91. Hours to be arranged. J. H. Weiss.]
[679 Seminar in European History
Not offered 1990-91.
S. L. Kaplan.]

682 Seminar in European Social and Cultural History
Spring. 4 credits.
A research seminar devoted to selected topics on the construction of the self in European history.

Honors and Research Courses
Note: History 301-302 are not regular courses for which students may sign up at will. They are personal arrangements between an instructor and a particular student. Students must first gain the consent of a particular instructor to work with them.

301 Supervised Reading
Fall or spring. 2 credits. Open only to upperclass students. Prerequisite: permission of instructor.

302 Supervised Research
Fall or spring. 3 or 4 credits. Open only to upperclass students. Prerequisite: permission of instructor.

400 Honors Proseminar
Fall and spring. 4 credits. Limited to 15 students. For prospective honors candidates in history. Prerequisite: permission of a member of the Honors Committee is required to register.
Fall and spring W 2:30-4:30. Fall: M. Kammen; Spring: R. L. Moore.
An examination of major approaches to historical inquiry and analysis. Masterworks of historical writing (traditional as well as recent) will be discussed. There will be one short essay and a lengthy paper (a study of the work of one major historian). The readings will be drawn from all time periods and diverse cultures.

401 Honors Research
Fall or spring. 4 credits. Prerequisites: History 400 and permission of instructor.

402 Honors Thesis
Fall or spring. 4 credits. Prerequisites: History 400 and permission of instructor.

703-704 Supervised Reading
703, fall; 704, spring. 4 credits each term. Limited to graduate students. Prerequisite: permission of instructor.

709 Introduction to the Graduate Study of History
Fall. 4 credits. Required of all first-year graduate students.
R 3-5. S. Blumin, J. Najemy.
The course is designed to introduce entering graduate students to crucial issues and problems in historiography that cut across various areas of specialization.

HISTORY OF ART
The visual arts—painting, sculpture, and architecture—are a principal mode of human expression. Art historians investigate works of art to understand them in their artistic, historical, and cultural contexts. Courses offered by the department cover the mainstream of Western art (Classical, Medieval, Renaissance, Baroque, and eighteenth and nineteenth century) and non-Western art, including that of East and Southeast Asia. Art history is an integral part of interdisciplinary programs such as the Archaeology Program, the East Asia Program, Medieval Studies, and the Southeast Asia Program.

Course offerings vary in scope from introductory courses designed to acquaint the student with the ways of seeing, discussing, and writing about works of art to advanced seminars that concentrate on more-specialized topics. The resources of the Herbert F. Johnson Museum of Art frequently serve as the focus for discussion sections and research assignments.

The Major
Students who want to major in the history of art should complete two courses in the Department of History of Art by the end of their sophomore year. These courses are prerequisites for admission to the major but may not be counted toward fulfillment of the major requirements. Prospective majors should apply to the director of undergraduate studies and in their junior and senior years work closely with their advisers to determine a course of study that takes into account the richness and diversity of art history. The program should include at least 30 credits in history of art courses and a minimum of two additional courses in this department or in a related field (such as anthropology, literature, or history) approved by their adviser. Ordinarily the 30 credits in history of art will include the preseminar History of Art 400, that all majors are expected to take in their junior year and at least two additional seminars selected from courses at the 400 or 500 level. Majors are required to have at least one non-Western art course in their program. Majors are encouraged to take studio courses offered by the Department of Art, but these are considered to be electives and do not fulfill major requirements.

Honors
To become a candidate for the degree of Bachelor of Arts with honors in the history of art, a student must have a cumulative average of B+ for all courses taken in the department and a cumulative average of B in all arts and sciences courses. Admission to the program requires application to the director of undergraduate studies during the second term of the junior year. The application must include a summary of the proposed project, an endorsement by a faculty sponsor, and a copy of the student's transcript. In the senior year the honors candidate will include among the regular requirements History of Art 600 and 601, which entail the preparation of a senior thesis. This program may not be condensed into one semester.

Freshman Writing Seminars
For Freshman Writing Seminar offerings in the History of Art, see the John S. Knight Writing Program's special brochure. These courses may be used as freshman electives but not to satisfy the distribution requirement.

Courses
220 Introduction to Art History: The Art of the Classical World (also Classics 220)
Spring. 3 credits.
The sculpture, vase painting, and architecture of the ancient Greeks from the Geometric period through the Hellenistic, and the art of the Romans from the early Republic to the late Empire.

221 Introduction to Art History: Minoan-Mycenaean Art and Archaeology (also Classics 221 and Archaeology 221)
Fall. 3 credits.
Note: Students may not obtain credit for both this course and Classics 319. M W F 10:10-11. P. Kuniholm.
The birth of civilization in Greece and the Aegean islands during the Bronze Age. The main focus is on the rise and fall of Minoan Crete and Mycenaean Greece, with consideration given to the nature and significance of Aegean interactions with Egypt, the Near East, and Anatolia.

223 Etruscan Art and Archaeology (also Classics 250 and Archaeology 250)
Fall. 3 credits.
Note: Not offered 1990-91.

230 Introduction to Art History: Monuments of Medieval Art
Spring. 3 credits.
An introduction to the approaches to art history through a study of selected works of art from the Middle Ages: architecture, sculpture, painting, manuscript illumination, metalwork, and ivory.

245 Introduction to Art History: Renaissance and Baroque Art
Fall. 3 credits.
Not open to students who have taken History of Art 240 or 250.
M W and alternate F 10:10-11; discs alternate weeks W 1:25, 2:30, or 3:35; R 9:05, 1:25, or 2:30 or F 10:10. T. Willette.
A survey of selected works of European painting, sculpture, and architecture from 1400 to 1700. The artists considered include Botticelli, Michelangelo, Rembrandt, Velazquez, and Bernini. These and other major artists will be emphasized and viewed through the context of the principal trends and ideas of the time. In addition to distinguishing artists' styles and aesthetic concerns, the course will consider other cultural factors shaping the work of art, such as patronage, religion, politics, and economics. This course is committed to improving student writing as well as teaching how to look at works of art.
280 Introduction to Art History: The Modern Era
Fall. 3 credits. Not open to students who have taken History of Art 261.
A discussion of the most important developments in art during the nineteenth
and twentieth centuries. The emphasis is on major movements and artists
such as Impressionism (Monet), Post-Impressionism (van Gogh, Cezanne), Cubism
(Picasso), Fauvism (Matisse), Surrealism (Miro), Abstract Expressionism
(Pollack), Pop Art (Warhol), and Psychological Realism (Fischl).

[270 Introduction to Art History: American Art to 1845
3 credits. Not offered 1990-91.]

280 Introduction to Art History: Asian Traditions
Fall. 3 credits.
Designed to introduce students to the varied responses of the Asian artist in
different social and geographical contexts. By selective focus and emphasis rather
than broad survey, the student will gain some familiarity with the
Indian miniature paintings, and Japanese
prints. A number of class sessions will meet in the Herbert F. Johnson Museum of Art.

309 Dendrochronology of the Aegean
(also Classics 309 and Archaeology 308)
Fall and spring. 4 credits. Prerequisite: permission of the instructor. Limited to 10
students.
M 12:20; two labs to be arranged. P. Kuniholm.
Participation in a research project of dating modern and ancient tree-ring samples from the
Aegean and Mediterranean. Supervised reading and laboratory work. A possibility
exists for summer fieldwork in Greece or Turkey.

[320 The Archaeology of Ancient Greece
(also Classics 320)

322 Arts of the Roman Empire
(also Classics 350)
Fall. 4 credits. Prerequisite: History of Art 220 or permission of the instructor.
The visual arts in the service of the first world state. The course starts with the Etruscan
and Roman provinces until the time of Constantine.

[332 Painting in the Greek and Roman World
(also Classics 323)
4 credits. Not offered 1990-91.]

[334 Romanesque Art and Architecture
(also Classics 392)

333 Early Medieval Art and Architecture
Fall or spring. 4 credits. Not offered 1990-91. R. G. Calkins.

334 Gothic Art

[336 Prelude to the Italian Renaissance
Spring. 4 credits. Not offered 1990-91. R. G. Calkins.]

[337 The Medieval Illuminated Book

341 Flemish Painting

342 Medieval and German Renaissance Art

[343 Italian Renaissance of the Fifteenth Century
4 credits. Not offered 1990-91. C. Lazzaro.]

344 Italian Renaissance of the Sixteenth Century:
Leonardo, Michelangelo, and Raphael
Spring. 4 credits. Prerequisites: one or more of the following courses: History of Art 245,
260 or 361.
A thorough examination of the works of these three masters and of their cultural and
historical environment. Primary emphasis is on their painting, sculpture, and architecture, but
the writings of Leonardo and Michelangelo are also considered. Students are expected to
discuss reading assignments in class. There will be a prelim and final exam with slides and
essays and either two short papers or one long paper.

[350 The Culture of the Early Renaissance
(also Romance Studies 361 and Comparative Literature 361)
4 credits. Not offered 1990-91. C. Lazzaro.]

354 European Painting of the Seventeenth Century

[355 Painting and Public Life in Seventeenth-Century Northern Europe
4 credits. Not offered 1990-91.]

[357 European Art of the Eighteenth Century
4 credits. Not offered 1990-91.]

[359 Major Masters of the Graphic Arts
4 credits. Not offered 1990-91. C. Lazzaro.]

360 Nineteenth-Century American Art

361 Nineteenth-Century European Art
Fall. 4 credits. Prerequisite: History of Art 245.
A study of the major movements in nineteenth-century art history: Neo-Classicism, Romanti-
cism, Realism, Impressionism, Post-Impressionism, and Symbolism. The primary artists
discussed include Jacques-Louis David, Eugene Delacroix, Francisco Goya, Caspar D. Friedrich,
and political developments are examined with respect to the broader cultural contexts of the
specific art movements.

362 European Art 1900-1940
Spring. 4 credits. Prerequisite: History of Art 260 or 361.
L. M. Meixner.
An examination of the major movements in European art during the first half of the
ten centuries. From Fauvism, German Expressionism, Cubism and its satellite schools, Dada,
and Surrealism. Emphasis will be placed on
major artists, including Matisse, Picasso,
Kirchner, Kandinsky, and Duchamp. Relevant
political background influencing the period is
included as well.

[364 American Art 1900-1940
4 credits. Not offered 1990-91.]

365 Art from 1940 to the Present
Spring. 4 credits.
Major artists and movements in the United States since 1940, beginning with Jackson
Pollock and Abstract Expressionism, and continuing through recent developments in art.
Attention is devoted to the critical reception that artists have received and to the artists'
statements themselves.

371 Architectural History of Washington, D.C.
Fall or spring. Variable credit. Only for students in the Cornell-in-Washington
program. Only for non-architects.
P. Scott.
A historical and critical survey of the architecture of Washington. Attention will be given to
the periods, styles, architects, and clients—public and private—of the notable buildings
and the urban scope of the nation's capital. The vocabulary of architectural analysis and
criticism will be taught. Field trips required.

[376 Painting and Sculpture in America:
1850-1950
4 credits. Not offered 1990-91. T. W. Levit.]n

[380 Introduction to the Arts of China
4 credits. Not offered 1990-91. M. W. Young.]

[381 Buddhist Art in Asia

[383 The Arts of Early China
4 credits. Not offered 1990-91. M. W. Young.]

[384 The Arts of Japan
4 credits. Not offered 1990-91. M. W. Young.]

S. J. O'Connor.

The Arts of Southeast Asia

Spring. 4 credits.

The arts of Southeast Asia will be studied in their social context since in traditional societies art plays a role in most of the salient occasions of life. Special emphasis will be devoted to developments in Cambodia, Thailand, and Bali. Among topics covered will be the shadow puppet theater of Java, ceramics, architecture, and sculpture.

Seminars

Courses at the 400 and 500 level are open to upperclass students, majors, and graduate students. All seminars involve the writing and presentation of research papers. Enrollment is limited to 15 students, and permission of the instructor is required. Students may repeat courses that cover a different topic each semester.

400 Proseminar for Art History Majors: The History and Practice of Art History

Fall. 4 credits. Prerequisite: History of Art majors only. Enrollment is limited.

This seminar, limited to majors in the department, will serve a dual purpose. It will provide intensive training in the skills of visual analysis, critical method, and writing. Five short papers will be assigned, each analyzing a different art form and type of art-historical problem, from connoisseurship and stylistic analysis to research in the social history of art. The course will also provide a basic introduction to the historiography of the field and major writers and modes of inquiry that have been adopted for the study of the visual arts and architecture. Readings will include selections from Heinrich Wolfflin, Roger Fry, Erwin Panofsky, Jacob Rosenberg, and Michael Fried.

401 Independent Study

Fall or spring. 2-4 credits. May be repeated for credit. Prerequisite: permission of a department faculty member.

Hours to be arranged. Staff.

Individual investigation and discussion of special topics not covered in the regular course offerings, by arrangement with a member of the department.

402 Independent Study

Fall or spring. 2-4 credits. May be repeated for credit. Prerequisite: permission of a department faculty member.

Hours to be arranged. Staff.

Individual investigation and discussion of special topics not covered in the regular course offerings, by arrangement with a member of the department.

[404 Women Artists (also Women's Studies 404)](#) Fall. 4 credits. Not offered 1990-91.

J. E. Bernstock.

406 Introduction to Museums

2 credits. Not offered 1990-91.

T. W. Leavitt.

407 Seminar on Museum Issues

Fall. 4 credits. Class will meet in the Herbert F. Johnson Museum of Art. Prerequisite: permission of instructor.

This course will explore the issues, ideas, problems, and opportunities faced by art museums in contemporary American society. The nature of museum research, the theory of museum education, connoisseurship, effective museum leadership, and the role of art museums in American cultural life will be discussed.

421 History of Art Criticism

Spring. 4 credits. Prerequisite: permission of the instructor.

An introduction to the work of some of those art critics who had a powerful impact on the way their contemporaries perceived, valued, and discussed art. Representative works will be studied with attention both to the critic's central aesthetic concerns and also to characteristic qualities of argument and expression. Among the critics to be considered will be Fromentin, Reynolds, Ruskin, Pater, Baudelaire, Fry, Bell, and Greenberg.

[422 Ceramics (also Classics 423 and Archaeology 423)](#) 4 credits. Not offered 1990-91.

A. Ramage.

[427 Seminar on Roman Art (also Classics 435)](#) 4 credits. Not offered 1990-91.

J. Whitehead.

[431 Greek Sculpture (also Classics 431)](#) 4 credits. Not offered 1990-91.

A. Ramage.

[432 Sardis and the Cities of Asia Minor (also Archaeology 432 and Classics 432)](#) 4 credits. Not offered 1990-91.

A. Ramage.

[434 The Rise of Classical Greece (also Classics 434)](#) 4 credits. Prerequisite: Classics 220 or History of Art 220, Classics 221 or History of Art 221, or permission of instructor. Not offered 1990-91.

P. Kuniholm.

C. Lazzaro.

448 Studies in Sixteenth-Century European Art

Fall. 4 credits. Prerequisite: permission of the instructor.

R 2:30-4:30. C. Lazzaro.

Topic for fall 1990: Concepts of Mannerism. A critical study of the concept of Mannerism and a detailed investigation of several specific paintings, buildings, and other sixteenth-century works that are considered to be Mannerist. Weekly reading assignments will be discussed in class. A term paper on a topic of the student's choice is required. Open to undergraduates with some background in Renaissance art and to graduate students.

[449 Studies in Italian Renaissance Art](#) Fall. 4 credits. Not offered 1990-91.

C. Lazzaro.

450 Women in Italian Renaissance Art

Spring. 4 credits. Prerequisite: permission of the instructor.

T 2:30-4:30. C. Lazzaro.

In this seminar, representations of women—biblical and historical heroines, mythological figures, and portraits, primarily in paintings, but also in prints and sculpture—will be examined in their social as well as artistic context. Among the topics to be discussed are: moralizing stories directed at women that are represented on fifteenth-century cassoni, or marriage chests, and similar domestic paintings; Italian versions of the popular "power of women" subjects in Northern prints; gender difference in the conventions of Renaissance portraiture; the representation of the female nude; the rise of mythological subjects and male delectation as a function of painting; allegories of chastity, love, and lust in painting and prints; the role of the female in sixteenth-century political allegory.

C. Lazzaro.

461 Fin-de-siècle Cultures in Europe, England, and America

Spring. 4 credits. Prerequisite: permission of the instructor. Auditing is not permitted.

W 2:30-4:30. L. L. Meixner.

This seminar poses the question of whether there existed a fin-de-siecle mentality in Europe and America of the 1890s. Artists including Toulouse-Lautrec, Beardsley, and Munch will be studied within the larger literary and social contexts of their day, including popular culture and theatre. Readings and student presentations will emphasize interdisciplinary approaches and research methods ranging from new historicism to psychoanalytical art history. American artists examined will include Albert P. Ryder, John Singer Sargent, Winslow Homer, Thomas Eakins. Utopian novels, the writings of both Henry and William James, and the modern scholarship of T. J. Jackson Lears and Walter Benn Michaels will provide background for discussion.

462 The Social History of Art: Images of Labor and Problems in the Tradition of European Genre Painting, ca. 1550-1880

C. Lazzaro.

463 Sardis and the Cities of Asia Minor (also Archaeology 432 and Classics 432)

A. Ramage.

464 The Rise of Classical Greece (also Classics 434)

4 credits. Prerequisite: Classics 220 or History of Art 220, Classics 221 or History of Art 221, or permission of instructor. Not offered 1990-91.

P. Kuniholm.

465 The Social History of Art: Images of Labor and Problems in the Tradition of European Genre Painting, ca. 1550-1880

C. Lazzaro.

466 Fin-de-siècle Cultures in Europe, England, and America

Spring. 4 credits. Prerequisite: permission of the instructor. Auditing is not permitted.

W 2:30-4:30. L. L. Meixner.

This seminar poses the question of whether there existed a fin-de-siecle mentality in Europe and America of the 1890s. Artists including Toulouse-Lautrec, Beardsley, and Munch will be studied within the larger literary and social contexts of their day, including popular culture and theatre. Readings and student presentations will emphasize interdisciplinary approaches and research methods ranging from new historicism to psychoanalytical art history. American artists examined will include Albert P. Ryder, John Singer Sargent, Winslow Homer, Thomas Eakins. Utopian novels, the writings of both Henry and William James, and the modern scholarship of T. J. Jackson Lears and Walter Benn Michaels will provide background for discussion.
462 Barbizon and Impressionist Art in Nineteenth-Century France
Fall. 4 credits. Prerequisite: permission of the instructor. No auditing permitted.
W 2-30-4-30. L. L. Meixner.
The art of the Barbizon community is of central significance to the development of French painting during the second half of the nineteenth century. This group of painters, who lived in a rural peasant community where they worked out-of-doors, brought both images of labor and landscape into a new era of social conflict. Reflecting the awakened democratic sensibilities of the 1850s, certain artists portrayed the epic quality of rural labor. Others developed new landscape styles. The results were of great importance to the young French Impressionists. The seminar will examine both Barbizon genre and landscape art through the works of Jean-François Millet, Theodore Rousseau, Camille Corot, Diaz de la Peña, and others. It will also focus on Claude Monet, Camille Pissarro, and Vincent van Gogh, who were deeply influenced by their Barbizon precursors. Readings and discussions will emphasize recent scholarship that treats Impressionist images from the perspective of social history. Also, the relationships between painters and writers, such as Sand, Zola, Mallarmé, will be explored.

463 Studies in Modern Art
Fall. 4 credits. Prerequisite: permission of the instructor. No auditing permitted.
T 2:30-3:30. J. E. Bernstock.
Topic to be announced.

464 Studies in Modern Art
Spring. 4 credits. Prerequisite: permission of instructor. Auditing is not permitted.
T 2:30-3:30. J. E. Bernstock.

465 Seminar in American Art
T. W. Leavitt.

466 Impressionism in America and France
L. L. Meixner.

467 Post-Impressionism in France
L. L. Meixner.

468 The Arts in Modern China
M. W. Young.

469 Ceramic Art of China and Southeast Asia
Fall. 4 credits. Prerequisite: permission of the instructor.
T 2:30-4:30. S. J. O’Connor.
Chinese ceramics were a staple of the traditional trade of Asia for one thousand years. High-fired ceramics were also produced in Thailand and Vietnam to supply the brisk demand in maritime Southeast Asia. The Johnson Museum collection will be studied within the context of trade patterns and trading sites in the South China Seas.

470 Chinese Art of the Tang Dynasty
M. W. Young.

471 Studies in Japanese Art and Architecture

472 The Ceramic Arts of Japan

473 Studies in Chinese Painting
M. W. Young.

474 Traditional Arts of Southeast Asia
S. J. O’Connor.

475 Japanese Prints

531 Problems in Medieval Art and Architecture
R. G. Calkins.

540 Seminar in Renaissance Art
C. Lazzaro.

545 Seminar in Baroque Art

564 Problems in Modern Art: Post-1940 American Art
S. J. O’Connor.

565 Problems in Asian Art
S. J. O’Connor.

591-592 Supervised Reading
591, fall; 592, spring. 4 credits. May be repeated for credit. Limited to graduate students.
Staff.

595 Methodology Seminar
R. G. Calkins.

596 Problems in Art Criticism
S. J. O’Connor.

600 Honors Work
Fall or spring. 4 credits. Intended for senior art history majors who have been admitted to the honors program.
Hours to be arranged. Staff.
Basic methods of art historical research will be discussed and individual readings assigned, leading to the selection of an appropriate thesis topic.

601 Honors Work
Fall or spring. 4 credits. Prerequisite: History of Art 600.
Hours to be arranged. Staff.
The student under faculty direction will prepare a senior thesis.

INDONESIAN
See Department of Modern Languages and Linguistics.

ITALIAN LANGUAGE AND LINGUISTICS
See Department of Modern Languages and Linguistics.

ITALIAN LITERATURE
See Department of Romance Studies.

JAPANESE
See Departments of Asian Studies and Modern Languages and Linguistics.

JAVANESE
See Department of Modern Languages and Linguistics.

KHMER (CAMBODIAN)
See Department of Modern Languages and Linguistics.

KNIGHT, JOHN S., WRITING PROGRAM
See John S. Knight Writing Program, p. 311.

LATIN
See Department of Classics.

LINGUISTICS
A. Cohn, director of undergraduate studies (216 Morrill Hall, 255-3073).
See Department of Modern Languages and Linguistics.

MATHEMATICS
(Emertius: W. Fuchs, A. Rosenberg)

Mathematics is the language of modern science; basic training in the discipline is essential for those who want to understand, as well as for those who want to take part in, the important scientific developments of our time. Acquaintance with mathematics is also extremely useful for students in the social sciences and valuable for anyone interested in the full range of human culture and the ways of knowing the universe in which we live.
The Department of Mathematics faculty has strong groups specializing in algebra, number theory, real and complex analysis, Lie groups, topology and geometry, logic, probability and statistics, mathematical physics, and applied mathematics. Related departments at Cornell have specialists in computer science, operations research, linear programming, and game theory, and courses in these topics can be integrated readily into the mathematics major.

The department offers a rich variety of undergraduate courses, and many of its beginning graduate courses are suitable for advanced undergraduates as well. Under some conditions, a student may carry out an independent reading and research project for college credit under the supervision of a faculty member.

Members of the department are available to discuss with students the appropriate course for their levels of ability and interest, and students are urged to avail themselves of this help. Students who want to take any of the courses numbered 300 or above are invited to confer, before registering, with the instructor concerned. The level of a course is indicated by the first digit of the course number: roughly, 1, 2, indicate underclass courses; 3, 4, upperclass courses; 5, 6, graduate courses. The subject matter of courses is indicated by the second digit: 0, general; 1, 2, analysis; 3, 4, algebra; 5, 6, topology and geometry; 7, probability and statistics; 8, logic; 9, other.

Midterm grades, when required, will be 5 or U only, except in special circumstances. In all 600-level courses, in all grades will be S-U only, except in special circumstances. In all course with numbers below 600, students will receive letter grades, with the exception of non-mathematics majors who have requested an S-U grade.

Advanced Placement

Secondary school students are strongly urged to take one of the two advanced placement examinations of the College Entrance Examination Board in their senior year. Freshmen who have had some calculus but who have not taken an advanced placement examination should take the placement examination in mathematics offered at Cornell just before the beginning of classes in the fall. It is most important that anyone with any knowledge of calculus carefully read "Advanced Placement of Freshmen," p. 6.

The Major

The mathematics major adapts to a number of purposes. It can emphasize the theoretical or the applied. It can be appropriate for professionals and nonprofessionals alike. It can be broad or narrow. Questions concerning the major should be brought to a departmental representative.

For students interested in secondary school teaching there are several programs available, including a five-year B.S./M.A.T. program. These programs are administered jointly by the departments of Education and Mathematics.

For more information, contact Professors D. Henderson or A. Solomon (mathematics), or Professors J. Confrey or J. Volmink (education).

Prerequisites: The preferred prerequisites are Mathematics 221-222 or 293-294. A unit infinite series is required. Such a unit is offered in Mathematics 112, 122, and 192. Normally students will be admitted to the major only when they have grades of B- or better in all sophomore-level mathematics courses they have taken. Alternative prerequisites are Mathematics 213, 231, normally with grades of B+ or better.

Requirements

There are five requirements for the major:

1) Computer Science 100 Students are urged to take this course before the end of the sophomore year.

2) Two courses in algebra. Eligible courses are Mathematics 431 or 433, 432 or 434 or 352, 356.

3) Two courses in analysis. Eligible courses are Mathematics 411 or 413, 412 or 414, 418, 421, 422, 423.

4) Further high-level mathematical courses. Any one of the following is sufficient:
 a) three mathematics courses numbered 571 or higher, other than those used to satisfy the previous two requirements. Computer Science 621 and/or 622 may also be used toward satisfying this requirement.
 b) four Computer Science courses numbered 310 or higher.
 c) four Operations Research and Industrial Engineering courses numbered 320 to 383 or 431 to 472, but not 350.

5) One course dealing with mathematical models. Any one of the following is sufficient:
 a) Mathematics 305 (not offered every year).
 b) Physics 208, 213, or 217.
 c) Computer Science 211, provided no Computer Science course has been used toward satisfying the previous requirement.

6) One course other than Physics 112 or 207 from outside mathematics with serious mathematical content and dealing with scientific matters, provided the course has not been used toward satisfying the previous requirement.

Major advisers can alter these requirements upon request of an advisee, provided the intent for the requirements is met.

Sample Major Programs

Below are some suggestions for what the schedule of a student with a mathematics major might look like. Many variations are possible.

For Graduate School in Mathematics

First two years: Mathematics 111-122-221-222, Computer Science 100, Physics 207-208.

Last two years: Mathematics 433-434, 413-414, 453-454; two of 418, 428, 471.

The sophomore courses Mathematics 211-222 are more suitable than 293-294 in this case. A student planning to enter graduate school may get by with 411-412 and 431-432 instead of the honors versions 413-414 and 433-434, but the honors versions are strongly recommended.

For Many Technical Careers

First two years: Mathematics 111-122-221-222 or 191-192-253-294, Computer Science 100-211, Physics 112-213 or 207-208.

Last two years: Mathematics 431-336, 421-422, 428, 471-472.

Two or more semesters of computer science are highly recommended.

For Emphasis on Computer Science

First two years: Mathematics 111-122-221-222, Computer Science 100-211.

Last two years: Mathematics 431-432, 421-422, Computer Science 314, 381, 410, 414, 421.

Requirement 5 is met by Computer Science 391 in this sample program. Students interested in computer science should give consideration to a double major in mathematics and computer science.

For Emphasis on Operations Research

First two years: Mathematics 111-122-221-222 or 191-192-293-294, Computer Science 100-211.

Last two years: Mathematics 431-432, 421-422, 471; Operations Research and Industrial Engineering 320, 321, 361, two of 431, 432, 435, and possibly 462 or 471.

For Prelaw or Premed (first example)

First two years: Mathematics 111-122-221-222, Computer Science 100, Physics 207-208.

Last two years: Mathematics 431-336, 411-421, 381, 471-472.

The sophomore courses Mathematics 221-222 are recommended rather than 293-294 in this sample because they provide better preparation for 411.

For Prelaw or Premed (second example) or Prebusiness

First two years: Mathematics 111-122-213-231, Computer Science 100-211.

Last two years: Mathematics 332-336, two of 411-421-418, and also 381, 403, 451.

A course in statistics is also strongly recommended.

For Secondary School Teachers

First two years: Mathematics 111-122-221-222, Computer Science 100.

Last two years: Mathematics 431-336, 411-421, 451, 403, 471, 408.

Honors. Honors in mathematics will be awarded on the basis of a high level of performance in departmental courses. Further requirements, if any, will be announced during the year.

Distribution Requirement

The distribution requirement is satisfied in mathematics by any 6 credits, not including more than one course from Mathematics 105 or 403. Computer Science 100 may be used for three of these credits. The mathematics distribution requirement is also satisfied by a score of 3 or higher on the CEEB calculus BC examination. Mathematics 109 or ALS 115 (College of Agriculture and Life Sciences) may not be used to satisfy the requirement.
Basic Sequences

Precalculus

<table>
<thead>
<tr>
<th>Description</th>
<th>Course</th>
<th>Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) Algebra and trigonometry to prepare students for calculus</td>
<td>Mathematics 109* or Life Sciences 5*</td>
<td></td>
</tr>
<tr>
<td>2) Algebra, analytic geometry, and elements of calculus</td>
<td>Life Sciences 115**</td>
<td></td>
</tr>
</tbody>
</table>

*Mathematics 109 and ALS 5 do not carry credit for graduation.

**Students who want a second semester of mathematics after ALS 115 may take Mathematics 105 or if they need more calculus, 111.

Calculus

<table>
<thead>
<tr>
<th>Description</th>
<th>Course</th>
<th>Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) Standard three-semester sequence for students who do not expect to take advanced courses in mathematics</td>
<td>Mathematics 111–112–123</td>
<td></td>
</tr>
<tr>
<td>2) Usual sequence for prospective mathematics majors and others who expect to take advanced courses in mathematics</td>
<td>Mathematics 111–122–221–222</td>
<td></td>
</tr>
<tr>
<td>3) Calculus for engineers (also taken by some physical science majors)</td>
<td>Mathematics 191–192–293–294</td>
<td></td>
</tr>
</tbody>
</table>

Mathematics 191 may be substituted for 111 in sequences 1 and 2. Sequences 2 and 3 are two-year sequences that include some linear algebra.

Students who take sequence 1 may learn some linear algebra by taking Mathematics 231. A student whose performance in 112 is exceptional may switch to sequence 2 and take 221.

Special-Purpose Sequences

<table>
<thead>
<tr>
<th>Description</th>
<th>Course</th>
<th>Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) Finite mathematics and calculus for biology majors</td>
<td>Mathematics 105–106</td>
<td></td>
</tr>
<tr>
<td>2) Other possible finite mathematics and calculus sequence</td>
<td>Mathematics 105–111</td>
<td></td>
</tr>
</tbody>
</table>

Students who want to take two semesters of calculus are advised to take the first two semesters of one of the three calculus sequences. It is also possible to follow Mathematics 106 with 112 or 122.

Switching between calculus sequences is often difficult, especially at the 200-level. Students should not attempt such a switch without consulting the associate chair.

Courses with Overlapping Content

Because the department offers many courses with overlapping content, students must choose their courses carefully to ensure that they will receive credit for each course they take. Listed below are groups of courses with similar content. Students will receive credit for only one of the courses in each group.

<table>
<thead>
<tr>
<th>Course</th>
<th>Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>105</td>
<td>213 and 294</td>
</tr>
<tr>
<td>106, 111, 191</td>
<td>213 and 222</td>
</tr>
<tr>
<td>112, 122, and 192</td>
<td>221, 294, and 231</td>
</tr>
<tr>
<td>132 and 332</td>
<td>332 and 432</td>
</tr>
<tr>
<td>213 and 293</td>
<td>372 and 472</td>
</tr>
</tbody>
</table>

Fees

In some courses there may be a small fee for photocopying materials to be handed out to students.

Basic Sequences

105 Finite Mathematics for Biologists (also Theoretical and Applied Mechanics 106) Fall or summer. 3 credits. Prerequisite: three years of high school mathematics, including trigonometry and logarithms.*

Lecs, T R 12:20, plus 2 hours to be arranged. Prelims: 7:30 p.m., Sept. 24, Nov. 1, Dec. 6.

Mathematical modeling, sets, functions, and graphing (including use of log and semi-log paper). Probability (with some applications to genetics). Matrices, systems of linear equations, and Markov chains. Examples from biology are used.

106 Calculus for Biologists (also Theoretical and Applied Mechanics 106) Spring. 3 credits. Prerequisite: Mathematics 105 or 109 or ALS 115 or permission of instructor. (A strong background in functions is required.) Mathematics 111, rather than 106, is recommended for those planning to take 112.*

Lecs, T R 11:15, plus 2 hours to be arranged. Prelims: 7:30 p.m., Feb. 19, Mar. 28, Apr. 25.

Introduction to differential and integral calculus, partial derivatives, elementary differential equations. Examples from biology are used.

109 Precalculus Mathematics Summer. 3 transcript credits only; cannot be used toward graduation.

M–F 8:30.

This course is designed to prepare students for Mathematics 111. Algebra, trigonometry, logarithms, and exponentials are reviewed.

111 Calculus Fall, spring, or summer. 4 credits. Limited to 22 students a section. Prerequisite: Mathematics 109 or three years of high school mathematics, including trigonometry.

Hours to be arranged. Prelims: fall, 7:30 p.m., Oct. 2, Nov. 1, Nov. 29; spring, 7:30 p.m., Feb. 19, Mar. 21, Apr. 25.

Plane analytic geometry, differentiation and integration of algebraic and trigonometric functions, applications of differentiation, logarithmic and exponential functions. One section will be taught experimentally with use of computers in fall term.

*See the list of courses with overlapping content at the end of the introduction.

112 Calculus Fall, spring, or summer. 4 credits. Limited to 22 students a section. Prerequisite: Mathematics 106 or 111 with a grade of C or better. Those who do extremely well in Mathematics 111 should take 122 instead of 112, unless they plan to continue with 213.*

Hours to be arranged. Prelims: fall, 7:30 p.m., Oct. 2, Nov. 1, Dec. 6; spring, 7:30 p.m., Feb. 19, Mar. 28, Apr. 25.

Methods and applications of integration, plane curves and polar coordinates, vectors and solid analytic geometry, introduction to partial derivatives. One section will be taught experimentally with use of computers in spring term.

122 Calculus Fall or spring. 4 credits. Prerequisite: performance at a high level in Mathematics 111 or permission of the department. Students planning to continue with Mathematics 213 are advised to take Mathematics 112 instead of this course.*

Fall: M W F 10:20, or 11:15, plus one hour to be arranged. Spring: M W F 11:15 or 12:20, plus one hour to be arranged. Prelims: fall, 7:30 p.m., Oct. 2, Nov. 1, Dec. 6; spring, 7:30 p.m., Feb. 19, Mar. 28, Apr. 25.

Differentialiation and integration of elementary transcendental functions, the techniques of integration, applications, polar coordinates, infinite series, and complex numbers, as well as an introduction to proving theorems. The approach is more theoretical than in Mathematics 112.

191 Calculus for Engineers Fall. 4 credits. Prerequisite: three years of high school mathematics, including trigonometry.

Lecs, M W F 9:05 or 11:15, plus 2 hours to be arranged. Prelims: 7:30 p.m., Oct. 4, Nov. 1, Dec. 6.

Plane analytic geometry, differential and integral calculus, and applications.

192 Calculus for Engineers Fall, spring, or summer. 4 credits. Prerequisite: Mathematics 191.

Fall: Lecs, M W F 9:05 or 11:15, plus 2 hours to be arranged. Spring: lecs, M W F 9:05 or 11:15, plus 2 hours to be arranged. Prelims: fall, 7:30 p.m., Oct. 4, Nov. 1, Dec. 6; spring, 7:30 p.m., Feb. 19, Mar. 28, Apr. 25.

Methods of integration, hyperbolic functions, polar coordinates, infinite series, complex numbers, introduction to partial derivatives, introduction to surface and volume integrals.

213 Calculus Fall, spring, or summer. 4 credits. Prerequisite: Mathematics 112, 122, or 192.

Lecs M W F 10:10, plus 2 hours to be arranged. Prelims: fall, 7:30 p.m., Nov. 8, Nov. 29; spring, 7:30 p.m., Feb. 21, Apr. 2.

*See the list of courses with overlapping content at the end of the introduction.
221 Linear Algebra and Calculus
Fall or spring. 4 credits. Prerequisite: Mathematics 122 with a grade of B or better, or permission of instructor.
Fall: M W F 9:05, 10:10, or 11:15, plus one hour to be arranged. Spring: M W F 10:10 or 11:15, plus one hour to be arranged. Prelims: fall, 7:30 p.m., Sep. 27, Nov. 1, Dec. 6, spring, 7:30 p.m., Feb. 21, Mar. 26, Apr. 30.
Linear algebra and differential equations. Topics: Basic linear algebra, linear transformations, matrices, linear differential equations, as well as an introduction to proving theorems.

222 Calculus
Fall or spring. 4 credits. Prerequisite: Mathematics 221.
Fall: M W F 11:15 or 12:20, plus one hour to be arranged. Spring: M W F 9:05 or 10:10 or 11:15, plus one hour to be arranged.
Vector differential calculus, calculus of functions of several variables, multiple integrals.

293 Engineering Mathematics
Fall, spring, or summer. 4 credits. Prerequisites: Mathematics 106 plus a knowledge of computer programming equivalent to that taught in Engineering Common Courses 105. In exceptional circumstances, Mathematics 192 and 293 may be taken concurrently.
Fall: Lecs, M W 10:10, 11:15, or 12:20, plus one hour to be arranged, plus four three-hour computer labs during the semester. Spring: Lecs, M W 10:10 or 12:20, plus one hour to be arranged, plus four three-hour computer labs during the semester. Prelims: fall, 7:30 p.m., Sept. 27, Nov. 1, Nov. 29; spring, 7:30 p.m., Feb. 21, Mar. 26, Apr. 30.
Introduction to physical vectors, linear algebra and matrix theory, inner product spaces. Includes microcomputer use in solving problems.

294 Engineering Mathematics
Fall, spring, or summer. 4 credits. Prerequisite: Mathematics 293.
Fall: Lecs, M W 10:10 or 12:20, plus one hour to be arranged, plus four three-hour computer labs during the semester. Spring: Lecs, 10:00, 11:15, or 12:20, plus one hour to be arranged, plus four three-hour computer labs during the semester. Prelims: fall, 7:30 p.m., Sept. 27, Nov. 1, Nov. 29; spring, 7:30 p.m., Feb. 21, Mar. 26, Apr. 30.

General Courses

101 History of Mathematics
Summer. 4 credits. Prerequisite: three years of high school mathematics. The history of the main ideas of mathematics from Babylonian, Egyptian, and Greek times to the present day.

*See the list of courses with overlapping content at the end of the introduction.

103 Mathematical Explorations
Fall. 3 credits. Limited to 15 students. This course may be used to satisfy the distribution requirement in mathematics. Lecs, TR 8:40. This course is for students who wish to experience how mathematical ideas naturally evolve; especially for students who have not yet found mathematics to be a world in which they move comfortably. The homework will consist in the students actively investigating mathematical ideas such as the nature of infinity and geometric reality and the ideas leading to calculus. The course will emphasize ideas and imagination as opposed to techniques and calculations.

104 Mathematics and Art
Fall. 3 credits. Limited to 12 students. Does not satisfy the mathematics distribution requirement; for graduation credit only. Not offered 1990-91. The impact of mathematical ideas on the arts and the impact of the arts on mathematical ideas through the ages, with a special emphasis on theories of perspective in the visual arts. The course will be cooperatively taught by a mathematician and an art historian. There will be both mathematical and artistic assignments based on these readings of original works.

117 Foundations of Calculus
3 credits. Limited to 18 students. Not offered 1990-91. Prerequisite: Mathematics 111 or 106 or equivalent. May be used toward the mathematics distribution requirement. Intended either for nonscience majors who will not need the conventional second-semester calculus course or for future math or science majors who would like to deepen their understanding before going on in calculus. This course delves into the questions concerning limits and infinite processes that puzzled scholars for over two thousand years. Students study anew the real number system, the theory of limits, continuity, differentials, derivatives, and the definite integral. The pedagogical method is partly historical, viewing the development of these interlocked topics from the time of the ancient Greeks (Zeno's paradoxes, the discovery of irrationals, Eudoxus' Method of Exhaustion, and the work of Archimedes) through the seventeenth-century work of Fermat, Newton, and Leibniz and into modern times. Readings of excerpts from original manuscripts are compared with the descriptions of the same material given in a standard beginning calculus book.

123 Analytic Geometry and Calculus
Summer. 4 credits. Prerequisite: High school mathematics through trigonometry and plane analytic geometry. The honors section of Math 111. Covers the same topics more deeply (at the level of Apostol's Calculus).

150 From Space to Geometry
Spring. 4 credits. Enrollment limited to 18 students. Not offered 1990-91. Over the centuries mathematicians have interpreted the concept of "space" in numerous ways. This course will survey some of these approaches from the time of Euclid to the later perspective of non-Euclidean systems. We will evaluate the impact of these viewpoints on such concepts as distance, angle measurement, straightness and curvature, dimension, and surface. We will make and analyze models to get a feel for the concepts and to assess the relevance of various approaches to geometry.

151 The Geometry of Tilings, Polyhedra, and Structural Engineering
Spring. 3 credits. Limited to 15 students. Not offered 1990-91. An introduction to topics in geometry, including the classification of tilings by the group of symmetries, and examples of artists such as Escher, the aperiodic tilings of R. Penrose, the study of polyhedra, Euler's formula, regular polyhedra, lattices that draw straight lines, "Buckminster Fuller's" geodesic domes, and tensegrities. Emphasis will be on the geometric ideas involved, with formal proofs studied only as needed for overall understanding.

200 Basic Concepts of Mathematics
Summer. 3 credits. Prerequisite: a good knowledge of high school mathematics, including trigonometry. Discussion of basic ideas in mathematics drawn from algebra and topology. An example of the problems treated is the proof of the impossibility of trisecting an angle by ruler and compass. Suitable for teachers, prospective teachers, and high school students with a strong interest in mathematics.

227 Mathematical Model Modeling
Spring. 4 credits. Limited to 25 students. Prerequisite: Mathematics 111 or 106 or equivalent. May be used to satisfy the mathematics distribution requirement. Not intended for upperclass science majors. Mathematical modeling is the process of bringing mathematical methods to bear on problems arising in the real world. In this course students will study selected mathematical models, learn general modeling techniques, and gain experience in constructing original mathematical models and comparing their predictions with reality, both to appreciate the usefulness of mathematical models and to be aware of their limitations.

305 Mathematics in the Real World
Summer. 4 credits. Not offered 1990-91. Selected uses of mathematics to solve current relevant problems, illustration of, and active student involvement in, the complete applied mathematical methodology.

403 History of Mathematics
Spring. 4 credits. Prerequisites: two courses in mathematics above 300, or permission of instructor. T R 1:25-2:40. Survey of the development of mathematics from antiquity to the present, with an emphasis on the achievements, problems, and mathematical viewpoints of each historical period and the evolution of such basic concepts as number, geometry, construction, and proof. Readings from original sources in translation. Students will be required to give oral and written reports.

408 Mathematics in Perspective
Spring. 4 credits. Prerequisite: consent of instructor (intended for senior mathematics majors and other students with strong mathematics backgrounds). The purpose of this course is for students to step back and to form an overview of the mathematics which they have learned.

490 Supervised Reading and Research
Fall, spring, or summer. 1-6 credits. Supervised reading and research by arrangement with individual professors. Not applicable for material currently available in regularly scheduled courses.
ARTS AND SCIENCES

508 Mathematics for Secondary School Teachers
Fall, spring, or summer. 1-6 credits. Prerequisite: secondary school mathematics teacher, graduate standing, or permission of instructor. May not be taught every semester.
An examination of the principles underlying the content of the secondary school mathematics curriculum, including connections with the history of mathematics and current mathematics research.

690 Supervised Reading and Research
Variable credit (maximum 6 each term).

Analysis

411-412 Introduction to Analysis
411, fall, 412, spring. 4 credits each term. Prerequisite: Mathematics 222. Students who need measure theory and Lebesgue integration for advanced probability courses should take Mathematics 413-414 or arrange to audit the first few weeks of Mathematics 221. Undergraduates who plan to attend graduate school in mathematics should take 413-414.
T R 8:40-9:55.
An introduction to the theory of functions of real variables, stressing rigorous logical development of the subject rather than technique of applications. Topics include Euclidean spaces, the real number system, continuous and differentiable functions, Riemann integral, uniform convergence and approximation theorems, Fourier series, calculus in several variables, and differential forms.

413-414 Introduction to Analysis
413, fall; 414, spring. 4 credits each. Prerequisite: Mathematics 222.
413: T R 8:40 or 10:10; Prelims: 7:30 p.m., Oct. 16, Nov. 27; 414: T R 8:40.
Honors version of Mathematics 411-412.
Metric spaces are included in Mathematics 413, and 413 precedes at a faster pace than 411.
The second semester includes an introduction to the Lebesgue integral.

418 Introduction to the Theory of Functions of One Complex Variable
Spring. 4 credits. Prerequisite: Mathematics 222 or 294 or 213. May be offered only in alternate years.
T R 10:10-11:25.
A rigorous introduction to complex variable theory. Complex numbers. Differential and integral calculus for functions of a complex variable, including Cauchy's theorem and the calculus of residues. Elements of conformal mapping.

Applied Mathematics and Differential Equations

421 Applicable Mathematics
Fall, spring, or summer. 4 credits. Prerequisite: high level of performance in Mathematics 294, or 221 and 222, or 213 and 231.
Graduate students who need mathematics extensively in their work and who have had a solid advanced calculus course and complex variable courses, should take Mathematics 515-516. With less preparation, they should take Mathematics 421-422-423.
T W R F 9:05 or 12:20. Prelims: fall, 7:30 p.m., Oct. 16, Nov. 27; spring, 7:30 p.m., Mar. 5, Apr. 18.

422 Applicable Mathematics
Fall, spring, or summer. 4 credits. Prerequisite: Mathematics 421.
T W R F 12:20. Prelims: fall, 7:30 p.m., Oct. 16, Nov. 27; spring, 7:30 p.m., Mar. 5, Apr. 18.

423 Applicable Mathematics
Fall or spring. 4 credits. Prerequisite: Mathematics 421; however, students who have not taken 422 should talk to the instructor before taking this course.
T W R F 12:20. Prelims: fall, 7:30 p.m., Oct. 16, Nov. 27; spring, 7:30 p.m., Mar. 5, Apr. 18.

425 Numerical Solutions of Differential Equations
Spring. 4 credits. Prerequisites: Mathematics 222 or 294, one course numbered 300 or higher in mathematics, and Computer Science 321, or permission of instructor. This course is a natural sequel to Computer Science 321. Methods and basic theory for the numerical solution of ordinary and partial differential equations. Linear multistep methods, Runge-Kutta methods, and the problem of stiffness for ordinary differential equations. Finite difference methods and Galerkin finite element methods for partial differential equations. Homework will involve use of a computer.

427 Introduction to Ordinary Differential Equations
Fall. 4 credits. Prerequisite: Mathematics 222 or 294 or permission of instructor.
T R 8:40.
Covers the basic existence, uniqueness, and stability theory together with methods of solution and methods of approximation. Topics include singular points, series solutions, Sturm-Liouville theory, transform methods, approximation methods, and application to physical problems.

428 Introduction to Partial Differential Equations
Spring. 4 credits. Prerequisite: Mathematics 222 or 294 or permission of instructor.
T R 10:10-11:25.
Topics selected from first-order quasilinear equations, classification of second-order equations, with emphasis on maximum principles, existence, uniqueness, stability. Fourier series methods, approximation methods.

Algebra

431 Linear Algebra
Spring or summer. 3 credits. Prerequisite: Mathematics 111 or equivalent.*
Vectors, matrices, and linear transformations, affine and Euclidean spaces, transformation of matrices, and eigenvalues.
*See the list of courses with overlapping content at the end of the introduction.

432 Algebra and Number Theory
Fall. 4 credits. Prerequisites: one year of calculus and one course from Mathematics 221, 231, and 294. Mathematics 332 does not satisfy prerequisites for courses numbered 500 and above.
M W F 9:05.
Various topics from modern algebra and number theory, usually including rings, fields, and finite groups. Motivation and examples are derived mostly from geometry, arithmetic, and congruence problems on the integers.

433 Applicable Algebra
Fall or spring. 4 credits. Prerequisites: Mathematics 221, 294, or 231.
Fall: M W F 10:10; spring: M W F 9:05.
An introduction to concepts and methods of abstract algebra that are of importance in science and engineering. Applications of the theory to concrete problems will be stressed. Each year the course will treat aspects usually chosen from the following topics: partially ordered sets, lattices, graph theory, and Boolean algebras; finite machines and languages; applications of groups, fields, and modular arithmetic, such as Latin squares, elementary coding theory, or fast Fourier transform; difference equations. Additional topics may be chosen by the instructor.

431-432 Introduction to Algebra
431, fall or spring or summer; 432, spring. 4 credits each. Prerequisite: Mathematics 221 or 231.
Graduate students who plan to attend graduate school in mathematics should take 433-434.
431: An introduction to linear algebra, including the study of vector spaces, linear transformations, matrices, and systems of linear equations; quadratic forms and inner product spaces; canonical forms for various classes of matrices and linear transformations; determinants. 432: An introduction to various topics in abstract algebra, including groups, rings, fields, factorization of polynomials and integers, congruences, and the structure of finitely generated modules over Euclidean domains with application to canonical forms of matrices.

433-434 Introduction to Algebra
433, fall; 434, spring. 4 credits each. Prerequisite: Mathematics 221 or 231.
M W F 10:10.
Honors version of Mathematics 431-432.
Mathematics 433-434 will be more theoretical and rigorous than 431-432 and will include additional material such as multilinear and exterior algebra.

Geometry and Topology

451-452 Classical Geometries
451, fall or summer; 452, spring. 4 credits each term. Prerequisite: Mathematics 221 or 231 or permission of instructor. 451 is not usually a prerequisite for 452.
Fall: T R 2:55, spring: M W F 9:05.
Foundations of geometry. Various geometric topics, including Euclidean, non-Euclidean, and projective geometry and rigidity theory.
453 Introduction to Topology
Fall. 4 credits. Prerequisites: Mathematics 411 and 221, or permission of instructor.
M W F 11:15.
Basic point set topology, connectedness, compactness, metric spaces, fundamental group. Application of these concepts to surfaces such as the torus, the Klein bottle, the Moebius band.

454 Introduction to Differential Geometry
Spring. 4 credits. Prerequisites: Mathematics 222 or 294, plus at least one mathematics course numbered 300 or above. Mathematics 453 is not a prerequisite.
M W F 11:15.
Differential geometry of curves and surfaces. Curvature, geodesics, differential forms. Introduction to n-dimensional Riemannian manifolds. This material provides some background for the study of general relativity; connections with the latter will be indicated.

Probability and Statistics
171 Statistical Theory and Application in the Real World
Spring. 4 credits. Prerequisites: high school mathematics.
Lecs: 3 hours (to be arranged); lab one hour (to be arranged).
This introductory statistics course will discuss techniques for analyzing data occurring in the real world and the mathematical and philosophical justification for these techniques. Topics include population and sample distributions, central limit theorem, and statistical theories of point estimation, confidence intervals, and testing hypotheses, the linear model, and the least squared estimator. The course concludes with a discussion of tests and estimates for regression and analysis of variance (of time permits). The computer will be used to demonstrate some aspects of the theory, such as sampling distributions and the Central Limit Theorem. In the lab portion of the course, students will learn and use methods for implementing the statistical methodology presented in the lectures. (No previous familiarity with the computer is presumed.)

372 Elementary Statistics
Fall. 4 credits. Prerequisites: one year of calculus, and Computer Science 100 or 101 or 108 or permission of instructor. A terminal course for students who will take no further courses in statistics.*
M W F 9:05. Evening prelins may be given.
Introduction to the principles underlying modern statistical inference, to the practical application of statistical techniques, and to the rationale underlying the choice of statistical methods in various situations. Topics in probability that are essential to an understanding of statistics. Homework involves statistical analysis of data sets on hand calculators and on a computer by means of packaged programs.
*See the list of courses with overlapping content at the end of the introduction.

471 Basic Probability
Fall. 4 credits. Prerequisite: Mathematics 221. May be used as a terminal course in basic probability. Primarily intended for those who will continue with Mathematics 472.
Topics include combinations, important probability laws, expectations, moments, moment-generating functions, limit theorems. Emphasis is on diverse applications and on development of use in statistical applications. See also the description of Mathematics 571.

472 Statistics
Spring. 4 credits. Prerequisite: Mathematics 471 and knowledge of linear algebra such as taught in Mathematics 221. Some knowledge of multivariate calculus helpful but not necessary.*
M W F 9:05. Prelims: 7:30 p.m., Mar. 5, Apr. 18.
Classical and recently developed statistical procedures are discussed in a framework that emphasizes the basic principles of statistical inference and the rationale underlying the choice of these procedures in various settings. These settings include problems of estimation, hypothesis testing, large sample theory.

473 Further Topics in Statistics
Fall. 4 credits. Prerequisite: Mathematics 472 or 574. Not offered 1990–91.
M W F 11:15.

Mathematical Logic
481 Mathematical Logic

483 Intensional Logics and Alternatives to Classical Logics (also Philosophy 436)
Spring. Prerequisite: Philosophy 231 or equivalent or any mathematics or computer science logic course or permission of instructor.
Topics: (1) The abstract concept of consequence. What makes a logic intensional? (2) Sentential logics: soundness and completeness for some normal modal and tense logics, intuitionistic logic, the Stalnaker, D. Lewis, and Adams condition; basic propositional modal and tense logics, the correspondence problem. (3) Predicate (first-order) logics: soundness and completeness for classical free logic and some normal modal logics; the Barcan and converse-Barcan schemes; actuality and two-dimensional semantics; the interpolation problem. (4) Time permitting, topics from among the following: non-normal modal logics; additional semantics for intuitionistic logic; 3-valued logics; individual-actualism; higher-order logics, dynamic logic; auto-epistemic logic and non-monotone inference; decision problems associated with some of these logics.
*See the list of courses with overlapping content at the end of the introduction.

486 Applied Logic (also Computer Science 406)
Fall or summer. 4 credits. Prerequisites: Mathematics 222 or 294, Computer Science 100, and some additional course in mathematics or Computer Science 381.
T R 10:10–11:25, plus one-hour lab to be arranged.
Propositional and predicate logic, compactness and completeness by tableaux. Equational logic: Herbrand Universes, the resolution method, and unification. Rewrite rules and equational logic. Knuth-Bendix method and the congruence closure algorithm and lambda-calculus reduction strategies. Restrictions on resolution and their completeness. Introduction to automatic theorem proving. Topics in Prolog, Lisp, or ML on microcomputers or, possibly, exposure to a larger system such as Nuprl. Input resolution and Prolog. Applications to expert systems and program verification.

487 Applied Logic II
Spring. 4 credits. Prerequisite: Mathematics 221 or equivalent. Not offered 1990–91.
Intuitionistic propositional and predicate logic. Natural deduction and tableaux as proof procedures. Curry partial application structures. Church's theory lambda calculus. Lambda terms and typed lambda calculus, cartesian closed categories. Heyting semantics as constructions as interpretations in partial combinatory structures, Kleene realizabilities. Curry-Howard isomorphisms. Intuitionistic first order arithmetic and Godel's system T. Intuitionistic higher order logic and polymorphism. Weak and strong normalizations for simple and polymorphic calculi. Application to consistency proofs. Term extraction as the context for understanding compilers and interpreters for applicative languages such as LISP, NUPRL, MIRANDA, etc.

Graduate Courses
Students interested in taking graduate courses in mathematics should consult the department for further course details, times, and possible changes in courses as described below.

503 History of Mathematics
This course will be devoted to the history of mathematics in the nineteenth century from the original sources, with emphasis on the history of the foundations of analysis and of the foundations of combinatorial algebra. Typical authors in algebra who will be studied are Lagrange, Ruffini, Gauss, Abel, Galois, Dirichlet, Kummer, Kronecker, Dedekind, Weber, M. Noether, Hilbert, Steinitz, Artin, and E. Noether. Typical authors in analysis who will be studied are Cauchy, Fourier, Bolzano, Dirichlet, Riemann, Weierstrass, Heine, Cantor, Peano, and Hilbert. If time permits, a sketch will be given of the history of probability and statistics from Bernoulli to Pearson. Students will be required to read and explain one important nineteenth-century paper.

511–512 Real and Complex Analysis
511, fall; 512, spring.
511: measure and integration, functional analysis. 512: complex analysis, Fourier analysis, and distribution theory.

513–514 Topics in Analysis
513, fall; 514, spring.
515-516 Mathematical Methods in Physics
515, fall; 516, spring. 4 credits each. Intended for graduate students in physics or related fields who have had a strong advanced calculus course and at least two years of general physics. A knowledge of the elements of finite dimensional vector space theory, complex variables, separation of variables in partial differential equations, and Fourier series will be assumed. The course overlaps with calculus course and at least two years of fields who have had a strong advanced

517 Dynamical Systems
Fall. Not offered 1990-91.

518 Smooth Ergodic Theory

519-520 Partial Differential Equations
519, fall; 520, spring.
Basic theory of partial differential equations.

521 Measure Theory and Lebesgue Integration
Fall.
Measure theory, integration, and Lp spaces.

522 Applied Functional Analysis
Spring.
Spectral theory for bounded operators, spectral theory for unbounded operators in Hilbert space, compact operators, distributions. Applications.

531-532 Algebra
531, fall; 532, spring.
531: finite groups, field extensions, Galois theory, rings and algebras, tensor and exterior algebra. 532: Wedderburn structure theorem, Brauer group, group cohomology, Dedekind domains, primary decomposition, Hilbert basis theorem, local rings.

537 Analytic Number Theory
Fall. Prerequisites: Math 511, 521, 431.

549 Lie Groups and Differential Geometry
Fall.

550 Lie Groups and Lie Algebras
Spring.

551 Introductory Algebraic Topology
Spring.
Fundamental group and covering spaces. Homology theories for complexes and spaces.

552-553 Differentiable Manifolds
552 fall, 553 spring. Prerequisites: advanced calculus, linear algebra (Mathematics 431), point set topology (Mathematics 453). This is a year-long introduction to differential topology and differential geometry at the level of the beginning graduate student. Topological manifolds. Smooth manifolds, immersions and embeddings, tangent bundles, fiber bundles, vector fields and dynamical systems, Frobenius’ theorem. Lie groups. Integration on manifolds, differential forms, Stokes theorem. Tubular neighborhoods, transversality and cobordism. Connections, Riemannian manifolds, geodesics, curvature, Gauss-Bonnet theorem.

561 Geometric Topology
Topics from general topology. Introduction to geometric properties of manifolds. Not offered 1990-91.

571-572 Probability Theory

573-574 Probability and Statistics
571, fall; 574, spring. This course is a prerequisite to all advanced courses in statistics.
571: same as Mathematics 571 above. 574 topics include an introduction to the theory of point estimation, consistency, efficiency, sufficiency, and the method of maximum likelihood; the classical tests of hypotheses and their power; the theory of confidence intervals; the basic concepts of statistical decision theory; the fundamentals of sequential analysis. Intended to furnish a rigorous introduction to mathematical statistics.

575 Experimental Design, Multivariate Analysis
Fall. Not offered 1990-91.
Rationale for selection of experimental designs and algorithms for constructing optimum designs: Optimum properties and distribution theory for classical analysis of variance procedures and their simplest multivariate analogues.

576 Sequential Analysis, Multiple Decision Problems
Fall. Prerequisite: a course in mathematical statistics such as Mathematics 574. Not offered 1990-91.

577 Nonparametric Statistics
Fall. Not offered 1990-91.
A study of nonparametric techniques, especially order statistics, rank order statistics, scores, local optimality properties, and perhaps some asymptotic theory.

581 Logic
Spring.
Basic topics in mathematical logic, including propositional and predicate calculus, formal number theory and recursive functions; completeness and incompleteness theorems.

611-612 Seminar in Analysis
611, fall; 612, spring.

613 Functional Analysis
Fall. Not offered 1990-91.
Topological vector spaces. Banach and Hilbert spaces. Banach algebras. Additional topics to be selected by instructor.

615 Fourier Analysis

622 Riemann Surfaces
Fall. Not offered 1990-91.

623 Several Complex Variables
Not offered 1990-91.

627-628 Seminar in Partial Differential Equations
627, fall; 628, spring. Not offered 1990-91.

631-632 Seminar in Algebra
631, fall; 632, spring.

635 Topics in Algebra
Fall.
Selection of advanced topics from algebra, algebraic number theory, and algebraic geometry. Course content varies.

637 Algebraic Number Theory
Fall.

639 Topics in Algebra II
Spring.
Selection of advanced topics from algebra, algebraic number theory, and algebraic geometry. Course content varies.

640 Homological Algebra
Spring.

651-652 Seminar in Topology
651, fall; 652, spring.

653-654 Algebraic Topology
653, fall; 654, spring.
Duality theory in manifolds, applications, cohomology operations, spectral sequences, homotopy theory, general cohomology theories, categories and functors.
711-712 Seminar in Analysis

717-718 Seminar in Numerical Analysis

731-732 Seminar in Algebra

733-734 Seminar in Computational Algebra

751-752 Topics in Geometry and Topology

776 Qualitative Theory of Dynamical Systems

MODERN LANGUAGES AND LINGUISTICS

Arabic
See listings under Near Eastern Studies.

Bengali
121-122 Elementary Bengali
121, fall; 122, spring. 4 credits each term.
Prerequisite: for Bengali 122, Bengali 121 or examination.

Hours to be arranged. D. Sudan.

The emphasis is on basic grammar, speaking, and comprehension skills; Bengali script will also be introduced.

201-202 Intermediate Bengali
201, fall; 202, spring. 3 credits each term.
Prerequisites: for Bengali 201, Bengali 122 or examination; for Bengali 202, Bengali 201 or examination.

Hours to be arranged. D. Sudan.

Continuing instruction in grammar with attention to writing skills.

203-204 Continuing Bengali
203, fall; 204, spring. 3 credits each term.
Prerequisites: for Bengali 203, Bengali 122 or examination; for Bengali 204, Bengali 203 or examination.

Hours to be arranged. D. Sudan.

Continuing instruction in grammar with attention to speaking and reading skills.

303-304 Bengali Literature I, II
303, fall; 304, spring. 4 credits each term.
Prerequisites: Bengali 203-204 or equivalent.

Hours to be arranged. D. Sudan.

An introduction to noted Bengali writers. Selections of works by Rabindranath Tagore and Abanindranath Tagore and short stories by Bohophul will be covered. The course will be devoted to reading these works and developing literary criticism and creative writing in Bengali.

Burmese
101-102 Elementary Course
101, fall; 102, spring. 6 credits each term.
Prerequisite: for Burmese 102, Burmese 101 or equivalent.

Hours to be arranged. J. Wheatley.

A semi-intensive course for beginners or for those who have been placed in the course by examination. Gives a thorough grounding in all the language skills: listening, speaking, reading, and writing.

201-202 Intermediate Burmese Reading
201, fall; 202, spring. 3 credits each term.
Prerequisites: for Burmese 201, Burmese 102; for Burmese 202, Burmese 201.

Hours to be arranged. J. Wheatley.

203-204 Intermediate Composition and Conversation
203, fall; 204, spring. 3 credits each term.
Prerequisites: for Burmese 203, Burmese 102; for Burmese 204, Burmese 203.

Hours to be arranged. J. Wheatley.

301-302 Advanced Burmese Reading
301, fall; 302, spring. 4 credits each term.
Prerequisites: for Burmese 301, Burmese 202 or permission of instructor; for Burmese 302, Burmese 301.

Hours to be arranged. J. Wheatley.

Selected Burmese readings in various fields.
401-402 Burmese Directed Individual Study
Fall or spring. 4 credits each term. Prerequisite: permission of instructor.
Hours to be arranged. J. Wheatley.
For students who wish to address special problems in the speech, grammar, or literature.

Cambodian
See Khmer.

Cebuano (Bisayan)
101-102 Elementary Course
101, fall; 102, spring. Offered according to demand. 6 credits each term. Prerequisite for Cebuano 102: Cebuano 101 or equivalent.
A semi-intensive course for beginners.

Chinese
For literature courses see Asian Studies.

Fecs. Depending on the course, a small fee may be charged for photocopied texts for course work.

101-102 Elementary Course
101, fall; 102, spring. 6 credits each term. Prerequisite for Chinese 102: Chinese 101 or equivalent.
Lecs, M W F 9:05; drill, M-F 8 or 2:30. J. Wheatley, and staff.
A semi-intensive course for beginners or for those who have been placed in the course by examination. The course gives a thorough grounding in all the language skills: listening, speaking, reading, and writing. Students who speak some Mandarin but do not read should take 109/110. Students who read Chinese, speak Cantonese or other "dialects," and want to learn Mandarin should see the program director in Morrill Hall.

109-110 Elementary reading (with Mandarin pronunciation)
109, fall; 110, spring. 3 credits each term. Prerequisite: for Chinese 110, 109 or equivalent.
This course is for the students who have spoken some Chinese in the home, but who do not read. If in doubt about eligibility, see instructor.

111-112 Cantonese Elementary Speaking
111, fall; 112, spring. 3 credits each term. Prerequisites: for Chinese 111, permission of instructor; for Chinese 112, Chinese 111. Both Chinese 112 and 114 or equivalents are necessary to fulfill any language requirements.
Lecs T 12:20; drills, M W F 9:05 or 11:15. E. Leung.
Conversation in standard Cantonese as spoken in Hong Kong and Canton.

113-114 Cantonese Elementary Readings
113, fall; 114, spring. 3 credits each term. Prerequisites: for Chinese 113, permission of instructor; for Chinese 114, Chinese 113. Both Chinese 112 and 114 or equivalents are necessary to fulfill any language requirements.
Lecs, R 12:20; drills, T R 9:05. E. Leung.
Readings in modern expository prose with Cantonese pronunciation.

201-202 Intermediate Chinese
201, fall or summer; 202, spring or summer. 4 credits each term. Prerequisite: for Chinese 201, Chinese 102 or equivalent; for Chinese 202, Chinese 201.
M-F 9:05 or 11:15. Staff.

211-212 Intermediate Cantonese
211, fall; 212, spring. 4 credits each term. Prerequisites: for Chinese 211, Chinese 112 and 114 or equivalent; for Chinese 212, Chinese 211.
M W F 9:05. E. Leung.

301-302 Advanced Chinese
301, fall; 302, spring. 4 credits each term. Prerequisites: for Chinese 301, Chinese 202 or equivalent; for Chinese 302, Chinese 301.
M W F 11:15 or 12:20. Staff.
Readings and drills in modern expository Chinese.

303-304 Advanced Chinese Conversation
303, fall; 304, spring. 1 credit each term. Prerequisites: Chinese 201-202 or equivalent; or permission from instructor. S-U grades only.
T R 11:15. Staff.
Guided conversation and oral composition and translation. Corrective pronunciation drill.

311-312 Advanced Cantonese
311, fall; 312, spring. 4 credits each term. Prerequisites: for Chinese 311, Chinese 212 or equivalent; for Chinese 312, Chinese 311.

[401 History of the Chinese Language]
Fall or spring, according to demand. 4 credits. Prerequisite: permission of instructor. Not offered 1990-91.
Hours to be arranged. Staff.
Survey of phonological and syntactic developments in Chinese.

[403 Linguistic Structure of Chinese I]
Fall. 4 credits. Prerequisite: permission of instructor. Offered alternate years. Not offered 1990-91.
Hours to be arranged. Staff.
Introductory course in the phonology of modern Mandarin Chinese.

[404 Linguistic Structure of Chinese II]
Spring, according to demand. 4 credits. Prerequisite: permission of instructor. Not offered 1990-91.
Hours to be arranged. J. Huang.
Syntax of modern Mandarin Chinese.

[405 Chinese Dialects]
Fall or spring, according to student demand. 4 credits. Prerequisite: permission of instructor. Not offered 1990-91.
Hours to be arranged. J. Huang.
Introductory survey of modern dialects and their distinguishing characteristics.

[411-412 Readings in Modern Chinese (Mandarin pronunciation only)]
411, fall; 412, spring. 4 credits each term. Prerequisites: for Chinese 411, Chinese 302 or equivalent; for Chinese 412, Chinese 411.
M W F 1:25 or 2:30. Staff.

413-414 Chinese Reading Tutorials
413, fall; 414, spring. 2 credits each term. Prerequisites: Chinese 302; or equivalent and permission of instructor.
Hours to be arranged. Staff.
Individual or small-group guidance in advanced Chinese texts, designed primarily for Asian studies majors taking other courses with reading assignments in Chinese.

415-418 Expository Writing in Modern Chinese
415, fall; 416, spring. 3 credits. Prerequisites: Chinese 411-412 or equivalent.
Hours to be arranged. Staff.
Designed for students with advanced speaking and reading ability in Mandarin Chinese who require further practice in writing.

[607 Chinese Dialect Seminar]
Fall or spring, on student demand. 4 credits. Prerequisites: Chinese 405 and permission of instructor. Not offered 1990-91.
Hours to be arranged. Staff.
Analysis and field techniques in a selected dialect area.

FALCON
J. Wheatley, 416 Morrill Hall (255-9301).

161-162 Intensive Mandarin Course
161, fall; 162, spring. 16 credits each term. Prerequisites: for Chinese 161, Chinese 160 (Cornell summer intensive course) or permission of instructor; for Chinese 162, Chinese 161.
M-F 6 hours each day. J. Wheatley and staff.
Foreign language requirement: Proficiency is attained by passing 161.

Dutch
121-122 Elementary Course
121, fall or summer; 122, spring or summer. 4 credits each term. Prerequisite: permission of instructor.
M W F 1:25. M. Briggs.
Intensive practice in listening, speaking, reading, and writing basic Dutch in meaningful contexts. The lecture offers insight into Dutch language, culture, and society.

123 Continuing Course
Fall. 4 credits each term. Prerequisites: Dutch 122 or equivalent.
Improves speaking skills, such as fluency and pronoun creation, focusing on verbal communication skills; offering a wide range of readings and sharpening listening skills based on Dutch and Dutch-speaking cultures.

203 Intermediate Composition and Conversation
Spring. 3 credits. Prerequisite: Qualification in Dutch or permission of instructor.
M W F 11:15. M. Briggs.
Improved control of Dutch grammatical structures and vocabulary through guided conversation, compositions and reading, drawing on Dutch and other Dutch-speaking cultures.

English
Intensive English Program, see p. 310.
205 English as a Second Language
Fall. 4 credits. Prerequisite: placement by examination.
M T W R 10:10 or 3:35. M. Martin.
Advanced spoken and written English, with emphasis on speaking, understanding, and reading.

206 English as a Second Language
Spring. 3 credits. Prerequisite: English 205 or placement by examination.
Designed for those who have completed English 205 and who require or desire further practice. Emphasis is on developing control of written as well as spoken language.

209 English as a Second Language
Fall or spring. 1 credit. Prerequisite: placement by examination.
Hours to be arranged. M. Martin.
Practice in informal conversational English pronunciation, techniques for gaining information, informal conversation, and classroom speaking. Students also practice giving informal presentations. Personal conferences with the instructor supplement class work.

210 English as a Second Language
Spring. 1 credit. Prerequisite: placement by examination.
Hours to be arranged. M. Martin.
Practice in academic speaking. Formal classroom discussion techniques and presentation of information in various forms. Personal conferences supplement class work.

211-212 English as a Second Language
211, fall, spring, or summer; 212, spring. 3 credits each term. Prerequisite: placement by examination.
Advanced writing, with emphasis on improving vocabulary, grammar, and control of college-level written English.

213 Written English for Non-Native Speakers
Spring. 3 credits. Prerequisite: placement by examination.
T R 10-10, plus a weekly conference. M. Martin.
Designed for those whose writing fluency is sufficient for them to carry on regular academic work but who feel the desire for refining and developing their ability to express themselves clearly and effectively. As much as possible, students receive individual attention.

Freshman Writing Seminar
215-216 English for Later Bilinguals
215, fall or summer; 216, spring. 3 credits each term. Not designed for students whose schooling has been mostly in English. Prerequisite for English 216: English 215. M W F 2-3.0. M. Martin.
A course designed to strengthen the English-language skills of students from other countries who have studied for one to five years in American high schools and whose language in the home is not English. Intensive work in written English is offered, with emphasis on sentence structure, cohesion, vocabulary, expansion, grammatical structure, and maturity of style. Individual conferences on papers supplement class work. The focus of English 216 is the process of producing a full-length library research paper.

EWE
See listings under Africana Studies and Research Center.

French
A. Cohn, J.S. Noblit, L.R. Waugh (director of undergraduate studies, 315 Morrill Hall, 255-0717).
For literature courses see Romance Studies.

The Major
The major in French linguistics is designed to give students proficiency in the oral and written language, and to develop skills in the linguistic analysis of French. (For the major in French literature see the description under Romance Studies.) While prospective majors should try to plan their programs as far ahead as possible, no student will be refused admission merely because of a late start. It is even possible for a student to begin French and/or Linguistics at Cornell and become a major. Students wishing to major in French linguistics should consult the director of undergraduate studies of the Department of Modern Languages and Linguistics, Professor Linda Waugh, who will admit them to the major.

The Core
1) All majors are expected to acquire a sound degree of competence in language. This competence is demonstrated by the successful completion of French 312 or by the passing of a special examination to be taken no later than the end of the junior year. A typical program will involve two semesters of language at the 200 level (to be taken no later than the end of the sophomore year) and two semesters of language at the 300 level (French 311-312). Students may bypass any part of the sequence through placement examinations.
2) All majors are expected to take either French 201 or 202, at least one of which should be completed successfully no later than the end of the sophomore year.
3) All majors must have successfully completed Linguistics 101-102, or Linguistic 101-Linguistic 400, or the equivalent.

The Linguistic Option
1) The successful completion of six courses in French, Romance, and general linguistics (in addition to Linguistics 101-102), of which at least 3 will be in French and Romance Linguistics. These courses will include at least one course concerning the history of French (e.g., French 401, Romance Linguistics 321) and one course concerning the structure of French (e.g., French 408, 410, or 602).
2) The successful completion of two courses (preferably a sequence) in some allied area, for example, (a) French literature and civilization, (b) history, culture, music, or history of art or architecture.

Study Abroad in France
French majors or other interested students may study in France for one or two semesters during their junior year. Opting for one of several study-abroad plans recognized by the departments of Romance Studies and Modern Languages and Linguistics facilitates the transfer of credit. Information about these plans is available from Jacques Bèrèaud, director of undergraduate studies, Department of Romance Studies. (See the description of the program in Paris sponsored by Cornell University under the Department of Romance Studies.)

Honors. The honors program encourages well-qualified students majoring in French linguistics to do independent work in French outside the structure of courses. The preparation of the senior honors essay, generally spread over two terms, provides a unique learning opportunity, since it allows for wide reading, and extensive rewriting to a degree not practically possible in the case of course papers. No special seminars or courses are required of honors students, but they will have regular meetings with the faculty advisers who have agreed to supervise their work. They may receive course credit by enrolling in French 429-430, but these independent study courses must be taken in addition to the courses that meet the minimum requirements for the major. At the end of the senior year each honors student is examined orally on the honors essay by a jury consisting of his or her faculty adviser and two other faculty members. The awarding of honors is determined by the student's grades in the major and the quality of the honors essay.

Fees. Depending on the course, a small fee may be charged for copies of texts for course work.

101 Basic Course
Summer only. 6 credits. M-F 8-12. Staff.
An introductory course offering opportunities for student interaction and intensive practice in listening to, speaking, reading, and writing French in meaningful contexts. Students who have previously studied French must take the qualifying examination before registering for this course.
228

ARTS AND SCIENCES

121 Beginning French
Fall only. 4 credits. No prerequisites.
Intended for beginning students or those placed by examination.
Lec, R 9:05, 10:10 or 11:15; Sec, M T W F 8, 9:05, 10:10, 11:15, 12:20, 1:25 or 2:30:
N. Gabriel.
The four recitation sections per week offer the opportunity for student interaction and intensive practice in listening to, speaking, reading, and writing. Basic French in meaningful contexts. Lectures offer insights into French language, culture, and society.

122 Elementary French
Fall or spring. 4 credits. Prerequisite: French 121 or CPT score between 370 and 440.
Students who obtain a CPT score of 560 after French 122 attain qualification and may enter the 200-level sequence; otherwise, French 123 is required for qualification.
Fall: Lec, R 1:25; Sec, M T W F 9:05, 10:10, 12:20, 1:25 or 2:30: M. J. Ellis.
Spring: Lec, R 9:05, 10:10 or 11:15; Sec, M T W F 8, 9:05, 10:10, 11:15, 12:20, 1:25 or 2:30: N. Gabriel.
The goal of French 122 is to build on the students' elementary knowledge of French so that they can function in basic situations in a French-speaking culture. Sections continue to provide intensive, context-specific practice in speaking, listening, reading, and writing. Lectures address cultural and linguistic issues.

123 Continuing French
Fall, spring, or summer. 4 credits. Fall enrollment strictly limited. Limited to students who have previously studied French and have a CPT score between 450 and 559. Satisfactory completion of French 123 fulfills the qualification portion of the language requirement.
Lec, T 10:10 or 12:20; Sec, M W F 9:05, 10:10, 11:15, 12:20, 1:25, or 2:30: A. Levy.
French 123 is an all-skills course designed to improve pronunciation, oral communication, and reading ability; to establish a groundwork for correct writing; and to provide a substantial grammar review. Both lectures and sections concentrate on the study of a foreign language as something beyond a batch of skills to be memorized. The course features authentic texts, a functional grammar, and exchange students from France who visit the sections.

Note. Students placed in 200-level courses have the option of taking language and literature courses. See listings under Romance Studies for descriptions of the literature courses, any of which may be taken concurrently with the 203-204 language courses described below.

203 Intermediate Composition and Conversation
Fall, spring, or summer. 3 credits. Prerequisite: qualification in French (French 123 or CPT score 560-649).
Lec, T 11:15 or 1:25 or R 10:10; drills, M W F 9:05, 10:10, 11:15, 12:20, 1:25, 2:30, or 3:35: I. Daly.
Improved control of French grammatical structure and vocabulary through guided conversation, composition, and reading. Lectures include grammar review, listening comprehension exercises, and videos on current topics. Taught in French.

204 Intermediate Composition and Conversation
Fall, spring, or summer. 3 credits. Enrollment limited. Prerequisite: French 203, permission of instructor, or placement by Cornell Advanced Standing Examination (CASE) offered by the Department of Modern Languages and Linguistics. This course, or its equivalent, is required for admission to the Cornell Core French program.
Fall: Lec, T 10:10 or 2:30; drills, M W F 10:10, 11:15, 12:20, 1:25 or 2:30: Spring: Lec, T 10:10 or 2:30; drills, M W F 9:05, 10:10, 11:15, 12:20, or 1:25: C. Waldron.
Emphasis on improving oral and written expression of accurate, idiomatic French. Includes enrichment of vocabulary, readings in contemporary prose, treatment of specific problems in grammar, guest speakers, and presentations of videos and films. Taught in French.

401 History of the French Language
Fall. 4 credits. Prerequisites: qualification in French and Linguistics 101, or permission of instructor. Offered alternate years.
M W F 2:30: A. Colby-Hall.
Diachronic development of French from Latin, with emphasis on phonological and morphological change. Course work includes problems in reconstruction, textual analyses, discussions of theoretical topics, and external history.

407 Applied Linguistics: French
Fall. 4 credits. Prerequisite: qualification in French. Offered alternate years.
M W F 10:10: J. S. Noblit.
Designed to equip the student with the ability to apply linguistic descriptions in teaching French, with special emphasis on phonetics and morphology.

408 Linguistic Structure of French I (also Linguistics 408)
Fall. 4 credits. Prerequisites: qualification in French and Linguistics 101 or Linguistics 400, or permission of instructor.
Hours to be arranged: A. Cohn.
A synchronic study and analysis of modern French, with emphasis on its phonology, morphology, and syntax.

410 Linguistic Structure of French II
Fall. 4 credits. Prerequisite: permission of instructor. Offered alternate years.
Hours to be arranged: L. Waugh.
A synchronic study and analysis of modern French, with emphasis on semantics, pragmatics, and discourse analysis.

602 Linguistic Structure of Old and Middle French
Spring. 4 credits. Prerequisite: French 408 or permission of instructor. Offered alternate years.
Hours to be arranged: J. S. Noblit.
Through study of Old and Middle French texts, student analyze synchronically aspects of the grammar of the language at different periods.

604 Contemporary Theories of French Grammar
Spring. 4 credits. Prerequisite: permission of instructor.
Hours to be arranged: L. Waugh.
Selected readings of twentieth-century French linguistics.

630 French for Reading—Graduate Students
Spring. 3 credits. Limited to graduate students. Hours to be arranged. Staff.
The primary aim of this course is to develop skill in reading French. (Those interested in an all-skills approach should consult French 121-122.) Some flexibility in selecting texts according to field of interest is offered. One hour per week is devoted to vocabulary building and preparation for standardized tests.

700 Seminar In French Linguistics
Fall or spring, according to demand. Credit to be arranged.
Hours to be arranged: Staff.
Seminars are offered according to faculty interest and student demand. Topics in recent years have included current theories in French phonology, current theories in French syntax, and semantics of French. Topic for spring 1991: Acoustics of French (A. Cohn).

German
W. Harbert, J.H. Jasannot, H.L. Kufner (director of undergraduate studies, 211 Morrill Hall, 255-0723).
For literature courses see German Studies.

The German Major
See German Studies.

Study Abroad
Cornell has a formal agreement with the University of Hamburg enabling its undergraduates to take courses in any field offered by the German university. The program offers a challenging course of study and the experience of total immersion in German life and culture. Participants in this program attend a required 3-credit orientation course in September, which is designed to help them adjust to the academic and social life of Germany. Special field trips are organized as part of the orientation session. Beginning in mid-October, students enroll as fully matriculated students at the University of Hamburg. Cornell maintains a center in Hamburg with appropriate support staff. The resident director is a faculty member from Cornell, who teaches a special seminar each semester, provides academic advice, and helps ensure the quality of the courses. The center, which includes a classroom, a small library, and word-processing facilities, is used by students for the orientation session, special seminars, tutorials, lectures, and informal gatherings.
Applicants are expected to have attained at least proficiency in German prior to departure. Students are strongly encouraged to study abroad for the entire year rather than for one semester. For further information, students should contact H.L. Kufner, Director of undergraduate studies, Department of Modern Languages and Linguistics, and the Cornell Abroad Office (474 Uris Hall, 255-6224).

German Area Studies Major
See German Studies.

Honors. The honors program in German is open to superior students who want to work independently in an area of their own choice. Students are free to select any faculty member of the Field of Germanic Studies (in the case of area studies majors, the appropriate member of their committee) to assist them in designing their honors program, to supervise their work, and to help them select a suitable topic for an
honors essay. The independent study courses, German 451 and 452, may form part of the program.

Freshman Writing Seminar Requirement
See German Studies.

Fees. Depending on the course, a small fee may be charged for photocopied texts for course work.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Title</th>
<th>Credits</th>
<th>Prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>121-122</td>
<td>Elementary Course</td>
<td>4 credits</td>
<td>German 122: German 121 or equivalent. Intended for beginners or students placed by examination. Students who obtain a CPT score of 560 after German 121-122 attain qualification and may enter the 200-level sequence; otherwise German 123 is required for qualification.LEC: T 9:05, 11:15, or 1:25; drills, M W R F 8, 9:05, 10:10, 11:15, 12:20 or 1:25. H. L. Kufner. A thorough grounding in all the language skills is given: listening, speaking, reading, and writing. Language practice is in small groups. Lectures cover grammar, reading, and cultural information.</td>
</tr>
<tr>
<td>123</td>
<td>Continuing German</td>
<td>Fall, spring, or summer. 4 credits. Limited to students who have previously studied German and have a CPT achievement score between 450 and 559. Satisfactory completion of German 123 fulfills the qualification portion of the language requirement. Fall: LEC: M 12:20; drills, T-F 9:05, 10:10, 11:15, or 12:20. Spring: LEC: M 12:20; drills, T-F 10:10 or 12:20. H. L. Kufner. An all-skills course designed to prepare students for study at the 200 level.</td>
<td></td>
</tr>
<tr>
<td>203</td>
<td>Intermediate Composition and Conversation</td>
<td>Fall or spring. 3 credits. Prerequisite: qualification in German (German 123 or CPT score of 560-649). Fall: M W F 9:05, 10:10, 11:15, or 1:25. Spring: M W F 9:05, 10:10, or 1:25. Staff. Guided conversation, composition, reading, and grammar review emphasizing the development of accurate and idiomatic expression.</td>
<td></td>
</tr>
<tr>
<td>204</td>
<td>Intermediate Composition and Conversation</td>
<td>Fall or spring. 3 credits. Prerequisite: German 203 or permission of instructor. Fall: M W F 11:15. Spring: M W F 10:10, 11:15, or 1:25. Staff.</td>
<td></td>
</tr>
<tr>
<td>303-304</td>
<td>Advanced Composition and Conversation</td>
<td>303, fall; 304, spring. 4 credits each term. Prerequisite for German 303: German 204 or equivalent. Prerequisite for German 304: German 303 or equivalent. Fall: M W F 10:10 or 11:15. Spring: M W F 11:15. G. Valk. Emphasis is on increasing the student's oral and written command of German. Detailed study of present-day syntax and different levels of style.</td>
<td></td>
</tr>
<tr>
<td>306</td>
<td>Zeltungsdutsch</td>
<td>Fall. 4 credits. Prerequisite: German 304 or equivalent. M W F 9:05. G. Valk.</td>
<td></td>
</tr>
</tbody>
</table>

Introduction to Germanic Linguistics
Fall. 4 credits. Prerequisite: Linguistics 101 or permission of instructor. Hours to be arranged. W. E. Harbert. Survey of major issues in historical Germanic linguistics.

History of the German Language
Spring. 4 credits. Prerequisites: German 204 and Linguistics 101 or permission of instructor. Offered alternate years. Not offered 1990–91. Hours to be arranged. Staff. Phonological, morphological, syntactic, and semantic developments from pre-Old High German times to the present.

Modern German Phonology
Fall. 4 credits. Prerequisites: German 304 or equivalent, and Linguistics 101 or 301. Not offered 1990–91. Hours to be arranged. W. E. Harbert. An application of selected theoretical syntactic models to problems in the syntax of modern German.

Modern German Syntax
Spring. 4 credits. Prerequisite: German 304 or equivalent, and Linguistics 101 or 301. Not offered 1990–91. Hours to be arranged. W. E. Harbert. A study of the inscriptions in the older futhark and their relevance to historical Germanic linguistics.

Applied Linguistics: German
Fall. 4 credits. M W F 10:10. H. L. Kufner. Designed to help the teacher of German with the ability to apply current linguistic theory to the second-language learning situation.

Gothic
Spring. 4 credits. Prerequisite: Linguistics 101. Offered alternate years. Hours to be arranged. W. E. Harbert. Linguistic structure of Gothic, with extensive readings of Gothic texts.

Old High German, Old Saxon
Fall. 4 credits. Prerequisite: Linguistics 101. Offered alternate years. Hours to be arranged. W. E. Harbert.

Structure of Old English
Fall. 4 credits. Prerequisite: German 401. Not offered 1990–91. Hours to be arranged. W. E. Harbert. Linguistic overview of Old English, with emphasis on phonology and syntax.

Topics in Historical Germanic Phonology
Fall. 4 credits. Prerequisite: German 401. Not offered 1990–91. Hours to be arranged. Staff. The development of the sound system from Proto-Germanic to its daughter languages.

Topics in Historical Germanic Morphology
Fall. 4 credits. Prerequisite: German 401. Not offered 1990–91. Hours to be arranged. J. Janasoff. The Germanic verbal system and its Indo-European origins.

Topics in Historical Germanic Syntax
Fall. 4 credits. Prerequisite: German 401. Hours to be arranged. W. E. Harbert. A diachronic and comparative investigation of syntactic processes in the older Germanic languages.

Old Norse
609, fall or summer; 610, spring or summer. 4 credits each term. Hours to be arranged. Staff. Study of the linguistic structure of Old Norse, with extensive reading of Old Norse texts.

Readings in Old High German and Old Saxon
Spring. 4 credits. Hours to be arranged. J. Janasoff. Texts are chosen to suit the interests of the students taking the course but normally include selections from the more extensive Old High German and Old Saxon sources (Oxfrid, Tatian, Helland) as well as representative shorter works such as Hildebrandslid, Muspilli, and Genesis.

Elementary Reading I
631 or 632, fall or summer; 632, spring or summer. 3 credits each term. Limited to graduate students. Prerequisite for German 632: German 631 or equivalent. M W F 9:05 or 12:20. D. McGray. Emphasis is on developing skill in reading, although some attention will be devoted to the spoken language, especially to listening comprehension.

Seminar in Germanic Linguistics
Fall or spring, subject to the needs of students and to the limitations of staff time. 4 credits. Not offered 1990–91. Hours to be arranged. Staff.

Seminar in Comparative Germanic Linguistics
Fall or spring, subject to the needs of students and to the limitations of staff time. 4 credits. Not offered 1990–91. Hours to be arranged. Fall: staff; spring: W. E. Harbert. Topics include phonology, morphology, syntax, and dialectology of the older Germanic languages.

Seminar in German Linguistics
Fall or spring, subject to the needs of students and the limitations of staff time. 4 credits. Not offered 1990–91. Hours to be arranged. Staff. Selected topics including the history, structure, and dialects of German.

Modern Greek
See listings under Classics.

Modern Hebrew
See listings under Near Eastern Studies.

Hindi-Urdu
101-102 Hindi-Urdu Elementary Course 101, fall, 102, spring. 6 credits each term. Prerequisite for Hindi 102. Hindi 101 or equivalent. Lecs, M W 2:30; drills, M-F 10:10. Staff. A semi-intensive course for beginners. A thorough grounding in all the language skills is given: listening, speaking, reading, and writing.
201-202 Intermediate Hindi Reading
201, fall, 202, spring. 3 credits each term. Prerequisites: for Hindi 201, Hindi 102; for Hindi 202, Hindi 201 or permission of instructor.
M W F 9:05. Staff.

203-204 Intermediate Composition and Conversation
203, fall, 204, spring. 3 credits each term. Prerequisites: for Hindi 203, Hindi 102; for Hindi 204, Hindi 203 or permission of instructor.
Hours to be arranged. Staff.

201-202 Intermediate Indonesian Reading
201, fall, 202, spring. 3 credits each term. Prerequisites: for Indonesian 201, Indonesian 102; for Indonesian 202, Indonesian 201 or permission of instructor.
M-F 9:05, plus 2 hours to be arranged. J. U. Wolff.
A semi-intensive course for beginners.

201-202 Intermediate Indonesian Conversation and Composition
201, fall, 202, spring. 3 credits each term. Prerequisites: for Indonesian 201, Indonesian 102; for Indonesian 202, Indonesian 201 or permission of instructor.
Hours to be arranged. J. U. Wolff.

301-302 Advanced Readings in Hindi Literature
301, fall, 302, spring. 4 credits each term. Prerequisites: for Hindi 301, Hindi 201; for Hindi 302, Hindi 301 or equivalent. Not offered 1990-91.
Hours to be arranged. Staff.

303-304 Advanced Composition and Conversation
303, fall, 304, spring. 4 credits each term. Prerequisites: for Hindi 303, Hindi 204 or equivalent; for Hindi 304, Hindi 303 or equivalent.
Hours to be arranged. Staff.

305-306 Advanced Hindi Readings
305, fall, 306, spring. 4 credits each term. Prerequisites: for Hindi 305, Hindi 202 or equivalent; for Hindi 306, Hindi 305 or equivalent. Not offered 1990-91.
Hours to be arranged. Staff.
Intended for those who wish to do readings in history, government, economics, etc., instead of literature.
Note: For complete descriptions of courses numbered 600 and above, consult the appropriate instructor.

[700 Seminar in Hindi Linguistics]
Fall or spring. 3 credits. Prerequisite: permission of instructor. Not offered 1990-91.
Hours to be arranged. Staff.

Hungarian
[131-132 Elementary Course]
131, fall, 132, spring. 3 credits each term. This language series cannot be used to satisfy the language requirement. Offered alternate years. Not offered 1990-91.
M W F 9:05. Staff.
Intended for beginners or students with limited knowledge of the language.

Indonesian
For students who have completed Indonesian 101-102 or its equivalent there is the option of a one-semester program in Malang, East Java, during the junior year. The program combines a variety of cultural and artistic options with area course work and advanced language study. Complete information is available through Cornell Abroad.

Students who have completed a minimum of 18 credits or the equivalent are eligible to apply for a summer program in the Advanced Indonesian Abroad Program. Further information is available from Professor J. U. Wolff.

101-102 Elementary Course
101, fall, 102, spring. 6 credits each term. Prerequisite for Indonesian 102. Indonesian 101.
M-F 9:05, plus 2 hours to be arranged. J. U. Wolff.

201-202 Intermediate Indonesian Reading
201, fall, 202, spring. 3 credits each term. Prerequisites: for Indonesian 201, Indonesian 102; for Indonesian 202, Indonesian 201 or permission of instructor.
Hours to be arranged. J. U. Wolff.

301-302 Advanced Readings in Indonesian and Malay
301, fall, 302, spring. 4 credits each term. Prerequisites: for Indonesian 301, Indonesian 201-202 or equivalent; for Indonesian 302, Indonesian 301.
Hours to be arranged. J. U. Wolff.

303-304 Advanced Indonesian Conversation and Composition
303, fall, 304, spring. 4 credits each term. Prerequisites: for Indonesian 303, Indonesian 204; for Indonesian 304, Indonesian 303 or equivalent.
Hours to be arranged. J. U. Wolff.

305-306 Directed Individual Study
305, fall, 306, spring. 2-4 credits. Prerequisites: Indonesian 301-302 and 303-304 or equivalent knowledge of Indonesian or Malay.
Hours to be arranged. J. U. Wolff.

A practical language course on an advanced level in which the students will read materials in their own field of interest, write reports, and meet with the instructor for two hours a week for two credits and twice a week for four credits.

401-402 Advanced Readings in Indonesian and Malay Literature
401, fall, 402, spring. 4 credits each term. Prerequisites: for Indonesian 401, Indonesian 302 or equivalent; for Indonesian 402, Indonesian 401 or equivalent.
Hours to be arranged. J. U. Wolff.

FALCON
161-162 Intensive Course
161, fall, 162, spring. 16 credits each term. Prerequisite: permission of instructor. M-F 6 hours each day. J. U. Wolff and staff.

Related Course
Seminar in Austronesian Linguistics (Linguistics 655-656).

Italian
G. Chierchia, C. Rosen.
For literature courses see Romance Studies.

The Italian Major
See Romance Studies.

Study Abroad
Italian majors may study in Italy, generally during their junior year, under any of those study-abroad plans organized by American universities that allow the transfer of grades and credit, such as the Cornell program in Rome.

The College of Architecture, Art, and Planning maintains a program open to all qualified students attending Cornell. The program is housed in the sixteenth-century Palazzo Massimo, designed by the architect Baldassare Peruzzi, on the Corso Vittorio Emanuele, in the heart of Rome. Students may enroll for a semester in the fall or spring. Courses regularly taught at the Palazzo Massimo include: Architecture 300, 401, 402, 500, 502, Design Studio; Architecture 358 and 359, Special Topics in Architectural History; Architecture 458, Special Projects in Design Communications; Architecture 567, Contemporary Italian Culture; Architecture 510, Thesis Introduction; Art 251, 311, 322, and 371, and History of Art 371, Renaissance and Baroque Art in Rome; Italian 111, 112, elementary Italian 111 and 112 correspond to Cornell courses 121 and 122 respectively (see below). Students having passed 111 in Rome will be admitted to 122 when they get back to Cornell. Students having passed 112 in Rome will be granted credit but must take the CPT (after Fall 1990: the Italian Skills Assessment) for satisfaction of the language requirement and for placement into more advanced courses upon their return to Cornell.

To be eligible, students must have completed the first two years of their curriculum requirements and be in good academic standing.

Fees. Depending on the course, a small fee may be charged for copies of texts for course work.

101 Basic Course I
Summer only. 6 credits.
M-F 8-12. Staff.
A thorough grounding in all basic language skills. Students who have previously studied Italian must take the qualifying examination before registering for this course.

121-122 Elementary Italian
121, fall, 122, spring. 4 credits each term. Prerequisite for Italian 122: Italian 121 or equivalent. Intended for beginners or students placed by examination. At the end of Italian 122, students who score 560 or higher on the CPT (after Fall 1990: the Italian Skills Assessment) attain qualification and may enter the 200-level sequence; otherwise Italian 123 is required for qualification.

Lec., T 10-10, 12-20, or 2:30; drills, M W R F B., 9:05, 10:10, 11:15, 12:20, 1:25, 2:30, 3:45 or 4:40. J. U. Chierchia.

A thorough grounding is given in all the language skills: listening, speaking, reading, and writing. Language practice is in small groups. Lectures cover grammar and cultural information.
123 Continuing Italian
Fall and summer. 4 credits. Limited to students who have previously studied Italian and score between 450 and 559 on the CPT (after Fall 1990: the Italian Skills Assessment). Satisfactory completion of Italian 123 fulfills the qualification portion of the language requirement.
M-F 9:05, 10:10, or 11:15. J. Scarpella.

203-204 Intermediate Composition and Conversation
203, fall or spring. 204, spring. 3 credits each term.
Prerequisites: for Italian 203, qualification in Italian, for Italian 204, 203 or equivalent.
203, fall. M W F 10:10, 12:20, 1:25 or 2:30.
M. Swenson. 203, spring. M W F 1:25.
Guided conversation, composition, reading, pronunciation, and grammar review emphasizing the development of accurate and idiomatic expression in the language.
Note: Students placed in 200-level courses also have the option of taking courses in introductory literature; see separate listing under Italian 201 for description of this course, which may be taken concurrently with the Italian 203-204 language courses described above. The introductory literature courses are offered by the respective literature departments, and the 203-204 language courses by the Department of Modern Languages and Linguistics.

300 Advanced Italian Language in Italian Culture
Spring. 3 credits. Prerequisite: Italian 204 or equivalent or permission of instructor.
M W F 11:15. I. Chierchia.
Further development of all skills, with emphasis on self-expression. Readings center on two themes: (1) contemporary Italian life and (2) the Italian language, its origins, development, and present state, including the role of the dialects. Emphasis on vocabulary building and awareness of stylistic levels.

403 Linguistic Structure of Italian
Spring. 4 credits. Prerequisites: Linguistics 101 or equivalent, and qualification in any Romance language. Offered alternate years.
Not offered 1990-91.
Hours to be arranged. G. Chierchia, C. Rosen.
Survey of Italian grammar in the light of current linguistic theories. Central topics in syntax (auxiliaries, modals, clitics, agreement, impersonal constructions, causatives) and in phonology (syllable format, stress, raddoppia- mento phenomena).

631 Readings in Italian Opera Libretti
Spring. 2 credits. For graduate students only.
Prerequisite: permission of instructor. Offered alternate years. Not offered 1990-91.
Hours to be arranged. G. Chierchia.
Several libretti are read with the aim of understanding the syntax, literal meaning, and immediate metaphorical meanings. Some discussion of metrics. Intended primarily for grads concurrently enrolled in a music seminar, with which the readings are correlated.

101-102 Elementary Course
101, fall; 102, spring. 6 credits each term.
Prerequisites: for Italian 101, Japanese 101 or placement by the instructor during registration. Intended for beginners or for those who have been placed in the course by examination.
Lecs, M W F 10:10 or 12:20; Drills, M-F 8, 10:05, 10:10, 11:15, 12:20, 1:25, 2:30, or 3:35. Staff.
A thorough grounding is given in all the language skills: listening, speaking, reading, and writing.

123 Accelerated Introductory Japanese
Fall. 6 credits. Prerequisite: placement by the instructor at beginning of semester.
Lecs, M W F 12:20 (with Japanese 101), drills, M W F 1:25. Staff.
Accelerated training in listening, speaking, reading, and writing for students who have already acquired a limited facility in Japanese through residence in Japan or brief formal study but who require additional training to qualify for admission to Japanese 102.

201-202 Intermediate Japanese
Reading I
201, fall; 202, spring. 2 or 3 credits each term.
Students have had Japanese 203 and 204 register for 2 credits and attend the W drill and the F lecture; other students register for 3 credits (with permission of instructor) and attend the W drill and the M, W, F lectures.
Prerequisites: for Japanese 201, Japanese 102 or placement by the instructor during registration; for Japanese 202, Japanese 201 and 204 or placement by the instructor during registration.
Lecs, M W F 1:25, drill, W 10:10, 2:30, or 3:35. Staff.
Reading of elementary texts with emphasis on expository style.

203-204 Intermediate Japanese
Conversation
203, fall and summer; 204, spring and summer. 4 credits each term.
Prerequisites: for Japanese 203, Japanese 201 or placement by the instructor during registration; for Japanese 204, Japanese 203, 205, or 223, or placement by the instructor during registration.
Lecs, M W F 10:10, 11:15, 12:20, 2:30, or 3:35. Staff.
Training in listening and speaking for students who have acquired basic oral proficiency. Students are strongly encouraged to enroll in Japanese 201-202 concurrently.

223 Transition to Intermediate Japanese
Conversation
Fall. 6 credits. Prerequisite: Japanese 160 (Cornell intensive summer course) or placement by the instructor during registration.
Not offered 1990-91.
Lecs, T R 1:25 plus one hour to be arranged, drills, M-F 12:20. Staff.
Provides transition, primarily for summer course students, into regular program. After Japanese 223 the students will have covered the same material that 203 students have covered. Japanese 223 satisfies prerequisite for 204. Recommended also for students with insufficient background to qualify for Japanese 203, determined by examination during registration period.

301-302 Intermediate Japanese
Reading II
301, fall; 302, spring. 4 credits each term.
Prerequisites: for Japanese 301, Japanese 202 or placement by the instructor during registration; for Japanese 302, Japanese 301 or placement by the instructor during registration.
M W F 11:15 or 2:30. K. Smith or K. Selden.
Reading of selected modern texts with emphasis on expository style.

303-304 Communicative Competence
303, fall; 304, spring. 3 credits each term.
Prerequisite: for Japanese 303, Japanese 204 or placement by the instructor during registration; for Japanese 304, Japanese 303 or placement by the instructor during registration.
M W F 1:25 or 3:35,lec to be arranged. Staff.
Drill in the use of spoken Japanese within the constraints set by Japanese social settings.

341-342 Advanced Japanese for Business Purposes
341, fall; 342, spring. 4 credits each term.
Prerequisite: permission of instructor.
Hours to be arranged. Staff.
This course sequence will offer advanced training in Japanese with concentration on topics relating to the conduct of business. The emphasis will be on spoken skills, with provision for an optional reading component.

401-402 Advanced Japanese Reading
401, fall; 402, spring. 4 credits each term.
Prerequisites: for Japanese 401, Japanese 302 or placement by the instructor during registration; for Japanese 402, Japanese 401 or placement by the instructor during registration.
M W F 2:30 or 3:35. K. Smith and K. Selden.
Reading of selected modern texts with emphasis on expository style.

404 Linguistic Structure of Japanese
Spring. 4 credits. Prerequisites: Japanese 102 or permission of instructor, and Linguistics 101, or equivalent introductory course in linguistics. Not offered 1990-91.
Hours to be arranged. J. Whitman.

407-408 Oral Narration and Public Speaking
407, fall; 408, spring. 2 credits each term.
Prerequisites: for Japanese 407, Japanese 304 or placement by the instructor during registration; for Japanese 408, Japanese 407 or placement by the instructor during registration.
T R 1:25. K. Necchi.
Instruction in storytelling, lecturing, and speechmaking, with emphasis on both the construction of discourse and Japanese patterns of oral delivery.

410 History of the Japanese Language
Fall. 4 credits. Prerequisite: Permission of instructor. Offered alternate years. Not offered 1990-91.
Hours to be arranged. J. Whitman.
An overview of the history of the Japanese language followed by intensive examination of issues of interest to the participants. Students should have a reading knowledge of Japanese or a background in historical or comparative linguistics. Interests of both groups will be addressed.
Intermediate Japanese for Business Purposes

For graduate students only. Registration.

Advanced Japanese

For graduate students only. Undergraduate register Japanese 341-342.

Javanese 134 or equivalent.

R. Sukle, 412 Morrill Hall (255-0734)

Korean

101-102 Elementary Korean

101, fall; 102, spring. 4 credits each term. Prerequisites: for Javanese 133, Javanese 132 or equivalent.

Lee, T W R 9:05; drills: M T W R 8, 11:15, or 3:35. H. Diffloth.

Covers basics of speaking, reading, and writing. Introduces Hangul writing system and rudiments of grammar.

201-202 Intermediate Korean

201, fall; 202, spring. 3 credits each term. Prerequisites: for Korean 201, Korean 102, for Korean 202, Korean 201.

Hours to be arranged. G. Diffloth.

203-204 Intermediate Composition and Conversation

203, fall; 204, spring. 3 credits each term. Prerequisites: for Korean 203, Korean 102, for Korean 204, Korean 203.

Hours to be arranged. G. Diffloth.

301-302 Advanced Korean

301, fall; 302, spring. 4 credits each term. Prerequisites: for Korean 301, Korean 202 or equivalent; for Korean 302, Korean 301.

Hours to be arranged. G. Diffloth.

Directed Individual Study

401, fall; 402, spring. For advanced students. 4 credits each term. Prerequisite: permission of instructor. Not offered 1990-91.

Hours to be arranged. G. Diffloth.

Structure of Korean

Spring. 4 credits. Prerequisite: Linguistics 101-102 or equivalent. Not offered 1990-91.

Hours to be arranged. G. Diffloth.

Latin

See listings under Classics.

Linguistics

Linguistics, the systematic study of human speech, lies at the crossroads of the humanities and the social sciences, and much of its appeal derives from the special combination of intuition and rigor that the analysis of language demands. The interests of the members of the Department of Modern Languages and Linguistics span most of the major subfields of linguistics, phonetics and phonology, the study of speech sounds, syntax, the study of sentence structure; semantics, the study of meaning; historical linguistics, the study of language change in time; sociolinguistics, the study of language as a social and cultural artifact; and applied linguistics, which relates the result of linguistic research to problems of bilingual education, second-language learning, and similar practical concerns.

Studying linguistics is not a matter of studying many languages. Linguistics is a theoretical discipline with ties to such areas as cognitive psychology, philosophy, logic, computer science, and anthropology. Nonetheless, knowing particular languages (e.g., Spanish or Japanese) in some depth can enhance understanding of the general properties of human language. Not surprisingly, then, many students of linguistics owe their initial interest to a period of exposure to a foreign language, and those who come to linguistics by some other route find their knowledge about languages enriched and are often stimulated to embark on further foreign language study.

Students interested in learning more about linguistics and its relationship to other disciplines in the humanities and social sciences are encouraged to take Linguistics 101-102, which is a prerequisite for most other courses in the field. The Cornell Linguistic Circle, a student organization, sponsors frequent colloquia on linguistic topics; these meetings are open to the university public, and anyone wishing to learn more about linguistics is most welcome to attend.

The Major

The prerequisite for a major in linguistics is completion of Linguistics 101-102. The major has its own language requirement, which should be completed as early as possible: qualification in two languages other than English, one of which must be non-European or non-Indo-European. With approval of the department's director of undergraduate studies, this requirement may be waived (i.e., reduced to the normal arts college language requirement) for students taking the cognitive studies concentration or a double major.

The other requirements for the linguistics major are:

1) Linguistics 301 (phonology), Linguistics 303 (syntax), Linguistics 309 or 310 (morphology), and Linguistics 410 (historical linguistics).
2) A course at or beyond the 300 level in the structure of English or some other language or a typological or comparative structure course such as Linguistics 401.
3) Two additional linguistics courses totaling at least 8 credits, one of which may be a course with significant linguistic content in a related field.

Prospective majors should see Professor Cohn, 216 Morrill Hall.

For other courses relevant to linguistics, see anthropology, psychology, human development and family studies, computer science, cognitive studies, and philosophy.

Honor

Applications for honors should be made during the junior year. Candidates for admission must have a 3.0 (B) average overall and should have a 3.2 average in linguistic courses. In addition to the regular requirements of the major, the candidate for honors will complete an honors thesis and take a final oral examination in defense of it. The thesis is usually written during the senior year but may be begun in the second term of the junior year when the student's program so warrants. The oral examination will be conducted by the honors committee, consisting of the thesis adviser and at least one other faculty member in linguistics. Members of other departments may serve as additional members if the topic makes this advisable. Linguistics 493 and 494 may be taken in conjunction with thesis research and writing but are not required.
Distribution Requirement

The distribution requirement in the social sciences may be satisfied by taking Linguistics 101 and (1) any other course in linguistics or (2) any other course offered by the Department of Modern Languages and Linguistics for which this introductory linguistics course is a prerequisite.

Note: See also courses on the structure and history of particular languages or language families listed at the end of this section.

101 Theory and Practice of Linguistics

101, fall, spring or summer. 4 credits each term.
M W F 10:10; disc to be arranged.
M. Montalbetti.

An introductory course designed to provide an overview of the science of language, especially its theoretical underpinnings, methodology, and major findings. Linguistics 101 plus any other course in linguistics or any DMLL course for which Linguistics 101 is a prerequisite satisfies the social science distribution requirement.

113 Dos Worlds-Two Mundos

113, fall or spring. 3 credits each term.
Freshman Seminar.

What does it mean to be a Hispanic bilingual? In this course, we will investigate various aspects of Hispanic bilingualism from the perspective of a wide variety of disciplines—education, history, linguistics, psychology and sociology.

118 Varieties of Human Language

Spring. 3 credits. Applicable toward the social science distribution requirement.

Language diversity is a fact of our complex world. Whether spoken by a handful of speakers or by hundreds of millions, each language manages the same tasks of communication and fits in with its social environment. Language identification, literacy, and multilingualism are among the issues touched on.

121 Language and Gender (also Women's Studies 121)

Fall and summer. 3 credits. Freshman Seminar.

What does it mean to speak "like a woman" or "like a man," "like a girl" or "like a boy"? Even ten-year-olds in our culture approach similar communicative tasks in gender-differentiated ways—girls often get others to do things by saying things like, "let's get some coat-hangers," whereas their male peers are more likely to say something like, "let's get me a coat-hanger." How do race, social class, age, setting, and aims interact with gender in affecting communicative style? How do our ways of writing and talking reflect and perpetuate gender stereotypes or biases? What is the role of sex and gender in language change?

125 Women, Fire, and Dangerous Things

Spring. 3 credits: Freshman seminar.

Hours to be arranged. A. Wyner.

This course will explore the way we use language to express our ideas and feelings of ourselves and the objects and events we see around us. The course will encourage close scrutiny of language and thought, developing attention to linguistic categorizations of experience.

201 Introduction to Phonetics and Phonology

Spring. 4 credits. Prerequisite: Linguistics 101 or equivalent or permission of instructor.

An introduction to the study of human speech sounds and how they pattern in languages. The first part of the course will focus on phonetics: the production, acquisition, and perception of speech, with attention to both the common and the less common sounds of the world’s languages. The second part of the course will focus on phonology: how human speech sounds are put together within and across languages, with an emphasis on the rules that govern these patterns and their possible representation.

244 Language and Gender/Sex (also Women's Studies 244)

Spring. 4 credits: For non-majors or majors. Not offered 1990-91.

Hours to be arranged.
S. McConnell-Ginet.

This course explores connections between language (use) and gender/sex systems, addressing such questions as the following: How do sex and gender affect the ways we speak, the ways we interpret and evaluate speech? How do sociocultural differences in women’s and men’s roles affect their language use, their relation to language change? What is meant by sexist language? How does conversation structure the social worlds of women and men? Readings draw from work in linguistics, anthropology, philosophy, psychology, literature, and general women’s studies and feminist theory.

264 Language, Mind, and Brain

Fall. 4 credits. For non-majors or majors. Prerequisite: a basic course in linguistics and/or psychology is desirable. Not offered 1990-91.

An introductory course that emphasizes the formal structure of natural language and its biological basis. The following topics are covered: the formal representation of linguistic knowledge, principles and parameters of universal grammar, the basic biology of language, mechanisms of linguistic performance, the modularity hypothesis, and language and cognition. The course is especially suited for majors in fields such as psychology, philosophy, computer science, and linguistics (and also for those enrolled in the concentration in cognitive studies) who want to take a one-semester introduction to linguistics that concentrates on the formal principles that govern linguistic knowledge, along with some discussion of their biological realization and their use in perception and production.

300 Multilingual Societies and Cultural Policy

Fall. 4 credits.

An interdisciplinary analysis of the impact of bilingualism on society, particularly in education and communication arts. The Flex model is used to suggest a method of evaluating policy and program alternatives.

301-302 Phonology I, II

301, fall; 302, spring. 4 credits each term.
Prerequisites: for Linguistics 301, Linguistics 102; for Linguistics 302, Linguistics 301 or permission of instructor.
M W 2:30-3:45. N. Clements.

An introduction to contemporary phonology, which studies the system of rules and representations underlying the human ability to produce and understand speech; 301: an overview of descriptive phonetics and phonetic transcription, the phoneme, principles of phonological analysis, phonological rules and their interaction, distinctive features, and the syllable; 302: using English as a case study, explores in detail the nature of rule systems and rule interaction, levels of representation, stratal organization of phonological rules, lexical and morphological conditioning of rules, and the relation between phonology and syntax.

303-304 Syntax I, II

303, fall; 304, spring. 4 credits each term.
Prerequisites: for Linguistics 303, Linguistics 102; for Linguistics 304, Linguistics 303 or permission of instructor.

303 is an introduction to syntactic theory, with emphasis on the classical theory of transformational grammar. 304 is an advanced course, surveying current syntactic models and dealing with such issues as the nature of syntactic representation, levels of representation, principles of universal grammar, and the relation of syntax and semantics.

306 Functional Syntax

Fall. 4 credits. Prerequisite: Linguistics 102 or permission of instructor. Not offered 1990-91.

A general survey of syntactic theories that highlight grammatical function and reveal its role in discourse structure.

309-310 Morphology I, II

309, fall; 310, spring. 4 credits each term.
Prerequisite: Linguistics 102 or equivalent or permission of instructor.

309 is a general survey focusing on the relationship of meaning and form in morphological and introducing techniques of morphological analysis. Current research on form meaning questions is discussed. 310 considers recent discussions in morphological theory.

311-312 The Structure of English

311, fall; 312, spring. 4 credits each term.
Prerequisites: for Linguistics 311, Linguistics 102 or permission of instructor; for Linguistics 312, Linguistics 311 or permission of instructor. Not offered 1990-91.

311 provides an overview of the syntactic structure of English, drawing upon relevant theoretical approaches. 312 deals with phonology, morphology, and special problems of English structure and semantics.
[313] English for Teachers of English
Fall. 4 credits. Prerequisites: for undergraduate majors, Linguistics 101-102 or equivalent. for graduate students, concurrent registration in Linguistics 101 or equivalent.
M W F 11:15, plus one hour to be arranged. M. Martin. Not offered 1990-91.
A course in modern English for teachers of non-native speakers. An analysis of the phonetics, grammar, and semantics of the language in terms applicable to both classroom teaching and materials development.

[314] Teaching English as a Foreign Language
Spring. 4 credits. Prerequisite: Linguistics 313. M W F 11:15, plus one hour to be arranged. M. Martin. Not offered 1990-91.
Methods and techniques used in the teaching of English language skills to non-native speakers are examined. Attention is given to materials design and to current issues and new trends in the field.

[316] Introduction to Mathematical Linguistics
Spring. 4 credits. Prerequisite: Linguistics 101-102 or equivalent. Offered alternate years. Not offered 1990-91. Hours to be arranged. F. Landman.
The course is an introduction to the mathematical concepts and techniques most frequently used in theoretical linguistics. Topics will include the following: elementary set theory, elementary logic, formal systems and algorithms, and trees, automata, and formal grammars. The course is designed for students who are interested in formal linguistics but feel that they have a weak mathematical background. It presupposes no previous knowledge of formal methods and it will try to overcome any “anxiety” that such methods may give rise to.

[319] Phonetics I
Fall. 3 credits. Not offered 1990-91. M W F 10:10; disc to be arranged. J. Kingston.
An introduction to phonetic theory, with an equal emphasis on the general properties of speech production, acoustics, and perception. Training in production and transcription in a discussion section, in conjunction with Linguistics 301.

[320] Phonetics II
Spring. 3 credits. Prerequisite: Linguistics 319. Not offered 1990-91. M W F 10:10; disc to be arranged. J. Kingston.
Surveys current controversies in research on articulation, acoustics, or perception. Possible topics include: phonetic explanation in phonology; testing of the psychological reality of theoretical constructs in phonology; and phonetic implementation of phonological representations.

[321] History of the Romance Languages
Fall. 4 credits. Prerequisites: Linguistics 101 or equivalent, and qualification in any Romance language. Offered alternate years. Not offered 1990-91. M W F 1:25. C. Rosen.

[322] Comparative Romance Linguistics
Fall. 4 credits. Prerequisites: Linguistics 101 or equivalent, and qualification in any Romance language. Offered alternate years.
M W F 1:25. C. Rosen.
The Romance language family in a typological perspective. Salient features of eight Romance languages; broad and localized trends in phonology, syntax, and the lexicon; and elements of dialectology.

[325] Pragmatics
Fall. 4 credits. Prerequisite: Linguistics 102 or permission of instructor. Not offered 1990-91. M W F 10:10. S. McConnell-Ginet.
An introduction to the study of such topics as speech acts, presupposition, deixis, implicatures, and conversational strategies.

[334] Non-Linear Syntax
Spring. 4 credits. Prerequisite: Linguistics 303 or equivalent. M W F 11:15. C. Rosen.
Analyses of some twenty diverse languages are examined with the aim of building a formal account of the syntactic constructions existing in the world’s languages, and discerning universals that delimit this inventory. Non-linear theory, designed for comparative work, depicts constructions in the abstract, not imagining them as arrays of elements in space. Simultaneously it studies the morphosyntactic systems that relate constructions to their linear realizations.

[366] Spanish in the United States (also Spanish 366)
Fall. 4 credits. Prerequisite: some knowledge of Spanish. Offered alternate years. Not offered 1990-91. Offered toward the social science distribution requirement.
Hours to be arranged. M. Suñer.
Examination of major Spanish dialects in the United States from a linguistic perspective. Contrast with the standard language. Borrowing, interference, and code-switching. Syntactic, morphological, and phonological characteristics. Sex-related phenomena.

[370] Language and Cognition (also Psychology 370)
Spring. 4 credits. Prerequisites: Linguistics 101 or 264 or Psychology 215, or permission of one of the instructors. Not offered same years as Psychology 416.
T R 1:25-2:40. J. Bowers, H. Kurtzman. Examination of current research on selected topics on language from both linguistic and psychological perspectives. Topics may include: Universal Grammar and language acquisition, syntactic parsing, word recognition, sentence production, aphasia, and schizophrenic language.

[401] Language Typology
Fall. 4 credits. Prerequisite: Linguistics 102 or equivalent. M W F 10:10. J. Whitman.
Study of a basic question of contemporary linguistics: in what ways do languages differ, and in what ways are they all alike? Efforts to formalize universals of syntax and to characterize the total repertory of constructions available to natural languages. Common morphological devices and their syntactic correlates. Emphasis on systems of case, agreement, and anaphora.

[402] Languages in Contact
Fall. 4 credits. Prerequisite: Linguistics 102 or permission of instructor. Offered alternate years.
M W F 9:05. H. L. Kufner.
Examination of a variety of areas where languages exhibit interference phenomena: diglossia, bilingualism, dialects, second-language acquisition.

[405-406] Sociolinguistics
405, fall; 406, spring. 4 credits each term. Prerequisite: Linguistics 102 or permission of instructor. Linguistics 405 is not a prerequisite to 406.
Hours to be arranged. Staff.
405: Social differences in the use of language according to sex, class, age, race, situation, etc. Societal multilingualism, diglossia, etc. Social attention to language: norms and standards, taboo and euphemism, and language planning. 406: the study of language variation. Theoretical and methodological issues in the study of sociolinguistic differences. Variable rules, locating variation in the grammar, and quantitative methods in linguistics.

[410] Introduction to Historical Linguistics
Spring. 4 credits. Prerequisite: Linguistics 102 or permission of instructor. M W F 10:10. J. Jasanoñ. A survey of the basic mechanisms of linguistic changes, with examples from a variety of languages.

[412] Process and Knowledge in Speech Perception and Word Recognition
Spring. 4 credits. Prerequisite: Linguistics 319 or permission of instructor. Not offered 1990-91. T R 1:25–2:40. J. Kingston.
This course examines how speech sounds are received and how words are recognized. The focus is on the question of whether speech perception requires mechanisms which are unique to it, or if instead general auditory mechanisms are sufficient. Word recognition is examined in terms of the role of phonetic and phonological processes, structures, and knowledge in recognizing words.

[415-416] Social Functions of Language
415, fall; 416, spring. 4 credits each term. Prerequisite: Linguistics 102 or permission of instructor. Not offered 1990-91.
Hours to be arranged. Staff.
The function of language in society; social constraints on linguistic behavior, including taboos, jargons, registers, social and socially perceived dialects.

[417] History of the English Language
Spring. 4 credits. Prerequisite: permission of instructor. Not offered 1990-91.
Hours to be arranged. Staff.
Development of modern English; external history; phonological, grammatical, and lexical change. The English language in America.
418 Nonlinear Phonology
Fall. 4 credits. Prerequisite: Linguistics 302. M W 4-5:15. A. Cohn.
Explores a comprehensive model of phonological description arising out of work in autosegmental and metrical phonology. Particular topics include tone systems, syllable structure, quantity, stress and intonation, vowel harmony, and feature organization. These topics are related to fundamental issues in phonological theory such as naturalness, markedness, learnability, and universals.

[420] Fundamentals of Speech Acoustics
Spring, according to demand. 4 credits.
Prerequisites: Linguistics 319 and at least 1 year of college calculus, including the mathematics of complex variables. Not offered 1990-91.
This course develops a model of vocal tract acoustics, based on the fundamental principles of acoustic theory.

421-422 Semantics I, II
421, fall, 422, spring. 4 credits each term.
421: an introduction to semantics of natural language. The course starts from basic foundational questions concerning the nature of meaning and the empirical domain of semantic theory. Truth-conditional and logical theories and their application to the investigation of the structure of natural languages are extensively explored (with some comparisons with other approaches). Through the study of quantification, scope, anaphora, modalities, presuppositions, and the like, one tries to gain insight into general characteristics of the cognitive apparatus that is at the basis of our capacity for understanding sentences.
422: guides students into current work in semantic theory. The first half of the course is an introduction to Montague-style semantics, whose influence on current research is quite extensive. The second half of the course focuses on selected topics that have grown out of (and sometimes against) classical Montague semantics. Such topics are usually drawn from the following: generalized quantifiers and anaphora, e-reflexing, problems of tense and aspect, the linguistic relevance of algebraic approaches to properties, propositions, events and thematic roles, and discourse representation theory.

[423-424] The Structure of Turkish
423, fall; 424, spring. 4 credits each term.
Prerequisites: Linguistics 303-304 or equivalent. Not offered 1990-91.
Hours to be arranged. L. H. Babby.
The purpose of Linguistics 423-424 is to familiarize students of linguistics with a language whose structure is radically different from that of the familiar Indo-European languages and to evaluate its contribution to current linguistic theory. Linguistics 423 introduces the basic phonology, morphology, and syntax of Turkish, along with the special problems of agglutinative morphology and left-branching (SOV) syntax. Among the topics covered are: causativization, passive, phrase-structure, case and semantic roles, word order, the syntax of non-finite categories, and the auxiliary system. Linguistics 424 is devoted to recent monographs dealing with Turkish and its contribution to current linguistic theory and to the reading and analysis of selected Turkish prose texts.

[425-426] Structure of Bantu I and II
425, fall; 426, spring. 4 credits each term.
Prerequisites: for Linguistics 425, Linguistics 301 or permission of instructor; for Linguistics 426, Linguistics 303 and 425 or permission of instructor. Not offered 1990-91.
Hours to be arranged. G. N. Clements.
425 is an introduction to descriptive and historical Bantu linguistics. Following a review of basic features of Proto-Bantu grammar and lexicon, we examine the phonology and morphology of a selected Bantu language with the help of a native speaker assistant. 426 is a sequel to Linguistics 425 and investigates aspects of Bantu syntax and its relation to phonology, morphology, and discourse function.

430 Structure of Korean
Spring. 4 credits. Offered alternate years.
Hours to be arranged. J. Whitman.
Intensive examination of the syntax and phonology of a non-Indo-European language with the objective of testing principles of current linguistic theory. No previous knowledge of Korean required.

[436] Language Development (also Psychology 436 and Human Development and Family Studies 436)
Spring. 4 credits.
Prerequisite: Linguistics 101 or 303.
A comparative and constrative analysis of the structures of several Dravidian languages.

[440] Dravidian Structures
Spring, according to demand. 4 credits.
Prerequisite: Linguistics 102.
Participants will present their own ongoing research and discuss it with their colleagues. Individual topics will be chosen on the basis of interest, experience, and probable focus of dissertation research.

[443] Linguistic Structure of Russian
(also Russian 403-404)
443, fall; 444, spring. 4 credits each term.
Prerequisite for Linguistics 443: permission of instructor, Linguistics 101-102 recommended. Prerequisite for Linguistics 444: Linguistics 443 or equivalent. Offered alternate years. Not offered 1990-91.
A survey of basic issues, methods, and research in study of first-language acquisition. Major theoretical positions in the field are considered in the light of experimental studies in first-language acquisition of phonology, syntax, and semantics from infancy on. The fundamental linguistic issues of universal grammar and the biological foundations for acquisition are discussed, as are the issues of relations between language and thought. The acquisition of communication systems in nonhuman species such as chimpanzees are addressed, but major emphasis is on the child.

[444] Indo-Aryan Structures
Fall, according to demand. 4 credits. Prerequisite: Linguistics 102.
Hours to be arranged. J. W. Gair.
A comparative and constrative analysis of the structures of several Dravidian languages.

[450] Computational Linguistics
Fall. 4 credits. Prerequisite: Linguistics 303. Not offered 1990-91.
Hours to be arranged. F. Landman.
In this course we will study questions concerning the generative capacity, learnability, and parsimony of different syntactic models. Some knowledge of recent developments in syntax is important. Some knowledge of mathematical linguistics may be helpful, but is not required. The course is meant for graduate students and advanced undergraduate students in linguistics, but may also be of interest to students in psychology/psycholinguistics, computer science, and cognitive studies.

483 Honors Thesis Research
Fall. 4 credits.
Hours to be arranged. Staff.
May be taken before or after Linguistics 494, or may be taken independently.

494 Honors Thesis Research
Spring. 4 credits.
Hours to be arranged. Staff.
May be taken as a continuation of, or before, Linguistics 493.

600 Field Methods
Fall or spring. 4 credits.
Prerequisites: Linguistics 101 or 319.
Elicitation, recording, and analysis of data from a native speaker of a non-Indo-European language not generally known to students.

601 Topics in Phonological Theory
Spring. 4 credits.
Prerequisites: Linguistics 301 and one other course in phonology.
Hours to be arranged. N. Clements.
Selected topics in current phonological theory.

[603] History of Linguistics
Fall. 4 credits. Not offered 1990-91.
Hours to be arranged. Staff.
The history of linguistics, from early Greek and Sanskrit grammarians to the modern period.

604 Research Workshop
Spring. 4 credits.
Prerequisite: three or more semesters of graduate study in linguistics.
Hours to be arranged. Staff.
Participants will present their own ongoing research and discuss it with their colleagues.

[608] Discourse Analysis
Fall. 4 credits.
Prerequisite: permission of instructor. Not offered 1990-91.
T R 2:30-4:30. J. E. Grimes.
Linguistic theory applied to relationships beyond the sentence.

[609] Greek Comparative Grammar (also Classics 421)
Fall. 4 credits.
Prerequisite: thorough familiarity with the morphology of classical Greek. Not offered 1990-91.
M W F 10:10. A. Nussbaum.
The prehistory and evolution of the sounds and forms of ancient Greek as reconstructed by comparison with the other Indo-European languages.
[610 Latin Comparative Grammar (also Classics 422)]
Fall or spring. 4 credits. Prerequisite: thorough familiarity with the morphology of classical Latin. Not offered 1990-91.
Hours to be arranged. A. Nussbaum.
The prehistory and evolution of the sounds and forms of classical Latin as reconstructed by comparison with the other Indo-European languages.

[611 Greek Dialects (also Classics 425)]
Fall or spring. 4 credits. Not offered 1990-91.
M W F 9:05. A. Nussbaum.
A survey of the dialects of ancient Greek through the reading and analysis of representative epigraphical and literary texts.

[612 Italic Dialects (also Classics 424)]
Fall. 4 credits. Not offered 1990-91.
The phonology and morphology of Faliscan, Osco, and Umbrian studied through the reading of epigraphical texts. Attention to the relations of these languages to Latin and the question of proto-Italic.

[613 Hомeric Philology (also Classics 427)]
Fall or spring. 4 credits. Prerequisite: ability to read Homeric Greek. Not offered 1990-91.
Hours to be arranged. A. Nussbaum.
The language of the Homeric epics: dialect background, archaisms, epicsisms, and modernizations. The notion of a Kunstsprache: its constitution, use, and internal consistency. The phonological and morphological aspects of epic compositional technique.

[614 Archaic Latin (also Classics 426)]
Spring. 4 credits. Prerequisite: reading knowledge of Latin. Not offered 1990-91.
Hours to be arranged. A. Nussbaum.
Reading of epigraphic and literary preclassical texts with special attention to archaic and dialectal features. The position of Latin among the Indo-European languages of ancient Italy, the rudiments of Latin historical grammar, and aspects of the development of the literary language.

[615 Mycenaean Greek (also Classics 429)]
Fall or spring. 4 credits. Prerequisite: thorough familiarity with the morphology of classical Greek. Not offered 1990-91.
Hours to be arranged. A. Nussbaum.
An introduction to the epigraphy, language, and content of the Linear B tablets with special attention to their implications for Greek historical grammar and dialectology.

[617-618 Hittite]
617, fall; 618, spring. 4 credits each term.
Prerequisite: for Linguistics 617, permission of instructor; for Linguistics 618, Linguistics 617 or permission of instructor. Not offered 1990-91.
Hours to be arranged. J. Jasano.

[619 Rigveda]
Fall. 4 credits. Not offered 1990-91.
Hours to be arranged. J. Jasano.
Reading and linguistic analysis of selected Vedic hymns.

[620 Area Topics In Romance Linguistics]
Spring. 4 credits. May be repeated for credit. Offered alternate years.
Hours to be arranged. C. Rosen.
Topic for 1991: reading and linguistic analysis of selected early Romance texts.

[621 Problems and Methods in Romance Linguistics]
Spring. 4 credits. Prerequisites: one syntax course and qualification in two Romance languages. Offered alternate years. Not offered 1990-91.
Hours to be arranged. C. Rosen.
Central topics in Romance syntax in the light of current theories of universal grammar.

[623-624 Old Irish]
623, fall; 624, spring. 4 credits each term.
Prerequisite for 624: 623 or permission of instructor. Not offered 1990-91.
Hours to be arranged. J. Jasano.

[625-626 Middle Welsh]
625, fall; 626, spring. 4 credits each term.
Prerequisites: for Linguistics 625, knowledge of one ancient or medieval European language or permission of instructor; for Linguistics 626, Linguistics 625 or equivalent. Not offered 1990-91.
Hours to be arranged. Staff.

[627 Advanced Old Irish]
Spring. 3 credits. Prerequisite: one year of Old Irish. Not offered 1990-91.
Hours to be arranged. Staff.

[631 Comparative Indo-European Linguistics]
Fall. 4 credits.
Prerequisite: permission of instructor.
An introduction to the comparative grammar of the Indo-European languages.

[633 Seminar in First-Language Acquisition: Cross-linguistic Studies of the Acquisition of Anaphora (also Human Development and Family Studies 633)]
Fall or spring. 1-4 credits. Prerequisite: Linguistics 436 or equivalent or permission of instructor. Not offered 1990-91.
Hours to be arranged. B. Lust.
This seminar will review and critique current theoretical and experimental studies of the first-language acquisition of anaphora, with a concentration on insights gained by cross-linguistic study of this area. The seminar will focus on relating current developments in linguistic theory regarding anaphora to current experimental research on first-language acquisition of anaphora. Attention will also be given to the development of research proposals.

[635-636 Indo-European Workshop]
635, fall; 636, spring. 4 credits each term.
Prerequisite: permission of instructor.
Hours to be arranged. Fall: A. Nussbaum; spring: J. Jasano.
An assignment of subjects intended for students with previous training in Indo-European linguistics: problems in the reconstruction of Proto Indo-European, topics in the historical grammars of the various IE languages, reading and historical linguistic analysis of texts, and grammatical sketches of "minor" IE languages.

[639-640 Introduction to Pali]
639, fall; 640, spring. 3 credits each term.
Hours to be arranged. J. W. Gair.
639 is an introduction to the language of the canonical texts of Theravada Buddhism.
Reading of authentic texts with emphasis on both content and grammatical structure. Familiarity with Sanskrit is not required. 640 is a continuation of 639 with further readings.

[647-648 Speech Synthesis by Rule]
647, fall; 648, spring. 4 credits each term.
Prerequisite: phonology and phonetics or knowledge of computer programming and permission of instructor. Offered alternate years.
Hours to be arranged. S. R. Hertz.
Linguistics 647 is an introduction to speech synthesis by rule. Particular emphasis will be given to synthesizing English, with a consideration of how to derive phonetic values on the basis of multi-tiered phonological representations (e.g., coordinated phrase, word, syllable, and phoneme units). Students will have first-hand experience synthesizing speech in the Cornell Phonetics Laboratory using the Delta System, which provides a special-purpose programming language for research in non-linear phonology, phonetics, and speech synthesis. Linguistics 648 is a less formal workshop, in which students will use the Delta System to work on selected projects.

[651-652 Old Javanese]
Fall or spring, according to demand. 4 credits.
Hours to be arranged. J. U. Wolff.
Grammar and reading of basic texts.

[653-654 Seminar in Southeast Asian Linguistics]
653, fall; 654, spring. 4 credits each term.
Prerequisite: Linguistics 304 or permission of instructor. Linguistics 653 is not a prerequisite for 654.
Hours to be arranged. G. Diffloth.
Languages of mainland Southeast Asia. Topics, chosen according to student interests, may include description, dialectology, typology, comparative reconstruction, and historical studies.

[655-656 Seminar in Austronesian Linguistics]
655, fall; 656, spring. 4 credits each term.
Prerequisites: for Linguistics 655, Linguistics 102 and permission of instructor; for Linguistics 656, Linguistics 656.
Hours to be arranged. J. U. Wolff.
Descriptive and comparative studies of Malayopolynesian languages.

[657-658 Seminar in Austrasian Linguistics]
657, fall; 658, spring. 4 credits each term.
Prerequisites: Linguistics 102 or permission of instructor.
Hours to be arranged. G. Diffloth.
Descriptive and comparative studies of Austrasian languages.

[700 Seminar]
Fall or spring, according to demand. Credit to be arranged.

[753 Tibetano-Bumran Linguistics]
Fall. 4 credits.
Prerequisites: Linguistics 404 or equivalent and permission of instructor. Not offered 1990-91.
Hours to be arranged. Staff.
Comparative reconstruction of Tibetno-Bumran with emphasis on the Lolo-Bumran branch and historical study of Burmese.
MODERN LANGUAGES AND LINGUISTICS 237

774 Proseminar in Cognitive Studies II
(also Computer Science 774)
Spring. 2 credits.
T R 1:30–3. Staff.
The focus will be on the contribution of neuropsychology.

Additional Linguistics Courses

[Chinese 401 History of the Chinese Language]
[Chinese 403 Linguistic Structure of Chinese I]
[Chinese 404 Linguistic Structure of Chinese II]
[Chinese 405 Chinese Dialects]
[Chinese 607 Chinese Dialect Seminar]
French 401 History of the French Language
[French 407 Applied Linguistics: French]
[French 408 Linguistic Structure of French]
French 410 Semantic Structure of French
[French 602 Linguistic Structure of Old and Middle French]
[French 604 Contemporary Theories of French Grammar]
French 700 Seminar in French Linguistics
German 401 Introduction to Germanic Linguistics
[German 402 History of the German Language]
[German 403 Modern German Phonology]
[German 404 Modern German Syntax]
German 406 Runology
German 407 Applied Linguistics: German
[German 602 Gothic]
German 603 Old High German, Old Saxon
[German 605 Structure of Old English]
[German 606 Topics in Historical Germanic Phonology]
[German 607 Topics in Historical Germanic Morphology]
German 608 Topics in Historical Germanic Syntax
German 609-610 Old Norse
[German 611 Readings in Old High German and Old Saxon]
German 710 Seminar in Germanic Linguistics
[German 720 Seminar in Comparative Germanic Linguistics]
German 730 Seminar in German Linguistics
[Hindi 700 Seminar in Hindi Linguistics]

Indonesian 300 Linguistic Structure of Indonesian
[Italian 403 Linguistic Structure of Italian]
[Italian 631 Readings in Italian Opera LibrettI]
[Japanese 404 Linguistic Structure of Japanese]
[Japanese 410 History of Japanese Language]
Khmer 404 Structure of Khmer
Quechua 403 Linguistic Structure of Quechua
Quechua 700 Seminar in Quechua Linguistics
Russian 301–302 Advanced Russian Grammar and Reading
Russian 401–402 History of the Russian Language
[Russian 403-404 Linguistic Structure of Russian]
[Russian 601 Old Church Slavic]
[Russian 602 Old Russian]
[Russian 651-652 Comparative Slavic Linguistics]
Russian 700 Seminar in Slavic Linguistics
[Spanish 401 History of the Spanish Language]
Spanish 407 Applied Linguistics: Spanish
[Spanish 408 The Grammatical Structure of Spanish]
Spanish 601 Hispanic Dialectology
Spanish 602 Linguistic Structure of Ibero Romance
[Spanish 604 Contemporary Theories of Spanish Grammar]
Spanish 700 Seminar in Spanish Linguistics
Tagalog 300 Linguistic Structure of Tagalog

Nepali
101-102 Elementary Nepali
101, fall; 102, spring. 6 credits each term.
Prerequisite: for Nepali 102, 101 or examination.

201-202 Intermediate Nepali Conversation
201, fall; 202, spring. 3 credits each term.
Prerequisites: for Nepali 201, Nepali 102 or examination; for Nepali 202, Nepali 201 or examination.

HOURS to be arranged. K.S. March and staff.
Intermediate instruction in spoken grammar and verbal comprehension skills, with special attention to developing technical vocabularies and other verbal skills appropriate to students' professional fields.

203-204 Intermediate Nepali Composition
203, fall; 204, spring. 3 credits each term.
Prerequisites: for Nepali 203, Nepali 102 or examination; for Nepali 204, Nepali 201 or examination.

HOURS to be arranged. K.S. March and staff.
A systematic review of written grammar and reading comprehension, with special attention to technical vocabularies, necessary writing skills, and published materials typical of advanced students' professional fields.

Pali
See Linguistics 639–640.

Polish
131-132 Elementary Course
131, fall; 132, spring. 3 credits each term.
Prerequisite for Polish 132: Polish 131 or equivalent. Offered alternate years.
M W F 10:10 or 1:25. Staff.

[133-134 Continuing Course
133, fall; 134, spring. 3 credits each term.
Prerequisites: for Polish 133, Polish 132 or equivalent; for Polish 134, Polish 133 or equivalent. Offered alternate years. Not offered 1990–91.

HOURS to be arranged. E. W. Browne.]

Portuguese
121-122 Elementary Course
121, fall; 122, spring. 4 credits each term.
Intended for beginners. Students may attain qualification upon completion of 122 by achieving a satisfactory score on a special examination.
A thorough grounding is given in all the language skills: listening, speaking, reading, and writing.

203-204 Intermediate Composition and Conversation
203, fall; 204, spring. 3 credits each term.
Prerequisites: for Portuguese 203, Portuguese 202 or permission of instructor; for Portuguese 204, Portuguese 203 or permission of instructor.
Conversational grammar review with special attention to pronunciation and the development of accurate and idiomatic oral expression. Includes readings in contemporary Portuguese and Brazilian prose and writing practice.

303-304 Advanced Composition and Conversation
303, fall; 304, spring. 4 credits each term.
Prerequisite: for Portuguese 303, Portuguese 204 or equivalent; for Portuguese 304, Portuguese 303 or equivalent.

HOURS to be arranged. J. Oliveira.
Quechua

131-132 Elementary Course
131, fall; 132, spring. 3 credits each term. Prerequisites:资格 in Spanish. Hours to be arranged. D. F. Sola.
A beginning conversation course in the Cuzco dialect of Quechua.

133-134 Continuing Course
133, fall; 134, spring. 3 credits each term. Prerequisites: Quechua 133, Quechua 131-132 or equivalent; for Quechua 134; Quechua 133 or equivalent. Hours to be arranged. D. F. Sola.
An intermediate conversation and reading course. Study of the Huarochni manuscript.

135-136 Quechua Writing Lab
135, fall; 136, spring. 1 credit each term. Prerequisites: concurrent enrollment in Quechua 131-132 or instructor's approval. Letter grade only. Hours to be arranged. D. F. Sola.
Computer-assisted drill and writing instruction in elementary Quechua.

403 Linguistic Structure of Quechua
Fall. 4 credits. Hours to be arranged. D. F. Sola.
Survey of the grammatical structure of Quechua dialects.

700 Seminar in Quechua Linguistics
Fall or spring. Credit to be arranged. Prerequisite: permission of instructor. Hours to be arranged. D. F. Sola.

Romance Linguistics

[321 History of the Romance Languages
Fall. 4 credits. Prerequisites: Linguistics 101 or equivalent, and qualification in any Romance language. Offered alternate years. Not offered 1990-91.
M W F 1:25. C. Rosen.
For description see Linguistics 321.]

323 Comparative Romance Linguistics
Fall. 4 credits. Prerequisites: Linguistics 101 or equivalent, and qualification in any Romance language. Offered alternate years.
M W F 1:25. C. Rosen.
For description see Linguistics 323.

620 Area Topics in Romance Linguistics
Spring. 4 credits. May be repeated for credit. Offered alternate years.
Hours to be arranged. C. Rosen.
For description see Linguistics 620.

[621 Problems and Methods in Romance Linguistics
Spring. 4 credits. Prerequisites: one syntax course and qualification in two Romance languages. Offered alternate years. Not offered 1990-91.
Hours to be arranged. C. Rosen.
For description see Linguistics 621.]

Russian

For literature courses see Russian Literature.

The Russian Major
See Russian Literature.

Study Abroad
Cornell is an affiliated institution in the Council on International Education Exchange program for Russian language study at Leningrad State University. Cornell students also frequently go on the American Council of Teachers of Russian 125 program in Moscow and other Russian language programs. Opportunities are available for study during the summer, a single semester, or the full year. Further information is available from Professor Patricia Carden or Diane Williams, 236 Goldwin Smith Hall.

Honors. Students taking honors in Russian undertake individual reading and research and write an honors essay.

Fees. Depending on the course, a small fee may be charged for photocopied texts for course work.

Freshman Writing Seminar Requirement
See Russian Literature.

Russian and Soviet Studies Major
See “Special Programs and Interdisciplinary Studies,” which follows the department listings.

101-102 Elementary Course
101, fall; 102, spring. 6 credits each term. Prerequisite for 102: Russian 101 or equivalent. Intended for beginners or students placed by examination.
Drills, M-F 8, 9:05, 12:20 or 1:25; conversation practice, M W 9:05, 11:15, 1:25 or 3:35 or TR 9:05, 10:10, 11:15 or 2:30. Staff.
A thorough grounding is given in all the language skills: listening, speaking, reading, and writing.

123 Continuing Russian
Fall or summer. 4 credits. Limited to students who have previously studied Russian and have a CPT achievement score between 450 and 559 or the equivalent. Satisfactory completion of Russian 123 fulfills the qualification portion of the language requirements.
Recitation, M-F 10:10 or 1:25. L. Papemo, S. Papemo, and V. Tsimberov.

203-204 Intermediate Composition and Conversation
203, fall; 204, spring. 3 credits each term. Prerequisite: qualification in Russian 123 or CPT score 560-649. Prerequisite for Russian 204: Russian 203 or equivalent.
203, fall: M T R F 10:10, 11:15, 2:30 or 3:35; Spring: M T R F 11:15. L. Papemo, S. Papemo, and V. Tsimberov.

205-206 Reading Soviet Press
205, fall, 206, spring. 2 credits each term. Prerequisites: qualification in Russian (Russian 102 or 123 or CPT score 560-649). Both semesters must be taken in order to satisfy the proficiency level for the language requirement. This course cannot be used to satisfy the humanities requirement.
M W 10:10. S. Papemo.
Reading unabridged articles on a variety of topics from current Soviet periodicals.

Note: Students placed in the 200-level courses also have the option of taking courses in introductory literature; see separate listings under Russian 201 and 202 for descriptions of these courses, any of which may be taken concurrently with the 203-204 and 205-206 language courses described above. The introductory literature courses are offered by the Department of Russian Literature, and the 203-204 and 205-206 language courses by the Department of Modern Languages and Linguistics.

301-302 Advanced Russian Grammar and Reading
301, fall; 302, spring. 4 credits each term. Prerequisites: for Russian 301, second-year Russian or permission of instructor; for Russian 302, Russian 301. Offered alternate years.
This course is intended primarily to increase the student's active command of difficult Russian syntactic constructions. Special attention is paid to word order, impersonal sentences, voice, negation, participles, gerunds, and also to building active vocabulary through reading modern Russian prose.
Problems of phonology are also discussed.

303-304 Advanced Composition and Conversation
303, fall; 304, spring. 4 credits each term. Prerequisites: for Russian 303, Russian 204 or equivalent; for Russian 304, Russian 303 or equivalent.
M W F 10:10 or 2:30. L. Papemo, S. Papemo, and V. Tsimberov.

305-306 Directed Individual Study
305, fall; 306, spring. 2 credits. Prerequisites: for Russian 305, Russian 303-304 or equivalent; for Russian 306, Russian 305.
Hours to be arranged. Staff.

401-402 History of the Russian Language
401, fall; 402, spring. 4 credits each term. Prerequisites: for Russian 401, permission of instructor; for Russian 402, Russian 401 or equivalent. Offered alternate years.

403-404 Linguistic Structure of Russian (also Linguistics 443-444)
403, fall; 404, spring. 4 credits each term. Prerequisite for Russian 403: permission of instructor, Linguistics 101-102 recommended. Prerequisite for Russian 404: Russian 403 or equivalent. Offered alternate years. Not offered 1990-91.
A synchronic analysis of the structure of modern Russian. Russian 403 deals primarily with morphology and its relation to syntax and 404 with syntax and word order. Topics
Sanskrit

[131-132 Elementary Sanskrit (also Classics 131-132)]

131, fall; 132, spring. 3 credits each term. Not offered 1990-91.

M W F 2:30. C. Minkowski.

251-252 Intermediate Sanskrit (also Classics 251-252)

251, fall; 252, spring. 3 credits each term. Prerequisite: Sanskrit 132 or equivalent.

Hours to be arranged. C. Minkowski.

Readings from the literature of Classical Sanskrit. Fall: Selections from the two Sanskrit epics, the Mahabharata and the Ramayana. Spring: More selections from the epics and selections from either Sanskrit story literature or from Sanskrit dramas.

Serbo-Croatian

131-132 Elementary Course

131, fall; 132, spring. 3 credits each term. Prerequisite for Serbo-Croatian 132; Serbo-Croatian 131 or equivalent. Offered alternate years.

Hours to be arranged. Staff.

[133-134 Continuing Course]

133, fall; 134, spring. 3 credits each term. Prerequisites: for Serbo-Croatian 133, Serbo-Croatian 132 or equivalent; for Serbo-Croatian 134, Serbo-Croatian 133 or equivalent. Not offered 1990-91.

Hours to be arranged. Staff.

Sinhala (Sinhalese)

101-102 Elementary Course

101, fall; 102, spring. 6 credits each term. Prerequisite for Sinhala 102: Sinhala 101 or equivalent.

Hours to be arranged. J. W. Gair and staff.

A semi-intensive course for beginners. A thorough grounding is given in all the language skills; listening, speaking, reading, and writing.

201-202 Intermediate Sinhala Reading

201, fall; 202, spring. 3 credits each term. Prerequisites: for Sinhala 201, Sinhala 102; for Sinhala 202, Sinhala 201 or equivalent. Hours to be arranged. J. W. Gair and staff.

203-204 Intermediate Composition and Conversation

203, fall; 204, spring. 3 credits each term. Prerequisites: for Sinhala 203, Sinhala 102 or permission of instructor; for Sinhala 204, Sinhala 203 or equivalent. Hours to be arranged. J. W. Gair and staff.

Related Courses

See also Linguistics 442, 631, 639, 640.

Spanish

M. Suter (director of undergraduate studies, 218 Morrill Hall, 255-0714).

For advanced Spanish language and literature courses see Romance Studies.

The Major

The major is designed to give students proficiency in the oral and written language, to acquaint them with Hispanic culture, and to develop their skill in the linguistic analysis of Spanish. (For the major in Spanish literature see the description under Romance Studies.)

Satisfactory completion of the major should enable students to meet language requirements for teaching, to continue with graduate work in Spanish or other appropriate disciplines, or to satisfy standards for acceptance into the training programs of the government, social agencies, and business concerns. A Spanish major combined with another discipline may also allow a student to undertake pre-professional training for graduate study in law, medicine, business, etc. Students interested in a Spanish major are encouraged to seek faculty advice as early as possible. For acceptance into the major, students should consult the director of undergraduate studies of the Department of Modern Languages and Linguistics, Professor Suter (218 Morrill Hall), who will admit them to the major.

The Core

All majors will work out a plan of study in consultation with their advisers. Previous training and interests as well as vocational goals are taken into account when the student's program of courses is determined. Spanish 201 and 204 or 212 (or equivalent) are prerequisites to entering the major in Spanish. All majors normally include the following core courses in their programs:

1) Spanish 315-316-317
2) Spanish 311 and 312 (or equivalent)

Spanish majors have great flexibility in devising their programs of study and areas of concentration.

The Linguistic Option

Spanish linguistics, for which the program normally includes 360, 401, 407, 408, and at least 8 additional credits in general or Spanish linguistics. (Linguistics 101-102 are recommended before entering this program.)

The J. G. White Prize and Scholarships are available annually to students who achieve excellence in Spanish.

Study Abroad in Spain

Cornell and the University of Michigan cosponsor an academic year in Spain program. Students enrolled in this program spend the first four weeks before the fall semester begins in a residential college located on the campus of the University of Madrid, where they take a course in Spanish language and contemporary society and take advantage of special lectures and field trips to Madrid and Castile. This course carries three credits. In early October the program moves to Seville, where students enroll in as many regular classes at the University of Seville as their language competency and general education permit. Their academic work is supplemented by courses designed explicitly for the program by Seville faculty, as well as a seminar regularly offered by the resident director, who is chosen from the faculty of either Cornell or Michigan. The special courses normally include history of art and architecture, Spanish composition and syntax, and modern Spanish history. In Seville students live with selected families or in a few cases in colegios mayores. Cornell-Michigan also maintains a center in Seville, which is used by students for special seminars, tutorials, lectures, and informal gatherings.
Applicants are expected to have at least completed Spanish 204 prior to departure. Students are strongly encouraged to study abroad for the entire year rather than for one semester. Students interested in the study abroad program should consult with the Cornell Abroad office for further information (474 Uris Hall, 255-6224).

Honors. Honors in Spanish may be achieved by superior students who want to undertake guided independent reading and research in an area of their choice. Students in the senior year select a member of the Spanish faculty from either the Department of Romance Studies or the Department of Modern Languages and Linguistics to supervise their work and direct the writing of their honors essays (see Spanish 420-430).

Fees. Depending on the course, a small fee may be charged for copies of course work.

101 Basic Course I
Summer only. 6 credits.
M-F 8-12. Staff.
A thorough grounding in all language skills: listening, speaking, reading, and writing.
Lectures cover grammar, reading, and cultural information.
Students who have previously studied Spanish must take the qualifying examination before registering for this course.

102 Basic Conversation Course
Summer only. 3-week session. 3 credits.
Limited to students who have previously studied Spanish and have a minimum CPT achievement score of 500 or permission of instructor.
M-F 9-12. One overnight field trip.
Z. Iguina.
Intensive course designed for students who wish to improve their oral and listening skills and increase their confidence in speaking the language.

121 Elementary Spanish
Fall only. 4 credits. Special sections of this course are available for students with qualification in another language. Intended for beginners or students placed by examination.
A thorough grounding is given in all language skills: listening, speaking, reading, and writing. Language practice is in small groups. Lecture covers grammar, reading, and cultural information.

123 Continuing Spanish
Fall, spring, or summer. 4 credits. Limited to students who have previously studied Spanish and have a CPT achievement score between 450 and 500. Satisfactory completion of Spanish 123 fulfills the qualification portion of the language requirement.
LEC: M 11:15, 1:25 or 2:30; drills: T-F 8, 9:05, 10:10, 11:15, 12:20, 1:25, or 2:30. Spring: Lec, M 11:15 or 1:25; drills: T-F 8, 9:05, 10:10, 11:15, 12:20 or 1:25. Evening prelims: fall, 7:30 p.m., Oct. 16; spring, 7:30 p.m., Feb. 26, April 18. J. Routier-Pueci.
An all-skills course designed to prepare students for study at the 200-level.

203 Intermediate Composition and Conversation
Fall, spring or summer. 3 credits. Prerequisite: qualification in Spanish (Spanish 123 or CPT score 560-649).
Conversational grammar review with special attention to the development of accurate and idiomatic oral expression. Includes readings in contemporary Spanish prose and practice in writing.

Hotel 267 Intermediate Spanish: Español de hotelerías
Fall or spring. 3 credits. Prerequisite: Spanish 123 or CPT 560 min. Hotel School elective.
An intermediate-level Spanish language course designed for students interested in improving their proficiency in the language within the specific thematic context of the hospitality and restaurant industries. The course provides a solid background of essential vocabulary, practice of all skills, and cultural background of the hispanic world.

204 Intermediate Composition and Conversation
Fall or spring. 3 credits. Prerequisite: Spanish 203 or permission of instructor.
Fall: M W F 9:05 (204.1: for bilinguals only), 12:20, or 1:25. Spring: M W F 8, 9:05, 10:10, 11:15, 12:20, or 1:25. Staff.
Practice in composing with emphasis on improving oral and written command of Spanish. Includes treatment of specific problems in grammar, expository writing, and readings in contemporary prose.

213 Intermediate Spanish for the Medical and Health Professions
Fall or spring. 3 credits. Prerequisite: qualification in Spanish (Spanish 123 or CPT score 560-649), or permission of instructor.
Fall: M W F 9:05; Spring: M W F 12:20. A. Tío.
Conversational grammar review, with dialogues, debates, compositions and readings on health-related themes. Fulfills proficiency requirement.

300 Seminar in Spanish Linguistics
Fall or spring, according to demand. 4 credits.
Hours to be arranged. Staff.
Topics in synchronic and diachronic Spanish linguistics.

301 History of the Spanish Language
Spring. 4 credits. Prerequisite: Linguistics 101 and qualification in Spanish, or permission of the instructor. Not offered 1990-91.
M W F 11:15. Staff.
A historical analysis of the phonology, morphology, syntax, and lexis of the Spanish language up to the seventeenth century. Spring, selected medieval documents are read and discussed.

407 Applied Linguistics: Spanish
Fall. 4 credits. Prerequisite: qualification in Spanish, or permission of instructor.
Designed to equip the student or future teacher of Spanish with insights into problem areas for second-language learners by using linguistic descriptions.

408 The Grammatical Structure of Spanish
Spring. 4 credits. Prerequisite: proficiency in Spanish and Linguistics 101 or permission of instructor. Not offered 1990-91.
Hours to be arranged. Staff.
Survey of the salient morphological and syntactic characteristics of contemporary Spanish.

601 Hispanic Dialectology
Fall, according to demand. 4 credits.
Hours to be arranged. Staff.
Survey of dialects of Latin America and the Caribbean.

602 Linguistic Structure of Ibero-Romance
Fall or spring, according to demand. 4 credits.
Hours to be arranged. Staff.
Phonological, morphological, and syntactic characteristics of the Romance languages (Catalan, Galician, Portuguese, Sephardic) and of the main dialects of the Iberian Peninsula, studied in relation to each other and to Castilian Spanish.

604 Contemporary Theories of Spanish Grammar
Fall or spring, according to demand. 4 credits.
Hours to be arranged. Staff.
Selected readings of contemporary Spanish linguists who exemplify different theoretical points of view.

700 Seminar in Spanish Linguistics
Fall or spring, according to demand. Variable credit.
Hours to be arranged. Staff.
Topics in synchronic and diachronic Spanish linguistics.

Swa/hil
See listings under African Studies and Research Center.
Swedish

121-122 Elementary Course
121, fall; 122, spring. 4 credits each term. Prerequisite for 122: Swedish 121 or equivalent.

* M T W R 11:15. L. Tranckic.

The aim of this course is to develop skills in listening, speaking, reading and writing within Sweden's cultural context.

123 Continuing Swedish
Fall. 4 credits. Prerequisite: Swedish 122 or equivalent.

Continues developing skills in spoken and written Swedish within Sweden's cultural context.

203 Intermediate Swedish
Spring. 3 credits. Prerequisites: Swedish 123 or permission of instructor. Hours to be arranged. L. Tranckic.

Emphasis on development of all skills, through writing, reading and discussion of culturally significant texts. Audiovisual material will further enhance language comprehension.

Tagalog

101-102 Elementary Course
101, fall; 102, spring. 6 credits each term. Offered according to demand. Prerequisite for Tagalog 102: Tagalog 101.

201-202 Intermediate Tagalog Reading
201, fall; 202, spring. 3 credits each term. Prerequisites: for Tagalog 201, Tagalog 102 or equivalent; for Tagalog 202, Tagalog 201 or equivalent.

Hours to be arranged. J. U. Wolff.

300 Linguistic Structure of Tagalog
Fall or spring. 4 credits. Prerequisite: Linguistics 101.

Hours to be arranged. J. U. Wolff.

Tamil

101-102 Elementary Course
101, fall; 102, spring. 6 credits each term. Offered according to demand. Prerequisite for Tamil 102, Tamil 101 or equivalent. Not offered 1990-91.

Hours to be arranged. J. W. Gair.

Thai

101-102 Elementary Course
101, fall; 102, spring. 6 credits each term. Prerequisite for Thai 102, Thai 101 or equivalent. Intended for beginners or students placed by examination.

* M-F 8-8:55. N. Jagacinski.

A thorough grounding is given in all the language skills: listening, speaking, reading, and writing.

201-202 Intermediate Thai Reading
201, fall; 202, spring. 3 credits each term. Prerequisites: for Thai 201, Thai 102; for Thai 202, Thai 201 or equivalent.

203-204 Intermediate Composition and Conversation
203, fall; 204, spring. 3 credits each term. Prerequisites: for Thai 203, Thai 102, for Thai 204, Thai 203.

Hours to be arranged. N. Jagacinski.

301-302 Advanced Thai
301, fall; 302, spring. 4 credits each term. Prerequisite: Thai 202 or equivalent.

Hours to be arranged. N. Jagacinski.

Selected readings in Thai writings in various fields.

303-304 Thai Literature
303, fall; 304, spring. 4 credits each term. Prerequisite: Thai 302 or equivalent.

Hours to be arranged. N. Jagacinski.

Reading of significant novels, short stories, and poetry written since 1850.

401-402 Directed Individual Study
401, fall; 402, spring. 4 credits each term. For advanced students or students with special problems or interests. Prerequisite: permission of instructor.

Hours to be arranged. N. Jagacinski.

Vietnamese

101-102 Elementary Course
101, fall; 102, spring. 6 credits each term. Prerequisite for Vietnamese 102, Vietnamese 101 or equivalent. Intended for beginners or students placed by examination.

Hours to be arranged. G. Diffloth.

201-202 Intermediate Vietnamese Reading
201, fall; 202, spring. 3 credits each term. Prerequisites: for Vietnamese 201, Vietnamese 102. For Vietnamese 204, Vietnamese 203.

Hours to be arranged. G. Diffloth.

203-204 Intermediate Composition and Conversation
203, fall; 204, spring. 3 credits each term. Prerequisites: for Vietnamese 203, Vietnamese 102. For Vietnamese 204, Vietnamese 203.

Hours to be arranged. G. Diffloth.

301-302 Advanced Vietnamese
301, fall; 302, spring. 4 credits each term. Prerequisite: Vietnamese 203, Vietnamese 102. For Vietnamese 204, Vietnamese 203.

Hours to be arranged. G. Diffloth.

401-402 Directed Individual Study
401, fall; 402, spring. 4 credits each term. Prerequisite: permission of instructor.

Intended for advanced students.

Hours to be arranged. G. Diffloth.

Ukrainian

131-132 Elementary Course
131, fall; 132, spring. 3 credits each term. Prerequisite for Ukrainian 132, Ukrainian 131 or equivalent. Not offered 1990-91.

Hours to be arranged. E. W. Browne.

Yoruba

101-102 Elementary Course
101, fall; 102, spring. 3 credits each term. Prerequisite for Yoruba 102, Yoruba 101 or equivalent.

Hours to be arranged. J. U. Wolff.

201-202 Intermediate Course
201, fall; 202, spring. 4 credits each term. Prerequisite: permission of instructor.

Intended for advanced students.

Hours to be arranged. J. W. Gair.

Vietnamese

101-102 Elementary Course
101, fall; 102, spring. 3 credits each term. Prerequisite for Vietnamese 201, Vietnamese 102 or equivalent.

Hours to be arranged. J. U. Wolff.

201-202 Intermediate Vietnamese Reading
201, fall; 202, spring. 3 credits each term. Prerequisites: for Vietnamese 201, Vietnamese 102. For Vietnamese 204, Vietnamese 203.

Hours to be arranged. G. Diffloth.

203-204 Intermediate Composition and Conversation
203, fall; 204, spring. 3 credits each term. Prerequisites: for Vietnamese 203, Vietnamese 102. For Vietnamese 204, Vietnamese 203.

Hours to be arranged. G. Diffloth.

301-302 Advanced Vietnamese
301, fall; 302, spring. 4 credits each term. Prerequisite: Vietnamese 203, Vietnamese 102 or equivalent.

Hours to be arranged. G. Diffloth.

401-402 Directed Individual Study
401, fall; 402, spring. 4 credits each term. Prerequisite: permission of instructor.

Intended for advanced students.

Hours to be arranged. G. Diffloth.

Musical Performance and Concerts

Musical performance is an integral part of Cornell's cultural life and an essential part of its undergraduate academic programs in music. The department encourages music making through its offerings in individual instruction and through musical organizations and ensembles that are directed and trained by members of the faculty. Students from all colleges and departments of the university join with music majors in all of these ensembles:

- Big Red Marching Band
- Cornell Symphony Orchestra
- Cornell Chamber Orchestra
- Cornell Chorale
- Cornell Gamelan Ensemble
- Chamber music ensembles
- Cornell Chorus
- Cornell Glee Club
- Chamber Singers
- Sage Chapel Choir
- Cornell Jazz Ensembles

Information about requirements, rehearsal hours, and conditions for academic credit can be found in the following listings for the Department of Music. Announcements of auditions are posted during registration each fall term and, where appropriate, each spring term as well.

The Department of Music and the Faculty Committee on Music sponsor more than one hundred formal and informal concerts each year by Cornell's ensembles, faculty, and students and by distinguished visiting artists. A special feature is the annual Cornell Festival of Contemporary Music. The great majority of concerts are free and open to the public. Lectures and concerts are listed in special monthly posters and the usual campus media.

Nonmajors

In addition to its performing, instructional, and concert activities, the department offers numerous courses for nonmajors, many of which carry no prerequisites and are no previous formal training in music. Consult the following course listings, and for further information apply to the department office, 104 Lincoln Hall (255-4907), or to the director of undergraduate studies, Professor Martin Hatch.
Two options are available to the student planning to major in music. Each carries the study of music to an advanced level through the integration of performance, music theory, and music history. Option I is a general course, not necessarily oriented toward eventual graduate or professional work in music. Option II is a more specialized and concentrated program, suitable for students who want to prepare for graduate or professional work in music.

All students contemplating a major in music under either option should arrange for placement examinations and advising in the department before the freshman orientation period. Information is available from the director of undergraduate studies, Professor Martin Hatch, 110 Lincoln Hall (255-5049), or from the chair, Professor Thomas Sokol, 106 Lincoln Hall (255-5671). All students are expected to have chosen an adviser from among the department faculty at the time of application for major status.

Option I presupposes some musical background before entering Cornell. Prerequisites for admission to an option are the satisfactory completion of Music 152, at the latest by the end of the sophomore year (the freshman year is preferable), with a final grade of C or better, including an average grade of C or better in all the musicianship components of Music 152 and failure in none of them; and the passing of a simple piano examination (details are available from the department office). Students must apply to the department for formal acceptance as a music major.

The requirements for the Bachelor of Arts degree with a major in music under Option I comprise the following:

1) in music theory:
 - Music 251-252, 351, and 352.

2) in music history:
 - Sixteen credits in courses numbered at the 300 level or above listed under Music History. At least three of these courses must be drawn from the four-course sequence Music 381-384.

3) in performance:
 - Four semesters of participation in a musical organization or ensemble sponsored by the Department of Music.

Option II presupposes considerable musical background before entering Cornell. Prerequisites for admission to an option are the satisfactory completion of Music 251-252, normally by the end of the sophomore year. Students must apply to the department for formal acceptance as an Option II major and satisfactory completion of Music 252, normally by the end of the sophomore year. Students must apply to the department for formal acceptance as an Option II major. An Option II major concentrates in one of the three areas listed below. For Option II in performance, exceptional promise must be demonstrated, in part by a successful solo recital before the end of the sophomore year.

The requirements for the Bachelor of Arts degree with a major in music under Option II are:

1) completion of all the requirements for Option I, except as noted below, and

2) in addition:
 a) in performance:
 - The requirement for four semesters of participation in a musical organization or ensemble is waived (but such majors are expected to participate actively in chamber and other ensembles sponsored by the department);
 - Sixteen credits in individual instruction or, in the case of the student's senior thesis, with voice, earned by taking Music 391–392 throughout the junior and senior years
 b) in theory and composition or in history:
 - For two of the four semesters of participation in a musical organization or ensemble, Music 462 or 463 may be substituted;
 - Twelve additional credits in this area of concentration at the 300 level or above of, of which either four may be earned in Music 301 or 302 when taken once for four credits, or eight may be earned in Music 401–402.

Honors. The honors program in music is intended to provide special distinction for the department's ablest undergraduate majors. To become a candidate for honors in music, a student must be invited by the faculty at the beginning of the second semester of the junior year. As soon as possible thereafter, the student will form a committee of three or more faculty members to guide and evaluate the honors work. In the senior year the candidate will enroll in Music 401–402 with the chair of the honors committee as instructor. Candidates will be encouraged to formulate programs that allow them to demonstrate their musical and scholarly abilities, culminating in an honors thesis, composition, or recital, to be presented not later than April 1 of the senior year. A comprehensive examination administered by the honors candidate's committee will be held not later than May 1. The level of honors conferred will be based primarily on the candidate's performance in the honors program, and secondarily on the candidate's overall record in departmental courses and activities.

Distribution Requirement

The distribution requirement in the expressive arts may be satisfied with 6 credits in music, except freshman writing seminars. A maximum of 4 credits in Music 321–322 and a maximum of 3 credits in Music 331 through 338 and 441 through 450 may be used to satisfy this requirement.

Facilities

Music Library. The Music Library, in Lincoln Hall, has an excellent collection of standard research tools. Its holdings consist of approximately ninety-five thousand books, periodicals, and scores and forty thousand recordings. Particularly noteworthy are the collections of opera from all periods, twentieth-century scores and recordings; a large microfilm collection of Renaissance sources, both theoretical and musical, and a collection of eighteenth-century chamber music. In addition, the Department of Rare Books, in Olin Library, houses a collection of early printed books on music and musical manuscripts.

Concert Halls. The Department of Music sponsors more than one hundred concerts annually. Cornell's principal concert halls are Bailey Hall Auditorium (about 2,000), Alice Statler Auditorium (about 900), Sage Chapel (about 800) and Barnes Hall Auditorium (about 280).

Rehearsal Spaces. The orchestras and bands rehearse in Bailey Hall, Barnes Hall, and Barton Hall; the Jazz Ensembles, Gamelan, and Chamber Ensembles rehearse in Lincoln Hall, and the choral ensembles are quartered in Sage Chapel. Eleven practice studios in Lincoln Hall are available for individual practice by pianists, vocalists, and instrumentalists.

Twenty-two grand pianos and eight upright or studio pianos are housed in Cornell's offices, classrooms, and rehearsal spaces. In addition, our Center for Keyboard Studies includes two concert grand pianos (Steinway and Mason & Hamlin), two eighteen-century fortepiano replicas (copies of Johann Andreas Stein and Anton Walter), an original Broadwood grand piano from 1827, one original Graff grand piano from 1825, one Dowd and one Hubbard harpsichord, and a Challis clavichord. Barnes Hall houses a portative organ by Derwood Crocker and a self-contained tracker organ by Schlicker. A large Aeolian Skinner Organ is located in Sage Chapel and there is a Helmuth Wolff tracker organ in Anabel Taylor Chapel. The music department also owns a quartet of stringed instruments in eighteenth-century proportions, with appropriate bows.

Digital/Electronic Equipment. A Macintosh-based MIDI studio is available for individual studio work and live performance. The instruments include a Yamaha KX88 MIDI Controller Keyboard, a Yamaha TX802 FM Synthesizer, and a Casio FZ 10M Sampler. In addition, there are two MIDI work stations with additional instruments.

Freshman Seminars

111 Sound, Sense, and Ideas
Fall. 3 credits. Each section limited to 17 students. No prerequisites; no previous training in music required. May not be counted for the distribution requirement in the expressive arts.
T R 10:10-11:25. R. Harris-Warrick. Ways of listening, thinking, talking, and writing about music. Non-Western and popular music are considered, as well as Western classical music. Students will be given the opportunity to write about music with which they are already familiar in addition to exploring unfamiliar works and styles.

112 Words and Music
Fall or spring. 3 credits. Each section limited to 17 students. No prerequisites; no previous training in music required. May not be counted for the distribution requirement in the expressive arts.
T R 8:40-9:55. D. Feurzeig. Students will think and write about songs. The focus will be on twentieth-century music, especially African-American music and its spin-offs: spirituals, blues, gospel, jazz, R&B, rock, protest music, and pop. Other topics may...
include traditional West African music and newer styles such as sylcoco and rap.

113 Music since 1965
Spring. 3 credits. Each section limited to 17 students. No prerequisites; no previous training in music required. May not be counted for the distribution requirement in the expressive arts.

Readings will focus on music composed within the last twenty-five years—popular, jazz, film and concert music—as well as the growing influence of world music in the West. Additional topics may include listening to recordings and attending concerts. Students will be given the opportunity to present and write about music with which they are already familiar.

Introductory Courses

[101 The Art of Music]
Fall. 3 credits. Not offered 1990–91.
T R 11:15–12:05; 1-hour disc to be arranged. Staff.
Explorations designed to speed up the continuing, unending development of various independent tastes. Each student chooses individually what to study from diverse styles of music and how far to study at least two contrasting styles through recordings, through singing and playing, through reading and writing; instructors help refine these choices through the term. Everyone studies a few assigned works to facilitate exchanging ideas with concrete references: in 1989 these are the 48 Preludes and some of the Fugues from Bach's Well-Tempered Clavier. Other things—from Vedic chant to songs of Bobby McFerrin—can be related to Bach with respect to qualities of sound, intervals of pitch, timing, and functional contexts. Orchestral and vocal works of Bach make likely optional contexts for the keyboard pieces that constitute the common center.

103 Introduction to the Musics of the World
Fall. 3 credits. No previous training in music required.
T R 11:15–12:05; 1-hour disc to be arranged. M. Hatch.
A survey of folk, popular, and art music in several regions of the world. Topics include pitch, scale, rhythm, meter, timbre, and form in instrumental and vocal music. Recordings are the main material for study; labs present opportunities to begin performance on instruments from the regions covered.

105–106 Introduction to Music Theory
105, fall, spring, or summer; 106, spring. 3 credits each term. Some familiarity with music is desirable. Prerequisite for Music 106: 105 with grade of B– or better. Music 106 is limited to 50 students.

Fall or spring. M W 0:05–10:10 plus 2 hrs. to be arranged. Spring. M W F 9:05 plus 1 hr. to be arranged. D. Randel, 105 fall; M. Scatterday, 105 spring.
D. R. M. Paterson, 106 spring.
An elementary, self-contained introduction to music theory emphasizing fundamental musical techniques, theoretical concepts, and their application. Music 105: notation, pitch, meter; intervals, scales, triads; basic concepts of tonality; extensive listening to music in various styles; rhythmic and melodic growth of representative works of Bach, Mozart, Beethoven, and Debussy. Music 106: systematic introduction to writing tonal harmony and melody; ear training.

108 Bach to Debussy
Spring. 3 credits. Prerequisite: Music 105 or permission of instructor.
M W 10:10–11; 1-hour disc to be arranged. B. Harris-Warrick.
A chronological survey of major works in the Western concert repertory—call genres from works of Bach and Handel that embody the newly consolidated language of tonality to works of Mahler and Debussy that signal the beginning of new strategies for many composers of the twentieth century.

120 Learning Music through Digital Technology
Fall or spring. 3 credits. Enrollment limited. Prerequisite: permission of instructor.
This course uses selected commercially available technological resources to produce live music. The student is expected to master the Macintosh computer, several music software programs, and several synthesizers using MIDI. Each student must learn to read music if he or she has not already done so. The course will also cover the rudimentary procedures for making a good-quality tape recording. The final is a live concert presentation of the student's final project.

173 Music and Poetry from Dowland to Dylan
Fall. 3 credits.
M W F 1:25–2:15. R. Parker.
The course will consider a broad range of musical responses to poetry, with examples from each of the last four centuries. There will be an emphasis on class discussion and encouragement of live performances within class.

Music Theory

151–152 Elementary Tonal Theory
151, fall; 152, spring. 3 credits each term. Prerequisite for Music 151: knowledge of the rudiments of music and some ability to perform demonstrated through proficiency tests given on the first two days of the term (registration is provisional until passing this test). Prerequisite for Music 152: 151 or equivalent. Intended for students expecting to major in music and other qualified students. Required for admission to the music major. All students intending to major in music, especially those intending to elect Option II should if possible enroll in Music 151–152 during the freshman year.

M W F 11:15–12:05; 2 discs to be arranged. E. Murray and staff.
Detailed study of the fundamental elements of tonal music: rhythm, scales, intervals, triads; melodic movement, two-part counterpoint, harmonic progression in the chorale style of J. S. Bach; and introduction to analysis of small forms. Drill in aural discrimination, sight singing, keyboard harmony, and elementary figured bass; rhythmic, melodic, and harmonic dictation; and score reading.

220 Learning Counterpoint through Digital Technology
Spring. 3 credits. Enrollment limited. Prerequisite: 151–152 and/or permission of instructor.
This course is a study of traditional contrapuntal techniques from the fourteenth century to the present, with emphasis on the structures used by J. S. Bach. Synthesizers, samplers, MIDI, and music software will be covered.

245–246 Introduction to the Gamelan
245, fall; 246, spring. 1 credit each term. 2 credits with permission of instructor. No previous knowledge of musical notation or performance experience necessary. Music 245 is not a prerequisite to 246.
Concentrated instruction in the repertories and practices of Indonesian gamelan traditions. Related aspects of culture—dance, drama, literature, and oral poetry—will be studied in their influence on musical practices. This sequence concentrates on instruction in elementary techniques of performance on the gamelan. Music 245–246 is a course for beginners in gamelan that covers only instruction in elementary gamelan performance techniques.

251–252 Intermediate Tonal Theory
251, fall; 252, spring. 5 credits each term. Prerequisite for Music 251: 152 or the equivalent or a suitable level of performance on a proficiency test given by the department during orientation each fall term. Prerequisite for Music 252: 251.
M W F 10:10; 2 discs to be arranged. J. Webster, fall; D. R. M. Paterson, spring.
Continuation of the study of harmony by composition and analysis, including seventh chords, secondary dominants, and chromatic harmony. Students are expected to write several short pieces in eighteenth- and nineteenth-century styles and forms, such as two-part inventions and minuets scored for string quartet. Continuation of analysis of forms, with emphasis on large forms, e.g., sonata form. Ear training, keyboard harmony, figured bass, sight singing, dictation, and score reading.

351 Advanced Tonal Theory
Fall. 4 credits. Prerequisite: Music 252 or permission of instructor.
M W F 11:15. R. Parker.
Inventions, chromatic harmony, analysis of larger forms and nineteenth-century music, ear training, scoring and reading, and advanced keyboard studies, including figured bass. Students probe questions about the meaning of "theory" and "analysis" in music and in other realms of study. The emphasis is on the study and refine their own usages of the word "tonal" in relation to older and newer music, while returning often to short pieces of Chopin with which to consider applications of tonal theory in practice.

352 Materials of Twentieth-Century Music
Spring. 4 credits. Prerequisite: Music 351.
M W F 11:15. J. Webster.
Introduction to some techniques of composers from 1900 to 1950, including expanded tonal resources, atonality, and new approaches to form and rhythm. Analysis of representative smaller works by Bartok, Hindemith, Schoenberg, Stravinsky, Webern, and some American composers. Writing assignments in various styles.

[450 Orchestra Studies]
Fall. 4 credits. Prerequisite: Music 252 or permission of instructor. Not offered 1990–91.
A study of the instruments of the orchestra and their use in representative works from 1700 to the present. Scoring for various instrumental groups, including large orchestra. Students will occasionally attend rehearsals of Cornell musical organizations and ensembles.]
Music History

[217 The Organ and Its Literature
Fall. 3 credits. Prerequisite: Music 105 or permission of instructor. Not offered 1990-91.
M W F 11:15. D. R. M. Paterson.
An analytical survey of the history of the organ, including its design and construction and its most significant repertories.

[222 Topics in Jazz History
Spring. 3 credits. Enrollment limited. Prerequisite: permission of instructor. Not offered 1990-91.
TR 11:15; one disc to be arranged.
M. Hatch.
Lectures will introduce various jazz styles and techniques from around 1900 to the 1970s. Sections will present progressive exercises in analysis of fundamental aspects of jazz, including rhythm, meter, melody, harmony, timbre, and form. Focus: the recorded anthology Smithsonian Collection of Classical Jazz.

[271 Monteverdi and the Birth of the Baroque
Fall. 3 credits. Prerequisite: any three-credit music course or permission of instructor.
Using as its focal point the career and music of Claudio Monteverdi (1567-1643), the course will examine the changes music underwent between the second half of the 16th century and the first half of the next century. Monteverdi's operas Orpheus and The Coronation of Poppea as well as representative canzonettas, madrigals, and church works will be studied alongside works of his contemporaries. Attention will also be paid to the social, political, and cultural contexts of the music discussed.

[272 Music and the Dance (also Theatre Arts 272)
Spring. 3 credits. Prerequisite: any three-credit music course or permission of instructor. Not offered 1990-91.
T R 9:05. R. Harris-Warrick.
This course will explore selected topics in the interrelations between music and dance in the Western tradition. Some of the areas to be examined include the influence of dance movement on musical composition, composer-choreographer relationships, and a comparison of music composed for dancing with dance music composed for listening. Examples will be drawn from the Renaissance, the baroque period, and the modern era. Students will be asked to pursue an independent project.

274 Opera
Spring. 3 credits.
An introduction to major works of the operatic repertory, with discussion of texts and theatrical performances as well as music.

Video recordings will be an integral part of the course; optional trips to live performances will be scheduled where possible.

[275 The Choral Tradition
Spring. 3 credits. Prerequisite: any three-credit music course or permission of instructor. Not offered 1990-91.
M W F 10:10. R. Harris-Warrick.
This course will explore the history of choral music from the Middle Ages to the twentieth century. Class will include discussion of performances as well as historical and stylistic issues, and will be integrated with local concert offerings whenever possible.

[277 Baroque Instrumental Music
Spring. 3 credits. Prerequisite: any three-credit music course or permission of instructor. Not offered 1990-91.
Topics covered will include the rise of purely instrumental music, Renaissance string bands, the English virginals and viol consorts, the Italian violin school; the German organ school; lute and guitar music; the invention of the baroque winds, orchestra, and fortepiano; and the sonatas, concertos, and suites of Bach, Corelli, Couperin, Handel, Purcell, Rameau, Telemann, and Vivaldi.

281 Music of the Baroque Period
Fall. 3 credits. Prerequisite: ability to read music.
A study of selected instrumental works by J. S. Bach and other composers of the seventeenth and eighteenth centuries, illustrating the different traditions of the various genres and the confluence of the different national styles of the period.

[282 Music of the Classical Period
3 credits. Prerequisite: any three-credit music course or permission of instructor. Not offered 1990-91.
M W 11:15. J. Webster.

[283 Music of the Romantic Era
3 credits. Prerequisite: any three-credit music course or permission of instructor. Not offered 1990-91.

[285 Music in the Middle Ages
Fall. 3 credits. Prerequisite: any three-credit music course or permission of instructor. Not offered 1990-91.

[286 Music in the Renaissance
Spring. 3 credits. Prerequisite: any three-credit music course or permission of instructor. Not offered 1990-91.

287 Mozart
Fall. Prerequisite: any three-credit music course or permission of instructor. 3 credits.
A chronological tour of the life and works of Wolfgang Amadeus Mozart by means of original documents, scores, recordings, and live performances. As a postlude, an evaluation of Peter Shaffer's play and movie Amadeus will be undertaken.

[374 Music and Drama
Fall. 4 credits. Prerequisite: any three-credit music course or proficiency in German or Italian. Not offered 1990-91.
A team-taught study of major works of the German and Italian repertory between 1780 and 1920. Among the issues to be considered will be source-libretto and words-music relationships, reception, and criticism. Works to be studied will include operas by Mozart, Verdi, Wagner, Puccini, and Strauss.

[379 The Study of Non-Western Musics
4 credits. Prerequisite: any three-credit music course or permission of instructor. Not offered 1990-91.
Staff.

Music History Seminars for Majors and Qualified Non-Majors
Prerequisite: Music 152 or permission of instructor. Intended primarily for music majors, these seminars will investigate selected topics and repertories from each period in some detail. Each seminar will include readings, oral and written papers, and analyses.

381 Music in Western Europe to 1700
Fall. 4 credits. Not offered 1990-91.
T R 8:40. R. Harris-Warrick.

382 Music of the Eighteenth Century
Spring. 4 credits. Not offered 1990-91.
T R 8:40. J. Webster.

383 Music of the Nineteenth Century
Fall. 4 credits.

384 Music of the Twentieth Century
Spring. 4 credits.

398-399 Independent Study in Music History
Fall; spring. 4 credits. Prerequisite: Music 152 or permission of instructor.
Staff.
Advanced study of various topics in music history. Students enrolling in Music 398-399 participate in, but do not register for, an approved 200-level music history course and, in addition, pursue independent research and writing projects.

412 The Good and the Bad in Popular Culture (also Society for the Humanities 412)
Spring. 3 credits. No prerequisite. Limited enrollment.
R 2:30-4:30. S. Frith.
Academic accounts of popular culture tend to treat the question of value in very general terms. Either mass-produced art is taken to be worthless by definition (e.g., Adorno, Bloom) or else the popular and the valuable are simply equated (e.g., Kise). The purpose of this course is to examine the quality of popular culture more rigorously, and I will be less interested in the familiar critical commentaries than in investigating the ways in which value judgments work in the actual production and consumption of popular music, television, film, fiction, etc.
MUSIC 245

413 American Music (also Society for the Humanities 413)
Fall. 3 credits. No prerequisite. Limited enrollment.
R 2:30-4:30. T. Ross.
A study of several traditions in America's musical fabric, such as jazz, shape-note singing, zydeco, salsa, symphonic and experimental music, rock 'n' roll, and one-man bands. How are these defined, and what mutual influences can be observed both near at hand and globally? Diverse musical ethnicities are examined through lecture, field-tapes (video and audio), reading, and some in-class performance.

Individual Study
301-302 Independent Study in Music
301, fall; 302, spring. Credit to be arranged. Prerequisite: departmental approval. Presupposes experience in the proposed area of study. Hours to be arranged. Staff.

Honors Program
401-402 Honors in Music
401, fall; 402, spring. 4 credits each term. Limited to honors candidates in their senior year. Staff.

Musical Performance
321-322 Individual Instruction in Voice, Harpsichord, Piano, Strings, Woodwinds, and Brass
The number of places is strictly limited. Prerequisite: successful audition with the instructor. Students may register only with the prior permission of the instructor. Students may register for this course in successive years. For information, consult the music department office, Lincoln Hall.

Lessons for credit (Music 321–322): Advanced students, at the sole discretion of the instructor, may earn 2 credits each term for a one-hour lesson (or two half-hour lessons) weekly accompanied by an appropriate practice schedule. For every 4 credits earned in Music 321–322, the student must have earned, or currently be earning, at least 3 credits in music courses (not including Freshman Seminars, Music 321–322, 351 through 358, 391–392, or 441 through 450); these 3 credits must be earned prior to, or simultaneously with, the first 2 credits in Music 321–322. The fee for a one-hour lesson (or two half-hour lessons) weekly, for credit, during the term is $135. Practice-room fees for twelve hours weekly are $40 per term for a room with a piano; $20 for a room without a piano; $75 for use of a pipe organ. Fees are non-refundable once lessons begin, even if the course is subsequently dropped.

Music majors receive a scholarship equal to the lesson fee listed above. Members of department-sponsored performance ensembles and organizations may, with permission of the director of the organization, receive a scholarship of up to one-half the Cornell fee for the type of lessons chosen during the term. (These scholarships are intended for lessons in the student's primary performing medium.) Under certain conditions students may earn credit for lessons taken outside Cornell (Music 321h–322h). Arrangements must be made through the Department of Music office.

Lesson-fee scholarships apply when awarded, in the same dollar amounts as those for lessons taken at Cornell.

321a–322a Individual Instruction in Voice
321a, fall; 322a, spring. 2 credits each term. Hours to be arranged.
S. Davenny Wyner
The Vocal Coaching Program (non-credit) is administered through individual choral ensembles, coordinated by Ms. Hanson.

321b–322b Individual Instruction in Organ
321b, fall; 322b, spring. 2 credits each term. Hours to be arranged.
D. R. M. Paterson

321c–322c Individual Instruction in Piano
321c, fall; 322c, spring. 1–2 credits each term. Hours to be arranged.
M. Bibson, J. Shames, and staff.

321d–322d Individual Instruction in Harpsichord
321d, fall; 322d, spring. 2 credits each term. Not offered 1990–91.

321e–322e Individual Instruction in Violin or Viola
321e, fall; 322e, spring. 2 credits each term. Hours to be arranged.
M. Scatterday

321f–322f Individual Instruction in Cello or Viola da Gamba
321f, fall; 322f, spring. 2 credits each term. Hours to be arranged.
J. Hsu

321g–322g Individual Instruction in Brass
321g, fall; 322g, spring. 2 credits each term. Hours to be arranged.
M. Scatterday

321h–322h Individual Instruction outside Cornell
321h, fall; 322h, spring. 2 credits each term.
Staff sponsored.

All the standard orchestral and band instruments and guitar may, under certain conditions, be studied for credit with outside teachers. This course is available primarily for the study of instruments not taught at Cornell and for the use of those who for reasons of space cannot be admitted to Music 321g–322g. Prior approval by a member of the faculty in the department is required. For information and a list of approved teachers, consult the department office, 104 Lincoln Hall.

391–392 Advanced Individual Instruction
391, fall; 392, spring. 4 credits each term. Open only to juniors and seniors majoring in music under Option II with concentration in performance and to graduate students. Option II majors whose lessons must be taken outside Cornell may apply to the department for financial assistance toward the cost of lessons; $135 per semester will normally be awarded to such students and a larger amount may be awarded under certain circumstances. Music 391 is not a prerequisite to 392.

MUSICAL ORGANIZATIONS AND ENSEMBLES

Students may participate in musical organizations and ensembles throughout the year. Permission of the instructor is required, and admission is by audition only, except that the Sage Chapel Choir and the Cornell Gamelan Ensemble are open to all students without prior audition. Registration is permitted in two of these courses simultaneously and students may register in successive years, but no student may earn more than 6 credits in these courses. Membership in these musical organizations and ensembles is also open to qualified students who wish to participate without earning credit.

331–332 Sage Chapel Choir
331, fall or summer; 332, spring. 1 credit. No audition for admission.
W 7:30–9:30 p.m., R 7:30–9:30 p.m., Sunday 9:30 a.m. D. R. M. Paterson

333–334 Cornell Chorus or Glee Club
333, fall; 334, spring. 1 credit. Prerequisite: permission of instructor.
Chorus: T 7:15–9:15 p.m., plus 2 hours to be arranged. Glee Club: W 7:15–9:15 p.m., plus 2 hours to be arranged.
S. Davenny Wyner or T. Sokol

335–336 Cornell Orchestra
335, fall; 336, spring. 1 credit. Prerequisite: permission of instructor.
Glee Club: W 7:30–10 p.m. E. Murray

337–338 University Bands
337, fall; 338, spring. 1 credit. Prerequisite: permission of instructor.
M. Scatterday

Students interested in participating in the Big Red Marching Band should consult Mr. Jenezy. For information about the Jazz Ensembles, please speak with Mr. LaBarbera.

421–422 Cornell Chamber Ensemble
1 credit. Prerequisite: permission of instructor.
R 5–6:30. J. Hsu

Study and performance of the chamber symphonies of Haydn, Mozart, and their contemporaries. For strings, woodwinds, and horns.

437/438 Chamber Winds
437, fall; 438, spring. 1 credit each term. Prerequisite: permission of instructor.
R 4:45–6. M. Scatterday

A flexible instrumentation ensemble performing original woodwind, brass, and percussion music from Gabrielli brass choirs and Mozart serenades through more contemporary works such as Stravinsky's Octet or L'Histoire Du Soldat. The ensemble will perform on symphonic band and wind ensemble concerts in addition to several chamber concerts throughout the year.

441–442 Chamber Music Ensemble
441, fall; 442, spring. 1 credit. Prerequisite: permission of instructor.
J. Hsu, fall; S. Monosoff, spring.
Study and performance of chamber music literature: strings, winds, piano, duos, trios, quartets, etc. Emphasis on interpretation.
Selected Courses

[443-444] Chorale
Fall or spring. 1 credit each term. Prerequisite: permission of instructor.
Fall, M 4:30-6:30. S. Davenny Wyner.
Spring, F 4:30-6:15. T. Sokol.
Study and performance of selected choral music.

[445-446] Cornell Gamelan Ensemble
445, fall; 446, spring. 1 credit each term.
Spring 1990-91, Tuesdays 7:30-10 p.m. M. Hatch and staff.
Advanced performance on the central Javanese gamelan. Tape recordings or gamelan and elementary calf notation are provided. Some instruction by Indonesian musicians is offered in most years.

[447-448] Collegium Musicum
This course explores the nature of the wind instruments.

[450-451] Research
Permission of instructor.

Graduate Courses

[601] Introduction to Bibliography and Research
Fall. 4 credits.
This course explores the nature of the discipline and introduces the many types of bibliographic tools needed to pursue research in music.

[602] Analytical Technique
Fall. 4 credits. Not offered 1990-91.
M 1:25-4. J. Webster.
A critical survey of various analytical methods in current use. Frequent analytical assignments and class presentations.

[603] Editorial Practice
Spring. 4 credits. Not offered 1990-91.
F 10:10-12:05. R. Harris-Warrick.
Fundamental techniques of source study and filiation, the nature of a musical text, and the editorial process. Opportunity to make a critical edition based on original sources.

[604] Ethnomusicology: Areas of Study and Methods of Analysis
Spring. 4 credits. Not offered 1990-91.
P 10:10-12:05. R. Harris-Warrick.
The nature of history and criticism in musicology including a survey of significant approaches to the study of music in the world. Problems, theories, and methods, especially those affecting analytical terminology, transcription and analysis of sound events, and fieldwork.

[622] Historical Performance Practice
Spring. 4 credits. Not offered 1990-91.
R 2:30-4:25. N. Zaslaw, M. Bilson.
The study of eighteenth-century instrumental manuals and its application to modern performance.

[654] Topics in Post-tonal Theory and Analysis
Spring. 4 credits. Not offered 1990-91.
Various approaches to the post-tonal repertory will be explored, including set theory, voice leading, and rhythmic factors. Music studied will include works by Berg, Webern, Stravinsky, Dallapiccola, Boulez, and others.

[655] Modern Orchestration
Fall. 4 credits. Not offered 1990-91.
T 10:10-12.05. K. Husa.

[657-658] Composition
657, fall; 658, spring. 4 credits each term.

[659-660] Composition
659, fall; 660, spring. 4 credits each term.
T 2:30-4:25. K. Husa. 659 not offered fall 1990.

[685] Topics in Renaissance Music
685, fall; 684, spring. 4 credits each term. Not offered 1990-91.

[686] Seminar in Baroque Music
Fall. 4 credits.
An investigation of music of the German and Austrian followers of Jean Baptiste Lully in the period c. 1675-1710. Issues of transmission, style, performance practice, and cultural context will be addressed.

[687] Seminar in Classical Music
Spring. 4 credits.
Based on auction records, publishers catalogues, and other documents, this seminar will explore the dissemination of music in the second half of the eighteenth century.

[688] Seminar in Classical Music
Spring. 4 credits. Not offered 1990-91.
R 1:30-4:25. J. Webster.

[689] Seminar in Music of the Romantic Era
Spring. 4 credits. Not offered 1990-91.

[691-692] Performance Practice
691, fall; 692, spring. 4 credits each term. Not offered 1990-91.
W 2:30. N. Zaslaw.
The rise of the orchestra in the late seventeenth and early eighteenth centuries.

[697-698] Independent Study and Research
Fall, 697; 698, spring. Credit to be arranged.
Hours to be arranged. Staff.

[699] Musical Notation
Fall. 4 credits. Not offered 1990-91.
N. Zaslaw, K. Husa, J. Hsu, M. Hatch.

[785] History of Music Theory
785, fall; 786, spring. 4 credits each term. Not offered 1990-91.
J. Webster.

[788] History and Criticism of Music
Spring. 4 credits. Not offered 1990-91.
T 2:30. D. Randel.
The nature of history and criticism in musicology in the light of current thought in other disciplines such as literary criticism, history, and philosophy.

[789] Liturgical Chant in the West
Fall. 4 credits. Not offered 1990-91.
F 10:10-12.05. D. Randel.
The formation of the major Western liturgical repertories, their interrelation, and their early history.

NEAR EASTERN STUDIES

R. Brann, chair; J. Katz (Mellon fellow), S. Katz, S. Mchrez (director of undergraduate studies), D. J. Owen (acting director of the Program of Jewish Studies), L. Peirce (graduate faculty representative and chair of the Committee for Arabic and Islamic Studies), G. Rendsburg, N. Scharf, M. Winter, M. Younes
Joint faculty: M. Bernal, S. Gilman, S. Telhami

The Department
The Department of Near Eastern Studies (360 Rockefeller Hall, 255-6275) offers courses in the archaeology, civilization, history, languages, and literatures of the Near East. Students are encouraged to take an interdisciplinary approach to the cultures of this region that has had such an important impact on the development of our own civilization and that plays so vital a role in today's world community. The department's course offerings treat the Near East from ancient times to the modern period and emphasize methods of historical and literary analysis. Near Eastern Studies also provides the basic courses in the Program of Jewish Studies and serves as the home of the Faculty Committee for Arabic and Islamic Studies.
Distribution Requirements
Any two Near Eastern studies history or archaeology courses at the 200 or 300 level that form a reasonable sequence or combination satisfy the distribution requirement in the social sciences or history. Any two Near Eastern studies civilization or literature courses at the 200 or 300 level that form a reasonable sequence or combination satisfy the distribution requirement in the humanities. NES 197 or NES 198 plus any other Near Eastern studies course will constitute a sequence to fulfill the distribution requirement in either social sciences or humanities, depending on the second course. All 200- and 300-level language courses may fulfill the humanities requirement.

The Major
The student who majors in Near Eastern Studies may concentrate in one of the following five areas:

1. Near Eastern languages and literatures
2. Ancient Near Eastern studies
3. Judaic studies
4. Islamic studies
5. Contemporary Near Eastern studies

The precise sequence and combination of courses chosen to fulfill the major is selected in consultation with the advisor; all majors, however, must satisfy the following requirements (S-U options not allowed):

1) Qualification in one of the languages offered by the department
2) Eight NES courses (which may include intermediate and advanced language courses), including NES 197 or NES 198
3) Four courses in subjects related to the student’s concentration, which may, in some cases, be taken outside the department

Prospective majors should discuss their plans with the director of undergraduate studies before forming the department.

To qualify as a major, a cumulative grade average of C or better is required.

Honors. Candidates for the degree of Bachelor of Arts with honors in Near Eastern languages and literatures, Ancient Near Eastern studies, Judaic studies, or Islamic studies must fulfill the requirements of the appropriate major study and enroll in the honors course, NES 499, in the first semester of their senior year. For admission to the honors program, candidates must have a cumulative average of B+ or better and have demonstrated superior performance in Near Eastern studies courses.

After consulting with their major advisor, candidates should submit an outline of their proposed honors work to the department during the second semester of their junior year.

Study abroad. There are many opportunities for study in the Near East. Cornell has agreements with the American University in Cairo, Ben-Gurion University, the University of Haifa, Hebrew University, Tel Aviv University, and the Technion in Israel that will permit students to enroll for a year or in some cases for a semester. Study in regular university courses at Haifa, Hebrew University, and Tel Aviv University will be permitted for students with adequate preparation; otherwise, students enroll in the Overseas Study Program of the institution. Except for instruction in Arabic language and literature, courses at the American University in Cairo are taught in English. Cornell Abroad students may also have the option of undertaking independent study in the summer following their academic year abroad. Students planning to study overseas during their junior year should develop language skills during their freshman and sophomore years.

Program of Jewish Studies
The field of Jewish studies encompasses a broad spectrum of disciplines that include civilization, language, literature, philology, and history. The Department of Near Eastern Studies offers students the opportunity to take a wide variety of courses in Jewish studies whose subjects are not represented in this department. Students interested in planning a program in Jewish studies should consult the Department of Near Eastern Studies. For complete listings and details see Program of Jewish Studies under “Special Programs and Interdisciplinary Studies.”

Committee for Arabic and Islamic Studies
The Committee for Arabic and Islamic Studies was created to promote the study at Cornell of the languages, history, culture, and politics of the Near East. Composed of members of the College of Arts and Sciences faculty representing a variety of disciplines, the committee currently sponsors the Comparative Muslim Societies Seminar, which is devoted to the interdisciplinary study of Muslim societies throughout the world. The committee also sponsors lectures and conferences on other topics related to its mandate. Students interested in pursuing Arabic and Islamic Studies should consult with the Director of Undergraduate Studies in the Department of Near Eastern Studies.

Shiloah Program with the Dayan Center, Tel Aviv University
The Department of Near Eastern Studies has established a program with the Dayan Center for Middle Eastern and African Studies at Tel Aviv University. Since spring semester 1984, the department has had a professor visiting from the center to teach a course or courses on the modern Middle East in his or her area of specialty. Courses have included a general survey on the history of the modern Middle East and seminars on Egypt, Lebanon, Saudi Arabia, and the Arab-Israeli conflict.

Freshman Writing Seminars

115 Literature and Politics in the Arab World
Fall 3 credits.

M W F 11:15—12:05 S. Mehrez.

For the past century or so, the Middle East has provided an almost uninterrupted scene of political and ideological struggle. Revolution, nationalism, war, socialism, radicalism, and fundamentalism have all been part and parcel of the modern history of the Middle East. Where does literature fit into this picture? What is the role of the intellectual in a part of the world where writers cannot afford to sit back and poetically imagine a world that is either in their own interest or that is not a part of the world? This course will explore the link between literature and nationalism in the Middle East in the twentieth century. Emphasis will be placed on the political use of archaeology in Israel, Iraq, and Iran, although other countries will be discussed. Topics to be explored will include: a) the use of the past to legitimize current regimes; b) how the past is made to “fit” present day ideologies; c) how the understanding of the nation’s past can undergo radical revision with a change of leadership (i.e., Iran’s view of its pre-Islamic past under the Shah and under Komeini).

Program of Jewish Studies

118 A Nobel Prize for the Arabs
Spring 3 credits.

This course will investigate the politics of the Nobel prize in general and how awarding it to Naguib Mahfouz was received in the Arab world at large, and in Egypt, in particular. Close attention will be given to the “Rushdie Affair” and how it reflected on the Nobel prize winner in Egypt. Through selected readings in Naguib Mahfouz’s translated works, students will become acquainted not only with the “father of the Arabic novel,” but with the development of the novel itself as a twentieth-century genre in Arabic literature as well.

154 Harems, Houris, and Hashish: Western Perceptions of the Middle East
Spring 3 credits.

Societies acquire their identities, in part, by defining themselves in relation to foreigners, strangers, aliens, or enemies; we divide the world into the familiar (Europe, the West, “us”) and the strange (the Orient, the East, “them”). In this course we will explore how contemporary Western perceptions of the Middle East have been shaped by the imperial and colonial experience of the past 150 years, paying special attention to the role of power and politics in the production of culture and knowledge.

161—162 Archaeology and National Identity
Fall, 161; spring, 162. 3 credits.

M W F 9:05—9:55 Staff.

This seminar will explore the link between archaeology and nationalism in the Middle East in the twentieth century. Emphasis will be placed on the political use of archaeology in Israel, Iraq, and Iran, although other countries will be discussed. Topics to be explored will include: a) The use of the past to legitimize current regimes; b) how the past is made to “fit” present day ideologies; c) how the understanding of the nation’s past can undergo radical revision with a change of leadership (i.e., Iran’s view of its pre-Islamic past under the Shah and under Komeini).
Language Courses

101-102 Elementary Modern Hebrew I and II (also Jewish Studies)

101, fall; 102, spring. 6 credits each term. Prerequisite for NES 102: 101 or permission of instructor. Satisfactory completion of NES 102 fulfills the qualification portion of the language requirement. Enrollment limited to 15 students in each section.

M-F 10:05, 10:10, or 10:25. Sections I and II. Instructor, Section III, N. Scharf.

Intended for beginners (section I for students without any previous background). A thorough grounding is given in all the language skills, emphasizing reading, writing, grammar, listening, and speaking. (1) Oral comprehension and production: (a) in the class room—ability to understand the basic dialogues and passages without the aid of written texts, to use these texts in variation, and to create new ones; (b) in the outside world—ability to meet basic travel needs and daily routine needs, both at work and in a study situation. (2) Reading: (a) in the classroom—ability to read the texts in the lessons, as well as new texts based on materials presented in class, and to deal with extensive readings (i.e., materials based on texts presented in the classroom as well as additional contextually relevant vocabulary items (b) in the outside world—ability to read simple short sentences, train plans, and bus schedules, menus, simple directions, etc. (3) Writing: (a) in the classroom—ability to communicate by writing short sentences and to construct short dialogues having simple sentences or brief passages on topics included in classroom discussions; (b) in the outside world—ability to construct simple, very short letters or notes, or brief summaries or reports. (4) Culture: meet basic cultural situations, know basic geographic facts, and become aware of the composition of the people of the country.

103 Elementary Modern Hebrew (also Jewish Studies)

Summer (six-week session). 4 credits. Enrollment limited to 15 students. Instructor, M. F. Scharf.

The fundamentals of grammar, syntax, and vocabulary as applied to both conversational and written Hebrew in the modern idiom. Students are expected to know the Hebrew alphabet for the first session of class.

111-112 Elementary Arabic

111, fall; 112, spring. 6 credits each term. Prerequisite for Arabic 112: Arabic 111 or permission of instructor.

The course provides a thorough grounding in all language skills: listening, speaking, reading, and writing. It starts with spoken Arabic and gradually integrates Modern Standard Arabic in all language skills: listening, speaking, reading, and writing. It starts with spoken Arabic and gradually integrates Modern Standard Arabic in the form of listening and reading texts. Emphasis will be on learning the language through using it in meaningful contexts. The student who successfully completes the two-semester sequence will be able to: 1) understand and actively participate in simple conversational practical and social situations (introductions, greetings, school, home and family, work, simple instructions, etc.); 2) read Arabic material of limited complexity and variety (simple narrative and descriptive texts, directions, etc.); 3) write notes and short letters describing an event or a personal experience. An important objective of the course will be familiarizing the students with basic facts about the geography, history, and culture of the Arab world.

113-114 Egyptian Arabic

113, fall; 114, spring. 4 credits each term. Prerequisite for NES 114: 113 or permission of instructor. All texts in Roman alphabet. Not offered 1990-91.

181-182 Elementary Turkish

181, fall; 182, spring. 6 credits each term. M-F 11.15-12.05. Staff.

This course aims at developing speaking, reading, and listening skills in modern Turkish. The fall term will be devoted primarily to intensive study of grammar but will include simple reading and writing exercises. Oral drill and conversation practice will be integrated into all class periods. In the spring term, while the study of grammar will continue, more time will be devoted to reading and writing. Oral practice will include both informal conversation and structured situations.

201-202 Intermediate Modern Hebrew I and II (also Jewish Studies)

201, fall; 202, spring. Enrollment limited to 15 students each term. 4 credits each term. Prerequisites for NES 201, 202 or permission of instructor; for NES 202, 201 or permission of instructor. Satisfactory completion of NES 202 fulfills the proficiency portion of the language requirement.

Second-year modern Hebrew. Continued development of reading, writing, composition, listening, and speaking skills. (1) Oral comprehension and production: (a) in the classroom—ability to carry on a conversation, listen to a short lecture, or deliver a short lecture on topics covered in the classroom or related topics. (b) in the outside world—ability to interact with speakers of Hebrew and exchange ideas on basic interests and current events, in work or study situations or informal gatherings, and to relay simple information and give directions. (2) Reading: (a) in the classroom—ability to read simplified short stories, short news items, and newspaper headlines; (b) in the outside world—ability to read short newspaper items, work directions, maps, plans, etc. (c) in the classroom—ability to write short compositions, notes in class, compose schedules, write out directions, etc.; (b) in the outside world—ability to write letters, reports, and summaries of events, and to communicate ideas. (4) Culture: expand knowledge of culture into some areas of literature, popular culture, and historical background.

211-212 Intermediate Arabic

211, fall; 212, spring. 4 credits each term. Prerequisites: for NES 211, one year of Arabic or permission of instructor; for NES 212, 211 or permission of instructor.

A sequel to NES 111-112. Continued development of the four language skills through extensive use of graded materials on a wide variety of topics. More attention will be given to developing native-like pronunciation and to grammatical accuracy than in NES 111-112, but the main focus will be on encouraging ideas in it. The student who successfully completes 212 will be able to: 1) understand and express himself or herself in Arabic in situations beyond the basic survival needs; 2) read and comprehend written Arabic of average difficulty. 3) write a letter, a summary of a report or a reading selection, etc. An appreciation of Arabic literature and culture will be sought through the use of authentic materials.

238 Aramaic

Spring. 3 credits. Not offered 1990-91.

283-284 Intermediate Turkish

283, fall; 284, spring. 3 credits. Not offered 1990-91.

301-302 Advanced Modern Hebrew I and II (also Jewish Studies)

301, fall; 302, spring. 4 credits each term. Prerequisite for NES 301: 202 or equivalent with permission of instructor. Prerequisite for NES 302: 301 or equivalent with permission of instructor. This sequence may be used as literature to fulfill the humanities distribution requirement.

M-W-F 12.20-1:10. N. Scharf.

Advanced study of Hebrew through the analysis of literary texts and expository prose. This course employs a double perspective: the language is viewed through the literature and the literature through the language. Students will develop composition skills by studying language structures, idioms, and various registers of style.

311-312 Advanced Arabic

311, fall; 312, spring. 4 credits each term. Prerequisite for NES 311: NES 211 or permission of instructor; prerequisite for NES 312: NES 311.

M-W-F 2:30-3:20. Fall, M. Younes; spring, S. Mehrez.

Students will be introduced to authentic, unedited Arabic language materials ranging from short stories and novels to political speeches and writings. Emphasis will be on developing fluency in oral expression through lively discussions of socially and politically provocative issues that are presented in the reading selections. A primary objective will be increased accuracy in pronunciation and grammar.

330-331 Hieroglyphic Egyptian

330, fall; 331, spring. 4 credits each semester. Not offered 1990-91.

333-334 Elementary Akkadian (also NES 633-634)

333, fall; 334, spring. 4 credits each term. Prerequisite for NES 334: NES 333 or permission of instructor. Not offered 1990-91.

335-336 Readings in Akkadian Texts (also NES 635-636)

335, fall; 336, spring. 4 credits. Prerequisite for NES 335: 334, prerequisite for NES 336: 335. Hours to be arranged. D. I. Owen.

Selected readings in Akkadian texts.

337-338 Ugairic

337, fall; 338, spring. 4 credits. Not offered 1990-91.

412 Introduction to Arabic Linguistics (also DMLL 512)

Spring. 4 credits. Prerequisites: one year of Arabic and an introductory course in linguistics or permission of instructor.

The course offers a survey of major issues in Arabic linguistics, particularly diglossia (the roles of Modern Standard Arabic and the spoken dialects), phonology, morphology, and syntax. Students will have the opportunity to do an in-depth study of a specific topic of their choice.
262 West Semitic Inscriptions
Fall. 4 credits. Prerequisite: knowledge of Hebrew.
A study of the major inscriptions of the west semitic languages of the Iron Age. These include texts in Hebrew, Aramaic, Phoenician, Ammonite, and Moabite.

265 Readings in Akkadian Texts (also NES 335)
Fall. 4 credits.
Hours to be announced. D. I. Owen.
For description see NES 335 under Near Eastern Studies Languages.

Archaeology

243 The History and Archaeology of Ancient Israel (also Jewish Studies and Religious Studies)
Spring. 4 credits.
A detailed survey of the history and archaeology of the land of Canaan from the traditional origins of the Israeliite tribes in the early second millennium/ middle Bronze Age (ca. 2000 B.C.E.) through the Babylonian exile to the arrival of Ezra and Nehemia (ca. 450 B.C.E.). Lectures on, and discussions of, Biblical and Near Eastern literary sources relating to the history of ancient Israel, as well as an analysis of the archaeological evidence, will form the basis of the course. (This course is recommended for students planning to participate in NES 364, Introduction to Field Archaeology in Israel.)

261 Ancient Seafaring (also Archaeology 275)
Fall. 3 credits. Not offered 1990-91.

263 Introduction to Biblical History and Archaeology (also Jewish Studies)
Summer. 3 credits. Not offered 1990-91.

264 Agriculture and Society in the Ancient Near East
Spring. 3 credits. Not offered 1990-91.

267 Mediterranean Archaeology (also Classics 219)
Fall. 3 credits. Not offered 1990-91.

261 Interconnections in the Eastern Mediterranean World in Antiquity
Fall. 4 credits. Not offered 1990-91.

262 The History and Archaeology of Ebla
Fall. 4 credits. Prerequisite: Archaeology 100 or any introductory course in ancient history or archaeology. Not offered 1990-91.

264 Introduction to Field Archaeology in Israel (also Jewish Studies)
Summer. 6 credits.
D. I. Owen.
An introduction to archaeology fieldwork—excavation techniques, pottery analysis, and recording. Materials studied will range from the early Bronze Age to the Iron period. Emphasis also on the role archaeology plays in the reconstruction of biblical history and the various approaches used to achieve that reconstruction. On-site supervision will be supplemented by regular lectures on the history, culture, and literature of the peoples whose remains will be exposed. Requirements include regularly assigned readings and two papers. Graduate credit by special arrangement. Please contact department (255-6275) for further details.

265 The Divided Monarchy (also Jewish Studies)
Fall. 4 credits. Prerequisite: NES 243 or permission of instructor. Not offered 1990-91.

266 The History and Archaeology of the Ancient Near East (also Archaeology 310)
Fall. 4 credits. Not offered 1990-91.

267 The History and Archaeology of Ancient Egypt
Fall. 4 credits. Not offered 1990-91.

461 Seminar in Syro-Palestinian Archaeology: The Israelite Conquest of Canaan (also Jewish Studies)
Fall. 4 credits. Not offered 1990-91.

Civilization

157 Introduction to Islamic Civilization
Fall. 3 credits. Not offered 1990-91.

197-198 Introduction to Near Eastern Civilization
[197 not offered 1990-91; 198, spring. 3 credits. Required for all department majors. NES 197 or 198 and any other Near Eastern studies course will constitute a sequence to fulfill the distribution requirement in either the social sciences or the humanities, depending on the second course used in combination with 197 or 198.]

TR 1:25-2:40. R. Brann.
This course is designed to provide an introductory overview of Near Eastern society and culture from ancient to modern times for students with little or no previous training. Lectures will focus on four major periods of Near Eastern history: ancient, biblical, Islamic, and modern. In each historical period we will consider the development of major religious ideas, social and political institutions, economic structures, and literary forms. Readings will be chosen from primary sources in translation and modern secondary materials. In addition, movies, slides and other visual materials will be used as integral parts of the course.

234 Muslims, Christians, and Jews in Islamic Spain: Literature and Society (also Comparative Literature 234 and Jewish Studies)
Spring. 3 credits. Not offered 1990-91.

250 Shi'ism and the Iranian Revolution (also Religious Studies)
Fall. 3 credits.
This course explores the classical roots of a contemporary phenomenon. How did Shi'ism become the state religion of Iran? How did the attitude of the clergy toward political power evolve? How did Khomeini and the clergy emerge at the helm of the Iranian revolution? Finally, what makes the Islamic revolution so revolutionary? In addition to examining the transformation of shi'ism from a sectarian doctrine to a radical ideology, we will also examine the cultural origins and consequences of the Iranian revolution. As the revolution enters its second decade, who has gained and who has lost? How does life under Khomeini and his successors differ from life under the Shah?

253 An Introduction to the History of Iran
Spring. 3 credits.
At the crossroads of Asia, Iran has endured a succession of foreign conquests and challenges from Greeks, Arabs, Turks, Mongols, and modern European states. In addition to surveying major historical events and social movements since the Arab conquest of 642, this course will serve as an introduction to Iranian cultural and intellectual achievements. The broad theme of this course is the resiliency of a distinctly Iranian culture and identity. By semester's end we will consider the following questions: How was the Iranian national identity propagated and maintained? What elements in Islamic civilization may be thought of as specifically Persian contributions? Is a national culture the same as "nationalism" in an Islamic context? How has contact with the West caused Iranians to re-examine their culture and history?

282 Culture and Society of the Turks
Spring. 3 credits. Not offered 1990-91.

293 Judaism, Christianity, and Islam in Comparative Perspective (also Jewish Studies)
Spring. 3 credits. Not offered 1990-91.

297 Beyond the Stereotype: Images of Women in the Middle East (also Women's Studies 297)
Spring. 3 credits. Not offered 1990-91.

346 Jews of Arab Lands (also Jewish Studies)
Fall. 4 credits. Not offered 1990-91.

351 Introduction to Islamic Law (also Religious Studies)
Spring. 4 credits.
An examination of the historical development of Islamic law from its formative period to modern times, with special emphasis on the laws of personal status (marriage, divorce, and inheritance). Topics to be discussed include the origins of Islamic law; the relationship between law and society; the nature and function of legal documents; the impact of colonialism on legal institutions; and the problems and challenges of legal reform.

352 Islam and the West
Spring. 3 credits. Not offered 1990-91.

357 Islamic Law and Society
Fall. 4 credits. Not offered 1990-91.

History

243 History and Archaeology of Ancient Israel (also Jewish Studies)
Spring. 4 credits.
For description see NES 243 under Near Eastern Archaeology.
248 Introduction to Classical Jewish History (also Jewish Studies)
Fall. 3 credits.
A survey of the major developments in Jewish history between the destruction of the first temple in 586 B.C.E. and the rise of Islam. Topics will include the return under Ezra and Nehemiah; the encounter with Hellenism; the Antiochene persecutions; the growth of Roman influence; the rebellion of 70 C.E.; the rise of such Jewish groups as the Sadducees, Pharisees, and Essenes; the conflict with early Christianity; and the nature of rabbinic Judaism.

249 Introduction to Modern Jewish History (also Jewish Studies)
Spring. 3 credits.
A survey of the major developments in Jewish history between the expulsion from Spain (1492) until 1900. Topics will include the growth of mysticism and Hasidism; the development of Eastern European Jewry; the impact of emancipation; the rise of Jewish pluralism, e.g., Reform Judaism, Conservative Judaism, Neo-Orthodoxy; the character of modern anti-Semitism; the origins and growth of American Jewry; and the beginnings of political Zionism.

257 Islamic History: 600–1258 (also Religious Studies)
Fall. 3 credits.
A survey of Islamic history from the lifetime of Muhammad to the Mongol conquest of Baghdad with special emphasis on contacts between the Islamic world and the West. Topics to be discussed will include the emergence of Islam as a major world religion; the effect of the Arab conquests on the unity of the Mediterranean world; political, cultural, and economic contacts between the Near East and Europe; the Crusades; and the Spanish Reconquista.

258 Islamic History, 600–1517
Fall. 3 credits. Not offered 1990–91.

259 The Ottoman Empire from 1517 to 1923
Spring. 3 credits. Not offered 1990–91.

261 Ancient Seafaring (also Archaeology 275)
Not offered 1990–91.

264 Agriculture and Society in the Ancient Near East
Spring. 3 credits. Not offered 1990–91.

277 Seminar in Jewish History (also Jewish Studies)
Spring. 3 credits. Not offered 1990–91.

281 Gender and Society in the Muslim Middle East (also Women's Studies 281)
Fall. 5 credits. Not offered 1990–91.

294 Modern History of the Middle East: Changing Politics, Society, and Ideas (also Government 358)
Fall. 4 credits. Fulfills the college distribution requirement in history or the social sciences.
This introductory course is designed to acquaint students with the main political, social, and cultural trends that have shaped the modern and contemporary history of the Middle East. While discussing developments in the region during the nineteenth and twentieth centuries, the lectures will focus on such themes as modernization, nationalism, Islamic response, and Arab politics in the global and regional contexts. The course does not presuppose the knowledge of Middle Eastern languages.

291 Introduction to Islamic Law
Spring. 4 credits. D. Powers.
For description see NES 351 under Near Eastern Civilization.

292 Islam and the West
Spring. 3 credits. Not offered 1990–91.

295 Islam and Politics

296 The Islamic Resurgence
Spring. 4 credits. Prerequisite: NES 258 or NES 254. Not offered 1990–91.

298 Interconnections in the Eastern Mediterranean World in Antiquity
Fall. 4 credits. Not offered 1990–91.

302 The History and Archaeology of Ebla
Not offered 1990–91.

305 The Divided Monarchy (also Jewish Studies)
Not offered 1990–91.

308 The History and Archaeology of Ancient Egypt
Fall. 4 credits. Not offered 1990–91.

309 Topics in the Middle East: Islam and the State in the Middle East (also Government 352)
Spring. 4 credits.
The seminar aims to survey and analyze the problematic relationship between Islam and the modern nation-state in the Middle East, against the historical background of the region. The first part of the course will address the pervasive patterns of this relationship. The second part will be devoted to case studies of the various countries in the Middle East: the Arab states and the Palestinian Arabs, Turkey, and Iran.

453 Islam in South Asia (also History 417)
Fall. 4 credits.
This course will examine the dominant features of South Asia, including the nature of beliefs and practices and the rituals and institutions of their different local contexts. One of the major objects of this course is to demonstrate that Islam never functioned as a monolithic system in South Asia and developed its own traditions in different local contexts, which did not necessarily conform to the orthodox interpretations by the ulama. It will conclude with a consideration of the major Islamic movements in South Asia Islam in more recent times.

682 International Relations of the Middle East (also Government 682)
Spring. 4 credits.
The focus of this seminar will be the contemporary international relations of the Middle East, with special attention paid to patterns of relations among states of the Middle East and to the international and domestic variables that could account for these patterns. In Part I of the seminar, we will study a) the ways in which superpower competition and changing objectives affect the relations of states in the Middle East, b) the extent to which a change in the distribution of political, military, and economic power in the Middle East alters politics in the region; and, c) the impact of domestic variables on the foreign policies of states in the Middle East. In Part II, we will examine three major international crises in the Middle East: the Arab-Israeli conflict, the Iran-Iraq conflict, and the crisis in Lebanon.

Literature

[155 Classics of the Arabic Literary Tradition
Fall. 4 credits. Not offered 1990–91.]

220 The New Testament (also Classics 202)
Spring. 3 credits. Prerequisite: at least one year of ancient Greek (Classics 101–103 or permission of instructor).
Selections in Greek from all four gospels and the letters of Paul, with special attention to Luke, Acts, and Corinthians I–II.

[221 Readings in Classical Hebrew Literature: The Art of Biblical Narrative (also Jewish Studies)
Fall. 3 credits. Prerequisite: one year of Hebrew, biblical or modern. May be used as literature to satisfy the humanities distribution requirement. Not offered 1990–91.]

[222 Readings in Classical Hebrew Literature: The Art of Biblical Poetry (also Jewish Studies)
Spring. 3 credits. Not offered 1990–91.]

223 Introduction to the Bible (also Jewish Studies and Religious Studies)
Fall. 3 credits.
This course will survey the main historical, religious, and literary issues raised by a close textual reading of the Hebrew Bible (from Genesis to Deuteronomy). It will be concerned with both situating the Bible in its ancient Near Eastern context as well as with discerning its meaning for contemporary reality. All readings will be in English translation.

[224 Wisdom Literature: An Introduction
Spring. 3 credits. Not offered 1990–91.]

[226 Exodus and Conquest
Spring. 3 credits. Not offered 1990–91.]

[227 Introduction to the Prophets
Spring. 3 credits. Not offered 1990–91.]

228 Genesis (also NES 628 and Jewish Studies)
Fall. 3 credits. Not offered 1990–91.

231 Classics of Hebrew Literature: A Survey of the Hebrew Literary Tradition (also Comparative Literature 231 and Jewish Studies)
Fall. 5 credits. Not offered 1990–91.

[233 The Lyrics of Love and Death: Medieval Hebrew Poetry in Translation (also Medieval Studies 233 and Comparative Literature 333 and Jewish Studies)
Spring. 3 credits. Not offered 1990–91.]

[236 Israel: Literature and Society
Spring. 3 credits. Not offered 1990–91.]

ARTS AND SCIENCES
[207 The Modern Arabic Novel
Spring, 3 credits. Not offered 1990-91.]

[252 Arabian Nights in the East and the West
Spring, 3 credits. Not offered 1990-91.]

256 A Quest for Identity: The Arabic Short Story
Fall, 3 credits.
A long period of colonization and cultural isolation, the question of identity becomes very urgent for Middle Eastern writers. Through readings of Arabic fiction in English translation we will explore how Arab writers continue to mold a tradition of short-story writing that reflects (both formally and thematically) a direct engagement in their sociopolitical and cultural context.

279 Jewish Sectarian Literature in Late Antiquity (also Jewish Studies and Religious Studies)
Spring, 3 credits.
This course examines the challenge to Judaism's social, legal, and religious institutions posed by adherents of apocalyptic and other sectarian ideologies in antiquity. The focus is on the Dead Sea Scrolls and the Qumran community but will include literature from other communities in the Greco-Roman era fourth century B.C.E. to second century C.E. All readings in English translation. We will focus on the imagery and rhetoric of apocalyptic ideology in our analysis of literary texts. We will arrive inductively at a definition of apocalyptic, both as a movement and as literature. Sources include readings from the prophets, Enoch, Jubilees, Dead Sea Scrolls, 4th Ezra, Revelation.

291 Women in Jewish Literature: Tradition and the Literary Imagination (also Women's Studies
291 and Jewish Studies)
Spring, 3 credits. Open to freshmen. Not offered 1990-91.]

292 Women in the Hebrew Bible (also Women's Studies 292 and Jewish Studies)
Fall, 3 credits. Open to freshmen. Not offered 1990-91.]

303 Seminar in Modern Hebrew Literature: The Short Story (also Jewish Studies)
Fall, 4 credits. Not offered 1990-91.]

304 Seminar in Modern Hebrew Literature: The Novel (also Jewish Studies)
Spring, 4 credits. Not offered 1990-91.]

313 The Arab Writer and the State
Fall, 4 credits. Not offered 1990-91.]

322 Undergraduate Seminar in Biblical Literature: Prophecy in Ancient Israel
Spring, 4 credits. Not offered 1990-91.]

323 Ancient Near Eastern Literature
Spring, 4 credits. Not offered 1990-91.]

402 Seminar in Hebrew Literature and Poetics (also Jewish Studies)
Spring, 4 credits. Prerequisites: NES 301 or equivalent and permission of instructor. Not offered 1990-91.]

411 Readings in Classical Arabic Texts (also Medieval Studies 411)
Fall, 4 credits.
Hours to be announced. D. Powers.
Selected readings in a variety of classical Arabic texts.

[420 Readings in the Hebrew Bible (also Jewish Studies)
Fall, 4 credits. Prerequisite: one year of Hebrew, biblical or modern. May be repeated for credit. Not offered 1990-91.]

[421 Readings in Biblical Hebrew Poetry (also Jewish Studies)
Fall, 4 credits. Prerequisite: one year of biblical or modern Hebrew. May be repeated for credit. Not offered 1990-91.]

428 Medieval Biblical Hebrew Exegetics (also Jewish Studies and Religious Studies)
Spring, 4 credits. Prerequisite: Advanced knowledge of Hebrew or permission of instructor.
W 2:30-4:10. R. Brann.
This seminar will concern itself with the reading and analysis of some of the basic works of the medieval Hebrew biblical interpretative tradition. The primary emphasis will be on providing students with the skills necessary to use this important literature by themselves. Readings will be chosen from such classic commentators as Abraham Ibn Ezra, Moses ben Nachman, and David Kimche.

[429 Readings in the New Testament (also Comparative Literature 429)
Spring, 4 credits. Limited to 25 students. Not offered 1990-91.]

[432 Readings in Judeo-Arabic: Medieval Judeo Arabic and Hebrew Poetics (also Jewish Studies)
Spring, 4 credits. Prerequisite: Arabic 212, Hebrew 202, or equivalents. Designed for graduate students but open to undergraduates with permission of instructor. Entire sequence may be repeated for credit; readings will vary from year to year. Not offered 1990-91.]

491-492 Independent Study, Undergraduate Level
Fall or spring. Variable credit. Prerequisite: permission of instructor.
Staff.

499 Honors Seminar: Independent Study
Fall or spring. Variable credit. Prerequisite: permission of instructor.
Staff.

635-636 Readings in Akkadian Texts (also NES 335-336)
635, fall; 636, spring. 4 credits.
For description see NES 335-336 under Near Eastern Languages.

[628 Genesis (also NES 226 and Jewish Studies)
Fall, 4 credits. Not offered 1990-91.]

691-692 Independent Study, Graduate Level
Fall or spring. Variable credit. Prerequisite: permission of instructor.
Staff.

The Program of Jewish Studies
244 Jurisprudence and the Holocaust
Fall, 2 credits.
M 9:05-11:00. N. Sher.
Please see Program of Jewish Studies under "Special Programs and Interdisciplinary Studies" for complete description.

247 Seminar: The Eichmann Case
Spring, 2 credits. Prerequisites: 241 and/or 244 or permission of instructor. Enrollment limited to 20 students.
M 9:05-11:00. N. Sher.
Please see Program of Jewish Studies under "Special Programs and Interdisciplinary Studies" for complete description.

404 History into Fiction: Nazis and the Literary Imagination (also Comparative Literature 404, English 404, and Jewish Studies)
Fall. 4 credits.
Please see Program of Jewish Studies under "Special Programs and Interdisciplinary Studies" for complete description.

Related Courses in Other Departments
Archaeology
Classics
Comparative Literature
Economics
German Studies
Government
English
History
History of Art
Jewish Studies
Modern Languages and Linguistics
Philosophy
Sociology
Women's Studies

NEPALI
See Department of Modern Languages and Linguistics.

PHILOSOPHY

The study of philosophy provides students with an opportunity to become familiar with some of the ideas and texts in the history of thought while developing analytical skills that are valuable in practical as well as academic affairs. It affords the excitement and satisfaction that come from understanding and working toward solutions of intellectual problems. The curriculum includes offerings in the history of philosophy, logic, philosophy of science, ethics, social and political philosophy, metaphysics, and theory of knowledge. Any philosophy course numbered in the 100s or 200s is suitable for beginning study in the field. Sections of Philosophy 100 are part of the freshman writing seminar program; they are taught by various members of the staff on a variety of philosophical topics, and because of their small size (seventeen students at most) they provide ample opportunity for discussion.
Students who want a broad introduction to philosophy may take Philosophy 101, but many students with special interests may find that the best introduction to philosophy is a 200-level course in some particular area of philosophy; such courses have no prerequisites and are usually open to freshmen.

The Major

Students expecting to major in philosophy should begin their study of it in their freshman or sophomore year. Admission to the major is granted by the director of undergraduate studies of the department on the basis of a student's work during the first two years. Eight philosophy courses are required for the major. They must include at least one course in ancient philosophy (Philosophy 210 or 211, or a course with a large component on Plato or Aristotle), at least one course in classical modern metaphysics and epistemology, (Philosophy 212 or a course on the empiricists, the rationalists, or Kant), and a minimum of three courses numbered above 300, at least one of which must be numbered above 400 (and be otherwise numbered). A course in formal logic (e.g., Philosophy 231), while not required, is especially recommended for majors or prospective majors.

Philosophy majors must also complete at least 8 credits of course work in related subjects approved by their major adviser. Occasionally majors may serve as teaching or research aides, working with faculty members familiar with their work.

Honors. A candidate for honors in philosophy must be a philosophy major with an average of B- or better for all work in the College of Arts and Sciences and an average of B+ or better for all work in philosophy. In either or both terms of the senior year a candidate for honors enrolls in Philosophy 490 and undertakes research leading to the writing of an honors essay by the end of the term. Honors students normally need to take Philosophy 490 both terms of their senior year in order to write a satisfactory honors essay. Prospective candidates should apply at the philosophy department office, 218 Goldwin Smith Hall.

Fees

In some courses there may be a small fee for photocopying materials to be handed out to students.

Introductory Courses

These courses have no prerequisites, all are open to freshmen.

100 Freshman Seminar in Philosophy

Fall and spring. 3 credits.

Fall. M W F 9:05, staff; T 10:10, H. Hodges; 11:15, 12:20, staff; T R 10:10-11:25, R. Boyd; 11:40-12:55, M. Crimmins and staff; 1:25-2:15, staff; 2:55-4:10, R. Miller; M W F 7:30-8:45 p.m., staff. Spring. M W F 10:10, staff; 11:15, 12:20, staff; 1:25-2:15, J. Jarrett; T R 10:10-11:25, 11:40-12:55, 2:55-4:10, staff; M W 7:30-8:45 p.m., staff. This course is designed to deal with a number of the central problems of philosophy, including the existence of God, our knowledge of the external world, the mind-body problem, free will and the foundations of morality. Readings will consist partly of selections from such perennially important philosophers as Descartes, Berkeley, Hume, and J. S. Mill, and partly of more recent writings. Two lectures and one section per week.

Spring. M W F 10:10. M. Crimmins. A broad introduction to philosophical thinking and central philosophical questions. We will discuss questions of epistemology (what can we know for sure?), religion (are there good reasons to believe that God exists?), philosophy of mind (is your mind just the same thing as your brain? could a computer think? do you really have free will?), and ethics (what is it to make the right choice, or to do a good thing, or to be moral? what is justice? is it wrong not to contribute to charities? is reverse discrimination wrong?). The emphasis will be on careful analytic thinking about these difficult issues. Readings will be chosen from classic and contemporary writers. Two lectures and one section each week.

101 Introduction to Philosophy

Fall and spring. 3 credits. Normally offered in the six-week summer session.

Fall. M W F 11:15. S. Shoemaker. This course is designed to deal with a number of the central problems of philosophy, including the existence of God, our knowledge of the external world, the mind-body problem, free

252 ARTS AND SCIENCES

251 Philosophical Issues in Christian Thought

252 Medieval Philosophy

Fall. 4 credits.

231 Introduction to Formal Logic

4 credits. Normally offered in the six-week summer session.

Fall. M W F 9:05, C. A. Ginat. Spring. T R 10:10-11:25, H. Hodes, disc; 1 hour each week to be arranged.

Analysis and evaluation of deductive reasoning in terms of formalized languages. The logic of sentences, predicates, and quantifiers. (This course, rather than Philosophy 331, is the recommended introductory formal logic course.)

241 Ethics

Spring. 4 credits.

T R 2:55-4:10. R. Miller. Introduction to the philosophical study of major moral questions. Are all values relative, or are there some objective moral values? Can ethics be a science? Is human nature inevitably selfish? Have we ever any good reason to care about the interests of other people? Do people have rights with which governments should not interfere, even to advance the general welfare? What inequalities are unjust? The course discusses these general issues in moral philosophy, together with some of their implications for particular current moral controversies, such as the debates over abortion, reverse discrimination, and policies reducing economic inequality. Readings from major philosophers of the past—for example, Hobbes, Mill, and Marx—as well as contemporary sources. In 1990-91, the course will be specially concerned with theories of justice, liberty, and equality from Hobbes to the present.

242 Social and Political Theory

243 Aesthetics

244 Philosophy and Literature

Fall. 4 credits. Not offered 1990-91.

245 Ethics and Health Care (also Biology and Society 205 and Biological Sciences 205)

Fall. 4 credits. Normally offered in the six-week summer session. Limited to 80 students. (40 under philosophy, 15 under Biology and Society, and 25 under Biological Sciences). Registered students not attending the first week will be dropped from the course. Open to sophomores, juniors, and seniors, permission of instructor required for graduate students.

Lec, T R 10:10-11:25; disc, 1 hour each week to be arranged. M. Wachsbeg. Critical philosophical analysis of the conceptual frameworks in which ethical problems associated with health care can be formulated and solutions evaluated. General topics (with sample issues indicated in parentheses) include knowledge in ethics (ethical skepticism, ethical relativism); proper social allocation of resources for, and within, medicine (entitlement to health care, access to scarce medical resources, cost-benefit analysis); the proper account of basic concepts such as illness, death, autonomy, and personhood (abortion, euthanasia, contraceptive technologies), and the professional-patient relationship (informed

[214 Philosophical Issues in Christian Thought]

[215 Medieval Philosophy]

Fall. 4 credits.

[231 Introduction to Formal Logic]

4 credits. Normally offered in the six-week summer session.

Fall. M W F 9:05, C. A. Ginat. Spring. T R 10:10-11:25, H. Hodes, disc; 1 hour each week to be arranged.

Analysis and evaluation of deductive reasoning in terms of formalized languages. The logic of sentences, predicates, and quantifiers. (This course, rather than Philosophy 331, is the recommended introductory formal logic course.)

[241 Ethics]

Spring. 4 credits.

T R 2:55-4:10. R. Miller. Introduction to the philosophical study of major moral questions. Are all values relative, or are there some objective moral values? Can ethics be a science? Is human nature inevitably selfish? Have we ever any good reason to care about the interests of other people? Do people have rights with which governments should not interfere, even to advance the general welfare? What inequalities are unjust? The course discusses these general issues in moral philosophy, together with some of their implications for particular current moral controversies, such as the debates over abortion, reverse discrimination, and policies reducing economic inequality. Readings from major philosophers of the past—for example, Hobbes, Mill, and Marx—as well as contemporary sources. In 1990-91, the course will be specially concerned with theories of justice, liberty, and equality from Hobbes to the present.

[242 Social and Political Theory]

[243 Aesthetics]

[244 Philosophy and Literature]

Fall. 4 credits. Not offered 1990-91.

[245 Ethics and Health Care (also Biology and Society 205 and Biological Sciences 205)]

Fall. 4 credits. Normally offered in the six-week summer session. Limited to 80 students. (40 under philosophy, 15 under Biology and Society, and 25 under Biological Sciences). Registered students not attending the first week will be dropped from the course. Open to sophomores, juniors, and seniors, permission of instructor required for graduate students.

Lec, T R 10:10-11:25; disc, 1 hour each week to be arranged. M. Wachsbeg. Critical philosophical analysis of the conceptual frameworks in which ethical problems associated with health care can be formulated and solutions evaluated. General topics (with sample issues indicated in parentheses) include knowledge in ethics (ethical skepticism, ethical relativism); proper social allocation of resources for, and within, medicine (entitlement to health care, access to scarce medical resources, cost-benefit analysis); the proper account of basic concepts such as illness, death, autonomy, and personhood (abortion, euthanasia, contraceptive technologies), and the professional-patient relationship (informed
246 Ethics and the Environment (also Biology and Society 206 and Biological Sciences 206)

Spring. 4 credits. Open to all undergraduates. Permission of instructor required for graduate students.

Lecs, TR 10:10-11:25; disc, 1 hour each week to be arranged. M. Wachsberg.

Critical philosophical analysis of the conceptual frameworks in which policies affecting the environment are formulated and judged. An introductory section of the course discusses the nature of ethics and the possibility of knowledge in ethics. The first major substantive component of the course deals with the nature and extent of individual and social obligations to spatially distant people, future generations, nonhuman animals, and nonsentient things (e.g., the ecosystem). The second major component of the course deals with the appropriate analysis of the origin of environmental problems and the range of options for their solution. Topics include individual vs. collective goods, cost-benefit analysis, and coordination problems. Note: A more detailed description of the course is available in the philosophy department office.

247 Ethics and Public Life

Spring. 4 credits.

An examination of the relative strength of human responsibilities at three levels: toward intimates, toward compatriots, and toward strangers. At the level of intimates the focus is on feminist critiques of relationships within the conventional family and of gendered roles more generally: how should men and women relate to each other? Attention in the historical arena is on contemporary debates about the basis and scope of the welfare state: how should the well-fed and well-housed deal with fellow citizens who are hungry or homeless? Relationships toward strangers are examined at the international level in the case of distant relatives, toward compatriots, and toward strangers. At the level of intimates the focus is on feminist critiques of relationships within the conventional family and of gendered roles more generally: how should men and women relate to each other? Attention in the historical arena is on contemporary debates about the basis and scope of the welfare state: how should the well-fed and well-housed deal with fellow citizens who are hungry or homeless? Relationships toward strangers are examined at the international level in the case of distant relatives, toward compatriots, and toward strangers. At the level of intimates the focus is on feminist critiques of relationships within the conventional family and of gendered roles more generally: how should men and women relate to each other? Attention in the historical arena is on contemporary debates about the basis and scope of the welfare state: how should the well-fed and well-housed deal with fellow citizens who are hungry or homeless? Relationships toward strangers are examined at the international level in the case of distant relatives, toward compatriots, and toward strangers.

263 Religion and Reason

Fall. 4 credits.

TR 11:40-12:55. N. Kretzmann. Recent and traditional literature will be taken into account in the examination of such topics as evidence for and against the existence of a god, philosophical problems associated with the attributes of God as described in the great monotheistic religions, and philosophical problems associated with the relationship of God to the physical universe and to human beings.

266 Science and Human Nature

Spring. 4 credits.

M WF 11:15. R. N. Boyd.

An examination of attempts in the biological and social sciences to offer scientific theories of human nature and human potential and to apply such theories to explain important social and psychological phenomena. Topic for 1990-91: Darwin, social Darwinism, and sociology.

Intermediate Courses

Some of these courses have prerequisites.

269 Plato

310 Aristotle

Spring. 4 credits.

A critical survey of Aristotle's systematic thought from his logical and metaphysical thought through his natural and psychological thought, and to political works, with some discussion of his responses to Plato and the Presocratics and his effects on subsequent philosophical thought. Special attention will be paid to the contemporary interest in resurrecting Aristotelian ethics.

311 Modern Rationalism

312 Modern Empiricism

Spring. 4 credits.

M WF 2:30. S. Shoemaker.

The course will be devoted to the philosophy of Bishop Berkeley, in particular to his New Theory of Vision, his Principles of Human Knowledge, and his Three Dialogues between Hylas and Philonous. As background we will also look at parts of John Locke's Essay Concerning Human Understanding. Topics will include Berkeley's views about perception, his attack on Locke's distinction between primary and secondary qualities, his attack on abstract ideas, and, most centrally, his idealism and his attack on the notion of material substance.

314 Topics in Ancient Philosophy

315 Special Topics in the History of Philosophy

316 Kant

Fall. 4 credits.

Introduction to Kant's main doctrines in metaphysics, theory of knowledge, and ethics. Topics include the possibility of nonempirical knowledge, the nature of space and time and our knowledge of them, proof of the existence of a mind, world views of reason, and the possibility of free will and the basis of morality.

317 Hegel

Spring. 4 credits.

An introduction to Hegel's philosophical method, concentrating on its application to issues of ethics and political philosophy in The Philosophy of Right.

318 Twentieth-Century Philosophy

Spring. 4 credits.

Not offered 1990-91.

319 Philosophy of Marx

331 Formal Logic

Fall. 4 credits. Prerequisite: Philosophy 231 or equivalent.

M WF F 11:15. H. Hodes.

Review of derivations and other material covered in 231: basic set theory; truth in a model and the semantic definitions of consequence, validity, equivalence, and other logic concepts; and the soundness and completeness of a natural-deduction formalization of elementary logic. Further topics will be covered if time permits.

332 Philosophy of Language

Not offered 1990-91.

341 Ethical Theory

Spring. 4 credits.

Topics for 1990-91: Consequentialism and its critics.

342 Law, Society, and Morality (also Law 656)

Fall. 4 credits.

This is an introduction to the philosophy of law. It will emphasize the nature of law and its relation to moral principle. Theories to be discussed include natural law, legal positivism, legal realism, and contemporary interpretive and critical theories of laws.

344 History of Ethics—Ancient and Medieval

Not offered 1990-91.

345 History of Ethics—Modern

Not offered 1990-91.

346 Modern Political Philosophy

Spring. 4 credits.

M W 2:30-3:45. J. Whiting.

Topics for 1990-91: Feminism and the Liberal Tradition. We will study contemporary feminist analyses (including, among others, those by Catherine MacKinnon and Susan Moller Okin) of classical and contemporary sources in western political thought from Plato and Aristotle through Rousseau and Mill to Rawls and Nozick. Special attention will be paid to recent work in moral psychology (by Gilligan and others) on the relationship between justice and caring.

361 Metaphysics and Epistemology

Fall. 4 credits.

Not offered 1990-91.

363 Topics in the Philosophy of Religion

[389 Philosophy of Science: Evidence and Explanation]

[390 Informal Study]
Fall or spring. Credit to be arranged.
Staff
To be taken only in exceptional circumstances. Must be arranged by the student with his or her adviser and the faculty member who has agreed to direct the study.

[Advanced Courses and Seminars]
These courses are offered primarily for majors and graduate students.

[389 Majors Seminar]

[410 Medieval Latin Philosophical Texts]
Variable credit. Fall and spring. Prerequisites: knowledge of Latin and permission of instructor.
Hours to be arranged. N. Kretzmann.
Reading medieval philosophical texts in the original Latin.

[411 Greek Philosophical Texts (also Classics 311)]
Not offered 1990-91.

[412 Medieval Philosophy]
Fall. 4 credits.
T 4:15–6:15; N. Kretzmann.
Topic for 1990–91: Aquinas’s Philosophy of Mind

[413 Topics in Ancient Philosophy]

[414 German Philosophy after Kant]

[418 Modern Philosophy]
Fall.
T R 10:10–11:25; E. Vailati.
Topic for 1990–91: Selected topics in Leibniz and related seventeenth-century figures. Readings may include the Leibniz–Clarke debate and other writings of Samuel Clarke, as well as selected issues in Leibniz.

[431 Deductive Logic]

[433 Philosophy of Logic]

[436 Intensional Logic (also Mathematics 483)]
Spring. 4 credits. Prerequisites: Philosophy 231 or equivalent or any math or computer science logic course or permission of the instructor. Philosophy 331 or its equivalent is recommended, but not required.
MWF 11:15; H. Hodes.
The abstract concept of consequence, sentential and first-order predicate modal logics and their relationship to classical and intuitionistic logics; several conditional logics; and (time permitting) other related topics.

[437 Problems in the Philosophy of Language]

[441 Contemporary Ethical Theory]
Spring. 4 credits.
W 4:15–6:15; R. Miller.

[442 Ethics and the Philosophy of Mind]
Fall. 4 credits.
TR 1:25–2:40; M. Wachsbarg.
A study of the relationship between views about the nature of persons (via a discussion of personal identity), the rationality of self-interest, and the appropriate province of ethics.

[443 Topics in Aesthetics]

[444 Contemporary Legal Theory (also Law 710)]
Spring. 4 credits.
T 4:15–6:15; D. Lyons.
This seminar will consider problems and theories of legal interpretation, especially of statutes and written constitutions. Topics include the role of original intent and of political morality in judicial reasoning.

[446 Topics in Social and Political Philosophy]

[448 Metaphysics]

[451 Problems in the Philosophy of Science]
Spring. 4 credits.
M 7:00–9:30 p.m.; R. Boyd.
Topic for 1990–91: To be announced.

[490 Special Studies in Philosophy]
Fall or spring. 4 credits. Open only to honors students in their senior year.
Staff

[611 Ancient Philosophy]
Fall. 4 credits.
Fall: W 4:15–6:15; J. Whiting.
Topics for 1990–91: Aristotle: Individuals and Kinds. We will discuss the roles played by kinds and individuals in Aristotle’s metaphysics, epistemology, natural philosophy (including biology and psychology), and ethics (including perhaps his politics). Some attention will be paid to recent discussions of these issues by authors such as Strawson and Wiggins.

[612 Medieval Philosophy]

[613 Modern Philosophers]

[616 History of Philosophy]

[631 Logic]

[633 Philosophy of Language (also Linguistics 700)]
Fall. 4 credits.
Semantic, pragmatic, metaphorical, and logical issues surrounding vagueness. Topics will include Sorites paradoxes, supervaluation, degrees of truth, and the place of vagueness in the relations among mind, meaning, conversation, and the world.

[641 Ethics and Value Theory]

[646 Theory of Knowledge]
Spring. 4 credits.
R 4:15–6:15; C. Gineth.

[648 Philosophy of Mind/The Emotions]

[663 Philosophy of Religion]
Spring. 4 credits.
M 4:15–6:15; N. Kretzmann.
Ph.D. level independent research. Major research facilities are operated by two component organizations, the Laboratory of Atomic and Solid State Physics (LASSP) and the Laboratory of Nuclear Studies (LNS). LASSP carries out extensive research efforts in condensed-matter physics and in low-temperature physics. LNS operates a major high-energy physics research facility at Wilson Laboratory, the Cornell electron-positron storage ring, called CESR. Theoretical work is carried out in many fields of physics, including astrophysics. There is a full schedule of weekly research-oriented seminars and colloquia. Junior and senior students will find many opportunities for research participation and summer jobs.

Three introductory physics sequences are open to freshmen: 101–102, 112–213–214–315, and 207–208. In addition, there is a cluster of general-education courses, Physics 200 through 206. Physics 101–102, a self-paced autotutorial course, is designed for students who do not intend to take further physics courses and who do not have good math backgrounds. Physics 112 and 207 both require calculus (Mathematics 191 or 111), and additional mathematics is required for subsequent courses in sequence. Physics 101–102 or 207–208 may be taken as terminal physics courses. The three- (or four-) term sequence 112–213–214–315 or its honors version, 116–217–218–315, is recommended for engineers and physics majors.

Courses beyond the introductory level that might be of interest to nonmajors include: Physics 315, Phenomena of Microphysics, Physics 330, Modern Experimental Optics, and Physics 360, Electronic Circuits. Advanced placement and credit are offered as outlined in “Advanced Placement of Freshmen,” or students may consult Professor Cotts, 522 Clark Hall. Transfer students requesting credit for physics courses taken at another college should consult the department office.

The Major
Various options permit the student to concentrate heavily on physics or to take less physics and pursue an accompanying constellation of courses in a related area. Those desiring a physics concentration as preparation for professional or graduate work should complete Physics 112–213–214 or 116–217–218 and, if possible, 315 by the end of the sophomore year. A basic preparation for a less intensive physics program may include Physics 112–213–214 or 207–208–214. In either case, it is necessary to complete a concurrent sequence of mathematics courses.

Mathematics 191–192–293–294 are usually recommended, except for students especially interested in continuing the study of mathematics, for whom Mathematics 111–122–221–222 (or equivalent) may be preferred.

Prospective majors are urged to make an early appointment at the physics office for advice in planning their programs. Acceptance into the major is normally granted after completion of a year of physics and mathematics at Cornell with grades of B– or better. The student should propose a tentative plan for completing his or her graduation requirements as well as those for the major. The plan may change from time to time, but it must be approved by the major adviser. The major requirements have two components—a core and a concentration. Core requirements for the major include:

2) an intermediate physics course in each of these areas: (a) mechanics—Physics 318 or 431, (b) electricity and magnetism—Physics 325 or 432, (c) quantum physics—Physics 315 or 443, and (d) laboratory physics—Physics 310 (when not taken as substitute for laboratory work in 214 or 218), 330, 360, or 410.

Mathematics courses prerequisite for these physics courses are also necessary. The choice of core is influenced by the intended concentration. For a concentration in physics, Physics 116–217–218 (or 112–213–214), 315, 318, 325, and any 300-level laboratory course is appropriate; for concentrations outside physics, part (2) of the core might consist of, for example, Physics 315, 360, 431, 432.

The concentration reflects the student’s interest in some area related to physics; the array of courses must have internal coherence and be approved by the major adviser. The concentration must include at least substantial work in the core, at least 8 credits in courses numbered above 300. Students for whom preparation in such topics as physics, biophysics, chemical physics, astrophysics, geophysics, natural sciences, history and philosophy of science, computational physics, or physics with economics or business. A combined biology-chemistry concentration is recommended for premedical students or those who wish to prepare for work in biophysics. The concentration in natural science is particularly appropriate for teacher preparation.

The concentration in physics is recommended as preparation for professional or graduate work in physics or a closely related discipline. Twelve of the 15 concentration credits must be selected from physics courses numbered above 300 (in addition to those selected for part (2) of the core); Physics 410 must be included within those 12. The following courses are strongly recommended: Physics 341, 443, Mathematics 421, 422, 423, and at least one of Physics 444, 454, Applied and Engineering Physics 401, 434, Astronomy 431, 432, or Geological Sciences 588.

Foreign language requirement. Students interested in eventual graduate work in physics are advised to meet this requirement with French, German, or Russian.

Honors. A student may be granted honors in physics upon the recommendation of the Physics Advisers Committee of the physics faculty.

Double majors. Double majors with physics are possible and not at all uncommon. However, if a student plans to complete a major in physics as well as majors in one or more other subjects, then the set of courses used to satisfy the physics major must be completely different from the set of sets used to satisfy the other major(s).

Distribution Requirement
The requirement in physical sciences is met by any two sequential courses such as Physics 101–102 or 207–208 or 112–213 or any combination of the first term of one sequence and the second term of another. It is also met by any two general education courses from the group 200–206 or by a combination of 101 or 112 or 207 with one from the group 200–206.
Courses with Overlapping Content
Because the department offers several courses with overlapping content, students should select courses carefully to meet the needs of their academic programs and to ensure credit for each course they take. Listed below are groups of courses with similar content. In general, students may receive credit for only one of the courses in each group.

Physics 101, 112, and 207
Physics 102, 208, and 217
Physics 116, 117, and 207
Physics 208, 213, and 217

Course Prerequisites
Prerequisites are specified in physics course descriptions to illustrate the materials that students should have mastered. Students who wish to plan programs different from those suggested by the prerequisite ordering are urged to discuss their preparation and background with a physics adviser or with the instructor in the course. In many cases an appropriate individual program can be worked out without exact adherence to the stated prerequisites.

Courses

116 Physics II: Mechanics and Heat
Fall or spring. 4 credits. A more analytic version of Physics 112, intended for students who will be comfortable with a deeper, somewhat more abstract approach. (Intended mainly but not exclusively for prospective physics majors.) Prerequisites: a good secondary school physics course and familiarity with basic calculus. Corrective transfers between Physics 116 and Physics 112 (in either direction) are encouraged during the first few weeks of instruction.
Lecs, M W F 10:10; 2 recs each week; one 3-hr. lab alternate weeks. Evening exams may be scheduled. Fall, D. G. Cassel; spring, B. Gittelmann.

204 Physics of Musical Sound
Spring. 3 credits. Intended for nonscientists; does not serve as a prerequisite for further science courses. Assures no scientific background but will use high school algebra.
Lecs, M W F 2:30; disc, T 3:35. E. Cassel. Major features of the production, propagation, and perception of music. Sound may be understood in terms of important concepts in physics. Topics covered will include the mechanism of tone production in musical instruments, distinction among musical scales and tuning, basic principles of room acoustics and reproduction of sound, and some aspects of the mechanism of hearing. There will be some lab activities using computers to sample the frequency spectrum of various sounds and wave forms to generate very simple sounds. Familiarity with computers is not expected. At the level of The Science of Sound, by T. D. Rossing.

205 Reasoning about Luck
Fall. 3 credits. Intended for nonscientists; does not serve as a prerequisite for further science courses. Assures no scientific background but will use high school algebra. Not offered 1990-91.
Lecs, M W F 2:30; 1 hr. labs to be arranged. V. Ambegaokar. An attempt to explain how and when natural scientists can cope rationally with chance. The first part of the course deals in a constructive way with the basic ideas of probability theory and explains why it is that in large systems likely events can become overwhelmingly likely. An introduction to mechanics and to heat as probabilistic mechanics follows. In this way, interested students are given a nontrivial understanding of the second law of thermodynamics, that putative bridge between C. P. Snow’s two cultures. Another physical theory, quantum mechanics, in which chance occurs—though in a somewhat mysterious way—is touched on. Approximately five self-paced laboratory experiments will be included.

210 Physics of Space Exploration and of Astronomy
Spring. 3 credits. Intended for nonscientists; does not serve as a prerequisite to further science courses. Assumes no scientific background but will use high school mathematics. Not offered 1990-91.
Lecs, T R 12:20-1:35; 1 rec each week. P. Stein.

This course is intended for any student who wishes to understand the following: the developments in 20th-century physics that culminated in the development of the "atomic" bomb; the principles, types, and effects of nuclear weapons; existing and proposed arsenals and delivery systems; the evolution and present state of the nuclear military strategy of the nuclear powers; and the history of, and current issues in, nuclear arms-control negotiations. The course will also examine important concepts involved in military strategy and arms control. Some attention will also be given to the moral and ethical questions involved. Assignments emphasize development of quantitative reasoning skills as well as knowledgeability about technical aspects of the subject matter.

207-208 Fundamentals of Physics
207, fall; 208, spring. 4 credits each term.
Prerequisites for Physics 207: high school physics plus coregistration in Mathematics 112 or 192, or substantial previous contact with introductory calculus, combined with coregistration in a math course approved by instructor. Prerequisites for Physics 208:

Fundamentals of Physics, extended version, by Halliday and Resnick.
Physics 207 (or 112 or 111) and at least coregistration in Mathematics 192 or 112. Physics 207–208 is a two-semester introduction to physics intended for students majoring in a physical science, mathematics, or an analytically oriented biological science.

Lecs, M/W/F 15:15; 2 recs each week; one 3-hr. lab alternate weeks. Evening exams: fall, Oct. 16, Nov. 15; spring, Feb. 28, Apr. 11. Fall, P. Stein; spring, R. O. Pohl.

207: mechanics, Newton's laws, conservation laws, waves, and selected topics from gravitation, thermodynamics, fluid mechanics, and acoustics.

208: electricity and magnetism, circuits, and introduction to physical and geometric optics. At the level of College Physics, by Tipler.

213 Physics II: Electricity and Magnetism
Fall or spring (also normally offered in summer). 4 credits. Primarily for students of engineering and for prospective physics majors. Prerequisites: Physics 112 and coregistration in the continuation of the mathematics sequence required for 112.

Lecs, M/W/F 15:15; 2 recs each week; one 3-hr. lab alternate weeks. Evening exams: fall, Oct. 4, Nov. 8; spring, Feb. 19, Mar. 14, Apr. 16. Fall, R. Galik; spring, J. Orear.

Electrostatics, behavior of matter in electric fields, magnetic fields, Faraday's law, Maxwell's equations, electromagnetic oscillations and waves, relativity. At the level of Fundamentals of Physics, extended version, by Halliday and Resnick. Laboratory covers electrical measurement, DC and AC circuits, resonance phenomena.

214 Physics III: Optics, Waves, and Particles
Fall or spring (also normally offered in summer). 4 credits. Primarily for students of engineering and for prospective physics majors. Prerequisites: Physics 213 and coregistration in the continuation of the mathematics sequence required for 112. (Physics 310 may be taken, with permission of the instructor, in place of the regular lab, and credit for 218 is reduced to 3 credits.)

Lecs, M/W/F 9:05 or 11:15; 2 recs each week; one 3-hr. lab alternate weeks. Evening exams: fall, Oct. 4, Nov. 8; spring, Feb. 19, Mar. 19, Apr. 16. Fall, R. Galik; spring, J. Orear.

Electrostatics, behavior of matter in electric fields, magnetic fields, Faraday's law, Maxwell's equations, electromagnetic oscillations and waves, relativity. At the level of Fundamentals of Physics, extended version, by Halliday and Resnick. Laboratory covers electrical measurement, DC and AC circuits, resonance phenomena.

215 Phenomena of Microphysics
Fall or spring. 3 credits. Primarily for students of engineering and for prospective majors in physics. Prerequisites: Physics 214 and Mathematics 294.

Lecs, M/W/F 9:05, one rec each week. Fall, V. Elser; spring, J. Alexander.

Introduction to the physics of atoms, solids, nuclei, and elementary particles, emphasizing the description of phenomena using the results of elementary quantum and statistical physics. At the level of Quantum Physics of Atoms, Molecules, Solids, Nuclei and Particles, by Eisberg and Resnick.

318 Analytical Mechanics
Spring. 4 credits. Prerequisites: Physics 208 or 214 plus one of Mathematics 421, 422 or 423, or permission of instructor. Intended for physics majors concentrating in physics. Similar material is covered in Physics 431 at a less demanding analytical level. (Applied and Engineering Physics 335 is approximately equivalent to Physics 318.)

Lecs, M/W/F 10:10, F 2:30. J. Sethna.

Newtonian mechanics of particles and systems of particles, including rigid bodies; oscillating systems; gravitation and planetary motion; moving coordinate systems; Euler's equations; Lagrange's equations; Hamilton's equations; normal modes and small vibrations. At the level of Classical Mechanics, by Goldstein.

325 Electricity and Magnetism
Fall. 4 credits. Prerequisites: Physics 214 plus coregistration in one of Mathematics 421, 422, or 423, or permission of instructor. Intended for physics majors concentrating in physics. Similar material is covered in Physics 452 at a less demanding analytical level.

Lecs, M/W/F 11:15, F 2:30. S. A. Teukolsky.

Electrostatics: electric charge and fields, potential, multipole, conductors, Laplace equation and formal solutions, field energy, dielectric materials, polarization. Magneto- statics: currents, magnetic fields and vector potential, dipoles, magnetic materials, field energy. Maxwell's equations: special relativity. At the level of Introduction to Electrodynamics, by Griffiths.
ARTS AND SCIENCES

258

before Physics 360. Fall term is usually less crowded.

259

431-432 Introductory Theoretical Physics

431, Fall; 432, Spring; 4 credits each term. Prerequisites: Physics 341 and 342, or equivalent. Electromagnetism, quantum mechanics, classical mechanics, relativity, and thermodynamics. Corequisite: Mathematics 381 or 382. Fall, R. H. Siemann.

433 Introductory Quantum Mechanics

Fall; 4 credits. Prerequisites: Physics 318 and 325, or 431-432. Fall, R. H. Siemann; spring, D. L. Harrill.

443 Nuclear and High-Energy Particle Physics

Spring; 4 credits. Prerequisite: Physics 443 or permission of instructor. Lec, M W F 9:05, F 1:25. Spring, J. J. Sievers.

554 Introductory Solid-State Physics

Fall or spring; 4 credits. Prerequisite: Physics 443 or Mathematics 793, or permission of instructor. Lec, Fall, M W F 10:10, W 3:35, Spring, T R 10:10-11:25, R 8:35.

580 Informal Advanced Laboratory

Fall or spring; (may also be offered during summer). Variable credit. Prerequisites: two years of physics and permission of instructor. Lab, see Physics 410.

640 Advanced Experimental Physics

Fall or spring; 4 credits. Limited to seniors except by special permission. Prerequisites: Mathematics 214 (or 310 or 360) plus 318 and 325, or permission of instructor. Lec, M 2:30-4:25, labs, T W 1:25-4:25.

360 Electronic Circuits (also Applied and Engineering Physics 363)

Fall or spring; 4 credits. Prerequisite: Physics 208 or 213 or permission of instructor. No previous experience with electronic circuits is assumed; however, the course moves through the introductory topics (DC and AC circuits, basic circuit elements) rather quickly. Students wishing a more complete background might consider taking Electrical Engineering 210 before Physics 360. Fall term is usually less crowded.

Lec, M 2:30-4:25; labs, T R or W F 1:25-4:25. Fall, E. Kirkland; spring, R. Thornton.

An experimental survey of some devices and circuits in two general areas: analog and digital electronics. In analog circuits, the major emphasis is on operational amplifiers and bipolar transistors, and their applications. Simple filters, diodes, and field-effect transistors are covered briefly. In digital circuits, some time is spent on combinatorial logic devices. This experience is then applied to problems in programming and interfacing a simple microcomputer.

Labs, T W 1:25-4:25.

Mathematics 421 is recommended. Primarily for physics majors and those who receive some independent development work by student. Opportunity for more initiative in experimental work than is possible in Physics 510.

525 Physics of Black Holes, White Dwarfs, and Neutron Stars (also Astronomy 511, High-Energy Astrophysics)

551 Classical Mechanics

Fall; 3 credits. Prerequisite: an undergraduate course in classical mechanics at the level of books by K. Symon or J. B. Marion. Lec, T R 10:10, R 2:30, E. D. Sigga.

Lagrangian and Hamiltonian formulation of classical mechanics, with modern applications in nonlinear dynamics. Foundations will be taught at the level of Mechanics, by Landau and Lifshitz.

553-554 General Relativity (also Astronomy 509-510)

553, Fall; 554, Spring; 4 credits. Prerequisite: knowledge of special relativity at the level of Classical Mechanics, by Goldstein. Offered alternate years.

Lec, T R 1:25-2:40, S. L. Shapiro. Physics 553 is a systematic introduction to Einstein's theory, with emphasis on modern coordinate-free methods of computation. Topics include review of special relativity, modern differential geometry, foundations of general relativity, laws of physics in the presence of a gravitational field, experimental tests of gravitation theories. At the level of Gravitation, by Misner. Physics 554 is a continuation of 553 that emphasizes applications to astrophysics and cosmology. Topics include relativistic stars, gravitational collapse and black holes, gravitational waves, cosmology.

561 Classical Electrodynamics

Fall; 3 credits. Lec, T R 8:30-9:55, one sec per week, D. R. Yennie.

Maxwell's equations, electromagnetic potentials, electrodynamic of continuous media (selected topics), special relativity, radiation theory. At the level of Classical Electrodynamics, by Jackson.
582 Statistical Mechanics
Spring. 4 credits. Primarily for graduate students. Prerequisites: a good knowledge of quantum mechanics (at the level of Merzbacher), classical mechanics (at the level of Marion), and statistical mechanics (at the level of Reif).
Thermodynamic functions, equations of state; Second Law phase equilibria; thermodynamic inequalities; Boltzmann's equation, transport theory. Microstates, ensembles, partition functions, and phase-space averaging. Chemical equilibria. Quantum statistical mechanics, Fermi-Dirac and Bose-Einstein distributions, application to Bose and Fermi systems. Fundamentals of statistical mechanics: density matrix, reduced distribution, Wigner function, correlation functions and fluctuations. Advanced topics include Ising model, lattice gases, and spin systems; and introduction to critical phenomena.
At the level of Statistical Mechanics, by Huang, and Statistical Mechanics, by Pathria.

572 Quantum Mechanics I
Fall or spring. 4 credits.
Lecs, fall, M W F 9:05, T-M. Yan; spring, M W F 11:15. D. Cassel.
The formulation of quantum mechanics in terms of states and operators. Symmetries and the theory of angular momentum. Stationary and time-dependent perturbation theory. Fermi's golden rule and variational methods. The elements of scattering theory. At the level between Quantum Mechanics, by Merzbacher, and Quantum Mechanics, by Landau and Lifshitz. Familiarity with elementary aspects of the Schroedinger equation is assumed, including its application to simple systems such as the hydrogen atom.

574 Quantum Mechanics II
Fall or spring. 4 credits. Required of all Ph.D. majors in theoretical physics.
Lecs, fall, M W F 9:05; spring, M W F 11:15. Fall, H. Tye; spring, G. P. Lepage.
Discussions of various applications of quantum mechanics, such as collision theory, theory of spectra of atoms and molecules, theory of solids, second quantization, emission of radiation, relativistic quantum mechanics. At the level of Lectures on Quantum Mechanics, by Gordon Baym.

635 Solid-State Physics I
Fall. 3 credits. First semester of a two-semester sequence of solid-state physics for graduate students who have had the equivalent of Physics 572 and 562 and some prior exposure to solid-state physics, such as Physics 454.
A survey of the basic phenomenological knowledge of condensed matter physics, mainly dealing with solids. Probable topics include equilibrium properties such as structure and phase transitions as well as transport phenomena such as electrical and thermal conductivity. Discussions at the level of Solid State Physics, by N. W. Ashcroft and N. D. Mermin.

636 Solid-State Physics II
Spring. 3 credits.
Much in condensed matter physics is not covered in Ashcroft and Mermin or included in Physics 635. Topics will be chosen from broken symmetry, superconductivity, and topological defects; critical phenomena, the onset of chaos, and the renormalization group; first order phase transitions, nucleation, and dendritic growth; broken gauge symmetries, superconductors and superfluids, the fractional quantum Hall effect; disordered systems, spin glasses, localization, and percolation theory.

645 High-Energy Particle Physics
Fall. 3 credits.
Lecs, M W F 11:15. K. Gafiez.
Introduction to the theories of hadrons, bosons, mesons, and leptons. Strong, electromagnetic, and weak interactions. Relevance of symmetry laws to particle physics. Introduction to the quark model. Unification of weak and electromagnetic interactions. At the level of Introduction to High Energy Physics, by Perkins.

646 High-Energy Particle Physics
Spring. 3 credits.
Topics of current interest, such as high-energy electron and neutrino interactions, electron positron annihilation, and high-energy hadronic reactions, are surveyed. Lectures and reading material are at the level of Introduction to High Energy Physics, by Perkins.

651 Relativistic Quantum Field Theory I
Fall. 3 credits. S-U grades only.
Introduction to relativistic field theories, with emphasis on applications to quantum electrodynamics. Topics to be covered include canonical field quantization, perturbation theory, calculation of cross sections for fundamental processes, renormalization, and applications of non-electromagnetic interactions.

652 Relativistic Quantum Field Theory II
Spring. 3 credits. S-U grades only.
This course is a continuation of Physics 651 and introduces more advanced methods and concepts in quantum field theory. Topics include functional integral methods, quantization of non-abelian gauge theories, the renormalization group, dispersion relations, and spontaneous symmetry breaking. Applications to the electroweak theory and quantum chromodynamics are emphasized.

653 Statistical Physics
Fall. 3 credits. Normally taken by graduate students in their second or later years. Prerequisites: competence in the basic principles of quantum mechanics, statistical mechanics, and thermodynamics. S-U grades only.
Survey of topics in modern statistical physics, including the theory of simple classical and quantum fluids; the theory of ordered systems such as superfluids and superconductors; kinetic theory and the Boltzmann equation; phenomenological Fermi liquid theory and hydrodynamics; theories of inhomogeneous systems, scaling theories and phase transitions. The contents of the course vary with the current interests of the instructor.

654 Theory of Many-Particle Systems
Spring. 3 credits. Prerequisites: Physics 562, 574, 635, 636, and 653. S-U grades only.
Equilibrium and nonequilibrium thermodynamics of microscopic systems of many particles studied at zero and finite temperatures. Thermodynamic Green's function techniques introduced and applied to such topics as normal and superconducting. Fermi systems, superfluidity, magnetism, insulating crystals.

661 Advanced Topics in High Energy Particle Theory
Fall. 3 credits. Prerequisites: Physics 562. S-U grades only.
Lecs, M W F 10:10. A. LeClair.
This course will present advanced topics of current research interest. Subject matter will vary from year to year. Some likely topics are two-dimensional conformal field theory with applications to string theory and condensed matter physics, applications of the electroweak theory, lattice gauge theory, mathematical methods (e.g. group theory), perturbative quantum chromodynamics, anomalies and geometry, current algebra, and phenomenological issues beyond the standard model.

665 Topics in Theoretical Astrophysics (also Astronomy 558)
Fall. 4 credits. S-U grades only. Not offered 1990–91.
Lecs, M W F 2:30. E. E. Salpeter.
Usually concentrates on the theories of the interstellar medium. The level of Spijker's The Physical Processes in the Interstellar Medium.

667 Theory of Stellar Structure and Evolution (also Astronomy 560)
Fall. 4 credits. S-U grades only. Not offered 1990–91.
Lecs, M W F 1:25. E. E. Salpeter.
Summary of observational facts on stars; dimensional analysis; nuclear reactions and energy, transport in stellar interiors; models for static and evolving stars. At the level of Principles of Stellar Energy and Nucleosynthesis, by Clayton.

680-689 Special Topics
Offerings are announced each term. Typical topics are group theory, analyticity in particle physics, weak interactions, superfluids, stellar evolution, plasma physics, cosmic rays, general relativity, low-temperature physics, X-ray spectroscopy or diffusion, magnetic resonance, phase transitions, and the renormalization group.

680 Computational Physics
Spring. 3 credits. S-U only. Prerequisites: The course assumes a good background in the standard "mathematical methods for physics," and the ability to write programs in any computer language. No previous knowledge of numerical analysis is assumed.
A course designed to familiarize students with numerical techniques for solving diverse problems in physics and related fields. The problems will be drawn from many different branches of physics, but the emphasis will be on common techniques of solution. Numerical techniques discussed in the course will include ordinary and partial differential equations, linear algebra and eigenvalue problems, Monte Carlo techniques, solving nonlinear equations, fast Fourier transforms, etc. In contrast to traditional numerical courses, the flavor of the course will be "how-to," rather than theoretical. No theorems will be proved. Students will be expected to solve, both individually and in small teams, assigned numerical exercises. Text: Numerical Recipes: The Art of Scientific Computing, by Press, Flannery, Teukolsky, and Vetterling.
ARTS AND SCIENCES

260

weeks before the pre-course enrollment. Application forms may be obtained at the above address. The department also emphasizes the importance of psychology in the major areas of psychology represented in the Department of Psychology. The following classification of Department of Psychology offerings is intended to help students and their advisers choose courses that will ensure that such breadth is achieved.

1) Human experimental psychology
2) Biopsychology
3) Social, personality, and abnormal psychology
4) Passing an exemption examination. This examination can be given at virtually any time during the academic year if the student gives notice at least one week before. Students who have completed a theoretical statistics course in a department of mathematics or engineering and who wish to demonstrate competence in applied statistics usually find this option easiest. Students planning this option should discuss it in advance with Professor Gilovich.

Concentration in biopsychology. Psychology majors interested in psychology as a biological science can elect to specialize in biopsychology. Students in this concentration must meet all of the general requirements for the major in psychology and must also demonstrate a solid background in biology; the physical sciences, including at least introductory chemistry and mathematics. Students will design with their advisers an integrated program in biopsychology built around courses in physiological, chemical, and ecological determinants of human and nonhuman behavior offered by the Department of Psychology. Additional courses in physiology, anatomy, biochemistry, neuroscience, neurobiology, and behavioral biology may be designated as part of the psychology major after consultation between the student and his or her biopsychology adviser.

Concentration in personality and social psychology. This concentration is offered in cooperation with the Department of Sociology. Psychology majors who wish to specialize in social psychology are expected to meet the general requirements set by their department, including statistics. To ensure a solid interdisciplinary grounding, students in the concentration will be permitted to include some major courses in sociology and related fields. Advisers will assist students in the selection of a coherent set of courses from the sociology, cultural anthropology, and psychology offerings. All qualified students are expected to pursue an intensive and independent program of research. The honors program seriously. The program offers most students the closest contact and consultation with faculty that they will receive during their time at Cornell. The core of the honors program is a research project that the student carries out in close collaboration with a faculty member in the field of psychology. It is assumed that most students will do so while enrolled in Psychology 470 (Undergraduate Research in Psychology). A written report of the research is to be given to the chair of the honors committee (currently Professor Dunning) toward the end of the last semester of the student's senior year.
123 Introduction to Biopsychology
Fall. 3 credits. May not be taken for credit by students who are registered in or have completed one or more courses offered by the Section of Neurobiology and Behavior of the Division of Biological Sciences or two or more biopsychology courses.

The biology of behavior, including both evolutionary and physiological approaches to behavior. Human behavior is discussed whenever possible, but there is also extensive discussion of the behavior of nonhuman species. Specific topics include the structure, function, and development of the nervous system, stress and disease, sleep, genetic and chemical models of mental disorder, and hormones and sexual behavior; biological bases of learning, cognition, communication, and language; and the ecology and evolution of social organization and social development.

Introductory courses in cognitive psychology. Each of the following four courses (205, 214, 215) provides an introduction to a major area of study within cognitive psychology. These courses are independent of one another, and none has any prerequisites. Students may take any one of the courses or any combination of them (including all four). Courses may be taken in any order or simultaneously.

205 Perception
Spring. 3 credits. Open to first-year students. Graduate students, see Psychology 605.
One of four introductory courses in cognitive psychology. Basic perceptual concepts and phenomena are discussed with emphasis on stimulus variables and sensory mechanisms. All sensory modalities are considered. Visual and auditory perception are discussed in detail.

209 Developmental Psychology
Spring. 4 credits. Graduate students, see Psychology 709.
M W 1:25-2:40; sec to be arranged.
E. Spelke.
One of four introductory courses in cognitive psychology. A comprehensive introduction to current thinking and research in developmental psychology. The course focuses on development of action, development of perception and knowledge, and development of language, morality, and other aspects of human culture.

214 Knowledge and Reasoning
Spring. 3 credits. Sophomore standing required. Graduate students, see Psychology 614.
M W F 1:25. C. Krumhansl.
One of four introductory courses in cognitive psychology. A survey of the following topics: visual and auditory memory, imagery, attention, memory for language, reasoning, decision making, and intelligence.

215 Psycholinguistics
Fall. 3 or 4 credits (4-credit option involves term paper). Graduate students, see Psychology 715.
One of four introductory courses in cognitive psychology. Introduction to the psychological study of language. Covers basic linguistic theory and contemporary research into language comprehension, production, and acquisition.

Distribution Requirement
The distribution requirement in the social sciences is satisfied by any two courses in psychology with the exception of Psychology 123, 276, 307, 322, 324, 326, 332, 350, 361, 396, 422, 425, 429, 451, 471, 472, 473, 475, 476, 479, 492, 607, 622, 625, 626, 629, 676, 696, and 722.

Courses
101 Introduction to Psychology: The Frontiers of Psychological Inquiry
Fall. 3 credits. Students may not receive credit for both Psychology 101 and Education 110. Students who would like to take a discussion seminar should also enroll in Psychology 103.
The study of human behavior. Topics include brain functioning and mind control, psychophysiology of sleep and dreaming, psychological testing, perception, learning, cognition, memory, language, motivation, personality, abnormal behavior, psychotherapy, social psychology, and other aspects of applied psychology. Emphasis is on developing skills to critically evaluate claims made about human behavior.

103 Introductory Psychology Seminars
Fall. 1 credit. Limited to 400 students. Prerequisite: concurrent enrollment in Psychology 101.
Hours to be arranged; 32 different time options. Staff.
A weekly seminar that may be taken in addition to Psychology 101 to provide an in-depth exploration of selected areas in the field of psychology. Involves extensive discussion and a term paper related to the seminar topic. Choice of seminar topics and meeting times will be available at the second lecture of Psychology 101.

109 Freshman Writing Seminar: The Science of Dreaming Sleep
Fall. 3 credits. Prerequisite: AP biology and chemistry. Limited to 17 students.
This is a course in the science of dreaming sleep. Topics will include the phenomenology and neurobiology of dream ("paradoxical") sleep; the REM sleep disorder, narcolepsy; the sense and nonsense of dreams; the problems of dream theory and dream interpretation; animals and people who act out their dreams.

255 Psychology and Medicine
Fall. 3 credits. Prerequisite: Psychology 101. Limited: 40 students. Sophomores and juniors.
This course treats the implications of psychological research and theory for contemporary issues in medicine. The topics to be covered include: who are the people who choose medicine as a profession—family background, political and social beliefs. Profiles of various medical specialties (e.g., pediatrics, psychiatry, radiology, surgery). Satisfactions and frustrations in a medical career. Communication between doctors and patients. Diagnosis as decision making with incomplete information. The use of expert systems in medicine. Attitude and behavior change as related to drugs, smoking, and obesity. Psychoneuroimmunology. The relations of personality to heart disease and longevity. This course will not concern psychopathology.

265 Psychology and Law
Fall. 3 credits. Prerequisite: Psychology 101.
This course examines the implications of psychological theory and methods for law and the criminal justice system. We concentrate on psychological research on legal topics (e.g., confession, eyewitness testimony, jury decision making, homicide, aggression, the prison system), social issues (e.g., death penalty, affirmative action), as well as on psychologists as participants in the legal system (e.g., assessing insanity and dangerousness and for expert testimony).

275 Introduction to Personality Psychology
Fall. 3 credits. Prerequisite: an introductory psychology course.
An introduction to research and theory in personality psychology, emphasizing contemporary approaches. Topics include the dynamics, structure, and assessment of personality as well as personality development and change. Biological and sociocultural influences on personality are also considered.

276 Motivation (also Nutritional Science 276)
Spring. 3 credits. Graduate students, see Psychology 676/Nutritional Science 676.
The course surveys traditional and contemporary approaches to motivational behavior from Aristotelic to Freud to Skinner to Lorenz. It also draws upon field studies, laboratory analyses, clinical cases and developmental stages to establish a scientific basis for motivation analysis. Normal and pathological feedings will serve as a target behavior.
277 Psychology of Sex Roles (also Women’s Studies 277)
Spring. 3 credits. Limited to 300 students.
The course addresses the question of why and how it comes to differ in their overall life styles, work and family roles, personality patterns, cognitive abilities, etc. This broad question is examined from five perspectives: (a) the psychoanalytic perspective, (b) the biological perspective, (c) the historical and cultural evolutionary perspective, (d) the child development perspective, and (e) the social-psychological and contemporaneous perspective. Each of these perspectives is also brought to bear on more specialized phenomena relating to the psychology of sex roles, including psychological androgyny, women’s conflict over achievement, the male sex role, equitarian marriage relationships, gender-liberated child-rearing, female sexuality, homosexuality, and transsexualism.

280 Introduction to Social Psychology
Spring. 3 or 4 credits; the additional (or fourth) credit is given for the completion of a group research project and write-up. Prerequisite: an introductory psychology course.
An introduction to research and theory in social psychology. Topics include processing of social information, social influence, persuasion, and attitude change; social interaction and group phenomena. The application of social psychological knowledge to current events will also be discussed.

305 Visual Perception
Fall. 4 credits. Limited to 20 students.
Prerequisite: Psychology 205 or permission of instructor. Not offered 1990-91.
A detailed examination of theories and processes in visual perception. Topics will include the perception of color, form, and motion; perceptual constancies; adaptation; pattern perception; and photography, television, and film.

307 Chemosensory Perception
Fall. 3 or 4 credits; the optional (or fourth) credit is for an independent laboratory project. Registration for the 4-credit option requires permission of the instructor; students will read, analyze, and discuss difficult original literature in the areas covered. Offered alternate years. Not offered 1990-91. Graduate students, see Psychology 607.
T R 9:05. B. P. Halpern.
An examination of basic theory, data, and processes for perception of the chemosensory environment. Topics include psychophysical methods for human and nonhuman studies, stimulus control, chemosensory function and development in neonates, role of chemosensory function in food choices, chemosensory communication, effects of pollution of the chemosensory environment, and possible consequences of chemosensory dysfunctions. At the level of Clinical Measurement of Taste and Smell, edited by H. L. Meiselman and R. S. Rivlin, and Sensory Analysis of Foods, edited by J. R. Pigott.

308 Perceptual Learning
Fall. 3 credits. Prerequisite: Psychology 205, 209, or 305, or permission of instructor. Not offered 1990-91.

309 Development of Perception and Representation
Fall. 3 credits. Prerequisite: Psychology 205, 209, 214, or 305, or permission of instructor. Graduate students, see Psychology 609.
An introduction to theories and research on the origins and development of knowledge of the immediately surrounding world. The course focuses on knowledge of the world as an arrangement of space and time, knowledge of the world as a space that can be encountered through multiple sensory modes, knowledge of the world as a place that can be acted upon, and organization of the world into meaningful objects and events.

313 Perceptual and Cognitive Processes
Spring. 4 credits. Prerequisite: Psychology 205 or 214 or permission of instructor. Not offered 1990-91. Graduate students, see Psychology 713.
R 2:25-4:45. Staff.
A critical examination of selected topics in the area of perceptual and higher mental processes. We will read, discuss, and critically analyze original experimental reports and theoretical articles.

314 The Social Psychology of Language
Spring. 4 credits. Prerequisite: a course in psycholinguistics or social or personality psychology, or permission of instructor. Not offered 1990-91.
T R 2:55-4:10. Staff.
We are aware that one talks differently to children than to adults, to foreigners than to native speakers, to people we like than to those we detest, to people whose intelligence we respect compared to those we think are idiots. Speech varies by social setting, by the relationships between people; by formality, friendship, affection; and by the purposes of the communication: deception, persuasion, propaganda, etc. What are the rules of social language? How do we acquire the abilities to vary language appropriately and to understand the meanings of such variations?

316 Auditory Perception
Spring. 3 or 4 credits; the 4-credit option involves a laboratory project or paper.
Prerequisite: Psychology 205, 209, 214, or 215 (other psychology, linguistics, or biology courses could serve as prerequisite with permission of the instructor). Not offered 1990-91.
Lecs, T R 2:30-4:25; lab, hours to be arranged. Staff.
Basic approaches to the perception of auditory information, with special consideration of complex patterns such as speech, music, and environmental sounds.

322 Hormones and Behavior (also Biological Sciences 322)
Spring. 3 credits. Limited to juniors and seniors; open to sophomores only by permission. Prerequisites: one year of introductory biology plus a course in psychology or Biological Sciences 221 or 222. S-U grades optional. Offered alternate years. Some years (but by no means all) a 4-credit option is available, which involves a one-hour section once a week, in which students will be expected to participate in discussion and read original papers in the field. This option, if available, is announced the first day of class; all students should preregister for 3 credits only. Not offered 1990-91. Graduate students, see Psychology 722.

The relationship between endocrine and neuroendocrine systems and the behavior of animals, including humans. Major emphasis is on sexual, parental, and aggressive behavior.

324 Biopsychology Laboratory (also Biological Sciences 324)
Fall. 4 credits. Limited to 25 juniors and seniors. Prerequisites: Psychology 123 or Biological Sciences 221 or 222, and permission of instructor. S-U grades optional.
Experiments designed to provide research experience in animal behavior (including learning) and its neural and hormonal mechanisms. A variety of techniques, species, and behavior patterns are included.

325 Introductory Psychopathology
Fall. 3 credits. Prerequisite: a course in introductory psychology. Students who would like to take a discussion seminar should also enroll in Psychology 329. May be taken concurrently with Psychology 327. Enrollment in Psychology 327 is limited to 2 credits.
A survey of the various forms of psychopathology, child and adult, as they relate to the experiences of human growth and development. Presents a description of the major syndromes, investigations, theories of etiology, and approaches to treatment.

326 Evolution of Human Behavior
Fall. 4 credits. Prerequisite: Psychology 123, or an introductory biology course, or an introductory anthropology course. Graduate students, see Psychology 626.
A broad comparative approach to the behavior of animals and humans with special emphasis on the evolution of human behavior. Topics covered will vary but will include some of the following: human evolution, evolutionary and sociobiological theory, animal communication, non-verbal communication, language, cognitive capacities, social behavior and organization, cooperation and altruism, sexual behavior, mating and marriage systems, aggression, warfare.

327 Fieldwork in Psychopathology and the Helping Professions
Fall. 2 credits. Prerequisites: Psychology 325 or concurrent registration in 325 and permission of instructor. S-U grades only. Students do not enroll in advance for this course. Field placement assignments are made in Psychology 325 during the first two weeks of the semester. Students who have already taken Psychology 325 must contact the instructor during the first week of the semester. Enrollment is limited by the fieldwork placements available. Fee, $25.
An introductory fieldwork course for students currently enrolled in, or who have taken, Psychology 325. Fieldwork placements include the school system, psychiatric institutions, halfway houses, and other mental health-oriented facilities. In addition to fieldwork, weekly supervisory/seminar meetings are held to discuss fieldwork issues and assigned readings.
328 Continuing Fieldwork in Psychopathology and the Helping Relationship
Fall or spring. 2 credits each term. Prerequisites: Psychology 325, 327, and permission of instructor. S-U grades only. May not be taken more than twice. Students do not enroll in advance for this course. Students in Psychology 327 should inform their teaching assistant before the end of the semester of their desire to take Psychology 328. Students not currently in a field placement who want to take Psychology 328 should contact the instructor during the first week of the semester. Field placement assignments will be made during the first two weeks of the semester. Enrollment is limited by the fieldwork placements available. Fee, $25.
Designed to allow students who have begun fieldwork as part of Psychology 327 to continue their field placements under supervision and for academic credit. A limited number of students may be allowed to begin their fieldwork with Psychology 328 but only with permission of the instructor.

329 Introductory Psychopathology Seminars
Fall. 1 credit. Limited to 90 students. Prerequisite: must be concurrently enrolled in Psychology 325. Letter grade only.
Hours to be arranged; 9 different time options. Staff.
A weekly seminar-discussion section that may be taken in addition to Psychology 325 to provide an in-depth exploration of selected areas in the field of psychopathology. Topics vary from year to year and may include such areas as depression, schizophrenia, psychotherapy, sex-roles and psychopathology, etc. Involves extensive discussion and several short papers related to the seminar topic. Choice of seminar topics and meeting times will be available at the second or third lecture of Psychology 325.

332 Biopsychology of Learning and Memory
Spring. 3 credits. Prerequisites: one year of biology and either a biopsychology class or Biological Sciences 222.
This course will survey the approaches that have or are currently being used in order to understand the biological bases for learning and memory. Topics will include invertebrate, "simple system" approaches, imprinting, avian song learning, hippocampal and cerebellar function, and human pathology. Many of the readings will be from primary literature.

342 Human Perception: Applications to Computer Graphic Art and Visual Display
Fall. 3 credits. Prerequisite: Psychology 101. Psychology 205 strongly recommended. Graduate students, see Psychology 642.
Our present technology allows us to transmit and display information over a variety of media. To make the most of these media, it is important to consider the limitations and abilities of the human observer. The course will consider a number of applied aspects of human perception with an emphasis on the display of visual information. Topics to be covered include: "Three-dimensional" display systems, color theory, spatial and temporal limitations of the visual systems, attempts at subliminal communication, and "visual" effects in film and television.

347 Psychology of Visual Communication
Spring. 4 credits. Limited to 12 students. Prerequisites: Psychology 101 and permission of instructor. Not offered 1990-91.
T R 10:10-12:05; lab to be arranged. J. B. Maas.
An examination of theories of perception, attitude, and behavior change as they relate to the effectiveness of visually based communication systems. Emphasis is on an empirical examination of the factors that determine the nature and effectiveness of pictorial representations of educational messages in non-print media.

350 Statistics and Research Design
Fall. 4 credits. Prerequisite: a course in the behavioral sciences.
Acquaints the student with the elements of statistical description (measures of average, variation, correlation, etc.) and, more importantly, develops an understanding of statistical inference. Emphasis is placed on those statistical procedures important to the development of psychology and related social sciences.

361 Biochemistry and Human Behavior (also Nutritional Sciences 361)
Fall. 3 credits. Prerequisites: Biological Sciences 101-102, Chemistry 103-104, Psychology 125, or permission of instructor. S-U grades optional.
MWF 9:05. B. Strupp.
The course is intended to survey the scientific literature on the role of the brain and body biochemical changes as determinants of human behavior. The topics covered include action and effects of psychopharmacologic agents, biology of learning and memory, the role of abnormal biochemistry in cognitive disorders, biochemical theories of psychosis, and effects of nutrition on behavior. A fundamental knowledge of human biology and chemistry is essential.

370 Language and Cognition (also Linguistics 370)
Spring. 4 credits. Prerequisites: Linguistics 101 or 264, or Psychology 215, or permission of one of the instructors. Graduate students, see Psychology 670.
Examination of current research on selected topics in language from both linguistic and psychological perspectives. Topics may include: universal grammar and language acquisition, syntactic parsing, word recognition, sentence production, aphasia, and schizophrenic language.

375 Developmental Psychobiology: Motivational Processes (also Nutritional Sciences 375)
Fall. 3 credits. Prerequisite: Psychology 276 or Nutritional Sciences 276. Graduate students, see Psychology 675/Nutritional Sciences 675. Not offered 1990-91; next offered 1991-92.
This course focuses on maturational and experiential influences on motivational processes in animals and humans. Emphasis is placed on the mechanisms underlying mother-infant interactions, and the development of feeding, drinking, and reproduction behaviors.

379 Social Cognition
Spring. 4 credits. Prerequisite: one course in social or cognitive psychology or permission of instructor. Not offered 1990-91.
The focus of this course is on experimental research that applies cognitive principles to the study of social psychological phenomena. The course begins with an overview of research methodology (no prior knowledge in this area is required). Readings and discussion center around the following topics: (1) the organization and representation of social information, (2) assessing the causes of social behavior, and (3) sources of error and bias in human judgment. Course requirements include an examination, a midterm paper, and a final project.

383 Social Interaction (also Sociology 383)
Spring. 4 credits. Prerequisite: a course in social psychology. Not offered 1990-91.
Fine-grain analyses of social behavior, its structure, changes, antecedents, and determinants. Extensive practice in analysis of filmed and taped interactions. Student research is required throughout the course.

387 Health and Disease (also Biology and Society 327 and German Studies 327)
Hours to be arranged. S. L. Gilman and faculty team.
Everyone knows what health and disease are. Or do they? This Common Learning course on health and disease will explore some of the cultural, psychological, philosophical, anthropological, medical, economic, and political dimensions of these concepts to show how various models of disease function in contexts from business to engineering, from the military to the medical profession. The course will be divided into two segments: the first will examine the general implications of concepts of health and illness; the second will study these general principles as reflected in the definition, treatment, and mythmaking surrounding one specific disease: schizophrenia. The course will draw on specialists from throughout the university.

389 Reading Freud: Race, Gender, and Psychoanalysis (also Comparative Literature 347, English 347, German Studies 347)
This course will read a series of texts from the formative works of Sigmund Freud (beginning with the Studies in Hysteria and concluding with Freud's reading of the Schreber autobiography). These readings will be placed within the tension existing at the turn of the century between concept of the biology of race and biology of gender. Close attention will be paid to the cultural, scientific, as well as polemical literature on the ideas of race and gender from the biological writings of the late nineteenth century. The course will also provide an introduction to the basic concepts of Freudian psychoanalytic theory. The class will consist of a one-hour lecture and a one-hour discussion group. All of the primary readings are available in English.
ARTS AND SCIENCES

264

[396 Introduction to Sensory Systems (also Biological Sciences 396)]
Spring. 3 or 4 credits (4 credits with term paper). Registration for the 4-credit option requires permission of instructor. Prerequisites: an introductory course in biology or biopsychology, plus a second course in neurobiology or behavior or perception or cognition or biophysics. Students will be expected to have elementary knowledge of perception, neurophysiology, behavior, and chemistry. No auditors. Offered alternate years. Not offered 1990–91. Graduate students, see Psychology 696.

M W F 9:05. B. P. Halpern.
The course will be taught using the Socratic method, in which the instructor asks questions of the students. Students read, analyze, and discuss in class difficult original literature dealing with both those characteristics of sensory systems that are common across living organisms and those sensory properties which represent adaptations of animals to particular habitats or environments. The principles and limitations of major methods used to examine sensory systems will be considered. General principles of sensory systems, and auditory, visual, and somesthetc systems are covered. One aspect of each system (e.g., localization of objects in space by sound, color vision, thermoreception) will be selected for special attention.

[402 Current Research on Psychopathology: Depression]
Spring. 4 credits. Limited to 20 students. Prerequisite: Psychology 325 or HDPS 270.

Current research and theory on the nature and etiology of depression. Approaches from various perspectives (biological, psychological, socio-cultural) are considered. Minimal attention to psychotherapy and symptomatology.

404 Psychopathology and the Family
Spring. 4 credits. Limited to 20 students. Prerequisite: Psychology 325 or HDPS 270.

This course will explore familial influences on the development of abnormal behavior. It will examine how psychological, biological, and cultural factors in a family might contribute to such disorders as anorexia nervosa, depression, sexual abuse, psychopathy, and psychosomatic illnesses. Emphasis will be placed on early childhood experiences in the family and their impact on the development of later psychopathology. The course will also discuss how the evolution of family structures in more recent times (e.g., the rise in day care and divorce) influences the individual. Family therapy approaches and techniques will also be examined.

410 Undergraduate Seminar in Psychology
Fall or spring. 2 credits. Written permission of section instructor required for registration. Nonmajors may be admitted, but psychology majors are given priority. Honors arrangement. Staff. Information on specific sections for each term, including instructor, prerequisites, and time and place, may be obtained from the Department of Psychology office, 211 Uris Hall.

412 Human Experimental Psychology Laboratory
Spring. 4 credits. Limited to 20 students. Prerequisite: permission of instructor. Recommended, some experience in programming and one course in experimental psychology. Graduate students, see Psychology 612.

A laboratory course using current methods in experimentation in perception and cognitive psychology. Students will attempt to replicate several classic experiments and also develop one independent project. Computers will be available and used in most of the experiments. Projects will be selected from the areas of visual perception, pattern recognition, memory, language and concept learning.

[415 Concepts, Categories, and Word Meanings]
Fall. 4 credits. Prerequisites: Psychology 205, 209, 214, or 215, or permission of instructor.

T 1:25-4. F. Keil.
A consideration of what types of categories are psychologically important, of how they are represented and used through concepts, and of how concept structure and semantic structure are interrelated. Different models of concept structure and categorization processes are evaluated, as are models of conceptual change and concept acquisition. Other topics include: relations between concepts and broader knowledge representation systems such as scripts, mental models, and intuitive theories; relative roles of associative information and beliefs in concept structure; categorization in other species; neuropsychological studies of categorization; comparisons of categorization systems across cultures; and comparisons of concept structures across different types of categories.

[416 Psychology of Language]
Spring. 4 credits. Prerequisite: some background in psycholinguistics or linguistics. Not offered 1990-91. Graduate students, see Psychology 616.

Each year the course focuses on one or two major theoretical issues in current psycholinguistics. An intensive critical examination is made of the relevant literature from psycholinguistics, linguistics, and artificial intelligence. The issues are considered not only at the detailed level of specific hypotheses and evidence but also in relation to broader theoretical trends in the field.

[417 The Origins of Thought and Knowledge]
Spring. 4 credits. Prerequisites: Psychology 205, 209, 214, or 215, or permission of instructor. Graduate students, see Psychology 717.

T 1:25-4:05. F. Keil.
An in-depth analysis of current theories concerning the growth of thought and knowledge in childhood. Several controversies will be discussed including: the mental abilities organized in local domains or modules that have their own patterns of development, or is cognitive development a more general process? Do comparative studies with other species and evolutionary models provide any useful insights into cognitive development in humans? Are there qualitative restucturings of thought and knowledge with development, or is the process more continuous in nature? What restrictions should these developmental considerations place on models of thought and knowledge in adults?

418 Psychology of Music
Fall. 3 or 4 credits, depending on whether student elects to do an independent project. Prerequisites: junior or senior standing with major in psychology or music and some background in both, or permission of instructor. Graduate students, see Psychology 618.

Detailed analysis of topics in the psychology of music, including theories of consonance perception of tonal-harmonic structure, memory for music, and effects of musical training. Emphasis given to experimental methodologies.

[422 Developmental Biopsychology]
Fall. 4 credits. Prerequisites: a course in introductory biology and a course in biopsychology or neurobiology (such as Psychology 123 or Biological Sciences 221). Not offered 1990-91. Graduate students, see Psychology 622.

M W F 9:05. B. L. Finlay.
We will discuss the relationship of the development and evolution of the brain to the development of behavior. Topics include normal neuroembryology, how neurons are generated, find targets, establish connections; the emergence of reflexive and complex behavior; how experience affects the developing brain; evolutionary perspectives on the development of perception, memory, and communication systems; and abnormal development.

[425 Brain and Behavior]
Fall. 3 or 4 credits (4-credit option includes a discussion section and requires an additional paper). Prerequisites: a course in introductory biology and a course in biopsychology or neurobiology (such as Psychology 123 or Biological Sciences 221). Not offered 1990-91. Next offered Fall 1991. Graduate students, see Psychology 625.

M W F 9:05. B. L. Finlay.
We will study the relation between structure and function in the central nervous system. Human neuropsychology and the contribution of work in animal nervous systems to the understanding of the human nervous system will be stressed. Some topics to be discussed include visual and somatosensory perception, organization of motor activity, emotion and motivation, psychosurgery, and memory and language.
PSYCHOLOGY 265

[426 Seminar and Practicum in Psychopathology]
Spring. 4 credits. Limited to 16 students. Prerequisite: Psychology 325; permission of instructor required in all cases. Student should apply to the course during preregistration in fall semester. Acceptance will be announced before the end of the fall semester. Not offered 1990-91.

T 2:30-4:25. R. D. Mack.
A seminar and practicum course for advanced students who have mastered the fundamental concepts of personality and psychopathology. An opportunity to explore in depth issues in personality and psychopathology, particularly as they relate to issues of development, fantasy, attachment, and sex roles. Includes an experimental component involving self-disclosure, peer counseling, and group process. The goal: an integration of education and personal growth. It is recommended that students take Psychology 328 (the fieldwork course, in conjunction with this seminar.)

[429 Olfaction and Taste: Structure and Function (also Biological Sciences 429)]
Fall. 3 or 4 credits (4-credit option requires a term paper or research project. The research project can, but does not need to, study nonhuman vertebrates). Preference given to junior and senior psychology and biology majors and graduate students. Prerequisite: one 300-level course in biopsychology or equivalent. Not offered 1990-91. Graduate students, see Psychology 629.

T 9:05. B. P. Halpern.
The structural and functional characteristics of olfaction and taste will be explored by reading and discussing current literature in these areas. Structure will be examined at the light levels of electron microscopes as well as at the molecular level. Function will be primarily neurophysiological and biochemical aspects. The emphasis will be on vertebrates, especially air-breathing vertebrates in the case of olfaction, but there will be some coverage of invertebrate forms.

436 Language Development (also Human Development and Family Studies 436 and Linguistics 430)
Spring. 4 credits. Prerequisite: at least one course in developmental psychology, cognitive psychology, cognitive development, or linguistics. Open to undergraduates and graduate students. S-U grades optional. Offered alternate years.

T R 11:40-12:55. B. Lust.
This course surveys basic issues, methods, and research in the study of first-language acquisition. Major theoretical positions in the field are considered in the light of experimental studies in first-language acquisition of phonology, syntax, and semantics from infancy on. The fundamental linguistic issues of universal grammar and the biological foundations for acquisition are discussed, as are the issues of relations between language and thought. The acquisition of communication systems in nonhuman species such as chimpanzees is addressed, but major emphasis is on the child.

440 Sleep and Dreaming
Spring. 4 credits. Prerequisites: advanced undergraduate standing and Psychology 101 and 123 or another course in biopsychology or neuropsychology. T R 1:25-2:40. H. Porte.
The course will emphasize equally the neurobiology of sleep and the psychology of dreaming. Students will study the anatomy and physiology of the states and rhythms of sleep, the functions of sleep, and the phylogeny and ontogeny of sleep as topics in the biology of behavioral state. Insomnia and hypersomnolence, narcolepsy, sleep disorder in endogenous depression, "jet lag," sleep at the wrong time and doing the wrong thing in sleep (running for example, or fighting, or eating) will be presented as errors in the basic rhythms, mechanisms and behavioral components of sleep. In the second half of the course students will examine the data of dreams and hypnagogic experience—including their own—in relation to sleep processes. From this perspective, students will evaluate theories of dreaming from Freud's to Francis Crick's, and will consider whether dreaming is meaningful or meaningless, explained or transparent, and better remembered or better forgotten.

450 Bio-historical Construction of Gender and Sexuality (also Women's Studies 450, Psychology 650, and Women's Studies 650)
Fall. 4 credits. Prerequisite: Psychology 277/ Women's Studies 277 or permission of instructor. Limited to 12 seniors and graduate students. No preregistration; interested students should attend the first class session. Graduate students, see Psychology/Women's Studies 650.

W 2:30-4:30. S. Bern.
This seminar is designed to bridge the divide between biological/essentialist perspectives on gender and sexuality, and historical/social constructionist perspectives. It is very interdisciplinary, covering material from biology, history, anthropology, law, sociology, psychology, psychiatry, philosophy, and feminism. Part 1 considers how biology and history have interacted in Western culture to produce both social institutions and discourses that have embedded within them the following three organizing principles or "cultural lenses": (a) biological determinism, (b) androcentrism, and (c) gender polarization (including the stigmatizing of homosexuality). Part 2 considers how the individuals living within such a cultural context are transformed from being male or female newborns to being "masculine" and "feminine" adults. Part 3 considers possibilities for both social and personal change.

465 Mathematical Psychology
Spring. 4 credits. Prerequisites: one year of college mathematics (finite mathematics or calculus), a course in probability or statistics, and a course in psychology. Not offered 1990-91.

T R 10:10-11:40. Staff.
Mathematical approaches to psychological theory are discussed. Possible topics include choice and decision, signal detectability, measurement theory, scaling, stochastic models, and computer simulation.

467 Seminar: The Examined Self—A Psychohistorical View
Spring. 4 credits. Prerequisites: 9 credits of psychology including Psychology 325 or equivalent, and permission of instructor before course enrollment.

The seminar will be devoted to an analysis of insanity as a psychological and historical phenomenon. Selected writings by the mentally ill and their definers will be studied.

469 Psychotherapy: Its Nature and Influence
Spring. 4 credits. Limited to senior psychology majors. Prerequisites: Psychology 325 or equivalent and permission of instructor during preregistration.

W 7-10 p.m. R. D. Mack.
A seminar on the nature of psychotherapy, issues related to therapeutic goals, differing views of the nature of man, ethical concerns, and research problems are also considered. Experiential and role-playing exercises in class and three hours per week of peer counseling outside of class are integral parts of the seminar experience.

470 Undergraduate Research in Psychology
Fall or spring. 1-4 credits. S-U grades optional. Written permission from the staff member who will supervise the work and assign the grade must be included with the course enrollment material. Students should enroll in the section listed for that staff member. A section list is available from the Department of Psychology.

Hours to be arranged. Staff. Practice in planning, conducting, and reporting independent laboratory, field, and/or library research.

471 Advanced Undergraduate Research in Psychology
Fall or spring. 1-4 credits. S-U grades optional. Written permission of the staff member who will supervise the work and assign the grade must be included with the course enrollment material. Students should enroll in the section listed for that staff member. A section list is available from the Department of Psychology.

Hours to be arranged. Staff. Advanced experience in planning, conducting, and reporting independent laboratory, field, and/or library research. One, and preferably, two, semesters of Psychology 470 is required. The research should be more independent and/or involve more demanding technical skills than that carried out in Psychology 470.
266

ARTS AND SCIENCES

472 Multiple Regression
Spring, weeks 1–7. 2 credits. Prerequisite: one solid semester of introductory statistics. Analysis of variance is helpful but not required.
M W F 10:10. R. Darlington. Uses and pitfalls of multiple regression in causal analysis, path analysis, and prediction. Emphasis on analyzing data collected under uncontrolled conditions. Includes collinearity, indicator variables, sets, adjusted and shrunken R2, graphical analysis, overcontrol, experimental design. Very little hand computation, uses MYSTAT computer program.

473 General Linear Model
Spring, weeks 8–14. 2 credits. Prerequisite: Psychology 472 or equivalent.
M W F 10:10. R. Darlington. Includes multivariate models, covariates for multiple tests, diagnostic methods, nonlinear relationships, interaction, main and simple effects, nesting, repeated measures, and MANOVA. Emphasizes MYSTAT, and SYSTAT, briefly discusses SAS PROC REG and SAS PROC GLM.

475 Multivariate Analysis of Psychological Data
Fall. 2 credits. Prerequisite: Psychology 472 or permission of instructor. Not offered 1990–91.

476 Representation of Structure in Data
Fall. 3 credits. Prerequisites: one year of college mathematics (finite mathematics or calculus) and a course in the social sciences.

478 Psychometric Theory
Fall, weeks 1–10. 3 credits. Prerequisite: Psychology 472 or permission of instructor.

479 Multisample Secondary Analysis
Fall, weeks 11–14. 1 credit. Prerequisite: Psychology 350 or equivalent.
T R 10:10–12:05. R. Darlington. Statistical methods for analyzing and integrating the results of many independent studies on related topics.

481 Advanced Social Psychology
Fall. 4 credits. Limited to 20 students. Prerequisite: a course in social psychology or permission of instructor.
T R 10:10–11:15. D. T. Regan

Advanced Courses and Seminars

Advanced seminars are primarily for graduate students, but with the permission of the instructor they may be taken by qualified undergraduates. The selection of seminars to be offered each term is determined by the needs of the students.

A supplement describing these advanced seminars is available at the beginning of each semester, and can be obtained from the department office. The following courses may be offered either term and carry 4 credits unless otherwise indicated.

502 Professional Writing in Psychology
510–511 Perception
512–514 Visual Perception
513 Learning
A survey of the newly discovered animal models for sex differences in the brain. Topics include the role of steroids in brain development, whether hormones can modify the structure of the adult brain, and the consequences of such sex differences in anatomy for behavior.

Fall or spring. No credit.

Fall. 4 credits. Not offered 1990-91.

Spring. 4 credits.

Fall. 4 credits. Not offered 1990-91.

Fall. 4 credits.

Fall. 4 credits.

Spring. 4 credits.

Fall. 4 credits.

Fall. 4 credits.

Fall. 4 credits.

Spring. 4 credits.

Spring. 4 credits.

Spring. 4 credits.

Fall. 4 credits.

Spring. 4 credits.

Spring. 4 credits.

Fall. 4 credits.

Spring. 4 credits.

Spring. 4 credits.

Fall. 4 credits.

Fall. 4 credits.

Fall. 4 credits.

Spring. 4 credits.

Fall. 4 credits.
773 Proseminar in Cognitive Studies I (also Cognitive Studies 773, Philosophy 773, Linguistics 773, and Computer Science 773) Fall. 2 credits. R 1:25-2:40. Staff (taught jointly by faculty from Cornell's Cognitive Studies Program, representing fields of computer science, linguistics, psychology and philosophy.) This is the first term of a year-long lecture-and-discussion course that is intended to provide graduate students with an interdisciplinary introduction to the study of knowledge, its representation, acquisition, and use. Topics may include the psychology of perception and cognition; the philosophy of mind, language, and knowledge; the phonology, syntax, and semantics of natural language; computational approaches to natural language processing; vision and reasoning; parallel distributed processing, and neuropsychology.

774 Proseminar in Cognitive Studies II (also Computer Science 774, Linguistics 774 and Philosophy 774) Spring. 2 credits. R 1:25-2:40. Staff (taught jointly by faculty from Cornell's Cognitive Studies Program, representing fields of computer science, linguistics, philosophy, and psychology.) This is the second half of a year-long lecture-and-discussion course that is intended to provide graduate students with an interdisciplinary introduction to the study of knowledge, its representation, its acquisition, and its use. Topics may include the psychology of perception and cognition; the philosophy of mind, language, and knowledge; the phonology, syntax, and semantics of natural language; computational approaches to natural language processing; vision and reasoning; parallel distributed processing, and neuropsychology.

900 Doctoral Thesis Research in Biopsychology
910 Doctoral Thesis Research in Human Experimental Psychology
920 Doctoral Thesis Research in Social Psychology and Personality

Summer Session Courses
The following courses are also frequently offered in the summer session, though not necessarily by the same instructor as during the academic year. Not all of these courses will be offered in a particular summer. Information regarding these courses and additional summer session offerings in psychology is available from the department before the end of the fall semester.

101 Introduction to Psychology: The Frontiers of Psychological Inquiry
123 Introduction to Biopsychology
128 Introduction to Psychology: Personality and Social Behavior
215 Psycholinguistics
265 Psychology and Law
280 Introduction to Social Psychology
281 Interpersonal Relations and Small Groups (also Sociology 281)
325 Introductory Psychopathology
350 Statistics and Research Design

380 Community Mental Health
469 Psychotherapy: Its Nature and Influence

Special Programs
The Department of Psychology, in conjunction with Human Service Studies, the Field Study Office of the College of Human Ecology, and the Tel-Aviv University School of Social Work will periodically offer an eight-week summer program in Community Health. The course will include three weeks at Cornell and five weeks in Israel. It may be taken for 10-12 credits. For further information, contact Ronald Mack in the Department of Psychology.

ROMANCE STUDIES
The Department of Romance Studies (Alice Colby-Hall, chair) offers courses in French literature, Italian literature, and Spanish literature. In addition, the department's program includes courses in French and Spanish languages, French linguistics, semiotics, and courses in French, Italian, and Hispanic culture. Through its course offerings and opportunities for independent study, the department seeks to encourage study of the interactions of the Romance literatures among themselves, with other literatures, and with other fields of inquiry.

French

The Major
The major in French is designed to give students proficiency in the oral and written language, to acquaint them with French literature and culture, and to develop skills in literary and linguistic analysis. While prospective majors should plan to take their program as far ahead as possible, no student will be refused admission merely because of a late start. It is even possible for a student to begin French at Cornell and become a major. Students wishing to major in French literature should consult the director of undergraduate studies of the Department of Romance Studies, Professor J. Béreaud, who will admit them to the major. After their admission students will choose an adviser among the French faculty. Students interested in a major in French linguistics should read the description of the major under Modern Languages and Linguistics—French.

The Core
1) All majors are expected to acquire a sound degree of competence in language. This competence is demonstrated by the successful completion of French 312 or by the passing of a special examination to be taken no later than the end of the junior year. A typical program will involve two semesters of language at the 200 level (to be taken no later than the end of the sophomore year) and two semesters of language at the 300 level (French 311-312). Students may bypass any part of the sequence through placement examinations.
2) In addition, all majors are expected to take French 201 and 202. At least one of these should be completed successfully no later than the end of the sophomore year.

The Options
1) The successful completion of six courses in French literature or language at the 300 level or above. These courses will be selected in consultation with the student's major adviser and will normally include at least one course from each of the three major periods of French literature (Medieval to Renaissance, the seventeenth and eighteenth centuries, and the nineteenth and twentieth centuries).
2) The successful completion of two related courses in one of the following.
(a) French literature, (b) French linguistics, (c) French history, culture, music, or history of art or architecture, (d) courses in linguistic theory, history of language, psycholinguistics, or philosophy of language.

Study Abroad in France
French majors or other interested students may study in France for one or two semesters during their junior year. Opting for one of several study-abroad plans recognized by the departments of Romance Studies and Modern Languages and Linguistics facilitates the transfer of credit. Information about these plans is available from the director of undergraduate studies.

Students interested in studying in France are encouraged to consider the special benefits offered by EDUCO, the program in Paris sponsored by Cornell and by Duke University. EDUCO offers advanced students a challenging course of study and the experience of total immersion in French life and culture in Paris. Participants in this program spend the year or the semester as fully matriculated students at the University of Paris and other institutions of higher learning in Paris, including the Institut d'Etudes Politiques (Sciences Po), selecting courses in many fields from the regular university course offerings. Students begin the academic year with an intensive three-week orientation into French history, society, and daily life. While it is possible to enroll in the EDUCO Program for one semester, admission will be given first to students planning to study abroad for the full academic year.

EDUCO maintains a center in Paris with appropriate support staff. The resident director, chosen annually from the Cornell and Duke faculties, teaches a special seminar each semester, provides academic advice, and helps ensure the quality of the courses. The center, which includes a small library and word-processing facilities, is regularly used by students for special tutorials, seminars, and lectures, as well as informal gatherings.

Honor. The honors program encourages well-qualified students majoring in French literature to do independent work in French outside the structure of courses. The preparation of the senior honors essay, generally spread over two terms, provides a unique learning opportunity, since it allows for wide reading, and extensive rewriting to a degree not possible in the case of course papers. No special seminars or courses are required of honors students, but they will have regular meetings with the faculty adviser who have
agreed to supervise their work. They may receive course credit by enrolling in French 429–430, but these independent study courses must be taken in addition to the courses that meet the minimum requirements for the major. At the end of the senior year each honors student is examined orally on the honors essay by a jury consisting of his or her faculty adviser and two other faculty members. The awarding of honors is determined by the student’s grades in the major and the quality of the honors essay.

Fees. Depending on the course, a small fee may be charged for copies of texts used in course work.

Language and Linguistics
Most language courses and French linguistics courses are offered by Modern Languages and Linguistics. Further language courses (conversation and advanced level), French linguistics courses, and all literature courses are listed below.

Note: Students placed in the 200-level courses may be charged for copies of texts used in course work.

200 Intermediate Course: Language and Literature
Fall or spring. 3 credits. Prerequisite: qualification in French with a CPT score no higher than 629. Offered by the Department of Romance Studies. Conducted in French. Fall: M W F 10:10, 11:15, or T R 10:10–11:25. S. Tarrow and staff, spring: M W F 10:10 or 12:20. S. Tarrow and staff.

210 Intermediate French Conversation Fall or spring. 2 credits. Limited to 15 students. Prerequisite: French 203 or 211 or equivalence (Q+) on the Cornell Advanced Standing Examination (CASE).

311 Advanced French
Fall. 4 credits. Limited to 15 students. Prerequisite: French 204 or 212 or placement by the Cornell Advanced Standing Examination (CASE).

312 Advanced French
Spring. 4 credits. Limited to 15 students. Prerequisite: French 311 or placement by the Cornell Advanced Standing Examination (CASE).

400 Semiotics and Language (also Comparative Literature 410 and Linguistics 400)
Spring. 4 credits. Prerequisite: some background in an area relevant to semiotics—e.g., linguistics, philosophy, literature, psychology, or anthropology—or permission of the instructor.

409 Linguistic Structure of French I (also Linguistics 408)

410 Structure of French II (also French 410 Modern Languages and Linguistics)
Fall. 4 credits. Prerequisite: Permission of instructor.

424 Composition and Style

504 Contemporary Theories of French Grammar

107 Freshman Writing Seminar: Readings in French Literature

109 Freshman Writing Seminar: Techniques of Interpretation: An Introduction to Semiotics
Fall or spring. 3 credits.

201 Introduction to French Literature
Fall, spring, or summer. 3 credits. Prerequisite: a CPT score of 600 or higher or a 200-level language course. French 201 serves as a prerequisite for all 300-level courses in French literature and is required of all majors. The course is divided into small sections. Some are taught entirely in French; the others are taught in English. (For times of the all-French sections, see the supplemental course description available in Goldwin Smith Hall 283.) Readings for all sections are the same and all in French. Papers may be written in French or in English.

202 Studies in French Literature
Fall or spring. 3 credits. Prerequisite: French 201 or a CPT achievement score of 650 or more (students who have not taken French 201 should obtain consent of instructor; those with scores in the 560–649 range should see the description of French 200 and 201). Required of all majors, but not limited to them. Conducted in French.

207 Feminist Studies in French

208 French and Latin American Literature
Fall or spring. 3 credits. Prerequisite: French 201 or 212 or a CPT score of 650 or higher (students who have not taken French 201 should obtain consent of instructor; those with scores in the 560–649 range should see the description of French 200 and 201). Required of all majors, but not limited to them. Conducted in French.

209 French and American Literature
Fall or spring. 3 credits. Prerequisite: French 201 or 212 or a CPT score of 650 or higher (students who have not taken French 201 should obtain consent of instructor; those with scores in the 560–649 range should see the description of French 200 and 201). Required of all majors, but not limited to them. Conducted in French.

408 Linguistic Structure of French I (also Linguistics 408)

410 Structure of French II (also French 410 Modern Languages and Linguistics)
Fall. 4 credits. Prerequisite: Permission of instructor.

424 Composition and Style

504 Contemporary Theories of French Grammar

LITERATURE
[107 Freshman Writing Seminar: Readings in French Literature 3 credits. Not offered 1990–91.]

201 Introduction to French Literature
Fall, spring, or summer. 3 credits. Prerequisite: a CPT score of 600 or higher or a 200-level language course. French 201 serves as a prerequisite for all 300-level courses in French literature and is required of all majors. The course is divided into small sections. Some are taught entirely in French; the others are taught in English. (For times of the all-French sections, see the supplemental course description available in Goldwin Smith Hall 283.) Readings for all sections are the same and all in French. Papers may be written in French or in English.

202 Studies in French Literature
Fall or spring. 3 credits. Prerequisite: French 201 or a CPT achievement score of 650 or more (students who have not taken French 201 should obtain consent of instructor; those with scores in the 560–649 range should see the description of French 200 and 201). Required of all majors, but not limited to them. Conducted in French.

207 Feminist Studies in French

208 French and Latin American Literature
Fall or spring. 3 credits. Prerequisite: French 201 or 212 or a CPT score of 650 or higher (students who have not taken French 201 should obtain consent of instructor; those with scores in the 560–649 range should see the description of French 200 and 201). Required of all majors, but not limited to them. Conducted in French.

209 French and American Literature
Fall or spring. 3 credits. Prerequisite: French 201 or 212 or a CPT score of 650 or higher (students who have not taken French 201 should obtain consent of instructor; those with scores in the 560–649 range should see the description of French 200 and 201). Required of all majors, but not limited to them. Conducted in French.

107 Freshman Writing Seminar: Readings in French Literature

109 Freshman Writing Seminar: Techniques of Interpretation: An Introduction to Semiotics
Fall or spring. 3 credits.

201 Introduction to French Literature
Fall, spring, or summer. 3 credits. Prerequisite: a CPT score of 600 or higher or a 200-level language course. French 201 serves as a prerequisite for all 300-level courses in French literature and is required of all majors. The course is divided into small sections. Some are taught entirely in French; the others are taught in English. (For times of the all-French sections, see the supplemental course description available in Goldwin Smith Hall 283.) Readings for all sections are the same and all in French. Papers may be written in French or in English.

202 Studies in French Literature
Fall or spring. 3 credits. Prerequisite: French 201 or a CPT achievement score of 650 or more (students who have not taken French 201 should obtain consent of instructor; those with scores in the 560–649 range should see the description of French 200 and 201). Required of all majors, but not limited to them. Conducted in French.

207 Feminist Studies in French

208 French and Latin American Literature
Fall or spring. 3 credits. Prerequisite: French 201 or 212 or a CPT score of 650 or higher (students who have not taken French 201 should obtain consent of instructor; those with scores in the 560–649 range should see the description of French 200 and 201). Required of all majors, but not limited to them. Conducted in French.

209 French and American Literature
Fall or spring. 3 credits. Prerequisite: French 201 or 212 or a CPT score of 650 or higher (students who have not taken French 201 should obtain consent of instructor; those with scores in the 560–649 range should see the description of French 200 and 201). Required of all majors, but not limited to them. Conducted in French.

107 Freshman Writing Seminar: Readings in French Literature

109 Freshman Writing Seminar: Techniques of Interpretation: An Introduction to Semiotics
Fall or spring. 3 credits.

201 Introduction to French Literature
Fall, spring, or summer. 3 credits. Prerequisite: a CPT score of 600 or higher or a 200-level language course. French 201 serves as a prerequisite for all 300-level courses in French literature and is required of all majors. The course is divided into small sections. Some are taught entirely in French; the others are taught in English. (For times of the all-French sections, see the supplemental course description available in Goldwin Smith Hall 283.) Readings for all sections are the same and all in French. Papers may be written in French or in English.
[318 Music and Poetry in France: Late Middle Ages and Renaissance (also French 618 and Music 373/673) 4 credits. Not offered 1990-91.]

[320 French Civilization 4 credits. Not offered 1990-91.]

[329 Francophone Caribbean Literature 4 credits. Not offered 1990-91.]

[332 Masterpieces of French Drama II: The Comic in the Modern Era 4 credits. Not offered 1990-91.]

[333 Contemporary French Thought 4 credits. Not offered 1990-91.]

[334 The Novel as Masterwork Spring. 4 credits. Prerequisite: French 201 or permission of instructor. Conducted in French. T R 10:10-11:25. N. Furman.]

[338 French Lyric Romance from Symbolism to Surrealism 4 credits. Not offered 1990-91.]

[339 French Romanticism (also Women's Studies 493) 4 credits. Not offered 1990-91.]

[340 African Cityscapes: Urbanization and Its Literary Representations (also Society for the Humanities 439 and Comparative Literature 439) Fall. 4 credits.]

[342 Three Ages of Theater (also Comparative Literature 422) 4 credits. Not offered 1990-91.]

[349 Oral and Written Traditions in Africa (also Society for the Humanities 439 and Comparative Literature 439) Spring. 4 credits.]

[352 Six Poems, Institutions, and Other Fictions in the Realm of Francis the First (also History 382) 4 credits. Not offered 1990-91.]

[356 Lyon and Paris in the Sixteenth Century Fall. 4 credits. M W F 1:25. K. Perry.]

[360 Poets, Institutions, and Other Fictions in the Realm of Francis the First (also History 382) 4 credits. Not offered 1990-91.]

[363 Comic Theater in the Seventeenth Century 4 credits. Not offered 1990-91.]

[370 Perspectives on the Age of Enlightenment: "Enlightened" Literature Fall. 4 credits. T R 10:10-11:25. A. Berger.]

[371 Eighteenth-Century Theater 4 credits. Not offered 1990-91.]

[372 Reading Order of Tragedy 4 credits. Not offered 1990-91.]

[373 Eighteenth-Century Novel 4 credits. Not offered 1990-91.]

[375 Eighteenth-Century Novel 4 credits. Not offered 1990-91.]

[377 Camus and His Contemporaries 4 credits. Not offered 1990-91.]

[378 The French Lyric Romance from Symbolism to Surrealism 4 credits. Not offered 1990-91.]

[379 The French Lyric Romance from Symbolism to Surrealism 4 credits. Not offered 1990-91.]

[380 Introduction to French Romanticism 4 credits. Not offered 1990-91.]

[381 French Romanticism (also Women's Studies 493) 4 credits. Not offered 1990-91.]

[382 Six French Poets 4 credits. Not offered 1990-91.]

[383 Eighteenth Century France 4 credits. Not offered 1990-91.]

[384 Literature and the City Fall. 4 credits. Prerequisite: French 201 or permission of instructor. T R 11:40-12:55. S. Tarrow.]

[385 Eighteenth Century France 4 credits. Not offered 1990-91.]

[386 The Contemporary French Novel: 1950 to the Present Spring. 4 credits. Prerequisite: French 201 or permission of instructor. T R 11:40-12:55. S. Tarrow.]

[387 Eighteenth Century France 4 credits. Not offered 1990-91.]

[388 La Poésie de la Négritude (also Society for the Humanities 440 and Comparative Literature 440) Spring. 4 credits. J. Ngate.]

[389 Medieval Literature Fall. 4 credits. Prerequisite: French 201 or permission of instructor. T R 2:30-4:25. A. Colby Hall.]

[390 Modern French Criticism 4 credits. Not offered 1990-91.]

[392 Existential thought, literary strategy, social consciousness, and criticism as reflected in the writings of Sartre.]

[393 Masterpieces of French Renaissance 4 credits. Not offered 1990-91.]

[395 Camus and His Contemporaries 4 credits. Not offered 1990-91.]

[396 The Contemporary French Novel: 1950 to the Present Spring. 4 credits. Prerequisite: French 201 or permission of instructor. T R 11:40-12:55. S. Tarrow.]

[397 The Classical Era Spring. 4 credits. Prerequisite: French 201 or permission of instructor. T R 11:40-12:55. S. Tarrow.]

[398 Six French Poets 4 credits. Not offered 1990-91.]

[399 Eighteenth Century France 4 credits. Not offered 1990-91.]

[400 Cogito Ergo Sum: Thought and Existence from Descartes to Sartre (also Comparative Literature 404 and Romance Studies 404) 4 credits. Not offered 1990-91.]

[401 Gustave Flaubert 4 credits. Not offered 1990-91.]

[402 Special Topics in French Literature 419, fall; 420, spring. 2-4 credits each term. Prerequisite: permission of instructor. Staff.]

[403 Césaire et Lautréamont 4 credits. Not offered 1990-91.]

[404 Six French Poets 4 credits. Not offered 1990-91.]

[405 Montaigne 4 credits. Not offered 1990-91.]

[407 Six French Poets 4 credits. Not offered 1990-91.]
458 Baroque Poetry in France
Spring. 4 credits. Conducted in French.
T R 2:55–4:10. K. Perry. Through the works of Théodore Agrippa d'Aubigné, Théophile de Viau, Saint-Amand, and others, we will explore the social and aesthetic reasons for the genesis and development of such a revolutionary mode of writing. What is the place of such a movement in French cultural history, in particular, how does this movement confront political and religious issues? How do these poets situate themselves in relation to libertin philosophy? What is the place of violence and horror in baroque aesthetics and ideology? We will explore how baroque writers develop a new poetics to cope with such issues.

[459 Petrarachism and the Lyric Experience in France (also French 659)]

[460 The Moralist Tradition (also French 660)]

[461 The Theater of Mollière]

[462 Racine]

[470 Perspectives on the Age of Enlightenment]

[473 Diderot and the Enlightenment]

[485 Reading Workshop: The Short Story]

[487 Rimbaud and the Question of Reading]

[488 Baudelaire]

[493 French Feminisms (also Women's Studies 493)]
Fall. 4 credits. Conducted in English. T R 1:25–2:40. N. Furman. In this course we will examine the political, theoretical, and literary concerns of contemporary French writers who have addressed "la question de la femme/la question du féminin." Readings will include representative texts by Simone de Beauvoir, Monique Wittig, Julia Kristeva, Jacques Lacan, Luce Irigaray, Jacques Derrida, and Hélène Cixous.

[494 Surrealism]

[496 The Early Twentieth-Century French Novel (also Comparative Literature 496)]

[497 Poetry since Baudelaire]

[498 Dostoevsky, Mann, and Gide (also Comparative Literature 498)]

[499 Fiction and Film in France (also Comparative Literature 498)]

[500 Colette: Can She Be a Subject of Masculine Discussion in the 80s?]
Italian

A. Grossvogel (director of undergraduate studies), 261 Goldwin Smith Hall, 255-4264.

The Major

Students who wish to major in Italian should choose a faculty member to serve as a major adviser; the general plan and the details of the student's course of study will be worked out in consultation with the adviser. Italian majors are encouraged to take courses in related subjects such as history, art history, music, philosophy, anthropology, classics, linguistics, and other modern languages and literatures. While a major often occupies only the junior and senior years, it is wise for students to seek faculty advice about the major as early as possible.

Students who elect to major in Italian ordinarily should have completed Italian 201 by the end of their sophomore year. Exemptions can be made on the basis of an examination. Students majoring in Italian are expected to become conversant with a fair portion of the masterworks of Italian literature, to acquaint themselves with the outlines of Italian literary history, and to develop some skill in literary analysis. To this end, students will be expected to complete successfully 32 credits of Italian literature courses at the 300 level or higher, with papers to be written in Italian or English. Required courses for the major are Italian 303, 304, and 334. Italian 402, History of the Italian Language, and 403, Linguistic Structure of Italian, may be counted toward the 32 credits required for the major (an introductory linguistics course is a prerequisite of Italian 402 and 403).

Students majoring in Italian will also be expected to acquire competence in the handling of the language. That competence may be demonstrated by passing an oral and written examination to be arranged with the adviser.

Italian majors will also be required to complete successfully two courses in related fields (for example, Italian history, Italian art history, literary theory).

Italian majors may study in Italy, generally during their junior year, under any of those study abroad plans organized by American universities that allow the transfer of grades and credit, such as the Cornell program in Rome.

The College of Architecture, Art, and Planning maintains a program open to all qualified students attending Cornell. The program is housed in the sixteenth-century Palazzo Massimo, designed by the architect Baldassare Peruzzi, on the Corso Vittorio Emanuele, in the heart of Rome. Students may enroll for a semester in the fall or spring. Courses regularly taught at the Palazzo Massimo include Italian language (beginning and intermediate); Architecture 300, 401, 402, 500, 502, Design Studio; Architecture 356 and 399, Special Topics in Architectural History; Architecture 458, Special Projects in Design Communications; Architecture 367, Contemporary Italian Culture; Architecture 510, Thesis Introduction; Art 251, 311, 322, and 371, and History of Art 371, Renaissance and Baroque Art in Rome.

To be eligible, students must have completed the first two years of their curriculum requirements and be in good academic standing.

Fees. Depending on the course, a small fee may be charged for copies of texts for course work.

Literature

Most language courses and Italian linguistics courses are offered in Italian languages and Linguistics. Advanced language courses and all literature courses are listed below.

109 FWS: Italian Literature Revisited Fall or spring. 3 credits. T R 11:40-12:55. M. Migiel and staff. The permanent presence of early Italian literature in our cultural heritage results not only from the continued popularity of the original works, but also from their recurrence in later literature and art. In this course, we will select selections from early Italian literature (especially Dante's Divine Comedy, Petrarch's Canzoniere, and Boccaccio's Decameron) and we will study the way in which authors and artists from the Renaissance to the present day (including Shakespeare, Pasolini, Levi and Voznesenskaya) have taken early Italian literature to be a source of inspiration for their own works. We will consider the cultural, ideological, and aesthetic implications of adaptations of literary source materials. Particular attention will be given to the ways in which an artist uses literary models to interpret cultural events and historical reality and to define his or her place in the artistic tradition. All foreign texts will be read in English translation.

201 Introduction to Italian Literature Fall or spring. 3 credits. Prerequisite: permission of instructor. Conducted in Italian. M W F 10:10. M. Migiel and staff. Exploration of the cultural, sociological, and aesthetic implications of Italian literary texts. Emphasis on the development of students' oral, written, and reading skills. Readings will include prose, poetry, and drama written by major Italian authors.

303 Introduction to Medieval and Renaissance Literature Spring. 4 credits. Prerequisite: permission of instructor. Hours to be announced. M. Migiel. The course will focus on the major figures and texts of medieval and Renaissance literature with an eye on the wider cultural context of Italy. We will begin with readings and discussions of the poems of the Sweet New Style (Guinizelli, Cavalcanti, and Dante) and selections from Petrarch's Canzoniere and Boccaccio's Decameron. Finally we shall look at some poems of Michelangelo, one canto from Ariosto's Orlando Furioso, and Machiavelli's The Prince.

334 Dante's Divine Comedy (also Italian 634) 4 credits. Not offered 1990-91.

354 Italian Humanism (also Italian 654) 4 credits. Not offered 1990-91.

357 The Italian Renaissance Epic 4 credits. Not offered 1990-91.

381 Narrative of Verga, D'Annunzio, Svevo, and Pirandello (also Italian 581) 4 credits. Not offered 1990-91.

390 Literature to Cinema Fall. 4 credits. Conducted in English. T R 2:30-4:25. A. Grossvogel. A study of the works literary language has influenced Italian cinema. The films to be screened will be by Antonioni, Bertolucci, Bolognini, De Sica, Pasolini, Rossellini, Taviani, Visconti, and Zurlini. The works of literature to be read in conjunction with these films will include selections from Boccaccio's Decameron and the narrative works of Bassani, Borges, Buzzati, Cortazar, Mann, Moravia, Tomasi di Lampedusa, and Verga.

391 The Theater of Verga, D'Annunzio, Svevo, and Pirandello (also Italian 691) 4 credits. Not offered 1990-91.

393 Narrative and Ideology in Contemporary Italian Literature (also Italian 693 and Comparative Literature 393) 4 credits. Not offered 1990-91.

399 Cinema to Literature Spring. 4 credits. Conducted in English. T R 2:30-4:25. A. Grossvogel. The course will consist of a comparative study of selected films by Fellini, Antonioni, Visconti, and others and of works by major contemporary writers such as Montale, Ungaretti, Saba, Gadda, and Calvino. These authors' similarities and contrasts in invention, style, and technical developments will be explored to illustrate the evolution of contemporary aesthetics in cinematography and poetry in Italy.

419-420 Special Topics in Italian Literature 419, fall; 420, spring. 2-4 credits each term. Prerequisite: permission of instructor. Staff. Guided independent study of specific topics.

427 Dante: La Divina Commedia 4 credits. Not offered 1990-91.

429-430 Honors in Italian Literature 429 fall; 430, spring. 4 credits each term. Limited to seniors. Prerequisite: permission of instructor. A. Grossvogel.

445 Boccaccio (also Italian 645) 4 credits. Not offered 1990-91.
[448] Italian Lyric Poetry, 1255-1600: The Formation of the Canon

[458] Tasso

[472] Eighteenth-Century Italian Theater: From Melodrama to Tragedy
Fall. 4 credits.
The readings for this course will focus on the dramatic works of Goldoni and Alfieri, the two major Italian playwrights of the eighteenth century. Carolo Gozzi's fiabe, Metastasio's melodrama, Chiar's parodies, and the last sparks of the commedia dell'arte will also be examined to illustrate the pervasive character of dramatic expression in Italian literary and artistic life of the time. Attention will be given to Goldoni's role in the reform of the theater and to the bitter controversy he had to face.

[474] Opera (also German 374/674 and Music 374/674)

[485] The Nineteenth Century: Foscolo, Manzoni, Leopardi

[488] Giacomo Leopardi and Nineteenth-Century Poetry

[489] Readings in Contemporary Italian Fiction

[490] Futurism in Italy and Europe

[497] Modern Italian Poetry: D'Annunzio to Montale

[498] Eugenio Montale and Contemporary Italian Poetry
Spring. 4 credits.
W 2:30-4:25. A. Grossvogel.
A reading of Montale's poetry—ossi di seppia, Le Occasanti, La Bufiera e altro, Satura, Diari—against the screen of the poetry of some of his contemporaries; D'Annunzio, Ungaretti, Saba, Quasimodo.

[557] The Italian Renaissance Epic

[581] Narrative of Verga, D'Annunzio, Svevo, and Pirandello (also Italian 381)

[634] Dante's Divine Comedy (also Italian 334)

[639-640] Special Topics in Italian Literature
639, fall; 640, spring. 4 credits each term. Staff.

[645] Boccaccio (also Italian 445)

[654] Italian Humanism (also Italian 354)

[664] Early Modern Italian Autobiography (also Italian 384)

[681] Theater of Verga, D'Annunzio, Svevo, and Pirandello

[691] Theater of Verga, D'Annunzio, Svevo, and Pirandello

[693] Narrative and Ideology (also Italian 383 and Comparative Literature 383)

Related Courses in Other Departments
Society for the Humanities 421 Riffraff of the Renaissance
Fall.

Romance Studies

Literature

[361] The Culture of Early Renaissance (also Comparative Literature 361 and History of Art 350)

[404] Cogito Ergo Sum: Thought and Existence from Descartes to Sartre (also French 404 and Comparative Literature 404)

[431] Iams: General Concepts in Modern Cultural History (also Comparative Literature 431)

[459] Being, God, Mind: Key Terms of Western Thought from Plato to Vico (also Comparative Literature 369)

[460] Biology and Theology: Approaches to the Origin of Life, Evolution, Heritage and Freedom, Sexuality and Death (also Comparative Literature 460)

[497] Heidegger on Language, Art, and Literature (also Comparative Literature 497)
Fall. 4 credits.
T 2:30-4:25. C. Arroyo.
A study of texts such as Language, The Origins of the Work of Art, The Letter on Humanism, and others that have been influential in contemporary criticism.

Spanish

The Major
The major is designed to give students proficiency in the oral and written language, to acquaint them with Hispanic culture, and to develop their skill in literary and linguistic analysis. Satisfactory completion of the major should enable students to meet language and literature requirements for teaching, to continue with graduate work in Spanish or other appropriate disciplines, or to satisfy standards for acceptance into the training programs of the government, social agencies, and business concerns. A Spanish major combined with another discipline may also allow a student to undertake preprofessional training for graduate study in law or medicine. Students interested in a Spanish major are encouraged to seek faculty advice as early as possible. For acceptance into the major, students should consult the director of undergraduate studies in Spanish—Professor Tittler (286 Goldwin Smith Hall)—who will admit them to the major and choose an adviser from the Spanish faculty. Spanish majors will then work out a plan of study in consultation with their advisers. Previous training and interests as well as vocational goals will be taken into account when the student's program of courses is determined.

Spanish 201 and 204 or 212 (or equivalent) are prerequisite to entering the major in Spanish. All majors will normally include the following core courses in their programs:

1) Spanish 315-316-318
2) Spanish 311 and 312 (or equivalent)

Spanish majors have great flexibility in devising their programs of study and areas of concentration. Some typical options of the major are:

1) Spanish literature, for which the program of study normally includes at least 20 credits of Spanish literature beyond the core courses. Literature majors are strongly urged to include in their programs courses in all the major periods of Hispanic literature.

2) A combination of literature and linguistics.

3) Either of the above options with certain courses in other disciplines counted toward the major. Whichever option a student chooses, he or she is encouraged to enrich the major program by including a variety of courses from related fields or by combining Spanish with related fields such as history, philosophy, sociology, anthropology, art, music, Classics, English, comparative literature, and other foreign languages and literatures. The interdepartmental programs in Latin American Studies and Hispanic American Studies sponsor relevant courses in a variety of areas.

The J. G. White Prize and Scholarships are available annually to students who achieve excellence in Spanish.

For the major in Spanish linguistics, see Modern Languages and Linguistics—Spanish.

Study abroad in Spain. Cornell and the University of Michigan cosponsor an academic year in Spain program. Students enrolled in this program spend the first four weeks before the fall semester begins in a residential college located on the campus of the University of Madrid, where they take a course in Spanish language and contemporary society and take advantage of special lectures and field trips in Madrid and Castile. This course carries three credits. In early October the program moves to Seville, where students enroll in as many regular classes at the University of Seville as their language competency and general education permit. Their academic work is supplemented by courses designed explicitly for the program by Seville faculty, as well as a seminar regularly offered by the resident director, who is chosen from the faculty of either Cornell or Michigan. The special courses normally include history of art and architecture, Spanish composition and syntax, and modern Spanish history. In Seville students live with selected families or in a few cases in "colegios mayores." Cornell-Michigan also maintains a center in Seville, which is used by students for special seminars, tutorials, lectures, and informal gatherings.
Applicants are expected to have attained at least proficiency in Spanish prior to departure. Students are strongly encouraged to study abroad for the entire year rather than for one semester. Students interested in the study abroad program should consult with the Cornell Abroad office for further information.

Honor's. Honors in Spanish may be achieved by superior students who want to undertake guided independent reading and research in an Honors. semester. Students interested in the study of Spanish and Spanish American literature and cultural history may register for an independent study course with the approval of the instructor (see Spanish 492-493).

Fees. Depending on the course, a small fee may be charged for film use or for copies of texts for course work.

Language

Most language courses and Spanish linguistic courses are offered by Modern Languages and Linguistics. Advanced language courses and all literature courses are listed below.

Note: Students placed in the 200-level courses have the option of taking language and/or literature courses; see listing under Spanish 201 for description of the literature course that may be taken concurrently with the 203-205 (offered by Modern Languages and Linguistics) or 211-212 language courses described below.

[211 Intermediate Spanish
3 credits. Not offered 1990-91.]
[212 Intermediate Spanish
3 credits. Not offered 1990-91.]

311 Advanced Composition and Conversation
Fall. 4 credits. Prerequisite: Spanish 204 or 212 or equivalent.
M W F 10:10, A. Monegal, or M W F 12:20, M. Scyscos.

Advanced language skills, developed through reading, grammar review, and intensive practice in speaking, writing, and translation. Analysis of present-day Spanish usage in a wide variety of oral and written texts.

312 Advanced Composition and Conversation
Spring. 4 credits. Continuation of Spanish 311 but may be taken separately. Required of Spanish majors.

Readings and class discussion will focus on the stylistic analysis of modern texts. Increased emphasis, through weekly essays, on students' development of an effective Spanish prose style.

Literature

[105 Freshman Seminar. Paradise Lost: Biculturalism in America (also English 168)
3 credits. Not offered 1990-91.]

[106 Freshman Seminar: Searching for Self in Hispanic Fiction
3 credits. Not offered 1990-91.]

107 Freshman Seminar: The Literature of American Hispanic/Ethnic Women Writers
Fall. 3 credits.
What does it mean to be both female and ethnic in twentieth-century America? How have American women writers of Mexican, Puerto Rican, African, and Asian heritages responded to both their traditional ethnic cultures and to the broad Anglo-Saxon, Protestant culture in which they have had to live and breathe? We will read a sampling of literature written by representative ethnic women writers in various genres in which they have presented the theme of the interaction between traditional ethnic culture and the American tradition in defining the female ethnic experience. We will consider such topics as the female role of language, gender roles, family, and church upon women of color, together with the mechanisms that evolve to settle the often competing demands of each cultural tradition. Readings may include such works as Nicholasa Mohr's Rituals of Survival, Sandra Cisneros's The House on Mango Street or Helena Maria Viramontes' The Moths and Other Stories, Toni Morrison's Sui, Amy Tang's The Joy Luck Club or Maxine Hong Kingston's The Woman Warrior. Writing assignments will consist of analytical essays on the readings.

[109 Freshman Seminar: Revolution and Literature in Latin America
3 credits. Not offered 1990-91.]

119 Freshman Seminar: Letters From El Barrio: A Sense of Place in Hispanic American Fiction
Spring. 3 credits.
In this seminar we will focus upon the portrayal of "el barrio"—the Hispanic American neighborhood/community—as a potent sense of place in Puerto Rican, Cuban, and Mexican American-Chicano fiction. Our concern will be to analyze and critique the portrayal of both rural and urban fictional barrios, from the Texas valley to New York's Spanish Harlem and Miami's Little Havana, as these locales affect such literary elements as language, imagery, character presentation/motivation, and narrative structure. Discussions will center on an analysis of the choices each writer makes as she or he creates a vision of the Hispanic community. Readings will come from works such as Piri Thomas's Down These Mean Streets, Nicholasa Mohr's Nilda or In Nueva York, Sandra Cisneros's House on Mango Street, Denise Chavez's The Last of the Menu Girls, Tomas Rivera's "El Parte," and Roberto Fernandez's Rainmaking Backwards. Written work will involve critical/analytical essays of the readings.

125 Freshman Writing Seminar: The City in Hispanic Novels
Fall or spring. 3 credits.
The recent boom in Hispanic fiction has frequently been accompanied by a shift in focus from rural to urban concerns. We will tour several representative Hispanic cities: New York, Mexico City, Havana, Buenos Aires—through careful reading (in English translation) of novels by Carlos Fuentes, G. Cabrera Infante, Manuel Puig, Julio Cortazar, Piri Thomas, and Juan Goytisolo. Supplementary materials may include maps, tourist guides, and newspapers.

[126 Freshman Seminar: The Complex Fate—Self-Identity in the Literature of United States Hispanic and Other Ethnic Groups
3 credits. Not offered 1990-91.]

[130 Freshman Seminar: Old World, New World—The Discovery and Conquest of America in Hispanic Literature
3 credits. Not offered 1990-91.]

201 Introduction to Hispanic Literature
Fall or spring. 3 credits. Prerequisite: qualification in Spanish or permission of instructor. The course is divided into small sections and is conducted mainly in Spanish. (Fully fills both the language proficiency requirement and, followed by a 300-level Spanish literature course, the humanities distribution requirement. The literature course that normally follows Spanish 201 is either 315, 316, or 318.)
An intermediate reading course designed to improve reading, writing, speaking, and comprehension skills in Spanish through the reading and discussion of contemporary literary works of various genres (narrative prose, drama, poetry) from Spain and Spanish America. Emphasis is placed on the development of fluency in reading and of critical and analytical abilities. The cultural, sociological, and aesthetic implications of texts by authors such as Borges, Cortazar, Fuentes, Garcia Marquez, Garcia Lorca, and Cela are considered.

[313 Spanish Civilization
4 credits. Not offered 1990-91.]
Note: Spanish 315, 316, 317, and 318 can be taken as a prerequisite. Spanish 201 or 4 years of high school Spanish or permission of instructor.

315 Readings in Sixteenth- and Seventeenth-Century Spanish Literature
Spring. 4 credits. Prerequisite: Spanish 201, four years of high school Spanish, or permission of instructor. This course is not a prerequisite for Spanish 316 or 318.
T R 10:10-11:25. C. Arroyo.
Readings and discussion of representative texts of the period from both Spain and her colonies in the New World: Garcieloa de la Vega, Lazarrillo de Tomes, San Juan de la Cruz, Cervantes, Lope de Vega, Calderon, and others.

316 Readings in Modern Spanish Literature
Fall. 4 credits. Prerequisite: Spanish 201 or 4 years of high school Spanish or permission of instructor. Taught in Spanish.
Readings and discussion of representative texts from Spain from the romantic period to the present. Becquer, Galdos, Unamuno, Garcia Lorca, Cela, and others.

317 Readings in Colonial Spanish- American Literature
Fall. 4 credits.
Early masterpieces of Spanish American literature from the "chronicles of discovery" to the first novels. The paradoxical relationship between the historical and literary forms, as well as the serious and the humorous contents, that characterizes writings from the journals of Columbus to those of the picaros.
318 Readings in Spanish-American Literature
Spring. 4 credits.

332 Readings in Latin American Civilization
Note: The prerequisite for the following courses, unless otherwise indicated, is Spanish 315, 316, or 318, or permission of instructor.

333 The Spanish-American Short Story

334 Contemporary Spanish-American Novel

346 Hispanic Caribbean Culture and Literature

347 Spanish America in Black and White
Fall. 4 credits.
T R 10:10–11:25, J. Piedra. This course explores the relationship between “black” and “white” cultures in Spanish America, as well as the application of neo-African cultural strategies to the study of not necessarily Afro-conscious Spanish American literature from the twentieth century.

351 Spanish Drama of the Golden Age

356 Spanish Lyric Poetry of the Golden Age

368 The Birth of the Novel in Spain

375 The Picaresque Novel in European Perspective

376 The Contemporary Spanish Novel

385 Studies in Spanish Realism and Naturalism

389 The Generation of 1898

390 Fiction of Modern Hispanic Women (also Women’s Studies 390)

391 The Post–Civil War Drama in Spain

392 The Spanish Vanguard Theater: Lorca and Valle-Inclán

393 Modern Spanish Short Fiction
Fall. 4 credits. Conducted in Spanish.
M W F 12:20. A Mogendal. This course will study the evolution of the short story in Spain, from the nineteenth century to the present, both as an autonomous, though marginal, tradition and in relation to other forms of prose writing that determine its definition as a genre, in particular poetic prose and the short novel. Readings include works by Bécquer, Clarín, Pando Bazán, Valle-Inclán, Unamuno, Gómez de la Serna, Larrea, Cernuda, Auba, Ayala, Delibes, Aldecoa, Matute, Martín Gaite, Boytisolo, Puértolas, and Fernández Cubas.

394 Trans-Atlantic Renaissance (also Comparative Literature 394)
Spring. 4 credits.
M W F 2:30, J. Piedra. A comparative look, in English, at Renaissance masterpieces from Europe and Spanish America, according to the following themes: Mapping Strategies (Vespucci, Columbus); Epic Proportions (Camões, Bernal Diaz del Castillo, Velázquez, De Alarcón, Iñiguez de Vargas); Conciliatory Manners (Castiglione, La Cerda); Suspicious Natures (Lope, Bernal); Cultural Imperatives (Montaigne, Burton); Dictatorial Blueprints (Macchiavel, Cortes); Shipwrecking States (Shakespeare, Sigüenza y Góngora).

395 The Novel in Spain after the Civil War

396 Modern U.S.-Hispanic Prosse Fiction

397 Colombian Literature
Spring. 4 credits. Prerequisite: Spanish 318 or equivalent. Conducted in Spanish.
T R 11:40–12:55, J. Tittler. Readings from the rich Colombian tradition will include such renowned texts as Isaacs’ María, Rivera’s La vorticista, and García Márquez’s El amor en los tiempos del cólera, as well as works by authors of national prominence, such as Léon de Greiff, Porfírio Barba-Jacob, Enrique Buenaventura, Álvaro Cepeda Samudio, and Gustavo Álvarez Gardeázabal. Several “Neo-Colombian” (U.S. Hispanic) authors, such as Jaime Manrique, Silvio Martínez Palau, and Andrés Berger, will also be included.

398 Post-Revolutionary Mexican Novel

399 Spanish Film

415 The Black Within: Hispanic Race and Literature

419-420 Special Topics in Hispanic Literature
419, fall; 420, spring. 2–4 credits each term. Prerequisite: permission of instructor.
Staff. Guided independent study of specific topics. For undergraduates interested in special problems not covered in courses.

420-420 Honors Work in Hispanic Literature
420, fall; 420, spring. 4 credits each term. Limited to seniors. Prerequisite: permission of instructor.
J. Piedra.

440 Medieval Spanish Literature

450 Literature of Conquest

451 Spanish Theater of the Golden Age
Fall. 4 credits. Prerequisite: For graduates, juniors, and seniors. Conducted in Spanish.
T R 11:40–12:55, C. Arroyo. A reading of twelve classical plays, including the canonical ones, such as El burlador de Sevilla and La vida es sueño. Also discussion on the origins of the Spanish “comedia” and of Lope de Vega’s Arte nuevo de hacer comedias.

455 Carvajal: Don Quijote

466 Golden-Age Spanish Short Fiction

468 Mystics and Moralists

479 Colonial Spanish-American Literature: Voices of the Colonized

481 Eighteenth- and Nineteenth-Century Spanish Drama

483 The Nineteenth-Century Spanish Novel: Galdós and Clarín

484 The Novel in Early Twentieth-Century Spain

485 Hispanic Romanticism

490 Surrealism in Spain

491 The Poetics of Tragedy in Contemporary Spanish Drama
Spring. 4 credits. Conducted in Spanish.
T R 2:30–4:25, D. Castillo. Examines redefinitions of tragedy by three twentieth-century Spanish playwrights: Unamuno, Valle-Inclán, and García Lorca. The dramatic and theoretical formulations of their poetic wills be analyzed in comparison with classical models. Reference will be made to previous texts in the Spanish tradition and to later manifestations of the tragic mode in the works of Bueno Vallejo, Sastre, and Arrabal.

492 Latin-American Women Writers (also Women’s Studies 481 and Comparative Literature 482)
Spring. 4 credits. Conducted in English.
T R 10:10–11:25, D. Castillo. This course will provide a sampler of novels and short stories by and about Latin-American women. We will look at the question of self-construction and issues such as the social and political concerns involved in a specifically Latin-American feminine identity. All works will be read in translation. (Romance Studies students should read originals of the works from the Spanish.) Authors may include writers like Luisa Valenzuela (Argentina) and Rigoberta Menchu (Guatemala), Helena Parente Cunha and Clarice Lispector (Brazil), Helena Maria Viramontes and the Anzaldia/ Moraña anthology This Bridge Called My Back (U.S.A.), and Simone Schwarz-Bart (Guadalupe).

495 Gabriela García Márquez

496 The Fiction of Manuel Puig
The Russian Major

Russian majors study Russian language, literature, and linguistics, emphasizing their specific interests. It is desirable, although not necessary, for prospective majors to complete Russian 101–102, 201–202, and 203–204 as freshmen and sophomores, since these courses are prerequisites to most of the junior and senior courses that count toward the major. Students may be admitted to the major upon satisfactory completion of Russian 102 or the equivalent. Students who elect to major in Russian should consult both Professor Carden and Professor Shapiro as soon as possible. For a major in Russian, students will be required to complete (1) Russian 301–302 or 303–304 or the equivalent, and (2) 18 credits from 300- and 400-level literature and linguistics courses, of which 12 credits must be in literature in the original Russian.

Certain courses may, with the permission of the instructor, be taken for one additional hour's credit. Such courses will involve a one-hour section each week with work in the Russian language. These courses count one hour each of credit toward the 12 courses of Russian literature in the original language required for the major.

Study Abroad

Cornell is an affiliated institution in the Council on International Educational Exchange program for Russian language study at Leningrad State University. Cornell students also frequently go on the American Council of Teachers of Russian program in Moscow and other Russian language programs. Opportunities are available for study during the summer, a single semester, or the full year. Further information is available from Professor Wayles Browne.

Honors. Students taking honors in Russian undertake individual reading and research and write an honors essay.

Fees. Depending on the course, a small fee may be charged for photocopied texts for course work.

Freshman writing seminar requirement. The following courses will satisfy the freshman writing seminar requirement: Russian 103, 104, 105, and 108.

Russian and Soviet Studies Major

See "Special Programs and Interdisciplinary Studies," which follows the department listings.

Russian Literature

The Department of Russian Literature offers a variety of courses not only to majors but to students interested in Russian literature, history, society, and culture. Such courses are interdisciplinary, co-sponsored with the departments of History, Economics, Government, Comparative Literature, etc. Students interested in majoring in Russian are strongly urged to take Russian 101–102 as soon as possible, preferably in their first year, or by their second at the latest.

Russian 203–204, offered by the Department of Modern Languages and Linguistics, and Russian 201–202, offered by the Department of Russian Literature, complete basic language instruction and introduce students to literature. A further sequence of literature courses in Russian follows Russian 202.

For further information about courses and majors, see Modern Languages and Linguistics.

103 Freshman Writing Seminar: Classics of Russian Thought and Literature

Fall or spring. 3 credits. MWF 11:15 or 12:20. Staff. Russian society has always seen its literature as having a mission important to the development of the nation. In this course we will examine Russian literature as it participates in the debate, whither Russia? We will look in particular at the conflict between the Slavophiles, those who thought Russia had its own unique destiny, and the Westernizers, those who thought Russia should look to the West for a model in its development. We will be reading such Russian authors as Turgenev, Dostoevsky, Herzen, and Solzhenitsyn in English translation. The course will examine the rhetorical means each author uses to make his argument. All reading is in English translation.

104 Freshman Writing Seminar: Nineteenth-Century Russian Literary Masterpieces

Fall or spring. 3 credits. MWF 9:05 or TR 10:10–11:25. P. Carden and staff. Spring: TR 10:10–11:25. Staff. This course will introduce students to a broad selection of the major works of Russian literary tradition. Our emphasis will be on what makes each work interesting as writing, what themes have been particularly interesting to Russians, and how we recognize the distinctive voice of each of the writers we are studying. Among the authors read are Pushkin, Gogol, Turgenev, Dostoevsky, Tolstoy, and Chekhov. All reading is in English translation.

105 Freshman Writing Seminar: Twentieth-Century Russian Literary Masterpieces

Fall or spring. 3 credits. MWF 10:10–11:00. Spring: MWF 2:30–3:20. Staff. Russian literature in the twentieth century has endured many ups and downs. At times it has produced great masterpieces of modern art. At times it has been forced into the dry mode of "socialist realism," in which it had to voice the ideas forced upon it by a totalitarian government. Russian authors have been glorified as the voice of the nation, and they have also perished in concentration camps in the far north of Siberia. In this course we will read a representative selection of these authors, including those who took the path of art, those who went to the "social command," and those who assumed a politically dissident stance. Among the authors read will be Babel, Pasternak, Olesha, and Solzhenitsyn. All reading is in English translation.

108 Freshman Writing Seminar: 100 Years of Russian Fiction (1830–1930)

Fall. 3 credits. Not offered 1990–91. MWF 10:10. N. Pollak. What is the "truth" of the work of fiction? Native responses to Russian literature in the nineteenth and twentieth centuries have included two apparently antithetical—and
passionately proclaimed—responses to this question. According to one view, that truth lies in the ideal content of the work, its fidelity to "objective" reality, and its social relevance. According to the other view, which arose in part as a response and counterweight to the first, the truth is inseparable from the stylistic aspects of the work. In reading short fiction by such writers as Pushkin, Gogol, Tolstoy, Chekhov, and Babel, we will attempt to examine the ways each of them asserts his conception of the truth—and the ways these approaches must overlap in the determination of the complex truth that is the work of art.

201-202 Readings in Russian Literature
Fall, 202; Spring. 3 credits each term.
Prerequisites: qualification in Russian; 201 is prerequisite to 202. Open to freshmen.
Fall: M W F 1:25 or 2:30. N. Pollak.
These courses are designed as the initial courses students take after qualification in Russian and are conducted mainly in Russian. Considerable guidance is provided, however, and there is no presumption of fluency. The goals of the courses are to introduce students to Russian literature in the original, to sample differing literary styles, and to accomplish both with minimal recourse to English in class. Several short papers in Russian and English will be assigned. Readings from nineteenth- and twentieth-century masters of prose and verse such as Pushkin, Lermontov, Tютчеv, Tolstoy, Chekhov, Babel, and Zoshchenko.

207 Themes from Russian Culture
Fall. 3 credits; Not offered 1990-91.
M W F 9:15. G. Shapiro.
This course is based on lectures, discussions, and audio-visual presentations (slides, tapes, films). It includes within its scope various aspects of Russian culture such as literature, art, music, religion, philosophy, and social thought from its very beginnings through the eighteenth century. The course is designed to give undergraduates a broad familiarity with the cultural traditions of the country which plays a major role in the world today. Russian culture will be presented as part of Western civilization with attention given to its distinctive character. The basic texts are literary works of moderate length in English translation.

208 Themes from Russian Culture II
Spring. 3 credits,
M W F 9:15. G. Shapiro.
This course is based on lectures, discussions, and audiovisual presentations (slides, tapes, films). It includes various aspects of Russian culture such as literature, art, music, religion, philosophy, and social thought over the last two hundred years. The course is designed to give undergraduates a broad familiarity with the cultural traditions of the country that plays a major role in the world today. Russian culture will be presented as part of Western civilization with attention given to its distinctive character. The basic texts are literary works of moderate length in English translation.

[328 Eastern Europe Today: Economics, Government, Culture (also Economics 329 and Government 328)]
Fall. 4 credits. Not offered 1990-91.
Introductory interdisciplinary survey of Poland, Hungary, Czechoslovakia, and Yugoslavia since World War II, with emphasis on contemporary development. The goals of the course are to examine differences among East European countries as well as common elements.

[330 The Soviet Union: Politics, Economics, and Culture (also Economics 330 and Government 330)]
Spring. 4 credits. Not offered 1990-91.
Interdisciplinary survey of the U.S.S.R. since the Revolution, with emphasis on contemporary developments.

331 Introduction to Russian Poetry
Fall. 4 credits. Prerequisites: Russian 202 or equivalent and permission of instructor. This course may be counted toward the 12 credits of Russian literature in the original language for the Russian major. Also open to graduate students.
A survey of Russian poetry with primary emphasis on the analysis of individual poems by major poets.

332 Russian Theatre and Drama
Not offered 1990-91.

333 Twentieth-Century Russian Poetry
Spring. 4 credits. Not offered 1990-91.
Close readings of lyric works by twentieth-century poets. All reading is in Russian. Geared towards undergraduates.

334 The Russian Short Story
Spring. 4 credits. Prerequisites: Russian 202 or equivalent and permission of instructor. This course may be counted toward the 12 credits of Russian literature in the original language for the Russian major. Also open to graduate students.
A survey of two centuries of Russian story telling. Emphasis on the analysis of individual stories by major writers, on narrative structure, and on related landmarks of Russian literary criticism.

335 Gogol
Spring. 4 credits. There may be a special section for students who read Russian; if they are Russian literature majors, they may count this course as one in the original language. Also open to graduate students. Not offered 1990-91.
M W 2:30-3:45. Staff.
Selected works of Gogol read closely and viewed in relation to his life and to the literature of his time. Readings in English translation.

350 Education and the Western Literary Tradition (also Comparative Literature 350 and College Scholar 350)
Spring. 4 credits. Not offered 1990-91.
M W F 10:10. P. Carden.
A major philosophical tradition has conceived of education as encompassing the whole of our lives. What should we do or be as is seen as the result of every choice we make. The whole of our human contacts is understood as a school in which we form ourselves. This all-embracing vision of education has been embodied in the works of the great philosophers—those who use the forms of fiction to explore fundamental issues of education. In this course we will examine several key philosophical fantasies, among them Plato's Republic, Rousseau's Emile, and Tolstoy's War and Peace. Our aim will be to understand how the discourse on education became a central part of our Western tradition.

367 The Russian Novel
Fall. 4 credits. Also open to graduate students.
Special discussion section for students who read Russian.
Realism and modernism. The prosaics of Russian writers of the nineteenth and twentieth centuries. Novels and short stories by Gogol, Turgenev, Tolstoy, Dostoevsky, Chekhov, Solzhenitsyn, and others. Readings in English translation.

368 Soviet Literature from Revolutionary Times to "Glasnost"
Spring. 4 credits. Also open to graduate students.
There will be a special section for students who read Russian.
An introductory survey of Soviet literature, beginning with the revolutionary fervor of the twenties, continuing through the dark days of the thirties and the war years of the forties, and ending with an account of Khrushchev's "thaw," the rise of the dissident movement and the introduction of "glasnost." Writers and movements to be discussed include Mayakovsky and the Futurists; Zamiatay, Platonov and anti-utopian fiction; Gorky and Socialist Realism; Guld literature; Pasternak; Solzhenitsyn and the dissidents, the meaning of "glasnost."

[369 Dostoevsky (also Comparative Literature 383)]
Fall. 4 credits. Not offered 1990-91.

[371 Literature of the Third Wave
Spring. 4 credits. Not offered 1990-91.
M W 11:15 plus 1 hour to be arranged.
M. Scammell.
The literature of the "third emigration." A survey of recent Russian literature by writers who have voluntarily or involuntarily left the Soviet Union during the past fifteen years. Among the authors discussed will be Solsenityn, Sinyavsky, Brodsky, Zinoviev, Solokov, Aksyonov, Vinovich, Limonov, Vladimir, Maximov, Aleshkovsky, Dolovatov, and Gorbanovsky. Some consideration will be given to the influences of emigre publishing houses and literary magazines on the development of contemporary Russian literature and literary and political issues being debated by emigre literary circles.

[373 Chekhov
Fall. 4 credits. Not offered 1990-91. A special section is offered for students who read Russian.
Reading and discussion of Chekhov's works, with emphasis on the short story. The course is designed for non-specialists as well as literature majors. A variety of approaches will be employed; informal lectures and discussions.
[375 Literature of the Soviet Period, 1917-1945]
Fall. 4 credits. Prerequisite: permission of instructor. Also open to graduate students. Russian majors may do part or all of the reading in Russian by prior agreement with the instructor. Not offered 1990-91.
A survey of the development of Russian literature during the second quarter of the twentieth century, with the emphasis on attempts to create a purely Soviet literature but also taking into account the achievements of non-Soviet writers, including emigres and the so-called fellow travelers.]

[376 Literature of the Soviet Period, 1945-1985]
Spring. 4 credits. Prerequisite: permission of instructor. Also open to graduate students. Russian majors may do part or all of the reading in Russian by prior agreement with the instructor. Not offered 1990-91.
A survey of the development of Soviet literature after World War II, including the thaw, the literature of the Gulag, the rise of the dissident movement, and the creation of the “third emigration.”]

[379 The Russian Connection (also Comparative Literature 379)]
Spring. 4 credits. Not offered 1990-91.
We will examine the development of a Russian psychological literature of the interior self in its interrelationship with European literature. Using early examples of psychological prose such as Rousseau's Confessions and Benjamin Constant's Adolphe, we will examine the connection to Russian prose of the romantic period in Pushkin's Queen of Spades and Lermontov's Hero of Our Time. We will compare Hoffmann's and Gogol's employment of the fantastic to probe the more obscure sides of the psyche. After reading Stendhal's Charterhouse of Parma, we will turn to two of the most significant psychological novels of the Russian tradition, Tolstoy's War and Peace and Dostoevsky's The Idiot. All reading is in English translation.]

[380 Soviet Dissident Literature]
Fall. 4 credits. Not offered 1990-91.
Study of the dissident movement. Defining the meaning of the term; political dissent and cultural and literary dissidence; and religious dissident movement. The writings of Sinivsky-Tertz, Pasternak's Doctor Zhivago, and other figures of the past two generations. This course is intended for students of government and society in general, not only for students of Russian literature.]

[388 Ideas and Form in Novels of Social Inquiry (also Comparative Literature 388)]
Spring. 4 credits. Not offered 1990-91.
MW F 9:05. G. Gibian.
From the French Revolution to the present. Problems of relations between politics and the writer. Literary representations of conflict between political ideologies (ideologies of revolution, justice, nationalism) and private needs (art, nature, love, order). Marx, Flaubert, Dostoevsky, Conrad, Trotsky, Lenin, V. S. Naipaul, Richard Wright, Solzhenitsyn, Kundera, and others. Some poetry will also be included.]

[389 Modern Literature in Poland, Czechoslovakia, Hungary, and Yugoslavia (also Comparative Literature 390)]
Spring. 4 credits. Not offered 1990-91.
The course will focus on novels and short stories, but close attention will also be given to drama and poetry. No knowledge of Eastern European languages is required; the reading will be done in English translation. Primary emphasis will be on the texts as literary works of art, but attention will also be given to historical and political background.]
580 Russian Modernism (also 699)
Spring. 4 credits. Not offered 1990-91.
M 2:30-4:30 and W 2:30-3:20. P. Carden.
We will be investigating the rich and innovative period of the avant-garde in Russia from 1910 to 1925. In addition to examining outstanding works in a variety of forms, we will look at the movements, social context, and ties to the European avant-garde. Among the writers whose works we will examine are Blok, Bely, Mayakovsky, Khlebnikov, Pilnyak and Babel. We will examine theater through the Futurist performance piece, "Victory Over the Sun," through Meyerhold's productions of Mayakovsky's plays and other experimental pieces, and through mass spectacles. We will discuss the film theories of Eisenstein and Dziga Vertov and see several of their films. In the visual arts we will be examining the experiments of Larionov and Goncharova, Malevich, Kandinsky, and Tatlin. We will also look at the photomontage of Rodchenko.

Graduate Seminars

560 Proseminar: Research Methodology in Russian Literature
Fall. 4 credits. Not offered 1990-91.
T 3:45-5:45. P. Carden.
This course is intended for graduate students beyond the first-year level who want a more advanced training in research methodology. Among the topics to be covered are the research library, its resources and obstacles; bibliography of Russian literature and culture; Russian archives, what they contain and how to use them; finding and evaluating information; reading criticism analytically; evaluating different editions of an author's works; editing and revising papers to meet professional standards of cogency and format. Each student should be working concurrently on a paper, which might be an upgrading of a seminar paper, a draft of the master's essay, or a chapter of the dissertation.

603 Graduate Seminar: Neglected Masterpieces of Short Russian Prose
Spring. 4 credits.
Nineteenth- and twentieth-century works chosen according to the needs of the students enrolled. Students are expected to have skills useful in teaching Russian literature.

611 Supervised Reading and Research
Fall or spring. 2-4 credits. Prerequisite: permission of the department.
Hours to be arranged. Staff.

615 Postsymbolist Russian Poetry
Not offered 1990-91.
For description see Russian 415.

616-618 Russian Stylistics I and II
Not offered 1990-91.

619 Seventeenth-Century Russian Literature
Fall. 4 credits. Not offered 1990-91.
P 2:30-4:30. G. Shapiro.
Seventeenth-century Russian literature is often studied together with Medieval literature. Is such an arrangement justified, or does seventeenth-century literature have its own problematic that makes it worth studying separately? In scholarship the seventeenth century is referred to as the Age of Baroque. Did Muscovite Russia experience its own Baroque, and, if so, what are its unique features? These and other important issues will be addressed in the seminar. In the course of the seminar a variety of concepts, genres, and themes characteristic for the epoch will be discussed. We will read the works of such authors as Simeon Polotsky, Silvestrov Medvedev, Kariuin Istomin, and the archpriest Avvakum.

620 Twentieth-Century Russian Poetry
Spring. 4 credits. Not offered 1990-91. Open to advanced undergraduates with permission of instructor.
An in-depth study of the writings of selected twentieth-century poets. Authors may include Blok, Mandelstam, Pasternak, Tsvetayeva, and Khlebnikov.

621 Old Russian Literature
Fall. 4 credits.
T 4:15-6:15. S. Senderovich.
A survey.

622 Eighteenth-Century Literature
Spring. 4 credits. Not offered 1990-91.
T 4:45-6:45. S. Senderovich.

623 Early Nineteenth-Century Literature
Not offered 1990-91.

624 Russian Romanticism
Fall. 4 credits. Taught in Russian. Not offered 1990-91.
T 4:15-6:15. S. Senderovich.
A survey of concepts, themes, genres, and main individual contributions in Russian literature of the Age of Romanticism. The Age of Romanticism encompasses the first four decades of the nineteenth century. Zhukovsky, Batalushkov, Pushkin, Baratynsky, Gogol, and Lermontov are the major representatives of this style and the most important period of Russian literature. The emphasis is on poetry, its historical and theoretical problems. It was, above all, the golden age of Russian poetry, which prepared and deeply influenced the following age of great Russian prose. Turgeney, Tolstoy, Dostoevsky, and Chekhov are full of allusions to the texts of the golden age and cannot be properly understood without it.

625 Russian Realism
Spring. 4 credits. Not offered 1990-91. Also open to advanced undergraduates with permission of instructor.
R 3:35-5:35. P. Carden.
A study of the development of psychological realism in Russian prose of the nineteenth century, with some attention to the poetic tradition. In addition to reading representative works, we will pay attention to the historical background of the period. We will approach the works through the critical writings of several important theorists, in particular those of Lydia Ginzburg.

626 The Tradition of Russian Poetry
Fall. 4 credits.
P 2:30-4:30. N. Pollak.
This course will examine a selection of poems that have been particularly important for the tradition of Russian literature in the nineteenth and twentieth centuries. Our focus will include critical and literary responses to these poems as well as close readings.

630 Gogol
Spring. 4 credits. Not offered 1990-91. Taught in Russian.
W 4:15-6:15. G. Shapiro.
Gogol's artistic career from his "Ukrainian" cycles to Dead Souls. We will examine representative works from each of the major divisions of Gogol's early work, in particular from his cycles Evenings on a Farm near Dikanka and Mirgorod, and trace the writer's development toward his magnum opus, Dead Souls. Although some of these readings will be done in English to enable the class to cover a significant amount of material, the class work will be focused on close analysis of the Russian text.

635 Russian Literary Criticism of the Twentieth Century (also Comparative Literature 635)
Fall. 4 credits.
A survey of twentieth-century Russian contributions to critical theory and practice. Texts by the symbolists, the formalists, the school of Bakhtin, the folklorists, and the structuralists will be read and analyzed. A reading knowledge of Russian is desirable, although alternative readings in English translation can be arranged for otherwise qualified students.

669 Seminar: Dostoevsky
Fall. 4 credits. Not offered 1990-91. Also open to advanced undergraduates.
R 4:15-6:15. G. Gibian.
Study of representative works from various periods of Dostoevsky's life, from Poor Folk and The Double to The Brothers Karamazov, including some articles, speeches, and parts of The Diary of a Writer against the context of nineteenth-century Western European and Russian literature. A variety of critical and scholarly approaches (from Russian formalists to 1980s Western scholars) will be sampled and evaluated.

671 Seminar in Nineteenth-Century Russian Literature
Spring. 4 credits.
Topic: A careful study of Russian text of Tolstoy's Voina i mir, making use of the drafts of the novel and the sources used by Tolstoy. We will also consider the novel in the light of various theories of narrative.

672 Seminar in Twentieth-Century Russian Literature
Spring. 4 credits.
Open to advanced undergraduates.
Not offered 1990-91.

673 The Russian Nabokov
Fall. 4 credits. Not offered 1990-91. Also open to advanced undergraduates.
Vladimir Nabokov wrote much verse, several plays, numerous short stories, and nine novels in Russian before switching to English. He was a major Russian writer of the twentieth century. This seminar will examine his work in the context of modern Russian literature, concentrating in particular on the novels. Knowledge of Russian is highly desirable, but all the works discussed also exist in English translation.

674 Solzhenitsyn
Fall. 4 credits. Not offered 1990-91.
Sociology Courses for Non-Majors

The social sciences provide students with particularly effective ways to understand the complexities of modern life. For many students, these courses are a last opportunity to gain the insights these fields have to offer. The Department of Sociology is continuing to design an array of beginning and advanced courses that convey a broad understanding of the methods and insights of sociological analysis—courses that will be of particular interest to undergraduates who may not major in sociology. First- and second-year students should note that the introductory courses (101, 103, 104) provide substantial focus on the sociological analysis of major issues of public life. A wide selection of general education courses is available at the 200 level. Advanced undergraduates who are majors and (4) 20 additional credits in sociology, of which 9 may be taken in related departments if approved by the student's adviser.

Related Courses in Other Departments

Students interested in sociology should consult the course lists of the other social science departments in the College of Arts and Sciences and of these other departments: Organizational Behavior (College of Industrial and Labor Relations), Human Development and Family Studies (College of Human Ecology), and Rural Sociology (College of Agriculture and Life Sciences).

The Major

Requirements for general sociology: (1) 101 and any other 100-level course (excluding Freshman Writing Seminar) with a 2.5 minimum grade-point average; (2) no later than the junior year, the 301 and 303 methods courses; (3) one course in the department at the 400 level or higher (491 is recommended); and (4) 20 additional credits in sociology, of which 9 may be taken in related departments if approved by the student's adviser.

Requirements for Social Relations: This major is offered jointly by the departments of Sociology and Anthropology. See page 318 for a description and a list of requirements.

Requirements for honors: Potential honor students are encouraged to begin taking the methods and statistics courses during their sophomore year and to take at least 4 credits of Sociology 491, Independent Study, during their senior year. Honors students take Sociology 495–496 during their senior year. Graduation with honors requires a cumulative average of at least B+ in all sociology courses and the successful completion of an oral defense of the honors thesis. Interested students should consult the director of undergraduate studies no later than the second semester of their junior year.

Cornell-in-Washington program: Qualified sociology majors may include a semester in the Cornell-in-Washington program, in which students take courses and undertake a closely supervised internship. For further information, see p. 21.

Supervised research: Qualified sociology majors are invited to participate with faculty members in conducting research. Such projects are usually initiated in one of two ways: the student may offer to assist the faculty member in an ongoing project, or the student may request that the faculty member supervise the execution of a project conceived by the student. In either case the student should enroll in Sociology 491. Interested students may direct inquiries to any faculty member.

Society and Economy Concentration

Sociology majors or students in other disciplines who wish to prepare for graduate study in any of the social sciences or in a profession (business, management, or law) may elect to acquire a concentration in society and economy. This program is designed to provide training in economic sociology, formal organizations, and social science methods. The requirements for the concentration in society and economy are: (1) three of the following courses in economic sociology and formal organizations: 245, 324, 350, 365, 372, 444; and (2) two of the following courses in methods: 301, 420, 460. For further information, consult Professor Victor Nee, 130 Uris Hall.

Introductory Courses

101 Introduction to Sociology

Fall or spring. 3 credits.

102 Introduction to Sociology: Microsociology

Fall. 3 credits.

104 Class, Race, and Ethnicity

Spring. 3 credits.
[106 Family and Work
Fall. 3 credits. Not offered 1990-91.
 TR 10:10-11:25, plus one section.
L. Smith-Lovin.
The events of the past 30 years have pro-
foundly transformed arrangements governing
love, work, and their routinization in house-
hold and employment. In this course, stu-
dents will look at data from census and time
use studies showing what has changed and
what has remained relatively stable. Sociologi-
cial theories that explain these trends will be
examined. Students will have the opportunity
to test their own ideas with analyses of data
from a national survey. The impact of sociologi-
cial ideas for public issues like child
childcare, welfare policy, sex discrimination
statutes, and comparable worth will be
discussed. This course is primarily for
freshmen and sophomores.]

General Education Courses
202 Writing in the Social Sciences (also Writing 202)
Fall or spring. 3 credits. Limited to 17
students. Prerequisite: at least one social
science course.
 Fall: TR 11:40-12:55; spring: TR
This course offers students the opportunity
to strengthen their writing, become more aware
of the diverse writing styles and strategies used
in the social sciences, and experiment with new
approaches to composition and revision. Students
will benefit from detailed written comments on their work and from extensive
discussion of student writing in class. Initial
writing and reading assignments will explore
texts of description, the ways in which writers
adapt their work to different audiences, the
differences between academic and popular
writing in a particular field, and methods of
revision. Subsequent assignments will include
the interpretation of primary data, the review of
a documentary film, and writing based on
research literature in a field of the student's
choice. The instructor will hold frequent
individual conferences with students to discuss
finished essays and work in progress. During the
semester students will write, and often revise, 8 to 10 papers—about 40 pages of
finished work.

205 Population Dynamics (also Rural Sociology 201)
Spring. 3 credits.
An introduction to population studies, which
includes the determinants and consequences of
population change. The primary focus is on
the influences of demographic dynamics on
society and the economy, with emphasis on
marriage, family formation, mortality, crime
deviance, migration, and marketing behavior.

240 Personality and Social Change
Spring. 3 credits.
An analysis of social and psychological factors
that affect and reflect social change. Topics to
be examined will include models of man and
society, national character, modern melan-
choly, feminism, family and sex roles,
industrialism, economic development, and
psychocultural conflict.

243 Family
Fall. 3 credits. Not offered 1990-91.
TR 10:10-11:25, plus one section.
L. Smith-Lovin.
A social analysis of the family both in the West and cross-culturally. Specific
areas examined include sex roles, socialization,
mate selection, sex and sexual controls,
internal familial processes, divorce, disorgan-
ization, and social change.

245 Inequality in America
Fall. 4 credits. Not offered 1990-91.
This course deals with sociological explana-
tions for various forms of social and economic
inequality, particularly inequalities associated
with class and work. We will describe systems
of inequality, analyze various theoretical
explanations for those systems, and examine
the various structures designed to reduce or
eliminate inequality.

265 Hispanic Americans
Spring. 3 credits (4-credit option available).
Analysis of the present-day Hispanic experi-
ence in the United States. An examination
of sociocultural backgrounds as well as the
economic, psychological, and political factors
that converge to shape and influence a
Hispanic group's identity in the United States.
Perspectives are developed for understanding
the diverse Hispanic migrations, the plight of
Hispanics in urban and rural areas, and the
unique problems faced by the different
Hispanic groups. Groups studied include
Dominicans, Chicanos, Cubans, and Puerto
Rican.

277 Psychology of Sex Roles (also Psychology 277 and Women's Studies 277)
Spring. 3 credits. Limited to 300 students.
Prerequisite: an introductory psychology course.
This course addresses the question of why and how adults come to differ in
their overall life styles, work and family roles,
sexuality patterns, cognitive abilities, etc.
This broad question is examined from five
perspectives: (a) the psychosynthetic per-
spective, (b) the biological perspective, (c)
the historical and cultural evolutionary perspective,
(d) the child development perspective, and (e)
the social-psychological and contemporaneous
perspective. Each of these perspectives is also
brought to bear on more specialized phenom-
ena relating to the psychology of sex roles,
including psychological androgyny, women's
conflict over achievement, the male sex role,
equalitarian marriage relationships, gender-
liberated child-rearing, female sexuality,
homosexuality, and transsexualism.

283 Groups and Relationships (also Psychology 283)
Summer and winter session. 4 credits.
Enrollment limited to ten men and ten women.
Summer M W 7-10 p.m.; winter session:
M-P 9-12 a.m. L. Meltzer.
Small groups (such as teams and committees)
and dyadic relationships (such as friends and
lovers) are studied via games, exercises, and
demonstrations. An out-of-class group project
involving self-study is an integral part of the
course. The goal is increased sensitivity to
group processes, heightened awareness of the
effects we have on others, and an understand-
ing of how person-to-person processes relate to
larger societal phenomena.

285 Social Psychology of Modernization
Fall. 3 credits.
This course analyzes the changes taking place
in newly industrializing countries around the
world. It seeks to increase the student's
understanding of the psycho-social forces
that cause social change by modifying social
behavior and personality. Particular attention
will be paid to the roles of industrialization,
social behavior, and emotional needs in the
modernization process.

Methods and Statistics Courses
301 Evaluating Statistical Evidence
Fall. 4 credits. Prerequisite: a course in
sociology.
TR 2:30-4:25. D. P. Hayes.
A first course in statistical evidence in the social
sciences, with emphasis on statistical inference
and multiple regression models. Theory is
supplemented with numerous applications.

303 Design and Measurement
Fall. 4 credits. Prerequisite: a course in
sociology.
TR 10:10-11:25.

Intermediate Courses
310 Sociology of War and Peace
Fall. 4 credits.
TR 1:25-2:40. R. M. Williams, Jr.
Every human group, community, or society
presents many examples of altruism, helping,
cooperation, agreement, and social harmony.
Each grouping or society also manifests
numerous examples of competition, rivalry,
opposition, disagreement, conflict, and
violence. Both conflict and cooperation are
permanent and common aspects of the human
condition. Collective conflicts, especially wars
and revolutions, are frequent and dramatic
events. But "peace" and "war" are equally
active social processes, not passive happen-
ings. This course describes various commonly
accepted but erroneous notions of the causes
and consequences of war and deterrence. It
deals with the major theories concerning the
sources of war in international and intra-
national social systems. The last half of the
course analyzes the modes, techniques, and
outcomes of efforts to restrict, regulate, and
resolve international conflicts.

315 Sociology and Politics of Science
Fall. 3 credits.
This course explores the social structure of
science, career patterns of scientists, and the
role of government in shaping and continuing
their.
This course provides an overview of the literature on social organization as it bears on the formation, maintenance, and dissolution of formal organizations. These organizations are extremely diverse, ranging from large multinational firms to neighborhood improvement groups. Throughout the course we will seek to discover the theoretical similarities among these diverse forms. We will be reading from the literature on firms, unions, voluntary associations, churches, political groups, and other types of organizations. We will study how these organizations relate to one another, how individuals come to join them, and the process by which they grow and decline.

335 Industrial and Post-Industrial Society

Spring. 4 credits. Open to juniors and seniors in any department. No prerequisites.

Service and information-based industries are steadily replacing goods-producing societies. Many people claim that this development fundamentally changes social structure, social conflict, politics, and culture. Others say that post-industrial society is just a continuation of industrial society. This course will explore issues concerning post-industrial society: for example, are traditional social categories such as class or religion giving way to new divisions? It will explore theories of post-industrial society and allow students to test them with data on recent changes in social conditions.

348 Sociology of Law

Fall. 4 credits.

MW 1:25. C. Bohmer.

Legal decisions and legal practices viewed within the context of society's institutions and customs. Topics vary from semester to semester but deal with issues such as civil rights versus society's rights, variations in permissible sexual practices in different cultures, the social organization of police departments and its effects on justice and equity, changes in marriage in relation to changes in the status of women, the role of psychiatry in the legal process, and judicial attitudes toward rape victims.

350 Organizations, Individuals, and Social Structure

Spring. 4 credits. Prerequisite: one course in sociology. Not offered 1990–91.

Organizations are composed of people, but at the same time they can be regarded as actors in their own right, distinct from their members. This course introduces recent sociological theory and research on the relations among organizations and between organizations and individuals. Topics include the reasons for organization, effects of social conflict, stratification among organizations, and the extent to which organizations represent their members' interests. Examples will be taken from firms, labor unions, and political organizations.

364 Race and Ethnicity

TR 1:25–2:40. S. Olzak.

This course examines the sociology of race and ethnic relations in the United States, Western Europe, South Africa, and other settings. The topics covered include the role of immigration and competition, the dynamics of upward mobility for some (but not all) ethnic-racial groups in the United States, the sociology and politics of ethnic-racial caste systems such as apartheid in South Africa, and the dynamics of ethnic boundaries in developing countries compared to those in underdeveloped countries.

365 Comparative Perspectives on Socialist Societies and Economies

Fall. 3 credits. Open to juniors and seniors in any department. No prerequisites. Not offered 1990–91.

This course focuses on analyzing the relationship between state, economy, and society in socialist societies. Particular attention is given to the tensions between planning and market, equality and equity, center and locality, bureaucratic domination and individual choice, and ideology and dissent. What are the problems in state-socialist societies and what are the dynamics and limits of reform movements? What are the areas of difference and convergence in the patterns of state, market, and household relations in capitalist and socialist societies? We will draw primarily on case studies of the Chinese, Eastern European, and Soviet experiences.

386 Social Relations Today

Spring. 4 credits.

This course examines the problems and prospects of restructuring the social relations of work and the family, and the family, in relation to changes in the status of women, the role of psychiatry in the legal process, and political participation.

389 Contemporary Chinese Society

This course provides an introduction to Chinese society, its social organization, and its institutions. Since 1949 the various development models China has pursued have had differing consequences for society. What effects have they had on societal change—on stratification, community development, politics, the economy, work, schooling, family life, the position of women, personal relationships, and the meaning of life and values? What lessons can we draw from the Chinese experiences in implementing state-directed social change? How do we assess their accomplishments and failures? Recent field research on China will be cited.

372 Sex Discrimination: Law and Social Policy (also Women's Studies 372 and Government 306)

Fall. 4 credits.

This course will cover the legal and social consequences of sex discrimination. It will examine the relationship between femininity and identity, including the role of the law in redressing or perpetuating social and legal inequities.

385 Personality and Social Systems

Spring. 3 credits. Prerequisite: one course in any social science. Enrollment limited to 20 students.

This course will focus on understanding personality and behavior in a cultural context. A number of theories and conceptual approaches that have been used to understand the relationship between personality and social systems will be critically examined. Some themes in contemporary American culture will be discussed.

Advanced Courses

The following courses are intended for advanced undergraduates with substantial preparation as well as for graduate students in sociology and related disciplines. The normal prerequisite for all 400-level courses is one introductory course plus 301 (or an equivalent statistics course). Students who are not sure whether their background is sufficient for a particular course should consult the professor in charge.

405 Sociology of Emotions

Spring. 4 credits. Prerequisite: at least one of Sociology 101, 103, or 205. Not offered 1990–91.

The seminar examines (1) theories that explain emotional responses as the product of social interaction and (2) the impact of emotional displays on social processes such as attraction, labeling, and identity maintenance. Sociological approaches to emotion are compared with psychological and biological views. Readings include classic works as well as current theory and research. Student research is an integral part of the course.

420 Mathematics for Social Scientists

Fall. 2–4 credits.

R. McGinnis

Elementary matrix algebra, probability theory, and calculus.

426 Policy Research

Spring. 3 credits (4-credit option available). Prerequisite: a course in multivariate methods. Not offered 1990–91.

R–9.11. S. Caldwell.

Examines the distinctive character of that social research which is sponsored and carried out explicitly for the purpose of informing policy. Intended especially for students considering nonacademic careers. Draws frequently from case studies to probe the methodological requirements, substantive flavor, and partisan context of applied research and also to identify the institutional actors involved in its sponsorship, production, and use.

444 Contemporary Research in Social Stratification

Fall. 4 credits. Not offered 1990–91.

R. L. Breiger.

Stratification and mobility as paired concepts requiring mutual articulation. The interplay of structure (occupational groups, labor markets, organizational demographics, social classes) and process (tracking, career trajectories, socioeconomic attainment).

460 Field Research in Sociology

Spring. 3 credits. Not offered 1990–91.

M 3:35–5:30. V. Nee.

This course will deal with the organization and execution of studies of social life in naturally occurring settings—through participant observation and various forms of interviewing, as well as through the analysis of personal and historical documents. After a brief discussion of selected issues in the methodology and social research, attention will center on a critical examination of five published studies—-to ascertain in each case just what the investigator was trying to do and the extent to which he or she succeeded. During the
semester each student will be expected to develop a detailed study design and to do whatever preliminary tasks that are necessary. This may be a doctoral dissertation, an M.A. research project, or some other inquiry on a problem of personal interest.

463 Political Sociology
Spring. 4 credits. Prerequisite: Any two courses in sociology and/or government. T R 10:10–11:25. D. Weakliem. Analyzes the relation between politics and social structure, focusing on contemporary capitalist democracies. Considers classical and contemporary social class and politics. Topics include ideology, voting behavior, and recent changes in class structure.

468 Women and Achievement
Fall. 3 credits. Not offered 1990–91.
An analysis of social and psychological factors affecting female achievement. Topics will include work roles, sex differences in children’s achievement, the impact of sex roles on the socialization of competence and achievement among women, and the impact of marriage and the family on career choice and occupational achievement.

491 Independent Study
Fall or spring. 1–4 credits. For undergraduates who wish to obtain research experience or to do extensive reading on a special topic. Interested students must submit a petition, available at the departmental offices, 314–318 Uris Hall. Permission to enroll for independent study will be granted only to students who present an acceptable prospectus and secure agreement of a faculty member to serve as supervisor for the project throughout the term. Graduate students should enroll in 891–892.

495 Honors Research
Fall or spring. 4 credits. Limited to sociology majors in their senior year. Prerequisite: permission of instructor. Hours to be arranged. Staff.

496 Honors Thesis: Senior Year
Fall or spring. 4 credits. Prerequisite: Sociology 495. Hours to be arranged. Staff.

497 Social Relations Seminar (also Anthropology 495)
Spring. 4 credits. Limited to seniors majoring in social relations. Hours to be arranged. T. Kirsch.

Graduate Core Courses
These courses are primarily for graduate students in sociology but may be taken by other graduate students with permission of the instructor. Graduate students in sociology will normally take each of the five courses listed below, but with the concurrence of their special committees other arrangements may be made.

501 Basic Problems in Sociology I
Fall. 4 credits.
Analysis of theory shaping current sociological research. Examination of several central problems in sociological inquiry provides an occasion for understanding tensions and continuities between classical and contemporary approaches, for indicating the prospects for unifying microsociological and macrosociological orientations, and for developing a critical appreciation of efforts to integrate theory and research.

502 Basic Problems in Sociology II
Spring. 4 credits.
T 10:10–12:05. R. Breiger.
Analysis of theoretical perspectives shaping current sociological research. A continuation of Sociology 501.

505 Research Methods I: Logic of Social Inference
Fall. 4 credits. Prerequisite: a first course in statistics and probability.
M W 2:30–4:25 plus a weekly lab. S. Caldwell.
The stages and logic of social inquiry, using the formal language of multivariate regression and the techniques of analysis of variance with emphasis on applications. Threats to inference—and techniques for meeting such threats—are examined in each stage of inquiry: conceptualization; measurement; design; specifying, exploring, testing, and evaluating models; dissemination and influence of results. Scope includes survey, comparative, historical, and experimental styles. Work load includes weekly lab exercises with data, attention to subject matter articles, and a research proposal. The first course in a three-course methods sequence (505–507).

506 Research Methods in Sociology II
Spring. 4 credits. Prerequisite: Sociology 420 or 505 or equivalent.
A survey of methods for analyzing sociological data, including measurement error models, confirmatory factor analysis, panel models, and general structural equation methods. Readings from the sociological research literature will illustrate various methods. Periodic assignments on micro and macroframe computer programs will integrate theory, method, and data.

507 Research Methods in Sociology III
Fall. 4 credits. Prerequisite: Sociology 506.
The statistical analysis of temporal change. Major topics are time-series and event-history (survival) analysis, with some discussion of panel data.

Graduate Seminars
These seminars are primarily for graduate students but may be taken by qualified advanced undergraduates who have permission of the instructor. Which seminars are to be offered any term is determined in part by the interests of the students, but it is unlikely that any seminar will be offered more frequently than every other year. The list below indicates seminars that are likely to be offered in 1990–91, but others may be added and some may be deleted. Students should check with the department before each term.

509 Seminar on Sociology of Organizations (also Management NRE 555)
Fall. 4 credits.
Hours to be arranged. J. Freeman.
This course explores current research on organizations. The current literature can be broken up into four subareas: (1) population ecology of organizations (the class will read Hannan and Freeman, Organizational Ecology); (2) institutional theory; (3) organization as mechanisms of social stratification (including work on occupational mobility and internal labor markets); and (4) economics of organization (including such topics as agency theory, transaction costs, and economic approaches to organizations). These areas will be explored in depth reflecting student interest. For each, stress will be placed on the opportunities for empirical research and limitations of operationalization.

513 Social Networks and Social Structure
A critical survey of theories and techniques of structural analysis in sociology, centering on the usefulness of social network analysis in providing integration of studies at different levels of generality. Applications in the areas of the sociology of organizations, community studies, social stratification, and dependence relations among nations. Emphasis on the methodological relevance of theories and operational research procedures.

517 The Sociology and Demography of Science and Technology

525 Workshop in Event Analysis
Fall. 4 credits.
A research workshop for selected undergraduates and graduate students with research experience in social movements and collective action. Emphasis on data collection, research design, and data analysis of events in the study of collective action. Enrolment with permission of instructor.

551 Seminar in Collective Action
Examination of current research and theory in collective action, including neo-Marxist, resource mobilization, breakdown, and competition perspectives of the rise and fall of collective action and social movements. Comparison of different methods of data collection and analysis, including examination of recent event-history methods applied to collective-action research.

553 Contemporary Research in Political Sociology
Considers research from several theoretical perspectives in political sociology. The main focus will be on contemporary society, but some historical work may be included. Topics may include state economy relations, class structure and politics, and political ideology, among others.

565 Seminar on Voluntary Associations
This is a study of the literature on voluntary associations, which can be described as groups that are not business, government, or family. The literature reflects the extreme diversity of the subject: there are thousands of references in sociology, political science, anthropology, psychology, economics, and related areas. The course will draw on readings from a broad selection of these sources, beginning with some of the earliest references and finishing with some modern empirical and theoretical work.
These graduate seminars will be offered irregularly. Topics, credit, and instructors will vary from semester to semester. Students should look at the sociology department bulletin board at the beginning of each semester for possible offerings.

606-607 Sociology Colloquium
Fall and spring. No credit. Required of all graduate students. Juniors and seniors are encouraged to attend.
F 2:30-5. Staff.
A series of talks representative of current research interests in sociology, given by distinguished visitors and faculty members.

608 Proseminar in Sociology
Fall. One credit. Required of all first-semester graduate students.
Hour to be arranged. Staff.
Discussions on the state of sociology and on the interests of the members of the field, given by members of the field.

620 Processes in Small Groups
Spring. 4 credits. Not offered 1990-91.
W 2:30-5. L. Smith-Lovin.
Analysis of processes in small groups, including communication, cohesiveness, norm development, group conflict, conformity, deviance, status differentiation, leadership, power, and productivity. The seminar will cover both theory and research methods in the investigation of groups in face-to-face interaction.

625 Seminar on Organization Ecology
Fall. 4 credits. Prerequisite: coregistration in Sociology 507 or permission of instructor. Not offered 1990-91.
Consider theory and research on the ecology of organizations with an emphasis on contemporary developments. Issues treated include evolution of organizational forms, interaction of competitive and institutional processes, density dependence in vital rates, niche width dynamics, and the evolution of size distributions.

627 Models of Error
Spring. 4 credits. Not offered 1990-91.
T 2:30-5. M. McPherson.
This is a methods seminar that focuses on solutions to the classical problems of estimation in linear models: measurement error in the independent variables, specification error, reciprocal effects, multiple indicators, unmeasured variables, correlated errors, and the like. The goal of the course will be to gain facility in the use of non-standard solutions to these problems, such as the LISREL model, the EOS approach, and such variants as LINC.
Theatre Arts Major

Theatre Concentration

The theatre concentration offers studies in the history of theatre, dramatic theory and criticism, playwriting, acting, directing, design/technology, and stage management.

Course requirements for theatre concentration:

1) TA 240 and TA 241 (two-semester introduction to theatre) 8
2) TA 250 Introduction to Theatre Design and Technology 4
3) TA 280 Introduction to Acting 3
4) Four laboratory courses distributed as follows:
 - Credits
 TA 151 Production Lab I 1-3
 TA 153, TA 253, or TA 353 Stage Management Lab I, II, or III 1-3
 TA 155 Rehearsal and Performance or TA 351 in a different area 1-3
 TA 251 or TA 351 Production Lab II or III 1-4
5) Four courses in the area of Theatre Studies chosen in the following manner:
 - Credits
 Two courses selected from TA 351 through 399 8
 Two courses selected from TA 400 or above 8
6) Three courses (at least 9 credits) in other Theatre Arts courses chosen in consultation with the faculty advisor. Course taken to qualify for admission to the Advanced Undergraduate Training Program (described below) may also be used to fulfill this requirement.
7) Courses in which a student receives a grade below "C" cannot be used to fulfill the requirements for a Theatre Arts major.

Advanced Undergraduate Training Program

The department offers advanced training in acting, directing, playwriting, design/technology, and stage management to students who qualify on the basis of outstanding achievement in coursework. Criteria for admission to the AUTP is by the completion of the appropriate "track" of courses and invitation of the faculty. The program provides students with intensive study in theatre as well as the opportunity to collaborate with professional faculty and guest artists. Department productions will be chosen to offer the opportunity to collaborate with professional faculty and guest artists. Departments (with consent of adviser):

- TA 285 Seminar in the Cinema I 4
- TA 286 Seminar in the Cinema II 4
- TA 287 Intermediate Film Projects 4
- TA 288 Seminar on Ethnographic Film 4
- TA 298 Seminar on Film 4
- TA 301 Seminar on History of Film 4
- TA 302 Seminar on Film Theory 4
- TA 303 Seminar on Film Studies 4

Film

The study of film began in this department in the 1900s and continues to be based here. However, in the interim years it has also spread into a significant number of other departments in the college: Africana studies, anthropology, Asian studies, comparative literature, English, German studies, history, psychology, and romance studies. This proliferation of courses has been accompanied by a comparable proliferation of perspectives and faculty concerns, e.g., the relationship of national cinemas to national literatures and specific cultures, film to myth and ideology, the use of film as historical evidence, film's efficacy as a rhetorical medium, and film's contribution to perennial issues in aesthetics, the history of the arts, and studies in cognition.

This richness of courses and perspectives is matched by the ways in which students may make film the focus of their undergraduate studies. The four currently being used are as follows: 1) concentrating on film within a Theatre Arts major; 2) constructing an individually tailored Independent Major in film (including the possibility of placing film in tandem with another medium or discipline); 3) focusing on film as a College Scholar; and 4) concentrating in Visual Studies. Students interested in option 4 should consult Marilyn Rivchin (Theatre Arts) and/or Robert Ascher (Anthropology). Students interested in options 2 or 3 should consult Don Fredericksen (Theatre Arts) and Lynne Abel (director, College Scholar and Independent Major programs). Students interested in the first option should first consult Alison Van Dyke (director, Undergraduate Studies, Theatre Arts) and then one of the department's faculty.

Film Concentration Requirements

The department's film concentration requires a total of 50 credits in film, theatre, and related courses.

1. TA 274 Introduction to Film Analysis 4
2. One of the following theatre courses:
 - TA 250 Fundamentals of Theatre Design/Technology 4
 - TA 280 Introduction to Acting 3
 - TA 398 Directing I (prerequisite TA 280) 4
3. A core of three film courses:
 - TA 375 History and Theory of Commercial Narrative Film 4
 - TA 376 History and Theory of Documentary and Experimental Film 4
 - TA 377 Fundamentals of 16mm Filmmaking 4
4. Four courses (16 credits) in film offered by Theatre Arts as below, or by other departments (with consent of adviser):
 - TA 313 The Japanese Film 4
 - TA 378 Russian Film of 20s and French Film of 60s 4
 - TA 379 International Documentary from 1945 to present 4
 - TA 396 German Film 4
 - TA 413 Film and Performance 4
 - TA 450 Seminar on Ethnographic Film 4
 - TA 475 Seminar in the Cinema I 4
 - TA 476 Seminar in the Cinema II 4
 - TA 477 Intermediate Film Projects 4
 - TA 494 Advanced Film Production 4
 - TA 653 Myth onto Film 4
5. 15 credits of related coursework in or outside of Theatre Arts (approved by adviser)

Film Study Abroad

The College of Arts and Sciences, through this department and in consort with seventeen other colleges and universities, offers up to a full year's study at the Inter-University Center for Film and Critical Studies in Paris, France. The center's program is theoretical, critical, and historical. It is most useful to students pursuing a major in film studies and serves as an intensive supplement to their Cornell film courses. Fluency in French is required, and Theatre Arts 274, 375, and 376 are prerequisites. Inquiries should be addressed to Professor Fredericksen, Cornell's liaison with the center.

The Dance Program

The dance program offers courses in dance technique, improvisation, composition, performance, anatomical analysis of movement, and the history, theory, and criticism of dance. Technique courses include modern dance at four levels and ballet at three levels. Other dance forms, such as tap, historical dances, Japanese Noh, Indian, Javanese, and African dance are offered on a rotating basis. Courses in ballroom dance taken through the Physical Education program supplement these offerings. Technique classes develop strength, flexibility, coordination, and the ability to perceive and reproduce phrases of dance movement with clarity of rhythm, body design, and expression. The more advanced courses require the ability to perform complex phrases in various styles. Students may earn up to four academic credits (one each semester) in level III and IV technique only (see TA 304, 306, and 308). Students may also satisfy the physical education requirement by taking dance technique classes in the dance program. The schedule for all dance technique classes is available in the main office of the Center for Theatre Arts. Registration for technique classes takes place in Teagle Hall. Students taking technique for academic credit must also register through their own colleges.

The faculty offer rehearsal and performance workshops in which they choreograph and rehearse original dances, performed in public concert. Admission to rehearsal and performance classes is by audition. Students may receive one academic credit (S-U grades only) when performing in student-faculty concerts by registering for TA 155.

The Dance Major

To be admitted to the major, students must have completed two technique courses in modern dance or ballet (at level II or above for the performance/composition concentration) and TA 201 (dance improvisation). It is also recommended that TA 250 and Music 105, both requirements for the major, be taken before the junior year. The dance major offers two options for concentration: 1) composition and performance (studio); 2) history, theory, and criticism (academic). The following requirements are expected of majors in both concentrations.
Prerequisites for the major:
Two technique courses in modern dance or ballet (at level II or above for the performance/composition concentration)
TA 201 Dance Improvisation

Requirements for the major: Credits
Music 105 (or substitute at the appropriate level) 3
One course in historical, tap, jazz, ballroom, or non-Western dance 0-3
TA 210 Beginning Dance Composition and Music Resources 3
TA 250 Fundamentals of Design and Technology 4
TA 316-315 Western Dance History 8
TA 418 or other 400-level academic dance course 4
TA 155 Rehearsal and Performance 1

Additional requirements for the studio concentration: Credits
Two semesters each of ballet and modern dance technique (in addition to the prerequisite) 0-4
TA 310-311 Intermediate Projects in Dance Composition 6
TA 312 Physical Analysis of Movement 3
TA 410-411 Advanced Dance Composition 6

Students concentrating in the studio option will be expected to perform in at least two concerts and to present at least two of their own dances, in addition to the senior project.

Additional requirements for the academic concentration: Credits
A total of at least two semesters each of ballet and modern dance techniques (including prerequisite) 0-2
Dance history, theory, criticism, and aesthetics courses 8
TA 490 (senior paper) 4

For both options, additional credits, for a total of 45, should be selected in consultation with the advisor. Of the 45 credits, at least 32 must be at the 300 level or higher.

Department Courses

Theatre Courses

240 Introduction to Western Theatre I Fall. 4 credits.
A survey of the major developments in the theatre—playwriting, acting, staging, architecture, and dramaturgy—in Classical Greece and Rome, medieval and Renaissance Europe. Representative plays will be read and discussed in their theatrical context.

241 Introduction to Western Theatre II Spring. 4 credits.
A survey of the major developments in the theatre—playwriting, acting, staging, architecture, and dramaturgy—since 1642. Among the areas considered will be French Neoclassicism, the English Restoration, the eighteenth and nineteenth centuries in England, France, and Germany and the modern international stage. Representative plays will be read and discussed in their theatrical context.

Theatre Studies Courses

[130 American Myth in Drama
Fall or spring. 3 credits.
This course examines the images of America presented on the twentieth-century stage. How do Americans view themselves? How are they seen by foreign dramatists? To what ends do dramatists use the American myth?

140 From Script to Stage: Writing about the Theatrical Process
Fall and spring. 3 credits.
In this course students will explore and write about the process through which drama becomes theatre and examine how the idea of "theatre" has changed over the centuries. Students will be asked to apply the rhetorical strategies of theatre to their own essay writing. Texts will include Theatre Cornell productions.
Section 02: M W F 12:10-1:0. S. Keller.
Since the time of Plato, critics have debated the function of theatre: does it entertain, instruct, or both? The last century, however, has witnessed the proposal of a new function for theatre, that of empowering the people with a means to give voice to their desires, hopes, fears, and, above all, to their demands for political and social change. Similarly, several new production processes, such as the collective process of the Living Theatre, have emerged over the last century to challenge the traditional mode of production. Through the reading and viewing of plays and musicals by Tennessee Williams, The Living Theatre, Arthur Laurents and Stephen Sondheim, Bertolt Brecht, and others, students are required to explore in their essays questions such as What is the purpose of theatre? Does purpose determine process or vice versa? What is the role of the audience in a particular process? Texts will include Theatre Cornell productions.

160 Vietnam and the American Theatre
Fall and spring. 3 credits. Limited enrollment.
The Vietnam War has spawned a diverse range of dramatic texts and events. This course will investigate some central questions regarding this dramaturgy, such as: What types of theatrical events developed from the Vietnam War? How did this dramaturgy reflect attitudes about the war? How did it change over time? Where did it go in the 1970s and early 1980s? Why has there been a recent resurgence of theatrical interest in this topic? The class will investigate plays by David Rabe, Michael Weller, The Living Theatre, The Bread and Puppet Theatre, and others, in addition to various Happenings and events. Students will read and discuss the dramaturgy as the basis for their critical assignments. Additional required screenings in evening several times during the semester.

[325 Classic and Renaissance Drama (also Comparative Literature 352)
Spring. 4 credits.
A study of the major traditions in Western drama from the beginnings among the Greeks to the Renaissance in England and Spain. The work will consist of both lectures and discussions, focusing primarily on a close reading of the plays. But we shall also give attention to the physical conditions of production and to social and political contexts. Among the authors to be read will be Aeschylus, Sophocles, Euripides, Aristophanes, Marlowe, Shakespeare, and Lope de Vega.]

[326 European Drama, 1660 to 1900 (also Comparative Literature 353)
Spring. 4 credits.
Readings from major dramatists from Corneille to Chekhov, including such authors as Moliere, Congreve, Marivaux, Goldoni, Gozzi, Schiller, Kiesl, Gogol, Ostrovski, and Ibsen.

327 Modern Drama (also Comparative Literature 354)
Spring. 4 credits.
M W 11:15-12:05. M. Hays.
Readings in European drama from Ibsen to the present.

[331 The Classical Theatre
Fall. 4 credits. Prerequisite: Theatre Arts 240 or permission of instructor. Not offered 1990-91.
An examination of major developments in the theatre—acting, staging, dramaturgy—and the historical background to these developments in Greek and Roman society. Representative plays will be read and discussed in their theatrical text.

[332 Medieval and Renaissance Theatre
Spring. 4 credits. Prerequisite: Theatre Arts 240 or permission of instructor. Not offered 1990-91.
A study of theatrical styles and production modes. Topics include the medieval liturgical and secular stages, the Renaissance court and public stages on the Continent and in England and the professionalization of the theatre. Representative plays will be read and discussed in their theatrical context.

[333 From the Neo-classical Theatre to the Well-Made Play
Fall. 4 credits. Prerequisite: Theatre Arts 240 or 241.
A study of theatrical styles and production modes. Topics include the English Restoration and French Neoclassical theatres, the European court theatre, romanticism in the theatre, and the rise of standing commercial theatre companies. Representative plays will be read and discussed in their theatrical context.

[335 The Modern and Contemporary Theatre
Fall. 4 credits. Prerequisites: Theatre Arts 240 or permission of instructor.
A study of theatrical styles and production modes. Examination of advances in acting, directing, design, and dramaturgy in theory and in practice from the late nineteenth century through the present day. Representative plays will be read and discussed in their theatrical context.

336 American Drama and Theatre (also English 336)
Spring. 4 credits.
[338 Japanese Theatre (also Asian Studies 338)]
Fall. 3 credits. Not offered 1990-91.
W 2:30-4. K. Brazell.
A study of traditional forms of Japanese theatre. Topics will include ritual and theatre, noh and kyogen, kabuki and the puppet theatres, and contemporary use of traditional forms. Special emphasis will be placed on dramaturgy, acting styles, performance aesthetics, and theories of performer training.

400 Shakespeare: From Table to Stage
Fall. 4 credits.
Prerequisites: TA 240, 280, and 281.
This course is a comparative play analysis and performance focused on the special problems encountered in Shakespeare's dramatic material. Plays to be studied are: Richard II, Romeo and Juliet, and A Midsummer Night's Dream. The first two weeks will be devoted to historical background, an analysis of Shakespeare's language and scansion, physical and vocal exercises, and relevant literary issues. Each play will be examined in four-week blocks, with time divided between script analysis and scene work. Requirements will include the performance of monologues and scenes and the writing of three papers. Limited to 15 students.

415 Mass Culture (also Society for the Humanities 415)
Fall. 3 credits.
W 2:30-5:30. J. Feuer.
This seminar will approach the subject of popular culture from the perspective of contemporary critical theory. We will focus upon the products of the U.S. mass culture industry (e.g., films, TV, music, fashion), with an emphasis on the analysis of television. We will consider both the varying theoretical approaches to mass culture and specific studies of forms of mass culture using these approaches. Case studies might include: romance novels, James Bond, teen films, TV and postmodernism, TV soap operas, MTV, made-for-TV movies, and others. The course readings will be chosen primarily from recent studies which, although theoretical in nature, focus upon specific cultural phenomena and often synthesize several theoretical models.

417 Fascism and Mass Culture (also German Studies 417, Comparative Literature 417, Society for the Humanities 417)
Fall. 4 credits. Taught in English for advanced undergraduate and graduate students.
This course will study the role and evolution of mass culture in the Third Reich between 1933 and 1945. In so doing, I will seek to demonstrate why and how the Nazis were able to use forms of aesthetic representation and mass media communication to establish and maintain political control during this period. Three things will be emphasized: 1) A comparative approach that will explore the similarities and differences in the developments of mass-mediated culture during the 1930s within liberal/capitalist, communist/Stalinist, and fascist societies; 2) a focus upon the "aesthetizing of politics" (Walter Benjamin) by the Nazis as the key to understanding their appropriation of mass culture as a mode of domination; and 3) and, finally, as a main part of the course, a study of individual cultural documents of mass culture. This will include careful interpretive analysis of films (Jud Suss, Triumph of the Will, Iaron Munchhausen), literature (popular novels, utopian novels, poetry, etc.), theatre (the Nazi use of the classics such as Shakespeare, Goethe, Schiller; Nazi plays), and art (a study of Nazi painters—Arno Brekker, etc.).

[431 Theory of the Theatre and Drama I]
Fall. 4 credits. Prerequisite: some theatre history and dramatic literature work at the 300 level or permission of instructor. Not offered 1990-91.
A study of various theories of dramatic form and theatrical presentation from Aristotle and Horace to Goethe and Schiller.

[432 Theory of the Theatre and Drama II]
Spring. 4 credits. Prerequisites: Course work in theatre history or dramatic literature at the 300 level or permission of instructor.
Not offered 1990-91.
An examination of dramatic theory and its performance context from Schiller to the present.

[433 Dramaturgy: Play and Period]
Spring. 4 credits.
Is there a "female dramaturgy"? What is the female tradition in the theatre? The course will explore these questions through an investigation of texts by women dramatists, including Hrotsvitha, Apthia Behn, and Caryl Churchhill, as well as theory by such critics as Sue Ellen Case and Jill Dolan.

[434 Theatre and Society]
Fall. 4 credits. Prerequisite: permission of instructor or some work in theatre history or dramatic literature at the 300 level. Not offered 1990-91.
M 3:30-5:00. M. Hays.
An exploration of the ways in which the theatre serves to formulate cultural and aesthetic norms.

435 Special Topics
Visiting faculty.

[438 East and West German Drama]
Fall. 4 credits. Not offered 1990-91.
This course will cover the major historical and textual developments in German theatre from the end of World War II to the present. Leading dramatists from West and East Germany, Switzerland, and Austria (Brecht, Frisch, Durrenmatt, Weiss, Hochhuth, Muller, Braun, Kroetz, Handke, and others) will be treated in the light of the political events and aesthetic-dramaturgical traditions from which they emerge and with which they are taking issue.

440 Issues in Community-Based Arts
Fall. 4 credits. Limited to 25 students. Permission of instructor.
M 4-6, hours in the field to be arranged.
J. O'Neill, B. Levit, J. Salmon-Rue.
The course combines participation in a campus or community project and a weekly seminar that will survey theories and practices in community-based arts. Community-based arts forms in general, and storytelling in particular, will be explored. The process of program planning and implementation, as well as the context (cultural, demographic, organizational) will be examined in relationship to field experiences. Artists from Junebug Theatre and Roadside Theatre Companies will participate in seminar discussions and collaborate with students on the projects.

[455 Topics in Aesthetics/Horror]
Spring.
This course focuses on the genre of horror and seeks to explore its nature, its characteristic effects and structures, its imagery and its narrative forms, its social implications, and the nature of the pleasures it affords audiences. The primary text for the course will be Paradoxes of the Heart: The Philosophy of Horror by Noel Carroll, along with selected readings by Burke, Lovecraft, King, Twitchell, Haller, and Waller. Philosophical articles on the topics of how it is possible to fear fictions and on how one can derive pleasure from what is distressing will also be examined. Plays, films, novels, and short stories will also be discussed on a weekly basis in class in terms of the ways in which they shed light on the genre as a whole.

484 History of Avant-Garde Theatre
Spring. 4 credits. No prerequisite, but a basic knowledge of theatre history is expected.
W 2-4:25. S. Banes.
The course will examine the history of avant-garde theatre from its roots in Wagner's notion of the Gesamtkunstwerk through the experiments of the Symbolists, Italian and Russian Futurists, Expressionists, Constructivists, Dadaists, Surrealists, and various later exponents of art-theatre in the twentieth century, up to the downtown loft, gallery, and cabaret performance art of the 1980s. Students may elect to research and reconstruct a historical performance as a final project. Some outside film screenings will be required.

633 Seminar in Theatre History
Fall. 4 credits.
Advanced work in a specific area of theatre history.

636 Seminar in Dramatic Criticism
Fall. 4 credits. Prerequisite: Permission of instructor.
Critical approaches to the drama.

637 Seminar in Dramatic Theory
Spring. 4 credits. Prerequisite: Permission of instructor.
Recent developments in dramatic theory.

[648 East and West German Drama: Post 1945 (also German Studies 438)]
Fall. 3 credits. Not offered 1990-91.
This course will cover the major historical and textual developments in German theatre from the end of World War II to the present. Leading dramatists from West and East Germany, Switzerland, and Austria (Brecht, Frisch, Durrenmatt, Weiss, Hochhuth, Muller, Braun, Kroetz, Handke, and others) will be treated in the light of the political events and aesthetic-dramaturgical traditions from which they emerge and with which they are taking issue.

THEATRE ARTS 287
This seminar will examine traditional and contemporary theories of laughter and humor, including writings by Plato, Aristotle, Cicero, Hazlitt, Spencer, Freud, Bergson, Roger Scruton, Stanley Cavell, Ronald deSousa, Ted Cohen, and John Morreall, among others. The course will attempt to isolate the nature and structure of the comic, humor, riddles, farces, paradoxes, satires, caricatures, sight gags, cartoons, and a gamut of comic forms, including stand-up monologues and informal badinage. Selected films, plays, club recordings, novels, short stories, cartoons, and videos will be studied to ground our theorizing empirically. The ethical, social, and political ramifications of humor will also be a concern of the course.

The course will explore the representation(s) of race in selected periods and movements of dramatic writing and theatrical performance in America. Drawing both on conventional dramatic theories of "types" and "masks" and poststructuralist theories of "otherness" and "difference," the course will study important dramatists and movements and performance practices in the 1960s, focusing on the avant-garde in the early part of the decade as a harbinger of the cultural explosion later in the decade. We will look at Happenings and Fluxus, as well as genres of performance generated by the cultural milieu of this era; at the beginnings of postmodern dance and the Off-Off Broadway movement; at underground film; at new genres, later in the decade, of the spectacle of anti-war protest and guerrilla theatre; and at the broader context of popular culture and its appropriations by the avant-garde. An in-class presentation of an original research project will be required, as will some outside film screenings (times to be arranged).

The study, development, and performance of roles in departmental theatre or dance productions or the study and practice of directing as experienced in assisting faculty and guest directors.

An introduction to the processes of acting. Focus will be on physical and vocal exercises, improvisation, and text and character. There is required play reading, play attendance, and some scene study.

The study, development, and performance of roles in departmental theatre or dance productions or the study and practice of directing as experienced in assisting faculty and guest directors.

An introduction to an actor's technique and performance skills, exploring the elements necessary to begin training as an actor, i.e., observation, concentration, and imagination. Focus will be on physical and vocal exercises, improvisation, and text and character. There is required play reading, play attendance, and some scene study.

Fall or spring. 3 credits. Each section limited to 14 students. Prerequisites: Theatre Arts 280 and audition. Registration only through department roster in registrar's office, the Center for Theatre Arts.

T R 10:10-12:05, A. Van Dyke.
T R 12:20-2:15, K. Grant.
Practical exploration of the actor's craft through improvisation and exercises in physical and psychological action. Scene study utilizing the plays of Williams, Inge, and Miller.

Study and practice in the development of the speaking voice with emphasis on tone quality, breathing, articulation, and practice of standard American English pronunciation. Some oral interpretation of poet, narrative, and dramatic text.

Primarily for department majors. Prerequisites: TA 280, 281.
Registration only through department roster in the main office of the Center for Theatre Arts. Development of the speaking voice with additional emphasis on dramatic interpretation.

Primarily for department majors or advance undergraduate training program candidates. Prerequisites: TA 280, 281.
Registration only through department roster in the main office of the Center for Theatre Arts. Development of speech and dialects in dramatic text.

Limited to 16 students in a section. Fee for theatre admissions, $10.
An introduction to the processes of acting. Practice in training techniques, rehearsal procedures, and methodology. Productions of the Hangar Theatre company attended and used as performance examples. Includes visits by guest artists and Hangar Theatre company members.

This course focuses on advanced problems in language and period style (carriage, bows, and curtsies). Monologues and scenes will be drawn from these playwrights: Shakespeare, Moliere, Shaw/Coward, Sheridan/Goldsmith/Wycherly, and Aeschylus/Euripides.
385 Skills, Techniques, and Approaches to Performance Spring. 2 credits. Prerequisites: Theatre Arts 280 and permission of instructor.

Hours to be announced. K. Grant.

This course will focus on exercises and techniques designed to develop the students' understanding of their physical skills in order to deepen their understanding of their bodies and its value to their work in rehearsal and performance. The students will be encouraged to explore basic principles of movement and gain an appreciation for how their physical choices can be used to create more complete characterizations. The curriculum will include: tension/relaxation, breath, alignment and flexibility work in conjunction with exercises using neutral and expressive mask techniques.

Directing
155 Rehearsal and Performance Fall or spring. 1–2 credits. 1 credit per production experience per term up to 2 credits per term. Students must register for the course in the term in which credit is earned; requests for retroactive credit will not be honored. Limited to students who are assigned roles after tryouts at the department's scheduled auditions or who are assigned assistant director positions after obtaining director's approval. Students should add this course only after they have been assigned roles. S-U grades only.

The study, development, and performance of roles in departmental theatre or dance productions or the study and practice of directing as experienced in assisting faculty and guest directors.

398 Fundamentals of Directing I Fall. 3 credits. Limited to 12 students. Prerequisite: Theatre Arts 280 and permission of instructor.

Focussed, practical exercises to teach the student the fundamental staging techniques that bring a written text to theatrical life. A core objective of the course is to increase the student’s awareness of why and how certain stage events communicate effectively to an audience. Each student will direct a number of exercises as well as a short scene.

499 Seminar in Directing Fall or spring. 1–4 credits. Prerequisites: Theatre Arts 240, 250, 299, 398, 498, and permission of instructor.

Hours to be arranged. D. Feldshuh.

This seminar will give the student the opportunity to direct a full evening of theatre. It may also involve an internship with a prominent director on campus and a final paper focusing on a specific aspect of directing.

Playwriting
348 Playwriting Fall. 4 credits. Prerequisite: permission of instructor.

A laboratory for the discussion of student plays. Following exercises in dramatic structure and technique, students will be expected to write two or three one-act plays.

349 Advanced Playwriting Spring. 4 credits. Prerequisite: Theatre Arts 348.

TR 2:30–3:45. R. Wilson.

A continuation of Theatre Arts 348, culminating in the composition of a full-length play.

497 Seminar in Playwriting Fall. 1–4 credits. Prerequisite: Theatre Arts 348 and 349 or permission of instructor.

To be announced. W. Sojinka and B. Levitt.

This seminar will provide the student with the opportunity to collaborate with faculty directors, designers, and actors in the production of his/her own work. The course will include a final paper and faculty critique of the manuscript and the production process.

Design, Technology and Stage Management
Design
120 The Unfashionable Human Body Fall. 3 credits.

At an early age, we learn the magic power of dress. There are many theories about why we wear clothes: protection from the elements, love of ornamentation, sexual attraction, and modesty, to name a few. Whatever the reason(s), clothes are the human body expresses itself in all cultures, and that expression is endlessly changing.

Students will explore the various theories, look at examples from decoration to distortion (i.e., masks, corsets, tattoos, and fads) and write about how society addresses (or undresses) "the unfashionable human body."

250 Fundamentals of Theatre Design and Technology Fall and spring. 4 credits. Not open to first term freshmen. Limited to 12 students. A minimum of one credit of Production Lab (TA 151 or 253) is strongly recommended concurrently.

An introduction to design and technology in the theatre. Lectures, discussion, and project work introduce the visual principles of designing scenery, costumes, lighting and sound, and the technical process of realizing designs on stage. Students are required to purchase materials, which the instructors will specify (approximate cost, $35).

499 Seminar in Directing Fall or spring. 1–4 credits. Prerequisites: Theatre Arts 240, 250, 299, 398, 498, and permission of instructor.

Hours to be arranged. D. Feldshuh.

This seminar will give the student the opportunity to direct a full evening of theatre. It may also involve an internship with a prominent director on campus and a final paper focusing on a specific aspect of directing.

Playwriting
348 Playwriting Fall. 4 credits. Prerequisite: permission of instructor.

A laboratory for the discussion of student plays. Following exercises in dramatic structure and technique, students will be expected to write two or three one-act plays.

349 Advanced Playwriting Spring. 4 credits. Prerequisite: Theatre Arts 348.

TR 2:30–3:45. R. Wilson.

A continuation of Theatre Arts 348, culminating in the composition of a full-length play.

497 Seminar in Playwriting Fall. 1–4 credits. Prerequisite: Theatre Arts 348 and 349 or permission of instructor.

To be announced. W. Sojinka and B. Levitt.

This seminar will provide the student with the opportunity to collaborate with faculty directors, designers, and actors in the production of his/her own work. The course will include a final paper and faculty critique of the manuscript and the production process.

Design, Technology and Stage Management
Design
120 The Unfashionable Human Body Fall. 3 credits.

At an early age, we learn the magic power of dress. There are many theories about why we wear clothes: protection from the elements, love of ornamentation, sexual attraction, and modesty, to name a few. Whatever the reason(s), clothes are the human body expresses itself in all cultures, and that expression is endlessly changing.

Students will explore the various theories, look at examples from decoration to distortion (i.e., masks, corsets, tattoos, and fads) and write about how society addresses (or undresses) "the unfashionable human body."

250 Fundamentals of Theatre Design and Technology Fall and spring. 4 credits. Not open to first term freshmen. Limited to 12 students. A minimum of one credit of Production Lab (TA 151 or 253) is strongly recommended concurrently.

An introduction to design and technology in the theatre. Lectures, discussion, and project work introduce the visual principles of designing scenery, costumes, lighting and sound, and the technical process of realizing designs on stage. Students are required to purchase materials, which the instructors will specify (approximate cost, $35).

361 Lighting Design Studio I Fall. 4 credits. Students are required to purchase materials which the instructor will specify (approximate cost $25.00). Prerequisite: TA 252 and 340 or permission of instructor.

An examination of the fundamental theories of color and the physical characteristics of light. Through discussion and a series of projects in the light lab this course examines the role of light as a flexible, expressive art medium; its visual nature and dramatic impact, and the intuitive nature of the successful approach to lighting the dramatic text.

364 Scene Design Studio Fall and spring. 4 credits. Students are required to purchase materials which the instructor will specify (approximate cost: $50.00). Prerequisite: TA 340 and 354 or permission of instructor.

An exploration of the process of designing scenery for the stage: analysis of the dramatic text, use of research and imagery, theatre architecture, communication techniques, and materials for building the scenic model. Four required design projects will use the major stage forms and involve the design and construction of full color scale models. Each project will represent a formative period in the history of dramatic literature and theatre architecture. May be repeated for credit.

366 Costume Design Studio Fall. 4 credits. Students are required to purchase materials which the instructor will specify (approximate cost: $50.00). Prerequisite: TA 356 or permission of instructor.

Design of costumes for the theatre, concentrating on script and character analysis, period research, design elements, figure drawing and rendering skills, and understanding production style. May be repeated for credit.

368 Sound Design Studio Fall. 4 credits. Limited enrollment to 6 students. Prerequisite: TA 252 and TA 250 or permission of instructor. Students are required to purchase supplies (approximate cost $30.00). Prerequisite: TA 252 and TA 250 or permission of instructor.

TR 10:10–12:05. C. Hatcher.

The use of sound as a medium of design for the theatre; research and creation of sound score, recording and engineering techniques, live effects and projects in live and studio sound production.

462 Lighting Design Studio II Spring. 4 credits. Limited enrollment to 6 students. Prerequisite: TA 362 or permission of instructor. Limited to 6 students.

A concentration on the individual development of the lighting designer. Advanced projects and research tailored to each student, combined with design competition entries in many fields and an in-depth study of the aesthetics of lighting in all areas of environmental design.
Technology

252 Technical Production Studio I
Fall. 2 credits. A minimum of one credit of production laboratory (TA 151 or 251) is required concurrently.

TR 10:10-12:05. C. Hatcher, M. Figursky.

Stage Lighting Technology: The practical aspects of lighting technology: stage electrics, equipment, organization, techniques, and paperwork will be explored through projects, lecture, and class discussion. Stage Sound Technology: The practical aspects of sound technology: equipment set-up, organization, recording techniques and paperwork will be explored through projects, lecture, and class discussion.

[254 Theatrical Make-up Studio]
Spring. 3 credits. Students are required to purchase make-up kits which the instructor will provide (approximate cost $30.00). Prerequisite: permission of instructor. Not offered 1990–91.

TR 2:30–4:25. J. Johnson.

Basic techniques of make-up for the stage including corrective, old age, and fantasy; use of prosthetics, wigs, hair and hairpieces.

256 Technical Production Studio II
Spring. 2 credits. A minimum of one credit of production laboratory (TA 151 or 251) is required concurrently. Limited to 6 students. Students are required to purchase materials which the instructor will specify (approximate cost $25.00). Prerequisite: TA 250 or permission of instructor.

TR 10:10–12:05. J. Gallager, G. Balke.

Scene Painting. Techniques of paint and set decoration for the stage including large format layout, grid systems, transfer methods, color mixing and matching, dye painting, airbrush and spray systems are a traditional approach to scenic art. Stage Properties: The design and construction of scenic, hand and costume props, concentrating on period research and accuracy of detail, use of various materials, crafts and construction techniques, and painting and finishing.

340 Theatrical Drafting and Technical Drawing Studio
Fall. 3 credits. Limited to 6 students. Prerequisite: Theatre Arts 250 or permission of instructor.

MW F 9:05–9:55. S. Brookhouse.

Implementation of the fundamentals of drafting and technical drawing. Introduction of the concept of an individual style in the approach to drafting for the theatre. A series of projects to familiarize students with the convention and process of visualization and drafting.

354 Stagecraft Studio
Spring. 3 credits. A minimum of one credit of production laboratory (TA 151 or 251) is strongly recommended concurrently.

MW 10:10–12:05. R. Archer.

An exploration of the techniques and practice of theatre operation, scenic construction, stage mechanics, rigging, painting, and model building.

356 Costume Construction Studio
Fall and spring. 3 credits. A minimum of one credit of production laboratory (TA 151 or 251) is strongly recommended concurrently. Prerequisite: TA 250 or permission of instructor.

M W 2:30–4:25. C. Orr.

A project/lecture/discussion class in costume research, patterning, cutting, construction, and fitting.

Stage Management

153 Stage Management Production Laboratory I
Fall and spring. 1–3 credits. May be repeated for credit. Before registering, students must attend orientation meeting in the Proscenium theatre at the Center for Theatre Arts at 7:30 p.m. on the first Tuesday of classes.

P. Guion.

Practical experience in theatrical production as assistant stage manager for a smaller scale production under the supervision of the faculty production stage manager. Theatre Arts 370 complements this course.

253 Stage Management Laboratory II
Fall and spring. 1–3 credits. May be repeated for credit. Before registering, students must attend orientation meeting in the Proscenium theatre at the Center for Theatre Arts at 7:30 p.m. on the first Tuesday of classes.

P. Guion.

Practical experience in theatrical production as assistant stage manager for a large scale production under the supervision of the faculty production stage manager. Theatre Arts 370 complements this course.

353 Stage Management Laboratory III
Fall and spring. 1–3 credits. May be repeated for credit. Before registering, students must attend orientation meeting in the Proscenium theatre at the Center for Theatre Arts at 7:30 p.m. on the first Tuesday of classes.

P. Guion.

Practical experience in theatrical production as stage manager for a smaller scale production under the supervision of the faculty production stage manager. Theatre Arts 370 complements this course.

370 Stage Management Studio
Fall and spring. 1 credit. Prerequisite: TA 250 or 280. TR 2:30–4:25.

P. Guion.

Introduction to the concepts and techniques of stage management as they relate to specific areas of production. Development of relevant communication skills and an understanding of the production process as experienced by a working stage manager or assistant stage manager. TA 153, 253, and 353 complement this course.

453 Stage Management Laboratory IV
Fall and spring. 1–3 credits. May be repeated for credit. Before registering, students must attend orientation meeting in the Proscenium theatre at the Center for Theatre Arts at 7:30 p.m. on the first Tuesday of classes.

P. Guion.

Practical experience in theatrical production as stage manager for a large-scale production under the supervision of the faculty production stage manager.

Production Laboratories

151 Production Laboratory I
Fall and spring. 1–3 credits. May be repeated for credit. Orientation meeting on the first Tuesday of classes each semester at 7:30 p.m. in the proscenium theatre.

S. Brookhouse, M. Figursky, J. Gallager, D. Hall, C. Hatcher, C. Orr.

Practical experience in theatrical production. Students register for sections by areas of interest. 01 Scenery, 02 Costumes, 03 Properties, 04 Lighting, 05 Sound, 06 Stage Crew. No prerequisites or experience required.

251 Production Laboratory II
Fall and spring. 1–3 credits.

S. Brookhouse, M. Figursky, J. Gallager, D. Hall, C. Hatcher, C. Miltenberger, C. Orr.

Practical experience in theatrical production, in a position of major responsibilities on the production staff. Prerequisite: TA 151 or permission of instructor. May be repeated for credit. Orientation meeting on the first Tuesday of classes each semester at 7:30 p.m. in the Proscenium theatre. Students register for sections by areas of interest: 01 Scenery, 02 Costumes, 03 Properties, 04 Lighting, 05 Sound.

351 Production Laboratory III
Fall and spring. 1–3 credits. May be repeated for credit. Orientation meeting on the first Tuesday of classes each semester at 7:30 p.m. in the Proscenium theatre. Students register for sections by areas of interest: 01 Scenery, 02 Costumes, 03 Properties, 04 Lighting, 05 Sound. Prerequisite: permission of instructor.

R. Archer, C. Hatcher, P. Gill, J. Moon, C. Orr.

Practical experience in theatrical production, in a position of major responsibility on the production staff or as assistant to a faculty or guest designer.

451 Production Laboratory IV
Fall and spring. 1–4 credits. May be repeated for credit. Orientation meeting on the first Tuesday of classes each semester at 7:30 p.m. in the Proscenium theatre. Students register for sections by areas of interest: 01 Scenery, 02 Costumes, 03 Properties, 04 Lighting, 05 Sound. Prerequisite: permission of instructor.

P. Gill, C. Hatcher, J. Johnson, J. Moon.

Practical experience in theatrical production, in the position of designer or in another position of major responsibility on the production staff.

Internships

485 Undergraduate Internship
Summer. 1–6 credits. Prerequisite: permission of AUTP faculty.

Program of supervised experience with a noted professional company or individual either in the United States or abroad chosen in consultation with the faculty advisor.

FILM

274 Introduction to Film Analysis: Meaning and Value
Fall or occasionally summer. 4 credits. Limited to thirty-five students.

TR 10:10–12:05. D. Fredericksen.

An intensive consideration of the ways films generate meaning and of the ways we attribute meaning and value to films. Discussion ranges over commercial narrative, documentary, and personal film modes. Prospective film majors should enroll in their sophomore year.
313 The Japanese Film (also Asian Studies 313)
Spring. 4 credits.
Screenings, M W 4-4:30; lec, W 11:15; sec F 11:15, 12:20, or 1:25; J. M. Swanberg.
After an introduction to methods of film analysis, the course will focus on a sequence of ten films by noted Japanese directors. The aim of the course is twofold: to enhance appreciation of film as an art form and to use the formal analysis of film to yield insights into Japanese society and culture. Particular attention is given to areas in which Japanese film, influenced by traditional arts and aesthetic principles, has resisted Hollywood editing codes.

375 History and Theory of the Commercial Narrative Film
Fall. 4 credits. Fee for screening expenses, $10 (paid in class).
Consideration of the broad patterns of narration in the history of the commercial narrative film, viewed as an artistic medium and as a system requiring the massive consumption of artifacts. Emphasis placed upon the early articulation of a cinematic means of narration, realism as an artistic style, the nature and functions of popular film, and the modes of modernist and post-modernist narration. Major figures discussed include Griffith, Eisenstein, Murnau, Von Stroheim, Dreyer, Chaplin, Renoir, Ford, Hitchcock, Welles, Antonioni, Fellini, Bergman, Bunuel, Resnais, Godard, and Herzog. Students majoring in film should have taken Theatre Arts 274 previously.

376 History and Theory of Documentary and Experimental Film.
The history and theory of documentary form up to the end of World War II. Major figures covered include Vertov, Flaherty, Ivans, Grierson, Lorentz, Riefenstahl, Capra, Hurwitz, and Jennings. Within the history and theory of the experimental and personal film form, emphasis to be placed on the avant garde of the twenties in Germany, France, U.S.S.R., and the U.S., the movement toward documentary practice in the thirties, and American experimental and personal film from the forties to the present. Major figures covered in this latter period include Derr, Brakhage, Baillie, Belson, the Whitney's, Hill, and Mekas.

377 Fundamentals of 16mm Filmmaking
Fall and spring. 4 credits. Limited to 12 students. Intended for juniors and seniors (who may need to sign up a year or more in advance). Prerequisite: Theatre Arts 274 and permission of instructor. Fee for maintenance costs, $50 (paid in class). The average cost to each student for materials and processing is $500.
A hands-on course in the basics of 16mm filmmaking techniques, requiring no prior experience. Each student will complete a number of short film projects to explore narrative, experimental, documentary, animation, and abstract genres. A longer, final sound project will be screened publicly.

378 Russian Film of the 1920s and French Film of the 1960s
An intensive treatment of two distinct periods of innovation in film theory and history. Emphasis on working relationship between theory and practice. Major figures include Eisenstein, Pudovkin, Vertov, Dovzhenko, Room, Godard, Truffaut, Resnais, Eustache, Rivette, and Bresson.

379 International Documentary Film from 1945 to Present
Emphasis on the contemporary documentary film as a sociopolitical force, as an ethnographic tool and within without a filmmaker's own culture, and as an artistic form with a distinct history and set of theatrical questions. Major figures, structures, and movements covered include Jennings, Rouquier, Leacock, Mailé, Rouuch, Sodanas, national film boards, Challenge for Change, direct cinema, cinema verite, and revolutionary documentary of the Third World.

386 German Film (also Comparative Literature 386 and German Studies 386)
The goal of the course is to explore the form and context of German film in relation to the cultural and sociopolitical context of which it is a part. Accordingly, the material discussed will be divided into three major periods: Weimar film, 1918–1933; Nazi film, 1933–45; postwar film, 1945–present. Readings and lectures will be devoted to formal and cultural developments in the history of German film as well as interpretive analyses and social and political individual films. In both lectures and discussions, particular emphasis will be placed on helping students develop an appropriate method of viewing and analyzing films.

413 Film and Performance
Fall. 4 credits. Prerequisite: permission of both instructors. Previous work in at least one appropriate medium: Not offered 1990–91. TR 2:30–4:25. M. Rivchin and staff.
This course is designed to encourage interdisciplinary connections among the students of the theatre, dance, and film programs in the Department. The course will focus on one program (dance, acting, or directing) and how it relates to film and video media. Students will work collaboratively to produce new work in both performance and recorded media.

414 Contemporary Film Theory (also Society for the Humanities 411, English 410, and Women's Studies 431).
Fall. 3 credits.
TR 11:10–1:05. C. Penley.
This course will survey the major figures and ideas that have shaped contemporary film theory: Christian Metz's semiotics of the cinema, Raymond Bellour and Thierry Kuntzle's textual analysis of cinema, Jean-Louis Baudry's "Apparatus" theories. Stephen Heath's work on narrative and ideology and Laura Mulvey's feminist and psychoanalytic approach to describing spectatorship. In addition, the course will cover the most important revisions and refutations of those theories by feminists, Marxists, neo-formalists, deconstructionists, cognitive theorists, cultural studies and popular culture scholars, and so on. Attention will also be given to the social and institutional forces that have shaped this relatively new and volatile discipline.

416 Cinema and the Humanism of Commodity (also Society for the Humanities 416 and Women's Studies 436).
Spring. 3 credits.
Media production plays a primary role in maintaining a system of depreciated multicultural diversity, which keeps each marginal group in a definable place as the latter is urged to provide the expected "difference." The seminar will emphasize issues of race and gender in representation, focusing on works that challenge conventional notions of subjectivity, of audience, and of interpretation in relation to film making, film viewing, and the cinematic apparatus. It will discuss the effect of social multiplication of images through which the whole world, in the name of humanism, is gathered within the fold of the known and the visible, and becomes appropriate.

450 Seminar on Ethnographic Film (also Anthropology 450)
When the first ethnographic film was screened in 1895, its maker saw in motion pictures a promise for the greater understanding among peoples. Has the promise been fulfilled? Responses to this question are examined through study of the debates about the place of film within what Margaret Mead called a "discipline of words." Going further, we enlarge the frame and consider ethnographic film in the light of general film theory, history, criticism, aesthetics, and ethics. Selected, relatively short films are viewed, leaving ample time for discussion and the development of a critical vocabulary.

474 Advanced Film Projects
Summer. 4 credits. Limited to 12 students. Prerequisite: TA 280, 281, or 377 or equivalent and permission of instructor. Maintenance fee, $50.
M. Rivchin.
Students work in small crews to produce a short dramatic film and/or short documentary film, using synchronous sound filming and editing equipment. Equipment is provided, but students must pay for film and processing (average cost, $250).
ARTS AND SCIENCES

[475 Seminar in the Cinema I (also College Scholar Seminar)]
Topics for 1992: Jung, film, and the process of self-knowledge. "Know thyself": this has been called our culture's most enduring psychological need, and it has been frequently offered as the raison d'etre for liberal studies. C. G. Jung's answer to how one might "know oneself" is based on his claim that "image is psyche" and his informing metaphor is depth. The seminar will trace the elaborations of this position in Jung, James Hillman, Russell Lockhart, and Murray Stein. It will also test the critical capacities of this position with respect to film images given us by Bergman, Fellini, Brakhage, Gunvor Nelson, Suzan Pitt, Larry Jordan, Bruce Baille, and others. The manner in which Jung's claim might provide an archetypal and imaginal alternative to current approaches to liberal studies will be asked throughout the seminar; the nature of education will thereby become a central theme of the semester's work.

[476 Seminar in the Cinema II]
Topic for 1993: to be announced.

[477 Intermediate Film Projects]
Spring. 4 credits. Limited to 8 students. Prerequisite: Theatre Arts 377 or equivalent, and permission of instructor. Fee for maintenance costs, $50 (this fee is paid in class). The minimum cost to each student for materials and processing is $500. Students retain ownership of their films.
The development and completion of individual projects, with emphasis on personal and documentary modes. Includes preparation of an original script or storyboard, direction, cinematography, synchronic sound, recording, editing, and follow-through to a composite print.

[653 Myth onto Film (also Anthropology 653)]
Fall. 4 credits. Open to undergraduate and graduate students with permission of instructor. Enrollment limited by available studio space and equipment. Prerequisite: some knowledge of any one of the following: anthropology, filmmaking, mythology, graphics, drawing, and painting.
In myths, whales fly, pebbles throw themselves across streams, and trees are transformed into women. Toward the end of visualizing myths—in particular the myths of other people—we explore the possibilities of animated film. The technique used is cameralless animation; that is, we draw and paint, frame by frame, directly onto motion picture film. The intellectual problem is to visualize the minds of others so that they are comprehensible to us but are not thought to be of us. Reading includes introductory works on both myth and animation, and there is background reading on the particular myth that is concerned to film.

[699 German Film Theory (also German Studies 699 and Comparative Literature 699)]
Spring. 4 credits.
This course will examine critically the writings of major German film theories from the Weimar period to the present. Works by Bela Balazs, Rudolf Arnheim, Siegfried Kracauer, Walter Benjamin, Theodor Adorno, Max Hirshheimer, Alexander Kluge, H. J. Syberberg, Gertrud Kohl, Thomas Elsaesser, and others will be read and discussed in light of the following considerations: What are the cultural and political contexts out of which these ideas emerge and how are these theories addressing these contexts? How do these theories relate to the work coming out of other national traditions at the same time or to current debates in feminism, formalist, postmodern, or poststructuralist film theory? There will be film showings.

DANCE

[123 Ballet I (also Physical Education 423)]
Fall and spring. 0 credit.
Theatre Arts and Physical Education registration at Teagle Hall only.
The fundamentals of classical ballet technique. Material covered includes all of the exercises at the barre, and elementary work in the areas of port de bras, adage and allegro. Satisfies the PE requirement.

[124 Modern Dance I (also Physical Education 424)]
Fall and spring. 0 credit. Theatre Arts and Physical Education registration at Teagle Hall only.
Fall: Sec. 01 M W 1:30–3:00. J. Chu. Sec. 02 T R 1:30–3:00. Staff. Spring times to be announced.
The fundamentals of modern dance technique. Elementary dance movement phrases, with attention to rhythm, placement, and vitality of performance. Satisfies the PE requirement.

[150 Writing About Dance]
Spring. 3 credits. Not offered 1990–91.
In this freshman writing seminar, dance is analyzed as a system of nonverbal communication. We will explore methods of categorizing and describing human behavior such as kinesics, proxemics, and choreometrics; examine the function of dance in society; and study specific dance styles. Although in class we will work from film or video recordings, attending live dance performances will be an integral part of the course.

[155 Rehearsal and Performance]
Fall and/or spring. 1–2 credits. 1 credit per production experience per term up to 2 credits per term. Students must register for the course in the term in which credit is earned; requests for retroactive credit will not be honored. Limited to students who are assigned roles after tryouts at the department's scheduled auditions or who are assigned assistant director positions after obtaining director's approval. Students should add this course only after they have been assigned roles. S–U grades only.
Staff.
The study, development, and performance of roles in departmental theatre or dance productions or the study and practice of directing as experienced in assisting faculty and guest directors.

[200 Introduction to Dance]
Spring and summer. 3 credits. Not offered 1990–91.
Introduction to aesthetics and theoretical issues in Western theatrical dancing, with emphasis on the twentieth century. Viewing of films, live performances, and videotapes and discussion of readings. Two papers.

[201 Dance Improvisation]
Fall. 3 credits. Limited to 12 students.
Concurrent enrollment in a dance technique class at the appropriate level is required. Registration only through department roster in the main office of the Center for Theatre Arts.
Exploration of movement invention and group composition through structured dance improvisation. Live musical accompaniment.

[202 Contemporary Dance]
Spring. 3 credits.
T R 1:25–2:40. S. Banes.
This introductory course surveys the current scene in dance culture. The focus is on American dance (including Euro-American, African-American, Asian-American, and Hispanic dance), although some attention will be given to developments in Europe (such as Pina Bausch), Asia (such as Butoh), and Africa (such as Highlife). Through lectures, readings, class discussions, research projects, and viewings of videotapes, films, and live performances, the course will analyze theatrical dancing (from ballet to modern, postmodern, and tap) as well as social dancing (from breakdancing to voguing and lambda) in the 1980s and 1990s.

[206 Making Dances to Music]
Fall. 3 credits. Limited to 10 students.
Concurrent enrollment in a dance technique class at the appropriate level is required. Registration only through department roster in the main office of the Center for Theatre Arts. No prerequisites.
In this course music is used as the point of departure for composing movement. Materials for a personal movement vocabulary are discovered through in-class improvisation. Assigned experimental studies composed out-of-class are critiqued and then reworked. At the end of the semester selected studies are performed at an informal studio showing. Students are expected to attend campus dance performances for class discussion. Films and videotapes are viewed.

[209 Introduction to African Dance (also AS&RC 209)]
Fall. 3 credits. Not offered 1990–91.
An introduction to ancient African dance forms, origins, socio-economic and political significance; the state of the dances, changes and continuing relevance in contemporary times. This course will look at the evolution and significance of contemporary dance forms.
210 Beginning Dance Composition and Music Resources
Spring. 3 credits. Concurrent enrollment in a dance technique class at the appropriate level is required. Registration only through the departmental roster in the main office of the Center for Theatre Arts.
MW 6:30-8:00. Staff.
Weekly assignments are designed to introduce students to basic elements of dance tradition­ally and currently used in the choreographic process. Problems are defined and explored through class improvisation as a way to encourage fresh, individual solutions. Students compose and present a series of short studies that are discussed and reworked before being performed at informal studio showings. One additional hour per week will be arranged for music-related activities. The music resource faculty will introduce the class to contemporary music for modern dance and orient the class regarding problems and possibilities with sound collaborations. Students are required to attend campus dance activities for class discussion.

231 Ballet II (also Physical Education 432)
Fall and spring. 0 credit. Theatre Arts and Physical Education registration at Teagle Hall only. Prerequisite: Theatre Arts 123 (Ballet I) or permission of instructor.
A continuation of Ballet I for students with at least a year of dance training. In addition to more advanced forms of port de bras, adage and allegro, work is done on the pirouette. Satisfies the PE requirement.

232 Modern Dance II (also Physical Education 433)
Fall and spring. 0 credit. Theatre Arts and Physical Education registration at Teagle Hall only. Prerequisite: Modern Dance I or permission of instructor.
A continuation of Modern Dance I, for students with at least a year of dance training. Practice of longer dance phrases, with attention to the variety of rhythm, and expression. Satisfies the physical education requirement.

233 Explorations in Movement and Performance A
Fall 1990. 0 credit. Limited to 20 students.
This course delves into the possibilities of movement and performance, utilizing unconventional techniques such as animal movements, follow the leader games, improvisation and visualization. The course is physically demanding and requires an eagerness to investigate the nature of performance and explore unfamiliar territory in movement.

272 Music and the Dance (also Music 272)
Spring. 3 or 4 credits. Prerequisite: permission of instructor. Not offered 1990-91.
TR 11:15-12:30. R. Harris-Warwick.
This course will explore selected topics in the interrelations between music and dance in the Western tradition. Some of the areas to be examined include the influence of dance movement on musical composition, composer-choreographer relationships, and a comparison of music composed for dancing with dance music composed for listening. Examples will be drawn from the Renaissance, the baroque period, and a modern era. Students will be asked to pursue an independent project.

304 Ballet III (also Physical Education 434)
Fall and spring. 0 or 1 credit. May be repeated for up to 4 credits. Prerequisite: Ballet II or permission of instructor.
Study and practice of traditional training exercises and the classical ballet vocabulary; work is done on strengthening the body and using it as an expressive instrument.

305 Explorations in Movement and Performance B
Fall 1990. 0-1 V credit. Qualification based on dance experience. Limited to 15 students.
MW 6:30-8:00. J. Self.
This course delves into the possibilities of movement and performance, utilizing unconventional techniques such as animal movements, follow the leader games, improvisation and visualization. The course is physically demanding and requires an eagerness to investigate the nature of performance and explore unfamiliar territory in movement.

306 Modern Dance III (also Physical Education 436)
Fall and spring. 0 or 1 credit. May be repeated for up to 4 credits. Prerequisite: Modern Dance II or permission of instructor.
Spring: to be announced.
Advanced work with rhythm, placement, and phrasing for students who are prepared to refine technical skills of dancing. Students will be physically and mentally challenged by lengthy, complex phrases and will be expected to bring the instructor's material to life.

307 Asian Dance and Dance Drama (also Asian Studies 307)
Fall. 3 credits. May be repeated for credit. Section 1: Indian Theatre, Section 2: Japanese Noh Theatre, Section 3: Indonesian Dance Theatre. Not offered 1990-91.
Hours to be arranged. Staff.
Readings, lectures, and practice sessions. On Fridays there will be lectures, demonstrations, and discussions. Videotapes and films will be shown. The Monday and Wednesday classes will consist of learning basic movement vocabulary and dances. No previous experience in dance is necessary.

308 Modern Dance IV (also Physical Education 438)
Fall and spring. 0 or 1 credit. May be repeated for up to 4 credits. Prerequisite: Modern Dance III or permission of instructor.
A continuation of, and supplement to, Theatre Arts 306/Physical Education 436.

309 African Dance Aesthetics (also AS & RC 309)
Spring. 3 credits. Prerequisite: TA and AS & RC 209 or permission of instructor. Not offered 1990-91.
An examination of African dance styles and forms within the cultural perspective of African peoples. Practical classes will consist of learning basic movement vocabulary, techniques, and choreographic structures. The emphasis will be on the cultural world view of the people. Practical sessions will explore the dynamics of African dances as nonverbal artistic forms communicating a world view, with an end of semester studio showing. The course will concentrate particularly on West and East Africa.

310 Intermediate Projects in Dance Composition I
Fall and spring. 3 credits. Prerequisite: Theatre Arts 210.
Hours to be arranged. Staff.
Biweekly meetings for students working on intermediate choreographic projects to be presented in various performance situations. Work in progress will be critiqued by faculty and peer. The goal of the projects is to compose and present a series of short studies. Students with particular interests in collaboration will have a forum in which to develop their ideas.

311 Intermediate Projects in Dance Composition II
Fall and spring, 3 credits. Prerequisite: Theatre Arts 310.
Hours to be arranged. Staff.
A continuation of Theatre Arts 310.

312 Physical Analysis of Movement
Spring. 3 credits.
This course is an examination of human movement with particular attention to dance movement. Readings in Swisegard's Human Movement Potential. Guest lectures by experts in anatomy and health areas. Practical and laboratory work. Demonstration of dissection.

314 Western Dance History I
Fall. 4 credits. Not offered 1990-91.
TR 11:15-12:30. S. Banes.
A survey of the history of dance in the Western theatre of the Renaissance to the end of the nineteenth century with emphasis on the development of theatrical forms in Western culture. No prerequisites.

315 Western Dance History II
Spring. 4 credits. Not offered 1990-91.
TR 11:15-12:30. S. Banes.
A survey of the history of Western theatrical dance in the twentieth century. No prerequisites.

316 Historical Dances
Spring. 2 credits. Prerequisite: Ballet II or Modern Dance II. Not offered 1990-91.
Staff.
A sampling of the social dances from the Renaissance to the present, with emphasis on pinpointing basic differences in movement styles and customs in the various periods. A major part of class time will be spent learning and performing the dances.

410 Advanced Dance Composition I
Fall and spring. 3 credits. Prerequisite: Theatre Arts 310 and 311.
Hours to be arranged. Staff.
Students work on advanced choreographic problems, to be presented in performance. Work in progress will be critiqued by faculty biweekly.

411 Advanced Dance Composition II
Fall and spring.
Hours to be arranged. Staff.
A continuation of Theatre Arts 410.
ARTS AND SCIENCES

[410 Seminar in History of Dance
Spring. 4 credits. Prerequisite: Theatre Arts 315 or permission of instructor. Not offered 1990-91.
R 2:30-4:25. S. Banes.

490 Senior Paper in Dance
Spring. 4 credits. Prerequisite: Theatre Arts 418, senior standing.
Under faculty direction, the student will write a senior paper in dance history, criticism, or theory.

Tracks toward selection into the advanced undergraduate training program

Design, Technology, and Stage Management
Required for ALL individuals interested in a Design, Technology, or Stage Management track:
TA 151 and 251 Production Lab I and II (at least 2 combined credits)
TA 250 Fundamentals of Design and Technology

Required for Scene Design emphasis:
TA 340 Theatrical Drafting and Technical Drawing Studio
TA 351 Production Lab III (at least 1 credit)
TA 354 Stagecraft Studio
TA 364 Scene Design Studio

Required for Costume Design emphasis:
TA 351 Production Lab III (at least 1 credit)
TA 356 Costume Construction Studio
TA 358 Theatrical Make-up Studio
TA 366 Costume Design Studio I & II

Required for Lighting Design emphasis:
TA 252 Technical Production Studio I
TA 340 Theatrical Drafting and Technical Drawing Studio
TA 351 Production Lab III (at least 1 credit)
TA 362 Lighting Design Studio I

Required for Sound Design emphasis:
TA 252 Technical Production Studio I
TA 351 Production Lab III (at least 1 credit)
TA 354 Stagecraft Studio
TA 368 Sound Design Studio

Required for Technical Direction emphasis:
TA 252 Technical Production Studio I
TA 340 Theatrical Drafting and Technical Drawing Studio
TA 351 Production Lab III (at least 1 credit)
TA 354 Stagecraft Studio

Required for Stage Management emphasis:
TA 253 and TA 353 Stage Management Lab II and III
TA 280 Introduction to Acting
TA 370 Stage Management Studio
TA 398 Fundamentals of Directing I

Acting
Required for ALL individuals interested in an acting track:
TA 151 and 251 Production Lab I and II (at least 2 combined credits)
TA 240/241 Introduction to Western Theatre (1 Semester ONLY)
TA 250 Fundamentals of Design and Technology
TA 280 Introduction to Acting

Required for Acting emphasis:
TA 281 Acting I
TA 282 Introduction to Voice and Speech for Performance

or
TA 284 Speech and Dialects for Performance

TA 380 Acting II
Be accepted into TA 381 Acting III

Directing
Required for ALL individuals interested in a directing track:
TA 151 and TA 251 Production Lab I and II
 TA 240/241 Introduction to Western Theatre (1 Semester ONLY)
TA 250 Fundamentals of Design and Technology
TA 280 Introduction to Acting

Required for Directing emphasis:
TA 398 Directing I
TA 498 Directing II

Playwriting
Required for ALL individuals interested in a playwriting track:
TA 240/TA 241 Introduction to Western Theatre (1 Semester ONLY)
TA 250 Fundamentals of Design and Technology

TA 280 Introduction to Acting

Required for Playwriting emphasis:
TA 348 Playwriting
TA 349 Advanced Playwriting

Students in the advanced undergraduate training program may also elect to take TA 485 (Undergraduate Internship) in addition to or in place of one production assignment.

TURKISH
See Department of Near Eastern Studies.

UKRAINIAN
See Department of Modern Languages and Linguistics.

VIETNAMESE
See Department of Modern Languages and Linguistics.

WRITING PROGRAM
See John S. Knight Writing Program, p. 311.

YIDDISH
See Department of Near Eastern Studies.

YORUBA
See Department of Modern Languages and Linguistics.

SPECIAL PROGRAMS AND INTERDISCIPLINARY STUDIES

Africana Studies and Research Center

The Africana Studies and Research Center is concerned with the examination of the history, culture, intellectual development, and social organization of Black people and cultures in the Americas, Africa, and the Caribbean. Its program is structured from an interdisciplinary and comparative perspective and presents a variety of subjects in focal areas of history, literature, social sciences, and Swahili language and literature.

The center offers a unique and specialized program of study that leads to an undergraduate degree through the College of Arts and Sciences and a graduate degree, the Master of Professional Studies (African and Afro-American), through the university's Graduate School.

A student may major in Africana studies; however, another attractive alternative is the center's joint major program. This program enables the student to complete a major in any of the other disciplines represented in the college while at the same time fulfilling requirements for a major in Africana Studies. This requires only a few more credits than is usually the case when one completes a single major course of study. Courses offered by the center are open to both majors and nonmajors and may be used to meet a number of college distribution requirements, such as freshman writing seminars, language (Swahili), expressive arts, humanities, social sciences, and history.

The center also brings distinguished visitors to the campus, sponsors a lecture series, and houses its own library.

The Africana Major
The undergraduate major offers interdisciplinary study of the fundamental dimensions of the Afro-American and African experiences. Because of the comprehensive nature of the program, it is to the students' advantage to declare themselves Africana majors as early as possible. The following are prerequisites for admission to the major.

Students should submit:
1) a statement of why they want to be an Africana studies major;
2) a tentative outline of the area of study they are considering (African or Afro-American) for the undergraduate concentration; and
3) a full transcript of courses taken and grades received.

The center's undergraduate faculty representative will review the applications and notify students within two weeks of the status of their request.

After acceptance as a major in the Africana Center, a student must maintain a C+ cumulative average in the center's courses while completing the major program. The Africana major must complete 36 credits in courses...
offered by the center, to include the following four core courses: AS&RC 231, 290, 360, and 431. Beyond the core courses, the student must take 8 credits of center courses numbered 200 or above and 15 credits numbered 300 or above. Within this selection the student must take at least one of the following AS&RC courses: 203, 204, 283, or 301. The program of an undergraduate major may have a specifically Afro-American focus or a specifically African focus.

Joint Majors
The center encourages joint majors in the College of Arts and Sciences and in other colleges. Joint majors are individualized programs that must be worked out between the departments concerned. The center’s undergraduate faculty representative, Professor Adams, will assist students in the design and coordination of joint major programs. However, in any joint major program, the center will require at least 16 credits be taken in Africana studies courses, including AS&RC 290.

Double Majors
In the case of double majors (as distinct from joint majors) students undertake to carry the full load of stipulated requirements for a major in each of the two departments they have selected.

Certificate in African Studies
In conjunction with the Institute for African Development, the Africana Studies and Research Center administers an undergraduate Certificate in African Studies program. The certificate is offered as a minor concentration available to students in all of the undergraduate colleges at Cornell. Many of the courses in the program might be used to fulfill other course distribution requirements. By pursuing this certificate, students acquire an interdisciplinary understanding of Africa. After developing a foundation of knowledge on the culture, society, and development of Africa in the core courses “Africa: The Continent and Its People,” students pursue 15 credit hours in a humanities or development studies track or a combination of the two, including an additional core course, either “African Civilizations and Cultures” or “Contemporary African Development Issues.” The requirements for the certificate are a minimum of 18 credit hours, including the core courses. Students interested in the certificate program must contact Professor Adams (the center’s undergraduate faculty representative) who will register them in the program and assign them a faculty adviser from their own college. The faculty adviser will be responsible for determining completion of the certificate requirements.

Honors
The honors program offers students the opportunity to complete a library research thesis, a field project in conjunction with a report on the field experience, or a project or experiment designed by the student. The requirements for admission to the honors program for all students—regular majors, joint majors, and double majors—are a B- cumulative average in all courses and a B+ cumulative average in the center’s courses. Each student accepted into the honors program will have an honors faculty committee consisting of the student’s adviser and one additional faculty member, which is responsible for final evaluation of the student’s work. The honors committee must approve the thesis or project before May 1 of the student’s junior year. The completed thesis or project should be filed with the student’s faculty committee by May 10 of the senior year.

Distribution Requirement
Two Africana Studies and Research Center courses from the appropriate group may be used in fulfillment of the following distribution requirements:

Freshman writing seminars: AS&RC 100.

Language Requirement
Swahili fulfills the College of Arts and Sciences language requirement. Successful completion of AS&RC 131, 132, 133, and 134 provides qualification in Swahili. Successful completion of AS&RC 202 gives proficiency in Swahili. Africana majors are not required to take Swahili, but the center recommends the study of Swahili to complete the language requirement.

Courses
131 Swahili Fall. 4 credits. Prerequisite: Swahili 131.
Requires no knowledge of language.

132 Swahili Spring. 4 credits. Prerequisite: Swahili 131.
A. Nanji. Continued study of the basic grammatical formation of the language and the introduction of reading material ranging from songs to short stories. A great many drills help develop the student’s comprehension. Swahili tapes are highly used.

133 Swahili Fall. 4 credits. Prerequisites: Swahili 131 and 132.
A. Nanji. Advanced study in reading and composition.

134 Swahili Spring. 4 credits. Prerequisite: Swahili 133.
A. Nanji. Advanced study in reading and composition.

171 Black Families and the Socialization of Black Children
Survey of key psychological dimensions of the Black experience, covering such issues as (1) race and intelligence; (2) Black identity; (3) Black family structure; (4) Black English; (5) Black middle class; and (6) nature of Black psychology.

172 The Education of Black Americans: Historical and Contemporary Issues
This course is designed for freshmen and sophomores that will be devoted to the history of Black education and contemporary issues in Black education, such as the struggle for Black studies, the development of independent Black schools, and problems of public schools in Black communities.

190 Introduction to Modern African Political Systems
Fall. 4 credits. Offered alternate years. M W 3:35–5. L. Edmondson.
This course directs attention to the salient characteristics of Africa’s political systems and assesses the way in which continental and global factors impinge on development efforts. It is especially concerned with the impact of colonialism and the ongoing efforts by Africans to overcome its political and socioeconomic legacies. Among the specific issues to be discussed are problems of ethnic fragmentation, boundary problems, levels of political institutionalization, challenges of continental unity, neocolonialism and dependency, and Africa within the Third World and in the world system.

191 Africa: The Continent and Its People
Fall. 3 credits. TR 11:40–12:55. L. Edmondson.
An introductory interdisciplinary course focusing on Africa’s geographical, ecological, and demographic characteristics, indigenous institutions and values; the triple cultural heritage of Africanity, Islam, and Western civilization; main historical developments and transitions; contemporary political, economic, social, and cultural change. Africa’s ties with the United States (from trans-Atlantic slavery to the present), its impact on the emerging world order, and its contribution to world civilization will also be explored.

202 Swahili Literature
Fall. 4 credits. Prerequisite: Swahili 134. Offered on demand. A. Nanji.
Students gain mastery over spoken Swahili and are introduced to the predominant Swahili literary forms.

203 History and Politics of Racism and Segregation
A cross-cultural study in the historical context of the evolution of racist thought and practice in southern Africa and North America.
204 History and Politics of Racism and Segregation
Spring. 3 credits.
MW 11:15–1:10. L. Edmondson.
The course will deal with the historical patterns of racism and segregation using southern Africa and North America as case histories. The study will be undertaken within a theoretical framework that broadly defines racism and segregation and their implication.

205 African Civilizations and Culture
Spring. 3 credits.
May be used for history requirement. This course is concerned with the development of African civilizations and cultures from the earliest times to the present day, together with their contributions to world history. The aim is to promote the understanding of Africa and the appreciation of its cultural forms through the study of the continent's social, political, and economic structures. The approach is multidisciplinary. The course deals with civilizations of North Africa, the Nile Basin, and Ethiopia (examples: Carthage, Egypt, Kush, and Aksum); the Bantu and empires of Sub-Saharan Africa (examples: Ancient Ghana, Mali, Songhai, Oyo, Benin, Kongo, and Njende Matuta); African kinship systems; religions; healing systems, music, political philosophy, and mechanisms of social control. The course also looks at the impact of Islam and Christianity on the development of African cultures.

206 Gender, Race, and Medical “Science”
Fall. 3 credits. Not offered 1990–91.
The course will examine the social construction of race and gender in the medical sciences from the turn of the century to the present. Beginning with readings that propose a new view of scientific medicine as a system of signs and symbols and as culturally embedded, we will proceed to an examination of some of the following topics: racism and experimentation; the treatment of venereal disease and tuberculosis in the context of social childhood; the body as a medical product, menstruation as pathology; the monitored mind; women and psychiatry; the economic policy of health care; medical authority; the training of medical students; political anatomy of the body; sites of resistance; alternative systems; and cross-cultural case studies.)

209 Introduction to African Dance (also Theatre Arts 209)
Fall. 3 credits. Not offered 1990–91.
An introduction to ancient African dance forms, origins, socio-economic, and political significance; the state of the dances, changes, and continuing relevance in contemporary times. The course will also look at the evolution and significance of contemporary dance forms.)

211 West Indian Literature from Abroad
Fall. 3 credits.
“Writing home”: writing by West Indians who have emigrated to North America, Europe, or Africa, but whose cultural, social, psychological, spiritual center of gravity remains the Caribbean (or its transplanted manifestation in the new domicile). Whether experienced as “exile,” as with Lamming, “loneliness,” as with Selvon, or as a search for the diaspora connection with the continent of ancestry, as with Conde, the West Indian literary artist abroad is, in some form, “writing home.”

219 Issues in Black Literature
Fall. 4 credits. Offered alternate years.
An examination of literature written for Black children, including an analysis of the literature as it pertains to Black life from 1945 to the present. Students write a pamphlet containing their essays, fiction, and poetry and compile a bibliography of literature for Black children.

231 Black Political Thought
Fall. 3 credits. Offered in alternate years.
This is an introductory course that will review and analyze the major theoretical and ideological formulations developed and espoused by African-Americans in the struggle for liberation. This semester we will focus specifically on the political philosophy and historical significance of Malcolm X, and the work and movement of Marcus Garvey, as the prime movers of nationalism and pan-Africanism among Black people in this century. Such themes as slave resistance, nationalism, pan-Africanism, emigration, anti-imperialism, socialism and internal colonialism, and the political and social views of Black women will be discussed. Black political thought will be viewed in its development as responses to concrete conditions of oppression and expression.

280 Racism in American Society
Fall. 3 credits.
W 7:30–10 p.m. D. Barr and J. Turner.
This course will be a topical treatment of the history and theory of racism in the United States. The course will begin with an examination of basic concepts and theories of racism. From there we will examine the history of racial groups in America—African Americans, Native Americans, Asian Americans, and the Hispanic groups. Particular attention will be paid to the political economy of racism and the sociological and the psychological aspects of race relations in America, with specific reference to the relationships and intersections of race, class, gender, and ethnicity.

283 Black Resistance: South Africa and North America
Fall. 4 credits. Offered alternate years.
A study of Black political movements in South Africa and North America and their responses to the situations of race relations that formed the contexts of their operations.

285 Black Theater and Dramatic Literature
Fall. 3 credits.
This course is an introduction to the history of literature of Black drama. It also provides an opportunity for students to cultivate an interest in individual and group presentation of Black dramatic material. Students who successfully complete this course will be granted preference for the limited enrollment in ASRc 425 (Advanced Seminar in Black Theatre and Dramatic Literature), which produces a public performance in the spring.

290 The Sociology of the Black Experience
Fall. 3 credits.
An introductory course to the sociology of the Black experience and to the field of Afro-American studies. Required for all undergraduate students majoring at the Africana Center. The course surveys the early culture and development of Black people and their role in world civilization and concentrates on the cultural heritage and social experience of Black people in the United States in particular.

301 Oppression and the Psychology of the Black Social Movement
Spring. 4 credits.
The focus of the course will be conversion experiences within the context of social movement. The development of political groups (for example, the Black Panther Party) and outstanding activist-intellectuals (such as Malcolm X) are used as reference points for discussion of social movement theory.

302 Social and Psychological Effects of Colonialization and Racism
Spring. 4 credits. Offered alternate years.

303 Blacks in Communication Media
Spring. 3 credits.
The focus is on the general theory of communications, the function of media in an industrialized society, and the social, racial, and class values implied in the communication process. There is a term paper and screenings of significant American and Third World films.

309 African Dance Aesthetics: Practice and Theory
Spring. 3 credits. Not offered 1990–91.
TR 10:10–11:25.
An examination of the aesthetics of African dance styles and forms within the cultural perspectives of African peoples. Monday and Wednesday classes will consist of learning basic movement vocabulary and dances, with lectures and discussions on Fridays. Practical sessions will explore the dynamics of African dances as non-verbal artistic forms communicating a world view, with an end of semester studio showing. The course will concentrate particularly on West and East Africa.

344 Neocolonialism and Government in Africa (The Politics of Public Administration)
Fall. 4 credits. Offered alternate years.
TR 1:25–2:15.
The course is designed to explain why Africa's public administrations in the postcolonial era have generally failed to move from the colonialist ethos to becoming primary instruments for initiating and guiding the processes of development. The reality of colonialism was bureaucratic centralism—the closest approximation to the ideal type of a pure administrative state specializing in law and order. Colonial administrations resembled armies in their paramilitary formation and ethos and were, indeed in a number of cases, the instruments of military men. Much attention focuses on the internal characteristics of bureaucratic organizations in Africa and their relationship to their social and political environments.
345 Afro-American Perspectives in Experimental Psychology (also Psychology 345)
 Spring. 3 or 4 credits. Prerequisite: an introductory course in psychology or AS&RC 171. Offered alternate years.

346 African Socialism and Nation Building
 Spring. 4 credits.
 An exploration and critical analysis of the various theories of African socialism as propounded by theorists and practitioners. Those ideas, extending from Nyerere's Ujamaa (for example, traditional social and economic patterns of African society) to Nkrumah's scientific socialism (such as the desirability and practicality of the Marxian type of socialism in Africa) are compared.

350 The Black Woman: Social and Political History
 Spring. 3 credits. Offered alternate years.
 Hours to be arranged.
 This course will address the social organizations, political protests, and political ideologies written by or about Black women in the United States, from the time of slavery to the 1980s. Topics will include the special role of Black women in slavery, the political-protest thought of Black women writers in the nineteenth and twentieth centuries (e.g., Ida B. Wells, Mary Church Terrell, Ella Baker, Mary McLeod Bethune, Eleanor Holmes Norton, Angela Davis), the emergence of Black feminism, and the various contemporary controversies surrounding the relationship of Black women to both the civil rights and Black power movements.

352 Pan-Africanism and Contemporary Black Ideologies
 Spring. 4 credits. Offered alternate years.
 A historical study of pan-Africanism that reviews and analyzes the literature and activities of early Black pan-African theorists and movements.

360 Ancient African Nations and Civilizations
 Fall. 3 credits. Offered alternate years.
 An introduction to African history beginning with early civilizations in pre-colonial Africa.

361 Introduction to Afro-American History (from African Background to the Twentieth Century)
 Fall. 3 credits. Offered alternate years.
 M W F 10:10–11. R. Harris.
 Surveys the transition of Africans to America through the process of enslavement and their transformation into Afro-Americans. Explores the transition from slavery to freedom through the process of emancipation and the transformation of Afro-Americans from chattel slaves into rural peasants. Its purpose is to understand the internal dynamics of the Black experience from African origins to the age of segregation.

370 Afro-American History: The Twentieth Century
 Spring. 3 credits. Offered alternate years.
 M W F 12:20–1:10. R. Harris.
 Examines the transition of Afro-Americans from countryside to city through the process of migration and urbanization and their transformation into industrial laborers. Probes the transition from segregation to civil rights through the process of protest and the transformation of Afro-Americans from second-class into first-class citizens. The purpose is to understand historical antecedents for the current socioeconomic, political, and cultural status of Afro-Americans.

381 Contemporary African History
 Spring. 4 credits. Offered alternate years.
 A survey of the current problems on the African continent as they have appeared from 1500 to the present time. Important topics include the impact of the Atlantic slave trade, the European scramble of 1884, various forms of African resistance to colonial occupation in 1914, and the prospects of protracted social unrest in Africa south of the Zambezi River.

382 Comparative Slave Trade of Africans in the Americas
 Fall. 3 credits. Offered alternate years.
 The focus is on eighteenth- and nineteenth-century slave societies in Virginia and South Carolina and the eighteenth-century slave societies in San Domingue or Haiti and to some extent in Jamaica. The slave society in Cuba during the latter part of the nineteenth century is studied.

400 Political Economy of Ideology and Development in Africa
 Spring. 4 credits. Offered alternate years.
 An exploration of the processes of African underdevelopment, ranging from historical foundations to contemporary international dynamics. Rival theories of underdevelopment, contending models of development, and competing ideologies will be explored. Common African postures as manifested in the "Lagos Plan of Action for the Economic Development of Africa 1980–2000" and in the north-south dialogue will also be assessed.

405 Political History of the Age of Booker T. Washington and W. E. B. DuBois
 Spring. 4 credits. Offered alternate years.
 A review of the intellectual and political history of the Black experience in the United States from 1890 to the eve of World War II. Although the course concentrates on two of the outstanding Black historical figures of the period—Booker T. Washington and W. E. B. DuBois, other personalities and leaders within Black social and political history will be examined—including Marcus Garvey, T. Thomas Fortune, A. Philip Randolph, Charles S. Johnson, William Monroe Trotter, and James Weldon Johnson. Major Black issues, such as the intellectual debates between DuBois and Washington, and DuBois versus Garvey, will constitute a critical part of the discussion.

410 Black Politics and the American Political System
 Fall. 4 credits.
 The central thesis of African American politics has been its movements for political change and democratic access and human rights. This development since the seventeenth century is a complex political legacy. This course will conduct a close study of African American political practice and theoretical analysis of the American political system. Implications of the political systems for prospects and limitations to participation by Black people will be analyzed. Critical historical stages in the process of Black politics will be examined. The development of electoral offices in federal and statewide politics, and the socioeconomic conditions of the Black urban community will be the central focus of the course. Community development models will be explored in relationship to the social needs of the Black populations. The changing configuration of internal organization of the Black community nationally will be examined.

422 African Literature
 Fall. 4 credits.
 Women writers of Africa will be the focus of attention in this course. In addition to gender as well as complementary issues of equal importance in the artistic vision and expression of the woman writer in Africa will be considered in the works of Mariama Ba, Arna autos Aldou, Buchi Emecheta, Aminata Sow Fall, Bessie Head, as well as some "newer" writers. All works will be read in English.

425 Advanced Seminar in Black Theater and Dramatic Literature
 Spring. 4 credits. Enrollment limited.
 This course will be devoted to the study, rehearsal, production, and public performance of a play or plays drawn from the annals of Black American dramatic literature. Students will participate in all the various phases and categories of theatrical production, from acting to production crews to theater group management. A field trip to a Black theater attraction in New York City will also be arranged if possible. Students who have successfully completed AS&RC 285 (Black Theater and Dramatic Literature) will be granted preference for the limited enrollment in this course.

430 African American Creative Writing Seminar
 4 credits.
 This course will afford to a limited number of students who have expressed both interest and aptitude in creative writing the opportunity to concentrate on the production of a piece of writing in either fiction or drama that proceeds from an Afro-centric wellspring. In addition, students will gain critical standards of evaluation through the examination and discussion of "role-model" materials from African American literature and drama as well as considering the work of their fellow students in the seminar.

431 History of Afro-American Literature
 Fall. 4 credits. Offered alternate years.
 An extensive examination of the impact that Afro-American literature has had on describing, explaining, and projecting the Afro-American experience from 1619 to the present.
432 Modern Afro-American Literature
Spring. 4 credits. Offered alternate years.
A study of fiction by Black writers, focusing on the political, social, and cultural factors that have influenced the development and growth of Black writing in relationship to literary themes and attitudes current in specific periods and movements from post-World War II to the present.

450 Body Aesthetics or Body Politics: Images of the Woman in West African Art Forms
Fall. 3 credits. Not offered 1990–91.
W 12:20–2:15.
Examines the body image of the woman as represented in various West African art forms to determine the extent to which the art forms become mediums for validating the prescribed status of the woman in society, suppressing the actual perception of the woman, and re-evaluating the archetypal woman and presenting the woman from a different perspective.

451 Politics and Social Change in the Caribbean
Fall. 4 credits.
M W 1:25–3:20, plus one hour to be arranged.
L. Edmondson. Offered alternate years.
A study of the historical, geostatistic, political, economic, and social (including racial and cultural) forces bearing on the domestic and international experiences of Caribbean societies. Special attention will be given to conflicting definitions and perceptions of the Caribbean; contending theories of Caribbean social structure and models of development; the continuing sable of struggles for change and transformation; prospects of regional integration; and the Caribbean challenges to the global system, especially with regard to the region's relations with the United States in the context of the East-West conflict and its position in the Third World in the context of the North-South cleavage.

455 Modern Caribbean Literature
Spring. 4 credits.
This course will examine the prose literature of the Caribbean islands. Through the reading of several novels and short stories from the various languages and cultural strains that comprise the Caribbean societies, students will study the points of commonality and the diversity within this body of literature. The recurrence of certain historical, social, and cultural issues that have formed the multi-ethnic Caribbean peoples will be analyzed in their varying manifestations across the linguistic and other boundaries to uncover the underlying shared experience.

460 African Philosophy and the Origins of Major Western Religions
Fall or spring. 4 credits. Not offered 1990–91.
M 3:35–6.
The overall objective of this course is to develop in the student an understanding of the origins of the philosophical, theosophical, and magic-religious teachings that were responsible for producing what is today called Judaism, Christianity, and Islam. From this juncture of the most basic works and teachings from the Nile Valley and the Great Africans Lakes, and African religion will be compared to the adoptions in Hebrew, Christian, and Moslem religions, as well as in what is today called Greek philosophy.

471 Black Emancipation in Comparative Perspective (also History 471)
4 credits. Limited to 8 students. Letter grade only.
This course will explore the black emancipation experiences in comparative perspective. Primary emphasis will be on Africa and the United States; secondary focus will be the Caribbean and Latin America. The African component will investigate social consequences of emancipation, the transformations that accompanied that process, and experiences of ex-slaves. Perspectives on the Americas will include the complexities of emancipation, its socio-economic results and the legacy of race relations.

475 Black Leaders and Movements in Afro-American History
Spring. 4 credits. Offered alternate years.
T R 2:55–4:10. R. Harris.
Analyzes the personalities, ideas, and activities central to the struggle for Afro-American liberation from the eighteenth-century to the present. Examines theories of leadership and the structure of protest movements with the goal of understanding current leadership needs and trends among Afro-Americans.

481 Peoples, Culture and Sociology of Caribbean
May be used for social science requirement.
This course considers the socio-cultural continuities and differences in what M. G. Smith has called the “plural societies” of the Caribbean. Emphasis will be placed on the anthropological approach to understanding the historical and contemporary lifeways. Using ethnographies as well as literary works, we will examine, for example, rural and urban family structure, male-female relations, religious movements, migration patterns, markets, and individual and ethnic identity to develop a full portrait of both mainland and island societies in the region.

483 Themes in African History
Fall. 4 credits.
M W 1:25–3:20. Plus one hour to be arranged.
R. Harris.
Designed to expose the student to what has been referred to as the particular aspects of African history. The survey approach will be adopted in the treatment of selected themes, and use will be made, when necessary, of the work done in auxiliary disciplines. The study will be along the following lines: (a) selected African英雄; (b) women in traditional African societies; and (c) African women in the twentieth-century industrial societies.

484 Politics, Conflict, and Social Change in Southern Africa
Fall or spring. 4 credits.
T 10:10–12:05. L. Edmondson.
The focus is on escalating conflicts and ongoing transformations in South Africa and the increasingly salient issue of U.S. relations with the apartheid regime. Topical emphases include the heightening contradictions of apartheid; the rising tide of Black resistance; women under and against apartheid, South Africa's relations with its neighbors; geopolitical, economic, and racial dimensions of the American connection; the disinvestment divestment debate; and the Reagan administration's "constructive engagement" policy under challenge. Instructor's lectures will be supplemented by films, class discussion, and guest lectures.

485 Racism, Social Structure, and Social Analysis Seminar
Spring. 4 credits.
An examination of the social structure of American society and the relationship of racial and class categories to social stratification. An analysis of power structures and the social salience of socioeconomic connections of government decision makers and the corporate structure is developed.

490 Advanced Reading and Research Seminar in Black History
Spring. 4 credits.
M 1:25–2:15. Staff.
The seminar is designed to help students acquaint themselves with the available sources of information and materials in Black history, as well as make the maximum use of their own inclinations and interests in unearthing the material and creating a body of comprehensive conclusions and generalizations out of them.

495 Political Economy of Black America
Spring. 4 credits.
W 10:30–12:05.
An examination of the role that Black labor has played in the historical development of U.S. monopoly, capitalism, and imperialism. Emphasis is on the theory and method of political economy and a concrete analysis of the exploitation of Black people as slave labor, agricultural labor, and proletarian labor.

498–499 Independent Study
488, fall; 499, spring.
Hours to be arranged. Africana Center Faculty.
For students working on special topics, with selected reading, research projects, etc., under the supervision of a member of the Africana Studies and Research Center faculty.

500 Political Theory, Planning, and Development in Africa
Spring. 4 credits. Offered alternate years.
T R 11:15–12:45.
The course explores the processes of underdevelopment of Africa from the epoch of slavery through colonial and neocolonial phases of domination, drawing on the assumptions of "underdevelopment" theory à la G. Frank, Walter Rodney, and others. It then takes up the differential content and emphasis on socialist and capitalist strategies by highlighting the interaction of political and economic forces. Case studies are drawn from Ghana, Kenya, and Tanzania.

505 Workshop in Teaching about Africa
4 credits. Prerequisites: AS&R 203 and 204 or AS&R 360 and 361 or permission of instructor.
Offered alternate years.

510 Historiography and Sources: The Development of Afro-American History
Fall. 4 credits. Prerequisite: upperclass or graduate standing or permission of instructor.
T 9:30–12:05. R. Harris.
Studies the way Black historians in particular have explained the Afro-American past. Examines the development of writing on Afro-American history from the earliest writers to the present. Seeks to determine the principles for interpreting Afro-American history. Acquaints participants with the methodologies and sources central to understanding the Afro-American experience.
515 Comparative Political History of the African Diaspora
Fall. 4 credits. Prerequisite: upperclass or graduate standing or two of the following courses: AS&RC 203, 204, 283, 360, 361, 475, 484, 490. Offered alternate years.
Staff.

520 Historical Method, Sources, and Interpretation
Fall. 4 credits. Prerequisite: upperclass or graduate standing or permission of instructor. Offered alternate years.

550 Transnational Corporations in Africa and Other Developing Countries
Spring. 4 credits. Prerequisite: upperclass or graduate standing or permission of instructor. Offered alternate years.
Examines the role of transnational enterprises as an economic and political factor in the Third World, their relations with the host government, and their interaction with both the private and public sectors of the economy of the host country. Special emphasis on Africa and Latin America.

571 Graduate Seminar in Black Psychology
Fall. 4 credits. Prerequisite: permission of instructor.
This is an upper-level undergraduate and graduate seminar devoted to psychological issues in the Afro-American experience. This seminar will examine the theoretical and empirical literature of Black family–kinship systems and Black self-concept.

598-599 Independent Study
598, fall; 599, spring. Variable credit. For all graduate students.

698-699 Thesis
698, fall; 699, spring. Limited to Africana Studies and Research Center graduate students. Africana Center faculty.

Agriculture, Food, and Society Concentration

H. F. Buttel, A. G. Power, coordinators;

Agriculture, food, and society is an interdisciplinary concentration that is designed to introduce students to the study of agricultural and food issues from diverse perspectives within the liberal arts. The concentration seeks to make available to students a coherent program of study in which the role of agriculture in modern or prehistorical-historical and developed or developing societies can be understood from biological, social, scientific, and humanistic perspective. The concentration draws on courses in several colleges—in particular the Colleges of Arts and Sciences, Agriculture and Life Sciences, and Human Ecology.
Members of the concentration committee, which consists of faculty from each of the major colleges from which courses in the concentration are drawn, serve as advisers in the program. The committee is administered through the Biology and Society Major (office: 275 Clark Hall, 255-6042).

Basic Requirements

The requirements for the agriculture, food, and society concentration are designed to ensure a broad background in the biological, socioeconomic, and humanistic dimensions of agricultural and food issues. These requirements include foundation courses in biology plus a minimum of six courses and 18 credits of electives.

Students enrolling in the concentration should take the following foundation courses in biology to prepare themselves for course work in agricultural science: a two-semester introductory biology sequence selected from Biological Sciences 109-110, 105-106, or 101-102 plus 102-104. Advanced placement in biology with a score of 4 or 5, or Biological Sciences 100, offered during the six-week Cornell summer session for 7 credits, also satisfies the biological sciences requirement. These courses may be used to meet group 1 (physical or biological sciences) distribution sequence requirements in the College of Arts and Sciences.

It is recommended (but not required) that students in the agriculture, food, and society concentration elect one or more freshman writing seminars with agriculturally related content to meet basic college requirements for graduation. A list of agriculturally related freshman writing seminars to be offered in 1990-91 is available from the Biology and Society office.

For further information and a complete list of courses that can be used to fulfill the concentration requirements, students should contact the Biology and Society office, 275 Clark Hall, 255-6042.

American Indian Program

R. LaFrance, acting director (300 Caldwell Hall, 255-6587)

The American Indian Program (AIP) is a multidisciplinary, intercollege program consisting of academic, student support, research, extension, and publications—public relations components.

Academic component. The AIP offers courses that increase all students' awareness of the unique heritage of American Indians. Students are challenged by such topics as the sovereign rights of Indian nations and the contemporary relevance of Indian attitudes toward the environment. The program's instructional core consists of courses focusing on American Indian life with an emphasis on the Iroquois and other Indians of the Northeast. Core courses are supplemented by a variety of offerings from several departments.

The student support staff helps Indian students complete an enriched Cornell education by coordinating academic tutoring, financial aid, personal counseling, and other student services.

Research. Research priorities include education, social and economic development, agriculture, wildlife management, and cultural preservation.

Extension. The AIP's cooperative extension unit seeks to develop solutions to problems identified by Indian people. In this way the AIP can stimulate the application of institutional expertise and resources to community needs.

Publications and public relations. AIP publishes its own multidisciplinary journal, Northeast Indian Quarterly and sponsors conferences, guest lectures, and forums on important national and local Indian issues, past and present. AIP also contributes articles and information to the national Indian press.

For full descriptions of the following courses, consult the listings under individual departments.

The Indian Traditions

Rural Sociology 100 American Indian Studies: An Introduction

Rural Sociology 318 An Ethnohistory of the Haudenosaunee: The Six Nations Iroquois Confederacy

Anthropology 230 Cultures of Native North America

Anthropology 242 American Indian Philosophies I: Power and World Views (also Rural Sociology 242)

Anthropology 354 The Peopling of America

Music 223 Music of the American Indian

Indians in Transition

Anthropology 318 Ethnohistory of the Iroquois

History 209 Political History of Indians in the United States

History 219 Freshman Writing Seminar: History of North American Indians

History 323-324 Native American History

History 381-382 Content and Form of Iroquois Diplomacy

Rural Sociology 442 North American Indian Philosophies

History 429 American Indians in Eastern North America

History 624 Graduate Seminar in American Indian History

Contemporary Issues

Anthropology 243 American Indian Philosophies II: Native Voices (also Rural Sociology 243)

Anthropology 442 American Indian Philosophies: Selected Topics

Rural Sociology 175 North American Indians From 1890 to the Present

Rural Sociology 440 Social Impact of Rapid Resource Development

Independent Study

Independent study courses in departments; students must have approval of an American Indian studies faculty member.
Center for Applied Mathematics

The Center for Applied Mathematics administers a broadly based interdepartmental graduate program that provides opportunities for study and research over a wide range of the mathematical sciences. This program is based on a solid foundation in analysis, algebra, and methods of applied mathematics. The remainder of the graduate student's program is designed by the student and his or her Special Committee. For detailed information on opportunities for graduate study in applied mathematics, students should contact the director of the Center for Applied Mathematics, 305 Sage Hall.

There is no special undergraduate degree program in applied mathematics. Undergraduate students interested in an application-oriented program in mathematics may select an appropriate program in the Department of Mathematics, the Department of Computer Science, or some department of the College of Engineering.

A listing of selected graduate courses in applied mathematics can be found in the description of the center on page 16.

Asian American Studies Program

The Asian American Studies Program is a university-wide program within the College of Arts and Sciences. Its aim is to promote teaching, research, and cultural activities related to Americans of Asian heritage. The program functions as a teaching and resource center to serve the educational needs of the general Cornell community as well as those of the Asian American community. It is intercollegiate in nature and links to all the schools and colleges of the university. The teaching program offers a number of broad basic courses dealing with the Asian American experience that are offered in any of the participating colleges, depending on content and faculty affiliation. It encourages the incorporation of more specific Asian American content into the mainstream curriculum of the university by providing financial resources and substantive support to faculty members interested in developing new courses and adding pertinent materials to existing courses.

The Course Development Grants Program has been established for this purpose. The staff in the program will work toward establishing one or more academic concentrations in the future.

Research

The research program encourages and stimulates research on Asian American topics by functioning as a resource and activity center for its affiliated members as well as the general Cornell community. It sponsors activities designed to facilitate dialogue and interchange among faculty from a variety of disciplines and to promote collaborative research among its members. To this end, the Research Grants Program has been instituted to provide seed money to faculty and students for research on Asian American topics.

Art and Culture

The third dimension of the program is to foster and promote Asian American culture and art. The program functions as a resource center and a place for social interaction among Asian American students and members of the Cornell community. In this capacity the program sponsors events aimed not simply at enhancing Asian American students' sense of identity but also at developing an appreciation for the creative aspects of the heritage of Asian Americans among all members of the Cornell community.

Affiliated Faculty

Lee C. Lee, director (Human Development and Family Studies); R. Barker (Agricultural Economics); M. L. Barnett (Rural Sociology and Asian Studies); T. Chaloemtiarana (Southeast Asia Program); P. Chi (Consumer Economics and Housing); M. C. Chou (Asian Studies); D. B. Bar (Asian Studies); D. Gold (Asian Studies); J. C. T. Huang (Modern Languages and Linguistics); K. A. R. Kennedy (Ecology and Systematics); J. V. Koschmann (History); L. C. Lee (Human Development and Family Studies); D. R. McCann (Asian Studies); K. March (Anthropology and Women's Studies); T. L. Mei (Asian Studies); V. Nee (Sociology); R. E. Ripple (Education); N. Sakai (Asian Studies); P. S. Sangren (Anthropology); C. L. Shih (Modern Languages and Linguistics); R. J. Smith (Anthropology); M. W. Young (History of Art)

Courses

110 Introduction to Asian American Studies

Fall. 3 credits.
T R 2:55-4:10. Staff.
This introductory course explores the historical roots of Asians in America—the causes and sources of Asian immigration to the United States, the experiences of these pioneers, and their major role in the development of the western states. It also examines the U.S. response to these Asian immigrants, and analyzes contemporary issues such as self-worth, identity, and the influences of mass media.

282 Asian American Literature

Spring. 3 credits.
Staff.
This course explores the diverse worlds of past and present Asian America through critical reading of selected works by Asian American writers. Emphasis is on helping students locate and develop their own points of view with regard to America as a pluralistic society with a diverse and evolving literary heritage. Topics covered include the oral tradition, the creative process for Asian American writers, incarceration and resistance; generation, gender, and community; and diversity and evolution. Students will keep a reading journal with entries focusing on connections among what is read, class discussion, and perceptions of life.

435 Asian American Images and Stereotypes in Film

Fall. 3 credits. Prerequisite: AAS 110 or permission of instructor.
Staff.
This course examines images of Asian Americans in domestically produced film and television and analyzes these images with a historical and socio-cultural framework. Within this context, film and media theory are used to assess the impact of these images on viewers. Students' projects will include the creation of a video or a paper using images that more realistically reflect Asian American life and issues.

610 Asian Americans, Civil Rights, and the Law

Fall. 3 credits. Prerequisite: Seniors may enroll with permission of instructor.
This course examines contemporary civil rights law and cases which have impacted Asians in America. Topics include America's immigration policy, alien land laws and Asian American community development, Japanese American internment, the failure of the Constitution and the redress and reparations movement, Asian American women and law; Asian labor, voting rights and Asian empowerment; anti-Asian violence and the criminal justice system including the recognition of contemporary legal issues in Asian American communities (from the "English only" initiative to new immigration bills). American law and Supreme Court cases will be analyzed, and the treatment of Asian Americans and other minority groups within the American system will be contrasted.

Biography and Society

The biology and society major is offered to students enrolled in the College of Arts and Sciences and the College of Human Ecology. Undergraduates in the College of Agriculture and Life Sciences can develop an approved sequence of courses from the biology and society curriculum under certain conditions. The major is coordinated for in all colleges through the biology and society office. Students can get information, specific course requirements, and application procedures for the major from the office at 275 Clark Hall.

Because the major is multidisciplinary, students must attain a basic understanding of each of the several disciplines it comprises. These include introductory courses in the fields of science, history or philosophy, biochemistry, ecology, genetics, evolutionary biology, and statistics. In addition, majors are required to take a core course and must develop a theme: a coherent and meaningful grouping of six courses representative of their special interest in biology and society. Students should develop the theme and select the courses in consultation with a member of the biology and society faculty. Courses must be above the 100 level, at least 3 credits, and taken for a letter grade if used to fulfill a major requirement.

There are student advisers and faculty available (according to posted office hours only), to answer questions and to provide assistance.
Admission to the Major

Arts and Sciences and Agriculture and Life Sciences

Students should have completed a year of college-level biology and submit an application during their sophomore year. Juniors are considered on a case-by-case basis. Upper-division applicants should realize the difficulties of completing the major requirements in fewer than two years. The application includes (1) a one- to two-page statement explaining the student's intellectual interests in the biology and society major and why the major is consistent with the student's academic goals and interests; (2) a selected theme in the major; (3) a tentative plan of courses fulfilling biology and society requirements, including courses taken and those the student plans to take; and (4) a transcript of work taken at Cornell University and elsewhere if applicable, current as of the date of application.

Acceptance into the major requires completion of the course sequence in introductory biology. Sophomores in the process of completing this prerequisite may be admitted to the major on a provisional basis. It is the student's responsibility to assure that full acceptance is granted on satisfactory completion of the introductory biology sequence. Although only introductory biological science is a prerequisite for acceptance, students will find it useful to have completed some of the other requirements (listed below) by the end of their sophomore year, preferably in the first semester.

Human Ecology

Human Ecology students should consult the current Human Ecology Guide and meet with the college advising coordinator, Virginia Utermohlen, N206a Martha Van Rensselaer Hall, 255-2136.

Major Requirements

1) Basic courses
 - A. Biological sciences 101–104 or 105–106 or 107–108
 - B. College calculus (one course): Math 106, 111, 112 or any higher-level calculus course

2) Foundation courses (should be completed by the end of the junior year): one course in each subject area
 - A. Ethics: B&Soc 205 (also Bio Sci 205 and Phil 245) or B&Soc 206 (also Bio Sci 206 and Phil 246)
 - B. History of philosophy: Phil 381 or 389, or B&Soc 288 (also Hist 288 and Bio Sci 202), or Bio Sci 207 (also Hist 287), or Hist 282
 - C. Biochemistry: Bio Sci 231 or 350 or 331
 - D. Ecology: Bio Sci 261
 - E. Genetics: Bio Sci 281 or 282 or Pl Br 225
 - F. Evolutionary Biology: Bio Sci 378

3) Core courses (one course)
 - A. 301 Biology and Society: The Social Construction of Life (also Biological Sciences 301)
 - B. Phil 286: Science and Human Nature

4) Themes (six courses above the 100 level)
 - A. Natural Sciences issues (one course)
 - B. Social sciences issues (one course) and elective (one course)
 - C. Humanities issues or elective, or additional social sciences elective (one course)

Note: If 301 is taken as the core course, a humanities course must be taken to fulfill this requirement.

D. Biology elective (one course)

E. Senior seminar (one course in the senior year). Courses change yearly.

Themes in the Major

Students are encouraged to develop their own themes in a concentration area. Examples include biology, behavior, and society; biology and human population; biology and public policy; environment and society; food, agriculture, and society; and health and society. Sample theme areas are available in the biology and society office.

Independent Study

Projects under the direction of a biology and society faculty member are encouraged as part of the program of study in the student's theme area. Applications for research projects are accepted by individual faculty members. Biology and Society majors may enroll for 1–4 credits in Biology and Society 375 (Independent Study) with written permission of the faculty supervisor and may elect either the letter grade or the S-U option. Biology and Society majors from the colleges of Arts and Sciences and Agriculture and Life Sciences may elect to do an independent study project as an alternative to, or in advance of, an honors project. Applications and information on faculty research, areas of interest, and undergraduate opportunities are available in the biology and society office, 275 Clark Hall. Independent study credits may not be used in completion of the major requirements.

Honors Program

The honors program is available to biology and society majors from the colleges of Arts and Sciences and Agriculture and Life Sciences and is designed to challenge the academically-talented undergraduate student. Students who enroll in the honors program are given the opportunity to do independent study and to develop the ability to evaluate research dealing with issues in biology and society. Students participating in the program should find the experience intellectually stimulating and rewarding.

Selection of Students: During the first three weeks of the fall semester, senior biology and society majors are considered for entry into the honors program by the Honors Program Committee. Applications for the honors program are available at the biology and society office, 275 Clark Hall. To qualify for the honors program, students must explain how the honors program fits into their overall plan, must have an overall Cornell cumulative grade-point average of at least 3.00 and at least a 3.30 cumulative grade-point average in all courses used to meet the major requirements. Students in the College of Agriculture and Life Sciences must also meet the requirements of that college and be selected by one of the existing college honors committees.

If, after admission to the honors program, a student fails to maintain a high scholastic average, or if for any other reason(s) he or she is considered unsuited for honors work, the student reverts to candidacy for the regular bachelor's degree. The student who does not continue in the honors program receives credit for any work passed in the program but is not eligible for a degree with honors.

Project Requirements: The satisfactory completion of a special project and the writing and oral defense of an honors thesis are required. The honors program promotes substantial research, and the completed work should be of wider scope and higher quality than the work normally required for an advanced course.

Initiative for formulation of ideas, developing the proposal, carrying out the study, and preparation of a suitable thesis lies with the student. Honors projects will be under the direction of two advisors. Candidates must first find a biology and society faculty member willing to serve as the adviser and, together with the adviser, find a second adviser among the faculty at large. The purpose of the second adviser is to guarantee expertise in the subject matter covered by the thesis. Students in the College of Agriculture and Life Sciences must select this adviser from the area in which their thesis will be reviewed.

Students must enroll in Biology and Society 499 for one or both terms of their senior year after consultation with the biology and society thesis adviser. They take from 3 to 5 credits per term with up to a maximum of 8 credits in Biology and Society 499. Students are encouraged to enroll for both terms to give them time to develop a project properly for the thesis. If registering for a two-semester honors project, students must register for the total credits desired for both terms (8 credits in the fall term and 8 credits for the spring term). Students should note, however, that Biology and Society 499, because it is a special honors course, is to be taken in addition to those courses that meet the regular major requirements. Honors projects cannot be used to fulfill the senior seminar requirement.

Honors Thesis: Students and their advisers should meet regularly during the period of research and writing for the honors thesis. The responsibility for scheduling these meetings, and for carrying out the research agreed on, rests with the student. Advisers are expected to make themselves available for discussion at the scheduled times and to offer advice on the plan of research, as well as provide critical and constructive comments on the written work as it is completed. They are not expected, however, to have to pursue students either to arrange meetings or to ensure that the research and writing are being done on schedule.
There is no prescribed length for a thesis, since different topics may require longer or shorter treatment, but it should normally be no longer than seventy double-spaced, typed pages. When a thesis has been completed in a form satisfactory for purposes of evaluation, the candidate must meet with the thesis advisers and one member of the Honors Program Committee and formally defend the thesis. This should be no later than the last day of classes. Any student would be well advised, however, to provide reviewers with a polished draft at least four weeks prior to the last day of classes and defend his or her thesis well in advance of the end of classes to allow time for revisions. A public presentation of the honors work to faculty and students will be scheduled at the end of the student's last semester.

Evaluation and Recommendation: Two copies of the completed and defended thesis (suitably bound in a plastic or hard-backed cover), together with the advisers' recommendations, must be submitted to the Honors Program Committee by the first day of study period of the student's final term.

Following the formal defense of the thesis, the thesis advisers will each submit to the Honors Program Committee a recommendation that includes (1) an evaluation of the honors work and the thesis, (2) an evaluation of the student's academic record in the biology and society major, and (3) a recommendation for or against awarding honors. (For College of Arts and Sciences students, a justification for the level of honors proposed must be included.)

Copies of the thesis and recommendations will be circulated to the Honors Program Committee. As the committee may have little knowledge of the subject area of the thesis, letters of recommendation should be carefully prepared to help the committee ensure consistency in the honors program. Unless there is serious disagreement, the recommendation of the advisers should stand. If there is disagreement, the Honors Program Committee will make the decision after consultation with the interested parties.

Freshmen Writing Seminars

103 In the Company of Animals
Spring. 3 credits.
A. Boehm.

104 Ecosystems and Ego Systems
Spring. 3 credits.
M. Gilliland.

108 Living on the Land
Fall. 3 credits.
A. Boehm.

109 Women and Nature (also English 105.5)
Fall. 3 credits.
M. Perks.

[113 Writing as a Naturalist (also English 113)]
Spring. 3 credits.
M. Gilliland.

[115 The American Way: Addiction and Consumption
Spring. 3 credits.
M. Gilliland.

For up-to-date information consult the John S. Knight Writing Program brochure.

Foundation Courses

A. Ethics (select one)

205 Ethics and Health Care (also Philosophy 245 and Biological Sciences 205)
Fall. 4 credits. Limited to 70 students. Registered students not attending the first week will be dropped from the course. Open to sophomores, juniors, and seniors, permission of instructor required for graduate students.

Lecs, T.R. 10:10-11:25; disc. 1 hour each week to be arranged. M. Wachsberg.

Critical *philosophical* analysis of the conceptual frameworks in which ethical problems associated with health care can be formulated and solutions evaluated. General topics (with sample issues in parentheses) include knowledge in ethics (ethical skepticism, ethical relativism); proper social allocation of resources for, and within, medicine (entitlement to health care, access to scarce medical resources, cost-benefit analysis); the proper account of basic concepts such as illness, death, autonomy, and personhood (abortion, euthanasia, reproductive technologies); and the professional-patient relationship (informed consent, confidentiality, medical paternalism).

Note: A more detailed description of this course is available in the biology and society office, 275 Clark Hall.

206 Ethics and the Environment (also Philosophy 246 and Biological Sciences 206)
Spring. 4 credits. Open to all undergraduates; permission of instructor required for graduate students.

Lecs, T.R. 10:10-11:25; disc. 1 hour each week to be arranged. M. Wachsberg.

Critical *philosophical* analysis of the conceptual frameworks in which policies affecting the environment are formulated and judged. An introductory section of the course discusses the nature of ethics and the possibility of knowledge in ethics. The first major substantive component of the course deals with the nature and extent of individual and social obligations to spatially distant people, future generations, nonhuman animals, and non sentient things (e.g., the ecosystem). The second major component of the course deals with the appropriate analysis of the origin of environmental problems and the range of options for their solution. Topics include individual vs. collective goods, cost benefit analysis, and coordination problems. Note: A more detailed description of this course is available in the biology and society office, 275 Clark Hall.

B. History or Philosophy (select one)

288 History of Biology (also History 288 and Biological Sciences 202)
Spring. 3 credits. Prerequisite: one year of introductory biology. 5-U grade optional. Not offered 1990-91.

An examination of the history of biology, emphasizing the interaction of biology and culture. Original writings of biologists constitute the bulk of reading assignments. This course covers the period from classical antiquity to the present, but primary emphasis is on twentieth-century biology.

289 History of Science in Western Civilization
Spring. 3 credits.
P. Dear.

History 287 Evolution (also Biological Sciences 207)
Fall. 3 credits. (May not be taken for credit after Biological Sciences 378, Evolutionary Biology.)
W. B. Provine.

Philosophy 381 Philosophy of Science: Knowledge and Objectivity
Fall. 4 credits.
R. Boyd.

Philosophy 389 Philosophy of Science: Evidence and Explanation
Spring. 4 credits.
R. Miller.

C. Biochemistry (select one)

Biological Sciences 231 General Biochemistry
Fall. 3 credits.
J. M. Griffis.

Biological Sciences 330 Principles of Biochemistry, Individual Instruction
Fall and spring. 4 credits.
M. Ferns.

Biological Sciences 331 Principles of Biochemistry, Lectures
Fall. 4 credits. (2 credits if taken after Biological Sciences 231)
J. K. Moffat.

D. Ecology

Biological Sciences 261 Ecology and the Environment
Fall. 4 credits.
R. Root and T. Dawson.

E. Genetics (select one)

Biological Sciences 281 Genetics
Fall, spring, and summer. 5 credits.
R. S. Machyntry and M. L. Goldberg.

Biological Sciences 282 Human Genetics
Spring. 3 credits. (2 credits if taken after Biological Sciences 281)
R. Calvo.

[Plant Breeding 225 Plant Genetics]
Spring. 4 credits.
M. A. Mutschler.

F. Evolutionary Biology

Biological Sciences 378 Evolutionary Biology
Spring. 4 credits. (2 credits if taken after History 287/Biological Sciences 207.)
R. G. Harrison.

G. Statistics (select one)

Agricultural Economics 310 Introductory Statistics
Fall and spring. 4 credits.
C. VanEs.

Economics 319 Introduction to Statistics and Probability
Fall. 4 credits.
J. Park.

Education 352 Introduction to Educational Statistics
Spring. 3 credits.
J. Millman.

Industrial and Labor Relations 210 Statistics: Statistical Reasoning
Fall and spring. 4 credits.
Staff.
Core Courses

301 Biology and Society: The Social Construction of Life (also Biological Sciences 301)
Fall. 4 credits. Prerequisite: one year of introductory biology. Students taking 301 as a core course must take a humanities course as part of their theme requirement.
Controversial issues, past and present, in the life sciences and tools for analysis of the social, historical, and conceptual underpinnings of these issues. Topics include evolution and natural selection, heredity and genetic determinism, biotechnology and reproductive interventions, ecology and environmental change. Analytic themes include bias, metaphor, historical semantics, styles of explanation, determinism, causality, interest, social construction, and mapping. Through discussions and writing assignments, students will develop analytic skills and their own responses to current issues.

303 Natural Science 101 Environmental Conservation
Spring. 3 credits.
D. Roe.

306 Philosophy 286 Science and Human Nature
Spring. 4 credits.
Lecs, M W F 11:15, disc, to be announced. R. Boyd.
An examination of attempts in the biological and social sciences to offer scientific theories of human nature and human potential and to apply such theories to explain important social and psychological phenomena. Topics vary, and may include issues in psychology, such as behaviorism, Freudianism, and artificial intelligence, or issues in the foundations of historical theory, such as methodological individualism and economic determinism, as well as relevant issues in the biological sciences.

Themes

A. Issues - Natural Sciences

201 Biotechnology: The "New" Biology (also Biological Sciences 201)
Spring. 3 credits. Prerequisite: one year of introductory biology. Not intended for students planning to enroll in BioSci 281, 330, or 331.
Sem and disc hours to be announced. J. Fessenden MacDonald et. al.
A general introduction to the application of modern molecular biology and cell culture techniques to the manipulation of genetic engineering of animals, plants, and microorganisms. Information on recombinant DNA technology, monoclonal antibodies, plant and/or animal cell culture, and embryo manipulation methods will be presented. Commercial applications to health, forensics, environment, agriculture, and food as well as the economic, social policy, regulatory, ethical, and legal issues that surround biotechnology will be discussed. The course will be taught in four modules and the topics will vary from year to year. The topics of spring 1991 will be Gene Probes as Diagnostics and Molecular Fingerprints, Immunology and Monoclonal Antibodies, Reproductive Biotechnology, and Genetically Engineered Plants in Agriculture.

(232 Recombinant DNA Technology and Its Applications (also Biological Sciences 232)
Spring. 3 credits. Disc limited to 20 students.
Prerequisite: one year of introductory biology.
There is a possible fee for course reading material.
An introduction to molecular approaches to biology. Basic concepts underlying recombinant DNA technology together with strategies for cloning genes are discussed. Much of the course deals with applications of recombinant DNA technology to basic research and to biotechnology. Applications to be discussed include screening for genetic diseases, plant improvement, and production of insulin, interferon, blood-clotting factors, growth hormones, vaccines, and feedstock chemicals. Scientific, historical, regulatory, social, and ethical issues form the basis of the discussions. Recommended especially for sophomores desiring a firm background in recombinant DNA technology in preparation for taking genetics and biochemistry. Also appropriate for an intelligent layperson who wants to understand some new research discoveries and applications stemming from them.

347 Human Growth and Development: Biological and Social Psychological Considerations (also Human Development and Family Studies 347 and Nutritional Sciences 347)
Spring. 3 credits.
Prerequisites: Biological Sciences 101 or 109 or equivalent, and Human Development and Family Studies 115 or Psychology 101. Offered alternate years.
A review of major patterns of physical growth from the fetal period through adolescence, with consideration of biological and socio-environmental determinants of growth as well as physical and psychological consequences of variations in growth patterns. An examination of normal patterns of growth is followed by an analysis of major sources of variations in growth (normal and atypical).
[Human Service Studies 330] Ecology and Epidemiology of Health
Fall. 3 credits.
A. Parrot.

Human Service Studies 634 Health Care Organization—Providers and Reimbursement
Fall. 3 credits.
R. Buchanan.

Human Service Studies 688 Alternative Health and Social Services Delivery Systems: Long-Term Care and the Aged
Spring. 3 credits.
R. Battistella.

Natural Resources 400 International Environmental Issues
Fall. 4 credits.
R. McNeil.

[Biological Sciences 673] Human Evolution: Concepts, History, and Theory (also Anthropology 673)
Fall. 3 credits.
K. Kennedy.

City and Regional Planning 480 Environmental Politics
Spring. 3 credits.
R. Booth.

City and Regional Planning 551 Environmental Law
Fall. 3 credits.
R. Booth.

[Nutritional Sciences 325] Sociocultural Aspects of Food and Nutrition
Fall. 3 credits.
D. Sanjur.

[Nutritional Sciences 445] Community Nutrition and Health
Spring. 3 credits.
A. Gillespie.

[Nutritional Sciences 457] National and International Food Economics
Spring. 3 credits.
E. Thorbecke.

Psychology 326 Evolution of Human Behavior
Fall. 4 credits.
R. Johnson.

Rural Sociology 201 Population Dynamics (also Sociology 205)
Spring. 3 credits.
J. M. Styczynski.

Rural Sociology 205 Rural Sociology and International Development
Spring. 3 credits.
P. McMichael.

Rural Sociology 324 Environment and Society
Fall. 3 credits.
F. Bittell.

Rural Sociology 490 Society and Survival
Fall. 3 credits.
D. Gurak.

[Sociology 418] Gender and Socialization
Spring. 4 credits.

City and Regional Planning 655 Land Resources Protection Law
Fall. 3 credits.
R. Booth.

[City and Regional Planning 656] Land Resources Protection Law
Fall. 3 credits.
R. Booth.

[Consumer Economics and Housing 450] Economics of Health, Health-care Expenditures, and Health Policy
Fall. 3 credits.
R. Booth.

History 233 Agriculture, Science, and Society: From Squanto to Biotechnology
Fall. 4 credits.
M. Rosziter.

Human Development and Family Studies 250 The Historical Development of Women as Professionals, 1800 to the Present (also Women’s Studies 238)
Spring. 3 credits.
J. Brumburg.

Human Development and Family Studies 372 Typical and Atypical Intellectual Development
Spring. 4 credits.
S. Ceci.

Human Development and Family Studies 488 Development in Context (also Psychology 488)
Spring. 4 credits.
U. Bronfenbrenner.

Human Service Studies 315 Human Sexuality
Spring. 3 credits.
A. Parrot.

Human Service Studies 325 Health Care Services and the Consumer
Fall. 3 credits.
A. Parrot.

Human Service Studies 634 Health Care Organization—Providers and Reimbursement
Fall. 3 credits.
R. Buchanan.

Human Service Studies 688 Alternative Health and Social Services Delivery Systems: Long-Term Care and the Aged
Spring. 3 credits.
R. Battistella.

Natural Resources 400 International Environmental Issues
Fall. 4 credits.
R. McNeil.

[Nutritional Sciences 325] Sociocultural Aspects of Food and Nutrition
Fall. 3 credits.
D. Sanjur.

[Nutritional Sciences 445] Community Nutrition and Health
Spring. 3 credits.
A. Gillespie.

[Nutritional Sciences 457] National and International Food Economics
Spring. 3 credits.
E. Thorbecke.

Psychology 326 Evolution of Human Behavior
Fall. 4 credits.
R. Johnson.

Rural Sociology 201 Population Dynamics (also Sociology 205)
Spring. 3 credits.
J. M. Styczynski.

Rural Sociology 205 Rural Sociology and International Development
Spring. 3 credits.
P. McMichael.

Rural Sociology 324 Environment and Society
Fall. 3 credits.
F. Bittell.

Rural Sociology 490 Society and Survival
Fall. 3 credits.
D. Gurak.

[Sociology 418] Gender and Socialization
Spring. 4 credits.

City and Regional Planning 655 Land Resources Protection Law
Fall. 3 credits.
R. Booth.

[City and Regional Planning 656] Land Resources Protection Law
Fall. 3 credits.
R. Booth.

[Consumer Economics and Housing 450] Economics of Health, Health-care Expenditures, and Health Policy
Fall. 3 credits.
R. Booth.

History 233 Agriculture, Science, and Society: From Squanto to Biotechnology
Fall. 4 credits.
M. Rosziter.

Human Development and Family Studies 250 The Historical Development of Women as Professionals, 1800 to the Present (also Women’s Studies 238)
Spring. 3 credits.
J. Brumburg.

Human Development and Family Studies 372 Typical and Atypical Intellectual Development
Spring. 4 credits.
S. Ceci.

Human Development and Family Studies 488 Development in Context (also Psychology 488)
Spring. 4 credits.
U. Bronfenbrenner.

Human Service Studies 315 Human Sexuality
Spring. 3 credits.
A. Parrot.

Human Service Studies 325 Health Care Services and the Consumer
Fall. 3 credits.
A. Parrot.
The role of law in modern medicine (and the related biomedical sciences) will be examined from the perspective of the social functions of law and medicine. A number of policy and ethical issues will be considered, including the role of hospitals and other health organizations in doctor-patient interactions, the social aspects of physician-patient interactions, reproductive technologies, the effect of medical malpractice on health-care delivery, legal issues in the care of the newborn and health-care decisions for incompetents and terminally ill patients.

Technologies, the effect of medical malpractice on doctor-patient interactions, the social aspects of the biotechnology under consideration, introduction of new biotechnology products, therapy.

A view of science less as an autonomous discipline and more as a social and moral project. Other disciplines, such as perception, memory, reasoning, language, and motor control. In the College of Arts and Sciences these disciplines are represented in Linguistics, Mathematics, Philosophy, and Psychology. Elsewhere in the university they are represented in the Department of Computer Science, Linguistics, Mathematics, Philosophy, and Psychology.

Projects under the direction of a Biology and Society faculty member are encouraged as part of the program of study within the student’s concentration area. Applications for research projects are accepted by individual faculty members. Students may enroll for 1–4 credits in Biology and Society 375 (Independent Study) with written permission of the faculty supervisor and may elect either the letter grade or the S-U option. Students may elect to do an independent study project as an alternative to, or in advance of, an honors project. Applications and information on faculty research, scholarly activities, and undergraduate opportunities are available in the Biology and Society office, 275 Clark Hall. Independent study credits may not be used in completion of the major requirements.

SPECIAL PROGRAMS AND INTERDISCIPLINARY STUDIES 305

428 Medicine and the Law
Fall. 4 credits. Letter grades only. Lecs, T 2:30–4:25. Limited to 16 students. L. Elkes.

The role of law in modern medicine (and the related biomedical sciences) will be examined from the perspective of the social functions of law and medicine. A number of policy and ethical issues will be considered, including the role of hospitals and other health organizations in doctor-patient interactions, the social aspects of physician-patient interactions, reproductive technologies, the effect of medical malpractice on health-care delivery, legal issues in the care of the newborn and health-care decisions for incompetents and terminally ill patients.

426 Medicine and the Law

460 Social Analysis of Ecological Change (also Rural Sociology 660)
Fall. 5 credits. Limited to 20 students. Seniors must have permission of instructor. Offered alternate years.

Sem, M 7:30–10:30 p.m. P. Taylor. Scientific studies of ecological and social processes, together with the analysis of those studies and their interpretation by historians, sociologists, and anthropologists. Topics include cybernetics, systems ecology, the tragedy of the commons, the Limits to Growth, ecological degradation, political ecology, global models, conservation biology, and sustainable development.

461 Environmental Policy (also Biological Sciences 661 and Agriculture and Life Sciences 661)
Fall and spring. 6 credits. Prerequisite: permission of instructor. This is a two-semester course.

Sem, R 2:30–4:30. D. Pimentel. This course uses an interdisciplinary approach to focus on complex environmental and energy problems. Ten to twelve students, representing several disciplines, will investigate significant environmental problems. The research team spends two semesters preparing a scientific report for publication in Science or BioScience.

Human Service Issues in Health Administration (also Human Service Studies 628)
Spring. 3 credits. Sec, M W 2:15–3:30. V. Utemohlen. A survey of the issues that affect interactions between the health-care consumer and the health-care team, including disease processes (how disease occurs and progresses), the health-care team and illness, third-party payment and illness, and resource allocation.

Biotechnology: Science, Policy and Values (also Biological Sciences 434)
Spring. 3 credits. Fee for photocopy materials. Lec, W 1:25–4:25. J. Fessenden MacDonald. Topic for 1991: environment, agriculture, and food biotechnology. Issues raised by the introduction of new biotechnology products and procedures, food and agriculture, environment, and the legal system will be analyzed. There will be an examination of the scientific, political, legal, economic, social, and ethical implications. Cases studied will vary each term. Background is provided on the molecular biology and applied science aspects of the biotechnology under consideration. Readings from various disciplines, including scientific papers, government reports, and other legal reports, will provide background for class discussions. A research paper and oral presentations are required. Topics for 1992: rDNA drugs and diagnostics, DNA fingerprinting, and gene therapy.

Social and Political Studies of Science (also City and Regional Planning 442)
Fall. 3 or 4 credits. Lecs, hours to be announced. T. Pinch. A view of science less as an autonomous activity than as a social and political institution. We will discuss such issues as secrecy in science, ethical and value disputes, and the limits to scientific inquiry in the context of the changing relationships between science and the public.

AIDS and Society
Fall. 3 credits. Limited to 20 students who have been approved by Professor A. van Tienhoven, 102 Rice Hall. A Common Learning Course.

Lecs, T 2:30–4:30. Optional 1 hr. discussion. M 2:30. A. van Tienhoven and others. Discussions of the impact of acquired immune deficiency syndrome (AIDS) on society will consist of faculty seminars on the biology of the virus, the transmission of the disease, the legal aspects of controlling the spread of the disease, and the impact of the disease on the performing arts, especially theater. Students will have the opportunity to initiate and carry out (a) class project(s).

499 Honors Project
Fall or spring; two-semester projects are acceptable. 3–5 credits each term with a maximum of 8 credits for the entire project. Open only to Biology and Society students in their senior year.

Students enrolled in Biology and Society 499 will receive a letter grade at the end of their final term, whether or not they complete a thesis and whether or not they are recommended for honors. Students enrolled for the whole year in 499 may receive either a letter grade for both terms or a grade of "R" for the first term with a letter grade for both terms submitted at the end of the second term. When a student is enrolled for two terms, the student and the thesis adviser must reach a clear agreement at the outset as to which grade will be assigned for the first term and on the basis of what sort of work. Minimally an honors thesis outline and bibliography should be completed during the first term. Applications and information are available in the Biology and Society office, 275 Clark Hall.

Cognitive Studies Program
F. Keil (psychology), S. McConnell-Ginet (linguistics), codirectors. G. Belardi, R. Birman, R. Constable, B. Donald, D. Hattenlocher, D. McAllester, P. Parson, A. Segre, D. Subramanian, (computer science); J. Condy, B. Koslowski, B. Lust, M. Potts, G. Suci (human development and family studies); L. Babby, J. Bowers, G. Chierchia, G. N. Clements, J. Gair, W. Harben, J. Huang, J. Kingston, A. Landman, S. McConnell-Ginet, C. Rosen, C. Shih, M. Suter, L. Waugh, J. Whitman (linguistics); A. Neronde, R. Platek, R. Shore (mathematics); A. Appiah, R. Boyd, C. Ginet, H. Hodes, S. Shoemaker (philosophy); J. Cutting, B. Finlay, E. Gibson, B. Halpern, F. Keil, C. Krumhansl, H. Kurtzman, H. Levin, E. Spelke (psychology). Cognitive studies is comprised of a number of disciplines that are linked by a major concern with such fundamental capacities of the mind as perception, memory, reasoning, language, and motor control. In the College of Arts and Sciences these disciplines are represented in the departments of Computer Science, Linguistics, Mathematics, Philosophy, and Psychology. Elsewhere in the university they are represented in the Department of Human Development and Family Studies (College of Human Ecology), the Section of Neurobiology and Behavior (Division of Biological Sciences), and the Department of Education (College of Agriculture and Life Sciences).

The issues addressed in cognitive studies arise at several levels. At the broadest level are problems of characterizing such basic notions as "mind," "knowledge," "information," and "meaning." At a more specific level are questions regarding the abstract operating principles of individual components of the mind, such as the components underlying visual perception, language ability, and understanding of concepts. These principles concern the organization and behavior of the components and also how the components develop and change. And at the most specific level are questions about the properties of the elementary computational structures and processes that constitute these components.
Important insights into issues of these kinds have been achieved in recent years as a result of the various cognitive studies disciplines converging in their theoretical and methodological approaches. It is this convergence, in fact, that warrants grouping the disciplines together under the single term “cognitive studies.” Even greater progress can be expected in the future as a consequence of increasing cooperation among the disciplines.

Undergraduate Concentration
Professor H. Kurtzman (psychology), director of undergraduate studies (224 Uris Hall, 255-3835).

The undergraduate concentration in cognitive studies provides a framework for the design of structured, individualized programs of study in this growing interdisciplinary field. Such programs of study are intended to serve as complements to intensive course work in a single discipline as represented in an individual department. It is considered crucial that students gain a strong background in an individual department, independent of their work in the concentration. This background provides both a foundation and a focus for the concentration work.

In light of the importance of a strong background in an individual department, it is required that a student seeking admission to the concentration have completed or plan to complete three courses in one department from among the list of courses below. (Such a student will typically be a major in the department, but being a major is not necessary. The Section of Neurobiology and Behavior counts as a department here.) These three courses are, however, the only requirement for admission. To enter the concentration formally, the student should consult with the concentration director, who will assign the student a concentration adviser (from among the faculty listed above) who has expertise in the student’s main areas of interest.

The concentration requires that the student take five courses from departments other than the one from which the student takes the three courses needed for admission to the concentration. These five courses may not all be taken from a single department. The student must gain approval for the selection of five courses from the concentration adviser. The five courses will generally be chosen from among the list below, but other courses (including independent study) are permissible in individual cases.

In addition to assisting in and approving the student’s selection of courses, the concentration adviser serves as a general resource of information about the field of cognitive studies, relevant resources around the university, and job and graduate school opportunities.

Graduate Minor
For information, consult the program office (225 Uris Hall, 255-6431).

Courses

Computer Science
- 172 An Introduction to Artificial Intelligence
 Spring. 4 credits.
- 211 Computers and Programming
 Fall or spring. 3 credits.
- 212 Modes of Algorithmic Expression
 Fall. 4 credits.
- 280 Discrete Structures
 Fall or spring. 4 credits.
- 381 (or 481) Introduction to Theory of Computing
 Fall. 4 credits.
- 410 Data Structures
 Fall or spring. 4 credits.
- 411 Programming Languages and Logics
 Spring. 4 credits.
- 472 Introduction to Artificial Intelligence
 Fall. 3 credits.
- 473 Practicum in Artificial Intelligence
 Spring. 2 credits.

Linguistics
- 101-102 Theory and Practice of Linguistics
 Fall and spring. 4 credits each term.
 Staff.
- 264 Language, Mind, and Brain
 Fall. 4 credits.
 J. Bowers.
- 301-302 Phonology I, II
 Fall and spring. 4 credits each term.
 G. N. Clements.
- 303-304 Syntax I, II
 Fall and spring. 4 credits each term.
 Staff.
- 309-310 Morphology I, II
 Fall and spring. 4 credits each term.
 Staff.
- 316 Introduction to Mathematical Linguistics
 Spring. 4 credits.
 F. Landman.
- 319-320 Phonetics I, II
 Fall and spring. 3 credits each term.
 J. Kingston.
- 325 Pragmatics
 Fall. 4 credits.
 S. McConnell-Ginet.
- 370 Language and Cognition (also Psychology 370)
 Spring. 4 credits.
 J. Bowers, H. Kurtzman.
- 400 Semiotics and Language
 Spring. 4 credits.
 L. Waugh.
- 401 Language Typology
 Fall. 4 credits.
 J. Whitman.
- 412 Process and Knowledge in Speech Perception and Word Recognition
 Spring. 4 credits.
 J. Kingston.
- 418 Nonlinear Phonology
 Spring. 4 credits.
 J. Kingston.
- 420 Fundamentals of Speech Acoustics
 Spring. 4 credits.
 J. Kingston.
- 421-422 Semantics I, II
 Fall and spring. 4 credits each term.
 F. Landman.
- 436 Language Development (also Psychology 436 and HDFS 436)
 Spring. 4 credits.
 B. Lust.
- 486 Applied Logic (also Computer Science 486)
 Fall. 4 credits.
- 487 Applied Logic II
 Spring. 4 credits.

Education (College of Agriculture and Life Sciences)
- 210 Introduction to Applied Psychology: Learning and Memory
 Fall. 3 credits.
 J. A. Dunn.

Human Development and Family Studies (College of Human Ecology)
- 333 Cognitive Processes in Development
 Fall. 3 credits.
 Staff.
- 431 Learning in Children
 Fall. 3 credits.
 M. Potts.
- 432 Cognitive Development and Education
 Spring. 3 credits.
 M. Potts.
- 434 The Growth of the Mind: A View from Piaget's Theory
 Spring. 4 credits.
 B. Lust.
- 436 Language Development (also Psychology 436 and Linguistics 436)
 Spring. 4 credits.
 B. Lust.
- 438 Thinking and Reasoning
 Fall. 3 credits.
 B. Kosowski.

Philosophy
- 101-102 Theory and Practice of Linguistics
 Fall and spring. 4 credits each term.
 Staff.
- 264 Language, Mind, and Brain
 Fall. 4 credits.
 J. Bowers.
- 301-302 Phonology I, II
 Fall and spring. 4 credits each term.
 G. N. Clements.
- 303-304 Syntax I, II
 Fall and spring. 4 credits each term.
 Staff.
- 309-310 Morphology I, II
 Fall and spring. 4 credits each term.
 Staff.
- 316 Introduction to Mathematical Linguistics
 Spring. 4 credits.
 F. Landman.
- 319-320 Phonetics I, II
 Fall and spring. 3 credits each term.
 J. Kingston.
- 325 Pragmatics
 Fall. 4 credits.
 S. McConnell-Ginet.
- 370 Language and Cognition (also Psychology 370)
 Spring. 4 credits.
 J. Bowers, H. Kurtzman.
- 400 Semiotics and Language
 Spring. 4 credits.
 L. Waugh.
- 401 Language Typology
 Fall. 4 credits.
 J. Whitman.
- 412 Process and Knowledge in Speech Perception and Word Recognition
 Spring. 4 credits.
 J. Kingston.
- 418 Nonlinear Phonology
 Spring. 4 credits.
 J. Kingston.
- 420 Fundamentals of Speech Acoustics
 Spring. 4 credits.
 J. Kingston.
- 421-422 Semantics I, II
 Fall and spring. 4 credits each term.
 F. Landman.
- 436 Language Development (also Psychology 436 and HDFS 436)
 Spring. 4 credits.
 B. Lust.
- 486 Applied Logic (also Computer Science 486)
 Fall. 4 credits.
- 487 Applied Logic II
 Spring. 4 credits.
<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Code/Division</th>
<th>Credits</th>
<th>Instructor(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>221</td>
<td>Neurobiology and Behavior I: Introduction to Behavior</td>
<td>Biological Sciences</td>
<td>3 or 4</td>
<td>S. Emlen and staff</td>
</tr>
<tr>
<td>222</td>
<td>Neurobiology and Behavior II: Introduction to Neurobiology</td>
<td>Biological Sciences</td>
<td>3 or 4</td>
<td>O. Hamill</td>
</tr>
<tr>
<td>326</td>
<td>The Visual System</td>
<td>Biological Sciences</td>
<td>4</td>
<td>H. Howland</td>
</tr>
<tr>
<td>396</td>
<td>Introduction to Sensory Systems</td>
<td>Biological Sciences</td>
<td>4</td>
<td>B. Halpem</td>
</tr>
<tr>
<td>424</td>
<td>Neuroethology</td>
<td>Biological Sciences</td>
<td>3</td>
<td>Staff</td>
</tr>
<tr>
<td>492</td>
<td>Sensory Function</td>
<td>Biological Sciences</td>
<td>4</td>
<td>H. Howland, B. Halpem</td>
</tr>
<tr>
<td>231</td>
<td>Introduction to Formal Logic</td>
<td>Philosophy</td>
<td>4</td>
<td>C. Ginet</td>
</tr>
<tr>
<td>242</td>
<td>Neuroontology</td>
<td>Philosophy</td>
<td>3</td>
<td>Staff</td>
</tr>
<tr>
<td>492</td>
<td>Sensory Function</td>
<td>Philosophy</td>
<td>4</td>
<td>H. Howland, B. Halpem</td>
</tr>
<tr>
<td>318</td>
<td>Twentieth-Century Philosophy</td>
<td>Philosophy</td>
<td>4</td>
<td>C. Ginet</td>
</tr>
<tr>
<td>331</td>
<td>Formal Logic</td>
<td>Philosophy</td>
<td>4</td>
<td>H. Hodes</td>
</tr>
<tr>
<td>361</td>
<td>Metaphysics and Epistemology</td>
<td>Philosophy</td>
<td>4</td>
<td>M. Crimmins</td>
</tr>
<tr>
<td>381</td>
<td>Philosophy of Science: Knowledge and Objectivity</td>
<td>Philosophy</td>
<td>4</td>
<td>R. Boyd</td>
</tr>
<tr>
<td>382</td>
<td>Philosophy and Psychology</td>
<td>Philosophy</td>
<td>4</td>
<td>Staff</td>
</tr>
<tr>
<td>383</td>
<td>Philosophy of Choice and Decision</td>
<td>Philosophy</td>
<td>4</td>
<td>M. Crimmins</td>
</tr>
<tr>
<td>389</td>
<td>Philosophy of Science: Evidence and Explanation</td>
<td>Philosophy</td>
<td>4</td>
<td>Staff</td>
</tr>
<tr>
<td>431</td>
<td>Deductive Logic</td>
<td>Philosophy</td>
<td>4</td>
<td>F. Keil</td>
</tr>
<tr>
<td>433</td>
<td>Philosophy of Logic</td>
<td>Philosophy</td>
<td>4</td>
<td>F. Keil</td>
</tr>
<tr>
<td>436</td>
<td>Intensional Logic</td>
<td>Philosophy</td>
<td>4</td>
<td>F. Keil</td>
</tr>
<tr>
<td>437</td>
<td>Problems in the Philosophy of Language</td>
<td>Philosophy</td>
<td>4</td>
<td>F. Keil</td>
</tr>
<tr>
<td>461</td>
<td>Metaphysics</td>
<td>Philosophy</td>
<td>4</td>
<td>S. Shoemaker</td>
</tr>
<tr>
<td>205</td>
<td>Perception</td>
<td>Psychology</td>
<td>3</td>
<td>J. Cutting</td>
</tr>
<tr>
<td>209</td>
<td>Development</td>
<td>Psychology</td>
<td>4</td>
<td>Staff</td>
</tr>
<tr>
<td>214</td>
<td>Knowledge and Reasoning</td>
<td>Psychology</td>
<td>3</td>
<td>C. Krumhansl</td>
</tr>
<tr>
<td>215</td>
<td>Psycholinguistics</td>
<td>Psychology</td>
<td>4</td>
<td>H. Kurtzman</td>
</tr>
<tr>
<td>305</td>
<td>Visual Perception</td>
<td>Psychology</td>
<td>4</td>
<td>J. Cutting</td>
</tr>
<tr>
<td>308</td>
<td>Perceptual Learning</td>
<td>Psychology</td>
<td>3</td>
<td>Staff</td>
</tr>
<tr>
<td>309</td>
<td>Development of Perception and Representation</td>
<td>Psychology</td>
<td>3</td>
<td>E. Spelke</td>
</tr>
<tr>
<td>313</td>
<td>Perceptual and Cognitive Processes</td>
<td>Psychology</td>
<td>4</td>
<td>Staff</td>
</tr>
<tr>
<td>314</td>
<td>The Social Psychology of Language</td>
<td>Psychology</td>
<td>4</td>
<td>H. Levin</td>
</tr>
<tr>
<td>316</td>
<td>Auditory Perception</td>
<td>Psychology</td>
<td>4</td>
<td>T. DeVoogd</td>
</tr>
<tr>
<td>332</td>
<td>Biopsychology of Learning and Memory</td>
<td>Psychology</td>
<td>4</td>
<td>Staff</td>
</tr>
<tr>
<td>370</td>
<td>Language and Cognition</td>
<td>Psychology</td>
<td>4</td>
<td>T. DeVoogd</td>
</tr>
<tr>
<td>396</td>
<td>Introduction to Sensory Systems</td>
<td>Psychology</td>
<td>4</td>
<td>B. Halpem</td>
</tr>
<tr>
<td>412</td>
<td>Human Experimental Psychology Laboratory</td>
<td>Psychology</td>
<td>4</td>
<td>Staff</td>
</tr>
<tr>
<td>415</td>
<td>Concepts, Categories, and Word Meanings</td>
<td>Psychology</td>
<td>4</td>
<td>F. Keil</td>
</tr>
<tr>
<td>416</td>
<td>Psychology of Language</td>
<td>Psychology</td>
<td>4</td>
<td>H. Kurtzman</td>
</tr>
<tr>
<td>417</td>
<td>The Origins of Thought and Knowledge</td>
<td>Psychology</td>
<td>4</td>
<td>F. Keil</td>
</tr>
<tr>
<td>418</td>
<td>Psychology of Music</td>
<td>Psychology</td>
<td>4</td>
<td>C. Krumhansl</td>
</tr>
<tr>
<td>425</td>
<td>Brain and Behavior</td>
<td>Psychology</td>
<td>4</td>
<td>B. Finlay</td>
</tr>
<tr>
<td>436</td>
<td>Language Development</td>
<td>Psychology</td>
<td>4</td>
<td>B. Lust</td>
</tr>
<tr>
<td>485</td>
<td>Mathematical Psychology</td>
<td>Psychology</td>
<td>4</td>
<td>Staff</td>
</tr>
<tr>
<td>490</td>
<td>History and Systems of Psychology</td>
<td>Psychology</td>
<td>4</td>
<td>Staff</td>
</tr>
<tr>
<td>492</td>
<td>Sensory Function</td>
<td>Psychology</td>
<td>4</td>
<td>H. Howland, B. Halpem</td>
</tr>
</tbody>
</table>

Graduate Courses and Seminars

The following courses and seminars are generally for graduate students only. However, some may be appropriate for advanced undergraduates. The director of the concentration must approve an undergraduate’s use of any of these for satisfying the concentration requirements.

Cog St 773 (also Philosophy 773 and Psychology 773) Proseminar in Cognitive Studies I
Fall. 2 credits.

Cog St 774 (also Computer Science 774 and Linguistics 774) Proseminar in Cognitive Studies II
Spring. 2 credits.

Math 581 Logic
Math 655 Mathematical Foundations of Computer Modeling and Simulation
Math 684 Recursion Theory
Math 688 Automated Theorem Proving
Phil 700 Graduate Seminars
Psych 500-700 Graduate Seminars

College Scholar Program
Dean Lynne Abel, director, 55 Goldwin Smith Hall, 255-3386.
The College Scholar program is described in the introductory section, p. 130.

397 Independent Study
Fall or spring. 1–4 credits. Prerequisite: permission of program office.

499 Honors Research
Fall or spring. 1–8 credits. A maximum of 8 credits may be earned for honors research. Prerequisite: permission of program director. Each participant must submit a brief proposal approved by the honors committee.
East Asia Program

140 Uris Hall

East Asian studies at Cornell is led by thirty-five faculty members from seven colleges, who participate in a program of research and teaching on the civilizations and cultures of East Asia. Courses are offered in most of the humanities and social science disciplines, as well as in the fields of business, city and regional planning, and rural sociology.

Comprehensive language courses in Mandarin, Cantonese, and Japanese are taught, in addition to the Full-year Asian Language Concentration (FALCON) in Japanese and Mandarin. Elementary and intermediate-level Korean language courses are also offered. Undergraduates major in the Department of Asian Studies and concentrate on the language and culture of one East Asian country, while graduate students may work toward an M.A. in East Asian studies, a dual M.B.A./M.A. degree, or an M.A./Ph.D. degree in a discipline such as agricultural economics, anthropology, city and regional planning, government, history, history of art, linguistics, literature, rural sociology, or sociology. A variety of fellowships, travel grants, awards, and assistantships are available for graduate students in East Asian studies.

The formal program of study is enriched by a variety of extracurricular activities, including a Chinese language house, various film series, career workshops, art exhibits, and numerous lectures and performances related to East Asia. The Wason Collection in Olin Library is a comprehensive collection of books on East Asia in Western languages, Japanese, and Chinese. The Mary Rockwell Galleries of the Herbert F. Johnson Museum of Art have an excellent collection of East Asian art.

Freshman Writing Seminars
For information about the requirements for freshman writing seminars and descriptions of seminar offerings, see John S. Knight Writing Program, p. 311, and consult the John S. Knight Writing Program brochure, available from college registrars in August for the fall term and in November for the spring term.

Program in History and Philosophy of Science and Technology
The Program in History and Philosophy of Science and Technology (HPST) is an interdisciplinary program that provides a broadly based perspective on science and its place in modern society. The faculty is drawn from numerous science and humanities departments and includes specialists in philosophy, history, and communications.

A considerable number of courses is offered each year at the undergraduate level, ranging from historical surveys of physical and biological sciences to the philosophy of science. The cultural and intellectual history of science and technology in particular periods and in both American and European settings, courses in science writing, and the philosophy of quantum physics all contribute to the establishment of a richly structured field of opportunity for those undergraduates who wish to supplement their majors with an integrated yet wide-ranging series of studies that will further their understanding of a powerful social and cultural force.

The Concentration
The undergraduate concentration in HPST is an interdisciplinary offering providing a broadly based perspective on science and its place in modern society. It grants recognition to students, regardless of college or major, who have successfully completed before graduation a sequence of courses selected from among a substantial number of offerings. Credit for the concentration is awarded for the completion of at least one course in each of four categories. The courses currently on offer for 1990-91 under each category are listed below; certain unlisted courses from previous years may also qualify.

Interested students should contact Pat Dean, Program in the History and Philosophy of Science and Technology, 425 Caldwell Hall (tel. 5-6234), from whom information on available program advisers can also be obtained.

History of Science

** Hist. 281 or 282. Science in Western Civilization. Fall and spring. 281; Fall, 282; Spring. History 281 is not a prerequisite for 282.
** Hist. 287 (also Biological Sciences 207). Evolution. Fall.
** Hist. 288 (also Biological Sciences 202 and Biology and Society 288). History of Biology. Spring.

History of Technology and Applied Sciences

** Engr. 250. Technology in Western Society. Fall.
** Engr. 256. Science and Technology in America. Spring.
** EE 292. The Electrical and Electronic Revolutions. Spring.

Philosophy of Science

** Phil. 286. Science and Human Nature. Spring.
** Phil. 381. Philosophy of Science: Knowledge and Objectivity. Fall.
** Phil. 384. Philosophy of Physics. Spring.
** Phil. 481. Problems in the Philosophy of Science. Spring.

Social Dimensions of Science

** Comm. 352. Science Writing for the Mass Media. Fall.
** Hist. 443. Science and Culture in Austria 1872-1930. Fall.

Interested students should contact Pat Dean, Program in HPST, 425 Caldwell Hall (tel. 5-6234), for a full listing of courses and for information on available program advisers.

Human Biology Program

J. Haas (nutritional sciences), director, 211 Sage Hall, 255-8000; R. Dyson-Hudson (anthropology), B. Finlay (psychology), J. Fortune (biology/women's studies), R. Johnston (anthropology), R.A. Rabin (anthropology, J, Levitsky (nutritional sciences), D. McLean (ecology and systematics), T. L. Bellisler (anthropology), W. Provine (ecology and systematics/historic), R. Robertson (philosophy), S. Robertson (human development and family studies), R. Savin-Williams (human development and family studies), M. Small (anthropology)

Human biology integrates the methods and theories of many disciplines, such as biological anthropology, nutrition, neurobiology, physiology, psychology, demography, ecology, genetics, and paleontology, into a comprehensive study of biological diversity in Homo sapiens. A central focus of this interdisciplinary approach to the study of the human organism is an understanding of evolutionary processes that explain our biological variation through space and time. The program of study seeks to educate future biological scientists to address the concerns of a society that is becoming more demanding of the scientific community to place its specialized biological knowledge in a broad context. The human biology curriculum is of particular relevance to undergraduate students in premedical and predentistry programs, biological anthropology, nutrition, human development, ecology and systematics, psychology, physiology, genetics, and the health-related sciences. It serves to bring together students with a common interest in humankind as defined from these diverse fields and to provide a forum for student-faculty interaction on various topics relating to human evolution and biological diversity. Human biology is not a major but a curriculum of study that provides majors in various departments with a program for selecting elective courses that deal with the biology of the human species. Students in their junior year may develop a program of study in human biology while majoring in a number of different departmental fields.

Basic Requirements

The requirements for a program of study in human biology are designed to ensure sufficient background in physical sciences and mathematics to enable the student to pursue a wide range of interests in the fields of modern biological sciences, anthropology, and fields related to the evolution and physical diversity of the human species. Adjustments may be made in these requirements, depending upon the student's academic background and affiliation with colleges and schools within the university.

The basic requirements are one year of introductory biology (Biological Sciences 101–103 plus 102-104 or 105–106 or Biological Sciences 100 offered during the six-week Cornell Summer Session); one year of general chemistry (Chemistry 103–104 or 207–208 or 215–216); one year of college mathematics (Mathematics 111–112 or 105–106 or 111–105); one course in genetics (Biological Sciences 281 or 283); one course in biochemistry (Biological Sciences 231, 330 or 331). It is recommended that students planning graduate careers in biological anthropology, psychology, and related fields in the medical and nutritional
There is no foreign language requirement for will include in a program of study at least one. They are organized into three groups that reflect the three levels of integration noted above: (1) human anatomy and physiology, (2) human behavior, and (3) human evolution and ecology. Students should choose at least one course from each of these areas of integration. It is anticipated that the student will include in a program of study at least one of the laboratory courses offered. It is expected that a student will take a minimum of 15 credits from among these courses.

There is no foreign language requirement for human biology beyond what is dictated by specific departments and colleges. The requirements for the human biology curriculum are set alongside requirements of the undergraduate majors as these are defined by different departments. Students with independent majors may design their own programs of study under the guidelines provided by their college. Although a student may indicate an interest in human biology in the freshman year and be able to obtain early guidance from a faculty adviser representing the curriculum of study, it is more usual for students to establish their course programs in the first semester of the junior year. The student may request one of the faculty advisers in his or her department who is listed as faculty in human biology to be their principal adviser, or he or she may have an adviser in the department of the major and seek the advice of a human biology faculty adviser in matters pertaining to satisfaction of the requirements. In certain cases a faculty adviser may represent both the major and the curriculum of study in human biology.

Courses

Human Anatomy and Physiology

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bio S 214</td>
<td>The Biological Basis of Sex Differences (also Women’s Studies 214)</td>
<td>3 credits</td>
</tr>
<tr>
<td>Bio S 274</td>
<td>Functional and Comparative Morphology of Vertebrates</td>
<td>4 credits</td>
</tr>
<tr>
<td>Bio S 311</td>
<td>Introductory Animal Physiology, Lectures (also Veterinary Medicine 346)</td>
<td>3 credits</td>
</tr>
<tr>
<td>Bio S 319</td>
<td>Animal Physiology Experimentation (also Veterinary Medicine 378)</td>
<td>3 credits</td>
</tr>
<tr>
<td>Bio S 410</td>
<td>Seminar in Anatomy and Physiology</td>
<td>1 credit</td>
</tr>
<tr>
<td>Bio S 458</td>
<td>Mammalian Physiology</td>
<td>3 credits</td>
</tr>
<tr>
<td>Bio S 474</td>
<td>Laboratory and Field Methods in Human Biology (also Anthropology 474)</td>
<td>5 credits</td>
</tr>
<tr>
<td>NS 115</td>
<td>Ecology of Human Nutrition and Food</td>
<td>3 credits</td>
</tr>
<tr>
<td>NS 222</td>
<td>Maternal and Child Nutrition</td>
<td>3 credits</td>
</tr>
<tr>
<td>NS 331</td>
<td>Physiological and Biochemical Bases of Human Nutrition</td>
<td>3 credits</td>
</tr>
<tr>
<td>NS 361</td>
<td>Biochemistry and Human Behavior (also Psychology 361)</td>
<td>3 credits</td>
</tr>
<tr>
<td>NS 441</td>
<td>Nutrition and Disease</td>
<td>4 credits</td>
</tr>
<tr>
<td>Psych 322</td>
<td>Hormones and Behavior (also Biological Sciences 322)</td>
<td>3 credits</td>
</tr>
<tr>
<td>Psych 425</td>
<td>Brain and Behavior</td>
<td>4 credits</td>
</tr>
<tr>
<td>Vet M 331</td>
<td>Medical Parasitology</td>
<td>2 credits</td>
</tr>
</tbody>
</table>

Human Behavior

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anthr 490</td>
<td>Primates and Evolution</td>
<td>4 credits</td>
</tr>
<tr>
<td>Bio S 301</td>
<td>Biology and Society I: The Social Construction of Life (also Anthropology 301 and Biology and Society 301)</td>
<td>3 credits</td>
</tr>
<tr>
<td>Bio S 427</td>
<td>Animal Social Behavior</td>
<td>3 credits</td>
</tr>
<tr>
<td>HDFS 344</td>
<td>Infant Behavior and Development</td>
<td>3 credits</td>
</tr>
<tr>
<td>HDFS 464</td>
<td>Developmental Theory and Research on Homosexuality</td>
<td>4 credits</td>
</tr>
<tr>
<td>HDFS 645</td>
<td>Seminar in Infancy: Newborn Behavioral Organization</td>
<td>3 credits</td>
</tr>
<tr>
<td>HSS 315</td>
<td>Human Sexuality: A Biosocial Perspective</td>
<td>3 credits</td>
</tr>
<tr>
<td>NS 245</td>
<td>Social Science Perspectives of Human Nutrition</td>
<td>3 credits</td>
</tr>
<tr>
<td>NS 347</td>
<td>Human Growth and Development: Biological and Social Psychological Considerations (also Human Development and Family Studies 347)</td>
<td>3 credits</td>
</tr>
<tr>
<td>NS 445</td>
<td>Community Nutrition and Health</td>
<td>3 credits</td>
</tr>
<tr>
<td>Psych 326</td>
<td>Evolution of Human Behavior</td>
<td>4 credits</td>
</tr>
<tr>
<td>Psych 425</td>
<td>Brain and Behavior</td>
<td>4 credits</td>
</tr>
<tr>
<td>R Soc 408</td>
<td>Human Fertility in Developing Nations (also B Soc 404)</td>
<td>4 credits</td>
</tr>
</tbody>
</table>

Special Programs and Interdisciplinary Studies

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anthr 101</td>
<td>Biological Perspectives on the Evolution of Human Kind</td>
<td>3 credits</td>
</tr>
<tr>
<td>Anthr 203</td>
<td>Early People: The Archaeological and Fossil Record (also Archaeology 203)</td>
<td>3 credits</td>
</tr>
<tr>
<td>Anthr 214</td>
<td>Humankind: The Biological Background</td>
<td>3 credits</td>
</tr>
<tr>
<td>Anthr 490</td>
<td>Primates and Evolution</td>
<td>4 credits</td>
</tr>
<tr>
<td>Bio S 207</td>
<td>Evolution</td>
<td>3 credits</td>
</tr>
<tr>
<td>Bio S 261</td>
<td>Principles of Ecology</td>
<td>4 credits</td>
</tr>
<tr>
<td>Bio S 272</td>
<td>Functional Ecology</td>
<td>4 credits</td>
</tr>
<tr>
<td>Bio S 275</td>
<td>Human Biology and Evolution</td>
<td>3 credits</td>
</tr>
<tr>
<td>Bio S 371</td>
<td>Human Paleontology (also Anthropology 371)</td>
<td>4 credits</td>
</tr>
<tr>
<td>Bio S 378</td>
<td>Evolutionary Biology</td>
<td>4 credits</td>
</tr>
<tr>
<td>Bio S 461</td>
<td>Population and Evolutionary Ecology</td>
<td>4 credits</td>
</tr>
<tr>
<td>Bio S 470</td>
<td>Ecological Genetics</td>
<td>4 credits</td>
</tr>
<tr>
<td>Bio S 471</td>
<td>Mammology</td>
<td>4 credits</td>
</tr>
<tr>
<td>Bio S 481</td>
<td>Population Genetics</td>
<td>4 credits</td>
</tr>
<tr>
<td>Bio S 482</td>
<td>Human Genetics and Society</td>
<td>2 credits</td>
</tr>
<tr>
<td>Bio S 673</td>
<td>Human Evolution: Concepts, History and Theory (also Anthropology 673)</td>
<td>3 credits</td>
</tr>
<tr>
<td>B&Soc 447</td>
<td>History of Biology—Evolution (also History 447)</td>
<td>4 credits</td>
</tr>
<tr>
<td>HSS 330</td>
<td>Ecology and Epidemiology of Health</td>
<td>3 credits</td>
</tr>
<tr>
<td>Psych 326</td>
<td>Evolution of Human Behavior</td>
<td>4 credits</td>
</tr>
<tr>
<td>R Soc 483</td>
<td>Techniques of Demographic Analysis</td>
<td>4 credits</td>
</tr>
<tr>
<td>Vet M 331</td>
<td>Medical Parasitology</td>
<td>2 credits</td>
</tr>
<tr>
<td>Vet M 684</td>
<td>Introduction to Epidemiology</td>
<td>3 credits</td>
</tr>
</tbody>
</table>
Independent Major Program
Dean Lynne Abel, director, 55 Goldwin Smith Hall, 255-3386.
The Independent Major Program is described in the introductory section, p. 129.

351 Independent Study
Fall or spring. 1-4 credits. Prerequisite: permission of the program director.

499 Honors Research
Fall or spring. 4-8 credits, a maximum of 8 credits may be earned for honors research. Prerequisite: permission of program director. Each participant must submit a brief proposal approved by the honors committee.

Intensive English Program
E. J. Beukerinkamp, director
This full-time, noncredit, nondegree program is designed to meet the requirements of foreign students who need to acquire proficiency in English to pursue university-level studies in the United States, as well as for visitors, businessmen, and others seeking competence in the language.

The intensive nature of the program leads to a command of the language in all its aspects—listening, speaking, reading, and writing—in the shortest possible time.

Integrated courses are offered both fall and spring semesters at three levels: beginning (Test of English as a Foreign Language (TOEFL) score below 370), intermediate (TOEFL score below 450), and advanced.

Students who have gained full admission to, or who already are registered in, degree-granting programs at Cornell should consult the section, Modern Languages and Linguistics, for information regarding courses in English as a second language.

The Intensive English Program is administered by the Department of Modern Languages and Linguistics, Cornell University, Morrill Hall, Ithaca, New York 14853-4701, U.S.A. Application materials and information are available directly from the program or by calling 607/255-4853.

International Relations Concentration
Peter Katzenstein, faculty coordinator
Undergraduates interested in an international relations concentration should see the TA in charge, whose name is posted on Professor Katzenstein's office door (McGraw B-7).

One of the university's strongest, most diverse fields is international relations. Cornell offers dozens of courses, in many departments and several colleges, that provide a strong education in the field, including courses in government, economics, history, anthropology, rural sociology, nutrition, modern languages and literatures, international comparative labor relations, and many others too numerous to list and keep current.

The purpose of a concentration is to provide a structure for students who have a general interest in the field or who plan to specialize in careers in international law, economics, agriculture, foreign trade, international banking, government service, international organizations, or another cultural or scholarly activity. Some students will major in one of the traditional departments: history, government, economics, foreign literature, and so on. Others will design an independent major. Still others will major in a different discipline, perhaps altogether unrelated, but would like to have a basic understanding of international problems.

For students in any of these categories, the requirements for a concentration in international relations are the following six courses or options:

1) Government 181, Introduction to International Relations
2) One appropriate 300-level government course, either in international relations or in the foreign policy of a particular nation
3) Two courses in Economics, chosen from among the following offerings:
 a) Economics 361, International Trade Theory
 b) Economics 362, International Monetary Theory
 d) Economics 371, Economic Development
 e) Economics 372, Applied Economic Development
 f) Economics 373, International Specialization and Economic Development
 g) Economics 374, National and International Food Economics
4) History 314, History of American Foreign Policy II
5) Any history course dealing with a modern nation other than the United States

Under certain conditions, it may be possible to substitute other courses for those listed above.

Students are also urged as strongly as possible to acquire full proficiency in, not merely a passing acquaintance with, a modern foreign language. At least a semester of study abroad is advised.

Center for International Studies
See Interdisciplinary Centers, Programs, and Studies, p. 18.

Program of Jewish Studies
D. I. Owen, acting director (Near Eastern and ancient Jewish history), S. Bacharach (industrial and labor relations, sociology, Jewish thought and social theory), R. Brann (Hebrew and Judeo-Arabic literatures), W. J. Dannhauser (Jews and Germans, contemporary Jewish thought, Gershom Scholem), S. L. Gilman (Yiddish Literature, German Jewish history and literature), S. T. Katz (Jewish history and religion), G. Kornreich (Holocaust studies, Jewish labor history), D. S. Powers (history of Jews in Islamic lands), G. Rendsburg (biblical studies), E. Rosenberg (Jews in modern Europe and Anglo-American literature), N. Scharff (Hebrew language), S. Schwartz, N. Sher (jurisprudence), M. Winter (Dayan Visiting Professor)

The Program of Jewish Studies is a university-wide program housed in the College of Arts and Sciences. It was founded as an extension of the Department of Semitic Languages and Literatures (now the Department of Near Eastern Studies) in 1973 and attained status as an independent and intercollegiate program in 1976.

The program has grown out of the conviction that Judaic civilization merits its own comprehensive and thorough treatment and that proper understanding of any culture is inconceivable without adequate knowledge of the language, literature, and history of the people that created it. Accordingly, the offerings in the areas of Hebrew language and literature have been considerably expanded, and courses in ancient, medieval, and modern Jewish history have been added to the program.

It is a broadly based, interdisciplinary program, bringing together faculty from the various Cornell colleges and schools.

The Program of Jewish Studies supports teaching and research in the overall area of Judaic Studies. It is a secular, academic program, the interests of which are diverse and cross-cultural. The program recognizes its special relationship to teaching and research in classical Judaica and Herbraica which is pursued by the members of the Department of Near Eastern Studies.

Although further expansion of the program is anticipated, it presently enables students to obtain basic instruction and specialization in the fields of Semitic languages, the Hebrew Bible; the apocryphal and Tannaic literatures; medieval and modern Hebrew literature; ancient, medieval, and modern Jewish history; and modern Jewish thought. In some of these fields students may take courses both on graduate and undergraduate levels. Faculty throughout the university provide breadth to the program by offering courses in related areas of study.

Courses Offered
Elementary Modern Hebrew I and II (Near Eastern Studies 101-102)
Fall and spring.

Elementary Modern Hebrew (Near Eastern Studies 103)
Summer.

Intermediate Modern Hebrew I and II (Near Eastern Studies 201-202)
Fall and spring.

Introduction to the Bible (Near Eastern Studies 223)
Fall.

Jurisprudence and the Holocaust (Near Eastern Studies 244)
Fall. 2 credits.
M 9:05-11. N. Sher.
This seminar will trace the history of judicial efforts to bring to justice the perpetrators of the Holocaust. Emphasis will be on the principles established at the Nuremberg Trials, as well as analysis of measures taken and legal precedent established in Europe, Israel, and the United States to uncover and prosecute alleged Nazi criminals.
Introduction to Classical Jewish History (Near Eastern Studies 248) Fall.

Jewish Sectarian Literature and History in Late Antiquity (also NES 279) Spring.

Modern History of the Middle East: Changing Politics, Society, and Ideas (Near Eastern Studies 294 and Government 358) Fall.

Advanced Modern Hebrew I and II (Near Eastern Studies 301 and 302) Fall and spring.

History into Fiction: Nazis and the Literary Imagination (Near Eastern Studies 404, also Comparative Literature 404, English 404, and Jewish Studies Program) Fall. 4 credits.

The History and Archaeology of Ancient Israel (Near Eastern Studies 243) Winter. 3 credits.

The Holocaust: European Jewry, 1933-1945 (Near Eastern Studies 241) Fall. 3 credits.

Israel: Literature and Society (Near Eastern Studies 236) Winter. 3 credits.

The Holocaust: European Jewry, 1933-1945 (Near Eastern Studies 241) Fall. 3 credits.

Israel: Literature and Society (Near Eastern Studies 236) Winter. 3 credits.

The History and Archaeology of Ancient Israel (Near Eastern Studies 243) Winter. 3 credits.

The Emergence of the Modern Jew: 1648-1948 (Near Eastern Studies 245) Spring. 3 credits.

Seminar in Jewish Mysticism: From the Zohar to Hasidism (Near Eastern Studies 244) Fall. 3 credits.

History of Jewish Textual Interpretation (Near Eastern Studies 247) Fall. 3 credits.

Ancient Seafaring (Near Eastern Studies 261 and Archaeology 278) Fall. 3 credits.

Introduction to Biblical Archaeology (Near Eastern Studies 253) Spring. 3 credits.

Agriculture and Society in the Ancient Near East (Near Eastern Studies 264) Spring. 3 credits.

Women in the Hebrew Bible (Near Eastern Studies 292 and Women's Studies 292) Fall. 3 credits.

Judaism and Islam in Comparative Perspective (Near Eastern Studies) Spring. 3 credits.

Seminar in Medieval Hebrew Literature: The Short Story (Near Eastern Studies 303) Spring. 3 credits.

Seminar in Medieval Hebrew Literature: The Novel (Near Eastern Studies 304) Spring. 3 credits.

The History and Archaeology of the Ancient Near East (Near Eastern Studies 368 and Archaeology 310) Winter. 3 credits.

Undergraduate Seminar in Biblical Literature: Prophecy in Ancient Israel (Near Eastern Studies 322) Fall. 3 credits.

Ancient Near Eastern Literature (Near Eastern Studies 332) Spring. 3 credits.

Jews of Arab Lands (Near Eastern Studies 346) Fall. 3 credits.

Anti-Semitism in Germany and the Jewish Response (Near Eastern Studies 349 and German Studies 348) Fall. 3 credits.

Interconnections in the Eastern Mediterranean World in Antiquity (Near Eastern Studies 361) Fall. 3 credits.

The History and Archaeology of Ebla (Near Eastern Studies 362) Spring. 3 credits.

The History and Culture of Ancient Mesopotamia (Near Eastern Studies 363) Spring. 3 credits.

The Divided Monarchy (Near Eastern Studies 365) Fall. 3 credits.

The History and Archaeology of the Ancient Near East (Near Eastern Studies 366 and Archaeology 310) Fall. 3 credits.

The Shatt el in Modern Yiddish Fiction in English Translation (German Studies 375) Spring. 3 credits.

The Yiddish Novel in English Translation (German Studies 350) Spring. 3 credits.

Jewish Workers in Europe and America 1789-1948 (Industrial and Labor Relations 381) Fall. 3 credits.

Seminar in Hebrew Literature and Poetics (Near Eastern Studies 402) Fall. 3 credits.

The Double Identity Crisis: German Jewish Women from Rahel Varnhagen to Hannah Arendt (Near Eastern Studies 409, German Studies 409, Society for the Humanities 409, and Women's Studies 409) Winter. 3 credits.

Readings in Judeo-Arabic: Medieval Judeo-Arabic and Hebrew Poetics (Near Eastern Studies 432) Spring. 3 credits.

The Holocaust Survivor as Author (German Studies 444/444 and Near Eastern Studies 444) Fall. 3 credits.

Seminar in Jewish Mysticism (Near Eastern Studies 693) Spring. 3 credits.

John S. Knight Writing Program

The director of the John S. Knight Writing Program is Harry Shaw, professor in the Department of English. Katherine Gottschalk, senior lecturer in the Department of English, is director of Freshman Writing Seminars. The program's offices are in 159 Goldwin Smith Hall (telephone: 255-4061).

S. Davis (English), M. Gilliland (Writing Workshop), K. Hjortshoj (Writing Workshop), N. Kaplan (English), B. LeGendre (Writing Workshop), J. Martin (Writing Workshop), S. Orlov (Society for the Humanities), J. Pierpont (Writing Workshop), D. Williams (Writing Workshop)
The John S. Knight Writing Program helps to coordinate the teaching of writing for undergraduates in six of the university's schools and colleges (the School of Industrial and Labor Relations and the colleges of Agriculture and Life Sciences; Architecture, Art, and Planning; Arts and Sciences; Engineering; and Human Ecology). The program administers writing seminars for freshmen and upperclass students, tutorial writing classes, and summer workshops in writing. More than twenty-five academic departments participate in the program.

Advanced Writing Seminars

For undergraduates the program offers three upper-division writing courses, Writing in the Humanities, Writing for Readers/Reading for Writers, and Writing in the Social Sciences. These courses help students write with more confidence and skill in all disciplines while provoking inquiry about the methods and aims of study common to many of them. They may be taken as electives or to fulfill distribution or certain writing requirements.

Freshman Writing Seminars

For freshmen the program offers the freshman writing seminars—more than 125 different courses in the humanities, social sciences, expressive arts, or sciences. Freshman writing seminars help students write good English prose—prose that, at its best, is characterized by clarity, coherence, intellectual force, and stylistic control. These seminars teach writing within a field while offering freshmen the opportunity to participate in a small seminar. Although they differ widely in content, all seminars adhere to the following guidelines:

1. at least thirty pages of assigned writing
2. at least eight—and, at most, about fourteen—written assignments
3. opportunities for serious revision, not mere editing, of essays (at least some of these revising assignments may satisfy 1 and 2 above)
4. ample classroom time spent on work directly related to writing
5. reading assignments small enough—about one hundred pages a week at most—to permit regular, concentrated work on writing
6. individual conferences

Offerings change from semester to semester. Each term's freshman writing seminars are described in a brochure available from college registrars. To ensure that students will enjoy the benefits of small writing classes, no freshman writing seminar may comprise more than seventeen students. Instead of pre-enrolling in their writing courses, students request placement in one of five writing seminars by filling out ballots available from their college registrars. Most students receive one of their highest scores. Students may change their writing seminars at the university course exchange or during the add/drop sessions held at the beginning of each semester.

The colleges and the school served by the program accept freshman writing seminars in fulfillment of their individual graduation requirements in categories referred to variously as "freshman writing," "oral and written expression," and the like. The program does not decide whether students may graduate: it makes courses available. Individual colleges and schools administer their own graduation requirements.

Currently most undergraduate students are required to take two freshman writing seminars. Architecture students, however, need only one. Hotel students fulfill the requirement through Hotel Administration 165, which should be taken with Hotel Administration 265 during the first two semesters at Cornell. Agriculture and life sciences students can take freshman writing seminars or choose from among a variety of other courses to fulfill their requirement.

All students who score "4" or "5" on the Princeton Advanced Placement Examination in English receive three credits. Such credits are awarded automatically; no application to the John S. Knight Writing Program is necessary. How these credits may be applied to freshman writing or other distribution requirements depends on the student's college and score. All students who score "5" except architecture and fine arts students, may apply their three credits toward the writing requirements of their college. Of students who score "4," only agriculture and life sciences students fulfill their writing requirement. Students who score "5" in architecture and industrial and labor relations students may apply their three credits toward the writing requirements of their college. Students should always consult their college registrars to be certain that they understand their writing requirements.

Students who score "4" or "5" on the Princeton AP exam, or "700" or better on the English Composition or CEEB tests, may enroll, space permitting, in the following upper-level freshman writing seminars: English 270, 271, 272, and 276.

Although there are no exemptions from college writing requirements, some students may fulfill all or part of their college's writing requirement through transfer credits or writing-course substitutions.

For work done at other institutions to be accepted as equivalent to freshman writing seminars, students should demonstrate that they have done a reasonably equivalent amount of writing in a formal course. (It is not sufficient to write, for example, one thirty-page term paper.) Students in the College of Engineering and the College of Arts and Sciences must file an "application for transfer evaluation" to request writing credit for such courses; students in other colleges should consult their college registrars.

In unusual situations the program recommends that courses taken at Cornell other than freshman writing seminars fulfill the various freshman writing requirements. Upper-division students may also take a writing course other than a freshman writing seminar and petition to have it satisfy part of the requirement. The program advises students about these courses on request. Students must file the "proposal for course substitution" in advance to request writing credit for such courses.

Although Cornell "summer writing program" seminars may fulfill college writing requirements, they do not automatically count toward those requirements. Students must file the "proposal for course substitution" in advance to request writing credit for such courses.

Teaching Writing

Each summer and fall, the program offers instruction in the teaching of writing to new staff members in the freshman writing seminars and other interested instructors. Teaching Writing I, offered in conjunction with an apprenticeship in the summer school, is primarily for graduate students; the same course is offered alone in the fall as Teaching Writing II. The program also sponsors a seminar for faculty members interested in the teaching of writing.

Writing Workshop

The John S. Knight Writing Program offers Workshops in English Composition for freshmen (or transfer students needing writing credit) through the Writing Workshop. These tutorials in English composition are designed for students who have had little help with composition or who have serious difficulty with writing assignments.

Writing 137 and 138 are graded S-U only, and students receiving a grade of S are normally granted credit toward their college writing requirements. Students who think this course might be appropriate, including non-native speakers of English scoring less than 600 on the Test of English as a Foreign Language (TOEFL), should attend the assessment sessions offered by the Writing Workshop during orientation week each fall. The workshop also offers a walk-in service (see below) to help students with problems in essay writing. The director is Nancy Kaplan, senior lecturer in the Department of English. The workshop offices are in 174 Rockefeller Hall (telephone: 255-6349).

The Walk-In Service

The Walk-In Service, a unit of the Writing Workshop, offers tutoring assistance in writing to any student who needs help with a writing project. The Walk-In Service has tutors available during the academic year in 174 Rockefeller, 340 Goldwin Smith, and north- and west-campus residential areas. The director is Joseph Martin. For information contact the Writing Workshop, 174 Rockefeller Hall, 255-6349.

The Macintosh Center

The Macintosh Center, housing twenty microcomputers, is a facility supported by the John S. Knight Writing Program for students enrolled in writing courses. The center offers introductory classes on the Macintosh and works closely with many writing instructors to help students learn how to use word processing as an effective writing tool. The coordinator is William Fleischmann; the center is in 340 Goldwin Smith Hall (telephone: 255-8453).

Freshman Writing Seminar

137-138 Workshops in English Composition

137, fall; 138, spring. 3 credits each term. Each section limited to 12 students. S-U grades only.

Hours to be arranged. N. Kaplan and staff.

An intensive writing experience, this course is designed for those whose composition skills need extra attention. In class discussion, students respond to each other's work and analyze brief additional readings. The average weekly syllabus includes small classes, a tutorial with the instructor, and a paper plus...
203 Writing for Readers/Reading for Writers (also English 283)
Spring. 3 credits. Limited to 17 students.
Prerequisite: permission of the instructor.
This is a writing course for students interested in studying theories and strategies of composition as a way of developing writing skills. By studying a broad range of approaches to the act of writing (from traditional handbooks’ definitions to contemporary rhetorical theories), students will learn to identify and use the critical vocabulary that skilled writers rely on to discuss how writing and language develop, focusing on issues such as the role of audience, the patterns of organization, the varieties of language, and the control of style. In addition to weekly writing assignments, the course will include readings in the theories of language and rhetoric. Students will write and revise at least eight essays during the semester. Students interested in the practice of reading and responding to the writing of others are encouraged to take this course and consider becoming tutors in the Writing Workshop’s Walk-In Service.

Latin American Studies

The Latin American Studies Program encourages and coordinates faculty and student interests in Latin America. A variety of special lectures, films, and seminars supplement the regular course offerings. Undergraduate students may arrange an independent major in Latin American studies, and graduate students may pursue a minor in Latin American studies while majoring in the graduate field of their choice. The College of Arts and Sciences offers Latin American studies courses in anthropological, economic, government, history, and sociology. In addition, there is a varied language, literature, and linguistics curriculum in Spanish, Portuguese, and Quechua. The student may also pursue Latin American studies in the College of Agriculture and Life Sciences, the College of Architecture, Art, and Planning; the College of Human Ecology, and the School of Industrial and Labor Relations.

For further information and a current course listing, students should contact the program office, 190 Uris Hall.

Law and Society
D. Dunning, director. 240 Uris Hall, 255-6391, C. Bohmer (sociology), C. Carmichael (comparative literature), D. A. Dunning (psychology), C. Greenhouse (anthropology), G. Hay (economics), C. Holmes (history), S. Jasanoff (science, technology, and society), M. Katzenstein (politics), D. B. Lyons (philosophy), R. Miller (philosophy), M. B. Norton (history), R. Polenberg (history), D. Powers (Near Eastern studies), J. Rabkin (government), L. Scheinman (government)

The Law and Society Program offers an interdisciplinary concentration for undergraduates who are interested in the law from the perspectives of the social sciences and the humanities: anthropology, comparative literature, economics, government, history, philosophy, psychology, science, technology, and society, and sociology. In addition, undergraduates in the College of Arts and Sciences can major in law and society through the Independent Major Program. Students who wish to graduate with a concentration in law and society should consult the director of the program or one of the advisers listed above to plan a coherent program of study. Such a program should ordinarily include at least four courses from the following list. Other courses may be substituted with the approval of the adviser.

Anthropology 328 Law and Culture
Anthropology 329 Power and Culture
Anthropology 627 Legal Anthropology
Comparative Literature 326 Christianity and Judaism
Comparative Literature 427 Seminar on Biblical Law
Economics 304 Economics and the Law
Economics 354 Economics of Regulation
Government 313 The Nature, Functions, and Limits of Law
Government 323 The "Fourth" Branch
Government 237 Civil Liberties in the United States
Government 328 Constitutional Politics: The United States Supreme Court
Government 364 Liberty, Equality, and the Social Order
Government 399 International Law
Government 407 Law, Science, and Public Values
Government 414 The Administrative State
Government 428-429 Government and Public Policy: An Introduction to Analysis and Criticism
Government 457 Comparative Public Law: Legal Controls on Government in Europe and America
Government 489 International Law and Regime Development
History 275 Crime and Punishment: From the Puritans to Mickey Spillane
History 318 American Constitutional Development
History 367 Church and State during the Middle Ages
History 421 Constitutionalism as a Cultural Problem in America
History 430 Law and Authority in American Life
Near Eastern Studies 357 Islamic Law and Society
Philosophy 319 Philosophy of Marx
Philosophy 342 Law, Society, and Morality (also Law 666)
Philosophy 446 Topics in Social and Political Philosophy
Psychology 265 Psychology and Law
Undergraduates interested in Medieval Studies have an opportunity to take courses in the following areas of instruction: medieval Hebrew, Arabic, and Latin; Old English, Middle English, and medieval Irish and Welsh; Old Provencal and medieval French; medieval Spanish and Italian; Old Saxon, Old High German, Middle High German, Gothic, Old Norse (Old Icelandic); Old Russian; comparative literature; medieval art and architecture; medieval history; Latin paleography; medieval philosophy; musicology; comparative Slavic linguistics, comparative Romance linguistics, and comparative Germanic linguistics.

Undergraduates who want to undertake an independent major or a concentration in Medieval Studies should consult the director of the program, 259 Goldwin Smith Hall.

Information for prospective graduate students is contained in the catalog of the Graduate School and in a brochure on Medieval Studies, which can be obtained from the director.

Freshman Writing Seminars

101 Aspects of Medieval Culture
Fall or spring. 3 credits.
Staff.
Under this very general heading a variety of courses are offered each year. A course may center on a particular kind of writing (e.g., biography, narratives of crusades or pilgrimages) or on a particular theme (e.g., the status of the individual, women in medieval society, encounters with other cultures and with the supernatural). In most cases, in addition to exploring the distinctive features of the medieval world view, the course will compare medieval treatments of these forms or themes with the work of modern writers.

102 The Literature of Chivalry
Fall, spring, or summer. 3 credits.
Staff.
Romances of chivalry, especially those devoted to King Arthur and the knights of the Round Table, were not only the most popular literature of medieval Europe, but also a vehicle for examination of social ideals. This course explores the development of chivalric culture in such works as the Lais of Marie de France, the romances of Chrétien de Troyes, French and German stories of Tristan and Perceval, Sir Gawain and the Green Knight, Malory's Morte d'Arthur, and modern works on related themes. Discussion will investigate fundamental problems raised by these works: the individual in society, the development of the hero, the nature of love, and the conflict of religious and secular ideals.

103 Legend, Fantasy, and Vision
Fall or spring. 3 credits.
Staff.
Re-creation of the legendary past, imaginary voyages to other worlds, and the invention of ideal societies are among the ways in which medieval writers attained a perspective on social, scientific, and religious questions. This course will survey examples of such writing from various medieval cultures (e.g., Icelandic sagas, the Irish Voyage of Bran, the Anglo-Saxon epic Beowulf, French and German romances of King Arthur and his knights, Dante's Divine Comedy), and we will consider the continuity of these writings with selected works of modern fiction.

Graduate Seminars

Courses in various aspects of medieval studies are offered each year in numerous cooperating departments, including Classics, Comparative Literature, English, History, History of Art, Modern Languages and Linguistics, German Literature, Romance Studies, Russian Literature, Music, Near Eastern Studies, and Philosophy, and by the Society for the Humanities. An up-to-date listing of the courses offered in each term will be made available at the Medieval Studies office as soon as the Course and Time Roster is published.

Modern European Studies Concentration

Susan Tarrow, coordinator

Students from any college may choose an undergraduate concentration in modern European studies to complement any major in any college. The purpose of the concentration is to provide a coherent structure for students with an interest in interdisciplinary study in the field of European studies.

The concentration has two tracks:

European culture comprises courses in English and European literature, comparative literature, semiotics, fine arts, music, architecture, film and theater arts, and women's studies.

European society comprises courses in European and comparative politics, social and political history, anthropology, sociology, philosophy, women's studies, and related courses in the School of Hotel Administration, the College of Agriculture and Life Sciences, and the School of Industrial and Labor Relations.

The requirements for completion of the concentration are

1) Completion of the European studies interdisciplinary core course (History 283/ Government 345/German 285)

2) Three additional courses in European studies with at least one from each of the two tracks. (No more than one of these courses may be used to satisfy requirements for the student's major.)

3) Competence in at least one modern Western European language (i.e., completion of a 300-level course or equivalent with a grade of at least B- or demonstration of an advanced level of competence in an oral proficiency interview test where available).

Students who want to take honors in the concentration must choose a senior seminar in the field and complete an honors essay. All concentrators are encouraged to spend a semester or more in a program of study in Europe and to participate in the Language House Program.

Undergraduates in the College of Arts and Sciences can major in European studies through the Independent Major or College Scholar programs.

For a list of relevant courses and seminars, departmental advisers, and any further information, contact Susan Tarrow, coordinator of the Modern European studies concentration, at the Western Societies Program, 130 Uris Hall (telephone: 255-7592).

Religious Studies

Religious Studies is an interdisciplinary program reflecting a wide variety of academic interests and disciplines. The intention of the program is to provide a formal structure for the study of religions at the undergraduate level. A student may fulfill the requirement for a concentration in religious studies by completing a minimum of four courses that have been approved by an adviser in the area of concentration.

The program is administered by a committee. The chairman is Professor Adams, 309 Rockefeller Hall.

Courses in religious studies currently offered include the following:
Religious Studies 101 Introduction to the Study of Religion
Spring. 3 credits.
D. Gold and others.
A team-taught course designed to introduce students to the contemporary study of religion. Through an examination of selected religious traditions of the world, the course will explore topics having to do with personal piety (including mysticism, myth, and philosophy) as well as those having to do with the leadership of religious communities, the development of religious institutions, and the formation of scriptural canon. Analysis of the ways in which these phenomena have interacted in specific cases will lead to a consideration of more general questions about the dynamics of religious traditions and the roles they continue to play in contemporary life. Highly recommended for students considering a concentration in Religious Studies.

Anthropology 424 Myth, Ritual, and Sign
Fall. 4 credits.
J. Siegel.

Asian Studies 250 Introduction to Asian Religions
Fall. 3 credits.
J. McRae.

Asian Studies 351 The Religious Traditions of India
Spring. 4 credits.
D. Gold.

Asian Studies 358 Buddhism in China
Fall. 4 credits.
J. McRae.

Asian Studies 359 Japanese Buddhism
Spring. 4 credits.
J. (Swanberg) Law.

Asian Studies 421 Religious Reflections on the Human Body
Fall. 4 credits.
J. (Swanberg) Law.

Asian Studies 435 Chinese Buddhist Texts
Spring. 4 credits.
J. McRae.

Asian Studies 467-468 Readings in Sanskrit Literature: The Vedas
Fall and spring. 3 credits each.
C. Minkowski.

Classics 202 The New Testament
Spring. 3 credits.
J. Rusten.

Classics 239 Greek and Roman Mystery Cults and Early Christianity
Spring. 3 credits.
K. Clinton.

Classics 468 Augustine's Confessions
Fall. 4 credits.
D. Shanzer.

Comparative Literature 324 Selected Problems of Law and Religion
Fall. 4 credits.
C. Carmichael.

Comparative Literature 326 Christianity and Judaism
Spring. 4 credits.
C. Carmichael.

Comparative Literature 328 Literature of the Old Testament
Fall. 4 credits.
C. Carmichael.

Comparative Literature 426 New Testament Seminar
Spring. 4 credits.
C. Carmichael.

History 417 Islam in South Asia
Fall. 4 credits.
R. Ahmed.

History 437 Church and State in the Middle Ages
Fall. 4 credits.
B. Tierney.

Natural Resources 407 Religion, Ethics, and the Environment
Spring. 4 credits.
R. Baer.

Near Eastern Studies 223 Introduction to the Bible
Fall. 3 credits.
G. Rendsburg.

Near Eastern Studies 243 History and Archaeology of Ancient Israel
Spring. 4 credits.
D. Owen.

Near Eastern Studies 250 Shi'ism and the Iranian Revolution
Fall. 3 credits.
J. Katz.

Near Eastern Studies 279 Jewish Sectarian Literature in Late Antiquity
Spring. 3 credits.
S. Schwarz.

Near Eastern Studies 351 Introduction to Islamic Law
Spring. 4 credits.
D. Powers.

Near Eastern Studies 428 Medieval Hebrew: Biblical Exegesis
Spring. 4 credits.
R. Brann.

Philosophy 263 Reason and Religion
Fall. 4 credits.
N. Kretzmann.

Philosophy 663 Seminar in Philosophy of Religion
Spring. 4 credits.
N. Kretzmann.

Russian and Soviet Studies Major
M. G. Clark (emeritus), G. J. Staller, J. Vanek (economics); M. Rush (government); W. M. Pintner (history); W. W. Austin (emeritus); U. Bronfenbrenner (emeritus, psychology); P. Carden, G. Gibian, N. Pollak, M. Scammell, S. Senderovich, G. Shapiro (Russian literature); L. H. Babby, W. Browne, R. L. Leed (Slavic linguistics)
The major in Russian and Soviet studies has the following requirements:
1) Qualification in Russian.
2) At least one course relating to Russia, at the 200 level or above, in each of the following departments: Government, Economics, History, and Russian Literature. (A course in another department may be substituted for one of the above with the consent of the major adviser.)
3) At least three additional courses, at the 250 level or above, in one of the following departments: Government, History, Economics, or Russian Literature. These courses are selected in consultation with the student's adviser and are to be approved as appropriate for a major in Russian and Soviet studies.

Professor Pintner will serve as adviser for all majors, but each student should also designate an additional adviser in the department in which his or her work is concentrated.

Students must apply for the major at the Soviet and East European Studies Program, 236 Goldwin Smith Hall.

Courses

[Economics 329 Eastern Europe Today: Economics, Government, Culture (also Government 326 and Russian Literature 329)]
Fall. 4 credits. Not offered 1990-91.
G. Staller, M. Rush, G. Gibian.

[Economics 367/567 Comparative Economic Systems]
Fall. 4 credits. Not offered 1990-91.
G. Staller.

[Economics 381 Economics of Participation and Worker Management]
Fall. 4 credits. Not offered 1990-91.
J. Vanek.

[Economics 382 The Practice and Implementation of Self-Management]
Spring. 4 credits.
J. Vanek.

[Economics 581 Self-Management]
Fall. 4 credits. Not offered 1990-91.
J. Vanek.

[Economics 682 Seminar on Economics of Participation and Labor-Managed Systems]
Spring. 4 credits.
J. Vanek.

[German Studies 376 Contemporary Soviet-Latvian Literature]
Fall. 4 credits. Taught in Latvian. Not offered 1990-91.
I. Ezergailis.

Government 333 Government and Politics of the Soviet Union
Fall. 4 credits.
M. Rush.

[Government 446 Comparative Communism]
Fall. 4 credits. Not offered 1990-91.
M. Rush.

[Government 481 Foreign Policy of the U.S.S.R.]
Spring. 4 credits. Not offered 1990-91.
M. Rush.

History 252 Russian History to 1800
Fall.
W. Pintner.

History 253 Russian History since 1800
Spring. 4 credits.
W. M. Pintner.

History 471 Russian Social History
Spring. 4 credits.
W. M. Pintner.
<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>History 677</td>
<td>Seminar in Russian History</td>
<td>Fall or spring. 4 credits. W. M. Pinter.</td>
</tr>
<tr>
<td>Human Development and Family Studies 488</td>
<td>(also Psychology 488) Development in Context</td>
<td>Spring. 4 credits. U. Bronfenbrenner.</td>
</tr>
<tr>
<td>Polish 133-134</td>
<td>Intermediate Course</td>
<td>133, fall; 134, spring. 3 credits each term. Not offered 1990-91. W. Browne.</td>
</tr>
<tr>
<td>Russian 101-102</td>
<td>Elementary Course</td>
<td>101, fall; 102, spring. 6 credits each term. R. L. Leed and staff.</td>
</tr>
<tr>
<td>Russian 103</td>
<td>Freshman Writing Seminar: Classics of Russian Thought and Literature</td>
<td>Fall or spring. 3 credits. Staff.</td>
</tr>
<tr>
<td>Russian 104</td>
<td>Freshman Writing Seminar: Nineteenth-Century Russian Literary Masterpieces</td>
<td>Fall or spring. 3 credits. Staff.</td>
</tr>
<tr>
<td>Russian 105</td>
<td>Freshman Writing Seminar: Twentieth-Century Russian Literary Masterpieces</td>
<td>Fall or spring. 3 credits. Staff.</td>
</tr>
<tr>
<td>Russian 108</td>
<td>Freshman Writing Seminar</td>
<td>Fall or spring. 3 credits. Staff.</td>
</tr>
<tr>
<td>Russian 121-122</td>
<td>Elementary Course</td>
<td>121, fall; 122, spring. 4 credits each term. R. L. Leed and staff.</td>
</tr>
<tr>
<td>Russian 123</td>
<td>Continuing Russian</td>
<td>Fall or summer. 4 credits. R. L. Leed and staff.</td>
</tr>
<tr>
<td>Russian 201-202</td>
<td>Readings in Russian Literature</td>
<td>201, fall; 202, spring. G. Shapiro. 3 credits each term.</td>
</tr>
<tr>
<td>Russian 203-204</td>
<td>Intermediate Composition and Conversation</td>
<td>203, fall or spring; 204, spring. 3 credits each term. L. Papemo and S. Papemo.</td>
</tr>
<tr>
<td>Russian 205-206</td>
<td>Russian for Scientists</td>
<td>205, fall; 206, spring. 2 credits each term. S. Papemo, R. L. Leed.</td>
</tr>
<tr>
<td>Russian 208</td>
<td>Themes from Russian Culture II</td>
<td>Spring. 4 credits. M W F 9:05. G. Shapiro.</td>
</tr>
<tr>
<td>Russian 301-302</td>
<td>Advanced Russian Grammar and Reading</td>
<td>L. H. Babby</td>
</tr>
<tr>
<td>Russian 303-304</td>
<td>Advanced Composition and Conversation</td>
<td>303, fall; 304, spring. 4 credits each term. L. Papemo and S. Papemo.</td>
</tr>
<tr>
<td>Russian 305-306</td>
<td>Directed Individual Study</td>
<td>305, fall; 306, spring. 2 credits. Staff.</td>
</tr>
<tr>
<td>Russian 331</td>
<td>Introduction to Russian Poetry</td>
<td>Fall. 4 credits. T R 11:40-12:55. S. Senderovich.</td>
</tr>
<tr>
<td>Russian 335</td>
<td>Gogol</td>
<td>Spring. 4 credits. Not offered 1990-91. Staff.</td>
</tr>
<tr>
<td>Russian 350</td>
<td>Education and the Western Literary Tradition (also Comparative Literature 350 and College Scholar 350)</td>
<td>Spring. 4 credits. Not offered 1990-91. P. Carden.</td>
</tr>
<tr>
<td>Russian 373</td>
<td>Chekhov</td>
<td>Fall. 4 credits. Not offered 1990-91. S. Senderovich.</td>
</tr>
<tr>
<td>Russian 388</td>
<td>Ideas and Form in Novels of Social Inquiry (also Comparative Literature 388)</td>
<td>Spring. 4 credits. Not offered 1990-91. G. Gibian.</td>
</tr>
<tr>
<td>Russian 393</td>
<td>Honors Essay Tutorial</td>
<td>Fall or spring. 4 credits each term. Staff.</td>
</tr>
<tr>
<td>Russian 400</td>
<td>Reading the Great Tradition</td>
<td>Fall. 4 credits. Prerequisite: Russian 202 or equivalent. Recommended: a course at the 300 or 400 level in which reading has been done in Russian. This course may be counted toward the 12 credits of Russian literature in the original language required for the Russian major. Not offered 1990-91. T R 2:55-4:10. Staff.</td>
</tr>
<tr>
<td>Russian 401-402</td>
<td>History of the Russian Language</td>
<td>401, fall; 402, spring. 4 credits each term. Not offered 1990-91. L. H. Babby.</td>
</tr>
<tr>
<td>Russian 403-404</td>
<td>Linguistic Structure of Russian</td>
<td>403, fall; 404, spring. 4 credits. Not offered 1990-91. L. H. Babby.</td>
</tr>
<tr>
<td>Russian 409</td>
<td>Russian Stylistics</td>
<td>Fall. 4 credits. Not offered 1990-91. S. Senderovich.</td>
</tr>
<tr>
<td>Russian 413-414</td>
<td>Advanced Conversation and Stylistics</td>
<td>413, fall; 414, spring. 4 credits each term. L. Papemo and S. Papemo.</td>
</tr>
<tr>
<td>Russian 431</td>
<td>Contemporary Russian Prose</td>
<td>Fall. 4 credits. T R 1:25-2:40. M. Scammell.</td>
</tr>
<tr>
<td>Russian 491</td>
<td>Reading Course: Russian Literature in the Original Language</td>
<td>Fall or spring. 1 credit. Staff.</td>
</tr>
<tr>
<td>Russian 492</td>
<td>Supervised Reading in Russian Literature</td>
<td>Fall or spring. 1-4 credits each term. Hours to be arranged. Staff.</td>
</tr>
<tr>
<td>Russian 600</td>
<td>Proseminar: Research Methodology in Russian Literature</td>
<td>Fall. 4 credits. Not offered 1990-91. P. Carden.</td>
</tr>
<tr>
<td>Russian 602</td>
<td>Old Russian</td>
<td>Fall. 4 credits. Not offered 1990-91. L. H. Babby.</td>
</tr>
<tr>
<td>Russian 611</td>
<td>Supervised Reading and Research</td>
<td>Fall or spring. 2-4 credits. Staff.</td>
</tr>
</tbody>
</table>
Concentration in Science, Technology and Society

The undergraduate concentration in Science, Technology and Society (STS) is designed for students who wish to engage in a systematic, interdisciplinary exploration of the role of science and technology in modern societies. The concentration is intended for students with varied academic interests and career goals. It offers majors in the natural sciences and engineering an opportunity to explore the social, political, and ethical implications of their selected fields of specialization. At the same time it offers students majoring in the humanities and social sciences a chance to study the processes, products, and impacts of science and technology from varied disciplinary perspectives. Drawing on course offerings in several departments, programs, and colleges, the STS concentration permits students to develop an individualized program of study closely related to their major field. STS courses are organized under four major headings: social relations of science and technology; science, technology, and public policy; ethics and values in science and technology; and biology, medicine, and society.

To satisfy the requirements for the STS concentration, students must complete a minimum of four courses selected from the following list. At least one course should be chosen from the list of core courses. The remaining three courses should be chosen in consultation with an STS faculty adviser and must be drawn from at least two of the areas described below.

Interested students may obtain further information about advisers and courses by contacting the STS main office, 632 Clark Hall, 255-3810.

STS Core Courses

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Title</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>B&Soc 407</td>
<td>Law, Science, and Public Values (also Govt 407)</td>
<td></td>
</tr>
<tr>
<td>B&Soc 415</td>
<td>The Politics of Technical Decisions (also CRP 541, Mgmt MBA 686, Soc 515, Govt 528)</td>
<td></td>
</tr>
<tr>
<td>B&Soc 442</td>
<td>Social and Political Studies of Science (also Soc 355, CRP 442)</td>
<td></td>
</tr>
<tr>
<td>Hist 281-282</td>
<td>Science in Western Civilization</td>
<td></td>
</tr>
<tr>
<td>Hist 380</td>
<td>Social History of Western Technology</td>
<td></td>
</tr>
</tbody>
</table>

Social Relations of Science and Technology

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Title</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>B&Soc 288</td>
<td>History of Biology (also Hist 288, Bio 202)</td>
<td></td>
</tr>
<tr>
<td>B&Soc 300</td>
<td>Investigative Research on Social Impact of Science</td>
<td></td>
</tr>
<tr>
<td>B&Soc 460</td>
<td>Social Analysis of Ecological Change</td>
<td></td>
</tr>
<tr>
<td>Comm 352</td>
<td>Science Writing for the Mass Media</td>
<td></td>
</tr>
<tr>
<td>Comm 360</td>
<td>Science Writing for Public Information</td>
<td></td>
</tr>
<tr>
<td>Comm 626</td>
<td>Impact of Communication Technologies</td>
<td></td>
</tr>
<tr>
<td>Comm 666</td>
<td>Perspectives on Science Communication</td>
<td></td>
</tr>
<tr>
<td>Engr 101</td>
<td>The Computer Age (also CS 101)</td>
<td></td>
</tr>
<tr>
<td>Engr 250</td>
<td>Technology in Western Society (also EE 250)</td>
<td></td>
</tr>
<tr>
<td>Engr 292</td>
<td>The Electrical and Electronic Revolutions (also EE 292)</td>
<td></td>
</tr>
<tr>
<td>Hist 287</td>
<td>Evolution (also BioS 207)</td>
<td></td>
</tr>
<tr>
<td>Hist 433</td>
<td>Comparative History of Science</td>
<td></td>
</tr>
<tr>
<td>Hist 444</td>
<td>Historical Issues of Gender and Science (also Wms Stds 444)</td>
<td></td>
</tr>
<tr>
<td>Hist 686</td>
<td>Historiography of Science and Technology</td>
<td></td>
</tr>
<tr>
<td>Hist 687</td>
<td>History of Agricultural Science</td>
<td></td>
</tr>
<tr>
<td>ILR 626</td>
<td>Science and Innovation in Industry</td>
<td></td>
</tr>
<tr>
<td>N Res 331</td>
<td>Beyond the Year 2000 (also Govt 331)</td>
<td></td>
</tr>
<tr>
<td>Psych 277</td>
<td>Psychology of Sex Roles (also Wms Stds 277, Soc 277)</td>
<td></td>
</tr>
<tr>
<td>R Soc 208</td>
<td>Technology and Society</td>
<td></td>
</tr>
<tr>
<td>R Soc 324</td>
<td>Environment and Society</td>
<td></td>
</tr>
</tbody>
</table>

Science, Technology, and Public Policy

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Title</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>B&Soc 406</td>
<td>Biotechnology and Law</td>
<td></td>
</tr>
<tr>
<td>B&Soc 426</td>
<td>Medicine and the Law</td>
<td></td>
</tr>
<tr>
<td>CEE 398</td>
<td>Decision Making in Engineering Systems</td>
<td></td>
</tr>
<tr>
<td>Econ 302</td>
<td>The Impact and Control of Technological Change (also Govt 302, CRP 440)</td>
<td></td>
</tr>
<tr>
<td>Engr 400</td>
<td>Science, Risk, and Public Policy (also T&Am 400, Econ 358)</td>
<td></td>
</tr>
<tr>
<td>Govt 391</td>
<td>The Politics of Defense Spending</td>
<td></td>
</tr>
<tr>
<td>Govt 483</td>
<td>The Military and New Technology</td>
<td></td>
</tr>
<tr>
<td>ILR 374</td>
<td>Technology and the Worker</td>
<td></td>
</tr>
<tr>
<td>Phys 206</td>
<td>War and Peace in a Nuclear Age</td>
<td></td>
</tr>
</tbody>
</table>

Ethics and Values in Science and Technology

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Title</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>B&Soc 205</td>
<td>Ethics and Health Care (also Phil 245, BioS 205)</td>
<td></td>
</tr>
<tr>
<td>B&Soc 206</td>
<td>Ethics and the Environment (also Phil 246, BioS 206)</td>
<td></td>
</tr>
<tr>
<td>Engr 360</td>
<td>Ethical Issues in Engineering</td>
<td></td>
</tr>
<tr>
<td>HSS 600</td>
<td>Professional Ethics and Public Policy</td>
<td></td>
</tr>
<tr>
<td>N Res 407</td>
<td>Religion, Ethics and the Environment</td>
<td></td>
</tr>
<tr>
<td>Phil 381</td>
<td>Philosophy of Science: Knowledge and Objectivity</td>
<td></td>
</tr>
</tbody>
</table>

Biology, Medicine, and Society

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Title</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>B&Soc 232</td>
<td>Recombinant DNA Technology and Its Applications (also BioS 232)</td>
<td></td>
</tr>
<tr>
<td>B&Soc 301</td>
<td>Biology and Society: Social Construction of Life (also BioS 301, Anthro 301)</td>
<td></td>
</tr>
<tr>
<td>B&Soc 322</td>
<td>Medicine and Civilization</td>
<td></td>
</tr>
<tr>
<td>B&Soc 434</td>
<td>Biotechnology: Science Values and Policy (also BioS 434)</td>
<td></td>
</tr>
<tr>
<td>B&Soc 469</td>
<td>Food, Agriculture, and Society (also BioS 469)</td>
<td></td>
</tr>
<tr>
<td>B&Soc 492</td>
<td>Human Genetics and Society</td>
<td></td>
</tr>
<tr>
<td>Entom 370</td>
<td>Pesticides and the Environment (also T&Am 370)</td>
<td></td>
</tr>
<tr>
<td>Hist 233</td>
<td>Agriculture, Technology and Society</td>
<td></td>
</tr>
<tr>
<td>N Res 401</td>
<td>Environmental and Natural Resources Policies</td>
<td></td>
</tr>
<tr>
<td>Psych 387</td>
<td>Health and Disease</td>
<td></td>
</tr>
</tbody>
</table>
Society for the Humanities

Jonathan Culler, director

Fellows for 1990–91

David Bathrick (Cornell University)
Rachel Bowby (University of Sussex)
Noel Carroll (Cornell University)
Alexander Doty (Lehigh University)
Jane Feuer (University of Pittsburgh)
Simon Frith (Strathclyde University)
James William Gibson (Southern Methodist University)
Karal Ann Marling (University of Minnesota)
Marilyn Migiel (Cornell University)
Trinh T. Minh-Ha (San Francisco State University)
Laura Mulvey (Film Maker)
Tim Murray (Cornell University)
Jonathan Ngate (Cornell University)
Constance Penley (University of Rochester)
Thomas Ross (Union College)

Mark Seltzer (Cornell University)
The Society annually awards fellowships for research in the humanities. The Fellows offer, in line with their research, informal seminars intended to be exploratory or interdisciplinary.

These seminars are open to graduate students, suitably qualified undergraduates, and interested auditors. Students who want credit for a seminar should formally register in their own college. Persons other than those officially enrolled may attend as visitors with permission of the Fellow.

The Society's theme during 1990–91 will be The Humanities and the Challenge of Mass Culture.

Mark Seltzer (Cornell University)
The Society annually awards fellowships for research in the humanities. The Fellows offer, in line with their research, informal seminars intended to be exploratory or interdisciplinary.

These seminars are open to graduate students, suitably qualified undergraduates, and interested auditors. Students who want credit for a seminar should formally register in their own college. Persons other than those officially enrolled may attend as visitors with permission of the Fellow.

The Society's theme during 1990–91 will be The Humanities and the Challenge of Mass Culture.
This seminar will approach the subject of ‘Popular’ culture from the perspective of contemporary critical theory. We will focus upon the products of the U.S. mass-culture industry (e.g., films, TV, music, fashion), with an emphasis on the analysis of television. We will consider both the varying theoretical approaches to mass culture and specific studies of forms of mass culture using these approaches. Case studies might include: romance novels, James Bond, teen films, TV and postmodernism, TV soap operas, MTV, made for TV movies and others. The course readings will be chosen primarily from recent studies which, although theoretical in nature, focus upon specific cultural phenomena and often synthesize several theoretical models.

Media production plays a primary role in studies which, although theoretical in nature, focus upon the bodies and machines of machine culture as film, television, music and advertising. How do gays read such products of mass culture as film, television, music and advertising? Is there a definable “gay sensibility” that informs these encounters with mass culture texts? How might we theorize gay spectatorship? How readings of mass culture? These questions address the most general concerns of this seminar, which will work through the issues suggested by these questions with reference to specific films, camp, drag, cult, consumerism, and homoeroticism.

418 Gay Perspectives and Mass Culture
Spring. 3 credits.
How do gays read such products of mass culture as film, television, music and advertising? Is there a definable “gay sensibility” that informs these encounters with mass culture texts? How might we theorize gay spectatorship? How readings of mass culture? These questions address the most general concerns of this seminar, which will work through the issues suggested by these questions with reference to specific films, camp, drag, cult, consumerism, and homoeroticism.

419 Bodies, Technologies, Mass Culture (also English 419)
Fall. 4 credits.
The seminar proposes an interdisciplinary investigation of the relays between forms of cultural and technological production in America between 1870 and 1930. Turn-of-the-century American culture has alternatively been described as naturalist, as the culture of consumption, and as machine culture. What binds together these apparently alternative descriptions is the “discovery” of bodies and persons that can be made. This course will focus upon uncoupled social, representational, and theoretical—of such a discovery. The focus will be on the replications of bodies and technologies in the discourse (written and visual) of the period. Some of the questions we will consider are: How are the sieve-like categories of the body and the machine of the natural and the cultural reconceived in this period? What are the literate, social, and formal consequences of such a reconception? How are the life process and the machine process rewritten in this period and how do literary and visual practices register such a rewriting? What do the bodies and machines of machine culture look like and what appeals and anxieties do these representations generate?

420 Mass Culture, Ideology and Philosophy (also Philosophy 443)
Spring. 4 credits.
This course approaches questions concerning mass culture from a number of perspectives, asking about the nature of mass culture and reviewing the epistemological problems and prospects of mass culture analysis as well as exploring the resistance of traditional philosophical aesthetics to mass art. The central purpose of this course is to develop a philosophically informed model for analyzing the ideological dimensions of mass culture; the ramifications of this model for issues such as censorship, pornography, and public access with respect to mass media will also be discussed.

421 Riffraff of the Renaissance
Fall. 4 credits. Reading knowledge of Italian required.
The predominantly urban centers of northern Italy permitted the rise of a “mass culture” which sought to reinterpret (and to resist) the discursive models and practices offered by the greats of classical and Italian literature, preferring instead subjects, themes, and styles shunned by high culture. In studying the writers who do not conform to the ideological and aesthetic norms of the Renaissance, we will rethink our conception of the relation between “high” and “low” culture, between canonical and non-canonical works, between “literary” and “non-literary” languages.

Spring. 3 credits.
Defeat in Vietnam created a serious cultural crisis; it ended the long tradition of victory in warfare that had been a central component of both American national identity and male identity. The course will explore the fantasies of winning new wars that have developed over the past 15 years using theories from mythology and psychoanalysis.

425 Marcham Seminar: Images of Humanity in Medieval China (also History 393)
Fall. 4 credits.
The middle period of China’s history, essentially the Tang and Sung dynasties, feature some of the highest achievements of Chinese civilization. These centuries (the seventh through the thirteenth) are distinguished by the exceptionally high levels of literature, art, religious and secular thought, and proto-scientific development, as well as by fundamental changes in state, society, and the economy. This seminar will explore the China of this age by examining the lives of several representative figures—a politician, a poet, a Buddhist monk, a Taoist priest, an emperor, an empress, a “detective,” and others. The aim will be to reconstruct the inner and outer worlds of men and women perhaps not so far removed from ourselves in their basic motivations and daily concerns.

426 Marcham Seminar: Black Emancipation in Comparative Perspective (also History 471)
Fall. 4 credits. One course in American, Afro-American or African History required; permission of instructor.
This course will explore the black emancipation experiences in comparative perspective. Primary emphasis will be on Africa and the United States; secondary focus will be on the Caribbean and Latin America. The African component will investigate social consequences of emancipation, the transformations accompanying that process, and the experiences of former slaves. Perspectives on the Americas will include the complexities of emancipation, its socio-economic results and the legacy of race relations.

439 Oral and Written Traditions in Africa (also French Literature 439 and Comparative Literature 439)
Fall. 4 credits. Reading knowledge of French recommended.
Organized around but not limited to two major African epics, Soundjata and Chaka, this course will enable us to investigate the nature, the validity, and the implications of many francophone African writers’ claims to being modern versions of the griots of the oral tradition.
440 African Cityscapes: Urbanization and Its Literary Representations (also Comparative Literature 440, French Literature 440 and Africana 440)
The course will seek to make sense of the evolving fate of the city in African literature in French: from being presented almost exclusively as a deathtrap for the colonized, the city has now become that ambiguous space in which it is increasingly difficult to say what it means to be African.

150 Introduction to Cultural Studies (also Comparative Literature 150)
Fall. 4 credits. Does not satisfy the Freshman Writing Seminar requirement, but will satisfy the distribution requirement. T R 10:10–11:25. W. Cohen.
An introduction not to culture but to the study of it. This course outlines an emergent field of inquiry concerned with the ultimately political character of meanings, values, subjectivity, and symbolization. Topics include cultural theory, mass culture/popular culture, cultures of resistance, and cultural imperialism. Examples and drawings primarily from the 1960s and its legacy. Emphasis is on responses to the Vietnam War: news coverage, documentaries, scholarship, memoirs and letters, architecture, fiction, poetry, theatre, comics, tv series, and especially music (Beatles, Arlo Guthrie, Country Joe, etc.) and Hollywood films (e.g., Apocalypse Now, Coming Home, Deer Hunter, Full Metal Jacket, Platoon, Born on the Fourth of July— if available— and perhaps one Rambo movie.

491 Mass Culture Revisited: From Popular Culture to the Culture Industry (also Comparative Literature 491 and German Studies 491)
Fall. 4 credits. For advanced undergraduates and graduate students, taught in English. Reading knowledge of German required. T 1:25–3:20. P. U. Hohenadl.
This seminar is designed to engage in a critical dialogue with theoretical writings on mass culture (Adorno, Huyssen, Jameson, C. Burger, Howe, Huysen, Jameson, L. Levine, MacDonald, Schenda); and to investigate the emergence of modern mass culture in Germany. Tracing the transition from traditional forms of popular literature to its recasting after the industrial revolution, the course will examine the relationship between established high culture and popular culture. Readings from the works of popular novelists, such as Marlitt, Gourth-Mahler, Karl May, and Ganghofer.

South Asia Program
The South Asia Program coordinates research, teaching, and special campus events relating to Bangladesh, India, Pakistan, Nepal, and Sri Lanka. The program faculty includes members from a variety of disciplines, including agricultural economics, agricultural engineering, anthropology, architecture, city and regional planning, communication, comparative religion, cultural systems, English, government, history, history of art, human ecology, international agriculture, linguistics, literature, rural sociology, and science, technology, and society. Undergraduates with a special interest in the region from major in Asian studies with a South Asian concentration, or do a South Asian concentration with any other major. The languages regularly offered are Bengali, Hindi, Nepali, Punjabi, Sinhala, Tamil, Urdu, Sanskrit, and Pali. Cornell is a class A member of the American Institute of Indian Studies (AIIS), and undergraduates as well as graduate students are eligible for AIIS intensive language program fellowships in India. For courses available in South Asian studies and details on the major, see the Department of Asian Studies listing in this volume.

Students who want further information on courses and research opportunities should direct questions to the program office, 170 Uris Hall.

Southeast Asia Program
Southeast Asia studies at Cornell is included within the framework of the Department of Asian Studies. Fourteen full-time faculty members in the colleges of Arts and Sciences and Agriculture and Life Sciences participate in an interdisciplinary program of teaching and research on the history, culture, and societies of the region stretching from Burma through the Philippines. Courses are offered in such fields as agricultural economics, anthropology, Asian studies, government, history, history of art, linguistics, music, and rural sociology. Instruction is also offered in a wide variety of Southeast Asian languages: Burmese, Cambodian, Cebuano (Isayam), Indonesian, Javanese, Tagalog, Thai, and Vietnamese; for which Foreign Language Area Studies Fellowships are available. Intensive instruction is offered in the Full-Year Asian Language Concentration Program (FALC) in Indonesian at Cornell at the beginning and intermediate levels. Intensive advanced Indonesian language programs are held from June through August in Indonesia each summer. The formal program of study at Cornell is enriched by a diverse range of extracurricular activities, including an informal weekly luncheon seminar, the concerts of the Cornell Ensemble, a weekly Southeast Asia film series, and public lectures. The John M. Echols Collection on Southeast Asia, in Olin Library, is the most comprehensive collection on this subject in America.
Undergraduates may major in Asian studies with a focus on Southeast Asia and its languages, or they may elect to take a concentration in Southeast Asia studies by completing 5 courses of course work. Students interested in exploring these opportunities should consult the director, Southeast Asia Program, 120 Uris Hall.
The Southeast Asia Summer Studies Institute (SEASSI), a ten-week intensive language and area program for undergraduates from June through 10 August 1991 at Cornell University. A limited number of fellowships are available for this program. For further information write: Professor John U. Wolff, SEASSI Director, College of Arts and Sciences, Cornell University, Ithaca, New York 14853.

Statistics Center
The Cornell Statistics Center coordinates a university-wide program in statistics and probability. Students interested in graduate study in probability and statistics should apply to the Field of Statistics or to one of the other graduate fields of study that offer related course work. A list of courses in probability and statistics recommended for graduate students in the Field of Statistics can be found in the description of the Cornell Center for Statistics in the section "Interdisciplinary Centers and Programs." Further information can be obtained from the director of the Statistics Center in Caldwell Hall.

Women's Studies Program
Women's Studies, a university program in the College of Arts and Sciences, has three goals: to encourage the development of teaching about women and sex roles for women and men; to examine assumptions about women in various disciplines and to develop, systematize, and integrate back into the disciplines new knowledge about women; and to cooperate in public service activities with the extension divisions of the university.
The program is guided by a board composed of faculty, staff, and students at Cornell and members of the Ithaca community who have an intellectual interest in women's studies. Program facilities in Uris Hall, including a reading room-lounge and a seminar room, are open to all interested students and faculty.

Program Offerings
Undergraduate students in the College of Arts and Sciences who wish to major in women's studies can design their own major through the College Scholar or Independent Major programs. Any graduate student in the university may elect a women's studies minor. Students interested in either the major or the minor should obtain further information from the Women's Studies Office, 352 Uris Hall.
The program typically sponsors a noncredit seminar/study group for graduate students and faculty to facilitate sharing of knowledge across disciplinary lines. During the academic year the program also sponsors frequent public lectures dealing with social, political, and intellectual issues in women's studies.

The Concentration
Undergraduate students who wish to graduate with a concentration in women's studies should consult with the director of undergraduate studies in women's studies to select an adviser. In collaboration with that adviser students will design a coherent program in women's studies to complement their major.
Before graduation, students will submit to their adviser a final summary on their completed work in the program. The concentration is open to students in all colleges of the university.

The concentration in women's studies consists of four courses. Typically, two courses are selected from the list of general courses and two from the list of specialized courses (see below). Freshman writing seminars, related courses, or independent study in women's studies may be substituted for specialized courses in the concentration with the prior approval of the adviser.

For further information or to meet with the director of undergraduate studies to select an adviser, students should contact the Women's Studies Office, 332 Uris Hall, 255-6480.

Distribution Requirement

Distribution requirements are satisfied by any two women's studies courses in any of the following categories:

Social sciences: (a) any two of 208, 218, 238, 244, 277, 305, 321, 353, 365, 366, 406, 408, 425, 428, 450, 454, 480 or (b) any one of 210, 365, plus one from list a.

History: any two of 227, 228, 273, 307, 336, 357, 426, 438.

Humanities: (a) any two of 248, 251, 264, 281, 297, 348, 349, 363, 365, 366, 390, 402, 404, 445, 456, 460, 474, 475, 476, 481 or (b) any one of 210, 365, 493, plus one from list a.

Courses

Keeping in mind that women's studies is interdisciplinary, it is useful to distinguish six core areas, or foci, within the program: ideology and culture, institutions and society, history, literature and the arts, psychology and human development, and natural sciences.

The program offers undergraduate and graduate courses in all of the core areas, both independently and in cooperation with other departments. Women's studies courses are grouped into four categories to assist students in selecting the level or degree of specialization suited to their program:

I) Freshman writing seminars

II) General courses (which provide a general introduction to a broad subject area or core focus within women's studies)

III) Specialized courses and seminars (which have smaller enrollments and focus upon more specialized topics within each of the core areas)

IV) Related courses and seminars (which need not focus exclusively upon women's studies but include significant consideration of sex differences, feminist criticism, or gender)

I. Freshman Writing Seminars

105 Feminine and Masculine Ideals in Japanese Culture (also Asian Studies 105)

Spring, 3 credits.

MWF 10:10. Staff

In its long history, Japanese culture has developed a large number of role models—the aristocrat, poet-priest, warrior, entertainer, "salary man," and "education mama"—and idealized them in its literature and art. Using these ideals as its subject matter, the seminar will give students practice in reading texts closely, analyzing ideas, and writing various types of papers. Through studying Japanese concepts of femininity and masculinity, the students will not only explore a new culture but will also gain new perspectives on their own cultures.

106 Women and Writing (also English 105)

Fall and spring, 3 credits.

Hours to be arranged. Staff

What is a woman? How does she confront her personal experience? Does she play a special role in history, in our definition of society, or in our understanding of language and literature? This course will explore the relation between women and writing. We will discuss writings by and about women, debate our attitudes toward feminism, and analyze the relevance of these questions to our own written work.

Individual sections will emphasize different aspects of the relation between women and writing. Which section to choose should depend on your own interest in exploring how women appear in private or autobiographical writings, historical contexts, and/or literary works. Further information on specific sections is available in the freshman writing seminar office. Textual overlap among the sections is kept to a minimum so that students can take more than one Women and Writing seminar during their time at Cornell.

107 The Family in American History (also History 107)

3 credits. Not offered 1990-91.

M. B. Norton.

II. General Courses

116 Woman and the Biblical World

Fall. 3 credits.

A feminist approach to the study of women, their history, and their portrayal in biblical antiquity. Sources include inscriptions, marriage and divorce documents, and literature (godness mythology, Hebrew Bible, New Testament, Gnostic Gospels). All texts in English translation.

121 Language and Gender (also Linguistics 121)

Fall. 3 credits.

Disc./sem, limited to 17 students.

What does it mean to speak "like a woman" or "like a man," or "like a girl," or "like a boy?" Even ten-year-olds in our culture approach similar communicative tasks in gender-differentiated ways: girls often get others to do things by saying things like "let's get some coat-hangers" whereas their male peers are more likely to say something like "get me a coat hanger." How do race, social class, age, setting, and aims interact with gender in affecting communicative style? How do our ways of writing and talking reflect and perpetuate gender stereotypes or biases? What is the role of sex and gender in language change? Readings, discussion, and writing assignments will explore connections between our uses of language and the cultural construction of feminality, maleness, and sexuality.

168.01 Black Women Writers: The Uses of Madness and Silence (also English 168)

Fall. 3 credits. Disc./sem.

Harriette Mullen.

How are silence and madness used in texts by black women writers to explore their relationship to language, writing, and power? Why is madness a compelling metaphor for the complexities of race, class, gender, and cultural conflict? How does one interpret the silences in a text? How is silence itself foregrounded in a literary text? This seminar will focus on these and other questions raised by the novels, short stories, poetry, and drama of black women writers from Africa, the United States, and the Caribbean, including Bessie Head, Toni Morrison, Adrienne Kennedy, Opal Palmer Adisa, Tsitsi Dangarembga, and Jamaica Kincaid.

210 Introduction to Women's Studies

Fall. 4 credits. Limited to 20 students.

Permission of instructor required.

Lec, M 12:25-2:15, disc, W 12:20 or 1:25.

C. A. Martin.

This course introduces students to critical approaches in feminist scholarship to the cultural, socioeconomic, and political situation(s) of women. Particular attention will be paid to the conceptual challenges and dangers posed by attempts to study women without taking account of relations between race, class, and gender in ideological and social formations. Readings will draw on work in various disciplines and will include literary texts and visual images.

214 Biological Basis of Sex Differences (also Biological Sciences 214)

Fall. 3 credits. Prerequisite: one year of introductory biology.

Lec, T R 8:30-9:35; plus occasional disc to be arranged.

The structural and functional differences between the sexes are examined. Emphasis is placed on mechanisms of mammalian reproduction. Where possible, special attention is given to studies of humans. Current evidence on the effects of gender on nonreproductive aspects of life (behavior, physical and mental capabilities) is discussed. The course is intended to provide students with a basic knowledge of reproductive endocrinology and with a basis for objective evaluation of sex differences in relation to contemporary life.

218 The Economics of Gender (also City and Regional Planning 218)

Spring. 3 credits.

T R 3:30-5 L Beneria.

An introduction to economic analysis of gender relations and women's work, with emphasis given to understanding different analytical approaches to these issues. Although the course focuses mostly on the United States, some basic questions regarding international development and women will be dealt with.
227 Modern American Sex Roles in Historical Perspective (also History 227)
Spring. 4 credits. Limited to 20 students. Permission required. Intended primarily for sophomores.
A reading and discussion course. The class will begin by examining sex roles in the United States in the 1990s, looking at a variety of sources like popular magazines and contemporary commentaries. We will then move backwards in time in an attempt to uncover the roots of current attitudes. The students will help to determine which topics the class will investigate in detail.

244 Language and the Sexes (also Linguistics 244)
S. McConnell-Ginet.
This course explores connections between language (use) and gender/sex systems, addressing such questions as the following. How do sex and gender affect the ways we speak, the ways we interpret and evaluate speech? How do sociocultural differences in women's and men's roles affect their language use, their relation to language change? What is meant by sexist language? How does conversation structure the social worlds of women and men? Readings drawn from work in linguistics, anthropology, philosophy, psychology, literature, and general women's studies and feminist theory.

273 Women in American Society, Past and Present (also History 273)
M. B. Norton.
A survey of women's experiences in America from the seventeenth century to the present. Among the topics to be discussed are women's familial roles, the changing nature of household work, the women's rights movement, employment of women outside the home, and contemporary feminism.

277 Psychology of Sex Roles (also Psychology 277 and Sociology 277)
Spring. 3 credits. Limited to 300 students.
Addresses the question of why and how adult women and men come to differ in their overall life-styles, work and family roles, personality patterns, cognitive abilities, etc. This broad question is examined from five perspectives: (a) the psychoanalytic perspective; (b) the biological perspective; (c) the historical and cultural evolutionary perspective; (d) the child development perspective; and (e) the social-psychological and contemporaneous perspective. Each of these perspectives is also brought to bear on more specialized phenomena relating to the psychology of sex roles, including psychological androgyny, women's conflict over achievement, the male sex role, egalitarian marriage relationships, gender-liberated childrearing, female sexuality, homosexuality, and transsexuality.

321 Sex and Gender in Cross-Cultural Perspective (also Anthropology 321)
Fall. 4 credits.
An introductory course for cross-culturally and to anthropology of sex and gender. The course examines various aspects of the place of the sexes in social, political, economic, ideological, and biological systems to emphasize the diversity in gender and sex role definition around the world.

353 Feminism: State and Public Policy (also Government 353)
Spring. 4 credits.
The course examines aims and strategies of the feminist movement in the United States and the response of both society and the state to feminist claims. It is thus a course about political protest and the capacity of American political institutions to promote and shape, as well as resist, social change. In examining the law and public policy on such issues as job discrimination, wife battery, rape, abortion, etc., the course explores the contradictions between, and the congruence of, the dual ideals of individual choice and group equality.

365 Directions in Feminist Theory (also Political Science 365)
C. A. Martin.
This course is designed to explore developments in contemporary feminist theory with particular attention to feminist critiques, reinterpretations, and uses of Marxist, psychoanalytic, and (post)structuralist thought. We will be concerned with the ways in which radical feminist questions converge with developments in these fields and the ways in which feminist analyses challenge some of the most basic assumptions embedded in these and other social theories. We will consider the approaches of a variety of feminist thinkers to the relations between a gender, race, class, and sexual divisions.

372 Sex Discrimination: Law and Social Policy (also Sociology 372 and Government 306)
Spring. 4 credits.
MW F 10:10. C. Bohrer.
This course will cover the legal and social trends in the area of sex discrimination. It will examine the relationship between feminist consciousness and developments in gender-related constitutional law. We will discuss the meaning of sex discrimination in the context of various areas of importance and examine the role of the law in redressing or perpetuating social and legal inequities.

III. Specialized Courses and Seminars

208 Gender, Race, and Medical "Science" (also Africana Studies 208 and Anthropology 208)
3 credits. Not offered 1990-91.
G. Fraser.
The course will examine the social construction of race and gender in the medical sciences from the turn of the century to the present. Beginning with readings that propose a new view of scientific medicine as a system of signs and symbols and culturally embedded, we will proceed to an examination of some of the following topics: racism and experimentation; the treatment of venereal disease and tuberculosis, the demise of social childbirth; the body as a medical product; menstruation as pathology; the monitored mind: women and psychiatry; the political economy of health care; medical authority; the training of medical students; political anatomy of the body; sites of resistance; and alternative systems: cross-cultural case studies.

238 The Historical Development of Women as Professionals, 1800-Present (also Human Development and Family Studies 258)
3 credits. Not offered 1990-91.
J. Brunberg.
The historical evolution of the female professions in America (midwifery, nursing, teaching, librarianship, home economics, and social work) as well as women's struggles to gain access to medicine, law, the clergy, and the academy. Lectures, reading, films, and discussion are geared to identifying the cultural patterns that fostered the conception of gender-specific work opportunities. Material will be drawn from different women's movements and from different historical circumstances that created these different work opportunities. The evolution of professionalism and the consequences of this evolution for women, family structure, and American society are also discussed.

248 Major Nineteenth-Century Women Novelists (also English 247)
J. Blackall.
This course gives particular attention to the biographical and social circumstances surrounding the novels, their critical reception within their own time, and the themes and subject matter that women novelists elected to write about. The reading includes masterworks and certain other works that exerted a major imaginative impact on contemporary readers.

264 Ethnic Literature: Bridges and Boundaries (also English 264)
3 credits. Not offered 1990-91.
Harryette Mullen.
The American language that came, as William Carlos Williams noted, "from the mouths of Polish mothers," has also been shaped by the oral and written traditions of Native Americans, African Americans, Chicano/as, and Asian Americans whose literary production will be examined in this course. Works by writers in these traditions will be studied as sites marking the emergence of a contemporary American language and literature capable of representing the diverse and particular realities of a multicultural nation. This course will focus...
especially on how each ethnic tradition uses the contested territories of geography, language, and gender in texts that both refer to and imaginatively construct communities and traditions based on collective experience. Discussion will focus on how each text makes connections and distinctions between individuals as well as within and among communities bound together by shared linguistic, geographical, spiritual, and cultural traditions, and the territorialization of bodies, especially women's bodies, as boundaries or bridges between races/ethnicities, in discursive constructions of ethnicity.

[281 Gender and Society in the Muslim Middle East (also Near Eastern Studies 281)]
3 credits. Not offered 1990-91.
L. Peirce.
This course examines conceptions of gender in traditional Muslim society and the ways in which they have affected the experiences of Muslim women. Topics to be covered include the position of women in the religious law of Islam, female seclusion and the harem, social hierarchies and family structure, sexuality, and the problem of Western perceptions of Muslim women. Although attention will be given to gender issues in the contemporary Middle East, the course focuses on the historical roots of the present-day situation of Muslim women. Readings include primary sources in translation, visual materials (slides, movies) form an integral part of the course.

[297 Beyond the Stereotype: Images of Women in the Middle East (also Near Eastern Studies 297)]
Not offered 1990-91.
S. Mehrez.
We will be reading nonfictional works on women, as well as works of fiction on and by women, in an attempt to re-evaluate certain stereotypic functions and roles ascribed to Middle Eastern women throughout history. Our starting point will be the Koran, the text that continues to regulate the formation of the image of women. We will investigate the degree of acceptance or rejection of such an imposed image as it manifests itself in contemporary texts.

[307 African-American Women in Slavery and Freedom (also History 303)]
Spring. 4 credits.
This course thematically explores the history of African-American women from a sociopolitical perspective. Topics include the images and depictions of Black women, how Black women have engaged in political struggle, race progress vs. feminism, the relationship between racism and sexism, and Black women in family life.

[336 Special Topics in International and Comparative Labor Relations: Comparative History of Women and Work (also ILR 337/537)]
Fall. 3 credits. Disc/sem.
This seminar will explore the similarities and differences among different cultures' assumptions about the work of women as well as women's experiences in varying work circumstances throughout history. Beginning with theoretical pieces and overviews of the history of women and work, most of the course will consist across time and geography. Comparative examples will be taken from the United States, Europe, and the Third World.

[346 German Women Writers in Translation (also German Studies 346)]
Spring. 4 credits.
TR 1:25-2:40. C. A. Martin.
The course will involve careful readings of the work of specific authors, (authors to change each semester); feminist discussion of the concept of "Women's Writing"; and attention to the sociocultural and historical contexts in which the texts under discussion were written. In spring 1991 we will include twentieth-century German and German-Jewish writers and post-war West German women writers.

[348 The Female Literary Tradition: Wollstonecraft to Woolf (also English 348)]
Spring. 4 credits.
A course designed to survey and investigate the nature of a British "female literary tradition" from the late eighteenth to the early twentieth centuries, read in the light of the rich and varied feminist criticism it has attracted. (questions: what might constitute a female literary tradition? How is it transmitted? Forgotten? Recovered? Defined as "female" in the first place?) Starting with late eighteenth-century women novelists such as Inchbald, Burney, and Radcliffe, we will move by way of Wollstonecraft's writing to Austen, Edgeworth, and Mary Shelley. Mid-nineteenth-century authors will include writing by the Brontes, Gaskell, Barrett Browning, and George Eliot, as well as sensation novelists such as Braddon and Wood. We will look at some of the "new women" authors of the 1890s (Egerston, Schreiner) before turning to early twentieth-century novelists including Woolf, Radcliffe, Hall, and H. D. The dual emphasis will be on an atypical or noncanonical selection of authors and texts, where possible, and on feminist literary criticism; a valuable (although not essential) prerequisite might be a 200- or 300-level course in major women novelists of the period covered, such as Austen, the Brontes, or Eliot, or in feminist literary theory.

[349 Women in Medieval Literature (also German Studies 348 and Comparative Literature 349)]
B. Buettner.
A study of women and their roles in the social order as portrayed in the literature of the Middle Ages. Readings will illustrate the range of attitudes toward women from asceticism and antifeminism to their idealization in courtly love lyric and romance. We will examine woman's putative influence in literature, both positive and negative, on man and society and the debates over woman's "proper" attitude and role. Works in English translation will include a play by Hroswitha of Gandersheim, the Nibelungenlied, selected Mariological and mystical poems, courts love lyric, Parzival, Tristan and Isolde, and The Book of the City of Ladies.

[363 Representations of Women in Ancient Greece and Rome (also Classics 363)]
L. S. Abel, J. Ginsburg.
Classical authors created and left behind powerful images of women, images of what women ought and ought not to be. These writers also provide fleeting insights into the real lives of women in antiquity. In this course, we will examine the ancient evidence to trace the origin of some Western attitudes about women and to analyze the assumptions that underlie the representations of women in ancient Greece and Rome. How are these images constructed and how do they work? How can we use the ancient evidence to assess the real lives and social roles of women in antiquity?

[366 Lesbian Writing and Theory (also Government 366)]
Spring. 4 credits. Prerequisite: permission of instructor.
TR 1:25-2:40. C. A. Martin.
This course will begin by investigating the histories and implications of the categories in the course title. Though the focus will change from year to year, there will be a strong emphasis on "lesbian writing" and theory since the late 1960s. We will consider the relations between lesbian and gay male writing and theory as well as theory and writing that addresses itself explicitly to the intersections of race, gender, sexuality, and class. Writers, critics, and theorists will include, but not be limited to Audre Lorde, Esther Newton, Mab Segrest, Barbara Smith, Cherríe Moraga, Gloria Anzaldúa, V. K. Aruna, Adrienne Rich, Teresa de Lauretis, Judith Butler, Diana Fuss, Martha Vicinus, Michael Foucault, Martin Duberman.

[390 The Fiction of Modern Hispanic Women (also Spanish 390)]
D. Castillo.
This course will survey a representative sampler of novels and short stories by twentieth-century Hispanic women. We will be giving particular attention to typical themes and subject matter relating to women's experience and perspectives in the context of questions raised by recent feminist criticism. Readings will include works by Silvina Ocampo, Rosario Ferre, Susana Torres Molina, Carmen Martín Gaite, Carmen Gomez Ojea, Luisa Valenzuela, Cristina Peri Rossi, Mercedes Salsach, and Alba Lucia Angel.

[404 Women Artists (also History of Art 404)]
4 credits. Prerequisite: permission of instructor. Auditing not permitted. Not offered 1990-91.
J. Berinstein.
This seminar will be devoted to a study of the work of women artists from antiquity to the present. The works of the most important women artists from each period will be studied in relation to the changing roles of women in society and to the art produced contemporaneously by men.
406 The Cultures of Lives (also Anthropology 406)
Spring. 4 credits.
K. March.
This seminar explores the insights provided by biographical-autographical accounts into both the particulars of individual lives and into the wider social and cultural forms of those lives. We will look at the place of life histories within development of anthropology as a discipline from the earliest explorers' accounts, through the importance of their influence in early American ethnographic description, and into the contemporary resurgence of interest in personal narratives as windows onto both the social or cultural construction of the person and the personal construction of the social or cultural. Course materials draw heavily upon women's lives and their representations, both to contrast women's and men's accounts and to underscore the special significance of women's narratives in anthropology.

408 Gender Symbolism (also Anthropology 408)
Spring. 4 credits.
K. March.
This seminar looks at how cultural meaning is constructed about biological sex differences. We begin from the presumption that sex difference and gender are culturally defined as a system of categories and meanings interacting with people's cognitive, intellectual, and affective experience of their worlds. The seminar has two primary conceptual objectives: (1) to analyze the relations among gender symbols and (2) to explore the relations between these symbols and the social worlds of the people who believe in them.

425 Gender Relations and Social Transformation (also Rural Sociology 426)
Fall. 3 credits.
Students in the endowed colleges must register for Women's Studies 425. W 7:30-10:30 p.m. S. Feldman.
A comparative analysis of women's contribution to domestic-social and agricultural labor as production practices change. The course emphasizes the configuration of various economic and social sectors and their realignments in and between countries. Changes occur in response to technology transfer, the transformation of the labor market, the international division of labor, and changing family relations.

426 Undergraduate Seminar in Early American History (also History 426)
B. M. Norton.

428 Spirit Possession, Shamanism, Curling, and Witchcraft (also Anthropology 428)
4 credits. Limited to 20 students. Prerequisite: background in anthropology or women's studies. Not offered 1990-91.
D. Holmberg.
An anthropological consideration of witchcraft, shamanism, and cults of spirit possession, with special attention to the play of gender. Classic anthropological accounts of non-Western societies will be considered along with ethnographic and historical accounts of Western societies. The course also addresses general problems in the study of women and gender and the anthropology of myth, ritual, and symbolism.

431 Contemporary Film Theory (also Theatre Arts 414, English 410, and Society for the Humanities 411)
Fall. 3 credits.
T 11:10-1:05. C. Penley.
This course surveys the major figures and ideas that have shaped contemporary film theory. Christian Metz's semiotics of the cinema, Raymond Bellour and Thierry Kuntzel's textual analyses of film, Jean-Louis Baudry's "Apparatus" theories, Stephen Heath's work on the movie and ideology, and Laura Mulvey's feminist and psychoanalytic approach to describing spectatorship. In addition the course will cover the most important revisions and refutations of those theories by feminists, Marxists, neo-formalists, deconstructionists, cognitive theorists, cultural studies and popular culture scholars, and so on. Attention will also be given to the social and institutional forces that have shaped this relatively new and volatile discipline.

433 The Female Dramatic Tradition (also Theatre Arts 433)
J. E. Gainor.

434 Modernity, Femininity, Consumerism (also Society for the Humanities 414 and English 414)
Spring. 3 credits.
The tradition of literary modernity is generally seen as opposed to consumerism, whether considered as an exclusive focus on materials and monetary values, or (rather differently) as a feminine capitulation of the lures of a homogeneous mass culture. This course will question the implications and the validity of that dichotomy by looking in detail at representations of the woman, the artist, the consumer culture in literary, theoretical, and popular texts by authors such as Baudelaire, Barthes, Benjamin, Freud, Friedan, Nabokov, Wilde, and Woolf.

436 Cinema and the Humanism of Commodity (also Society for the Humanities 416 and Theatre Arts 418)
Spring. 3 credits.
Media production plays a primary role in maintaining a system of depoliticized multicultural social diversity, which keeps each marginal group in a definable place as the latter is urged to provide the expected "difference." The seminar will emphasize issues of race and gender in representation, focusing on works that challenge conventional notions of subjectivity, of audience, and of interpretation in relation to film making, film viewing, and the cinematic apparatus. It will discuss the cultural multiplication of images through which the whole world, in the name of humanism, is gathered within the fold of the known and the visible and becomes appropriate.

438 Female Adolescence in Historical Perspective, 1815-1960 (also HDFS 415)
3 credits. Limited to 5 students. Permission of instructor required. Not offered 1990-91.
J. Brumberg.
The changing nature of female adolescence in the United States is examined using nineteenth-century primary sources available in the Department of Manuscripts and University Archives. Olin Library multidisciplinary readings and discussions are designed to uncover the nature of women's childhood, patterns of authority within the family, cultural attitudes toward sexuality, female friendships, courtship patterns, and rites of passage into adulthood.

[445 Jane Austen, Elizabeth Gaskell, and George Eliot (also English 445)
J. Blackall.

A close focus on five masterworks of the nineteenth century—Austen's Pride and Prejudice and Emma, Gaskell's Life of Charlotte Bronte and Wives and Daughters, and Eliot's Middlemarch—with particular regard for the circumstances, biographical and social, from which these works emerged. We will examine these writers' perception of the institution of marriage; their delineation of the problem of attaining self-fulfillment and self-expression within a domestic and rural community, especially for women; and their concepts of a "heroine" and a "hero." Emphasis will be on reading and discussion. Participants will keep journals reflecting their personal responses to the books and their pursuit of chosen topics, these notes leading to one final essay of moderate length.]

446 Gothic and Gender (also English 445)
4 credit hours. Seminar limited to 20. Prerequisite: a course at 300 level or above in literature or literary theory. Not offered 1990-91.
M. Jacobus.
A course focusing on the intersections of gothic fiction (by men and women) and gender issues between the late-eighteenth-century and the mid-nineteenth-century sensatio-nal novel. The emphasis will be on the gothic construction of gender as well as the definition and evolution of gothic modes and genre and on exploring and (where appropriate) contesting a variety of the psychoanalytic accounts (including gender-political accounts—whether specifically feminist or not). We will be reading some or all of the following novels by Walpole (Castle of Otranto), Diderot (The Nun), de Sade (Justine), and M. G. Lewis (The Monk), as well as the feminized (anti-)gothic tradition including Radcliffe's Mysteries of Udolpho, Austen (Northanger Abbey), Mary Shelley (Frankenstein), and Freud's Schreber (Memories of My Nervous Illness), ending with Wallie Collins (The Women in White). Alongside fiction, we will consider classics of gothic criticism such as Freud's "Uncanny" as well as more recent critical accounts, whether their emphasis is on post-structuralist (Sadwick's The Coherence of Gothic Conventions), feminine fantasy (Modleski's Loving with Vengeance), or domestic ideology (Kate Ellis's The Contested Castle).

450/650 Bio-historical Construction of Gender and Sexuality (also Psychology 450 and 650)
Fall. 4 credits. Prerequisite: Psychology 277 or permission of instructor. Limited to 12 seniors and graduate students. No preregistration; interested students should attend first class session. Graduate students, see Psychology/Women's Studies 650. W 2:30-4:30. S. Bem.
This seminar is designed to bridge the divide between biological/essentialist perspectives on gender and sexuality, and historical/social constructionist perspectives. It is interdisciplinary, covering material from biology, history, anthropology, law, sociology, psychology, psychiatry, philosophy, and feminist theory.
Part 1 considers how biology and history have interacted in Western culture to produce both social institutions and discourses that have embedded within them the following three organizing principles or "cultural lenses": (a) biological determinism, (b) androcentrism, and (c) gender polarization (including the stigmatization of homosexuality). Part 2 considers how the individuals living within such a cultural context are transformed from male or female newborns into "masculine" and "feminine" adults. Part 3 considers possibilities for both social and personal change.

[454 Women, Revolution, and Socialism (also Asian Studies 454)]

Staff.

The course will examine the theory and practice of revolution and socialist development from the viewpoint of women revolutionaries and socialist thinkers as well as male socialist writers on the "Woman Question." The theoretical focus will be on the articulation of revolution in gender relations with other revolutionary concepts (national, class, and ethnic domination). Case study material includes the Soviet Union, China, Vietnam, Mozambique, Central America (Nicaragua and Guatemala), and Malaysia. Issues include marriage law reform, land reform and cooperativization, military struggle, political mobilization and leadership, and nonrevolutionary forms of everyday resistance.

[456 Edith Wharton, Willa Cather, and Eudora Welty (also English 456/656)]
Fall. 4 credits.

[460 Gender in Nineteenth-Century America (also English 461/661)]
S. Samuels.

A study of the relation between historical experience and literary texts. We will examine from the perspectives of both historical and literary analysis the rise of women writers, the novel's preoccupation with conflicts between men and women, the cultural uses of feminism and antifeminism, and the impact of the new woman. Bringing traditional literary texts—novels and poetry—into dialogue with "nonliterary" writings like journalism, political treatise, social reform manifestos, and etiquette books, we will draw on the methods and theories of cultural history and literary criticism to ask how the assumptions and history of women bear on the plots, discourses, and images of literary texts. A tentative reading list would include Susannah Rowson's Charlotte Temple, Lydia Maria Child's The Mother's Book, Catherine Beecher's A Treatise on Domesticity, Nathanial Hawthorne's The Blithedale Romance, works by Angelina and Sarah Grimke, Harriet Beecher Stowe's Uncle Tom's Cabin, poems by Emily Dickinson and Walt Whitman, Louisa May Alcott's Little Women, Edith Wharton's House of Mirth, William Dean Howells's A Hazard of New Fortunes, and Charlotte Perkins's Gilman's Herland.

[474 Black Women Writers (also English 484)]

[475 Feminist Literary Criticism (also English 475)]
Spring. 3 credits.
Mary Jacobs.

An introduction to the varieties of feminist literary criticism currently practiced in America, drawing on recent anthologies such as The New Feminist Criticism and Speaking of Gender, ed. Shulowalter; The (Mother) Tongue, ed. Brennan; Conjouring, ed. Frye and Spillers; French Feminist Thought, ed. Moi; Making a Difference, ed. Greene and Kahn, The Feminist Reader, ed. Belsey; Socialist Feminist Criticism, ed. Newton. We will explore and question the practice and theoretical assumptions of feminist criticism in the past decade—psychoanalytic, Marxist, linguistic, reader-response, Black and Lesbian, Anglo-American, and Franglo-American. We will be particularly concerned with questions such as: What assumptions underpin the concept of a specifically feminine literary practice or writing (écriture féminine)? How do questions of gender enter into interpretation? How is sexual difference constructed (socially, psychically, textually)? How do questions of racial difference and/or sexual preference enter into feminist criticism? Is there a politics of women's writing? What does it mean to invoke a (M)other tongue, and what are the politics of the pervasive maternal and matrilineal metaphors in feminist accounts of literature, literary tradition, and language? Though the main tests will be essays in feminist literary criticism and theory, we will also read a selection of (mainly nineteenth-century and twentieth-century) short works by women authors.

[476 Women's Poetry (also English 476)]
4 credits. Limited to 25 students. Prerequisite: permission of instructor. Not offered 1990-91.
D. Meyers.

A historical survey of the female poetic tradition in Britain and America, including such writers as Brackstreet, Dickinson, Bronte, Barrett Browning, Bishop, Brooks, and Plath.

[480 Toward an Anthropology of the Female Body (also Anthropology 480)]
G. Fraser.

The main purpose of this course is to create a context for the discussion of central issues in the cross-cultural literature on the relationship between the female self, her body-mind, and the wider social order(s). All too easily Western feminists acknowledge but neglect to incorporate into their theoretical framework the perspectives of women from non-Western societies, from different historical periods, and from divergent classes. Do the differences challenge or support our vision of gender as a unifying category? By focusing on women's embodied selves, the hope is that we will begin to develop a critical theory that will reshape the boundaries of our old assumptions.

[493 French Feminisms (also French 493)]
Fall. 4 credits.
T R 1:25-2:40. N. Furman.

This course will examine the political, theoretical, and literary concerns of contemporary French women writers who have addressed "la question de la femme/la question du feminin." Readings will include representative texts by Simone de Beauvoir, Monique Wittig, Julia Kristeva, Jacques Lacan, Luce Irigaray, Jacques Derrida, and Hélène Cixous. Taught in English.

499 Directed Study
Fall or spring. Variable credit. Prerequisites: one course in women's studies and permission of a faculty member of the Women's Studies Program Board. Hours to be arranged. Staff.

[613 The Political Economy of Women and Work I (also City and Regional Planning 613)]
3 credits. Not offered 1990-91.
L. Beneria.

This course deals with the question of how to understand and analyze the economic condition of women, starting with some general issues about the "question of origins," reproduction and production, and the underestimation of women's economic activities. It focuses on different approaches to the analysis of women's work in the household and in the labor market (from an economic and feminist perspective). The empirical material concentrates mostly on the United States with some glances at other industrial countries and the international economy.

614 The Political Economy of Women and Work II (also City and Regional Planning 614)
Spring. 3 credits.
W 7-10 p.m. L. Beneria.

A continuation of Women's Studies 613. The focus here is on development issues and on how the development process has affected women in the Third World. The analysis is placed in the context of the global economy, including the connections between the Third World and the more industrialized countries.
ARTS AND SCIENCES

[626 Graduate Seminar in the History of American Women (also History 826) Fall. 4 credits. Limited to graduate students. Not offered 1990-91. T 2:30-4:30. M. B. Norton. A reading and research seminar intended for graduate students. Major works in American women's history will be carefully scrutinized and each student will prepare a lengthy research paper.]

[638 Contemporary German Women Writers (also German Literature 638) 4 credits. Not offered 1990-91. 1. Erezgalis.]
Banes, Sally, Ph.D., New York U. Assoc. Prof., Theatre Arts
Barzangi, Muawia, Ph.D., Columbia U. Prof., Geological Sciences/INSTOC*
Barbasch, Dan, Ph.D., U. of Illinois. Prof., Mathematics
Baird, Barbara, Ph.D., Cornell U, Assoc. Prof., Dramatic Literature and Theatre Arts
Bassett, William A., Ph.D., Columbia U. Prof., Geological Sciences
Bathrick, David, Ph.D., U. of Chicago. Prof., Geology/Geological Sciences
Baugh, Daniel A., Ph.D., Cambridge U. (England). Prof., History
Beckwith, Steven V. W., Ph.D., California Inst. of Technology. Prof., Astronomy/CRSR
Begley, Tadhg P., Ph.D., California Inst. of Technology. Prof., Chemistry
Bem, Daryl J., Ph.D., U. of Michigan. Prof., Psychology
Bem, Sandra L., Ph.D., U. of Michigan. Prof., Psychology/Women's Studies
Bern, Daryl J., Ph.D., U. of Michigan. Prof., Astronomy/CRSR
Berger, Anne, Ph.D., Paris VII (France). Asst. Prof., Mathematics
Bereaud, Jacques, Doctorat d'Univ., U. of Lille. Prof., French
Bern, Sandra, Dr., University of California at Berkeley. Assoc. Prof., Astronomy/CRSR
Bilardi, Gianfranco, Ph.D., U. of Illinois. Asst. Prof., Computer Science
Bird, John M., Ph.D., Rensselaer Polytechnic Inst. Prof., Geological Sciences
Bittman, Dina, Ph.D., U. of Wisconsin at Madison. Asst. Prof., Computer Science
Blackall, Jean F., Ph.D., Harvard U. Prof., English
Blass, Elliot M., Ph.D., U. of Virginia. Prof., Psychology
Bloom, Arthur L., Ph.D., Yale U. Prof., Geological Sciences/INSTOC*
Bloom, Bard, Ph.D., Massachusetts Inst. of Technology. Asst. Prof., Computer Science
Blume, Lawrence E., Ph.D., U. of California at Berkeley. Assoc. Prof., Computer Science
Bogel, Fredric V., Ph.D., Yale U. Prof., English
Boggs, John S., Ph.D., Massachusetts Inst. of Technology. Prof., Modern Languages and Linguistics
Boyd, Richard N., Ph.D., Massachusetts Inst. of Technology. Prof., Philosophy
Bramble, James H., Ph.D., U. of Maryland. Prof., Mathematics
Brann, Ross, Ph.D., New York U. Assoc. Prof., Hebrew and Arabic Literatures (Near Eastern Studies)
Brazell, Karen W., Ph.D., Columbia U. Prof., Japanese Language (Asian Studies)
Breiger, Ronald L., Ph.D., Harvard U. Prof., Sociology
Bronfenbrenner, Urie, Ph.D., U. of Michigan, Jacob Gould Schurman Professor Emeritus, Human Development
Brown, Kenneth S., Ph.D., Massachusetts Inst. of Technology. Prof., Mathematics
Brown, Laura, Ph.D., U. of California at Berkeley. Prof., English
Brown, Lawrence D., Ph.D., Cornell U. Prof., Mathematics
Brown, Stuart M., Jr., Ph.D., Cornell U. Prof. Emeritus, Philosophy/Science, Technology, and Society
Browne, E. Wayles III, Ph.D., U. of Zagreb (Yugoslavia). Assoc. Prof., Modern Languages and Linguistics
Brumberg, Joan Jacobs, Ph.D., U. of Virginia. Assoc. Prof., Human Development and Family Studies/Women's Studies
Burnett, Kenneth, Ph.D., Northwestern U. Prof., Economics
Buritch, James M., Ph.D., Massachusetts Inst. of Technology. Assoc. Prof., Philosophy
Burns, Joseph A., Ph.D., Cornell U. Prof., Astronomy/Theoretical and Applied Mechanics/CRSR
Caldwell, Steven B., Ph.D., Cornell U. Prof., Social Studies
Calkins, Robert G., Ph.D., Harvard U. Prof., History of Art
Campbell, Donald B., Ph.D., Cornell U. Prof., Astronomy/NAIC
Caputi, Anthony F., Ph.D., Cornell U. Prof., English/Comparative Literature
Carden, Patricia J., Ph.D., Columbia U. Prof., Russian Literature
Carmichael, Galum M., B. Lit, Oxford U. (England). Prof., Comparative Literature/Biblical Studies
Carpenter, Barry K., Ph.D., U. College, London (England). Prof., Chemistry
Carroll, Noel, Ph.D. U. of Illinois. Assoc. Prof., Theatre Arts/Philosophy
Cassel, David G., Ph.D., Princeton U. Prof., Physics/LNS*
Castillo, Debra, Ph.D., U. of Wisconsin at Milwaukee. Assoc. Prof., Romance Studies/Comparative Literature
Cassidy, Lawrence M. III, Ph.D., Princeton U. Prof., Geological Sciences
Chase, Cynthia, Ph.D., Yale U. Assoc. Prof., English
Chase, Stephen U., Ph.D., U. of Chicago. Prof., Mathematics
Chernoff, David F., Ph.D., U. of California at Berkeley. Asst. Prof., Astronomy/CRSR
Chester Dobbs, F. K. King's Coll. London (England). Prof., Physics/LASSP*
Chierchia, Gennaro, Ph.D., U. of Massachusetts at Amherst. Assoc. Prof., Modern Languages and Linguistics
Cisne, John L., Ph.D., U. of Chicago Prof., Geological Sciences/INSTOC*
Clark, John C., Ph.D., Harvard U. Prof., Chemistry
Clark, M. Gardner, Ph.D., Harvard U. Prof., Industrial and Labor Relations/Economics
Claytor, John G., Ph.D., U. of London (England). Prof., Modern Languages and Linguistics
Clinton Kevin M., Ph.D., Johns Hopkins U. Prof., Classics
Cochran, Sherman G., Ph.D., Yale U. Prof., History
Cohen, Walter I., Ph.D., U. of California at Berkeley. Assoc. Prof. Comparative Literature
Colby-Hall, Alice M., Ph.D., Columbia U. Prof., Romance Studies
Coleman, John E., Ph.D., U. of Cincinnati. Prof., Classics
Coleman, Thomas F., Ph.D., U. of Waterloo. Assoc. Prof., German/Modern Languages
Collum, David B., Ph.D., Columbia U. Assoc. Prof., Chemistry
Connelly, Robert B., Ph.D., U. of Michigan. Prof., Mathematics
Constant, Robert L., Ph.D., U. of Wisconsin. Prof., Computer Science
Cooper, Barbara H., Ph.D., California Inst. of Technology. Assoc. Prof., Physics/LASSP*
Cordes, James M., Ph.D., U. of California at San Diego. Assoc. Prof., Astronomy/NAIC
Cornell, Barbara Ph.D., U. of Wisconsin. Asst. Prof., English
Corson, Dale R., Ph.D., U. of California at Berkeley. Prof., Emeritus, Physics
Cots, Robert M., Ph.D., U. of California at Berkeley. Prof., Physics/LASSP*
Crimmins, Mark D., Ph.D., Stanford U. Asst. Prof., Philosophy
Cross, William E., Ph.D., Princeton U. Assoc. Prof., Africana Studies and Research Center
Culler, Jonathan D., Ph.D., Oxford U. (England). Class of 1916 Professor, English/Comparative Literature
Cutting, James E., Ph.D., Yale U. Prof., Psychology
Dannhauser, Werner J., Ph.D., U. of Chicago. Prof., Government
Darlington, Richard B., Ph.D., U. of Minnesota. Prof., Psychology
Daveney Wyner, Susan A., B. Prof., Music
Davis, N. Gregson G., Ph.D., U. of California at Berkeley. Prof., Comparative Literature
Davis, Tom E., Ph.D., Johns Hopkins U. Prof., Economics
Dear, Peter, Ph.D., Princeton U. Asst. Prof., History of Science/History
De Filippo, Joseph G., Ph.D., Princeton U. Asst. Prof., Classics
Deinert, Herbert, Ph.D., Yale U. Prof., German Literature
Dennis, R. Keith, Ph.D., Rice U. Prof., Mathematics
DeVoogd, Timothy J., Ph.D., U. of Illinois. Assoc. Prof., Psychology
DiWeire, John W., Ph.D., Ohio State U. Prof., Emeritus, Physics/LNS*
Diffloth, Gerard, Ph.D., U. of California at Los Angeles. Prof., Modern Languages and Linguistics
Disalvo, Francis J., Jr., Ph.D., Stanford U. Prof., Chemistry
Donald, Bruce, Ph.D., Massachusetts Inst. of Technology. Asst. Prof., Computer Science
Donson, Arch T., Ph.D., Harvard U. Prof., Government
Dotson, Esther G., Ph.D., New York U. Prof., Emeritus, History of Art
Drell, Persis, Ph.D., U. of California at Berkeley. Asst. Prof., Physics/LNS*
McClane, Kenneth A., M.F.A., Cornell U. Prof., English
McClelland, Peter D., Ph.D., Harvard U. Prof., Economics
McDonkey, James R., Ph.D., State U. of Iowa. Prof., English
McConnell-Ginet, Sally, Ph.D., U. of Rochester. Prof., Modern Languages and Linguistics
McCoy, Mark, M.F.A., U. of Iowa. Asst. Prof., Economics
McDaniel, Boyce D., Ph.D., Cornell U. Floyd R. Mitchell, Janet, Ph.D., Northwestern U. Asst. Prof., Sociology
Mitra, Tapan, Ph.D., U. of Rochester. Prof., Romance Studies
Minkowski, Christopher, Ph.D., Harvard U. Asst. Prof., Asian Studies
Minkowski, Christopher, Ph.D., Harvard U. Asst. Prof., Comparative Literature
Moon, Jill, M.F.A., U. of California at San Diego. Asst. Prof., Theatre Arts
Morrogh, Joyce, M.A., Johns Hopkins U. Assoc. Prof., Theatre Arts
Morley, Michael D., Ph.D., U. of Chicago. Prof., Mathematics
Morrisson, George H., Ph.D, Princeton U. Prof., Chemistry
Mullen, Haruyete, Ph.D., U. of California at Santa Cruz. Asst. Prof., English
Murray, Donald W., Ph.D., Yale Univ. Assoc. Prof., Music
Murray, Timothy, Ph.D, Johns Hopkins U. Assoc. Prof., English
Najemy, John M., Ph.D, Harvard U. Assoc. Prof., History
Nee, Victor, Ph.D., Harvard U. Prof., Sociology
Nerode, Anil, Ph.D., U. of Chicago. Prof., Mathematics
Ngate, Jonathan, Ph.D., U. of Washington. Assoc. Prof., Romance Studies
Nicholson, Philip, Ph.D., California Inst. of Technology. Assoc. Prof., Astronomy/GRSO
Noblin, James S., Ph.D., Harvard U. Prof., Modern Languages and Linguistics
Norton, Mary Beth, Ph.D., Harvard U. Mary Donlon Alger Professor of American History
Nussbaum, Alan, Ph.D., Harvard U. Assoc. Prof., Classics/Modern Languages and Linguistics
O'Connor, Stanley J., Ph.D., Cornell U. Prof., History of Art
Ohadike, Dong, Ph.D., U. of Jos (Nigeria). Asst. Prof., African Studies and Research Center
Oliver, Jack E., Ph.D., Columbia U. Irving Porter Church Professor of Engineering. Geological Sciences/INSTOC
Olschner, Leonard M., Dr. Phil, Albert-Ludwigs-University, Freiburg i. Br. (West Germany). Asst. Prof., German Literature
Olzak, Susan, Ph.D., Stanford U. Asst. Prof., Sociology
Orear, Jay, Ph.D., U. of Chicago. Prof., Physics/LASSP
Owen, David I., Ph.D., Brandeis U. Prof., Ancient Near Eastern History and Archaeology (Near Eastern Studies)
Palmer, Robert M., M.M., Eastman School of Music. Graduate Foundation Professor of Music Composition Emeritus. Music
Panangaden, Prakash, Ph.D., U. of Wisconsin at Milwaukee. Asst. Prof., Computer Science
Park, Joon, Ph.D., Yale U. Asst. Prof., Economics
Parker, A. Reeve, Ph.D., Harvard U. Prof., English
Parpia, Jeevak M., Ph.D., Cornell U. Assoc. Prof., Physics/LASSP
Parratt, Lyman G., Ph.D., U. of Chicago. Prof. Emeritus, Physics
Parrish, Stephen M., Ph.D., Harvard U. Goldman Smith Professor of English
Payne, Lawrence E., Ph.D., Iowa State U. Prof., Mathematics
Peirce, Leslie, Ph.D., Princeton U. Asst. Prof., Ottoman History and Turkish Language, Near Eastern Studies
Pelliccia, Hayden, Ph.D., Yale U. Asst. Prof., Classics
Pempel, T. John, Ph.D., Columbia U. Prof., Government
Perry, Kathleen, Ph.D., Yale U. Asst. Prof., Romance Studies
Peterson, Charles A., Ph.D., U. of Washington. Prof., History
Philips, Laura A., Ph.D., U. of California at Berkeley. Asst. Prof., Chemistry
Piedra, Jose, Ph.D., Yale U. Asst. Prof., Romance Studies
Piggott, Joan R., Ph.D., Stanford University. Prof., History
Pingali, Keshav K., Ph.D., Massachusetts Inst. of Technology. Asst. Prof., Computer Science
Pintner, Walter M., Ph.D., Harvard U. Prof., History
Platek, Richard, Ph.D., Stanford U. Assoc. Prof., Mathematics
Pohl, Robert O., Doktor, U. Erlangen (Germany). Prof., Physics/LASSP
Polenberg, Richard, Ph.D., Columbia U. Goldwin Smith Professor of American History
Pollak, Nancy, Ph.D., Yale U. Asst. Prof., Russian Literature
Pontiusson, Jonas, Ph.D., U. of California at Berkeley. Asst. Prof., Government
Porte, Joel M., Ph.D., Harvard U. Ernest I. White Professor of American Studies and Romance Languages/English
Porter, Richard F., Ph.D., U. of California at Berkeley. Prof., Chemistry
Possen, Uri M., Ph.D., Yale U. Prof., Economics
Powley, David S., Ph.D., Princeton U. Assoc. Prof., Arabic and Islamic Studies, Near Eastern Studies
Provine, William B., Ph.D., U. of Chicago. Prof., History/Biological Sciences
Puce, Pietro, Ph.D., U. of Pisa (Italy). Prof., Classics
Rabkin, Jeremy A., Ph.D., Harvard U. Assoc. Prof., Government
Radziewicz, Mary A., Ph.D., Columbia U. Jacob Gould Schurman Professor of English, Emeritus, English
Ramage, Andrew, Ph.D., Harvard U. Prof., History of Art
Randel, Don M., Ph.D., Princeton U. Prof., Music
Regan, Dennis T., Ph.D., Stanford U. Assoc. Prof., Psychology
Regan, Elizabeth Adkins, Ph.D., U. of Pennsylvania. Assoc. Prof., Psychology/Biological Sciences
Reppy, John D., Ph.D., Yale U. John L. Wetherill Professor of Physics, Physics/LASSP
Rhodes, Frank H. T., Ph.D., U. of Birmingham (England). Prof., Geological Sciences/University President
Richardson, Robert C., Ph.D., Duke U. F. R. Newman Professor of Physics, Physics/LASSP
Risse-Kappen, Thomas, Ph.D., U. of Frankfurt (Germany). Asst. Prof., Government
Rosen, Bernard C., Ph.D., Cornell U. Prof., Sociology
Rosen, Carol G., Ph.D., Harvard U. Assoc.
Prof., Modern Languages and Linguistics
Rosen, David, Ph.D., U. of California at Berkeley. Assoc. Prof., Music
Rosenberg, Alex, Ph.D., U. of Chicago. Prof., Emeritus, Mathematics
Rosenberg, Edgar, Ph.D., Stanford U. Prof., English/Comparative Literature
Rothaus, Oscar S., Ph.D., Princeton U. Prof., Mathematics
Rubin, David L., Ph.D., U. of Michigan. Asst. Prof., Physics/LNS
Rush, Myron, Ph.D., U. of Chicago. Prof., Government
Rusten, Jeffrey S., Ph.D., Harvard U. Assoc. Prof., Classics
Ryan, Thomas A., Ph.D., Cornell U. Prof., Emeritus, Psychology
Sabeen, David, Ph.D., U. of Wisconsin. Prof., History
Saccomo, Neil, Ph.D., Johns Hopkins U. Asst. Prof., English
Salpeter, Edwin E., Ph.D., Birmingham U. Prof., Physics/LASSP
Sakai, Naoki, Ph.D., U. of Chicago. Asst. Prof., English
Salton, Gerard, Ph.D., Harvard U. Prof., Computer Science
Sangren, P. Steven, Ph.D., Stanford U. Assoc. Prof., Modern Languages and Linguistics
Schatz, Alfred H., Ph.D., New York U. Prof., Mathematics
Scheinman, Lawrence, Ph.D., U. of Michigan. Prof., Government
Schehera, Harold A., Ph.D., Duke U. Prof., Chemistry
Schneider, Fred B., Ph.D., SUNY at Stony Brook. Assoc. Prof., Computer Science
Schuler, Richard E., Ph.D., Brown U. Prof., Economics/Engineering
Schwarz, Daniel R., Ph.D., Brown U. Prof., English
Segre, Alberto M., Ph.D., U. of Illinois. Asst. Prof., Computer Science
Seltzer, Mark, Ph.D., U. of California at Berkeley. Assoc. Prof., English
Sen, Shankar, Ph.D., Harvard U. Prof., Mathematics
Senderovich, Savely, Ph.D., New York U. Assoc. Prof., Russian Literature
Sethna, James P., Ph.D., Princeton U. Assoc. Prof., Physics/LASSP
Sezgin, Alain, D.E.S., U. of Paris-Sorbonne (France). Prof., Romance Studies
Shapiro, Gabriela, Ph.D., U. of Illinois at Urbana. Asst. Prof., Russian Literature
Shapiro, Stuart L., Ph.D., Princeton U. Prof., Astronomy/CRSR
Shaw, Harry E., Ph.D., U. of California at Berkeley. Prof., English
Sheffer, Martin A., Ph.D., Harvard U. Prof., Government
Shell, Karl, Ph.D. Stanford U. Robert Julius Thorne Professor of Economics, Economics
Shih, Chihin, Ph.D. U. of California at San Diego. Assoc. Prof., Modern Languages and Linguistics
Shiraiishi, Takashi, Ph.D., Cornell U. Asst. Prof., History
Shoemaker, Sydney S., Ph.D., Cornell U. Susan Linn Sage Professor of Philosophy, Philosophy
Shore, Richard A., Ph.D., Massachusetts Inst. of Technology. Prof., Mathematics
Shue, Vivienne B., Ph.D., Harvard U. Prof., Government
Siegel, James T., Ph.D., U. of California at Berkeley. Prof., Anthropology
Siegel, Sandra F., Ph.D., U. of Chicago. Assoc. Prof., English
Siemann, Robert H., Ph.D., Cornell U. Prof., Physics/LNS
Sievers, Albert J. III, Ph.D., U. of California at Berkeley. Prof., Physics/LASSP
Siggia, Eric D., Ph.D., Harvard U. Prof., Physics/LASSP
Silverman, Albert, Ph.D., U. of California at Berkeley. Prof. Emeritus, Physics/LNS
Slatoff, Walter J., Ph.D., U. of Michigan. Prof., Emeritus, English
Small, Meredith F., Ph.D., U. of California at Davis. Asst. Prof. Anthropology
Smillie, John, Ph.D., U. of Chicago. Assoc. Prof., Mathematics
Smith, Bruce, Ph.D., Massachusetts Inst. of Technology. Prof., Economics
Smith, Robert J., Ph.D., Cornell U. Goldwin Smith Professor of Anthropology, Anthropology
Smith-Lovin, Lynn, Ph.D., U. of North Carolina at Chapel Hill. Assoc. Prof., Sociology
Sokol, Thomas A., M.A., George Peabody Coll. Prof., Music
Sola, Donald F., Ph.D., Cornell U. Prof., Modern Languages and Linguistics
Somkin, Fred, Ph.D., Cornell U. Assoc. Prof., History
Speh, Birgit, Ph.D., Massachusetts Inst. of Technology. Prof., Mathematics
Splet, E., Ph.D., Cornell U. Prof., Psychology
Stellar, Charles, Ph.D., Brandeis U. Prof., English
Stier, Frank L., Ph.D., U. of Michigan. Prof., Mathematics
Stieves, Steven W., Ph.D., Cornell U. Assoc. Prof., Astronomy/CRSR
Staller, George J., Ph.D., Cornell U. Prof., Economics
Stark, David, Ph.D., Harvard U. Assoc. Prof., Sociology
Stein, Peter C., Ph.D., Massachusetts Inst. of Technology. Prof., Mathematics/LNS
Steinberg, Michael R., Ph.D., U. of Chicago. Asst. Prof., History
Stillman, Michael F., Ph.D., Harvard U. Asst. Prof., Mathematics
Stihi, Marce W., M.A., Ohio State U. Assoc. Prof., Emeritus, Music
Strauss, Barry S., Ph.D., Yale U. Assoc. Prof., History
Strickhart, Robert S., Ph.D., Princeton U. Prof., Mathematics
Strout, S. Cushing, Jr., Ph.D., Harvard U. Ernest I. White Professor of American Studies and Humane Letters, Emeritus, English
Stucky, Steven, D.M.A., Cornell U. Assoc. Prof., Music
Sturgeon, Nicholas L., Ph.D., Princeton U. Prof., Philosophy
Surlemels, Bernd, Ph.D., Technische Hochschule Darmstadt (W. Germany). Asst. Prof., Mathematics
Synco, Joseph M., Ph.D., Columbia U. Prof., Rural Sociology/Sociology
Subramanian, Devika, Ph.D., Stanford U. Assst. Prof., Computer Science
Sumer, Margarita A., Ph.D., Indiana U. Prof., Modern Languages and Linguistics
Sweedler, Moss E., Ph.D., Massachusetts Inst. of Technology. Prof., Mathematics
Talman, Richard M., Ph.D., California Inst. of Technology. Prof., Physics/LNS
Tarrow, Sidney G., Ph.D., U. of California at Berkeley. Maxwell M. Upson Professor of Government, Government
Taylor, Keith W., Ph.D., U. of Michigan. Assoc. Prof., Asian Studies
Teitelbaum, Tim, Ph.D., Carnegie-Mellon U. Assoc. Prof., Computer Science
Teilhami, Shahla, Ph.D., U. of California at Berkeley. Assoc. Prof., Government
Terzian, Yervant, Ph.D., Indiana U. James A. Weeks Professor of Physical Sciences, Astronomy/NAICJ
Teskey, Gordon L., Ph.D., U. of Toronto, Canada. Assoc. Prof., English
Teukolsky, Saul A., Ph.D., Cornell U. Inst. of Technology. Prof., Physics/LNS/Astronomy
Thorbecke, Erik, Ph.D., U. of California at Berkeley. H. Edward Babcock Professor of Economics and Food Economics, Nutritional Sciences/Economics
Thorne, Robert E., Ph.D., U. of Illinois. Assoc. Prof., Mathematics/LASSP
Tienney, Brian, Ph.D., Cambridge U. (England). Bryce and Edith M. Bowman Professor in Humanistic Studies, History
Tigner, Maury, Ph.D., Cornell U. Prof., Physics/LNS
Tittler, Jonathan P., Ph.D., Cornell U. Prof., Romance Studies
Toueg, Sam, Ph.D., Princeton. Assoc. Prof., Computer Science
Travers, William B., Ph.D., Princeton U. Prof., Geological Sciences
Tsang, Chi-Chui, Ph.D., London School of Economics (England). Prof Emeritus, Economics
Turcotte, Donald L., Ph.D., California Inst. of Technology. Maxwell M. Upson Professor of Engineering, Geological Sciences/INSTOC
Turner, James E., Ph.D., Union Graduate School at Antioch College. Assoc. Prof., Africana Studies and Research Center
Tye, Sze-hoi Henry, Ph.D., Massachusetts Inst. of Technology. Prof., Physics/LNS
Uphoff, Norman T., Ph.D., U. of California at Berkeley. Prof., Government
Usner, Daniel H., Jr., Ph.D., Duke U. Asst. Prof., History
Vanek, Jaroslav, Ph.D., Massachusetts Inst. of Technology. Carl Marks Professor of International Studies, Economics
Van Loan, Charles F., Ph.D., U. of Michigan. Prof., Computer Science
Vaughn, Stephanie, M.F.A., U. of Iowa. Assoc. Prof., English
Vavasis, Stephen, Ph.D., Stanford U. Asst. Prof., Computer Science
Vazirani, Vijay V., Ph.D., U. of California at Berkeley. Asst. Prof., Computer Science
Vernon, Kathleen M., Ph.D., U. of Chicago. Asst. Prof., Romance Studies
Veverka, Joseph F., Ph.D., Harvard U. Prof., Astronomy/CSSR
Vogtmann, Karen L., Ph.D., University of California at Berkeley. Assoc. Prof., Mathematics
Volman, Thomas P., Ph.D., U. of Chicago. Assoc. Prof., Archaeology
Wachsberg, Milton M., Ph.D., Princeton U. Asst. Prof., Philosophy
Wahlbin, Lars B., Ph.D., U. of Göteborg (Sweden). Prof., Mathematics
Waite, Geoffrey C. W., Ph.D., Princeton U. Assoc. Prof., German Literature
Wan, Henry Y., Jr., Ph.D., Massachusetts Inst. of Technology. Prof., Economics
Washington, Margaret, Ph.D., U. of California at Davis. Assoc. Prof., History
Wasserman, Ira M., Ph.D., Harvard U. Assoc. Prof., Astronomy/CSSR
Waugh, Linda R., Ph.D., Indiana U. Prof., Modern Languages and Linguistics/Comparative Literature/Romance Studies
Weakliem, David L., Ph.D., U. of Wisconsin. Asst. Prof., Sociology
Webster, James, Ph.D., Princeton U. Prof., Music
Weiss, John H., Ph.D., Harvard U. Assoc. Prof., History
West, James E., Ph.D., Louisiana State U. Prof., Mathematics
Wetherbee, Winthrop, Ph.D., U. of California at Berkeley. Avalon Professor of English and Medieval Studies, English/Medieval Studies
White, William M., Ph.D., U. of Rhode Island. Assoc. Prof., Geological Sciences
Whitman, John B., Ph.D., Harvard U. Asst. Prof., Modern Languages and Linguistics
Widom, Benjamin, Ph.D., Cornell U. Goldwin Smith Professor of Chemistry, Chemistry
Wiesenberg, John R., Ph.D., Case Inst. of Technology. Prof., Chemistry
Wilcox, Charles F., Jr., Ph.D., U. of California at Los Angeles. Prof., Chemistry
Williams, L. Pearce, Ph.D., Cornell U. John Stambaugh Professor of History, History
Williams, Robin M., Jr., Ph.D., Harvard U. Henry Scarfborough Professor of Social Sciences Emeritus, Sociology
Wilson, Robert R., Ph.D., U. of California at Berkeley. Prof., Emeritus, Physics
Wilson, Ron, B.G.S., Wichita State U. Asst. Prof., Theatre Arts
Wissink, Jennifer, Ph.D., U. of Pennsylvania. Asst. Prof., Economics
Wolczanski, Peter T., Ph.D., California Inst. of Technology. Assoc. Prof., Chemistry
Wolff, John U., Ph.D., Yale U. Prof., Modern Languages and Linguistics
Wolters, Oliver W., Ph.D., U. of London (England). Goldwin Smith Professor of Southeast Asian History Emeritus, History
Wood, Allen W., Ph.D., Yale U. Prof., Philosophy
Wyatt, David K., Ph.D., Cornell U. Prof., History
Wyner, Susan Daveny, B.A., Cornell U. Assoc. Prof., Music
Yan, Tung-mow, Ph.D., Harvard U. Prof., Physics/LNS
Yennie, Donald R., Ph.D., Columbia U. Prof., Physics/LNS
Young, Martie W., Ph.D., Harvard U. Prof., History of Art

Zaslaw, Neal A., Ph.D., Columbia U. Prof., Music
Zax, David B., Ph.D., U. of California at Berkeley. Asst. Prof., Chemistry
Zeitlin, Judith, Ph.D., Harvard U. Asst. Prof., Asian Studies

*Laboratory of Atomic and Solid State Physics.
†Center for Radiophysics and Space Research.
‡National Astronomy and Ionosphere Center.
¶Laboratory of Nuclear Studies.
#Institute for the Study of the Continents.
The Division of Biological Sciences provides a unified curriculum for undergraduate majors enrolled in either the College of Agriculture and Life Sciences or the College of Arts and Sciences. Courses in biological sciences are integral to many disciplines and are basic requirements in many schools and colleges at Cornell.

Graduate study in the biological sciences is administered by more than a dozen specialized fields within the Graduate School, as described in the Announcement of the Graduate School.

ORGANIZATION

The Division of Biological Sciences is composed of seven major sections: Biochemistry, Molecular and Cell Biology; Ecology and Systematics; Genetics and Development; Microbiology; Neurobiology and Behavior; Physiology; Plant Biology; and, in addition, the L. H. Bailey Hortorium and the Shoals Marine Laboratory.

The offices, research laboratories, and classrooms of biology faculty members are located in different buildings on the campus, primarily in the Colleges of Agriculture and Life Sciences, Arts and Sciences, and Veterinary Medicine.

Student services are provided by the division's Office for Academic Affairs and the Behrman Office for Academic Affairs, in 200 Stimson Hall. Students studying in biology satisfied by Biological Sciences (Group B) is for a minimum of 9 credits, including at least 6 credits of introductory biology with a score of 4 or 5 (6 or 8 credits, respectively) satisfies the requirement for introductory biology. The additional credits may be satisfied by any biological sciences courses other than Biological Sciences 200, 202, 205, 208, 209, 301, or 367, or Anthropology 101; Chemistry 221-222.

In the College of Agriculture and Life Sciences, the natural sciences distribution requirement is for at least 6 credits selected from Biological Sciences 109-110, 101 and 103 plus 102 and 104, 105-106 or 107-108 or from specified courses in chemistry or physics. Advanced placement in biology with a score of 4 or 5 (6 or 8 credits, respectively) also satisfies the distribution requirement in the natural sciences. Note: Biological Sciences 101-102-103-104 should be taken as a unit by students of any college except those with advanced placement credit.

Switching from one introductory biology sequence to another at midyear may not be possible because of variation in presentation of topics. Students must receive permission of the instructor to switch sequences. Taking sequences in reverse or inconsecutive order is strongly discouraged.

THE MAJOR

The Division of Biological Sciences offers a major in biological sciences to students enrolled in either the College of Agriculture and Life Sciences or the College of Arts and Sciences. The undergraduate program is coordinated for students in both colleges through the division's Office for Academic Affairs, where students submit their applications to the major and obtain biology faculty advisers.

During the second semester of the sophomore year, all students who intend to major in biological sciences must apply for acceptance into the major with the associate director for academic affairs, in 200 Stimson Hall. Students in the College of Agriculture and Life Sciences who were admitted directly to the major complete the application process to declare a concentration area and to assure satisfactory progress toward completion of the major. Acceptance into the major requires completion of the course sequences in introductory biology, chemistry, and mathematics (see requirements 1–3 below), plus one semester of organic chemistry lectures. In addition, a 2.75 Cornell cumulative grade-point average is required for final acceptance into the major except for those students admitted directly to the major as freshmen (College of Agriculture and Life Sciences students only) or as transfers. Students in the process of completing these prerequisites for admission to the major may be accepted on a provisional basis. Final acceptance into the major is required for graduation with a biological sciences major. It is the student's responsibility to assure that final acceptance has been granted.
Whenever possible, students should include the introductory biology, chemistry, and mathematics sequences in their freshman schedule and complete the organic chemistry lecture course in their sophomore year. Students are not encouraged to continue with the major in biological sciences unless performance in these four subjects gives evidence of capacity to perform satisfactorily at a more advanced level.

The following requirements for the major are for students who matriculated fall 1988 and later. Students who matriculated before fall 1988 see section "Requirements for the Major for Students Matriculating before Fall 1988." These courses should be taken for a letter grade unless the course is offered for S/U grades only.

1) **Introductory biology for majors** (one year): Biological Sciences 101 and 103 plus 102 and 104, or 105–106. Biological Sciences 107–108, offered during the eight-week Cornell Summer Session for 8 credits, also satisfies the introductory biology requirement for majors. Students may choose to accept advanced placement if they have received a score of 5 on the Advanced Placement Examination of the College Entrance Examination Board (CEEB). Students with a score of 4 must fulfill the introductory biology requirement by taking Biological Sciences 101–102, 101 or 102, 104, or 103–104. These students should consult information available in the course office (1140 Comstock Hall) and in the Biology Center (216–222 Samson Hall) to determine which semester to take to complete the introductory biology requirement. For students in doubt, Biological Sciences 101 and 103 is advised. These students receive a total of 8 introductory biology credits (4 AP credits plus 4 course credits).

2) **General chemistry** (one year): Chemistry 207–208,* or 215–216,* or 103–104.

3) **College mathematics** (one year, including at least one semester of calculus): Mathematics 111–112,* 105–106, or 111–105. Education 115 may not be used to fulfill any part of this requirement.

4) **Organic chemistry** Chemistry 253 and 251, or 253 and 301, or 357–358 and 251, or 357–358 and 301, or 359–360 and 251, or 359–360 and 301.

5) **Physics** Physics 207–208,* 112–213,* or 101–102. Those who take Physics 112–213 are advised to complete Physics 214 as well.

6) **Genetics** Biological Sciences 281.

7) **Biochemistry** Biological Sciences 330 or 331.

8) **Evolutionary Biology** Biological Sciences 378.

9) **A program of study** selected from the outline below.

10) **Foreign language** students registered in the College of Agriculture and Life Sciences must satisfy the foreign language requirement in the Division of Biological Sciences by (a) presenting evidence of successful completion of three or more years of study of a foreign language in high school or (b) attaining a score of 560 or more on the reading portion of the College Entrance Examination Board achievement test or (c) achieving "qualification" status in a language as defined by the College of Arts and Sciences or (d) successfully completing at least 6 college credits in a foreign language. Students registered in the College of Arts and Sciences must satisfy the language requirement as stated by that college.

Since modern biology has an important physical and quantitative orientation, students are advised to take science courses that emphasize this approach. Asterisks in the above list indicate the courses that provide this orientation, but all courses listed are acceptable.

Although not required for the biological sciences major, a course in statistics is recommended for students planning graduate study or a research career. Students should consult their faculty advisers when choosing appropriate courses in statistics.

Programs of Study Requirements

As noted in the list of requirements above, students accepted into the biological sciences major must choose a program of study. The program of study requirements are designed to help students achieve depth in one area of biology while ensuring that the selected advanced courses form a coherent and meaningful unit. Because of the flexibility allowed in satisfying these requirements, students should consult their faculty advisers. The possible programs of study are listed below.

1) **Animal Physiology and Anatomy** Bio S 311 and 319, Introductory Animal Physiology, Lectures and Laboratory; Bio S 313, Histology: The Biology of Tissues; Bio S 315, Topics in Functional Anatomy; and Bio S 316, Cellular Physiology. The Program of Study in Animal Physiology and Anatomy emphasizes whole animal, tissue, and cell physiology, and provides considerable opportunity for studies using live animals; especially for students contemplating careers in biomedical practice or research.

2) **Biochemistry** Chemistry 300 or 215–216, Quantitative Chemistry, must be taken. One of the following organic chemistry laboratory sequences must also be taken: Chemistry 301–302 or 251–302 or 301 or 251–252. In addition, students must take a physical chemistry sequence (Chemistry 389–390 or 287–288.1 or 287–288.2) and a biochemistry laboratory course (Bio S 638 or 430 or 530). Note that Physical Chemistry 288.2 is designed for biologists, but either sequence is appropriate. It is recommended that students take the more rigorous organic chemistry and physics sequences (Chemistry 357–358 or 359–360 and Physics 207–208) and a third semester of calculus. Students interested in biochemistry should complete a year of introductory chemistry other than Chemistry 103–104 before the start of their sophomore year. Students are also urged to complete introductory biology in their freshman year. If graduate work in cell biology is anticipated, students should consider taking a physical chemistry sequence (Chemistry 389–390 or 287–288.1 or 287–288.2).

3) **Botany**: A minimum of 13 credits is required from courses chosen with the aid of an adviser to meet the goal of exposing each student to plant structure, function, classification, ecology, and evolution. Three courses, one from each of the three following categories, fulfill the minimum requirements. Students are encouraged to begin the sequence of courses with Bio S 241 (see category b). (a) Bio S 242 and 244 or Bio S 341 and 349, Plant Physiology, Lectures and Laboratory; (b) Bio S 241, Introductory Botany, Bio S 246, Taxonomy of Vascular Plants; Bio S 448, Plant Evolution and the Fossil Record; or PI Pa 309, Introductory Mycology; and (c) Bio S 345, Plant Anatomy; or PI Pa 301, Introductory Plant Pathology. Students interested in a broad background in botany are encouraged to take Bio S 346, Algal Physiology; Bio S 444, Plant Cell Biology; Bio S 463 and 465, Plant Ecology, Lectures and Laboratory; and additional courses in (b) and (c).

4) **Cell Biology** Chemistry 300 or 215–216, Quantitative Chemistry; Bio S 432, Survey of Cell Biology; Bio S 630, Laboratory in Cell Biology (strongly recommended), or Bio S 638, Intermediate Biochemical Methods or Bio S 430, Basic Biochemical Methods; and at least 15 additional credits chosen from the following courses: Bio S 222, Neurobiology and Behavior II: Introduction to Neurobiology; Bio S 305, Basic Immunology; Bio S 313, Histology: The Biology of the Tissues; Bio S 345, Plant Anatomy; Bio S 435–436, Undergraduate Biochemistry Seminar; Bio S 438, Cell Proliferation and Oncogenic Viruses; Bio S 463, Molecular Aspects of Development; Bio S 444, Plant Cell Biology; Bio S 636, Current Topics in Cell Biology; Bio S 639, The Nucleus; An S 419, Animal Cyto genetics.

Students interested in cell biology should complete a year of introductory chemistry other than Chemistry 103–104 before the start of their sophomore year. Students are also urged to complete introductory biology in their freshman year. If graduate work in cell biology is anticipated, students should consider taking a physical chemistry sequence (Chemistry 389–390 or 287–288.1 or 287–288.2).

5) **Ecology and Systematics** Bio S 261, Ecology and the Environment, and 10 credits from the following course lists, including at least one course from each group:

who want to undertake a course of study not covered by the nine existing programs of study or one of the special programs may petition the Division of Biological Sciences Curriculum Committee. Information on independent options and Curriculum Committee petition forms are available in the Office for Academic Affairs, 200 Stimson Hall.

Requirements for the Major for Students Matriculating before Fall 1988

Students who matriculated before fall 1988 must complete the major by satisfying the requirements listed below. These courses should be taken for a letter grade unless the course is offered for S-U grades only.

1) **Introductory biology for majors** (one year). Biological Sciences 101 and 103 plus 102 and 104, or 105–106. Biological Sciences 107–108, offered during the eight-week Cornell Summer Session for 8 credits, also satisfies the introductory biology requirement. Students may choose to accept advanced placement if they have received a score of 5 on the Advanced Placement Examination of the College Entrance Examination Board (CEEB). Students with a score of 4 must fulfill the introductory biology requirement by taking Biological Sciences 101–102, 101 and 103, 102 and 104, or 103–104. These students should consult information available in the course office (114 Comstock Hall) and in the Biology Center (216-222 Stimson Hall) to determine which semester to take to complete the introductory biology requirement. Students in doubt are advised to take Biological Sciences 101 and 103. These students receive a total of 8 introductory biology credits (4 AP credits plus 4 course credits).

2) **General chemistry** (one year). Chemistry 207–208, or 215–216, or 103–104.

3) **College mathematics** (one year, including at least one semester of calculus). Mathematics 111–112, 115–116, or 211–212, or 110–105, or 111–105. Education 115 may not be used to fulfill any part of this requirement.

4) **Organic chemistry**. Chemistry 253 and 251, or 251 and 301, or 357–358 and 251, or 357–358 and 301, or 359–360 and 251, or 359–360 and 301.

5) **Physics**. Physics 207–208*, 215–216*, or 101–102. Those who take Physics 112–113 are advised to complete Physics 214 as well.

6) **Genetics**. Biological Sciences 281.

7) **Biochemistry**. Biological Sciences 330 or 331.

8) **A concentration area** selected from the outline below.

9) **Breadth in biology**, as described below.

10) **Foreign languages**. Students registered in the College of Agriculture and Life Sciences must satisfy the foreign language requirement of the Division of Biological Sciences by (a) presenting evidence of successful completion of three or more years of study of a foreign language in high school or (b) attaining a score of 560 or more on the reading portion of the College Entrance Examination Board achievement test or (c) achieving "qualification" status in a language as defined by the College of Arts and Sciences or (d) successfully completing at least 6 college credits in a foreign language. Students in the College of Arts and Sciences must satisfy the language requirement as stated by that college.

Since modern biology has an important physical and quantitative orientation, students are advised to undertake basic science courses that emphasize this approach. Among the courses listed in the above list indicate the courses that provide this orientation, but all courses listed are acceptable.

Although not required for the biological sciences major, a course in statistics is recommended for students planning graduate study or a research career. Students should consult their faculty advisers when choosing appropriate courses in statistics.

As an alternative to requirements 8 and 9 above, students may choose to complete the Program in General Biology, outlined below.

Concentration Areas and Requirements

As noted in the list of requirements above, students accepted into the biological sciences major must choose a concentration area or the Program in General Biology. The concentration requirements are designed to help students achieve depth in one area of biology while ensuring that the selected advanced courses form a coherent and meaningful unit. Because of the flexibility allowed in satisfying these requirements, students should consult their faculty advisers. The possible concentration areas are listed below.

1) **Animal Physiology and Anatomy**: Bio S 274, The Vertebrates*, Bio S 316, Cellular Physiology; Bio S 311 and 319, Introductory Animal Physiology, Lectures and Laboratory; and at least one additional course selected from the following: Bio S 313, Histology: The Biology of the Tissues; Bio S 385, Developmental Biology; Bio S 389, Embryology; Bio S 458, Mammalian Physiology; Bio S 459, Sensory Function, An Sc 427, Fundamentals of Endocrinology.

Note: Bio S 313, Histology: The Biology of the Tissues, is recommended for those students who have not yet taken Bio S 274, The Vertebrates, as part of their concentration requirements in animal physiology and anatomy. Students should contact their adviser for other possible alternatives.

2) **Biochemistry**: Chemistry 300 or 215–216, Quantitative Chemistry, must be taken. One of the following organic chemistry laboratory sequences must also be taken: Chemistry 301–302 or 241–242, or 301, 302, or 301 or 251–252. In addition, students must take a physical chemistry sequence (Chemistry 285–286 or 277–288 or 287–288) and an introductory biochemistry laboratory course (Bio S 638 or 430 or 630). Note that Physical Chemistry 288.2 is designed for biologists, but either sequence is appropriate. It is recommended that students take the recommended organic chemistry and physics sequences (Chemistry 357–358 or 359–360 and Physics 207–208) and a third semester of calculus.

Note: Students who declare the program of study in neurobiology and behavior after taking Bio S 221 or 222 for only 3 credits must complete additional course work in neurobiology and behavior. These students should consult the chair of the Division of Neurobiology and Behavior (W119 Seeley G. Mudd Hall) to determine what course(s) to use to make up the deficiency.
Students interested in biochemistry should complete a year of introductory chemistry other than Chemistry 103–104 before the start of their sophomore year. Students are also urged to complete introductory biology in their freshman year.

3) Botany: courses chosen with the aid of an adviser to meet the goal of exposing each student to plant structure, function, classification, ecology, and evolution. Three courses, one from each of the following categories, fulfill the minimum requirements. Students are encouraged to begin the sequence of courses with Bio S 241 (see category b). (a) Bio S 242 and 244 or Bio S 341 and 349, Plant Physiology, Lectures and Laboratory; (b) Bio S 241, Introductory Botany; Bio S 248, Taxonomy of Vascular Plants; Bio S 448, Plant Evolution and the Fossil Record; or PI Pa 301, Introductory Mycology; and (c) Bio S 345, Plant Anatomy, or PI Pa 301, Introductory Plant Pathology. Students interested in a broad background in botany are encouraged to take Bio S 346, Algal Physiology; Bio S 463 and 465, Plant Ecology, Lectures and Laboratory; and additional courses in (b) and (c).

4) Cell Biology: Chemistry 300 or 215–216, Quantitative Chemistry; Bio S 630, Laboratory in Cell Biology (strongly recommended); Bio S 634, Intermediate Biochemical Methods, or Bio S 430, Basic Biochemical Methods; and one of the following two options:

Option 1: Bio S 432, Survey of Cell Biology, and 8 additional credits distributed between groups A and B and approved by the adviser.

Option 2: The two courses from Group A and 6 additional credits from Group B approved by the adviser.

Group A: Bio S 438, Cell Proliferation and Oncogenic Viruses; Bio S 483, Molecular Aspects of Development.

Group B: Bio S 222, Neurobiology and Behavior II: Introduction to Neurobiology; Bio S 305, Basic Immunology, Lectures; Bio S 307, Basic Immunology, Laboratory; Bio S 313, Histology: The Biology of the Tissues; Bio S 345, Plant Anatomy; Bio S 485, Microbial Genetics, Lectures; Bio S 419, Animal Cytogenetics; An Sc 486, Immunogenetics; Micro 290, General Microbiology Lectures; Micro 291, General Microbiology Laboratory; Micro 451 (484), Structure and Function of Bacterial Cells; Micro 455 (485), Bacterial Cytolgy Laboratory.

Students interested in cell biology should complete a year of introductory chemistry other than Chemistry 103–104 before the start of their sophomore year. Students are also urged to complete introductory biology in their freshman year.

Students anticipating graduate work in cell biology should consider taking a physical chemistry sequence (Chemistry 389–390 or 287–288.1 or 287–288.2). Note that Physical Chemistry 288.2 is designed for biologists, but either sequence is appropriate.

5) Ecology, Systematics, and Evolution: Bio S 261, Ecology and the Environment; Bio S 378, Evolutionary Biology; and at least two of the following courses or one of the following courses and a 400-level, 4-credit course offered at Shools Marine Laboratory: Bio S 248, Taxonomy of Vascular Plants; Bio S 373, The Invertebrates: Form, Function, and Evolution; Bio S 455, Insect Ecology; Bio S 457/459, Limnology; Bio S 461, Population and Evolutionary Ecology; Bio S 462, Marine Ecology; Bio S 463/465, Plant Ecology; Bio S 464, Microevolution and Macroevolution; Bio S 471, Morphology; Bio S 472, Herpetology; Bio S 475, Ornithology; Bio S 476, Biology of Fishes; Bio S 478, Ecosystem Biology; Bio S 479, Paleobiology; Bio S 481 Population Genetics; Bio S 484, Molecular Evolution. Students are encouraged to gain experience in some aspect of field biology through participation in the biological field station or work experience.

6) Genetics and Development: 9 credits, usually selected from the following courses: Bio S 378, Evolutionary Biology; Bio S 585, Developmental Biology; Bio S 389, Embryology; Bio S 481, Population Genetics; Bio S 482, Human Genetics and Society; Bio S 483, Molecular Aspects of Development; Bio S 484, Molecular Evolution; Bio S 485 and 487, Microbial Genetics; Bio S 633, Biosynthesis of Macromolecules; Bio S 639, The Nucleus; Bio S 641, Laboratory in Plant Molecular Biology; Bio S 644, Plant Growth and Development; Bio S 653, Plant Molecular Biology I; Bio S 688, Yeast Genetics; An Sc 419, Animal Genetics; An Sc 486, Immunogenetics, Micro 695, Bacterial Genetics.

7) Neurobiology and Behavior: The two-semester introductory course sequence, Neurobiology and Behavior I and II (Bio S 221 and 222) with discussion section (4 credits per term), and 9 additional credits, among which must be a course from the neurobiology and behavior offerings. Bio S 420, 498, 499, and 720 may not be used as this neurobiology and behavior course. The remainder of the 9 credits may be in any course (such as physiology, developmental biology, cellular biology, ecology, vertebrate or invertebrate biology, or neurobiology and behavior) approved by the adviser. Courses used to fulfill the concentration requirements may not be counted toward fulfillment of the breadth requirement.

Note: Students who declare the concentration in neurobiology and behavior after taking Bio S 221 or 222 for only 3 credits must complete additional course work in neurobiology and behavior. These students should consult the chair of the Section of Neurobiology and Behavior (W119 Seeley G. Mudd Hall) to determine what course(s) to use to make up the deficiency.

8) Independent Option: Special programs for students interested in biophysics, microbiology (College of Arts and Sciences students only), or nutrition are available under this option. In addition, students who want to undertake a course of study not covered by the seven existing concentration areas, special programs, or the Program in General Biology may petition the Division of Biological Sciences Curriculum Committee. Information on independent options and Curriculum Committee petition forms are available in the Office for Academic Affairs, 200 Stimson Hall.

Requirement for Breadth in Biology
To fulfill the requirement for breadth in biology, students must pass a total of two courses outside of their concentration area selected from two of the categories listed below. Students should consult their faculty advisers, keeping in mind the following rules, when choosing the courses to meet this requirement. A course may not count for breadth if it could be used (even if it is not) to fulfill a concentration requirement (see note below). No course may be used to fulfill the breadth requirement if it is also used to fulfill a concentration requirement. Students may not count two courses for breadth credit if one course is a prerequisite to the other course. Students concentrating in animal physiology and anatomy, botany; cell biology; ecology, systematics, and evolution; or genetics and development should see the notes following the list of approved breadth courses.

1) Animal Physiology and Anatomy: Biological Sciences 214, 311, 313; Nutritional Sciences 331.

2) Botany: Biological Sciences 241, 242 and 244, 248, 341 and 349, 343, 345, 441, 448; Plant Pathology 309.

3) Cellular Biology: Biological Sciences 305, 316, 432, Microbiology 290.

4) Developmental Biology: Biological Sciences 385, 389, 483, Animal Science 220.

5) Ecology, Systematics, and Evolution: Biological Sciences 261, 378.

6) Neurobiology and Behavior: Biological Sciences 221, 222.

Note: Students concentrating in animal physiology and anatomy may not use Biological Sciences 316, 385, 389, or 432 to fulfill the breadth requirement.

Students concentrating in cell biology may not use Biological Sciences 222, 313, 345, or 483 to fulfill the breadth requirement.

Students concentrating in ecology, systematics, and evolution may not use Biological Sciences 248 to fulfill the breadth requirement.

Students concentrating in genetics and development may not use Biological Sciences 378 or any course in group 4 to fulfill the breadth requirement.

Program in General Biology
As an alternative to the requirements for a concentration area and for breadth in biology, students may choose to complete the Program in General Biology. These students must fulfill all other requirements for the biological sciences major. In addition, students must complete the following:

1) Ecology (Bio S 261 or Bio S 262 (no longer offered)).

2) Neurobiology and Behavior I or II (Bio S 221 or 222).

3) A physiology course from the following: Bio S 242 and 244, or 341 and 349, Plant Physiology, Bio S 311, Introductory Animal Physiology, Lectures.
4) One course from the following: Bio S 241, Introductory Botany; Bio S 248, Taxonomy of Vascular Plants; Bio S 274, Functional and Comparative Morphology of Vertebrates; Enptom 212, Insect Biology; Micro 201 and 291, General Microbiology.

5) At least one course offered by the Division of Biological Sciences concentrating on plants. This may be satisfied by a course that also fulfills requirement 3 or 4.

6) At least one course offered by the Division of Biological Sciences with a laboratory. This may be satisfied by a course that also fulfills requirement 3, 4, or 5.

7) A biological sciences course offered for 2 or more credits having as a prerequisite one of the following: Bio S 221, Neurobiology and Behavior I; Bio S 222, Neurobiology and Behavior II; Bio S 241, Introductory Botany; Bio S 242 or 241, Plant Physiology; Bio S 261, Ecology and the Environment; Bio S 274, Functional and Comparative Morphology of Vertebrates; Bio S 281, Geneticals; Bio S 311, Introductory Animal Physiology, Lectures; Bio S 320 or 331, Principles of Biochemistry.

Independent Research and Honors Program

Individual research projects under the direction of a faculty member are encouraged as an aspect of study within a concentration (programs of study). Applicants for research projects are accepted by the individual faculty members, who take into account students' previous academic accomplishments, interests, and availability and the availability of space and equipment suitable for the proposed project. Students accepted for independent research enroll for credit in Biological Sciences 499 (Undergraduate Research in Biology) with the written permission of the faculty supervisor.

Students register for this course in 200 Stimson Hall. Any faculty member in the Division of Biological Sciences may act as a supervisor. Faculty supervisors outside the division are acceptable only if the faculty member of the division agrees to take full responsibility for the quality of the work. Information on faculty research activities and undergraduate research opportunities is available in the Behrman Biology Center, 216-222 Stimson Hall.

Research credits may not be used in completion of the following concentration (program of study) areas: animal physiology and anatomy; biochemistry; botany; cell biology; ecology, systematics, and evolution; and genetics and development. No more than 4 credits of research may be used in completion of the concentration area (program of study) in neurobiology and behavior.

The honors program in biological sciences is designed to offer advanced training in laboratory or field research through the performance of an original research project under the guidance of a member of the faculty. Applications for the honors program are available in the Office for Academic Affairs, 200 Stimson Hall, and must be submitted to the Honors Program Committee by the deadline announced early in the senior year. Application forms for the honors program are separate from the enrollment forms for Biological Sciences 499 (Undergraduate Research in Biology). To qualify for the program, students must have been accepted into the biological sciences major, have completed at least 30 credits at Cornell, and have an overall Cornell cumulative grade-point average of at least 3.00. In addition, students must have at least a 3.00 Cornell cumulative grade-point average in all biology, chemistry, mathematics, and physics courses. (Grades earned in courses in other departments that are used to fulfill major requirements are included in this computation.) In addition, candidates must have a faculty member to supervise their research. Any faculty member in the Division of Biological Sciences may act as a supervisor. Students may also work with faculty supervisors outside the division. Students who select supervisors outside the division must arrange for a faculty member of the division to serve as a cosigner of the research. The division cosigner must agree to meet with the student on a regular basis, to report to the Honors Program Committee on the progress of the work approximately two months before the thesis is due, and to serve as a reviewer of the thesis. An honors candidate usually enrolls for credit in Biological Sciences 499 (Undergraduate Research in Biology) with the written permission of the faculty member acting as honors supervisor, although it is not necessary to do so. Students choosing to earn credit for honors research must enroll in Biological Sciences 499 (Undergraduate Research in Biology) separate from the honors program. Requirements of the honors program include participation in honors research seminars during two semesters, submission of an acceptable honors thesis, completion of all major requirements, and maintenance of the 3.00 Cornell cumulative grade-point average through graduation. Recommendation to the faculty that a candidate graduate with honors is the responsibility of the Honors Program Committee.

Students interested in the honors program should consult their faculty advisers early during their junior year. Students are strongly encouraged to begin their research projects in their junior year, although they are not formally admitted to the honors program until the beginning of their senior year. Students who are considering a year abroad should consult with a member of the Honors Committee before beginning their year abroad. Details pertaining to thesis due dates, seminars, and other requirements may be obtained from the chair of the Honors Program Committee or from the Office for Academic Affairs, 200 Stimson Hall. Information on faculty research activities is available in the Behrman Biology Center, 216-222 Stimson Hall.

CURRICULUM COMMITTEE

Many decisions pertaining to the curriculum, to division-wide requirements, to concentration and breadth requirements, and to the programs of study are made by the Curriculum Committee of the division. The committee consists of faculty and elected student members and welcomes advice and suggestions from all interested persons.

ADVISING

Students in need of academic advice are encouraged to consult their advisors, come to the Behrman Biology Center (216-222 Stimson Hall), or contact the associate director for academic affairs (200 Stimson Hall). Students interested in marine biology should visit the Cornell Marine Programs Office, 114 Stimson Hall.

Students interested in the multidisciplinary program Biology and Society should see "Special Programs and Interdisciplinary Studies," in the College of Arts and Sciences section of this catalog.

INDEX OF COURSES

The middle digits of biological sciences course numbers are used to denote courses in specific areas: 0, general; 1, animal physiology and anatomy; 2 and 9, neurobiology and behavior; 3, biochemistry and cell biology; 4, botany; 6 and 7, ecology, systematics, and evolution; 8, genetics and development. The middle digit 5 is used when all other course numbers in a particular area have already been assigned.

Note: Biological sciences courses count as agriculture and life sciences credits for students in the College of Agriculture and Life Sciences and as arts and sciences credits for students in the College of Arts and Sciences.

Current and Former Course Numbers

<table>
<thead>
<tr>
<th>Course</th>
<th>Page</th>
<th>Course</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>101</td>
<td>338</td>
<td>315 (new)</td>
<td>341</td>
</tr>
<tr>
<td>102</td>
<td>338</td>
<td>316</td>
<td>341</td>
</tr>
<tr>
<td>103</td>
<td>338</td>
<td>319</td>
<td>341</td>
</tr>
<tr>
<td>104</td>
<td>338</td>
<td>322</td>
<td>353</td>
</tr>
<tr>
<td>105</td>
<td>338</td>
<td>324</td>
<td>353</td>
</tr>
<tr>
<td>106</td>
<td>338</td>
<td>326</td>
<td>353</td>
</tr>
<tr>
<td>107</td>
<td>338</td>
<td>329</td>
<td>356</td>
</tr>
<tr>
<td>108</td>
<td>338</td>
<td>330</td>
<td>343</td>
</tr>
<tr>
<td>109</td>
<td>338</td>
<td>331</td>
<td>343</td>
</tr>
<tr>
<td>110</td>
<td>338</td>
<td>341</td>
<td>345</td>
</tr>
<tr>
<td>120</td>
<td>342</td>
<td>345</td>
<td>345</td>
</tr>
<tr>
<td>152</td>
<td>339</td>
<td>346</td>
<td>346</td>
</tr>
<tr>
<td>200</td>
<td>339</td>
<td>349</td>
<td>346</td>
</tr>
<tr>
<td>201 (new)</td>
<td>339</td>
<td>359</td>
<td>346</td>
</tr>
<tr>
<td>202</td>
<td>339</td>
<td>363</td>
<td>356</td>
</tr>
<tr>
<td>204</td>
<td>339</td>
<td>364</td>
<td>356</td>
</tr>
<tr>
<td>205</td>
<td>339</td>
<td>365</td>
<td>357</td>
</tr>
<tr>
<td>206</td>
<td>339</td>
<td>366</td>
<td>357</td>
</tr>
<tr>
<td>207</td>
<td>339</td>
<td>367</td>
<td>357</td>
</tr>
<tr>
<td>208 (new)</td>
<td>339</td>
<td>368</td>
<td>357</td>
</tr>
<tr>
<td>209 (new)</td>
<td>339</td>
<td>369</td>
<td>357</td>
</tr>
<tr>
<td>214</td>
<td>341</td>
<td>370</td>
<td>357</td>
</tr>
<tr>
<td>221</td>
<td>353</td>
<td>371</td>
<td>349</td>
</tr>
<tr>
<td>222</td>
<td>353</td>
<td>372</td>
<td>357</td>
</tr>
<tr>
<td>231</td>
<td>342</td>
<td>373</td>
<td>349</td>
</tr>
<tr>
<td>232</td>
<td>342</td>
<td>378</td>
<td>349</td>
</tr>
<tr>
<td>233 (new)</td>
<td>343</td>
<td>385</td>
<td>352</td>
</tr>
<tr>
<td>241</td>
<td>345</td>
<td>389</td>
<td>352</td>
</tr>
<tr>
<td>242</td>
<td>345</td>
<td>396</td>
<td>353</td>
</tr>
<tr>
<td>243 (342)</td>
<td>345</td>
<td>400</td>
<td>340</td>
</tr>
<tr>
<td>244</td>
<td>345</td>
<td>401</td>
<td>340</td>
</tr>
<tr>
<td>245</td>
<td>345</td>
<td>403</td>
<td>340</td>
</tr>
<tr>
<td>246</td>
<td>345</td>
<td>405</td>
<td>340</td>
</tr>
<tr>
<td>248</td>
<td>345</td>
<td>407 (new)</td>
<td>340</td>
</tr>
<tr>
<td>281</td>
<td>348</td>
<td>408 (new)</td>
<td>340</td>
</tr>
<tr>
<td>263</td>
<td>348</td>
<td>409</td>
<td>357</td>
</tr>
<tr>
<td>272</td>
<td>348</td>
<td>410</td>
<td>341</td>
</tr>
<tr>
<td>274</td>
<td>349</td>
<td>413</td>
<td>357</td>
</tr>
<tr>
<td>275</td>
<td>349</td>
<td>420</td>
<td>353</td>
</tr>
<tr>
<td>281</td>
<td>352</td>
<td>422 (628)</td>
<td>354</td>
</tr>
<tr>
<td>282</td>
<td>352</td>
<td>424</td>
<td>354</td>
</tr>
<tr>
<td>301</td>
<td>339</td>
<td>426</td>
<td>354</td>
</tr>
<tr>
<td>305</td>
<td>339</td>
<td>427</td>
<td>354</td>
</tr>
<tr>
<td>306</td>
<td>339</td>
<td>428</td>
<td>354</td>
</tr>
<tr>
<td>307</td>
<td>339</td>
<td>429</td>
<td>354</td>
</tr>
<tr>
<td>308</td>
<td>340</td>
<td>430</td>
<td>343</td>
</tr>
<tr>
<td>309 (328)</td>
<td>356</td>
<td>432</td>
<td>343</td>
</tr>
<tr>
<td>311</td>
<td>343</td>
<td>433 (new)</td>
<td>343</td>
</tr>
<tr>
<td>313</td>
<td>341</td>
<td>434 (new)</td>
<td>343</td>
</tr>
</tbody>
</table>
GENERAL COURSES

101-102 Biological Sciences, Lectures
101, fall, 102, spring. 2 credits each term.
Prerequisite: concurrent enrollment in Biological Sciences 103 (fall) or 104 (spring).
Passing grade (D or better) in 101 is prerequisite to 102 unless written permission is obtained from instructor. S-U grades optional, with permission of instructor. May not be taken for credit after Biological Sciences 105-106 or 109-110.

Lecs, M W F 9:05 or 10:10. 2 lecs each week; to accommodate these, students must reserve all 3 days. Evening prelims: fall, Sept. 27 and Nov. 8; spring, Feb. 21 and Apr. 2. C. D. Hopkins.

Designed both for students who intend to specialize in biological sciences and for those specializing in other subjects, such as the social sciences or humanities, who want to obtain a thorough knowledge of biology as part of their general education. Plant and animal materials are considered together rather than in separate units. The fall semester covers the chemical and cellular basis of life, energy transformations, anatomy, physiology, and behavior. The spring semester covers genetics, development, evolution, ecology, and the origin of life. Each topic is considered in the light of modern evolutionary theory.

103-104 Biological Sciences, Laboratory
103, fall; 104, spring. 2 credits each term.
Prerequisite: concurrent enrollment in Biological Sciences 101 (fall) or 102 (spring).
103 is prerequisite to 104 unless written permission is obtained from instructor. S-U grades optional, with permission of instructor. No admittance after start of second week of classes.
Lab, M T W or R 1:25-4:25, M or W 7:30-10:30 p.m., or T R or S M-W-F 9-12. A. W. Blackler and staff.

101-102 Biological Sciences fulfill the introductory biology requirement for preprofessionals, and other students who desire a challenging, broad introduction to fundamental concepts of biology. Physiology, anatomy (accompanied by preserved vertebrate dissection), and biochemistry are strongly emphasized in the fall semester. Subjects of study in the spring semester are genetics, development, evolution, ecology, behavior, and the diversity of organisms. The course uses an autotutorial format and offers considerable flexibility in scheduling. Completion of the course requires mastery of a group of core units. Testing on these units is primarily by oral examination. Four formal laboratory sessions are offered each semester. Written reports on experimental work are required in the fall; extensive dissections (both invertebrate and vertebrate) with practical exams constitute spring laboratories. The core units include additional laboratory work, Performance on the core units, the laboratories, and the final examination determine the final grade. Students who object to dissecting live invertebrates may want to take another biology course.

107-108 General Biology
8-week summer session (107, weeks 1-4; 108, weeks 5-8). 4 credits each. Prerequisite: Biological Sciences 101-102, 105, or 107 is a prerequisite for 108. Fee, $35.

Lecs, M-R 9-12; labs, M T R 1:30-4:30, F 9-12. A. W. Blackler and staff.

Designed for students who plan further study in biology and for students who want a broad course in biology as part of their general education. Biological Sciences 107 covers biological metabolism, first at the molecular level and then progressively to the organism system level. The laboratory work involves an introduction to some major techniques, vertebrate dissection, and a survey of plant organization. Biological Sciences 108 seeks to integrate the topics of genetics, developmental biology, population biology, and ecology in a general consideration of biological evolution. The laboratory work is a continuation of the material covered in Biological Sciences 107 and involves more techniques, a survey of animal organization, and the design and performance of a field study. Biological Sciences 107-108 fulfills the introductory biology requirement for majors and forms a suitable introductory biology course sequence for students intending to go to medical school.

109-110 Biological Principles
109, fall; 110, spring. 3 credits each term. Limited to 600 students. Prerequisite: A passing grade in 109 or 101-103 or 105 is prerequisite to 110 unless written permission is obtained from the instructor and student has at least 3 credits of college biology. Letter grades only. May not be taken for credit after Biological Sciences 101-104 or 105-106. This course may be used to fulfill the distribution requirement in the Colleges of Agriculture and Life Sciences, Arts and Sciences, and Human Ecology but may not be used as an introductory course for the major in biological sciences. Note that this course may not always satisfy the prerequisite for second- and third-level courses in biology.

Lecs, M W F 9:05 or 10:10; lab, M T W R or F 2:45-4:25 or T 10:10-12:35. Students do not choose lab sections during course enrollment; the lab assignments are made during first day of classes. Each student must attend lab on alternate weeks.

Evening prelims: fall, Sept. 27 and Nov. 8; spring, Feb. 21 and Apr. 2. R. Turgeon, C. Eberhard.
Students who do not plan to major in biology may take this broad introductory course in modern biology. It is not a course in social biology but addresses itself to biological principles with academic rigor. The content is designed to appeal to anyone who seeks a comprehensive knowledge of biology as part of a general education. Laboratory sections enable small groups of students to meet with the course staff and are used for problem-solving experiments, demonstrations, and discussions. No live dissections are involved; there are dissections of preserved material.

152 Special Topics in Biology
Spring. 1 credit. Limited to 30 students.
Prerequisites: superior performance in Biological Sciences 109 or equivalent and concurrent enrollment in Biological Sciences 102, 106, or 110, or written permission of instructor. S-U grades only. This course may not be used in fulfillment of college distribution requirements.
Lec, M 3:35; occasional field trips to be arranged. R. Turgeon, C. Eberhard, and guest lecturers.
A lecture course designed to complement introductory biology by providing an opportunity for the exploration of selected topics of interest. Class involvement and discussion are encouraged.

200 Special Studies in Biology
Fall or spring. 1–3 credits. Prerequisites: transfer- or special-student status and written permission of instructor and of the associate director of the Division of Biological Sciences. Students must register using a special form available in Stimson 200. S-U grades optional, with permission of instructor.
Hours to be arranged. Staff.
A registration device for students who want to take only a portion of a regular biological sciences course—for example, only the lectures or only the laboratory in a course that includes both. Only students who have already had training equivalent to the portion of the regular course that is to be omitted may register in this manner. May not be substituted for 100-level courses and may not be used in fulfillment of college distribution requirements.

201 Biotechnology: The "New" Biology (also Biology and Society 201)
Spring. 3 credits. Prerequisite: One year of introductory biology for nonmajors. S-U grades optional.
Lecs, 2 hours each week to be arranged; disc, 1 hour each week to be arranged. J. Fessenden MacDonald, J. M. Calvo, and staff.
A general introduction to the application of modern molecular biology and cell culture techniques to the manipulation and genetic engineering of animals, plants, and microorganisms. Information on recombinant DNA technology, monoclonal antibodies, plant and/or animal cell culture, and embryo manipulation methods is presented. Topics include commercial applications to health, forensics, environment, agriculture and food; and economic, social policy, regulatory, ethical and legal issues that surround biotechnology. The course is taught in four modules and the topics vary from year to year. Topics are listed in the division's catalog supplement issued at the beginning of the semester.

202 History of Biology (also Biology and Society 228 and History 288)
An examination of the history of biology, emphasizing the interaction of biology and culture. Original writings of biologists constitute the bulk of reading assignments. Covers the period from classical antiquity to the present, but primary emphasis is on twentieth-century biology.

205 Ethics and Health Care (also Biology and Society 205 and Philosophy 245)
Fall and summer. 4 credits. Limited to 60 students (25 under biological sciences 205, 25 under Biology and Society 205, and 30 under Philosophy 245). Registered students not attending during the first week will be dropped from the course. Open to sophomores, juniors, and seniors; permission of instructor required for graduate students.
Lecs, T R 10:10–11:25; disc, 1 hour each week to be arranged. M. Wachsberg.
Critical philosophical analysis of the conceptual frameworks in which ethical problems associated with health care can be formulated and solutions evaluated. General topics (with sample issues in parentheses) include knowledge in ethics (ethics skepticism, ethical relativism); proper social allocation of resources for, and within, medicine (entitlement to health care, access to scarce medical resources, cost-benefit analysis); the proper account of basic concepts such as illness, death, autonomy, and personhood (abortion, euthanasia, procreative technologies); and the professional-patient relationship (informed consent, confidentiality, medical paternalism).

206 Ethics and the Environment (also Philosophy 246 and Biology and Society 206)
Spring. 4 credits. Open to all undergraduates. Permission of instructor required for graduate students.
Lecs, T R 10:10–11:25; disc, 1 hour each week to be arranged. M. Wachsberg.
Critical philosophical analysis of the conceptual frameworks in which policies affecting the environment are formulated and judged. An introductory section of the course discusses the nature of ethics and the possibility of knowledge in ethics. The second major component of the course deals with the nature and extent of individual and social obligations to spatially distant people, future generations, nonhuman animals and nonsentient things (e.g., the ecosystem). The third major component of the course deals with the appropriate analysis of the origin of environmental problems and the range of options for their solution. Topics include individual vs. collective goods, cost-benefit analysis, and coordination problems.

207 Evolution (also History 287)
Fall. 3 credits. Intended for students with no background in college biology. May not be taken for credit after Biological Sciences 378. S-U grades optional.
Lecs, T R 10:10–11:25; disc, to be arranged. W. B. Provine.
Evolution is the central concept in biology. This course examines evolution in historical and cultural contexts. Aims of the course include understanding the major issues in the history and current status of evolutionary biology and exploring the implications of evolution for culture. Issues range from controversies over mechanisms of evolution in natural populations to the conflict between creationists and evolutionists.

208 Drawing the Human Figure
Summer. 3 credits. Limited to 12 students.
Prerequisite: free-hand drawing or permission of instructor. S-U grades optional.
Lab and cec, T R 6:30–9:30 p.m.
B. S. King.
An introduction to the art of natural science illustration for publication, and to the techniques of various media including pencil, pen and ink, watercolor, colored pencil, scratchboard, and carbon dust. Potential and limitations of line and half-tone reproduction, copyright, and portfolio presentation are discussed.

209 Introduction to Natural Science Illustration
Summer. 2 credits. Limited to 12 students.
Prerequisite: free-hand drawing or permission of instructor. S-U grades optional.
Lec and lab, T R 6:30–9:30 p.m.
B. S. King.
An introduction to the art of natural science illustration for publication, and to the techniques of various media including pencil, pen and ink, watercolor, colored pencil, scratchboard, and carbon dust. Potential and limitations of line and half-tone reproduction, copyright, and portfolio presentation are discussed.

301 Biology and Society: The Social Construction of Life (also Biology and Society 301)
Fall. 3 credits. Prerequisite: one year of introductory biology. S-U grades optional.
Topics include evolution and natural selection, heredity and genetic determinism, biotechnology and reproductive interventions, and ecology and environmental change. Through laboratories, discussions, and writing exercises, students develop analytic skills and explore their own intellectual and practical responses to current issues.

305 Basic Immunology, Lectures (also Veterinary Medicine 315)
Fall. 3 credits. Strongly recommended: basic courses in microbiology, biochemistry, and genetics.
A survey of modern immunology, with emphasis on the biological functions of the immune response.

307 Basic Immunology, Laboratory (also Veterinary Medicine 316)
Fall. 2 credits. Prerequisite: a course in basic microbiology or permission of instructor. Recommended: concurrent enrollment in Biological Sciences 305.
A series of laboratory exercises selected to illustrate immunological concepts presented in Biological Sciences 305. Exercises are designed to give students experience with the stimulation and measurement of an immune response in the rabbit. Techniques to familiarize students with both humoral and cellular immune phenomena are included, with the goal of offering hands-on experience in immunology. Among the methods and techniques offered are agglutination and precipitation methods, virus neutralization and phagocytosis, measurement of the biological activity of complement components, antibody-dependent cell-mediated cytotoxicity, T and B cell identification, monoclonal antibodies and the ELISA, antibody production by single cells, lymphocyte blastogenesis, and delayed hypersensitivity.
405 Electron Microscopy in Molecular Biology
Fall, weeks 9–12. 1 credit. Limited to 12 students. Prerequisites: Biological Sciences 403 or proficiency in transmission electron microscopy and written permission of instructor. Lecs., T 11:15; labs, M W or T R 1:25–4:25. M. V. Parthasarathy, M. Kyle.

An introductory course to electron microscopy (EM) with use as a tool in analyzing molecular structure, interactions, and processes. Methods considered to be most generally applicable to current studies in molecular biology are covered, including visualization of nucleic acids, histone-membrane probes, and filamentous and EM immuno-labeling.

407 Advanced Laboratory Techniques
Summer. 3 credits. Prerequisite: permission of instructor. Lecs., M–F 9–5. M. Kusch and R. Calvo.

Intensive laboratory course stressing techniques and approaches helpful to students intending to work in a research laboratory during the summer. The course is taught in Cornell's electron microscopy laboratory. Students are expected to continue their research projects during their senior year. The first summer (1990) the lab course is limited to the thirty students selected to be either in the Cornell/Hughes Program or the NSF-sponsored Plant Science Center Program. It is anticipated that in the future the course will be offered to additional interested students.

408 Molecular Biology for Teachers
Summer. 3 credits. Prerequisites: Biological Sciences 313, 345, 443, or written permission of instructor. Lecs., M–F 9–5. R. Calvo, M. L.CORDTS, and M. Kusch.

Lecture and laboratory course in molecular biology designed specifically for high school biology teachers. The lecture material covers the structure and biosynthesis of macromolecules, recombinant DNA technology, the unexpected complexity of eukaryotic genes, and the application of recombinant DNA technology to medicine and agriculture. The laboratories provide experience with techniques used in modern molecular biology. Registration limited to teachers selected to participate in the Cornell Institute for Biology Teachers.

Cornell has received a five-year grant from the Howard Hughes Medical Institute to encourage Cornell biology majors to consider careers in premedical or medical research. Also included in this course are five Cornell students in the NSF-funded Plant Science Centre Program. The program begins May 30, 1990, with an intensive three-and-one-half-week laboratory course designed to teach students some state of the art techniques used in molecular biology, cell physiology, and neurobiology. After the laboratory course, students receive stipends to spend the next seven weeks doing independent research in a Cornell biology laboratory. Students are expected to continue their research projects during their senior year. The first summer (1990) the lab course is limited to the thirty students selected to be either in the Cornell/Hughes Program or the NSF-sponsored Plant Science Center Program. It is anticipated that in the future the course will be offered to additional interested students.

498 Teaching Experience
Fall or spring. 1–4 credits. Enrollment limited. Prerequisites: previous enrollment in the course to be taught or equivalent, and written permission of instructor. S–U grades optional, with permission of instructor. Students in the College of Arts and Sciences may not count credits from this course toward the 120 credits required for graduation. Hours to be arranged. Staff.

Designed to give qualified undergraduate students teaching experience in their actual involvement in planning and assisting in biology courses. This experience may include supervised participation in a discussion group, assisting in a biology laboratory, assisting in biology courses. This experience may include supervised participation in a discussion group, assisting in a biology laboratory, assisting in biology courses. Also included in this course are five Cornell students in the NSF-funded Plant Science Centre Program. The program begins May 30, 1990, with an intensive three-and-one-half-week laboratory course designed to teach students some state of the art techniques used in molecular biology, cell physiology, and neurobiology. After the laboratory course, students receive stipends to spend the next seven weeks doing independent research in a Cornell biology laboratory. Students are expected to continue their research projects during their senior year. The first summer (1990) the lab course is limited to the thirty students selected to be either in the Cornell/Hughes Program or the NSF-sponsored Plant Science Center Program. It is anticipated that in the future the course will be offered to additional interested students.

499 Undergraduate Research in Biology
Fall or spring. Variable credit. Prerequisite: written permission of staff member who supervises the work and assigns the grade. Students must register in the Office for Academic Affairs in 200 Stimson. Each student must submit an independent study statement describing the proposed research project during course registration. (Special forms for this purpose are available in the college offices.) S–U grades optional. Any faculty member in the Division of Biological Sciences may act as a supervisor. Faculty supervisors outside the college must be approved by the Division. Any faculty member of the division agrees to serve as cosigner, taking full responsibility for the quality of the work. Hours to be arranged. Staff.

Practice in planning, conducting, and reporting independent laboratory and library research programs. Research credits may not be used in faculty involved in teaching introductory biology. Teachers also perform laboratory exercises designed for high school biology classes. To enable teachers to implement new laboratory exercises, the grant provides each teacher with up to $4,000 worth of equipment and supplies to take back to their schools. Participating teachers get 3 credits, board, and a stipend. Applicants should not apply directly to the Summer Session Office. More information on the program and the application process is available from Rita Calvo or Meredith Kusch, Cornell/Hughes Program, 169 Biotechnology Building, 254–4851.
completion of the following concentration areas (programs of study): animal physiology and anatomy; biochemistry; botany; cell biology; ecology; systematics; and evolution; and genetics and development. No more than 4 credits of research may be used in completion of the concentration area (program of study) in neurobiology and behavior.

606 Freeze-Fracture Technique
Spring, weeks 9-14. 1 credit. Primarily for graduate students. Limited to 8 students. Prerequisites: Biological Sciences 403 or equivalent, and permission of instructor. S-U grades only. Lect, M 10:10; disc to be arranged; labs, M W 1:25-4:25. M. V. Parthasarathy. Principles of freeze-fracturing and freeze-substitution technique, freezing artifacts, and interpretation of images.

608 Advanced Electron Microscopy for Biologists
Spring, weeks 10-14. 1 credit. Primarily for graduate students. Limited to 6 students. Prerequisites: Biological Sciences 403 or equivalent. S-U grades only. Hours to be arranged. M. V. Parthasarathy. Project in biological ultrastructure.

702 X-Ray Elemental Analysis in Biology
Spring, weeks 7-14. 1 credit. Limited to 6 students. Prerequisites: Biological Sciences 403 or equivalent, and permission of instructor. S-U grades only. Offered alternate years. Not offered 1990-91. Lect and lab to be arranged. M. V. Parthasarathy, C. Daugherty. Principles of X-ray elemental analysis are discussed, with special reference to the energy-dispersive system. Emphasis is on qualitative elemental analysis of biological specimens and preparation of material for such analysis, including freeze-substitution technique. A brief introduction to quantitative elemental analysis is also given.

705 Advanced Immunology Lectures (also Veterinary Microbiology 705)
Spring. 3 credits. Prerequisite: Biological Sciences 305 or permission of instructor. Offered alternate years. Not offered 1990-91. Lects, M W F 9:05. A. J. Winter, course coordinator. Coverage at an advanced level of molecular and cellular immunology, immunoregulation, and the immunology of infectious diseases and tumors.

Related Courses in Other Departments
Medicine and Civilization (Biology and Society 322)

ANIMAL PHYSIOLOGY AND ANATOMY

214 Biological Basis of Sex Differences (also Women’s Studies 214)
Fall. 3 credits. Prerequisite: one year of introductory biology. Limited to non-biology majors and freshman and sophomore biology majors. S-U grades optional. Offered alternate years. Lect, T R 8:30-9:55; occasional disc to be arranged. J. E. Fortune. The structural and functional differences between the sexes are examined. Emphasis is placed on mechanisms of mammalian reproduction; where possible, special attention is given to studies of humans. Current evidence on the effects of gender on nonreproductive aspects of life (behavior, mental and physical capabilities) is discussed. The course is intended to provide students with a basic knowledge of reproductive endocrinology and with a basis for objective evaluation of sex differences in relation to contemporary life.

311 Introductory Animal Physiology, Lectures (also Veterinary Medicine 346)
Fall. 3 credits. Prerequisites: one year of college biology, chemistry, and mathematics. Recommended: previous or concurrent enrollment in physics. S-U grades only, with permission of instructor. Lects, M W F 11:15. Evening prelims: Sept. 25 and Nov. 1. E. R. Loew and staff. A general course in animal physiology emphasizing principles of operation, regulation, and integration common to a broad range of living systems from the cellular to the organismal levels. Emphasis on relations that are stressed along with underlying physico-chemical mechanisms.

313 Histology: The Biology of the Tissues
Fall. 4 credits. Prerequisite: one year of introductory biology. Recommended: background in vertebrate anatomy and organic chemistry or biochemistry. Lects, T R 1:25; labs, T R 2:30-5. R. B. Silver. Provides students with a basis for understanding the microscopic, fine-structural, and functional organization of vertebrates, as well as methods of analytic morphology at the cell and tissue levels. Dynamic interrelations of structure, composition, and function in cells and tissues are emphasized. The course may include work with invertebrate or vertebrate animals.

315 Topics in Functional Anatomy
Fall. 1 credit. Prerequisite: one year of vertebrate biology. Required of students studying animal physiology and anatomy. Disc, one hour per week to be arranged. E. R. Loew, D. Robertshaw. Comparative functional anatomy of both invertebrates and vertebrates is presented at the whole animal level using prepared and fresh materials. Correlations between structure, function, and ecological significance are stressed.

316 Cellular Physiology
Spring. 4 credits. Limited to 100 students, with preference given to students studying in animal physiology and anatomy. Each lab limited to 24 students. Prerequisite: concurrent or previous enrollment in Biological Sciences 350 or 351. Lects, M W F 9:05; lab, M T W or R 1:25-5. A. Quaroni and staff. Lectures introduce students to the most current information on the ways cells function and regulate themselves and neighboring cells and on what molecules are involved in these regulatory processes. Laboratories provide an introduction to cell culture and to immunological techniques used to study cell structure and function in vitro and in vivo. Experiments performed in the laboratory are closely related to, and provide practical experience with, subjects covered in the lectures. Vertebrate animals are used in this course. No experimentation is performed on live animals.

319 Animal Physiology Experimentation (also Veterinary Medicine 348)
Fall. 3 credits. Enrollment limited to 80 students. Designed for upper-level undergraduate and graduate students studying in physiology, and other biomedically related professions. Each of 4 afternoon laboratory sections limited to 20 students. Prerequisite: concurrent or previous enrollment in Biological Sciences 311 or permission of instructor based on previous meritorious performance in another introductory animal physiology course. Lab, M T W R 1:25-5, disc, R 1:25 or F 12:20. Students do not choose disc sections during course enrollment; disc assignments are made during first day of classes. R. A. Corradino, P. W. Concanon. A series of student-conducted in vivo and in vitro experimental exercises designed to illustrate basic physiological processes in animals and to introduce students to animal physiology research techniques, instrumentation, experimental design, and interpretation of results. Protocols include anesthesia, dissection, vivisection, physiographic recording, and computer simulations. Experiments with living tissues and live animals examine properties of blood, muscle, and nerves; cardiovascular, respiratory and gastrointestinal function and control; and endocrine regulation of mineral metabolism and reproductive tissue activity. Experimental resources include live animals of several vertebrate species, including frogs, birds, rats, and rabbits, which are sacrificed in conjunction with the laboratory exercises. Written reports of laboratory activities are required. Grading is based on evaluation of these reports and on laboratory performances.

410 Seminar in Anatomy and Physiology
Fall or spring. 1 credit. May be repeated for credit only once. Limited to upperclass students. S-U grades only. Sem to be arranged. Organizational meeting first W of each semester at 7:30 p.m. in Vet Research Tower 826. Staff (coordinator, D. Robertshaw). Discussions and seminars on specialized topics in animal physiology and anatomy.

458 Mammalian Physiology
Spring. 3 credits. Enrollment limited. Graduate student auditors allowed. Prerequisite: Biological Sciences 311 or equivalent with permission of instructor. Lects, M W F 10:10. K. W. Beyenbach and staff. An in-depth treatment of selected topics in mammalian physiology and human physiology. Emphasis is on a conceptual and working knowledge of physiology rather than a factual, memorizing knowledge. Topics selected, in order of presentation, include recurrent themes in physiology: basic functional elements of biological systems; design of multicellular animals; mammalian fluid compartments; homeostasis; cardio-vascular, respiratory, gastro-intestinal, and renal physiology; and energy metabolism. The course concludes with a discussion of integrative physiology by considering the multiple, parallel short-term responses of the human body to exercise. Recommended for biological sciences majors, pre-med and pre-vet students, and beginning graduate students in physiology, nutrition, and animal science.
615 Nutrition and Physiology of Mineral Elements (also Veterinary Medicine 759 and Nutritional Sciences 659)
Fall. 3 credits. Prerequisites: courses in basic physiology, intermediate biochemistry, and general nutrition, and alternate years.
Lectures on nutritional aspects and physiological, biochemical, and hormonal relationships of the prominent macroelements and microelements, with emphasis on recent developments. Information on methodologies of mineral research and essentiality, transport, function, homeostasis, interrelationships, and toxicity of various mineral elements.

618 Biological Membranes and Nutrient Transfer (also Veterinary Medicine 752)
Spring. 2 credits. Prerequisites: courses in animal or plant physiology, quantitative and organic chemistry, and electives. Recommended: a course in cellular physiology. S-U grades optional, with permission of instructor. Offered alternate years. Not offered 1990–91.
Lecs, T R 11:15. R. H. Wasserman.
An introductory course on elemental biophysical properties of biological membranes; theoretical aspects of permeability and transport; mechanism of transfer of inorganic and organic substances primarily across epithelial membranes; and characteristics and properties of transporting macromolecules and ion channels.

619 Lipids (also Nutritional Sciences 602)
Fall. 2 credits.
Lecs, T R 11:15. A. Bensadoun.
Advanced course on biochemical, metabolic, and nutritional aspects of lipids. Emphasis is placed on critical analysis of current topics in lipid methodology; lipid absorption; lipoprotein secretion, molecular structure, and catabolism; mechanism of hormonal regulation of lipolysis and fatty acid synthesis; and cholesterol metabolism and atherosclerosis.

658 Molecular Mechanisms of Hormone Action (also Veterinary Medicine 758)
Spring. 2 credits. Prerequisite: permission of instructor. Minimum enrollment of 6 required. Offered alternate years. Not offered 1990–91.
An advanced course developed from the current literature on endocrine mechanisms.

710–718 Special Topics in Physiology
Fall or spring. 1 or 2 credits for each topic. May be repeated for credit. Enrollment in each topic may be limited. S-U grades optional, with permission of instructor. Lectures, laboratories, discussions, and seminars on specialized topics.
Fall 1991: three topics are offered.

712 Plasma Lipoproteins
Sem, one hour each week, to be arranged. A. Bensadoun.

714 Physiology of Pregnancy
2 credits. Offered alternate years.
Lab to be arranged. P. W. Nathanielsz.

715 Acid-Base Relations (also Veterinary Medicine 627)
2 credits. Autotutorial. A. Dobson.

716 Regulation of Mitosis and the Cell Cycle
1 credit.
Lec, M 8 p.m. R. B. Silver.

719 Graduate Research in Animal Physiology (also Veterinary Medicine 628)
Fall or spring. Variable credit. Prerequisites: written permission of the section chair and of the staff member who supervises the work and assigns the grade. Students must register in Vet Research Tower 725. S-U grades optional.
Hour to be arranged. Staff. Similar to Biological Sciences 499 but intended for graduate students who are working with faculty members on an individual basis.

753 Animal Biotechnology
Fall. 3 credits. Prerequisites: two courses in biology, two courses in biochemistry, and one course in endocrinology or nutrition. Not offered 1990–91.
Lec and disc, M 11:15; lab, M 1:25–4:20; additional hours to be arranged. W. Hansel and staff.
A course in animal biotechnology designed to prepare students for research in animal genetic engineering. Standard techniques for cloning DNA in bacteria are discussed. Development of expression systems in bacteria, yeast, and mammalian cells; DNA sequencing and analysis; and insertion of DNA into mammalian cells are carried out in the laboratory.

811 Advanced Physiological Methods I
Fall. 2 credits. Enrollment limited. Prerequisites: graduate student status or permission of course coordinator. S-U grades only.
Lab to be arranged. Staff.
This is a course primarily for graduate students in physiology and related discipline. Experiments are carried out in the laboratories of physiology faculty members to acquaint graduate students with the latest techniques/methods in physiological research. Three modules are offered each semester by arrangement with the course coordinator.

812 Advanced Physiological Methods II
Spring. 2 credits. Enrollment limited. Prerequisites: graduate student status or permission of course coordinator. S-U grades only.
Lab to be arranged. Staff.
This is a course primarily for graduate students in physiology and related discipline. Experiments are carried out in the laboratories of physiology faculty members to acquaint graduate students with the latest techniques/methods in physiological research. Three modules are offered each semester by arrangement with the course coordinator.

Related Courses In Other Departments
Adaptations of Marine Organisms (Biological Sciences 413)
Advanced Work in Animal Parasitology (Veterinary Medicine 727)
Animal Development (Veterinary Medicine 507)
Animal Reproduction and Development (Animal Science 220)
Developmental Biology (Biological Sciences 385)
Embryology (Biological Sciences 389)
Fundamentals of Endocrinology (Animal Science 427–428)
Insect Morphology (Entomology 322)
Integration and Coordination of Energy Metabolism (Biological Sciences 637 and Nutritional Sciences 638)
Neuroanatomy (Veterinary Medicine 504)
Sensory Function (Biological Sciences 492)
Teaching Experience (Biological Sciences 498)
Undergraduate Research in Biology (Biological Sciences 499)

BIOCHEMISTRY, MOLECULAR AND CELL BIOLOGY

132 Orientation Lectures in Biochemistry
Spring, weeks 1–3. No credit. Primarily for freshmen, sophomores, and transfer students. S-U grades only (registered students receive an unsatisfactory grade for nonattendance).
Lec, S 10:10–11:00, for first 3 S of semester. Section chair and staff.
Discussions by six professors about their research and promising areas for research in the future.

231 General Biochemistry
Fall. 3 credits. Intended for students who have not studied biochemistry previously and who do not expect to pursue it further. Not recommended for students who have taken organic chemistry. Prerequisite: Chemistry 104 or 208 or equivalent. S-U grades optional.
A brief introductory section relating organic chemistry to biochemistry is given, followed by the biochemical material in the usual one-semester introductory courses. Topics of general interest are also included.

232 Recombinant DNA Technology and Its Applications (also Biology and Society 232)
Lecs, M W F 11:15. F. H. Buttel, J. M. Calvo, J. M. Fessenden MacDonald, and staff.
An introduction to molecular approaches to biology. Basic concepts underlying recombinant DNA technology together with strategies for cloning genes are discussed. Much of the course deals with applications of recombinant DNA technology to basic research and to biotechnology. Applications to be discussed include screening for genetic diseases, animal
and plant improvement, and production of proteins useful in medicine, agriculture, and industry. Historical, regulatory, social, and ethical issues are presented and discussed. Recommended especially for freshmen with AP biology credit and sophomores desiring a firm background in recombinant DNA technology in preparation for taking genetics and biochemistry. Also appropriate for nonmajors.

233 Introduction to Research in Molecular Biology and Biological Engineering (also Agricultural and Biological Engineering 233) Fall. 2 credits. Limited to 50 students. S-U grades optional.

Lec. 1 hour each week to be arranged; disc, 1 hour each week to be arranged. L. P. Walker and D. B. Wilson. The process of research in biology and biological engineering as well as current problems and discoveries are presented through lectures and readings of biographies, autobiographies, and review articles about specific fields and discoveries.

330-331 Principles of Biochemistry Introductory biochemistry is offered in two formats: individualized instruction (330) and lectures (331). Individualized instruction is offered to a maximum of approximately 150 students each semester. Lectures given fall semester only.

330 Principles of Biochemistry, Individualized Instruction Fall or spring. 4 credits (2 credits if taken after Biological Sciences 231). Prerequisite: Chemistry 253 or 358 or equivalent. May not be taken for credit after Biological Sciences 331. S-U grades optional for graduate students only.

The core material of the course includes protein structure and function, enzymes, basic metabolic pathways, DNA, RNA, protein synthesis, and an introduction to gene cloning. There are no formal lectures; the course has an individualized format. The core material is divided into units of work that are outlined in a study guide written to accompany the textbook. Students prepare the work on their own, with help from the staff of the Study Center if desired, and must pass a written and an oral quiz on each unit. A final exam is required.

Elective discussion groups on research papers and on review articles are scheduled throughout the semester.

331 Principles of Biochemistry, Lectures Fall or 6-week summer session. 4 credits (or 2 credits if taken after Biological Sciences 231). Enrollment may be limited to 400 students in fall. Prerequisite: Chemistry 253 or 358 or equivalent. May not be taken for credit after Biological Sciences 330. S-U grades optional for graduate students only.

430 Basic Biochemical Methods Fall or spring. 4 credits. Enrollment limited. Prerequisites: Biological Sciences 330 or 331, organic chemistry lectures and laboratory, and permission of instructor obtained by preregistering in Wing 312. Concurrent registration in Biological Sciences 330 or 331 may be arranged in the fall term for studentsLEC and disc, F 1:25; labs, M W or T R 12:20—4:25. R. R. Alexander, J. M. Griffiths, and staff.

A laboratory course designed to introduce students to the biochemical techniques commonly used in the study of biological materials. Students work in small groups, and each student may select two of three or four modules offered. Various assay methods, chromatography, electrophoresis, and use of the scintillation counter are taught. Protein isolation, purification, and enzyme characterization methods are included. Techniques used in the clinical laboratory are applied to analyses of blood and urine samples, and some nutritional analyses are done for protein and vitamin contents of foods. In the nucleic acids module, students are introduced to recombinant DNA methodology, including plasmid DNA, and studying the function of transfer RNA. A student may isolate and purify the lipids from a material of his/her choice and perform thin-layer chromatography and carry out cholesterol and phospholipid analyses. Separation techniques are used to isolate cell components and experiments are conducted to illustrate basic biochemical methods.

432 Survey of Cell Biology Spring. 3 credits. Prerequisite: Biological Sciences 330 or 351 or equivalent. S-U grades optional for graduate students only.

Lecs, T R 12:20—1:35. V. M. Vogt. A description of the growth properties of animal cells in culture, followed by discussions of the changes in cells that are induced by tumor viruses and carcinogens. Topics include immortalization of cells, the cell cycle, macromolecular growth factors, cell-surface properties, cell cytoskeleton, transcription and translation of retrovirus genes, and structure and function of viral and cellular onc genes.

630 Laboratory in Cell Biology Spring. 4 credits. Enrollment limited. Prerequisites: a course in biochemistry or cell biology, and permission of instructor obtained by registering in 258 Biotechnology Building with J. Gibson.

Labs, M W 1:25—4:25 or R 9:05—4:25; disc to be arranged. J. Gibson and staff.

The course emphasizes techniques for handling and experimenting with cells of different kinds and provides experience in experimental design. Limited numbers of vertebrate animals are used for two experiments where no alternative approach exists.

631 Protein Structure and Function Fall. 3 credits. Prerequisite: introductory biochemistry, physical chemistry, and organic chemistry. S-U grades optional for lecture.

Lectures on the principles of protein structure and the nature of enzymatic catalysis.

633 Membranes and Bioenergetics Spring. 2 credits. Prerequisite: Biological Sciences 330 or 351 or equivalent. Offered alternate years. Not offered 1990-91.

Structure and dynamics of biological membranes, physical methods, model membranes, ionophores, ion-transport ATPases, mitochondrial and chloroplast electron transfer chains, and examples of transport from plants, animals, and bacteria.
633 Biosynthesis of Macromolecules
Fall. 2 credits. Prerequisite: Biological Sciences 330 or 331. Recommended: Biological Sciences 281.
Synthesis of DNA, RNA, and proteins, and regulation of gene expression.

[634 Biochemistry of the Vitamins and Coenzymes (also Nutritional Sciences 634)]
Spring. 2 credits. Prerequisites: Biological Sciences 330 or 331 or equivalent and either Chemistry 358 or 360. Offered alternate years. Not offered 1990-91.
Lectures on the chemistry, biochemistry, and physiology of vitamins and coenzymes. Emphasis is placed on the relationship of structure and function, and mechanisms are examined in detail. Readings from the current primary literature are assigned weekly.

[635 Mechanisms of Metabolic Regulation (also Nutritional Sciences 635)]
Spring. 2 credits. Prerequisites: Biological Sciences 330 or 331 and either Chemistry 358 or 360, or permission of instructor. Offered alternate years. Not offered 1990-91.
Lecs, T R 9:05. Staff.
Lectures on the identification and characterization of regulatory steps in metabolism, considered from both theoretical and practical aspects. The intracellular mechanisms of regulation are emphasized, with specific examples in mammalian metabolism examined in detail.

636 Current Topics in Cell Biology
Spring. 2 credits. Prerequisites: Biological Sciences 330 or 331, and 432, or their equivalents.
Lectures covering current topics in cell biology, including a detailed discussion of secretion, endocytosis, membrane-bound organelles, membrane recycling, the cytoskeleton, cell motility, junctions, the cell cycle, and related topics. Together with Biological Sciences 632 and 639, this course provides broad coverage of the cell biology subject area.

637 Integration and Coordination of Energy Metabolism (also Nutritional Sciences 637)
Fall. 3 credits. Prerequisite: Biological Sciences 330 or 331 or equivalent.
The elements and dynamics of energy metabolism in higher animals are developed systematically through biochemical characterization of the metabolic components and structure of major tissues and organs. Emphasis is placed on correlations with physiologic functions. Mechanisms that control energy metabolism within individual tissues and coordinate these processes in intact animals are analyzed in the contexts of selected physiologic and pathologic stresses.

638 Intermediate Biochemical Methods
Fall or spring. 4 credits. Seminars for graduate students meeting with instructors and undergraduates studying in biochemistry. Enrollment limited to 24 students in the fall and 48 students in the spring. Admission to the course is dependent upon the results of a personal interview with the teaching support specialist (x5-8072 or x5-5706), which must be held before the first day of classes. There is no admission to the course without the interview. Undergraduates are urged to interview during preregistration. May not be taken for credit after Biological Sciences 430.
Lab, T 9:05–4:25 (fall); lab, T or R 9:05–4:25 (spring). D. B. Wilson and staff.
Selected experiments on proteins, enzymes, DNA, and bioenergetics to illustrate basic biochemical properties. The course emphasizes quantitative aspects and techniques currently used in biochemical research.

639 The Nucleus
Spring. 2 credits. Prerequisite: Biological Sciences 330 or 331 or equivalent. Recommended: Biological Sciences 281.
Lec, M 9-9:55 p.m. J. T. Lies.
Lectures on topics of eucaryotic gene organization, regulation of gene expression, RNA processing, chromatin structure, the structure and movement of chromosomes, and the architecture of the nucleus. This course and Biological Sciences 632 and 636 provide broad coverage of the cell biology subject area.

648 Plant Biochemistry
Spring. 3 credits. Prerequisites: organic chemistry, biochemistry, and a course in plant physiology. Offered alternate years.
Selected areas of plant biochemistry are reviewed in the context of the plant life cycle and responses to the environment. Topics include metabolism of lipids, carbohydrates, organic acids, and proteins; nitrogen and sulfur assimilation; respiration, photosynthesis; development and regulation of chloroplasts; and cell-wall composition and properties. Attention is paid to operation of control mechanisms.

[650 Nitrogen Metabolism (also Nutritional Sciences 667)]
Spring. 2 credits. Prerequisites: Biological Sciences 330 or 331 and Chemistry 358 or 360. Offered alternate years. Not offered 1990-91.
Lecs, T R 9:05. Staff.
A coverage of most aspects of nitrogen metabolism. The first section of the course deals with nitrogen fixation and assimilation, and the metabolism and biological importance of purines, pyrimidines, porphyrins, alkaloids, and amines. This is followed by discussion of the pathways of amino acid biosynthesis and degradation. The final section includes discussion of protein turnover and degradation, nitrogen excretion, and interorgan relationships in higher organisms. Emphasis throughout the course is on hormonal, developmental, and molecular biological aspects of metabolic regulation and evolutionary differences.

731-732 Current Topics in Biochemistry
Fall or spring. 1/2 or 1 credit for each topic. May be repeated for credit. Prerequisite: Biological Sciences 330 or 331 or equivalent. S-U grades only.
Lectures and seminars on specialized topics. Fall 1990: two topics are offered.

733 Lipoprotein Receptors
1/2 credit.

737 Calculation of Polypeptide and Protein Conformations
1/2 credit.
T 7:30–9:30 p.m. (3 lecs) Feb. 5, 12, 19. H. A. Scheraga.

738 Current Topics in Biochemistry
1/2 credit.

734 Oncogenes
1/2 credit.

735 Mitochondrial Genetics of Yeast
1/2 credit.
W 7:30–9:30 p.m. (3 lecs) Oct. 30-Nov. 15. T. D. Fox.
Spring 1991: four topics are offered.

736 Current Topics in Biochemistry
1/2 credit.

751 Professional Responsibilities of Scientists (also Toxicology 751)
Fall. 1 credit. Prerequisites: advanced graduate standing and permission of instructor. S-U grades only. Offered alternate years.
Sem, W to be arranged. J. M. Fessenden MacDonald.
Case studies of professional responsibilities and dilemmas faced by scientists in academia, industry, and government, with discussions of possible approaches, alternatives, and outcomes. Readings of scientific, ethical, and general papers provide background for discussions. Topics for consideration include legal liabilities, frauds and misconduct, conflicts of interest/commitment, peer review, and professional codes of ethics.

[752 Isotope Kinetics (also Nutritional Sciences 682)]
Spring. 2 credits. Prerequisite: calculus. S-U grades only. Offered alternate years. Not offered 1990-91.
Lec, T 7:30–9:30 p.m. D. B. Zilversmit.
Quantitative analysis of the transport and distribution of nutrients, metabolites, and drugs in multicompartamental systems. The material is presented as lectures, discussion groups, and problem sets.

755 Biotechnology Transfer: Professional Issues and Social Concerns (also Biology and Society 755)
Fall. 1 credit. Limited to advanced graduate students. S-U grades only.
Topics to be covered include how scientific discoveries become commercial products; what's going on at Cornell, biotechnology as Big Science; research in an industrial setting; impact of corporate support; patents,
To learn the basic techniques of biochemical
graduate students majoring in biochemistry. S-
May be repeated for credit. Required of, and
researcher and the student.
the fall term is devoted to a rotation project
in different labs selected by the student. Letter grades are assigned for this
students. Letter grades are assigned for this
and staff members.
biotechnology. Readings from diverse
instructors and thesis committee members for
his or her thesis research and then meets with
must register for 2 credits each term, since an
833 Advanced Biochemical Methods II
First half of the fall term is an intensive lab
course with defined experiments assigned to
the students. Letter grades are assigned for this
and staff members.
To learn the basic techniques of biochemical
research, each student performs experiments
on proteins, enzymes, DNA, and bioenergetics.
First half of the fall term is an intensive lab
course with defined experiments assigned to
the students. Letter grades are assigned for this
and staff members.
Limited to graduate students
majoring in biochemistry. S-U grades optional.
 Lectures on current research in biochemistry,
presented by distinguished visitors and staff
members.
831 Advanced Biochemical Methods I
Fall. 6 credits. Limited to graduate students
majoring in biochemistry. S-U grades optional. Labs and discs, 12 hours each week to be
arranged. Organizational meeting first R
of semester at 10:10. D. B. Wilson and
staff.
To learn the basic techniques of biochemical
research, each student performs experiments
on proteins, enzymes, DNA, and bioenergetics.
First half of the fall term is an intensive lab
course with defined experiments assigned to
the students. Letter grades are assigned for this
and staff members.
Limited to graduate students
majoring in biochemistry. S-U grades optional.
 Lectures on current research in biochemistry,
presented by distinguished visitors and staff
members.
830 Biochemistry Seminar
Fall or spring. No credit.
Sem, F 4:30. Staff.
Lectures on current research in biochemistry,
presented by distinguished visitors and staff
members.

Related Courses in Other Departments
Lipids (Biological Sciences 619 and
Nutritional Sciences 602)
Molecular Aspects of Development
(Biological Sciences 483)
Molecular Mechanisms of Hormone Action
(Biological Sciences 658 and
Veterinary Medicine 758)
Teaching Experience (Biological Sciences
498)
Undergraduate Research in Biology
(Biological Sciences 499)
BIOLOGICAL SCIENCES

[346 Algal Physiology]
Fall. 3 credits. Prerequisites: one year of introductory biology for majors and Biological Sciences 242 or 341, or permission of instructor. S-U grades optional. Offered alternate years. Not offered 1990-91.
Lecs, T R 8:30-9:35. T. G. Owens.
A brief description of the algal classes, as well as classical and emerging criteria for taxonomic classification. Discussions include the interactions of algae with their physical and chemical environments, uptake of inorganic compounds, algal photosynthesis, and metabolic strategies of unicellular and macrophytic algae. Emphasis is placed upon physiological comparisons between algae and higher plants.

[349 Plant Physiology, Laboratory]
Fall. 2 credits. Prerequisite: concurrent enrollment in Biological Sciences 341. May not be taken for credit after Biological Sciences 244.
Lab, W or R 1:25-4:25; disc, W or R 12:20. Lab and disc must be on same day. C. Reiss.
Experiments exemplify concepts covered in Biological Sciences 341 and offer experience in a variety of biological and biochemical techniques, including use of small amounts of radioisotopes.

[359 Biology of Grasses]
Fall. 3 credits. Limited to 24 students. Prerequisite: one year of introductory biology or an introductory plant taxonomy course; or permission of instructor. S-U grades optional. Offered alternate years. Not offered 1990-91.
Lecs, T R 10:10; lab, T 1:25-4:25. J. J. Davis.
Systematics and ecology of the graminoid plant families (grasses, sedges, and rushes), with principal emphasis on grasses. Major topics include taxonomy, phylogenetics, physiology, reproductive biology, ecotypic variation, speciation, biogeography, and population biology. The role of graminoids as ecosystem dominants, weeds, and the origins of cultivated species are discussed. Laboratory concentrates on the diversity of grasses.

[442 Biology of Plant Species]
Spring. 2 credits. Prerequisite: Biological Sciences 248 or equivalent. Recommended: Biological Sciences 378 and 463. S-U grades optional, with permission of instructor. Offered alternate years. Not offered 1990-91.
A comprehensive introduction to the nature and origin of plant species, with coverage of plant evolutionary genetics, race formation and modes of speciation, evolution of reproductive isolating mechanisms, types of species complexes found in plants, cytogenetic aspects of plant speciation, natural hybridization and its consequences, and the origin and nature of higher taxa.

[443 Research Methods in Systematic Botany]
Fall. 2 credits. Limited to 10 students. Prerequisite: Biological Sciences 248 or equivalent. Offered alternate years.
Lab, F 1:25-4:25; additional hours to be arranged. Bailey Hortorium staff.
An introduction to the methodology of plant systematic research: field studies; sampling and collecting methods; preparation of taxonomic revisions and monographs; numerical methods of data analysis; and laboratory methods in cytotaxonomy, comparative anatomy, and comparative chemistry, as applied to problems in plant systematics.

[444 Plant Cell Biology]
Fall. 4 credits. Limited to 24 students. Prerequisite: Biological Sciences 242 or 341, and 345, or permission of instructor.
Lecs, M W F 9:05; lab, M or W 1:25-4:25. R. O. Wayne.
Evidence from microscopy, physiology, biochemistry, and molecular biology is used to try to unravel the mystery of the living cell. The dynamics of protoplasm, membranes, and the various organelles are studied. The mechanisms of cell growth and division, the relationship of the cytoskeleton to cell shape and motility, the interaction of the cell with its environment, and the processes that give rise to multicellular differentiated plants are investigated.

[445 Photosynthesis (also Applied and Engineering Physics 601)]
Fall. 3 credits. Prerequisite: Biological Sciences 248 and Chemistry 104 or 208, Mathematics 105 or 111, and either Physics 102 or 208 or permission of instructor. Offered alternate years.
Lecs, M W F 10:10. T. G. Owens.
A detailed study of the processes by which plants utilize light energy to grow. Structure of the photosynthetic apparatus, light absorption, photochemistry, and electron transport are emphasized. The course incorporates biophysical, biochemical, physiological, and molecular aspects of photosynthesis. Photosynthetic carbon metabolism is not covered in detail. Discussions include relevant material in bacterial, algal, and higher-plant photosynthesis.

[446 Plant Cytogenetics]
Fall. 3 credits. Limited to 18 students. Prerequisite: Biological Sciences 281 or equivalent. S-U grades optional. Offered alternate years. Not offered 1990-91.
Lecs, M W 9:05; lab, R 2-4:25. J. J. Davis.
An analysis of the cellular mechanisms of heredity, particularly the behavior of chromosomes, and the role of chromosome structure and behavior in plant evolutionary processes. The application of chromosomal studies to analyses of plant species biology and phylogenetics is also covered.

[447 Molecular Plant Systematics]
Fall. 3 credits. Prerequisites: Biological Sciences 248, 281, and 330 or 331, or written permission of instructor. Offered alternate years. Not offered 1990-91.
The study of variation at the molecular level and its application to the taxonomy and evolution of plants, particularly angiosperms. Emphasis is on the use of molecular evidence, particularly DNA data, for reconstructing phylogenies. Theory and methods of phylogenetic reconstruction are discussed. The organization and evolution of nuclear, mitochondrial, and chloroplas genomes, genes, and gene products are described from the standpoint of their utility for addressing a diversity of evolutionary questions. These questions span the entire taxonomic spectrum, and include such issues as the origin of angiosperms, evolution of species related to important crop plants, and population studies of hybridization.

[448 Plant Evolution and the Fossil Record]
Spring. 3 credits. Prerequisite: Biological Sciences 241 or equivalent, or permission of instructor. Offered alternate years.
An introduction to evolution, surveying major changes in plants from the origin of life to the present. Emphasis is placed on plant form and function, adaptations to particular ecologic settings, and evolutionary theory as it relates to plants.

[450 Optical Methods of Plant Biologists]
Spring. 3 credits. Limited to 12 students. Prerequisite: Biological Sciences 444 or permission of instructor.
Lecs, T R 1:25; lab R 2:15-4:30. R. O. Wayne.
Theoretical and practical aspects of light microscopy, including brightfield, darkfield, phase-contrast, polarization, differential-interference-contrast, and fluorescence microscopy, as well as video- and computer-based digital image enhancement, are studied. Students learn both qualitative and quantitative techniques to probe noninvasively the structure and function of living plant cells.

[640 Applied Plant Anatomy]
Spring. 3 credits. Prerequisites: Biological Sciences 345 or equivalent, and permission of instructor.
Lecs and disc, T R 9:05; lab, W 10:10-1:10 or by arrangement with instructor. Bailey Hortorium Staff.
The use of anatomy in vascular plants for diagnosis of structure, taxonomic relationships, evolutionary sequences, and ecological adaptations, with emphasis on recent research. The laboratory provides experience in techniques and interpretation.
641 Laboratory in Plant Molecular Biology
Spring. 4 credits. Prerequisites: Biological Sciences 281 or equivalent, 330 or 331 or equivalent, and permission of instructor. S-U grades optional.
Selected experiments on genome organization, gene expression, and gene transfer in plants. The course emphasizes the application of molecular biology methodology to plant systems. Students may have additional lab time to complete assignments.

642 Plant Mineral Nutrition (also Soil, Crop, and Atmospheric Sciences 642)
Spring. 3 credits. Prerequisite: Biological Sciences 341 or equivalent. Offered alternate years.
A detailed study of the processes by which plants acquire and use mineral nutrients from the soil. Topics include the uptake, translocation, and compartmentation of mineral elements; root-soil interactions; the metabolism of mineral elements; the involvement of mineral nutrients in various physiological processes; and the nutrition of plants adapted to extreme environmental stresses (e.g., salinity). Specific mineral elements are emphasized to illustrate these topics.

643 Plant Physiology, Advanced Laboratory Techniques
Fall. 4 credits. Prerequisites: organic chemistry, biochemistry, and a course in plant physiology. S-U grades only.
Lab, T or W 6-5, 6 disc, M 4-30-5-30. A. T. Jagendorf.
An introduction to some modern methods in experimental plant biology. A partial list of techniques used includes radioactivity measurements, infrared CO₂ analysis, gel electrophoresis and Western Blots, cellular electrode measurements, microtiter plate technology for enzyme assays, sensitive growth measurements, HPLC and GC-MS, and computer interfacing with laboratory equipment.

644 Plant Growth and Development
Spring. 3 credits. Prerequisites: Biological Sciences 345 and either 242 or 341 or their equivalents, or written permission of instructor. Offered alternate years. Not offered 1990-91.
Lecs, M W F 9:05. P. J. Davies, D. J. Paolillo.
Explores the changes that occur during plant growth and development and their control: morphological and anatomical changes in apices, tissue differentiation, organ formation, embryo development, gene regulation, hormone action and interaction, the influence of light in development, flowering, fruiting, dormancy, abscission, and senescence.

645 Families of Tropical Flowering Plants
Fall. 1 credit. Prerequisite: written permission of instructor. S-U grades only. Offered alternate years.
Lec and disc, F 11:15. Bailey Hortorium staff.
The families of flowering plants encountered solely or chiefly in tropical regions are considered in lectures, discussions, and demonstrations, with the aim of providing basic points of recognition for, and an understanding of, diversity and relationships in these families for the student venturing into the tropics.

646 Families of Tropical Flowering Plants: Field Laboratory
Intersession. 3 credits. Limited to 20 students, with preference given to graduate students from member institutions of the Organization for Tropical Studies. Prerequisite: Biological Sciences 243 or 248 or equivalent. Recommended: Biological Sciences 645. S-U grades only. For more details and application, contact the L. H. Bailey Hortorium, 467 Mann Library. Offered alternate years.
Bailey Hortorium staff.
An intensive orientation to families of tropical flowering plants represented in forests of the American tropics. Emphasis on field identification combined with laboratory analysis of available materials in a "whole-biology" context.

647 Seminar in Systematic Botany
Fall and spring. 1 credit. May be repeated for credit. Prerequisite: written permission of course coordinator required for undergraduates. S-U grades optional.
Sem to be arranged. Bailey Hortorium staff.
Lectures and discussions led by staff, visitors, and students on topics of current importance to systematic botany.

648 Plant Biochemistry
Spring. 3 credits. Prerequisites: organic chemistry, biochemistry, and a course in plant physiology. Offered alternate years.
Selected areas of plant biochemistry are reviewed in the context of the plant life cycle and responses to the environment. Topics include metabolism of lipids, carbohydrates, organic acids, and proteins; nitrogen and sulfur assimilation; respiration; photosynthesis; development and replication of chloroplasts; and cell-wall composition and properties. Attention is paid to operation of control mechanisms.

649 Transport of Solutes and Water in Plants
Fall. 3 credits. Prerequisite: Biological Sciences 341 or equivalent. Offered alternate years. Not offered 1990-91.
Transport of ions, water, and organic materials in plants; mechanisms of ion transport; relationships between ion transport and metabolism; ion uptake and transport in higher plants; phloem transport; and water relations of single cells and whole plants.

651 Quantitative Whole-Plant Physiology
Fall. 3 credits. Prerequisites: introductory physics, calculus, and plant physiology. S-U grades only. Offered alternate years.
An exploration of the extent to which physiological processes and their interactions can be formulated in a quantitative manner and integrated to describe various aspects of plant behavior, including growth and yield. Consideration is given to characterization of the plant environment, energy balance, gas exchange, water relations, photosynthesis, respiration, translocation, nutrient supply, and the timing of developmental events.

652 Plant Molecular Biology II
Spring. 1-4 credits (1 credit per section). Prerequisites: Biological Sciences 281, 330 or 331, and 653 (Section 01), or their equivalents. S-U grades optional.
A series of four-week modules on specialized topics. Coordinator: S. H. Howell.

Section 01 Molecular Plant-Pathogen Interactions (also Plant Pathology 652)
1 credit.
An examination of the molecular properties that control the development of host-parasite interactions in both microorganisms (viruses, bacteria, and fungi) and higher plants. Contemporary theories describing the genetic mechanisms of pathogenesis and resistance are discussed.

Section 02 Molecular Biology of Plant Organelles
1 credit.
Lecs to be arranged (12 lecs) for four weeks. M. R. Hanson, D. B. Stern.
An in-depth examination of the molecular biology of plant mitochondria and plastids. Topics include the organization and expression of organelle genomes, cytoplasmic male sterility, gene regulation during plastid development, and organelle transformation.

Section 03 Molecular Aspects of Plant Development II
1 credit.
A systems approach to the study of plant development from a molecular perspective. Topics include Arabidopsis as a model plant system; molecular genetics of flowering, seed development, and germination; shoot and root development; senescence; and fruit ripening.

Section 04 Molecular Plant-Microbe Interactions (also Microbiology 652)
1 credit.
Course focuses on the interactions of Agrobacteria and Rhizobia with plants. Topics on Agrobacterium planta; plant interactions include plant-microbe recognition mechanisms, T-DNA transfer process, oncogenesis and use of Agrobacterium to transform higher plants. Topics on Rhizobium-plant interactions include regulation of nitrogenase activity and expression, organization and function of the sym plasmid, nodule development, plant genetics involved in plant-microbe interaction.
BIOLOGICAL SCIENCES

653 Plant Molecular Biology I
Fall. 1–4 credits (1 credit per section).
Prerequisites: Biological Sciences 281 and 330 or 331, or their equivalents. S-U grades optional.
A series of four-week modules on specialized or evolutionary biology. Coordinator: S. H. Howell.

Section 01 Concepts and Techniques in Plant Molecular Biology
1 credit.
Lecs, M W F 10:10 (12 lecs) Sept. 3–Sept. 28. R. L. Last, R. Wu.
A review and update on molecular biology concepts relevant to plant sciences including DNA synthesis, RNA transcription and processing, protein structure and translation. Methods applicable to plant molecular biology are described including isolation of nucleic acids, gel electrophoresis, recombinant DNA techniques, mutant production, DNA-protein interactions, and use of antibodies.

Section 02 Plant Biotechnology (also Plant Breeding 653 and Plant Pathology 653)
1 credit.
Applications of molecular biology and tissue culture to plant biotechnology are studied. Topics include gene introduction and tissue culture technologies, use of somaclonal variation, use of cultured plant materials and transgenic plants to obtain resistance to insects, plant diseases, and herbicides and to improve nutritional and food processing qualities. Regulatory and social issues relating to plant biotechnology are discussed.

Section 03 Plant Genome Organization and Function (also Plant Breeding 653)
1 credit.
Molecular structure and evolution of plant nuclear genomes are explored. Topics covered include mechanisms for packaging DNA into chromosomes, molecular structure of telomeres and centromeres, DNA replication and methylation, and nuclear biology of plant transposons. Methods for genetic and physical mapping of plant genomes are discussed as well as applications of mapping tools for gene isolation and plant breeding.

Section 04 Molecular Aspects of Plant Development I
1 credit.
The regulation of plant nuclear gene expression during development and in response to environmental stimuli is explored. Topics include the use of classical and molecular genetics, transposable elements, and transgenic plants to identify and characterize cis- and trans-acting elements responsible for the regulation of selected genes.

654 Plant Nomenclature
Spring. 1 credit. Prerequisite: written permission of instructor. S-U grades optional. Offered alternate years.
Lec and disc to be arranged. R. P. Korf.
An analysis of the International Code of Botanical Nomenclature and its application to various plant groups.

656 Topics in Paleobotany
Spring. 1 credit. Prerequisite: Biological Sciences 448 or equivalent background in evolution or written permission of instructor.
Lab and disc to be arranged. K. J. Niklas.
A series of selected topics to provide a background in plant evolution, paleobotanical literature, and evolutionary theory. Among the topics discussed are the origin of a terrestrial flora, the evolution of the seed plants, and the origin and adaptive radiation of the angiosperms.

657 Literature of Taxonomic Botany
Fall. 1 credit. Prerequisite: written permission of instructor. S-U grades optional. Offered alternate years.
A survey of the basic reference works in taxonomy from the pre-Linnaean literature drawn on by Linnaeus to contemporary publications, with comments on the peculiarities of the books (when appropriate), publication dates, typographic devices, and intricacies of bibliographic citation.

740 Plant Biology Seminar
Fall and spring. No credit (no official registration). Required of graduate students doing work in plant biology.
Sem, F 11:15. Staff. Lectures on current research in plant biology, presented by visitors and staff.

742 Current Topics in Plant Molecular Biology
Fall and spring. 1 credit. Limited to 20 students. Primarily for graduate students, with preference given to majors or minors in plant molecular biology; written permission of instructor required for undergraduates. S-U grades only.
Sem, 1 hour each week to be arranged. Staff.
A seminar with critical presentation and discussion by students of original research papers concerning the molecular biology of plants. Staff direction varies each year and is included in a semester in advance.

749 Graduate Research in Botany
Fall or spring. Variable credit. May be repeated for credit. S-U grades optional. Hours to be arranged. Staff.
Similar to Biological Sciences 699 but intended for graduate students who are working with faculty members on an individual basis.

840 Current Topics in Plant Physiology
Fall or spring. 2 credits. May be repeated for credit. S-U grades only.
Sem to be arranged. Staff.
Seminar reports by graduate students on current literature in experimental plant physiology or related areas.

Related Courses in Other Departments
Marine Botany: Ecology of Marine Plants (Biological Sciences 449)
Introductory Mycology (Plant Pathology 309)
Mycology (Plant Pathology 709)
Mycology Conferences (Plant Pathology 649)
Plant Ecology, Lectures and Laboratory (Biological Sciences 463 and 465)
Plant Ecology Seminar (Biological Sciences 569)

Taxonomy of Fungi (Plant Pathology 729)
Teaching Experience (Biological Sciences 498)
Undergraduate Research in Biology (Biological Sciences 499)

ECOLOGY, SYSTEMATICS, AND EVOLUTION

261 Ecology and the Environment (formerly Principles of Ecology)
Fall and summer. 4 credits. Prerequisite: one year of introductory biology. S-U grades optional.
An introduction to principles of ecology concerning the interactions between organisms and their environment. The course deals with both terrestrial and aquatic ecology, drawing examples from both plant and animal studies. Phenomena that occur at the individual, population, community, and ecosystem levels of organization are discussed. These principles are extensively applied to current environmental problems and issues.

263 Field Ecology
Fall. 2 credits. Prerequisite: concurrent or previous enrollment in Biological Sciences 261. Limited to 16 students.
Field exercises designed to give students direct experience with field work, with emphasis on developing observational skills, journal keeping, and a landscape perspective. Topics include plant succession, niche relationships of insects, influence of herbivores and competition on plant performance, decomposition of soil litter, sampling plankton, and use of scientific collections.

272 Functional Ecology: How Animals Work
Spring. 4 credits. Prerequisite: one year of introductory biology for majors. Offered alternate years. Not offered 1990–91.
An introductory course for students interested in organismal biology. The features of the physical environment that are important to insects and vertebrates are used to illustrate the interaction of physiological, behavioral, and morphological characteristics in organismal activity and homeostasis. Laboratories include a survey of the diversity of endothermal and ectothermal animals, ecophysiological measurements, and measurements of important environmental parameters in local habitats. This course uses live and preserved vertebrate animals for field observations and laboratory exercises.
274 Functional and Comparative Morphology of Vertebrates
An exploration of the relations between form and function in biological systems with an emphasis on trends in vertebrate evolution. Lectures integrate data from topics such as locomotion, feeding, size and scaling with issues of historical importance and current interest (e.g., correlation of body parts, adaptationist explanations, developmental constraints, criteria for determining biomechanical and energetic “efficiency”). Laboratories include dissections of preserved vertebrate animals and noninvasive live animal demonstrations (motion analysis, surface electrode, and force-plate recordings).

275 Human Biology and Evolution (also Anthropology 275)
Fall. 3 or 4 credits (4 credits with discussion). S-U grades optional, with permission of either instructor. Lecs, M W F 10:10; optional disc to be arranged. K. A. R. Kennedy, J. D. Haas.
An introduction to the biology of Homo sapiens through an examination of human evolution, behavioral diversity, and modes of adaptation to past and present environments. Evolutionary theory is reviewed in relation to the current evidence from the fossil record and studies of the evolution of human behavior. A survey of human adaptation covers a complex of biological and behavioral responses to environmental stress. Human diversity is examined as the product of long-term evolutionary forces and short-term adaptive responses. Topics such as creationism, the Pintdown fraud, the sociobiology debate, genetic engineering, race and IQ, and racism are presented as examples of current issues in human biology. These topics and others are the focus of the optional one-hour weekly discussions.

371 Human Paleontology (also Anthropology 371)
Fall. 4 credits. Prerequisite: one year of introductory biology or Anthropology 101 or permission of instructor. Offered alternate years. Not offered 1990–91. Lecs, M W F 2:30; lab, 1 hour each week to be arranged; occasional field trips. K. A. R. Kennedy.
A broad survey of the fossil evidence for human evolution with special attention to skeletal and dental anatomy, geological contexts, paleoecology, dating methods, archaeological associations, and current theories of human origins and physical diversity.

373 The Invertebrates: Form, Function, and Evolution
Fall. 4 credits. Limited to 30 students. Prerequisite: one year of introductory biology for majors. Offered alternate years. Lecs, M W F 10:10; lab, W 1:25–4:25; one optional weekend field trip to Sholes Marine Laboratory. Small fee for the field trip. C. D. Harvell.
An introduction to the evolution of form and function among the major invertebrate phyla. Strong emphasis is placed on the integration of evolutionary pasts and ecological present to produce extant forms. Lectures draw heavily on original literature from the field of invertebrate functional morphology. Laboratories and demonstrations often involve live marine and freshwater invertebrates.

378 Evolutionary Biology
Spring. 4 credits. Prerequisite: one year of introductory biology or permission of instructor. S-U grades optional. Lecs, M W F 10:10; disc, 1 hour each week to be arranged. Evening prelms Feb. 2; and Apr. 9. R. G. Harrison, M. A. Geber.
The course considers explanations for patterns of diversity and for the apparent “good fit” of organisms to the environment. Topics covered include the genetic and developmental basis of evolutionary change, processes at the population level, the theory of evolution by natural selection, levels of selection, concepts of fitness and adaptation, modes of speciation, long-term trends in evolution, rates of evolution, and extinction.

455 Insect Ecology (also Entomology 455)
Fall. 3 credits. Prerequisites: Biological Sciences 261 and Entomology 212 or their equivalents. Offered alternate years. Not offered 1990–91. Lecs, M W F 11:15; disc, 1 hour each week to be arranged. R. B. Root.
Ecological and evolutionary principles are integrated through thorough examination of outstanding investigations. Topics include the factors responsible for the great diversity of insects, adaptive syndromes associated with climate, natural history of arthropod guilds, impact of insects on terrestrial vegetation, population regulation, and the contrast between natural and managed ecosystems.

457 Limnology, Lectures
Fall. 3 credits. Prerequisite: Biological Sciences 261 or written permission of instructor. Recommended: introductory chemistry. Lecs M W F 11:15. N. G. Hairston, Jr. The study of continental waters, with emphasis on lakes and ponds. Factors regulating nutrients, population and community dynamics of freshwater organisms, and physical and chemical properties of fresh water are considered.

458 Limnology, Laboratory
Fall. 2 credits. Prerequisite: concurrent or previous enrollment in Biological Sciences 457. Lab, T W or R 1:25–4:25; 1 weekend field trip. N. G. Hairston, Jr. and staff. Laboratories and field trips devoted to studies of the biological, chemical, and physical properties of lakes and other freshwater environments. Vertebrate dissection (fish) during one laboratory exercise and during a portion of weekend field trip.

461 Population and Evolutionary Ecology
Problems of ecology are viewed from an evolutionary perspective, exploring issues of adaptation and fitness definition by developing advanced understanding of demography and interspecific interactions. Blending theory and empirical findings, the course explores population dynamics, life-history theory, dispersal, competition, predation, parasite-host coevolution; mutualisms; and sexual, kin, and group selection. Methods of estimation and analysis are learned in laboratory.

462 Marine Ecology
Lectures and discussion focus on current research in broad areas of marine ecology with an emphasis on processes unique to marine systems. A synthetic treatment of multiple levels of organization in marine systems including organismal, population, community, ecosystems, and evolutionary biology.

463 Plant Ecology, Lectures
Fall. 3 credits. Prerequisites: two advanced-level courses in biology, including Biological Sciences 261, or permission of instructor. Recommended: some taxonomic familiarity with vascular plants and concurrent enrollment in Biological Sciences 465. Lecs, M W F 11:15. P. L. Marks. Principles of plant-environment and plant-plant interactions in relation to the evolution, distribution, structure, and functioning of plants and plant communities.

464 Microevolution and Macroevolution (also Entomology 464)
Spring. 3 credits. Limited to 25 students. Prerequisite: Biological Sciences 378 or permission of instructor. S-U grades optional, with permission of instructor. Offered alternate years. Not offered 1990–91. Lecs, T R 10:10–11:30; disc, one hour each week to be arranged. A. R. McCune and S. Via.
An advanced course in evolutionary biology integrating macroevolutionary and microevolutionary approaches. Areas of emphasis include patterns and processes of speciation, phylogeny reconstruction in populations and higher taxa, the origins and fate of variation, and causes of major evolutionary transitions. Discussion of these problems involve data and approaches from genetics, morphology, systematics, paleobiology, development, and ecology.

465 Plant Ecology, Laboratory
Fall. 1 credit. Prerequisite: concurrent enrollment in Biological Sciences 463. Lab, F 12:05–5. P. L. Marks. Laboratory and field exercises designed to give firsthand experience with the ecology of plants. Emphasis is on making observations and measurements of plants in the field.
470 Ecological Genetics (also Entomology 470)
Spring. Prerequisite: Biological Sciences 378 or permission of instructor. S-U grades optional. Offered alternate years.
Lecs, T R 10:10-11:30; disc, one hour each week to be arranged. S. Via.
A study of the relationships between genetic and ecological processes in populations. Topics include consequences of genetic variation in age-structured populations; demographic concepts of fitness; evaluation of methods for measuring genetic variation and natural selection on ecologically important traits; genets of competitive ability and predator avoidance; genetic and ecological aspects of phenotypic plasticity; character displacement; maintenance of genetic variability; limits to selection. How theory can be used to formulate hypotheses about evolutionary mechanisms in natural populations is considered and experiments designed to test such hypotheses are evaluated.

471 Mammalogy
Fall. 4 credits. Recommended: Biological Sciences 274. S-U grades optional, with permission of instructor. Offered alternate years. Fee, $15. Not offered 1990-91.
Lecs, M W F 9:05; lab, M or T 1:25-4:25; 1 weekend field trip required. D. K. McClearn.
Lectures on the evolution, classification, distribution, and adaptations of mammals. Laboratory and fieldwork on systematics, ecology, and natural history of mammals of the world, with primary emphasis on the North American fauna. Systematics laboratories held in the museum at Research Park. Live animals are studied in the field and are sometimes used in the laboratory for nondestructive demonstrations or experiments. The systematics laboratory exercises are based on museum specimens.

472 Herpetology
Spring. 4 credits. Recommended: Biological Sciences 274. S-U grades optional, with permission of instructor. Offered alternate years. Fee, $15.
Lecs and labs, T R 12:20-4:25; occasional field trips and special projects. F. H. Pough.
Lectures cover various aspects of the biology of amphibians and reptiles, including evolution, zoogeography, ecology, behavior, and physiology. Laboratory includes systematics, functional morphology, and behavior. Live animals are studied in the field and are sometimes used in the laboratory for nondestructive demonstrations or experiments. The systematics laboratory exercises are based on museum specimens.

473 Ecology of Agricultural Systems (also Soil, Crop, and Atmospheric Sciences 473)
Fall. 3 credits. Limited to 45 students. Prerequisite: Biological Sciences 261 or permission of instructor. S-U grades optional. Offered alternate years.
Lecs and disc, T R 2:30-3:45. During the first 6 weeks of class the Thursday meetings may run to 5:00 because of field trips. A. G. Power, T. W. Scott.
Analysis of the ecological processes operating in agricultural systems, with an emphasis on the interactions between organisms. Topics include nutrient dynamics in agroecosystems, plant competition and facilitation, intercropping, the ecology of species invasions, mutualism in agroecosystems, plant-herbivore relations, plant-pathogen interactions, biological pest control, and evolutionary processes in agriculture. Case studies from both the tropics and the temperate zone are used to illustrate important concepts.

474 Laboratory and Field Methods in Human Biology (also Anthropology 474)
Spring. 5 credits. Prerequisite: one year of introductory biology or Anthropology 101 or permission of instructor. Offered alternate years.
Lecs and labs, T R 10:10-12:05; additional hours to be arranged. Independent research project required. R. A. Kennedy.
Practical exercises and demonstrations of modern approaches to the methodology of physical anthropology. Emphasis on comparative human anatomy, osteology, description of skeletal and living subjects, paleopathology, skeletal maturation, and relevant field techniques for the archaeologist and forensic anthropologist. This course includes dissection of a preserved nonhuman primate.

475 Ornithology
Fall. 4 credits. Recommended: Biological Sciences 274. S-U grades optional, with permission of instructor. Offered alternate years. Fee, $15.
Lectures cover various aspects of the biology of birds, including anatomy, physiology, systematics, evolution, behavior, ecology, and biogeography. Laboratory includes dissection of dead material, studies of skeletons and plumages, and specimen identification of avian families of the world and species of New York. Independent projects emphasize research skills.

476 Biology of Fishes
Fall. 4 credits. Recommended: Biological Sciences 272 or 274 or equivalent experience in vertebrate zoology. S-U grades optional, with permission of instructor. Offered alternate years.
An introduction to the study of fishes: their structure, evolution, distribution ecology, physiology, behavior, classification, and identification, with emphasis on local species. Live animals are studied in the field and are sometimes used in the laboratory for nondestructive demonstrations or experiments. The systematics and dissection laboratories use preserved specimens.

478 Ecosystem Biology
Spring. 4 credits. Prerequisite: Biological Sciences 261 or equivalent. S-U grades optional. Offered alternate years.
Lecs and disc, T R 10:10-12:05. R. W. Howarth.
Analysis of ecosystems in terms of energy flow and nutrient cycling, emphasizes experimental approach and comparative aspects of terrestrial, freshwater, and marine ecosystems. Consideration of anthropogenic effects on ecosystems, such as from acid precipitation and offshore oil pollution. Discussion of the interactions between ecosystem processes and community structure.

479 Paleobiology (also Geological Sciences 479)
Fall. 3 credits. Prerequisites: one year of introductory biology for majors and either Biological Sciences 272 or 274, Geological Sciences 375, Biological Sciences 373, or permission of instructor. Offered alternate years. Not offered 1990-91; next offered 1991-92.
Lecs, M W F 12:20. J. L. Gisne and staff.
A survey of the major groups of organisms and their evolutionary histories. Intended to fill out the biological backgrounds of geology students and the geological backgrounds of biology students concerning the nature and significance of the fossil record for their respective studies.

660 Field Studies in Ecology and Systematics
Spring. Variable credit. Prerequisites: Biological Sciences 261, a taxon-oriented course, and permission of instructor. Estimated cost of room and board (exclusive of transportation) to be announced.
Lecs and labs to be arranged. Staff. This course provides students an opportunity to learn techniques and a new biota by participating in an intensive series of field exercises. An extended field trip is scheduled during either intercession or spring break. The region visited, trip objectives, and other details are announced by the instructor in charge in the division's catalog supplement issued at the beginning of the semester. Meetings on campus are devoted to orientation and reports on completed projects.

661 Environmental Policy (also ALS 661 and Biology and Society 461)
Fall and spring. 3 credits each term. (Students must register for 6 credits each term, since an "R" grade is given at the end of the fall term.) Limited to 12 students. Prerequisite: permission of instructor.
This course uses an interdisciplinary approach to focus on complex environmental and energy problems. Ten to twelve students, representing several disciplines, investigate significant environmental problems. The research team spends two semesters preparing a scientific report for publication in Science or BioScience.

662 Mathematical Ecology (also Statistics and Biometry 662)
Spring. 3 credits. Prerequisites: one year of calculus and a course in statistics. Recommended: a general ecology course. S-U grades optional, with permission of instructor. Offered alternate years.
664 Seminar in Insect-Plant Interactions (also Entomology 664)
Spring. 2 credits. Intended for seniors and graduate students. Limited to 15 students. Prerequisites: courses in entomology, ecology, evolution, and organic chemistry and written permission of instructor. S-U grades optional. Offered alternate years. Not offered 1990–91. Sem. 1 evening each week to be arranged. P. P. Feeny. Presentations and discussions by students on the evolution of patterns of interaction between plants and insects, emphasizing critical evaluation of concepts and evidence.

665 Limnology Seminar
Spring. 1 credit. May be repeated for credit. Primarily for graduate students; written permission of instructor required for undergraduates. S-U grades optional. Offered alternate years. Sem to be arranged. N. G. Hairston, Jr. A seminar course on advanced topics in freshwater ecology.

666 Comparative Biogeochemistry
Fall. 4 credits. Prerequisites: solid background in ecology, environmental chemistry, or related environmental science. Permission of instructor required for undergraduates. S-U grades optional. Offered alternate years. Not offered 1990–91. Next offered fall 1992, spring 1994, and alternate spring semesters thereafter. Lecs and disc, TR 10:10–12:05. R. W. Howarth. Lectures cover the biotic controls on the chemistry of the environment. Emphasis is on cycles of major elements and minor elements globally and in selected ecosystems, stressing the coupling of element cycles. A comparative approach is used to illustrate similarities and differences in element cycling among ecosystems, with slight emphasis on aquatic ecosystems. Analysis of both theoretical and applied issues, including global atmospheric changes and factors controlling the acidification of lakes.

669 Plant Ecology Seminar
Spring. 1 credit. May be repeated for credit. Suggested for students majoring or minoring in plant ecology. S-U grades optional. Sem to be arranged. Staff. Includes review of current literature, student research, and selected topics of interest to participants.

670 Graduate Seminar in Vertebrate Biology
Fall or spring. 1 credit. May be repeated for credit. Primarily for graduate students; written permission of instructor required for undergraduates. S-U grades only. Sem to be arranged. Staff. Seminar presentations and discussions by students on areas of current research in vertebrate biology. Topics vary from semester to semester.

673 Human Evolution: Concepts, History, and Theory (also Anthropology 673)
Fall. 3 credits. Prerequisite: one year of introductory biology, Anthropology 101, or permission of instructor. Offered alternate years. Sem, W 7:30–9:30 p.m.; additional hours to be arranged. K. A. R. Kennedy. The historical background of present-day concepts of man's evolutionary variations and adaptations in space and time is surveyed. The formation of biological anthropology as an area of scientific inquiry within the social and biological sciences is reviewed. Students select their own topics within a broad range of readings in the history of Western concepts of human origins, diversity, and place in nature.

674 Principles of Systematics (also Entomology 674)
Spring. 4 credits. Limited to 15 students. Prerequisite: permission of instructor. Recommended: an introductory biological systematics course. Offered alternate years. Not offered 1990–91. Lecs, discs, and labs, M W 1:25–4:25. Q. D. Wheeler and staff. An introduction to modern theory and methods of systematic biology. Lectures are on theoretical systematics and include species concepts, classification, phylogenetics, and biogeography. Laboratories include modern methods of analysis of data, including cladistic and computer methods and numerical methods. Laboratory grade is based in part on a final paper.

760 Special Topics in Evolution and Ecology
Fall or spring. 1–3 credits. May be repeated for credit. Enrollment limited. S-U grades optional, with permission of instructor. Hours to be arranged. Staff. Independent or group intensive study of special topics of current interest. Content varies and is arranged between student and staff member.

765 Autecology/Population Ecology
Fall. 4 credits. Prerequisite: Biological Sciences 261 or equivalent. S-U grades optional. Not offered 1990–91. Lecs and disc, TR 10:10–12:05. Staff. Comparison of the responses and adaptations of organisms to environments in selected ecosystems. Emphasis on similarities and differences in molecular and organismal mechanisms by which plants and animals cope with their environments. Critical examination of the properties and dynamics of populations. Emphasis on theories of adaptation, population structures, dynamics, and regulation.

766 Communities and Ecosystems

767 Current Topics in Ecology and Evolutionary Biology
Fall. 4 credits. Prerequisites: Biological Sciences 261 and 378 or their equivalents. S-U grades optional. Lecs and disc, TR 10:10–12:05. Staff. Critical evaluation and discussion of theory and research in ecology and evolutionary biology. Lectures by faculty and student-led discussions of topics in areas of current importance.

Related Courses in Other Departments
Advanced Soil Microbiology (Agronomy 666)
Advanced Work in Parasitology (Veterinary Medicine 737)
Animal Social Behavior (Biological Sciences 427)
Biology of Plant Species (Biological Sciences 442)
Early People: The Archaeological and Fossil Record (Anthropology 203 and Archaeology 203)
Marine Sciences Courses (Biological Sciences 363–370, 467, 477)
Plant Geography (Biological Sciences 440)
Related Courses in Entomology (Entomology 213, 331, 332, 370, 453, 471, 621, 631, 633, 634, 635, 672)
Related Courses in Natural Resources (Natural Resources 270, 302, 456, 603)
Soil Microbiology, Lectures (Soil, Crop, and Atmospheric Sciences 476)
Stream Ecology (Entomology 456)
Taxonomy of Vascular Plants (Biological Sciences 248)
Teaching Experience (Biological Sciences 498)
Undergraduate Research in Biology (Biological Sciences 489)
Undergraduate Seminar in Biology (Biological Sciences 400)
Veterinary Parasitology (Veterinary Medicine 510)
GENETICS AND DEVELOPMENT

281 Genetics
Fall, spring, or summer. 5 credits. Not open to freshmen in fall semester. Enrollment may be limited to 200 students. Prerequisite: one year of introductory biology or equivalent. Students who have taken Biological Sciences 282 may register only with written permission of instructor. No admittance after first week of classes.

Lecs, T R 10:10–12:05, labs, M T W or R 2–4–6–8, additional hours to be arranged. Labs may also be scheduled T or R 8–9:55, W or F 10:10–12:05, F 2:30–4:25, or S 10:10–12:05 if enrollment requires it. Students do not choose lab sections during course enrollment; lab assignments are made during first day of classes. T. D. Fox, M. L. Goldberg, R. J. MacIntyre.

A general study of the fundamental principles of genetics in eukaryotes and prokaryotes. Discussions of gene transmission, gene action and interaction, gene linkage and recombination, gene structure, gene and chromosome mutations, genetic aspects of differentiation, genetics in populations, breeding systems, and extrachromosomal inheritance. Aspects of recombinant DNA technology are discussed. In the laboratory, students perform experiments with microorganisms and conduct an independent study of inheritance in Drosophila.

282 Human Genetics
Spring. 2 or 3 credits (2 credits if taken after Biological Sciences 281). Each discussion limited to 25 students. Prerequisite: one year of introductory biology or equivalent; written permission of instructor required for students who have taken Biological Sciences 281. S-U grades optional.

Lecs, M W 10:10 (lecs, also F 10:10 1st 3 weeks only); disc, R 10:10 or F 10:10 or 11:15; R. A. Calvo, H. T. Stinson.

Presentation of the technology and discussion of the ethical, social, and legal implications of recent advances in human genetics. Among the topics that may be considered are new reproductive strategies, wrongful life and wrongful birth, eugenics, genetic counseling, genetic screening (prenatal, neonatal, presymptomatic, carrier, and workplace), genetic effects on the psychosocial, sociobiological, and genetic therapy. Students lead most discussions. There is a major writing component in the course.

481 Population Genetics
Fall. 4 credits. Prerequisite: Biological Sciences 281.

Lecs, M W F 10:10; disc, M 2:30 or T 1:25 C. F. Aquadro.

A study of factors that influence the genetic structure of Mendelian populations and that are involved in the process of speciation. Topics include the diversity and measurement of genetic variation, mating and reproductive systems, selection and fitness, genetic drift, migration and population structure, mutation, multilocus genetics of specialization, quantitative traits, and the maintenance of molecular variation. The interplay between theory and the data from experiments and natural populations are emphasized.

482 Human Genetics and Society
Fall. 3 credits. Prerequisites: Biological Sciences 281 and 330 or 331. Enrollment limited to senior biological sciences majors, with preference given to students studying genetics and development. S-U grades optional.

Disc, T 2:30–4:25; additional 1 hour each week to be arranged. R. A. Calvo, H. T. Stinson.

An in-depth study of recent literature on the genetic and molecular bases of developmental events. Topics include specification of segmentation in Drosophila and in vertebrates, the molecular and genetic events encompassing gametogenesis, fertilization and early development, and sex determination.

283 Molecular Aspects of Development
Spring. 2 credits. Limited to upperclass and graduate students. Prerequisites: Biological Sciences 485, Microbiology 291 or equivalent, and written permission of instructor. Lab, T 1:25–4:25; additional hours to be arranged. S. A. Zahler.

Problem solving in bacterial genetics.

483 Molecular Evolution
Spring. 3 credits. Prerequisites: Biological Sciences 281, 330 or 331, and 385. Offered alternate years.

Lecs, T R 10:10–11:45; W. H. Mark.

An examination of the molecular biology of developing systems, with emphasis on the genomic, transcriptional, post-transcriptional, translational, and other post-translational mechanisms involved in regulating development. Both prokaryotic and eukaryotic systems are considered, but emphasis is on the latter.

Topics to be discussed include changes in chromatin structure, DNA rearrangements, control of RNA synthesis and processing, translational controls, nucleo-cytoplasmic interactions, and genetic responses to hormone treatment. The regulation of selected developmental systems is considered in detail.

4844 Molecular Evolution
Spring. 3 credits. Prerequisites: Biological Sciences 281 and organic chemistry. Offered alternate years. Not offered 1990–91.

Lecs, T R 11:15; R. J. MacIntyre.

An analysis of evolutionary changes in proteins and nucleic acids, and gene–enzyme variability in natural populations. Theories on the evolution of the genetic code and the construction of phylogenetic trees from biochemical data are discussed. The second half of the course concerns the evolution and the organization of genomes from viruses to higher eukaryotes.

485 Microbial Genetics, Lecture and Laboratory
Fall. 2 credits. Limited to upperclass and graduate students. Prerequisites: Biological Sciences 281 and Microbiology 290, or written permission of instructor. S-U grades optional.

Lec, W T 7:30–9:25 p.m. S. A. Zahler.

Genetics of bacteria and their viruses, with emphasis on the mechanisms of genetic phenomena. The first half of the course deals with the biosynthesis of proteins, RNA, and DNA by bacteria; how bacteria control those syntheses; the mechanisms of DNA repair and recombination; and types of mutations that occur. The second half of the course deals with more specific questions: transformation in various bacteria; plasmids and their roles in mating, genetic engineering, antibiotic resistance, and pathogenicity; and the molecular biology of selected bacteriophages (mainly T4, T7, M13, ΦX174, MS2, lambda, and Mu).

487 Microbial Genetics, Laboratory
Fall. 3 credits. Primarily for upperclass students. Limited to 16 students. Prerequisites: concurrent or previous enrollment in Biological Sciences 485, Microbiology 291 or equivalent, and written permission of instructor.

Lab, T 1:25–4:25; additional hours to be arranged. S. A. Zahler.

Problem solving in bacterial genetics.

[863 Molecular Developmental Genetics
Spring. 2 credits. Prerequisites: Biological Sciences 281, 330 or 331, and 385. Not offered 1990–91.

An in-depth study of recent literature on the genetic and molecular bases of developmental events. Topics include specification of segmentation in Drosophila and in vertebrates, the molecular and genetic events encompassing gametogenesis, fertilization and early development, and sex determination.

864 Advanced Topics in Population Genetics (formerly Biological Sciences 689)
Spring. 2 credits. Limited to 20 students. Prerequisites: Biological Sciences 481 or equivalent and written permission of instructor. S-U grades optional. Offered alternate years.

An in-depth exploration of current areas of research in population genetics. Readings primarily from recent books and the current literature. Specific topics announced the previous fall and in the division's catalog supplement. Format includes lectures, discussion, and presentations by students.

866 Mamalian Development
Spring. 2 credits. Limited to 25 students. Prerequisites: Biological Sciences 281, 330 or 331, and 385 or their equivalents. S-U grades optional. Offered alternate years. Not offered 1990–91.

Lecs, W F 11:15; W. H. Mark.

An in-depth study of mammalian development using the mouse as the animal model. The course covers classical embryology beginning with gametogenesis followed by morphogenetic and biochemical analyses of pre- and post-implantation development. Current topics in experimental embryology, including genetic analysis of mutants, study of cell lineage with chimeras, in vivto culturing of embryonic stem cells, and molecular approaches to understanding development are examined.
[687 Developmental Genetics
Fall. 2 credits. Limited to 20 students. Prerequisites: Biological Sciences 281 or equivalent, Biological Sciences 385 or equivalent. S-U grades optional. Offered alternate years. Not offered 1990-91. Lees, M 7:30-9:30 p.m. K. J. Kemphues. Selected topics focus on the use of genetic analysis in understanding mechanisms of development. Topics are drawn primarily from studies in Drosophila, Caenorhabditis, and Mouse. Other possible topics include pattern formation, cell lineage, neural development, maternal information in development, germ cell development, sex determination, and intercellular communication. Students read current literature and are given the opportunity to discuss each topic in class.]

[688 Yeast Genetics
Spring. 2 credits. Prerequisites: Biological Sciences 281, 330 or 331, and 485, or written permission of instructor. S-U grades optional. Offered alternate years. Not offered 1990-91. Lees, W 7:30-9:25 p.m. T. D. Fox. An advanced overview of genetic studies in yeast, primarily Saccharomyces cerevisiae. Both formal genetic and molecular approaches to selected problems of biological interest are discussed.]

780 Current Topics in Genetics
Fall and spring. 2 credits. May be repeated for credit. Primarily for graduate students, with preference given to majors in the Field of Genetics, written permission of instructor required for undergraduates. Limited to 20 students. No auditors. S-U grades optional, with permission of instructor. Sem to be arranged. Staff. A seminar course with critical presentation and discussion by students of original research papers in a particular area of current interest. Content of the course and staff direction vary each year and are announced a semester in advance.

781 Problems in Genetics and Development
Fall. 2 credits. Limited to first-year graduate students in the Field of Genetics. Disc to be arranged. Staff. An introduction to the research literature in selected areas through weekly problem sets and discussions.

782-787 Current Genetics/Development Topics
Fall or spring. 1/2 or 1 credit for each topic. May be repeated for credit. S-U grades only. Lectures and seminars on specialized topics to be announced.

Related Courses in Other Departments
Animal Cytogenetics (Animal Science 419)
Immunogenetics (Animal Science 486)
Animal Development (Veterinary Medicine 507)
Current Topics in Biochemistry (Biological Sciences 731-736)
Laboratory in Plant Molecular Biology (Biological Sciences 641)
Evolutionary Biology (Biological Sciences 378)
Plant Growth and Development (Biological Sciences 644)

Plant Molecular Biology I (Biological Sciences 653)
Reproduction and Development of Marine Invertebrates (Biological Sciences 488)
Undergraduate Research in Biology (Biological Sciences 499)

MICROBIOLOGY
For course listings in Microbiology see the College of Agriculture and Life Sciences section in the Courses of Study. Information on the requirements for the program of study in microbiology is available in 200 Stimson Hall.

NEUROBIOLOGY AND BEHAVIOR
221 Neurobiology and Behavior I: Introduction to Behavior
Fall. 3 or 4 credits (4 credits with discussion and written projects). 4-credit option required of students studying neurobiology and behavior. Each discussion limited to 20 students, with preference given to students studying neurobiology and behavior. Not open to freshmen. Prerequisites: one year of introductory biology for majors. May be taken independently of Biological Sciences 222. S-U grades optional.

Lecs, M W F 12:20; disc to be arranged. Evening prelins Oct. 2 and Oct. 30. S. T. Emten and staff. A general introduction to the field of behavior. Topics include evolution and behavior, behavioral ecology, sociobiology, chemical ecology, communication, neuroethology, rhythmicity, orientation and navigation, and hormonal mechanisms of behavior.

222 Neurobiology and Behavior II: Introduction to Neurobiology
Spring. 3 or 4 credits (4 credits with discussion and term paper). 4-credit option required of students studying neurobiology and behavior. Each discussion limited to 20 students, with preference given to students studying neurobiology and behavior. Not open to freshmen. Prerequisites: one year of introductory biology for majors and one year of chemistry. May be taken independently of Biological Sciences 221. S-U grades optional.

Lecs, M W F 12:20; disc to be arranged. O. P. Hamill and staff. A general introduction to the field of cellular and integrative neurobiology. Topics include neural systems, neuroanatomy, developmental neurobiology, electrical properties of nerve cells, synaptic mechanisms, neurochemistry, motor systems, sensory systems, learning, and memory.

[322 Hormones and Behavior (also Psychology 322)
Spring. 3 credits. Limited to juniors and seniors, open to sophomores only by permission. Prerequisites: one year of introductory biology plus a course in psychology or Biological Sciences 221 or 222. S-U grades optional. Not offered 1990-91. Lees, T R 10:10-11:30; disc to be arranged. E. Adkins Regan, R. E. Johnston. The relationship between endocrine and neuroendocrine systems and the behavior of animals, including humans. Major emphasis is on sexual, parental, and aggressive behavior.]

324 Biopsychology Laboratory (also Psychology 324)
Fall. 4 credits. Limited to 24 upperclass students. Prerequisites: laboratory experience in biology or psychology, Biological Sciences 221 and 222 or Psychology 123 and 222, and permission of instructor. S-U grades optional. Labs, T R 1:25-4:25. T. DeVoogd. Experiments designed to provide research experience in animal behavior (including learning) and its neural and hormonal mechanisms. A variety of techniques, species, and behavior patterns are included. Live animals are used in the laboratory.

[326 The Visual System
Spring. 4 credits. Prerequisites: Biological Sciences 222 or 311, or permission of instructor. S-U grades optional. Offered alternate years. Not offered 1990-91. Lees, M W F 10:10; disc, 1 hour each week to be arranged. H. C. Howland. The visual systems of vertebrates and invertebrates are discussed in breadth and depth. Topics covered include the optics of eyes, retinal neurophysiology, and structure and function of higher visual centers.]

[396 Introduction to Sensory Systems (also Psychology 396)
Spring. 3 or 4 credits (3 credits with discussion and term paper). 4-credit option required of students studying neurobiology or behavior or perception or cognition or biopsychology; students are expected to have elementary knowledge of perception, neurophysiology, behavior, and chemistry. Permission of instructor required for 4-credit option. Offered alternate years. Not offered 1990-91. Lees, M W F 9:05. B. P. Halpern. This course employs the Socratic method, in which the instructor asks questions of the students. Students read, analyze, and discuss in class difficult original literature dealing with both those characteristics of sensory systems that are common across living organisms and those sensory properties that represent adaptations of animals to particular habitats or environments. The principles and limitations of major methods used to examine sensory systems are considered. General principles of sensory systems and auditory, visual, and somesthetic systems are covered. One aspect of each system (e.g., localization of objects in space by sound, color vision, and thermoreception) is selected for special attention. At the level of An Introduction to the Physiology of Hearing, by J. O. Pickles, Photoreceptors: Their Role in Vision, by A. Fein and E. Z. Szuts, Comparative Studies of Hearing in Vertebrates edited by A. N. Popper and R. R. Ray; and "Information Processing in Cutaneous Mechanoreceptors," Federation Proceedings 42:1983.]

[420 Topics In Neurobiology and Behavior
Fall or spring. Variable credit. May be repeated for credit. Primarily for undergraduates. S-U grades optional. To be arranged. Staff. Courses on selected topics in neurobiology and behavior; can include lecture and seminar courses. Topics, instructors, and times of organizational meetings are listed in the division's catalog supplement issued at the beginning of the semester.]

NEUROBIOLOGY AND BEHAVIOR 353
422 Computer Interfacing for Neurobiologists (formerly Biological Sciences 628)
Spring. 3 credits. Limited to 20 students.
Prerequisites: Biological Sciences 222 and 426, or permission of instructor. S-U grades optional. Offered alternate years. Not offered 1990–91.
Lecs, T R 9:05; lab, 4 hours each week to be arranged. D. W. McBride.

Lectures and laboratories deal with interfacing a computer with an experiment and doing data acquisition and computer control of the experiment. Topics include introduction to digital electronics, data acquisition and monitoring of an experiment (A/D conversions and digital input), some data analysis and decision making, computer control of an experiment (D/A conversions and digital output), communication (RS-232 and IEEE), assembler language programming, sampling theory and Fourier analysis, feedback control using computers, optimizing data through-put, and storage to disk. A Mac II computer is used in this course.

424 Neuroethology
Fall. 3 credits. Prerequisites: Biological Sciences 221 and 222. S-U grades optional for graduate students only. Offered alternate years. Not offered 1990–91.
The integrated study of neurobiology and animal behavior. Representative topics include acoustic communication in insects and amphibians, vocal mechanisms and plasticity of bird song, mammalian hearing, bat echolocation, prey detection by owls, electroproduction and electoreception in fish, neurophysiology and behavior of pheromone communication, neurobehavior of vision in anurans, mammalian visual processing, command neurons and decision networks, locomotion and motor-pattern generation, escape behavior in invertebrates, and neural correlates of learning. Assigned readings include original articles in the scientific literature. A term paper on the neural basis of animal behavior is required.

426 Electronics for Neurobiology
Spring. 3 credits. Limited to 20 students.
Prerequisites: Biological Sciences 222 and one year of introductory physics. Offered alternate years.
Lecs, T R 9:05; lab, 4 hours each week to be arranged. D. W. McBride.

Electronics as applied to electrophysiological instrumentation, data acquisition, and analysis. Topics include a review of basic electrical concepts, the cell as a circuit, design of amplifiers and pulse generators for biological use, and computer interfacing to an experiment.

427 Animal Social Behavior
Fall. 3 credits. Limited to 30 students.
Prerequisites: Biological Sciences 221 and 261 and permission of instructor. S-U grades optional, with permission of instructor. Offered alternate years.

An intensive course for upper-division students interested in the adaptation and evolution of animal societies, and the social behavior of nonhuman primates. Lectures, discussions, and student presentations examine topics including spacing systems, mating systems, sexual selection, mate choice, conflict and cooperation in animal societies, and the evolution of deceit, honesty, and altruism.

428 Mechanisms of Insect Behavior: Field and Laboratory Studies
Fall. 3 credits. Limited to 15 students.
Prerequisite: Biological Sciences 221. S-U grades optional, with permission of instructor. Not offered 1990–91.

A course intended for upper-division students. An in-depth review of studies performed with whole animals and designed to elucidate the mechanisms underlying their behaviors. Topics to be covered include sensory physiology, biological clocks, hormonal controls, learning and memory orientation to skymarks and landmarks, communication, foraging, kin recognition, and thermoregulation. Assigned readings include original articles in the scientific literature. The laboratories provide first-hand experience with the social behavior of honeybees.

429 Olfaction and Taste: Structure and Function (also Psychology 429)
Fall. 3 or 4 credits (4 credits with term paper on research project, which can, but need not, study nonhuman vertebrates). Prerequisite: a 300-level course in biology or equivalent. Preference given to junior and senior psychology and biology majors and graduate students. S-U grades optional for graduate students only. Offered alternate years. Not offered 1990–91.
Lecs, T R 9:05. B. P. Halpern.

The structural and functional characteristics of olfaction and taste are explored by reading and discussing current literature in these areas. Structure is examined at the light- and electron-microscope levels, as well as at the molecular level. The neurophysiological and biochemical aspects of function are considered. The emphasis of the course is on vertebrates, especially air-breathing vertebrates in the case of olfaction, although there is some coverage of invertebrate forms.

491 Principles of Neurophysiology
Fall. 4 credits. Limited to 20 students.
Prerequisite: Biological Sciences 222 or written permission of instructor. S-U grades optional.
Lecs, M W 10:10; lab, M or W 12:20–4:25; additional hours to be arranged. B. R. Johnson.

A laboratory-oriented course designed to teach the theory and techniques of modern cellular neurophysiology. Lecture time is used to present laboratory exercise results, to supplement laboratory topics, and to encourage discussion of primary research papers. Laboratory topics include electrical modeling of neurons, intracellular and extracellular recording, and analysis of neuronal properties such as nerve conduction velocities, resting potentials, electrical synaptic transmission, voltage-clamp analysis of ionic currents, and neuronal architecture. A variety of preparations, both invertebrate and vertebrate, are used as model systems. Computer acquisition and analysis of laboratory results are emphasized.

492 Sensory Function (also Psychology 492)
Spring. 4 credits. Prerequisite: Biological Sciences 222 or 511 or an upper-level course in biopsychology, or permission of instructor. S-U grades optional. Offered alternate years. Lecs, M W F 10:10; disc, 1 hour each week to be arranged. H. C. Howland, B. P. Halpern.

Classical topics in sensory function such as vision, hearing, touch, and balance, as well as some more modern topics, including sensory coding, location of stimulus sources in space, and the development of sensory systems. Both human and nonhuman systems are discussed. In all cases the chemical, physical, and neurophysiological bases of sensory information are treated and the processing of this information is followed into the central nervous system. At the level of The Senses, edited by Barlow and Mollon, and An Introduction to the Physiology of Hearing, by Pickles.

493 Developmental Neurobiology
Fall. 3 credits. Prerequisite: Biological Sciences 222 or permission of instructor. S-U grades optional, with permission of instructor. Offered alternate years.
Lecs, M W F 9:05. R. Booker.

Lectures covering the development of the nervous system taking examples from both vertebrates and invertebrates. Emphasis is on cellular and molecular issues, that is, How do nerve cells differentiate both morphologically and biochemically? The role of cues such as hormones and developmental genes in neural development are discussed. Readings are taken from original journal articles.

494 Comparative Vertebrate Neuroanatomy
Spring. 3 credits. Intended for juniors, seniors, and graduate students. Prerequisite: Biological Sciences 222 or equivalent. S-U grades optional. Offered alternate years. Not offered 1990–91.
Organization and evolution of neuroanatomical pathways as substrates for species-typical vertebrate behaviors. The course is divided into two major sections: principles of brain organization and vertebrate brain evolution.

495 Membrane Ion Channels
Fall. 3 credits. Limited to 15 students.
Prerequisites: Biological Sciences 222, college introductory physics, and calculus, or permission of instructor. S-U grades optional. Offered alternate years.
Lecs, M W F 10:10. O. P. Hamill.

The functional and mechanistic aspects of membrane ion channels, beginning with basic concepts and model systems. Theories of ion permeation and channel gating are discussed. Development of membrane ion channels during neuron differentiation and the role of membrane channels in disease states are also considered.
NEUROBIOLOGY AND BEHAVIOR 355

497 Neurochemistry and Molecular Neurobiology
Fall. 3 credits. Limited to 30 students. Prerequisites: Biological Sciences 222 and either 330 or 351, or permission of instructor. S-U grades optional. Offered alternate years. Not offered 1990-91.

722 Graduate Survey of Neurobiology
Spring. 1 credit. Limited to graduate students. Concurrent registration in Biological Sciences 222 is not required. S-U grades optional. Sem to be arranged. O. P. Hamill and staff.

A survey course involving readings of the original literature in neurobiology. A weekly seminar, primarily in the form of student-led discussions, is held to discuss readings linked to the material presented in Biological Sciences 222.

723 Advanced Topics in Animal Behavior
Fall or spring. Variable credit. May be repeated for credit. Primarily for graduate students in behavior. Prerequisite: permission of instructor. S-U grades optional.

Sem to be arranged. Staff.

A seminar on a specific topic in animal behavior. The instructor presents lectures during the first few course meetings; the remainder of the course is devoted to student presentations. Topic and instructor are listed in the division's catalog supplement issued at the beginning of the semester.

724 Field Methods in Animal Behavior
Fall or spring. Variable credit. May be repeated for credit. Primarily for graduate students in behavior. Prerequisite: permission of instructor. S-U grades optional.

Sem and fieldwork to be arranged. Staff.

A seminar-field experience course designed for first-year graduate students in animal behavior. Weekly seminars discussing field methodology, data collection, and hypothesis testing are followed by an intensive period (ten days to two weeks) in the field. Specific topics and field sites vary from semester to semester.

Topic and instructor are listed in the division's catalog supplement issued at the beginning of the semester.

790 Advanced Topics in Cellular and Molecular Neurobiology
Fall or spring. Variable credit. May be repeated for credit. Limited to graduate students and advanced undergraduates studying neurobiology and behavior. Prerequisite: Biological Sciences 222. S-U grades optional.

Lecs and sem to be arranged. Staff.

A lecture-seminar course on selected topics in cellular and molecular neurobiology. Students read original papers in the scientific literature and lead discussions of these articles. Suggestions for topics may be submitted by faculty or students to the chair of the Section of Neurobiology and Behavior. Topic and instructor are listed in the division's catalog supplement issued at the beginning of the semester.

792 Advanced Laboratory in Cellular and Molecular Neurobiology
Fall or spring. 2 credits. May be repeated for credit. Primarily for graduate students. Prerequisites: Biological Sciences 330 or 351 or equivalent, 491 or equivalent, and written permission of instructor. S-U grades optional.

Lab to be arranged. Staff.

A two-week intensive laboratory course designed to provide experience with a specific technique currently used in cellular and molecular neurobiology. The technique under study and instructor in charge vary from semester to semester and are listed in the division's catalog supplement issued at the beginning of the semester.

Related Courses in Other Departments

Animal Behavior (Psychology 535)

Biochemistry and Human Behavior (Psychology 361 and Nutritional Sciences 361)

Brain and Behavior (Psychology 425)

Developmental Biopsychology (Psychology 422)

Evolution of Human Behavior (Psychology 326)

Human Behavior: A Sociobiological Perspective (Anthropology 476)

Primates and Evolution (Anthropology 490)

Primates Behavior and Ecology (Anthropology 390)

Insect Behavior Seminar (Entomology 662)

Teaching Experience (Biological Sciences 498)

Undergraduate Research in Biology (Biological Sciences 499)
John B. Heiser, director
G14 Stimson Hall, 255-3717

SHOALS MARINE LABORATORY

John M. Kingsbury, director

Graduate students, and other interested adults a wide range of specialists whose primary educational and intellectual experiences. The educational and intellectual experiences.

established a national reputation for excellence marine sciences in an island setting noted for its biota, geology, and history. SML has established a national reputation for excellence and has become North America’s largest marine field station focusing on undergraduate education.

The summer population of Appledore Island is limited to about one hundred people at any one time. Participants and faculty members can literally and figuratively immerse themselves in their explorations, free from distractions common to most academic institutions. Because Appledore Island is a residential facility, a sense of community develops that makes courses and seminars at SML outstanding educational and intellectual experiences. Participants learn from and exchange ideas with a wide range of specialists whose primary interests are marine but whose perspectives often differ, providing fertile ground for lively discussions.

Credit courses at Shoals Marine Laboratory are full-time, intensive learning experiences. Courses may be taken sequentially, but not concurrently. A typical day combines lecture sessions, laboratory and field work, field trips to nearby islands and the mainland, and collecting and research excursions aboard the laboratory’s 47-foot research vessel, John M. Kingsbury. Field experience is an integral component of all courses, using Appledore’s extensive intertidal zone, wading bird rookeries, and seabird colonies. Faculty, drawn from Cornell University, the University of New Hampshire, and other leading academic institutions, are selected not only based on their academic excellence, but also based on their teaching ability in the field. In addition, numerous guest lecturers include entrepreneurs, researchers, fishermen, and specialists from private industry, government, and the academic community. Although there is no concentration (program in study) in marine sciences offered to Cornell undergraduates, there is extensive opportunity at the undergraduate level to prepare for more advanced study.

The Ithaca campus functions of the Shoals Marine Laboratory are centered in the Cornell Marine Programs Office, G14 Stimson Hall. The office serves as an advising center for students interested in the marine sciences, maintains a browsing library with updated information on graduate study and career opportunities as well as on marine programs at other institutions, and administers the SEA Semester of 17-credit program offered in cooperation with the Sea Education Association.

The following marine sciences courses are currently administered by the Cornell Marine Programs Office.

204 Biological Illustration
Summer. 2 credits. A special 1-week course offered at Cornell's Shoals Marine Laboratory (SML) on an island off Portsmouth, N.H. For more details and an application, consult the SML office, G14 Stimson Hall. Estimated cost (includes tuition, room and board, supplies, and ferry transportation), $675.

- Daily sessions for 1 week. SML faculty.
- General discussion of scientific publishing, illustration labeling, and printing processes. The course provides the scientist or science student a chance to experience several illustration techniques with the goal of obtaining an overview of scientific and wildlife illustrations. Students choose a single technique to explore in depth.
- Course size is limited so that individual attention can be emphasized.

306 Marine Microbial Ecology
Summer. 4 credits. Prerequisites: one year of introductory college biology and chemistry. Recommended: an introductory course in microbiology. S-U grades optional. A special 2-week course offered at Cornell's Shoals Marine Laboratory (SML) on an island off Portsmouth, N.H. For more details and an application, consult the SML office, G14 Stimson Hall. Estimated cost (includes tuition, room and board, and ferry transportation), $1,175.

- Daily labs, labs, and fieldwork for 2 weeks. SML faculty.
- Designed to provide a strong practical and theoretical understanding of the ecology, physiology, and systematics of marine microbes from diverse marine ecosystems. Intertidal zone, salt marsh, coastal water, open ocean, and hydrothermal vent communities are covered. Particular cellular arrangements, metabolic pathways, and biogeochemical cycles are covered in detail, as are general principles concerning microbial ecology and evolution.

309 Coastal Ecology and Bioclimates
Summer. 4 credits. Prerequisites: one year of introductory college biology; background preferred in physics/physical geography. S-U grades optional. A special 2-week course offered at Cornell's Shoals Marine Laboratory (SML) on an island off Portsmouth, N.H. For more details and an application, consult the SML office, G14 Stimson Hall. Estimated cost (includes tuition, room and board, and ferry transportation), $1,175.

- Daily labs, labs, and fieldwork for 2 weeks. SML faculty.
- A study of the fundamentals of organism-environment interaction developed through defining and measuring abiotic factors including solar radiation, temperature, atmospheric moisture, precipital wind, and currents. In-situ exploration of the dynamics of meteorology and the role of abiotic and biotic factors in the life of coastal and marine plants and animals including humans.

329 Ecology of Animal Behavior
Summer. 4 credits. Prerequisite: one year of introductory college biology. Recommended: course work in ecology, evolution, or behavior. S-U grades optional. A special 2-week course offered at Cornell's Shoals Marine Laboratory (SML) on an island off Portsmouth, N.H. For more details and an application, consult the SML office, G14 Stimson Hall. Estimated cost (includes tuition, room and board, and ferry transportation), $1,175.

- Daily labs, labs, and fieldwork for 2 weeks. SML faculty.
- The ecological significance of behaviors of coastal organisms, with emphasis on field and laboratory research methods. Lectures and readings address the major subareas of behavior (communication, orientation, social behavior, foraging, predator avoidance, and sensory mechanisms). Each student engages in a short-term behavioral observation and prepares a research proposal for studying a problem within the course subject area.

363 Marine Biology for Teachers
Summer. 3 credits. Primarily for teachers, grades 6 through 12, but open to others. Prerequisite: one year of introductory college biology. S-U grades optional. A special 10-day course offered at Cornell's Shoals Marine Laboratory (SML) on an island off Portsmouth, N.H. For more details and an application, consult the SML office, G14 Stimson Hall. Estimated cost (includes tuition, room and board, and ferry transportation), $895.

- Daily labs, labs, and fieldwork for 10 days. SML faculty.
- Designed to give an overview of living marine organisms (algae, invertebrates, fishes, marine mammals, and birds) and the environment they inhabit. Fieldwork is emphasized. Occasional lectures and films deal with additional topics such as coastal-zone problems, marine fisheries, economics of marine organisms, and educational resources of the marine environment. The core faculty of marine biologists is augmented by specialists in science and environmental education.

364 Field Marine Science
Summer. 6 credits. Prerequisite: one year of college biology or other supporting subject. S-U grades optional. A special 4-week course offered twice each summer at Cornell's Shoals Marine Laboratory (SML), on an island off Portsmouth, N.H. For more details and an application, consult the SML Office, G14 Stimson Hall. Estimated cost (includes tuition, room and board, and ferry transportation), $1,995.

- Daily labs, labs, and fieldwork for 4 weeks. SML faculty.
- A study of the fundamentals of organism-environment interaction developed through defining and measuring abiotic factors including solar radiation, temperature, atmospheric moisture, precipital wind, and currents. In-situ exploration of the dynamics of meteorology and the role of abiotic and biotic factors in the life of coastal and marine plants and animals including humans.

- The ecological significance of behaviors of coastal organisms, with emphasis on field and laboratory research methods. Lectures and readings address the major subareas of behavior (communication, orientation, social behavior, foraging, predator avoidance, and sensory mechanisms). Each student engages in a short-term behavioral observation and prepares a research proposal for studying a problem within the course subject area.

- Designed to give an overview of living marine organisms (algae, invertebrates, fishes, marine mammals, and birds) and the environment they inhabit. Fieldwork is emphasized. Occasional lectures and films deal with additional topics such as coastal-zone problems, marine fisheries, economics of marine organisms, and educational resources of the marine environment. The core faculty of marine biologists is augmented by specialists in science and environmental education.

- Designed to give an overview of living marine organisms (algae, invertebrates, fishes, marine mammals, and birds) and the environment they inhabit. Fieldwork is emphasized. Occasional lectures and films deal with additional topics such as coastal-zone problems, marine fisheries, economics of marine organisms, and educational resources of the marine environment. The core faculty of marine biologists is augmented by specialists in science and environmental education.
365 Underwater Research
Summer. 4 credits. Prerequisites: one year of college-level biology or other supporting subject, recognized scuba certification, and a medical examination. S-U grades optional. A special 2-week course offered at Cornell’s Shoals Marine Laboratory (SML) on an island off Portsmouth, N.H. For more details and an application, consult the SML office, G14 Stimson Hall. Estimated cost (includes tuition, room and board, and ferry transportation), $1,275.

Daily labs and fieldwork for 2 weeks. Team-taught by a diving-safety officer, two faculty members, and guest lecturers. For competent divers only. Covers special problems of underwater research, including random sampling, use of dive tables, underwater instrumentation, special diving equipment, photographic techniques, integration with boat and shore facilities, and emergency procedures. Students are required to conduct a transect study on both soft and hard substrates.

366-370 SEA Semester
In cooperation with the Sea Education Association (SEA), the Shoals Marine Laboratory office offers a semester-length sequence of courses designed to provide college undergraduates with a thorough academic, scientific, and practical understanding of the sea. This sequence is repeated approximately once every two months throughout the year. Students spend the first half of SEA Semester (the six-week shore component) in Woods Hole, Massachusetts, receiving instruction in oceanography, nautical science, and maritime studies. The second half of SEA Semester (the six-week sea component) is spent at sea aboard R/V Westward or the R/V Corwith Cramer. Enrollment is open to men and women judged capable of benefiting from SEA Semester; no specific prior training or study is required. Cornell students enrolled in the SEA Semester must take the entire sequence.

For more information, consult the Shoals Marine Laboratory office, G14 Stimson Hall, or call SEA directly at 1-800-552-3635. Program costs are to be paid in place of regular Cornell tuition and fees: tuition for entire 17-credit SEA Semester, about $6,700; room and board for sea component (six weeks) only, about $1,875. Instructors for the SEA Semester include faculty of the Sea Education Association and the Woods Hole Oceanographic Institution and others.

Sea Component (six weeks)

366 SEA Introduction to Oceanography
3 credits. Prerequisites: a laboratory course in physical or biological science and concurrent enrollment in Biological Sciences 367 and 368. A survey of the characteristics and processes of the global ocean. Oceanographic concepts are introduced and developed from their bases in biology, physics, chemistry, and geology. Provides a broad background in oceanography, with special attention to areas pertinent to the subsequent cruise. Guest lecturers from the Woods Hole oceanographic community interpret current trends and activities in this rapidly evolving field. Students develop individual projects to be carried out at sea.

367 SEA Introduction to Maritime Studies
3 credits. Prerequisite: concurrent enrollment in Biological Sciences 366 and 368. An interdisciplinary consideration of our relationship with the marine environment. Covers the elements of maritime history, law, literature, and art necessary to appreciate our marine heritage and to understand the political and economic problems of contemporary maritime affairs.

368 SEA Introduction to Nautical Science
3 credits. Prerequisites: college algebra or equivalent, and concurrent enrollment in Biological Sciences 366 and 367. An introduction to the technologies of operation at sea. The concepts of navigation (plotting, celestial, and electronic), naval architecture, ship construction, marine engineering systems, and the physics of sail are taught from their bases in astronomy, mathematics, and physics. Provides the theoretical foundation for the navigation mathematics, and engineering that students employ at sea.

Sea Component (six weeks)
Courses 369 and 370 take place aboard the R/V Westward, a 125-foot steel auxiliary-powered staysail schooner built in 1961, or the R/V Corwith Cramer, a 134-foot steel auxiliary-powered brigantine built in 1987 for SEA. Both ships normally put to sea with a ship’s company of thirty-four. The professional staff of nine includes the captain, the chief scientist, two science watch officers, three deck watch officers, an engineer, and a steward. In addition, one or more visiting investigators are frequently aboard. Up to twenty-five students round out the complement.

369 SEA Practical Oceanography I
4 credits. Prerequisite: Biological Sciences 366. Theories and problems raised in the shore component are tested in the practice of oceanography at sea. Students are introduced to the tools and techniques of the practicing oceanographer. During lectures and watch standing, students are instructed in the operation of basic oceanographic equipment; in the methodologies involved in the collection, reduction, and analysis of oceanographic data; and in the attendant operations of a sailing oceanographic research vessel.

370 SEA Practical Oceanography II
4 credits. Prerequisite: Biological Sciences 368. Building on the experience of Practical Oceanography I, students assume increasing responsibility for conducting oceanographic research and overseeing operations of the vessel. The individual student is ultimately responsible directly to the chief scientist and the master of the vessel for the safe and orderly conduct of research activities and related operations of the vessel. Each student undertakes an individual research project designed during the shore component.

372 Introduction to the Ecology and Chemistry of Rock-Pool Environments
Summer. 2 credits. Prerequisite: an introductory biology, chemistry, or marine science course at the college level or permission of instructor. S-U grades optional. A special 1-week course offered at Cornell’s Shoals Marine Laboratory (SML) on an island off Portsmouth, N.H. For more details and an application, consult the SML office, G14 Stimson Hall. Estimated cost (includes tuition, room and board, and ferry transportation), $550.

Daily labs, and fieldwork for 1 week. SML faculty.

A special course that examines ciliophoran biology in depth through lectures and laboratory exercises. Topics include a detailed look at the ciliate faunules found in such diverse habitats as saltmarshes, sandy sediment interstitial spaces, the Gulf Stream and the Sargasso Sea, marine caves, and benthic hydrothermal vents. Laboratory focuses on examining silver stained specimens, and covers staining techniques, as well as back scattered and secondary SEM and TEM methodologies.

413 Adaptations of Marine Organisms
Summer. 6 credits. Prerequisite: Biological Sciences 364 or a course in physiological ecology. S-U grades optional. A special 3-week course offered at Cornell’s Shoals Marine Laboratory (SML) on an island off Portsmouth, N.H. For more details and an application, consult the SML office, G14 Stimson Hall. Estimated cost (includes tuition, room and board, and ferry transportation), $1,955.

Daily labs, and fieldwork for 3 weeks. SML faculty.

An introduction to the physiological ecology and functional morphology of marine plants and animals, with emphasis on selected algal and invertebrate examples from the Gulf of Maine. Topics covered include photosynthesis in the marine environment; respiration in intertidal organisms; carbohydrates, proteins, and lipids as nutrients in the sea; acclimation and tolerance of tide-pool biota; and biological responses to competition and grazing. Field and laboratory exercises explore principles and procedures used to characterize the physical, chemical, and biotic environment of intertidal and shallow subtidal organisms, including determination of temperature, light, salinity, oxygen and nutrient levels, and in vivo functional analyses of metabolic phenomena.
449 Marine Botany: Ecology of Marine Plants
Summer. 4 credits. Prerequisite: Biological Sciences 364 or general familiarity with marine algae. S-U grades optional. A special 2-week course offered at Cornell's Shoals Marine Laboratory (SML), on an island off Portsmouth, N.H. For more details and an application, consult the SML office, G14 Stimson Hall. Estimated cost (includes tuition, room and board, and ferry transportation), $1,175.
Daily lecs, labs, and fieldwork for 2 weeks. SML faculty.
An overview of the major marine algal groups, including aspects of anatomy, morphology, development, life histories, physiology, and use. Laboratories and fieldwork emphasize relationships between distribution and major environmental parameters and involve student projects.

466 Ecology and Chemistry of Rock-Pool Environments
Summer. 6 credits. Prerequisite: one year of introductory college chemistry and an introductory ecology course at the college level. S-U grades optional. A special 3-week course offered at Cornell's Shoals Marine Laboratory (SML), on an island off Portsmouth, N.H. For more details and an application, consult the SML office, G14 Stimson Hall. Estimated cost (includes tuition, room and board, and ferry transportation), $1,595.
Daily lecs, labs, and fieldwork for 3 weeks. SML faculty.
A field-oriented course emphasizing the interrelationships of the chemistry and biology of both rock- and tide-pool ecosystems, using the numerous pools on the island as natural laboratories. Laboratory work includes organism identification; chemical analyses of pools for nutrients, pH, alkalinity, dissolved carbon dioxide and oxygen, salinity, plant pigments, and primary production; and determinations of lethal temperature, salinity, and oxygen level for different species and populations. Lectures and class research projects cover the effects of pool morphology and algal growth on the chemistry, stratification; salinity changes caused by evaporation, rainfall, and seawater splash; dissolved oxygen and pH changes associated with primary production; nutrient dynamics relative to rainfall, flow through primary production, microbial activities, and proximity to nesting birds; primary production differences among pool types; and predation experiments with fish implantation. Food web and energy models for different rock-pool ecosystems are presented. The use of microcomputers for interpretation of data is emphasized.

467 Chemical Oceanography of Coastal Waters
Summer. 6 credits. Prerequisites: one year of introductory college chemistry and an introductory marine science course at the college level. S-U grades optional. A special 3-week course offered at Cornell's Shoals Marine Laboratory (SML), on an island off Portsmouth, N.H. For more details and an application, consult the SML office, G14 Stimson Hall. Estimated cost (includes tuition, room and board, and ferry transportation), $1,595.
Daily lecs, labs, and fieldwork for 3 weeks. SML faculty.
A field-oriented course in the chemical oceanography of coastal waters. Lectures, frequent field trips, and laboratory sampling and analysis; includes tests of salinity, temperature, pH, chlorophyll, alkalinity, total CO₂, nutrients, organic material, and suspended materials in coastal waters, with some work on the analysis of coastal sediments.

468 Marine Plankton Ecology
Summer. 4 credits. Limited to 20 students. Prerequisites: one year of introductory college biology and Biological Sciences 364 or equivalent, or a course in invertebrate zoology or introductory oceanography. S-U grades optional. A special course offered at Cornell's Shoals Marine Laboratory (SML), on an island off Portsmouth, N.H. For more details and an application, consult the SML office, G14 Stimson Hall. Estimated cost (includes tuition, room and board, and ferry transportation), $1,175.
Daily lecs, labs, and fieldwork for 2 weeks. SML faculty.
An introduction to the biology of plankton and their ecological role in representative marine environments, including estuaries, coastal areas, open ocean gyres, and polar seas. Includes an introduction to morphology, life histories, and nutrition of planktonic bacteria, protozoans, algae, and metazoans (coelenterates, crustaceans, ctenophores, chaetognaths, and tunicates). The role of these groups in different ecosystems is related to the hydrography of the area, as well as the life cycles and trophic interactions of the dominant species. During several one-day cruises in the Gulf of Maine and Great Bay Estuary students use simple field techniques to address current research problems.

477 Marine Vertebrates
Summer. 6 credits. Prerequisite: Biological Sciences 364 or 274 or a course in vertebrate biology. S-U grades optional. A special 3-week course offered at Cornell's Shoals Marine Laboratory (SML), on an island off Portsmouth, N.H. For more details and an application, consult the SML office, G14 Stimson Hall. Estimated cost (includes tuition, room and board, and ferry transportation), $1,595.
Daily lecs, labs, and fieldwork for 3 weeks. SML faculty.
Topics in marine vertebrate biology emphasizing laboratory studies, field collections or observations, and readings from the current literature. Topics covered include systematics of fishes of the Gulf of Maine, elasmobranchs, and related fish populations; evolution of marine vertebrates; and the interrelationships of the Gulf of Maine fishery, Mesozoic marine reptiles, and modern studies of the Gulf of Maine ecosystem.

488 Reproduction and Development of Marine Invertebrates
Summer. 6 credits. Prerequisite: Biological Sciences 364 or a course in invertebrate zoology. S-U grades optional. A special 3-week course offered at Cornell's Shoals Marine Laboratory (SML), on an island off Portsmouth, N.H. For more details and an application, consult the SML office, G14 Stimson Hall. Estimated cost (includes tuition, room and board, and ferry transportation), $1,595.
Daily lecs, labs, and fieldwork for 3 weeks. SML faculty.
A laboratory-oriented course emphasizing processes of fertilization and early development through the metamorphosis of larvae in species selected from an extensive variety of local marine invertebrates. Practical experience includes collecting specimens intentionally and from the plankton, culturing embryos through metamorphosis, camera lucida and photomicrographic recording of embryonic development, and design and execution of basic experiments on eggs and embryos. Lectures complement laboratory work through phylogenetic examination of selected invertebrate embryology and modern experimental developmental biology.

Archaeology of Maritime Communities (Archaeology 300: Individual Study in Archaeology)
Summer. 2 credits. Prerequisite: Archaeology 319 or permission of instructor. A special 1-week course offered at Cornell's Shoals Marine Laboratory (SML), on an island off Portsmouth, N.H. For more details and an application, consult the SML office, G14 Stimson Hall. Estimated cost (includes tuition, room and board, and ferry transportation), $650.
Daily lecs, labs, and fieldwork for 1 week. SML faculty.
Fieldwork on various land sites and their adjacent offshore marine environments. Artifact analysis, preliminary conservation, and the proper recording of finds are emphasized. Methods of archaeological research, including the use of archives and historical materials, and publication methodologies as well as the larger questions in the discipline are discussed.

Coastal and Oceanic Law and Policy (Natural Resources 306)
Summer. 2 credits. A special 1-week course offered at Cornell's Shoals Marine Laboratory (SML) on an island off Portsmouth, N.H. For more details and an application, consult the SML office, G14 Stimson Hall. Estimated cost (includes tuition, room and board, and ferry transportation), $650.
Daily lecs and discos for 1 week. SML faculty.
Intended for persons interested in careers in management of marine or coastal resources or in the natural sciences. Subjects include law and policy related to ocean dumping, marine sanctuaries, environmental impact statements, water and air pollution, fisheries management, offshore gas and oil production, and territorial jurisdiction. Lectures on the status and history of law are accompanied by discussion of relevant policy and analysis of the efficacy of various legal techniques. A case study that requires extensive use of the laboratory's library and personnel is assigned. The week concludes with a mock hearing.
Marine Pollution (Agricultural Engineering 420)
Summer. 4 credits. Prerequisite: Biological Sciences 364 or permission of instructor. A special 2-week course offered at Cornell's Shoals Marine Laboratory (SML), on an island off Portsmouth, N.H. For more details and an application, consult the SML office, G14 Stimson Hall. Estimated cost (includes tuition, room and board, and ferry transportation), $1,175.
Daily lecs, labs, and fieldwork for 2 weeks. SML faculty.
Dispersion modeling and the effects of pollutants (including oil, outfalls, solid wastes, sewage and radioactive wastes) are discussed from the perspectives of elementary physical oceanography and biological processes. Laboratories include basic methods for targeting and tracing wastewater; organic carbon determinations; and practical field projects.
Marine and Coastal Geology (Geological Sciences 213)
Summer. 2 credits. Prerequisite: an introductory course in geology or permission of instructor. A special 1-week course offered at Cornell's Shoals Marine Laboratory (SML), on an island off Portsmouth, N.H. For more details and an application, consult the SML office, G14 Stimson Hall. Estimated cost (includes tuition, room and board, and ferry transportation), $650.
Daily lecs, labs, and fieldwork for 1 week. SML faculty.
With "the New England coast" defined as beginning at the -200 meter isobath and proceeding westward, this course examines specific geological events and processes important in shaping the area's bedrock and surficial sediments. Petrology, geophysics, and the Pleistocene geology of the region are investigated. Consideration of the geologic history of New England within the plate tectonic model is emphasized. Examination of insular geology is used to integrate micro-, meso-, and macroscale geological evolution of continental margins. Marine geology is approached through basic geophysical exploration and bottom-sediment collection followed by data analysis and interpretation. Experience aboard a coastal research vessel is an integral part of the course.
Marine Resources: Economic Modeling of Use and Relocation (Agricultural Economics 6250)
Summer. 2 credits. Prerequisite: an introductory course in economics or permission of instructor. A special 1-week course offered at Cornell's Shoals Marine Laboratory (SML), on an island off Portsmouth, N.H. For more details and an application, consult the SML office, G14 Stimson Hall. Estimated cost (includes tuition, room and board, and ferry transportation), $650.
Daily lecs and discis for 1 week. SML faculty.
Resource economics in general is concerned with the optimal allocations through time of renewable and nonrenewable resources. This course examines fisheries management, offshore oil and gas recovery and, ocean-minerals mining. Models of optimal resource use are developed and used to assess both the behavior of those harvesting marine resources and the adequacy of current governmental policy. An integral part of the course is the special opportunity to observe and interview those professionally involved in harvesting marine resources in the Gulf of Maine.
Archeology Underwater (Archeology 318)
Summer. 2 credits. Prerequisite: recognized scuba certification and a medical examination required for students engaging in underwater research. A special 1-week course offered at Cornell's Shoals Marine Laboratory (SML), on an island off Portsmouth, N.H. For more details and an application, consult the SML office, G14 Stimson Hall. Estimated cost (includes tuition, room and board, and ferry transportation), $750.
Daily lecs, labs, and fieldwork for 1 week. SML faculty.
An introduction to the subject and a review of this contemporary subdiscipline of archaeology. The approach of the course is practical, with a strong potential for actual on-site experience in search, site recognition, survey, and recording. The course also covers the history and development of the subject, the legal aspects of underwater research, and the potential of the field. Since any archeological research project involves a great deal more than digging, the course provides ample opportunities for those who are interested in the subject but are not divers or sufficiently experienced in scuba.
Wetland Resources (Natural Resources 417)
Summer. 2 credits. Prerequisite: one year of college biology. A special 1-week course offered at Cornell's Shoals Marine Laboratory (SML), on an island off Portsmouth, N.H. For more details and an application, consult the SML office, G14 Stimson Hall. Estimated cost (includes tuition, room and board, and ferry transportation), $650.
Daily lecs, labs, and fieldwork for 1 week. SML faculty.
An examination of coastal and adjacent freshwater wetlands from historic, destructive, and preservation perspectives, including fresh- and salt-marsh ecology and management. Field trips to selected examples of the wetlands under discussion and follow-up laboratories emphasize successional features, plant identification techniques, and examination of the dominant insect and vertebrate associations.
Courses in Biophysics
Biophysics is an interdisciplinary undergraduate and graduate program. A special program for undergraduate students interested in biophysics is offered as an independent concentration (program of study) in the biological sciences major (see option 8 under "Concentration Areas and Requirements" and option 10 under "Programs of Study"). Information on this independent option is available in the Office of Academic Affairs, 200 Stimson Hall. Graduate study and research in biophysics are available through general Graduate Fields. Students interested in graduate work in biophysics should inquire at the Program in Biophysics Office, 210 Clark Hall.
The following courses are available for students interested in biophysics:
Biomechanical Systems-Analysis and Design (Mechanical and Aerospace Engineering 656)
Chemistry of Nucleic Acids (Chemistry 677)
Computer Interfaceing for Neurobiologists (Biological Sciences 422)
Electron Microscopy for Biologists (Biological Sciences 401, 403, 405, 606, 608)
Electronics for Neurobiologists (Biological Sciences 426)
Enzyme Catalysis and Regulation (Chemistry 672)
Membrane Biophysics (Applied and Engineering Physics 615)
Membranes and Bioenergetics (Biological Sciences 632)
Membrane Ion Channels (Biological Sciences 495)
Neurochemistry (Biological Sciences 487)
Neuroethology (Biological Sciences 424)
Photosynthesis (Biological Sciences 445)
Physical Chemistry of Proteins (Chemistry 686)
Principles of Neurophysiology (Biological Sciences 491)
Protein Structure and Function (Biological Sciences 631)
Special Topics in Biophysical and Bioorganic Chemistry (Chemistry 782)
Transport of Solutes and Water in Plants (Biological Sciences 649)

Faculty Roster
New York State College of Agriculture and Life Sciences
Adler, Kraig K., Ph.D., U. of Michigan. Prof., Neurobiology and Behavior
Bates, David M., Ph.D., U. of California at Los Angeles. Prof., Bailey Honorary
Beyenbach, Klaus W., Ph.D., Washington State U. Prof., Physiology/Veterinary Physiology
Brus, Peter J., Ph.D., U. of Illinois. Prof., Genetics and Development
Calvo, Joseph M., Ph.D., Washington State U. William T. Keeton Professor in Biological Sciences; Biochemistry, Molecular and Cell Biology
Crepet, William L., Ph.D., Yale U. Prof., Bailey Honorary
Davies, Peter J., Ph.D., U. of Reading (England). Prof., Plant Biology
Davis, Jerrold I., Ph.D., U. of Washington. Asst. Prof., Bailey Honorary
Doyne, Jeffrey D., Ph.D., Indiana U. Asst. Prof., Bailey Honorary
Eisner, Thomas, Ph.D., Harvard U. Jacob Gould Schurman Professor, Neurobiology and Behavior
Emlen, Stephen T., Ph.D., U. of Michigan. Prof., Neurobiology and Behavior
Fox, Thomas D., Ph.D., Harvard U. Assoc. Prof., Genetics and Development
Gibson, Jane, Ph.D., U. of London (England). Prof., Biochemistry, Molecular and Cell Biology
Goldberg, Michael L., Ph.D., Stanford U. Assoc. Prof., Genetics and Development
Hanson, Maureen R., Ph.D., Harvard U. Assoc. Prof., Genetics and Development
Other Teaching Personnel

Alexander, Rence R., Ph.D., Cornell U. Lecturer, Biochemistry, Molecular and Cell Biology

Ecklund, P. Richard, Ph.D., Oregon State U. Lecturer, Neurobiology and Behavior

Ferger, Martha F., Ph.D., Cornell U. Medical College. Sr. Lecturer, Biochemistry, Molecular and Cell Biology

Glase, Jon C., Ph.D., Cornell U. Sr. Lecturer, Neurobiology and Behavior

Heisler, Kevin, Ph.D., Cornell U. Lecturer, Biochemistry, Molecular and Cell Biology

Huntley, Anthony C., Ph.D., U. of California, Santa Cruz. Instructor, Ecology and Systematics

Reiss, H. Carol, M.S., Cornell U. Sr. Lecturer, Plant Biology

Joint Appointees

Barker, Robert, Prof., Provost's Office/ Biochemistry, Molecular and Cell Biology

Bloom, Stephen E., Assoc. Prof., Poultry and Avian Sciences/Biological Sciences

Foote, Robert H., Jacob Gould Schurman Professor, Animal Science/Physiology

Edelstein, Stuart M., Asst. Prof., Plant Biology

Kochian, Leon V., Adjunct Asst. Prof., USDA Science and Education Administration/Plant Biology

Korf, Richard P., Prof., Plant Pathology/Barley Hortorum

LaRue, Thomas A., Adjunct Prof., Boyce Thompson Institute/Plant Biology

Richmond, Milo E., Assoc. Prof., USDA Fish and Wildlife Service/Natural Resources/Ecology and Systematics

Thompson, John F., Adjunct Prof., USDA Science and Education Administration/Plant Biology

Via, Sara, Asst. Prof., Entomology/Ecology and Systematics

Weeden, Norman F., Asst. Prof., Horticultural Sciences/Barley Hortorum

Aquadro, Charles F., Ph.D., U. of Georgia. Assoc. Prof., Genetics and Development/Ecology and Systematics

Bass, Andrew H., Ph.D., U. of Michigan. Assoc. Prof., Neurobiology and Behavior

Blackler, Antonie W., Ph.D., U. of London (England). Prof., Genetics and Development

Booker, Ronald, Ph.D., Princeton U. Asst. Prof., Neurobiology and Behavior

Bretschner, Anthony P., Ph.D., Leeds U. (England). Assoc. Prof., Biochemistry, Molecular and Cell Biology

Brown, William J., Ph.D., U. of Texas Health Science Center at Dallas. Asst. Prof., Biochemistry, Molecular and Cell Biology

Capranica, Robert R., Sc.D., Massachusetts Inst. of Technology. Prof., Neurobiology and Behavior

Chabot, Brian F., Ph.D., Duke U. Prof., Ecology and Systematics

Dawson, Todd E., Ph.D., U. of Washington. Asst. Prof., Ecology and Systematics

Feigensohn, Gerald W., Ph.D., California Inst. of Technology. Prof., Biochemistry, Molecular and Cell Biology

Geber, Monica A., Ph.D., U. of Utah. Asst. Prof., Ecology and Systematics

Gibson, Quentin H., Ph.D./D.S.C., Queen's U. (Northern Ireland). Greater Philadelphia Professor in Biological Sciences; Biochemistry, Molecular and Cell Biology

Halpern, Bruce P., Ph.D., Brown U. Prof., Neurobiology and Behavior/ Psychology

Hamill, Owen P., Ph.D., U. of New South Wales (Australia). Asst. Prof., Neurobiology and Behavior

Heppel, Leon A., Ph.D., U. of California at Berkeley. Prof., Biochemistry, Molecular and Cell Biology

Hess, George P., Ph.D., U. of California at Berkeley. Prof., Biochemistry, Molecular and Cell Biology

Hinkle, Peter C., Ph.D., New York U. Prof., Biochemistry, Molecular and Cell Biology

Howarth, Robert W., Ph.D., Massachusetts Inst. of Technology/Woods Hole Oceanographic Institution. Assoc. Prof., Ecology and Systematics

Howland, Howard C., Ph.D., Cornell U. Prof., Neurobiology and Behavior/Physiology

Hoy, Ronald R., Ph.D., Stanford U. Prof., Neurobiology and Behavior

Huffaker, Tim C., Ph.D., Massometers Inst. of Technology. Asst. Prof., Biochemistry, Molecular and Cell Biology

Karplus, Paul A., Ph.D., U. of Washington. Asst. Prof., Biochemistry, Molecular and Cell Biology

Kennedy, Kenneth A.R., Ph.D., U. of California at Berkeley. Prof., Ecology and Systematics

Levin, Simon A., Ph.D., U. of Maryland at College Park. Charles A. Alexander Professor of Biological Sciences; Ecology and Systematics

McClearn, Deedra K., Ph.D., Harvard U. Asst. Prof., Ecology and Systematics

MacDonald, June M. Fessenden, Ph.D., Tufts U. Assoc. Prof., Biochemistry, Molecular and Cell Biology/Program on Science, Technology, and Society

Mark, Willie H., Ph.D., U. of Wisconsin—Madison. Asst. Prof., Genetics and Development

Podleski, Thomas R., Ph.D., Columbia U. Asst. Prof., Neurobiology and Behavior

Provine, William B., Ph.D., U. of Chicago. Prof., Ecology and Systematics/History

Racker, Ernaim, M.D., U. of Vienna (Austria). Albert Einstein Professor of Biochemistry; Biochemistry, Molecular and Cell Biology

Salpeter, Miriam M., Ph.D., Cornell U. Prof., Neurobiology and Behavior/ Applied and Engineering Physics
Schneiderman, Anne M., Ph.D., Harvard U. Asst. Prof., Neurobiology and Behavior
Seeley, Thomas D., Ph.D., Harvard U. Assoc. Prof., Neurobiology and Behavior
Sherman, Paul W., Ph.D., U. of Michigan. Assoc. Prof., Neurobiology and Behavior
Silver, Robert B., Ph.D., U. of California at Berkeley. Assoc. Prof., Physiology
Turgeon, Robert, Ph.D., Carleton U. (Canada). Assoc. Prof., Plant Biology
Wilson, David B., Ph.D., Stanford U. Prof., Biochemistry, Molecular and Cell Biology
Wolfner, Marianna F., Ph.D., Stanford U. Assoc. Prof., Genetics and Development

Other Teaching Personnel
Albrecht, Genia S., Ph.D., U. of Washington. Lecturer, Biochemistry, Molecular and Cell Biology
Calvo, Rita A., Ph.D., Cornell U. Sr. Lecturer, Genetics and Development
Eberhard, Carolyn, Ph.D., Boston U. Sr. Lecturer, Plant Biology

Joint Appointees
Likens, Gene E., Adjunct Prof., New York Botanical Garden Institute of Ecosystem Studies, Cary Arboretum/Ecology and Systematics
Regan, Elizabeth Adkins, Prof., Psychology/Neurobiology and Behavior

New York State College of Veterinary Medicine
Corradino, Robert A., Ph.D., Cornell U. Assoc. Prof., Physiology/Veterinary Physiology
Fortune, Joanne E., Ph.D., Cornell U. Assoc. Prof., Physiology/Veterinary Physiology
Gilmour, Robert F., Ph.D., SUNY Upstate Medical Center. Assoc. Prof., Physiology
Hansel, William, Ph.D., Cornell U. Liberty Hyde Bailey Professor of Animal Physiology, Physiology/Veterinary Physiology/Animal Science
Robertshaw, David, Ph.D., Glasgow U. (Scotland). Prof., Physiology
Tapper, Daniel N., Ph.D., Cornell U. Prof., Physiology/Veterinary Physiology
Wasserman, Robert H., Ph.D., Cornell U. Prof., Physiology/Veterinary Physiology/Nutritional Sciences*

Joint Appointees
Dobson Alan, Prof., Veterinary Physiology/Physiology
Houpt, Katherine A., Prof., Veterinary Physiology/Physiology
Houpt, T. Richard, Prof., Veterinary Physiology/Physiology
Kallfelz, Francis A., Prof., Clinical Sciences/Veterinary Physiology/Physiology
Nathanielz, Peter W., Leading Prof., Clinical Sciences/Veterinary Physiology/Physiology
Wootton, John F., Prof., Veterinary Physiology/Physiology

College of Engineering

Joint Appointees
Cisne, John L., Assoc. Prof., Geological Sciences/Biological Sciences
Webb, Watt W., Prof., Applied and Engineering Physics/Biological Sciences

Division of Biological Sciences
Stinson, Harry T., Jr., Ph.D., Indiana U. Prof., Biological Sciences/Genetics and Development
COLLEGE OF ENGINEERING

ADMINISTRATION
William B. Streett, dean
K. Bingham Cady, associate dean for college affairs
S. Leigh Phoenix, associate dean for research and graduate studies
Gerald Rehkugler, associate dean for undergraduate affairs
Mary Thompson, assistant dean for minority programs
Mark K. Spiro, director of administration
Richard Hale, director of admissions
Edwin Gordon, director of advising
Michele Fish, assistant director of advising
Richard K. Mosher, registrar

FACILITIES AND SPECIAL PROGRAMS
Most of the academic units of the College of Engineering are on the Joseph N. Pew, Jr. Engineering Quadrangle. Facilities for applied and engineering physics are located in Clark Hall on the College of Arts and Sciences campus, and facilities for agricultural engineering are centered in Rieley-Robb Hall on the campus of the New York State College of Agriculture and Life Sciences.

Special university and college facilities augment the laboratories operated by the various engineering schools and departments, and special centers and programs contribute to opportunities for study and research.

Computing equipment, for example, is available through centers administered by the university and by the College of Engineering, as well as in laboratories run by schools, departments, or programs. The university facilities include personal computers for student use, terminals connected to the mainframe, computer-graphics equipment, and a supercomputer. The College of Engineering operates, in addition to several computing centers for student use, the Computer-Aided Design Instructional Facility, which provides advanced computer-graphics equipment used in course work throughout the college.

Cornell programs and centers of special interest in engineering include the following:

Center for Applied Mathematics. A cross-disciplinary center that administers a graduate program.

Center for Environmental Research. A sponsor of interdisciplinary programs that are currently in the areas of environmental law and policy, ecosystem research, remote sensing, water resources, the global environment, biological resources, waste management, and solid waste combustion.

Center for Radiophysics and Space Research. An interdisciplinary unit that facilitates research in astronomy and the space sciences.

Center for Theory and Simulation in Science and Engineering. A national supercomputer facility used for advanced research in engineering and the physical and biological sciences.

Cornell High Energy Synchrotron Source. A high-energy synchrotron radiation laboratory operated in conjunction with the university's high-energy storage ring.

Cornell Manufacturing Engineering and Productivity Program. A joint venture of Cornell, industrial organizations, and the federal government to encourage the development and implementation of modern manufacturing systems.

Cornell Program in Power Systems Engineering. A research and instructional program centered in a laboratory that has a complete real-time model of an electric power system.

Cornell Waste Management Institute. A research, teaching, and extension program within the Center for Environmental Research that addresses the environmental, technical, and economic issues associated with solid waste; one facility sponsored by the institute is the Combustion Simulation Laboratory in the Sibley School of Mechanical and Aerospace Engineering.

Institute for the Study of the Continents. An interdisciplinary organization that promotes research on the structure, composition, and evolution of the continents.

Laboratory of Plasma Studies. A center for interdisciplinary research in plasma physics and lasers.

Materials Science Center. An interdisciplinary facility with substantial support from the National Science Foundation, providing sophisticated equipment.

Mathematical Sciences Institute. An interdisciplinary program in applications of mathematics funded by the U.S. Army.

National Astronomy and Ionosphere Center. The world's largest radio-tidal telescope facility, operated by Cornell in Puerto Rico.

National Earthquake Engineering Research Center. A facility recently established by the National Science Foundation at a group of universities in New York State.

National Nanofabrication Facility. A center that provides equipment and services for research in the science, engineering, and technology of structures (including electronic components) with dimensions as small as the nanometer range.

Program of Computer Graphics. An interdisciplinary research center that operates one of the most advanced computer-graphics laboratories in the United States.

Program on Science, Technology, and Society. A cross-disciplinary unit that sponsors courses and promotes research.

SRC Center for the Program on Microscience and Technology. A center sponsored by the Semiconductor Research Corporation to promote research essential to the development of VLSI devices and circuits.

Statistics Center. Coordinates a university-wide program in statistics and probability.

Ward Laboratory of Nuclear Engineering. Irradiation, isotope production, and activation analysis facilities for interdisciplinary research.

Programs sponsored by College of Engineering units include several for industrial affiliates. These are in the areas of injection molding, computer science, materials science, geologic study of the continents, and nanometer structures.

DEGREE PROGRAMS
Cornell programs in engineering and applied science lead to the degrees of Bachelor of Science, Master of Engineering (with field designation), Master of Science, and Doctor of Philosophy.

General academic information concerning the Bachelor of Science degree is given here under the heading "Undergraduate Study." Curricula for major studies are described under the various academic areas.

Programs leading to the Master of Science and Doctor of Philosophy degrees are administered by the Graduate School. They are described in the Announcement of the Graduate School and the special announcement Graduate Study in Engineering and Applied Science. The professional Master of Engineering programs and cooperative programs with the Johnson Graduate School of Management are described below.

UNDERGRADUATE STUDY
Bachelor of Science (B.S.) degrees are offered in the following areas:

Agricultural engineering
Chemical engineering
Civil engineering
College program
Computer science
Electrical engineering
Engineering physics
Geological sciences
Materials science and engineering
Mechanical engineering
Operations research and engineering

Students in the College of Engineering begin their undergraduate studies in the Common Curriculum, which is administered by the faculty members of the Common Curriculum Governing Board (CCGB) through the
Students in the Field Programs in Civil Engineering or Operations Research and Industrial Engineering may substitute Chemistry 208 for Physics 214 upon approval of a petition to the field.

Chemistry

Chemistry 207 or 211 is required for all students. Chemistry 207 is normally taken in the first freshman semester; 211 may be taken either in the fall or spring of the freshman year. Chemistry 211 is a course designed for students who do not intend any further study in chemistry. Therefore, students who intend to take more chemistry should register for Chemistry 207 in the fall of their freshman year.

In general, students in the following departments and schools should take Chemistry 211: electrical engineering, operations research and industrial engineering, computer science, mechanical and aerospace engineering, applied and engineering physics, applied and engineering physics students should discuss this option with the field consultant), and civil engineering (not students in environmental engineering). Students in environmental engineering, materials science and engineering, geology and chemical engineering must take Chemistry 207 in the fall of their freshman year.

All students considering a health-related career, for example in medicine, should take Chemistry 207 in their first term.

Freshman Writing Seminars

Each semester of their freshman year, students choose a freshman writing seminar from among more than seventy courses offered by over twenty different departments in the humanities, social sciences, and expressive arts. These courses fulfill the requirement for students to practice in writing English prose. They also are required of all freshmen to the various fields of engineering. Several courses are offered to introduce freshmen to the various fields of engineering. Some of these courses, which begin with Engr 100, may not be included in this announcement. A full listing will be available in the Course and Room Roster at the time of registration.

Computing

In either the first or second term of their freshman year, students take Engr 100, Introduction to Computer Programming. Before graduation they must take an additional course with a significant amount of computing applications. In general, students in the Field Programs in Civil Engineering Physics is Engr 264; in Chemical Engineering, Engr 222 or 241, in Computer Science, Engr 211 or CS 212; in Electrical Engineering, Engr 211; in Civil Engineering, Engr 211; in Mechanical Engineering, M&AE 389, M&AE 489, M&AE 575, and M&AE 570. The recommended choice for students intending to enter the Field Program in Engineering Physics is Engr 264; in Chemical Engineering, Engr 222 or 241, in Computer Science, Engr 211 or CS 212; in Electrical Engineering, Engr 211; in Civil Engineering, Engr 211; in Mechanical Engineering, M&AE 389, M&AE 489, M&AE 575, or M&AE 570; and in Operations Research and Engineering, Engr 211.

Engineering Distribution

Four engineering distribution courses (12 credits) are required. These courses must be selected from the areas listed below. Students may choose only one of the possible substitutions described.

1) **Scientific computing**

 - Engr 211, Computers and Programming
 - Engr 222, Introduction to Scientific Computing
 - Engr 241, Engineering Computation

2) **Materials science**

 - Engr 261, Introduction to Mechanical Properties of Materials
 - Engr 262, Introduction to Electrical Properties of Materials

3) **Mechanics**

 - Engr 220, Mechanics of Solids
 - Engr 203, Dynamics

Students in the Field Program in Engineering Physics may substitute A&EP 333 for Engr 203.

4) **Probability and statistics**

 - Engr 260, Introduction to Engineering Probability
 - Engr 270, Basic Engineering Probability and Statistics

Students in the Field Program in Electrical Engineering may substitute EE 310 for Engr 260. Students in the Field Program in Engineering Physics may substitute EE 310 or Mathematics 471 for Engr 260. Students in the Field Programs in Civil Engineering and Agricultural Engineering may substitute CEE 304 for Engr 270.

5) **Electrical sciences**

 - Engr 210, Introduction to Electrical Systems
 - Engr 264, Computerized-Instrumentation Design

6) **Thermodynamics and energy balances**

 - Engr 219, Mass and Energy Balances
 - Engr 221, Thermodynamics

Students in the Field Program in Electrical Engineering may substitute EE 480 for Engr 221.

7) **Earth and life sciences**

 - Engr 201, Introduction to the Physics and Chemistry of the Earth

8) **Introduction to engineering**

Several courses are offered to introduce freshmen to the various fields of engineering. Some of these courses, which begin with Engr 110, may not be included in this announcement. A full listing will be available in the Course and Room Roster at the time of registration.

Humanities and Social Sciences

The six required courses in the humanities and social sciences (totaling at least 18 credits) must be chosen from approved courses in three categories: (a) humanities or history, (b) social sciences, and (c) expressive or language arts.

Restrictions: At least three courses and a minimum of 9 credits must be chosen from category (a), and no more than 4 credits may be chosen from category (c). One-credit courses are acceptable only in category (c). Furthermore, in satisfying the humanities and social sciences requirement, the courses selected must provide both breadth and depth, and not be limited to a selection of unrelated introductory courses. This means inclusion of at least two courses from the same field, one of which is the explicit prerequisite for the other, or two related courses in the same field, at least one of which is numbered 300 or above (e.g., one of the history department prerequisites—History 151, 152, 190 or 191— together with a 300-level history course.)
This category includes all courses defined by the Division Requirement section, group 2a; disregard the phrase “Any two” as well as the following:

College of Agriculture and Life Sciences: Education 472, 473

College of Architecture, Art, and Planning: any course in architectural history except freshman seminars

College of Arts and Sciences: Economics 315, 326, History of Art, all courses numbered 200 and above; Music, all courses listed as introductory (except 120), music theory, and music history; Theatre Arts, only history, literature, and theory courses (performance courses are not acceptable)

College of Engineering: Engineering 250, 292

School of Industrial and Labor Relations: 100, 101, 140, 304, 305, 381, 382, 384, 406, 430, 502

b) Social Sciences

This category includes all courses designated by the College of Arts and Sciences as social sciences (see Distribution Requirement section, group 2a; disregard the phrase “Any two”) as well as the following:

College of Agriculture and Life Sciences: Agricultural Economics 150, 252, 325, Communication 116, 120, 314, 416; Education 271, 317, 378; Natural Resources 201, 407; Rural Sociology, all courses

College of Architecture, Art, and Planning: Architecture 342; City and Regional Planning 400, 404, 413, 414

College of Arts and Sciences: Economics, all courses except 105, 315, 317, 318, 319, 320, 326

College of Engineering: Engineering 321, 322, 360, 400

College of Human Ecology: Consumer Economics and Housing 110, 111, 148, 247, 310, 355, 356, 430; Design and Environmental Analysis 240, 290; Human Development and Family Study, all courses except 242, 243; Human Service Studies, all courses

School of Industrial and Labor Relations: All courses except: courses listed under category a); all courses in Economic and Social Statistics; Personnel and Human Resource Management 266, Interdepartmental Course 452

c) Expressive or Language Arts

This category includes all courses defined by the College of Arts and Sciences as expressive arts (see Distribution Requirement, group 3b) as well as the following:

College of Agriculture and Life Sciences: Communication, all courses; Floriculture, any course in freestyle drawing and scientific illustration

College of Architecture, Art, and Planning: Art, all courses

College of Arts and Sciences: all nonliterature language courses and all music and theater arts courses that emphasize performance, acting, producing, or directing

College of Human Ecology: Design and Environmental Analysis 101, 111, 115

College of Engineering: Engineering 301, 350

School of Industrial and Labor Relations: Interdepartmental Course 452

Electives

There are three kinds of electives: approved, free, and technical. Approved electives must be an appropriate part of an overall educational plan or objective. This constraint allows flexibility for individual students while maintaining a coordinated, nontrivial program. A free elective may be any course in the university, although all course selection must be approved by the student’s faculty advisor. Technical electives are generally taken in the junior and senior years. They are usually upper-level courses in engineering, mathematics, or the physical sciences, but they also may be courses in other areas as designated by the student’s field program.

Approved electives can help develop the skills of a broadly educated engineer, so students should take serious thought to their educational objectives and not propose approved-elective courses haphazardly. Advisers generally accept as approved electives: one introduction to engineering course, engineering distribution courses, courses stressing oral or written communication, upper-level engineering courses, advanced courses in mathematics, and rigorous courses in the biological and physical sciences. Courses in business, economics, and language are often approved by advisers when they serve a student’s educational and academic objectives. In other cases, the student’s interests are better served by approved electives that expand the field program or other parts of the curriculum, including the humanities and social sciences requirement.

No ROTC courses may be used as approved electives unless they are colisted by an academic department.

Except supplementary courses and ROTC courses at the 100 and 200 level not colisted by an academic department. Up to 6 credits of ROTC courses at the 300 level or above may be used as free electives.

Additional ROTC courses not colisted by an academic department may not be used to meet graduation requirements.

Social Issues of Technology

It is important for engineers to realize the social and ethical implications of their work. Consequently, in selecting their humanities, social science, approved electives, and free electives, students are urged to consider courses listed within the “Science, Technology, and Society” undergraduate area of concentration (see Interdisciplinary Centers and Programs section). These courses may provide students with an important perspective on their studies and their future careers.

Office of Advising

From the time that students enter the college as freshmen until they become affiliated with a major field or the College Program, they are under the administration of the Office of Advising, which implements the academic policies of the Common Curriculum Governing Board. The office also offers general advising and counseling services, publishes a college newsletter, and provides support for all students in the college. The Office of Minority Programs provides additional specialized services.

To remain in good standing, students in the College of Engineering must affiliate with a field by the end of their sophomore year, but some fields permit (and encourage) affiliation at the beginning of the sophomore year. Transfer students from outside Cornell automatically affiliate with a field of study on matriculation.

Engineering courses taken at the freshman and sophomore levels are listed under “Engineering Common Courses.” Additional engineering courses of general interest are also listed in this section.

Following is a typical curriculum for freshmen who have not received advanced placement in mathematics. Many variations are possible, depending on the individual student’s background, advanced placement credit, and career goals. Those receiving advanced placement for first term calculus may take Physics 112 in term one. Students with an interest in bioengineering may take biology in terms one and two as approved electives.

Students preparing to study medicine should take one year of biology and Chemistry 208 in the first year.

Term 1

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Math 191, Calculus for Engineers</td>
<td>4</td>
</tr>
<tr>
<td>Chem 207 or Chem 211, * General Chemistry</td>
<td>4</td>
</tr>
<tr>
<td>Engr 100, Introduction to Computer Programming</td>
<td>4</td>
</tr>
</tbody>
</table>

Introduction to Engineering, a humanities or social science course, or an approved elective

Freshman writing seminar

*Chem 211 may be postponed until term 2

Term 2

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Math 192, Calculus for Engineers</td>
<td>4</td>
</tr>
<tr>
<td>Phys 112, Mechanics and Heat</td>
<td>4</td>
</tr>
<tr>
<td>Two electives</td>
<td>6 to 8</td>
</tr>
</tbody>
</table>

Freshman writing seminar

Field Program

The specific program for each field is described in the following pages. Students with a grade-point average of at least 2.0 who are making normal progress toward their degree must affiliate with a field program by the end of their sophomore year. Students who intend to enter the Field Program in Chemical Engineering should take Chemistry 208 and College Chemistry 287--289 as approved electives in terms two and three, and Chemistry 288--290 as a field course in term four. Students intending to major in mechanical engineering must take Engr 213 and students in agricultural engineering must take Engr 221 as a field course in term three or four. Students intending to major in computer science must take CS 280 as a field course in term three or four. Mechanical engineering students should also complete Engr 221 in their sophomore year. Students who intend to enter the Field Program in Electrical Engineering must earn grades of at least C in Math 233 and 294, at least C in Physics 213 and 214, and at least C+ in Engr 210.
Some fields require a specific engineering distribution course as a prerequisite for the upperclass course sequence. These requirements are:

- Chemical Engineering: Engr 219
- Civil Engineering: Engr 202
- Computer Science: Engr 211 (or CS 212)
- Electrical Engineering: Engr 210
- Materials Science and Engineering: Engr 261
- Mechanical Engineering: Engr 202
- Operations Research and Engineering: Engr 260

College Program

Individually arranged courses of study under the College Program are possible for those well-qualified students whose educational objectives cannot be met by one of the regular field programs. Often the desired curriculum is in an interdisciplinary area. Each program is developed by the student in consultation with faculty advisers and must be approved by the College Program Committee, which is responsible for supervising the student's work. Students apply to enter the College Program early in the second term of the sophomore year. A student should seek assistance in developing a coherent program from professors in the proposed major and minor subject areas. If approved, the program is the curricular contract to which the student must adhere. Generally, students applying to the College Program should have a 3.0 cumulative grade point average.

Every curriculum in the College Program, with the exception of certain faculty-sponsored programs, must comprise an engineering major and an educationally related minor. The major may be in any subject area offered by schools or departments of the college; the minor may be in a second engineering subject area or in a logically connected nonengineering area. The combinations must clearly form an engineering education in scope and in substance and should include engineering design and synthesis as well as engineering sciences. In addition to 42 credits in the major and minor subject areas, including at least 21 credits in engineering courses, each program includes the normally required courses in humanities and social sciences and free electives.

Further information about the College Program may be obtained from the associate dean for undergraduate programs, 223 Carpenter Hall, or from a counselor in the Office of Advising, 167 Olin Hall.

Double Major in Engineering

Another program that is attractive to many students is the double major. This option, which makes it possible to develop expertise in two allied fields of engineering, generally requires at least one semester beyond the usual four years. Students affiliate with one field in the normal way and then petition to enter a second field before the end of their junior year. All the requirements of both fields must be satisfied. Further information is available from the Office of Advising, 167 Olin Hall, and the individual field consultant offices.

Engineering Communications Program

The Engineering Communications Program offers instruction in written, oral, and visual presentation. Engineering Communications 350, a three-credit seminar course, is for students who desire intensive work in these areas. Examples from real-life engineering contexts are analyzed and specific assignments are often framed as professional case studies. Students learn how differences existing at different levels of technical expertise and to investigate the social and ethical implications of written and oral communication. A second course, Engineering 301, is offered only in conjunction with particular writing-intensive engineering courses. This one-credit class prepares students for the writing assignments in those courses.

In addition to classroom teaching, the Communications Program consults with faculty in engineering who wish to stress written in their courses maintains a writing-resource library; advises the staff of the Cornell Engineer; and arranges discussions of communications with students and alumni.

Engineering Cooperative Program

A special program for undergraduates in most of the fields of engineering is the Engineering Cooperative Program, which provides an opportunity for students to gain practical experience in industry and other engineering-related enterprises before they graduate. By supplementing course work with carefully monitored, paid jobs, co-op students are able to explore their own interests and acquire a better understanding of engineering as a profession.

Sophomores in the upper half of their class are eligible to apply for the co-op program. Students in computer science and agricultural engineering are eligible, even though they may not be registered in the College of Engineering. Applications are submitted by representatives of cooperating companies and select their work assignments from the offers they receive. Those students who are offered assignments and elect to join the program usually take their fifth-term courses at Cornell during the summer following their sophomore year and begin their first co-op work assignment that fall. They return to Cornell to complete term six with their classmates and then undertake a second work assignment with the same company the following summer. Co-op students return to campus for their senior year and graduate with their class.

Further information may be obtained from the Engineering Cooperative Program office, 105 Hollister Hall.

MASTER OF ENGINEERING DEGREE PROGRAMS

One-year Master of Engineering (M.Eng.) programs are offered in thirteen fields. These programs are discussed in this announcement in connection with the corresponding upperclass engineering field programs because the curricula are integrated. Cornell baccalaureate engineering graduates frequently continue their studies in the M.Eng. program, although the program is also open to qualified graduates of other schools. The M.Eng. degrees and the academic fields under which they are described are listed below.

- M.Eng.(Aerospace): Mechanical and aerospace engineering
- M.Eng.(Agricultural): Agricultural engineering
- M.Eng.(Chemical): Chemical engineering
- M.Eng.(Civil): Civil and environmental engineering
- M.Eng.(Computer Science): Computer sciences
- M.Eng.(Electrical): Electrical engineering
- M.Eng.(Engineering Physics): Applied and engineering physics
- M.Eng.(Geology): Geological sciences
- M.Eng.(Materials): Materials science and engineering
- M.Eng.(Mechanical): Mechanical and aerospace engineering
- M.Eng.(Mechanics): Theoretical and Applied Mechanics
- M.Eng.(Nuclear): Nuclear science and engineering
- M.Eng.(OR/IND): Operations research and industrial engineering

Candidates for a professional master's degree who wish to specialize in areas related to manufacturing may avail themselves of two special programs. The manufacturing systems engineering option may be centered in any one of the fields listed above. The microelectronics manufacturing option is offered in the fields of electrical engineering, engineering physics, materials science and engineering, and chemical engineering. Both specializations are attested to by a Dean's Certificate in addition to a diploma at the time of graduation. An industrial internship program provides opportunities to combine on-campus education with off-campus industrial experience.

As an M.Eng. option of potential interest to engineers from all fields is the program in engineering management, offered by the School of Civil and Environmental Engineering. This option is described in the section related to the M.Eng.(Civil) degree. A new management option in the M.Eng.(Chemical) degree program is also available.

Cornell engineering graduates in the upper half of their class will generally be admitted to M.Eng. programs, however, requirements for admission vary by field. Superior Cornell applicants who will be, at the time of matriculation, eight or fewer credits short of a baccalaureate degree may petition for early admission. Other applicants must have a baccalaureate degree that is equivalent from a college or university of recognized standing, in
an area of engineering or science that is judged appropriate for the proposed field of study. They must also present evidence of undergraduate preparation equivalent to that provided by a Cornell undergraduate engineering education, a transcript, two letters of recommendation, and a statement of academic purpose. A candidate who is admitted with an undergraduate background that is judged inadequate must make up any deficiencies in addition to fulfilling the regular course requirements for the degree. Applicants from foreign universities must submit the results of the Graduate Record Examination aptitude tests and must have an adequate command of the English language. Financial aid providing partial support is available for very highly qualified candidates, primarily those who are residents of the U.S. Industry-sponsored internships, which extend the program to two years, are also available to residents of the United States. Beginning in the fall of 1990, selected courses that satisfy M.Eng degree requirements in operations research and industrial engineering, computer science, and electrical engineering will be available in the Continuing Education Program. Application forms and further information are available from the Master of Engineering Office, 113 Hollister Hall, or from the M.Eng. chair, 248 Carpenter Hall.

Cooperative Programs with the Johnson Graduate School of Management

Two programs culminate in both Master of Engineering and Master of Business Administration degrees. One, which students enter during their undergraduate career, makes it possible to earn the B.S., M.Eng., and M.B.A. in six years—one year less than such a program would normally require. The other program, which is available to students who already hold baccalaureate degrees from Cornell or other institutions, requires five semesters and leads to both the M.Eng. and M.B.A.

Undergraduate students interested in the six-year program should seek advice and information from the department with whose field they intend to affiliate during their upperclass years. Information about admission to either program must be provided at special scholarship aid may be obtained from the Master of Engineering Office, 113 Hollister Hall.

ACADEMIC PROCEDURES AND POLICIES

Advanced Placement Credit

The College of Engineering awards a significant amount of advanced placement (AP) credit to entering freshmen who demonstrate proficiency in the subject areas of introductory courses. Students may qualify for AP credit in one of two ways:

1) by receiving sufficiently high scores on advanced placement examinations given and scored by the College Entrance Examination Board (CEEB); or

2) by receiving sufficiently high scores on Cornell’s departmental placement examinations, which are given during orientation week before courses begin. Advanced placement is granted only to first-term freshmen, and the placement examinations are scored before the students begin classes.

Advanced placement credit is intended to permit students to develop more challenging and stimulating programs of study. Students who receive AP credit for an introductory course may use it in three different ways. 1) They may enroll in a more advanced course in the same subject right away. 2) They may substitute an elective course from a different area. 3) They may enroll in fewer courses, using the AP credit to fulfill basic requirements.

A detailed description of the college’s policies concerning advanced placement credit and its use in developing undergraduate programs may be found in the pamphlet Advanced Placement and Transfer Credit for First-Year Engineering Students, which may be obtained at the Office of Advising, 167 Olin Hall.

Transfer Credit

Entering freshmen and entering transfer students who have completed courses at recognized and accredited colleges may, under certain conditions, have credits for such courses transferred to Cornell. Courses must represent academic work in excess of that required for the secondary school diploma. Courses deemed acceptable for transfer credit must be equivalent in scope and rigor to courses at Cornell.

College courses completed under the auspices of cooperative college and high school programs may be considered for advanced standing as follows. Credit for such courses is not granted unless students demonstrate academic proficiency by taking the appropriate CEEB or Cornell departmental placement examination, as described above.

After matriculation no more than 9 credits of transfer or Cornell extramural credit may be used to satisfy bachelor’s degree requirements. Summer session courses at Cornell are the only exception to this rule. A more detailed description of the college’s regulations governing transfer credit may be found in the Student Handbook, available from the Office of Advising, 167 Olin Hall.

Academic Standing

The requirements for good standing in the college vary slightly among the different divisions. First-term freshmen must have a grade point average of 1.7 or higher with no failing, unsatisfactory, or incomplete grades and must be making adequate progress toward the four-year degree. Second-term freshmen and sophomore requirements are the same, except that the grade-point average must be at least 2.0. Upperclass requirements for good standing and for satisfactory performance in courses that are prerequisite for field courses vary slightly for different fields of study, as specified in the following sections or the Engineering Student Handbook.

Dean’s List citations are presented each semester to engineering students with exemplary academic records. The criteria for this honor, which are determined by the dean of the college, are a term average of 3.25 or higher with no failing, unsatisfactory, or incomplete grades (even in physical education) and 12 credits or more of letter grades. Students may earn Dean’s List status retroactively if they meet these criteria after making up incompletes according to college rules.

Standard of Performance for Mathematics

Every student must attain a grade of at least C- in Mathematics 192, 293, and 294, or other courses that may be approved as substitutes for these courses. If this requirement is not met the first time a course is taken, the course must be repeated immediately and a satisfactory grade attained before the second course is attempted. The sequence may be taken. Courses that are taken a second time in order to meet this requirement do not yield additional credit toward a degree.

S-U Grades

The option of receiving a grade of “satisfactory” or “unsatisfactory” (S-U) in a particular course, rather than a grade on a graduated scale, may be selected only in the following circumstances. Students who want to take a course on an S-U basis must have completed at least one full semester of study at Cornell, and they may take only one course per semester on an S-U basis. Only courses in the humanities and social sciences, approved electives, and free electives may be taken as S-U courses. Students may preregister for the S-U option. To change a grading option, a properly completed and approved add/drop form must be filed with the registrar of the College of Engineering by the end of the first three weeks of the semester. After this deadline, the grading option may not be changed under any circumstances and no courses may be added with the S-U option selected.

The S-U policy does not apply to courses in physical education and other courses that are not taken to fulfill degree requirements. When a particular course is offered only on an S-U basis, a student may petition to take a second S-U course in the same term.

Residence Requirements

Candidates for an undergraduate degree in engineering must spend at least four semesters or an equivalent period of instruction as full-time students at Cornell. They must also spend at least three semesters of this time affiliated with an engineering field program or with the College Program.

Students who are voluntarily not enrolled at Cornell as full-time students may take individual courses through the Extramural Division. Students who have been asked to take time off are permitted to register for courses extramurally with the approval of their field (or the college, for unaffiliated students). No more than 9 credits earned through study in the Extramural Division or acquired as transfer credit (or a combination thereof) may be used to satisfy the requirements for the bachelor’s degree in engineering.

Degree candidates may spend periods of time studying away from the Cornell campus with appropriate authorization. Such students must register for study in absentia and pay a fee. Information on programs sponsored by other universities and on opportunities for direct enrollment in foreign universities is available at the Cornell abroad office, 474 Uris Hall. Students should be planned in consultation with Professor Richard Lancé, 219 Kimball Hall.
or with the staff of the Office of Advising, who can provide information on credit-evaluation policies and assist in the petitioning process.

Transferring within Cornell
It is not uncommon for students to change their academic or career goals after matriculation in one college and decide that their needs would be better met in another college at Cornell. While transfer between colleges is not generally granted, efforts are made to assist students in this situation.

Students who have completed at least one semester at Cornell and wish to transfer into the College of Engineering may make application to the Office of Engineering Admission—application forms are available in 167 Olin Hall. Students who would enter the college as second-semester sophomores or upperclassmen must be accepted by a field program as part of the admission process. Others may be accepted into the college without the requirement of field affiliation.

Students who hope to transfer into engineering should take courses in mathematics, chemistry, computer science, and physics that conform to the requirements of the Common Curriculum. Interested students should discuss their eligibility with an adviser in the Office of Engineering Advising, 167 Olin Hall.

Leave of Absence and Withdrawal
Students may interrupt their studies for a period of time by taking a leave of absence. A formal petition must be filed, an exit interview conducted, and written approval granted. Leaves of absence for more than two years are not generally granted. Credit earned while on leave of absence is subject to the limitations placed on extramural and transfer credit.

Students who voluntarily withdraw from the engineering degree program sever all connection with the college, and if they subsequently want to return, they must make a formal application for readmission. Students who fail to register in the first three weeks of the semester, without having received a leave of absence or permission for study in absentia, may be classified, by action of the faculty, as having withdrawn.

AGRICULTURAL AND BIOLOGICAL ENGINEERING

<table>
<thead>
<tr>
<th>Bachelor of Science Curriculum</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Field Program in Agricultural Engineering prepares students for engineering practice in biological and physical systems represented in agriculture and its supporting industries and agencies, environmental or resource protection agencies, the biotechnological industries, and the food industries. Engineering is applied to production, storage processing, distribution, and use of plant and animal products and biomass. Issues of environmental quality and safety and preservation of soil and water resources are studied. Emerging areas of study include engineering aspects of biotechnology. Biological, social, and agricultural sciences are integrated into the field program along with the engineering design and studies in the physical sciences. Areas of concentration include agricultural engineering, biological engineering, environmental systems, and food engineering.</td>
<td></td>
</tr>
</tbody>
</table>

This program is jointly administered by the College of Engineering and the College of Agriculture and Life Sciences. Students are enrolled in the College of Agriculture and Life Sciences in the first four semesters and jointly in the College of Engineering in the remaining semesters. Engineering college tuition is paid in the fifth and sixth semesters of study.

Graduates find employment not only in agricultural and food related industries but also in environmentally related firms and agencies. Professional education is also the choice of many of the graduates. Agricultural and biological engineers are employed throughout the entire spectrum of private industry, consulting firms, government agencies, utility companies, and educational institutions. The unique blend of engineering and the biological sciences in the education of the agricultural and biological engineer is often attractive to employers.

For further details see the department's undergraduate programs brochure, available at 106 Riley-Robb Hall.

Basic Subjects

<table>
<thead>
<tr>
<th>Math 191, 192, 293, 294 Calculus for Engineers and Engineering</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chem 211, General Chemistry, or equivalent</td>
<td>4</td>
</tr>
<tr>
<td>Phys 112, 213, 214 Physics I, II, and III</td>
<td>12</td>
</tr>
<tr>
<td>Introductory biological sciences</td>
<td>6 to 8</td>
</tr>
<tr>
<td>ABEN 151, computer programming and introduction to field</td>
<td>4 to 6</td>
</tr>
<tr>
<td>Engineering distribution (four courses, including Mechanics of Solids and Thermodynamics)</td>
<td>12</td>
</tr>
</tbody>
</table>

Master of Engineering (Agricultural) Degree Program

The program for the M.Eng. (Agricultural) degree is intended primarily for those students who plan to enter engineering practice. The curriculum is planned as an extension of the Cornell undergraduate program in agricultural and biological engineering but can accommodate graduates of other engineering disciplines. The curriculum consists of 90 credits of courses intended to strengthen the students' fundamental knowledge of engineering and develop their design skills. Six of the required 30 credits are earned for an engineering design project that culminates in a written and oral report.

A candidate for the M.Eng. (Agricultural) degree may choose to concentrate in one of the subareas of agricultural engineering or take a broad program without specialization. The subareas are (a) agricultural engineering, (b) biological engineering, (c) environmental systems, and (d) food engineering. Engineering electives are chosen from among subject areas relevant to agricultural engineering, such as thermodynamics, process engineering, mechanical design and analysis, theoretical and applied mechanics, structural engineering, hydraulics, environmental engineering, soil engineering, waste management, and electronics.

APPLIED AND ENGINEERING PHYSICS

<table>
<thead>
<tr>
<th>Bachelor of Science Curriculum</th>
</tr>
</thead>
<tbody>
<tr>
<td>The undergraduate engineering physics curriculum is designed for students who want to pursue careers of research or development in applied science or advanced technology and engineering. Its distinguishing feature is a focus on the physics and mathematics fundamentals, both experimental and theoretical, that are at the base of modern engineering and research and have a broad applicability in these areas. By choosing areas</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Degree Program</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Master of Engineering (Agricultural)</td>
<td></td>
</tr>
<tr>
<td>Bachelor of Science</td>
<td>12</td>
</tr>
<tr>
<td>Applied and Engineering Physics</td>
<td>24</td>
</tr>
<tr>
<td>Advanced and Applied Subjects</td>
<td>35</td>
</tr>
<tr>
<td>Biological or agricultural sciences</td>
<td>6</td>
</tr>
<tr>
<td>Royal Agricultural Society</td>
<td>33</td>
</tr>
<tr>
<td>Agricultural engineering</td>
<td>24</td>
</tr>
<tr>
<td>Biological engineering</td>
<td>12</td>
</tr>
<tr>
<td>Environmental systems</td>
<td>6</td>
</tr>
<tr>
<td>Food engineering</td>
<td>6</td>
</tr>
<tr>
<td>Free electives</td>
<td>12</td>
</tr>
<tr>
<td>Total credits</td>
<td>33</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Humanities and social sciences (eight courses, including two in written expression, one in oral expression, and a minimum of 9 credits in humanities and/or history)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advanced and Applied Subjects</td>
</tr>
<tr>
<td>Biological or agricultural sciences (3 credits of upper level biological sciences required)</td>
</tr>
<tr>
<td>Free electives</td>
</tr>
<tr>
<td>Total credits</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Master of Engineering (Agricultural) Degree Program</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bachelor of Science</td>
</tr>
<tr>
<td>Mathematics and Statistics</td>
</tr>
<tr>
<td>Applied mathematical sciences</td>
</tr>
<tr>
<td>Biological or agricultural sciences</td>
</tr>
<tr>
<td>Environmental sciences</td>
</tr>
<tr>
<td>Food engineering</td>
</tr>
<tr>
<td>Free electives</td>
</tr>
<tr>
<td>Total credits</td>
</tr>
</tbody>
</table>

Engineering Advising, 167 Olin Hall

<table>
<thead>
<tr>
<th>Bachelor of Science Curriculum</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Field Program in Agricultural Engineering prepares students for engineering practice in biological and physical systems represented in agriculture and its supporting industries and agencies, environmental or resource protection agencies, the biotechnological industries, and the food industries. Engineering is applied to production, storage processing, distribution, and use of plant and animal products and biomass. Issues of environmental quality and safety and preservation of soil and water resources are studied. Emerging areas of study include engineering aspects of biotechnology. Biological, social, and agricultural sciences are integrated into the field program along with the engineering design and studies in the physical sciences. Areas of concentration include agricultural engineering, biological engineering, environmental systems, and food engineering.</td>
<td></td>
</tr>
</tbody>
</table>

This program is jointly administered by the College of Engineering and the College of Agriculture and Life Sciences. Students are enrolled in the College of Agriculture and Life Sciences in the first four semesters and jointly in the College of Engineering in the remaining semesters. Engineering college tuition is paid in the fifth and sixth semesters of study.

Graduates find employment not only in agricultural and food related industries but also in environmentally related firms and agencies. Professional education is also the choice of many of the graduates. Agricultural and biological engineers are employed throughout the entire spectrum of private industry, consulting firms, government agencies, utility companies, and educational institutions. The unique blend of engineering and the biological sciences in the education of the agricultural and biological engineer is often attractive to employers.

For further details see the department's undergraduate programs brochure, available at 106 Riley-Robb Hall.

Basic Subjects

<table>
<thead>
<tr>
<th>Math 191, 192, 293, 294 Calculus for Engineers and Engineering</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chem 211, General Chemistry, or equivalent</td>
<td>4</td>
</tr>
<tr>
<td>Phys 112, 213, 214 Physics I, II, and III</td>
<td>12</td>
</tr>
<tr>
<td>Introductory biological sciences</td>
<td>6 to 8</td>
</tr>
<tr>
<td>ABEN 151, computer programming and introduction to field</td>
<td>4 to 6</td>
</tr>
<tr>
<td>Engineering distribution (four courses, including Mechanics of Solids and Thermodynamics)</td>
<td>12</td>
</tr>
</tbody>
</table>
of concentration, the students may combine this physics base with a good background in a conventional area of engineering or applied science.

The industrial demand for graduates with baccalaureates is high, and many students go directly to industrial positions where they work in a variety of areas that either combine, or are in the realm of, various more conventional areas of engineering. Recent examples include bioengineering, computer technology, electronic-circuit and instrumentation design, energy conversion, geological analysis, laser and optical technology, microwave technology, nuclear technology, software engineering, and solid-state-device development. A number of our graduates go on for advanced study in all areas of basic and applied physics, as well as in a diverse range of areas in advanced science and engineering. Examples include applied physics astrophysics, atmospheric sciences, biophysics, computer science and engineering, electrical engineering, environmental science, fluid mechanics, geophysics, laser optics, materials science and engineering, mechanical engineering, mathematics, medicine, nuclear engineering, oceanography, and physics. The undergraduate program can also serve as an excellent preparation for medical school, business school, or specialization in patent law.

The engineering physics program fosters this breadth of opportunity because it both stresses the fundamentals of science and engineering and gives the student direct exposure to the application of these fundamentals. Laboratory experimentation is emphasized, and ample opportunity for innovative design is provided. Examples are A&EP 110, The Laser and Its Applications in Science, Technology, and Medicine (a freshman course); A&EP 264, Computerized-Instrumentation Design (a sophomore course); A&EP 363, Electronic Circuits (a junior course); Physics 410, Advanced Experimental Physics, and A&EP 436, Physical and Integrated Optics (senior courses).

Undergraduates who plan to enter the Field Program in Engineering Physics are advised to arrange their Common Curriculum with their developing career goals in mind. Students are also encouraged to take Physics 112 or Physics 116 during their senior year (if their advanced placement credits permit) and to satisfy the computing applications requirement with an engineering distribution course such as A&EP 264. Engineering physics students need to take only three engineering distribution courses, since A&EP 333, which they take in their junior year, counts as a fourth member of this category.

The upperclass course requirements of the field program are as follows:

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>A&EP 333, Mechanics of Particles and Solid Bodies</td>
<td>4</td>
</tr>
<tr>
<td>A&EP 355, Intermediate Electromagnetism</td>
<td>4</td>
</tr>
<tr>
<td>A&EP 356, Intermediate Electrodynamics</td>
<td>4</td>
</tr>
<tr>
<td>A&EP 361, Introductory Quantum Mechanics</td>
<td>4</td>
</tr>
<tr>
<td>A&EP 363, Electronic Circuits</td>
<td>4</td>
</tr>
<tr>
<td>A&EP 423, Statistical Thermodynamics</td>
<td>4</td>
</tr>
<tr>
<td>A&EP 434, Continuum Physics</td>
<td>4</td>
</tr>
<tr>
<td>Physics 410, Advanced Experimental Physics</td>
<td>4</td>
</tr>
</tbody>
</table>

A&EP 321, Mathematical Physics I; Mathematics 421, or T&AM 610 (applied mathematics)

A&EP 322, Mathematical Physics II; Mathematics 422, or T&AM 611 (applied mathematics)

Applications of quantum mechanics* 3 or 4

A third technical elective (in addition to the two required by the Common Curriculum) 3

Some courses that will satisfy this requirement are Physics 444, Nuclear and High-Energy Particle Physics; Physics 454, Introductory Solid State Physics; A&EP 609, Low-Energy Nuclear Physics; EE 430, Lasers and Optical Electronics; and EE 531, Quantum Electronics I.

If a scientific computing course was not selected as an engineering distribution course, one of these technical electives may be needed to satisfy the computing applications requirement. For students going on to graduate school a third course in mathematics is recommended.

Areas of concentration. With at least five electives in the junior and senior years, students are encouraged to develop areas of concentration in accordance with their individual career interests. For those who look toward an industrial position after graduation, these electives should be chosen to widen the necessary background in a specific area of practical engineering. A different set of electives could be selected as preparation for medical, law, or business school. For students who plan on graduate studies, the electives provide an excellent opportunity to explore upper-level and graduate courses. Various programs are described in a special brochure available from the School of Applied and Engineering Physics, Clark Hall. Students interested in such programs are advised to consult with a professor active in their area or with the associate director of the school, Professor Michael S. Isackson.

Electives need not be all formal course work. Qualified students may undertake informal study under the direction of a member of the faculty (A&EP 490). This may include research or design projects in areas in which faculty members are active. While free electives may be selected (with the permission of the faculty adviser) from among almost all the courses offered at the university, the student is encouraged to select those that will provide further preparation in the area of technical interest. The minimum requirement is two courses or six credits.

The variety of course offerings provides a sizable flexibility in scheduling. In addition, if scheduling conflicts arise, the school may allow substitution of courses nearly equivalent to the listed required courses; Physics 325-326 is similar to A&EP 355-356; Physics 318 (offered in the spring) and T&AM 570 are similar to A&EP 333; Physics 443 (offered in the fall), is similar to A&EP 361; and advanced courses in fluid mechanics or elasticity are similar to A&EP 434.

The engineering physics student is expected to pass every course for which he or she is registered, to earn a grade of C- or better in specifically required courses, and to attain each term an overall grade point average of at least 2.3.

The M.Eng. (Engineering Physics) degree may lead directly to employment in engineering design and development or may be a basis for further graduate study. Students have the opportunity to broaden and deepen their preparation in the general field of applied physics, or they may choose the more specific option of preparing for professional engineering work in a particular area such as laser and optical technology, microstructure science and technology, device physics or materials characterization. A wide latitude is allowed in the choice of the required design project.

One example of a specific area of study is solid-state physics and chemistry as applied to microstructure science and technology. Core courses in this specialty include the microcharacterization of materials (A&EP 661) and the fabrication of microstructures and devices (A&EP 662). The design project may focus on such areas as semiconductor materials, device physics, microstructure technology, or optoelectronics.

Each individual program is planned by the student in consultation with the program chair. The object is to provide a combination of a good general background in physics and introductory study in a specific field of applied physics. Candidates may enter with an undergraduate preparation in physics, engineering physics, or engineering. Those who have majored in physics usually seek advanced work with an emphasis on engineering; those who have majored in an engineering discipline generally seek to strengthen their physics base. Candidates coming from industry usually want instruction in both areas. All students granted the degree will have demonstrated competence in an appropriate core of basic physics; if this has not been accomplished at the undergraduate level, subjects such as electricity and magnetism, or classical, quantum, and statistical mechanics should be included in the program.

The general requirement for the degree is a total of 30 credits for graduate-level courses or their equivalent, each with a grade of C or better and distributed as follows:

1) a design project in applied science or engineering (not less than 6 nor more than 12 credits)
2) an integrated program of graduate-level courses, as discussed below (14 to 20 credits)
3) a required special-topics seminar course (4 credits)

The design project, which is proposed by the student and approved by the program chair, is carried out on an individual basis under the guidance of a member of the faculty. It may be experimental or theoretical in nature; if it is not experimental, a laboratory physics course is required.

The individual program of study consists of a compatible sequence of courses focused on a specific area of applied physics or engineering. It is planned to provide an appropriate combination of physics and physics-related courses (applied mathematics, statistical mechanics, applied quantum mechanics) and engineering electives (such as courses in electrical engineering, materials science, computer science, mechanical engineering, physical geology, or bioengineering).
Additional science and engineering electives may be included. Some courses at the senior level are acceptable for credit toward the degree; other undergraduate courses may be required as prerequisites but are not credited toward the degree.

Students interested in the M.Eng (Engineering Physics) degree program should contact Professor R. V. E. Loveless.

APPLIED MATHEMATICS

The Center for Applied Mathematics administers a broadly based interdepartmental graduate program that provides opportunities for study and research in a wide range of the mathematical sciences. For detailed information on opportunities for graduate study in applied mathematics, contact the director of the Center for Applied Mathematics, Sage Hall.

There is no special undergraduate degree program in applied mathematics. Undergraduate students interested in application-oriented mathematics may select an appropriate program in the Department of Mathematics or one of the departments in the College of Engineering.

A list of selected graduate courses in applied mathematics may be found in the description of the Center for Applied Mathematics, in the section "Interdisciplinary Centers and Programs."

CHEMICAL ENGINEERING

Bachelor of Science Curriculum

The undergraduate Field Program in Chemical Engineering comprises a coordinated sequence of courses beginning in the sophomore year and extending through the fourth year. Special programs in biochemical engineering and polymeric materials are available. Students who plan to enter the field program take Chemistry 208 as an approved elective during the freshman year. The program for the last three years, for students who have taken two engineering distribution courses during the first year, is as follows:

<table>
<thead>
<tr>
<th>Term 3</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Math 293, Engineering Mathematics</td>
<td>4</td>
</tr>
<tr>
<td>Phys 213, Electricity and Magnetism</td>
<td>4</td>
</tr>
<tr>
<td>Chem 287-289, Physical Chemistry (approved elective)</td>
<td>5</td>
</tr>
<tr>
<td>Chem E 219 (engineering distribution course)</td>
<td>3</td>
</tr>
<tr>
<td>Humanities or social sciences course</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Term 4</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Math 294, Engineering Mathematics</td>
<td>4</td>
</tr>
<tr>
<td>Phys 214, Optics, Waves, and Particles</td>
<td>4</td>
</tr>
<tr>
<td>Chem 288-290, Physical Chemistry</td>
<td>5</td>
</tr>
<tr>
<td>Engineering distribution course</td>
<td>3</td>
</tr>
<tr>
<td>Humanities or social sciences course</td>
<td>3</td>
</tr>
</tbody>
</table>

Term 5

- Chem 357, Organic Chemistry | 3 |
- Chem 251, Organic Chemistry Laboratory | 2 |
- Chem E 313, Chemical Engineering Thermodynamics | 4 |
- Chem E 523, Fluid Mechanics | 3 |
- Humanities or social sciences course | 3 |

Term 6

- Chem 358, Organic Chemistry | 3 |
- Chem E 101, Nonresident Lectures | 0 |
- Chem E 324, Heat and Mass Transfer | 3 |
- Chem E 332, Analysis of Separation Processes | 4 |
- Chem E 590, Reaction Kinetics and Reactor Design | 3 |
- Humanities or social sciences course | 3 |

<table>
<thead>
<tr>
<th>Term 7</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chem E 432, Chemical Engineering Laboratory</td>
<td>4</td>
</tr>
<tr>
<td>Electives*</td>
<td>9</td>
</tr>
<tr>
<td>Humanities or social sciences course</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Term 8</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chem E 462, Chemical Process Design</td>
<td>4</td>
</tr>
<tr>
<td>Chem E 472, Process Control</td>
<td>3</td>
</tr>
<tr>
<td>Electives*</td>
<td>6</td>
</tr>
<tr>
<td>Humanities or social sciences course</td>
<td>3</td>
</tr>
</tbody>
</table>

*The electives in terms seven and eight comprise 6 credits of technical electives, 6 credits of free electives, and 5 credits of Chem E process or systems elective. Chem E process or systems electives include Chem E 566, Computer-aided Process Design; Chem E 640, Polymeric Materials; Chem E 643, Introduction to Bioprocess Engineering.

Chemistry 253 plus an applied science elective may be substituted for Chem 357-358. Applied science electives include Biological Sciences 330 and 331, Principles of Biochemistry; Chem E 640, Polymeric Materials; Chem E 675, Adsorption and Catalysis; MS&E 351, Structural Characterization of Materials; MS&E 352, Electrical and Magnetic Properties of Materials; MS&E 441, Microprocessing of Materials; Materials 290, General Microbiology; any A&EP course numbered 333 or above; any Chemistry course numbered 301 or above; any Physics course numbered 300 or above.

Master of Engineering (Chemical) Degree Program

The professional master's degree, M.Eng (Chemical), is awarded at the end of one year of graduate study with successful completion of 30 credits of required and elective courses in technical fields including engineering, mathematics, chemistry, physics, and business administration. Courses emphasize design and optimization based on the economic factors that affect design alternatives for processes, equipment, and plants. General admission and degree requirements are described in the college's introductory section.

Specific requirements include

1) two courses in advanced chemical engineering fundamentals chosen from Chem E 711, 713, 731, 732, and 751

2) two courses in applied chemical engineering science chosen from Chem E 564, 566, 640, and 643

3) a minimum of 3 credits of a design project, Chem E 565

CIVIL AND ENVIRONMENTAL ENGINEERING

Bachelor of Science Curriculum

The School of Civil and Environmental Engineering offers an accredited undergraduate program in civil engineering. The civil engineering curriculum is designed to ensure adequate depth and breadth in each of the subdisciplines of civil engineering. For students who want to specialize in a particular subdiscipline, illustrative sets of courses are available in the school office (220 Hollister Hall). Students may emphasize structural engineering; civil engineering materials; geotechnical engineering; water quality and hazardous-waste engineering; environmental engineering; environmental management and planning; hydrology, hydrology and fluid mechanics, and remote sensing.

Students planning to enter the Field Program in Civil Engineering are required to take Mechanics of Solids (Engr 202) during the sophomore year.* Prospective majors are strongly encouraged to obtain a "typical course schedule" from the school office.

For the Field Program in Civil Engineering the following courses are required in addition to those required for the Common Curriculum:**

<table>
<thead>
<tr>
<th>Courses</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engr 202, Mechanics of Solids*</td>
<td>3</td>
</tr>
<tr>
<td>Engr 203, Dynamics</td>
<td>3</td>
</tr>
<tr>
<td>Engr 261, Introduction to Mechanical Properties of Materials*</td>
<td>3</td>
</tr>
<tr>
<td>Engr 241, Engineering Computation†</td>
<td>3</td>
</tr>
<tr>
<td>CEE 304, Uncertainty Analysis in Engineering**</td>
<td>4</td>
</tr>
<tr>
<td>CEE 323, Engineering Economics and Management</td>
<td>3</td>
</tr>
<tr>
<td>CEE 331, Fluid Mechanics</td>
<td>4</td>
</tr>
<tr>
<td>CEE 341, Introduction to Geotechnical Engineering</td>
<td>4</td>
</tr>
<tr>
<td>CEE 351, Environmental Quality Engineering</td>
<td>3</td>
</tr>
<tr>
<td>CEE 361, Introduction to Transportation Engineering</td>
<td>3</td>
</tr>
<tr>
<td>CEE 371, Structural Behavior</td>
<td>4</td>
</tr>
<tr>
<td>Civil engineering distribution courses</td>
<td>12</td>
</tr>
</tbody>
</table>

Four civil engineering distribution courses must be selected from an approved list, and they must represent at least three of the different areas of civil engineering into which the list is
categorized. The list is available at the school office, 220 Hollister Hall.

Civil engineering majors must also take at least two courses selected from a list of approved design courses (available in 220 Hollister Hall), and must choose as one of their technical electives a 3-0-or-more-credit upper-level engineering course with design content. These requirements should not make it necessary to add any courses to the field program, although they do constrain the choice of civil engineering distribution courses or electives.

*These courses can also be used to satisfy the Common Curriculum requirements for engineering distribution courses.

†Chem 208 can be substituted for Phys 214.

‡Engr 241 can be used to satisfy both the computer application requirement and an engineering distribution requirement of the Common Curriculum.

*Students in Civil Engineering may use CEE 304 as a substitute for Engr 270, applying it toward the engineering distribution requirement. If this is done, the technical elective requirement is increased by 3 credits.

Alternatively, Engr 270 may be accepted (on petition) as an engineering distribution course.

Engr 241 can be used to satisfy both the computer application requirement and an engineering distribution requirement of the Common Curriculum.

M.Eng. (Civil) program in civil and environmental engineering is one in civil and environmental engineering and one in engineering management. Both options require a broad-based background in an engineering field. Applicants holding an ABET-accredited (or equivalent) undergraduate degree in engineering automatically satisfy this requirement. Those without such preparation will require coursework beyond the graduate program's 30-credit minimum to fulfill the engineering preparation requirement. Both options also require one course in professional practice and a two-course project sequence. The projects provide synthesis, analysis, decision making, and application of engineering judgment. Normally it is undertaken in cooperation with an outside practitioner, and it includes an intensive, full-time, three-week session between semesters. The general degree requirements and admissions information are described above in the section entitled "Master of Engineering Degree Programs." Each student's program of study is designed individually in consultation with an academic adviser and then submitted to the school's Professional Degree Committee for approval.

For the M.Eng. (Civil) program in civil and environmental engineering design options, the requirements are:

1) Three courses, one in professional engineering practice (CEE 503) and a two-course design project (CEE 501 and 502)
2) Specialization in a major—three to five courses in either environmental engineering, environmental and public systems engineering, geotechnical engineering, hydraulic engineering, remote sensing, structural engineering, or transportation engineering
3) Two courses in a single related or minor area
4) Technical electives (up to two courses)

Courses in the minor and electives may consist of graduate or advanced courses in fields related to the major, either inside or outside of the school.

For the M.Eng. (Civil) program in the engineering management option, the requirements are:

1) Four courses: Management Practice (CEE 590), Engineering Management Methods (CEE 593), and the Management Project (CEE 591 and 592)
2) Two courses from a list of engineering management electives
3) Two elective courses in general management from outside the school, including accounting, finance, law and regulation, marketing, and organizational behavior
4) Two engineering and/or technical elective courses

The School of Civil and Environmental Engineering cooperates with the the Johnson Graduate School of Management in two joint programs leading to both Master of Engineering and Master of Business Administration degrees. Such the introductory section under College of Engineering.

Applications for the six-year B.S./M.Eng./M.B.A. program must be submitted at the beginning of the sixth term of study.

COMPUTER SCIENCE

Bachelor of Science Curriculum

The Field Program in Computer Science is intended for students who are interested in the computing process and in the fundamental structure of algorithms, data, and languages that underlies that process. A student entering the Field Program in Computer Science must take CS 211 or 212 and CS 280 before beginning the upperclass sequence. Students who do not earn a grade of B- or better in both CS 211 or 212 and CS 280 are strongly advised against attempting the computer science field program. Students who have not maintained an average of at least 3.0 in the mathematics courses required by the Common Curriculum are also discouraged from entering the program. Apart from these requisites and those of the college, the courses required for the Field Program in Computer Science are:

Course Work Credits

Systems sequence
CS 314, Systems and Organization
CS 410, Data Structures
Theory sequence
CS 381 or 481, Theory of Computing
CS 582, Analysis of Algorithms
Numerical Analysis
CS 222, Scientific Computation, or CS 421, Numerical Solutions of Algebraic Equations

Electrical Engineering
EE 230, Digital Systems* 4

Computer science electives 7-9

Two nonrequired computer science courses numbered 400 or above. †One must be a course or course-laboratory combination that includes an implementation or numerical analysis or artificial intelligence component. †Students who are interested in logical design or computer architecture will find it more appropriate to apply for admission to a graduate program in electrical engineering. The required design project could be, for example, the design of a compiler for a large subset of a general-purpose programming language.

Cooperative Program with the Johnson Graduate School of Management

Undergraduates majoring in computer science may be interested in a program that can lead, in the course of six years, to B.S., M.Eng. (Computer Science), and M.B.A. degrees. This program, which is sponsored jointly by the College of Engineering and the Johnson Graduate School of Management, enables students to study several subjects at different levels. Undergraduates may begin early, however, if all requirements are to be completed on schedule.

For further details, application forms, and assistance in planning a curriculum, students should contact the computer science undergraduate coordinator in Upson Hall.

Master of Engineering (Computer Science) Degree Program

The one-year program leading to the degree of M.Eng. (Computer Science) admits fifteen to twenty students a year. A strong undergraduate background in computer science or a related field is required. Early admission is available for Cornell seniors who apply in the fall semester.

In the curriculum the emphasis can be on programming languages and systems, on theory of algorithms and theory of computation, on numerical analysis, or artificial intelligence, or on information processing, which includes databases and information organization and retrieval. (Students who are interested in logical design or computer architecture will find it more appropriate to apply for admission to a graduate program in electrical engineering.) The required design project could be, for example, the design of a compiler for a large subset of a general-purpose programming language.
ELECTRICAL ENGINEERING

Bachelor of Science Curriculum

Reflecting the large scope of this engineering discipline, the undergraduate Field Program in Electrical Engineering provides a broad foundation in a number of important and fundamental areas.

Areas of concentration include computer engineering, control systems; electronic circuit design; information, communication, and decision theory; microwave electronics; plasma physics; power and energy systems; quantum and optical electronics; radio and atmospheric physics; and semiconductor devices and applications.

Students planning to enter the Field Program in Electrical Engineering must take EE 210, Introduction to Electrical Systems, as an engineering distribution course. In addition, the field program requires twelve courses, as shown below. Many of these courses are taught only once a year, either spring or fall, as indicated in the course descriptions.

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>EE 230, Introduction to Digital Systems</td>
<td>4</td>
</tr>
<tr>
<td>EE 301, Electrical Signals and Systems I</td>
<td>4</td>
</tr>
<tr>
<td>EE 303, Electromagnetic Waves and Fields I</td>
<td>4</td>
</tr>
<tr>
<td>EE 315, Electrical Laboratory</td>
<td>4</td>
</tr>
<tr>
<td>A choice of three courses from among:</td>
<td></td>
</tr>
<tr>
<td>EE 302, Electrical Signals and Systems II</td>
<td>12</td>
</tr>
<tr>
<td>EE 304, Electromagnetic Waves and Fields II</td>
<td></td>
</tr>
<tr>
<td>EE 306, Fundamentals of Quantum and Solid State Electronics</td>
<td></td>
</tr>
<tr>
<td>EE 308, Fundamentals of Computer Engineering</td>
<td></td>
</tr>
<tr>
<td>EE 310, Probability and Random Signals</td>
<td></td>
</tr>
<tr>
<td>EE electives with laboratory (3 courses)</td>
<td>12</td>
</tr>
<tr>
<td>EE electives (2 courses)</td>
<td>6</td>
</tr>
<tr>
<td>Total</td>
<td>46</td>
</tr>
</tbody>
</table>

Credits in excess of 46 may be used as an EE elective or to meet any other degree requirement that can be satisfied by a 500-level technical course.

Specialization is achieved through the five electrical engineering elective courses, as well as other courses in electrical engineering or related subjects taken as technical, approved, or free electives. The School of Electrical Engineering offers more than thirty courses that are commonly taken as electives by undergraduates. Students with advanced standing frequently take one or more graduate-level courses prior to graduation.

Students majoring in electrical engineering are expected to meet the following academic standards:

1) Students must achieve a grade-point average of at least 2.3 every semester.
2) No course with a grade of less than C- may be used to satisfy degree requirements in the field program or technical elective categories, or serve as a prerequisite for an electrical engineering course. (It may count as a free elective, however, unless it must be repeated.)
3) Students must complete EE 301, 303, and 315 by the end of the first semester of the junior year, and accumulate at least 10 credits each semester toward the remaining degree requirements in the field program and technical elective categories.

Master of Engineering (Electrical) Degree Program

The M.Eng. (Electrical) degree program prepares students either for professional work in electrical engineering and closely related areas or for further graduate study in a doctoral program. The M.Eng. degree differs from the Master of Science degree mainly in its emphasis on engineering design and analysis skills rather than basic research.

The program requires 30 credits of advanced technical course work, including a minimum of two two-semester course sequences in electrical engineering. (A list of approved course sequences is available from the Master of Electrical Engineering Program Office.) All but 8 credits of course work applied toward degree requirements must be at the graduate level (courses numbered 500 or above). An electrical engineering design project is also required and may account for 3 to 8 credits of the M.Eng. program. Occasionally, students take part in very extensive projects and may apply for a waiver of the 8-credit maximum. Students with special career goals, such as engineering management, may apply to use up to 8 credits of courses that have significant technical content, but are taught in disciplines other than engineering, mathematics, or the physical sciences.

Admission to the M.Eng. program is highly competitive, all well-qualified students are urged to apply. Further information is available from the Master of Electrical Engineering Program Office in 222 Phillips Hall.

GEOPHYSICAL ENGINEERING

Bachelor of Science Curriculum

Study in geosciences is offered for students who are preparing for careers in solid earth science, for those who have a broad background in the geological sciences as preparation for careers in other fields, and for those who want to combine geological training with other sciences such as agronomy, astronomy and space science, biological sciences, chemistry, economics, mathematics, physics, or various fields of engineering. The Department of Geological Sciences is organized as an intercollege department in the College of Arts and Sciences and the College of Engineering. College of Arts and Sciences students should consult their college's section on geological sciences as well as the course listing here.

Students in the College of Engineering who plan to enter the Field Program in Geological Sciences are required to take Geo 201 (Engr 201) during their freshman or sophomore year. Those interested in geology should also take Biological Sciences 101–103 and 102–104.

Geological Sciences requires the following courses for the major: Geol 210, 214, 320, 355, 356, 375, 388, and one other 300-, 400-, or 500-level course. A summer field geology course is also required.

Core courses may be taken in any reasonable sequence, except that Geo 355, which is offered in the fall, should be taken before Geo 356, which is offered in the spring. Geol 326 and 375 should be taken relatively early in the major program as preparation for the summer field camp, which usually follows the junior year. Students with adequate preparation may attend field camp at an earlier time.

It is recommended that students intending to specialize in geophysics select most of their approved and technical electives from the following courses or their equivalents:

- A&EP 333, Mechanics of Particles and Solid Bodies
- A&EP 434, Continuum Physics
- Phys 410, Advanced Experimental Physics
- T&M 310–311, Advanced Engineering Analysis I and II

It is recommended that students intending to specialize in geochemistry (including petrology and mineralogy) select most of their approved and technical electives from the following courses or their equivalents:

- Chem 208, General Chemistry
- Chem 287–288, Introductory Physical Chemistry
- Chem 300, Quantitative Chemistry
- Chem 301, Experimental Chemistry I
- Chem 302, Experimental Chemistry II
- Chem 303, Experimental Chemistry III
CHEM 357-358, Introductory Organic Chemistry
CHEM 389-390, Physical Chemistry I and II
MS&E 331, Structural Characterization and Properties of Materials
MS&E 335, Thermodynamics of Condensed Systems

It is recommended that students intending to specialize in geobiology select most of their approved and technical electives from the following courses or their equivalents:

Bio S 241, Introductory Botany
Bio S 274, The Vertebrates
Bio S 371, Human Paleontology
Bio S 373, The Invertebrates
Bio S 261, General Ecology
Bio S 448, Plant Evolution and the Fossil Record
Bio S 378, Organic Evolution
Chem 253, Elementary Organic Chemistry

ABEN 671, Analysis of the Flow of Water and ABEN 475, Environmental Systems Analysis
ABEN 371, Introduction to Hydrology and ABEN 671, Analysis of the Flow of Water and Ground-Water Pollution
Chem 357-358, Introductory Organic Chemistry
MS&E 331, Structural Characterization and Properties of Materials
MS&E 445, Mechanical Properties of Materials
MS&E 331, Fluid Mechanics
CCE 341, Introductory Soil Mechanics
CCE 611, Remote Sensing Applications
CCE 612, Physical Environment Evaluation
CCE 615, Digital Image Processing
CCE 640, Foundation Engineering
CCE 623, Flow in Porous Media and Ground-water
IEEE 260, Introductory Engineering Probability
IEEE 270, Introduction to Statistical Theory with Engineering Applications

Students intending to specialize in economic geology or pursue careers in the mining industries or mineral exploration should consider including economics courses among their humanities and social sciences electives and should select most of their approved and technical electives from the groups of courses listed above for geochemistry and applied geology plus the following additional courses:

CCE 654, Aquatic Chemistry
CCE 741, Rock Engineering

Students who want a more general background or who want to remain uncommitted with regard to specialty must choose at least two of their three approved electives from the same field, at a level comparable to the courses listed above. The technical electives may be chosen from offerings in geological sciences or in other science or engineering fields and should be at the 300 level or above. Outstanding students may request substitution of Geol 491 and 492, Undergraduate Research, for a fourth-year technical elective.

Students intending to pursue graduate study in geology are reminded that some graduate schools require proficiency in reading the scientific literature in one or two of the three languages, French, German, and Russian. Undergraduate preparation in at least one of these languages is therefore advantageous.

Master of Engineering (Geological Sciences Degree Program)

The Master of Engineering (Geological Sciences) degree is intended to provide future professional geologists with the geological and engineering background they will need to analyze and solve engineering problems that involve geological variables and concepts. Students may choose a program from one of several options, or tailor a program to meet their special interests with the help of a faculty adviser.

The program requires 30 credits of postgraduate instruction, at least 10 of which must involve engineering design. Students must also complete a design project, worth between 3 and 12 credits, that has a significant geological component and results in substantial conclusions or recommendations.

General information on admission and degree requirements for the M.Eng. degree programs can be found in the college's introductory section.

MATERIALS SCIENCE AND ENGINEERING

Students who major in materials science and engineering are required to take MS&E 261, Introduction to Mechanical Properties of Materials, before the end of their junior year. They are strongly urged to take it as an engineering distribution course during their freshman or sophomore year. Students may enter the field after taking MS&E 261, Introduction to Electrical Properties of Materials, but they must still take MS&E 261 in order to graduate. Students who choose to major in materials science and engineering can concentrate in any one of the following areas of specialization: materials science, solid state, metallic materials, ceramic materials, polymeric materials, or electrical materials. Specialization is achieved through the selection of technical electives in the junior and senior years. The materials science and engineering field program leading to the Bachelor of Science degree consists of

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MS&E 331, Structural Characterization of Materials</td>
<td>4</td>
</tr>
<tr>
<td>MS&E 332, Electrical and Magnetic Properties of Materials</td>
<td>3</td>
</tr>
<tr>
<td>MS&E 333, Research Involvement I, or a field-approved elective*</td>
<td>3</td>
</tr>
<tr>
<td>MS&E 334, Research Involvement II, or a field-approved elective*</td>
<td>3</td>
</tr>
<tr>
<td>MS&E 335, Thermodynamics of Condensed Systems</td>
<td>4</td>
</tr>
<tr>
<td>MS&E 336, Kinetics, Diffusion, and Phase Transformations</td>
<td>3</td>
</tr>
<tr>
<td>MS&E 441, Microprocessing of Materials</td>
<td>3</td>
</tr>
<tr>
<td>MS&E 442, Macroprocessing of Materials</td>
<td>3</td>
</tr>
<tr>
<td>MS&E 443, Mechanical Properties of Materials</td>
<td>3</td>
</tr>
<tr>
<td>MS&E 445, Materials Science and Engineering Probability</td>
<td>3</td>
</tr>
<tr>
<td>MS&E 446, Materials Design Concepts I</td>
<td>2</td>
</tr>
<tr>
<td>MS&E 448, Materials Design Concepts II</td>
<td>2</td>
</tr>
</tbody>
</table>

*These courses serve as two of the four required specialization courses. The other specialization courses are technical electives.

The optional research involvement courses provide undergraduates with the opportunity to work with faculty members and their research groups on current projects.

To continue in good standing in the Field of Materials Science and Engineering, students must:

1) Maintain an overall 2.0 term average
2) Maintain an average of 2.3, with no grade below C, in the department's basic curriculum.
3) Complete MS&E 261 or 262 prior to entering the field.

The department's basic curriculum consists of all the required MS&E courses including MS&E 261 and the four courses comprising the student's area of specialization.

An attractive and very challenging program combines the materials science and engineering curriculum with that of either electrical engineering or mechanical engineering, leading to a double major. The combination of materials science and engineering with electrical engineering is particularly well suited to students who will eventually be employed in the electronic materials industry. Mechanical engineers knowledgeable in materials science also will be well equipped for technical careers. Curricula leading to the double-major degree must be approved by both of the departments involved. Students are urged to plan such curricula as early as possible.
Master of Engineering (Materials) Degree Program

Students who have completed a four-year undergraduate program in engineering or the physical sciences will be considered for admission to the M.Eng. (Materials) program, which includes a project and course work. The project, which must require individual effort and initiative, is worth 12 credits. It is carried out under the supervision of a member of the faculty, and is usually experimental, although it can also be analytical.

Courses, worth an additional 18 credits, may be selected from graduate-level courses in materials science and engineering or other courses approved by the faculty. These courses should be half MS&E courses and half technical electives. One 3-credit technical elective must be in advanced mathematics (modeling, computer applications, or computer modeling), beyond the MS&E undergraduate requirements. Other electives may be in MS&E or allied fields.

MECHANICAL AND AEROSPACE ENGINEERING

Members of the faculty of the graduate fields of Aerospace Engineering and Mechanical Engineering are listed in the Announcement of the Graduate School.

Bachelor of Science Curriculum in Mechanical Engineering

The upperclass Field Program in Mechanical Engineering is designed to provide a broad background in the fundamentals of this discipline as well as to offer an introduction to the many professional and technical areas with which mechanical engineers are concerned. Two main areas of concentration, corresponding to the two major streams of mechanical engineering technology, are offered in the field program.

Mechanical systems, design, and manufacturing is concerned with the design, analysis, testing, and manufacture of machinery, vehicles, devices, and systems. Particular areas of concentration include mechanical design and analysis, computer-aided design, vehicle engineering, composite materials, vibrations and control systems, biomechanics, and manufacturing engineering.

Engineering of fluids, energy, and heat-transfer systems has as its main concerns the experimental and theoretical aspects of fluid flow and heat transfer; the development of fossil, solar, and other energy sources for uses such as electric-power generation, industrial heating, terrestrial and aerospace transportation; and the use of heating, air conditioning, refrigeration, and noise- and pollution-control techniques to modify the human environment.

The undergraduate field program is a coordinated sequence of courses beginning in the sophomore year. During that year students who plan to enter the field of mechanical engineering take Engr 202 (also T&AM 202) as an engineering distribution course. They also take Engr 203 (also T&AM 203) which is a field requirement that may simultaneously satisfy Common Curriculum requirements as an approved (or free) elective. Both of these courses are prerequisites for courses to be taken during the junior year. During either the sophomore or junior year students take Engr 221 (also M&E 221) and Engr 261 (also MS&E 261).

The requirements for the degree of Bachelor of Science in mechanical engineering are as follows:

1) Completion of the Common Curriculum. During the upperclass years this will typically mean earning credit for two technical electives, one approved elective, two free electives, and three humanities or social sciences courses.
2) Completion of the field requirements, which consist of ten required courses (beyond Engr 202 and 203, already mentioned), and three elective courses (9 credits). The ten additional required courses are:
 - Engr 210, Introduction to Electrical Systems
 - Engr 221, Introduction to Thermodynamics
 - Engr 261, Introduction to Mechanical Properties of Materials
 - M&E 312, Fundamentals of Manufacturing Processes
 - M&E 323, Introduction to Fluid Mechanics
 - M&E 324, Heat Transfer
 - M&E 325, Mechanical Design and Analysis
 - M&E 326, System Dynamics
 - M&E 427, Mechanical Engineering Laboratory
 - M&E 428, Engineering Design (required starting with class of 1989)

If Engr 210 or 221 or 261 is taken as an engineering distribution course, the corresponding field requirement is replaced by an alternate technical elective. The three elective courses consist of one mathematics elective (3 credits), a field elective (3 credits), and a field design elective (3 credits). These electives are chosen from lists approved by the faculty of the Sibley School of Mechanical and Aerospace Engineering.

An additional graduation requirement of the field program is proof of elementary competence in technical drawing. This proof may be given in a number of ways, including satisfactory completion of:
 a) a technical drawing course in high school or in a community college
 b) Engineering 102, Drawing and Engineering Design
 c) another technical drawing course at Cornell, or
 d) a departmental examination.

The proof is expected before completion of M&E 325, Mechanical Design and Analysis.

The computer applications requirement of the Common Curriculum may be satisfied by several courses, including M&E 389, 489, 575, and 670.

The requirements listed are those currently in effect. Requirements for classes earlier than 1989 differ somewhat from the ones listed.

Introduction to Electrical Systems (EE 210) may be replaced or supplemented by Introductory Electronics (Physics 360).

A limited set of third-year courses is offered each summer under the auspices of the Engineering Cooperative Program.

More-detailed materials describing the field program and possible concentrations may be obtained from the Sibley School of Mechanical and Aerospace Engineering, Upson Hall.

Preparation in Aerospace Engineering

Although there is no separate undergraduate program in aerospace engineering, students may prepare for a career in this area by majoring in mechanical engineering and taking a number of aerospace engineering electives such as M&E 405, 506, 507, 530, 531, and 536. Students may prepare for the graduate program in aerospace engineering by majoring in mechanical engineering, in other appropriate engineering specialties such as electrical engineering or engineering physics, or in the physical sciences. Other subjects recommended as preparation for graduate study include thermodynamics, fluid mechanics, applied mathematics, chemistry, and physics.

Master of Engineering (Aerospace) Degree Program

The M.Eng. (Aerospace) degree program provides a one-year course of study for those who want to develop a high level of competence in current technology and engineering design. This degree requires 30 credits of course work and is subject to the rules adopted by the Graduate Professional Program Committee. Because aerospace engineering is continually engaged in new areas, an essential guideline for the program is to reach beyond present-day practices and techniques. This is achieved by supplying the student with the fundamental background and the analytical techniques that will remain useful in all modern engineering developments. Aerospace students register for 1 credit a term on an S-U basis in M&E Colloquium (M&E 799). All other courses must have letter grades. To fulfill the design project requirement, students register for M&E 592. Seminar and Design Project in Aerospace Engineering, for 2 credits a term. Other requirements are four aerospace core courses (minimum of 12 credits), two math courses (6 credits), and two technical electives (6 credits).

Aerospace Core Courses
3 credits:
 - M&E 506, Aerodynamics
 - M&E 507, Dynamics of Flight Vehicles
 - M&E 530, Fluid Dynamics
 - M&E 531, Boundary Layers
 - M&E 536, Turbomachinery and Applications
 - M&E 543, Combustion Processes
 - M&E 559, Introduction to Controlled Fusion

M&E 569, Mechanical and Aerospace Structures I
4 credits:
M&AE 601, Foundations of Fluid Dynamics and Aerodynamics
M&AE 602, Incompressible Aerodynamics
M&AE 603, Compressible Aerodynamics
M&AE 608, Physics of Fluids
M&AE 630, Atmospheric Turbulence and Micrometeorology
M&AE 639, Aerodynamic Noise Theory
M&AE 648, Seminar on Combustion
M&AE 651, Advanced Heat Transfer
M&AE 652, Thermodynamics and Phase Change Heat Transfer
M&AE 670, Mechanical and Aerospace Structures II
M&AE 704, Theory of Viscous Flows
M&AE 732, Analysis of Turbulent Flows
M&AE 733, Stability of Fluid Flow
M&AE 734, Turbulence and Turbulent Flow
M&AE 736, Computational Aerodynamics
M&AE 737, Computational Heat Transfer and Fluid Mechanics
Nominations of Special Committee chair (adviser) must be filed with the Graduate School within three weeks of the start of classes. A formal selection of course work for the term must be filed within three weeks of the start of classes. A program of courses must be submitted for committee approval by the end of the first week of classes.

The school has particular strengths in the areas of fluid dynamics, aerodynamics, high-temperature gasdynamics, turbulence, chemical kinetics, aerodynamic noise, sonic boom, nonlinear waves, atmospheric flows, combustion processes in low-pollution engines, and heat exchangers and flow problems by numerical methods. Professional design projects may be arranged in any of these areas.

Master of Engineering (Mechanical) Degree Program
The M.Eng.(Mechanical) degree program provides a one-year course of study for those who want to develop a high level of competence in current technology and engineering design.

The program is designed to be flexible so that candidates may concentrate on any of a variety of specialty areas. These include biomechanical engineering, combustion, energy and power systems, fluid mechanics, heat transfer, materials and manufacturing engineering, mechanical systems and design, and CAD/CAM (computer-aided design/ computer-aided manufacturing). An individual student's curriculum includes a 4-credit design course, a major consisting of a minimum of 12 credits, and sufficient technical electives to meet the degree requirement of 30 credits.

Students register for 1 credit per term on an S-U basis in M&AE Colloquium (M&AE 799). The design course (M&AE 590) is a formal consideration of the complete design process, including planning, cost analysis, and analytical methods. Students conduct one or more specific projects during the course. These projects may arise from individual faculty interests or from collaboration with industry. A student may replace the design course with an independent design project. Such a project must have a mechanical engineering design focus and have the close supervision of a faculty member.

A coordinated program of courses for the entire year is agreed upon by the student and the faculty adviser. This program, together with a statement of overall objectives and a statement of purpose for the major, is submitted for approval to the Master of Engineering Committee by the end of the first week of class. Any subsequent changes must also be approved by this committee.

The courses that constitute the major must be graduate-level courses in mechanical and aerospace engineering or a closely related field such as theoretical and applied mechanics. At least 24 credits of the total for the degree must be in mechanical engineering or related areas, and in general all courses must be beyond the level of those required in the undergraduate program in mechanical engineering. Credit may be granted for an undergraduate, upper-level first course in some subject area if the student has done little or no previous work in that area, but such courses must have the special approval of the Master of Engineering Committee.

The technical electives may be courses of appropriate level in mathematics, physics, chemistry, or engineering; a maximum of 6 credits may be taken in areas other than those if the courses are part of a well-defined program leading to specific professional objectives. It is expected that all students will use technical electives to develop proficiency in mathematics beyond the minimum required of Cornell engineering undergraduates if they have not already done so before entering the program. Courses in advanced engineering mathematics or statistics are particularly recommended.

Students enrolled in the M.Eng.(Mechanical) program may take courses that also satisfy the requirements of the Cornell Manufacturing Engineering and Productivity Program (COMEPP), leading to a special dean's certificate in manufacturing engineering.

NUCLEAR SCIENCE AND ENGINEERING
Faculty members in the graduate Field of Nuclear Science and Engineering who are most directly concerned with the Master of Engineering (Nuclear) curriculum include D. D. Clark (faculty representative), K. B. Cady, H. H. Fleischmann, D. A. Hammer, V. O. Kostroum, and J. C. McGuire.

Undergraduate Study
Although there is no special undergraduate field program in nuclear science and engineering, students who intend to enter graduate programs in this area are encouraged to begin specialization at the undergraduate level. This may be done by choice of electives within regular field programs (such as in engineering physics, materials science and engineering, and civil, chemical, electrical, or mechanical engineering) or within the College Program.

Master of Engineering (Nuclear) Degree Program
The two-semester program leading to the M.Eng (Nuclear) degree is intended primarily for individuals who want a terminal professional degree, but it may also serve as preparation for doctoral study in nuclear science and engineering. The course of study covers the basic principles of nuclear reactor systems with a major emphasis on reactor safety and radiation protection and control. The special facilities of the Ward Laboratory of Nuclear Engineering are described in the Announcement of the Graduate School.

The interdisciplinary nature of nuclear engineering allows students to enter from a variety of undergraduate specializations. The recommended background is (1) an accredited baccalaureate degree in engineering, physics, or applied science; (2) physics, including atomic and nuclear physics; (3) mathematics, including advanced calculus, and (4) thermodynamics. Students should see that they fulfill these requirements before beginning the program. In some cases, deficiencies in preparatory work may be made up by informal study during the preceding summer. General admission and degree requirements are described in the college's introductory section.

The following courses are included in the 30-credit program:

Fall term
A&EP 609, Low-Energy Nuclear Physics
A&EP 612, Nuclear Reactor Theory
A&EP 633, Nuclear Engineering
Technical elective
Spring term
A&EP 651, Nuclear Measurements Laboratory
Technical elective
Engineering design project
Mathematics or physics elective
Engineering electives should be in a subject area relevant to nuclear engineering, such as nuclear engineering, radiological protection and control, feedback control systems, magnetohydrodynamics, controlled thermonuclear fusion, and environmental engineering. The list below gives typical electives.

M&AE 651, Advanced Heat Transfer
EE 581, Introduction to Plasma Physics
EE 582, Advanced Plasma Physics
EE 589 Magnetohydrodynamics
EE 471, Feedback Control Systems
EE 572, Digital Control Systems
A&EP 536, Seminar on Thermonuclear Fusion Reactors
A&EP 638, Intense Pulsed Electron and Ion Beams: Physics and Technology
NS&E 484, Introduction to Controlled Fusion: Principles and Technology
M&AE 459, Physics of Modern Materials Analysis
The basic senior-year program, from which individualized programs are developed, consists of the following courses:

Minimum credits

- OR&IE 580, Digital Systems Simulation 4
- Three upperclass OR&IE electives as described below 9
- Two technical electives 6
- Two courses in humanities and social sciences 6
- Two free electives 6

Available OR&E electives are as follows:

- **Industrial systems:** OR&IE 416, 417, 421, 451, 525, and 562 and GSM NBA 601 and 641
- Optimization methods: OR&IE 431, 432, and 435
- Applied probability and statistics: OR&IE 462, 472, 475, 476, 561, 563, 575, and 577

No more than one course in the Graduate School of Management may be taken as an OR&E elective.

Scholastic requirements for the field are a passing grade in every course, an overall average of at least 2.0 for each term, and a student's performance is reviewed at the conclusion of each term.

Master of Engineering (OR&IE) Degree Program

This one-year professional degree program stresses applications of operations research and industrial engineering and requires completion of a project. The course work centers on additional study of analytical techniques, with particular emphasis on engineering applications, especially in the design of new or improved man-machine systems, information systems, and control systems.

General admission and degree requirements are described in the introductory "Degree Programs" section. The M.Eng. (OR&IE) program is integrated with the undergraduate Field Program in Operations Research and Engineering. Also welcome are requests for additional study of analytical techniques, with particular emphasis on engineering applications, especially in the design of new or improved man-machine systems, information systems, and control systems. The course work centers on additional study of analytical techniques, with particular emphasis on engineering applications, especially in the design of new or improved man-machine systems, information systems, and control systems. Students fulfill the project requirement by working as part of a group of no more than four students on an operational systems problem that actually exists in some organization. Appropriate problems are suggested by manufacturing firms, retailing organizations, service organizations, government agencies, and educational institutions.
The details of planning courses for this program should be discussed with the admissions office of the Johnson Graduate School of Management.

In accordance with this program the candidate would qualify for the B.S. degree at the end of four years, the M.Eng.(OR&IE) degree at the end of five years, and the M.B.A. degree at the end of six years.

Further details and application forms may be obtained at the office of the School of Operations Research and Industrial Engineering, Lipson Hall, and at the admissions office of the Johnson Graduate School of Management.

STATISTICS CENTER

The Cornell Statistics Center coordinates a university-wide program in statistics and probability. Students interested in graduate study in probability and statistics should apply to the Field of Statistics or to one of the other graduate fields that offer related coursework.

A list of courses in probability and statistics recommended for graduate students in the Field of Statistics can be found in the description of the Cornell Center for Statistics in the section “Interdisciplinary Centers and Programs.” Further information can be obtained from the director of the Statistics Center, Lawrence Brown, or the field representative for statistics, George Casella, both at 272 Caldwell Hall.

THEORETICAL AND APPLIED MECHANICS

Undergraduate Study

The Department of Theoretical and Applied Mechanics is responsible for courses in engineering mechanics and engineering mathematics, some of which are part of the Common Curriculum.

College Program in Engineering Science

A student may enroll in the College Program in Engineering Science, which is sponsored by the Department of Theoretical and Applied Mechanics. The College Program is described in the section on undergraduate study in the College of Engineering.

Master of Engineering (Mechanics) Degree Program

This program focuses on the mechanical behavior of advanced composite materials and structures. It is designed for students who have completed a four-year undergraduate program in a field such as mechanical, aerospace, structural, materials, or biomedical engineering, who wish to develop a high level of competence in the mechanics of composites. It leads to the professional Master of Engineering degree, whose requirements can be met in one year.

The curriculum is composed of courses that explore the nature of modern composite materials and provide students with a broad background in the fundamentals as well as an introduction to techniques that will be useful in subsequent work. The degree program requires satisfactory completion of 30 credits of course work, including 12 credits of courses that involve analysis, computation, design, or laboratory experience. Of these 12 credits, at least 6 must be earned in T&AM 501, 502, 555, or 655. Up to 10 credits will be awarded for an individual project involving composites. The balance of the required credits may be earned in elective courses chosen from those listed below or others approved by the student’s adviser.

The Department of Theoretical and Applied Mechanics has several laboratories equipped for the mechanical testing of composite materials and structures. Extensive computing resources are available for numerical computations, design, or other research activities. The Materials Science Center, the Center for Theory and Simulation in Science and Engineering, and the Computer-Aided Design Instructional Facility provide additional state-of-the-art laboratories and computer resources. All of these facilities are at the disposal of students carrying out professional design projects.

Core courses in the M.Eng (Mechanics) program are:

<table>
<thead>
<tr>
<th>Course Description</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>T&AM 555, Introduction to Composite Materials</td>
<td>3</td>
</tr>
<tr>
<td>T&AM 655, Advanced Composite Materials and Structures</td>
<td>3</td>
</tr>
<tr>
<td>T&AM 663, Solid Mechanics I</td>
<td>4</td>
</tr>
<tr>
<td>T&AM 501, Topics in Composites I</td>
<td>1-3</td>
</tr>
</tbody>
</table>

Selected from the following:

- Analysis of Composite Structures
- Mechanical Testing of Composite Constituents
- Fracture Testing of Composites
- Reliability Models for Composites
- Design Principles for Composite Structures
- Biological Composites
- T&AM 502, Topics in Composites II

<table>
<thead>
<tr>
<th>Course Description</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Effective Properties of Composites</td>
<td></td>
</tr>
<tr>
<td>Interface Failure and Fracture Processes in Composites</td>
<td></td>
</tr>
<tr>
<td>Boundary-Element Methods for Composites</td>
<td></td>
</tr>
<tr>
<td>Nondestructive Testing of Composites</td>
<td></td>
</tr>
<tr>
<td>Software for Composite Design</td>
<td></td>
</tr>
<tr>
<td>Novel Composite Structures</td>
<td></td>
</tr>
</tbody>
</table>

MS&E 450, Physical Metallurgy 3
MS&E 452, Properties of Solid Polymers 3
MS&E 605, Plastic Flow and Fracture of Materials 3
M&E 465, Biomechanical Systems: Analysis and Design 3
M&E 569, Mechanical and Aerospace Structures 3
M&E 670, Mechanical and Aerospace Structures II (Finite-Element Methods) 4
CEE 770, Engineering Fracture Methods 3
CEE 772, Finite-Element Analysis 3
T&M 591, Master of Engineering Design Project 3-5
T&M 592, Master of Engineering Design Project II 5-10

ENGINEERING COURSES

Courses offered in the College of Engineering are listed under the various departments and schools.

Courses are identified with a standard abbreviation followed by a three-digit number.

Engineering Common Courses Engr
Agricultural Engineering ABEN
Applied and Engineering Physics A&EP
Chemical Engineering Chem E
Civil and Environmental Engineering CEE
Computer Science CS
Electrical Engineering EE
Geological Sciences Geol
Materials Science and Engineering MS&E
Mechanical and Aerospace Engineering M&AE
Nuclear Science and Engineering NS&E
Operations Research and Industrial Engineering OR&IE
Theoretical and Applied Mechanics T&AM

ENGINEERING COMMON COURSES

Courses of General Interest

100 Introduction to Computer Programming (also CS 100)

Fall, spring, summer. 4 credits. The course content is the same as that of CS 100.

2 lecs, 1 rec (optional), 3 evening exams.

An introduction to elementary computer programming concepts. Emphasis is on techniques of problem analysis and the development of algorithms and programs. The subject of the course is programming, not a particular programming language. The principal programming language is Pascal. The course does not presume previous programming experience. An introduction to numerical computing is included, although no college-level mathematics is presumed. Programming assignments are tested and run on interactive, stand-alone microcomputers.
281 Structures and Machines in Urban Society (also T&M 281)
Fall. 3 credits.
R. Lance.
Major technological advances during the hundred years since the Industrial Revolution and how they have shaped urban society. Development and use of the steam engine and the suspension bridge; their modern counterparts: Transportation, electricity, and communication systems. Social, symbolic, and scientific perspectives. Simple formulas for designing and analyzing machines and structures. Illustrated lectures. Readings include the writings of engineers as well as social and scientific critics.

292 The Electrical and Electronic Revolutions (also EE 292)
Spring. 3 credits. Approved for humanities distribution, not for EE or as a technical elective.
R. Kline.
A survey of the history of electricity in society from the telegraph to the personal computer. The course considers both the technical and social history of telecommunication, the electric power industry, microelectronics, and computers. Emphasis is placed on the changing relationship between science and technology, the institutional context of research and development, and the electrical engineer and society.

301 Writing in Engineering
Fall and spring. Can be used to satisfy requirements in expressive arts or as a free or approved elective.
Offered only in conjunction with "writing-intensive" engineering courses. Faculty from the college's Writing Program assist students with writing assignments and guide them through composing, drafting, editing, and revising. Strengthens understanding of the course materials and communication skills. Work is discussed in class and in individual conferences. May be taken more than once, with different engineering courses, but may not be taken independently.

31 Microeconomic Analysis (also CEE 321 and Economics 313, lecture 5)
Fall. 4 credits. Prerequisite: one semester of calculus. A social science elective for engineering students.
R. E. Schuler.
Intermediate microeconomic analysis similar to Economics 313 but emphasizing mathematical techniques and engineering-design implications. Theory of consumer choice and efficient production; analysis of monopoly and competitive markets; theories of distribution, market equilibrium, and welfare economics.

32 Economic Analysis of Government (also CEE 322 and Economics 308)
Spring. 4 credits. Prerequisites: one semester of calculus, plus CEE 321 or Economics 313. A social science elective for engineering students.
R. E. Schuler.
Analysis of government intervention in a market economy and implications for engineering planning and design. Market imperfections, public goods and public decision making, public finance, cost-benefit analysis of government projects, environmental regulation, risk management, and macroeconomic topics.

333 Engineering Economics and Management (also CEE 323)
Spring. 3 credits. Primarily for juniors and seniors.
D. P. Louch.
Introduction to engineering and business economics and to methods of operations research. Intended to give students a working knowledge of money management and how to make economic comparisons of alternative engineering design or projects. Project management, inflation, taxation, depreciation, financial planning, and basic operations-research techniques of simulation and optimization are introduced and applied to economic investment problems.

350 Engineering Communications
Fall and spring. 3 credits. Limited to 17 students.
Instruction and practice in written, oral, and visual presentation. Communications in real-life engineering contexts are analyzed. Assignments include case studies or problems which resemble actual engineering work. The class also considers the social and ethical implications of communications. By composing letters, memoranda, summaries, instructions, explanations, proposals, and reports, students learn to address audiences having different levels of technical expertise. Some assignments include oral or graphic presentation. The goal throughout is clear, well-organized, responsible, and graceful professional communication.

355 Understanding Cultural Differences in the Engineering Work Environment
Fall and spring. 1 credit. Open to sophomores, juniors, seniors, and graduate students from all Cornell academic units.
E. P. Gordon.
This seminar prepares students for the variety of cultural experiences they will encounter in industry and improves their opportunities to succeed in a multicultural work environment. Students explore the customs, values, and beliefs of different cultures. Much attention is given to ways of communicating across cultures, techniques for teamwork and building relationships with supervisors and peers, and skills for taking advantage of the positive opportunities inherent in a diverse work force. Both corporate professionals and Cornell faculty members from throughout the university offer lectures.

360 Ethical Issues in Engineering
Spring. 3 credits. A social-sciences elective for engineering students. Open to juniors and seniors.
3 lecs.
A discussion of ethical issues encountered in engineering practice, such as the rights of engineers in corporations, responsibility for harmful actions, whistleblowing, conflicts of interest, and decision making based on cost-benefit analysis. Use of codes of ethics of professional engineering societies and ethical theory to help sort conflicting obligations the engineer may feel toward public safety, professional standards, employers, colleagues, and family. Students will present a case study to the class, along the lines of the Space-Shuttle Challenger disaster, the Kansas City Hyatt-Regency Hotel walkway failure, or the Cornell computer "worm".

[400 Science, Risk, and Public Policy (also T&M 400 and Economics 358)]:
Fall. 3 credits. Not offered 1990-91.
The scientific and humanistic bases of risk assessment and management, examined from a variety of perspectives. Emphasis on the measurement of natural and social phenomena; the psychological and political components in assessing the human and economic costs of risk; and the policies that individuals, institutions, and governments establish to manage risks.]
Introduction to Engineering Courses

110 The Laser and Its Applications in Science, Technology, and Medicine (also A&EE 110)
Fall, spring. 3 credits.
2 lecs, 1 lab.
The principles of laser action, types of laser systems, elements of laser design, and applications of lasers in science, technology, and medicine are discussed. In the laboratory students build and operate a nitrogen laser and a tunable dye laser. Demonstration experiments with several types of lasers illustrate phenomena such as holography, laser-induced chemistry, Raman spectroscopy, frequency doubling, and interferometry. Guest lectures by prominent medical and industrial scientists introduce students to current fields of laser application and research.

111 Elements of Materials Science and Engineering (also MSEA 201)
Fall. 3 credits.
Relations between atomic structure and macroscopic properties of such diverse materials as metals, ceramics, and polymers. Properties discussed include magnetism, superconductivity, insulation, semiconductivity, mechanical strength, and plasticity. Design problems involving microelectronics, superconducting power transmission lines, synthetic bones and joints, ceramic engines, etc.

112 Introduction to Chemical Engineering (also Chem E 112)
Fall, spring. 3 credits. Limited to freshmen.
2 lecs, 1 rec. F. Rodriguez, M. L. Shuler.
This course is designed to acquaint students with the scope of chemical engineering. Topics such as polymers, fluid flow, and plant design will be introduced at an elementary level. Quantitative discussions buttressed by lecture demonstrations will show how the engineering approach differs from a purely scientific one. The rapid solving of numerical problems is emphasized in homework and on tests.

113 Computer-aided Design in Environmental Systems (also CEE 113)
Fall. 3 credits.
2 lecs, 1 sec. C. A. Shoemaker.
Planning, design, and management of environmental systems. Emphasis on use of computer-aided techniques, including interactive computer graphics. Sample problems will address public-systems issues and water-quality management. The objective of the course is to provide students with an opportunity to experiment with alternative design and management strategies in several areas of environmental engineering.

115 Engineering Application of Operations Research (also OR&IE 115)
Fall, spring. 3 credits.
2 lecs, 1 lab.
Techniques for optimal decision making and engineering design. Computer graphics and mathematical modeling. Allocation of scarce resources, simulation of complex systems, design and analysis of networks, strategies in competitive games. Engineering applications and problem solving will be stressed.

116 Modern Structures (also CEE 116)
Fall, spring. 3 credits.
2 lecs, 1 sec. M. Sansalone.
An introduction to the basic principles of structural engineering and to structural forms. Emphasis is placed on how various types of structures carry loads. Concepts are illustrated by a series of case studies of major structures such as spacecraft, skyscrapers, bridges, shell structures, and dams. The philosophy of engineering design and lessons learned from structural failures are discussed. The Computer-Aided Design Instructional Facility (CADIF) and the Craig Miller Laboratory for Structural Modeling in Hollister Hall are used to demonstrate how engineering materials and structures behave under load. A semester project involves the design and construction of a small balsa-wood bridge.

117 Introduction to Mechanical Engineering (also M&A& 117)
Fall. 3 credits.
Consists of two half-term mini-courses chosen from a list of three. Two of these mini-courses constitute the third (Drawing and Engineering Design) is offered every half term but has limited enrollment. 2 lecs, 1 lab.
Drawing and Engineering Design (see Engr 102) will examine without prior mechanical drawing experience to understand and create basic engineering graphics. The other two mini-courses provide an introduction to topics of current interest typifying two broad areas within mechanical engineering: fluid and thermal sciences, and mechanical systems and manufacturing. Emphasis is on the practical applications of this knowledge.

119 Introduction to Manufacturing Engineering (also M&A&E 119 and OR&IE 119)
Spring. 3 credits.
2 lecs, 1 lab.
Engineering considerations in the design, manufacture, distribution, and service of products. Transformation from functional requirements to material, processing, assembly, and inspection requirements; design and management of manufacturing facilities and distribution channels.

121 Fusion, Fusion, and Radiation (also MSEA 121)
Spring. 3 credits.
2 lecs, 1 lab demonstration.
A lecture, demonstration, and laboratory course on (1) the physical nature and biological effects of nuclear radiation; (2) the benefits and hazards of nuclear energy; (3) light-water reactors, breeder reactors, and fusion reactors; and (4) the uses of nuclear radiation in physical and biological research. The laboratory work and demonstrations involve criticality and the control of Cornell's two research reactors; detection of, and protection against, nuclear radiation; neutron activation analysis using gamma-ray spectroscopy; and plasma sources and devices.

123 Sensors and Actuators
Fall. 3 credits.
2 lecs, 1 lab.
A sensor or an actuator is the element by which information is converted from one form of energy to another. It is the key component in all measurement and control systems. This course will focus on the operational features of a wide variety of sensors and actuators that are used in scientific and engineering metrology, in industrial process control applications, and in consumer products. The devices may be based on electrical, mechanical, acoustical, optical, and thermal phenomena. Students will measure the parameters of various thermo-mechanical sensors and actuators and they will be expected to design, fabricate, and verify the operation of a sensor meeting specific design objectives.

172 Introduction to Artificial Intelligence
Spring. 4 credits. Recommended: CS 100 or 101, or equivalent computer experience. Enrollment may be limited.
3 lecs, 2 evening exams.
A hands-on introduction to concepts in artificial intelligence. Topics may include heuristics, search, game playing, automated theorem proving, natural-language processing, expert systems, neural networks and/or machine learning. Students will use workstation environments to gain software laboratory experience. Interested students need not be proficient programmers to take this class.

185 Art, Isotopes, and Analysis (also MSEA 285, Physics 200, Archaeology 285, English 285, and Art 372)
Spring. 3 credits.
The analysis of paintings and rare books and the physical concepts underlying modern analytical techniques. Each week a work of art will be discussed, focusing on the historical and technical aspects of its creation and modern analysis of it. Visual, infra-red, and x-ray examinations provide insight into the physical properties. Pigments are identified by the radiation emitted in electronic transitions. The ratio of isotopes can be used to identify the geographical origin of a particular pigment and also as a dating method. The same analytical techniques are also discussed from the viewpoint of archaeological investigations.

Engineering Distribution Courses

201 Introduction to the Physics and Chemistry of the Earth (also Geol 201)
Spring. 3 credits. Prerequisites: Mathematics 191, Physics 112, and Chemistry 207.
2 lecs, 1 rec, lab, or field trip.
L. M. Cathles.
Formation of the solar system, accretion and evolution of the earth, radioactive isotopes and radiological time scale, rocks and minerals, the continents and the oceans, erosion and sedimentation, weathering processes, the earth as a heat engine, volcanism, isoseimology, gravity, magnetism, plate tectonics, deformation of the earth's crust, comparative planetology.

202 Mechanics of Solids
Fall, spring. 3 credits. Prerequisite: coregistration in Mathematics 293.
2 lecs, 1 rec., 4 labs each semester, evening exams.
Principles of statics, force systems, and equilibrium; frameworks; mechanics of deformable solids, stress, strain, statically indeterminate problems; mechanical properties of engineering materials; axial force, shear force, bending moment, plane stress, Mohr's circle; bending and torsion of bars; buckling and plastic behavior.
203 Dynamics
Fall, spring. 3 credits. Prerequisite: coregistration in Mathematics 294.
2 lecs, 1 rec, 4 labs each semester, evening exams.
Newtonian dynamics of a particle, systems of particles, a rigid body. Kinematics, motion relative to a moving frame. Impulse, momentum, angular momentum, energy. Rigid-body kinematics, angular velocity, moment of momentum, the inertia tensor. Euler equations, the gyroscope.

210 Introduction to Electrical Systems (also EE 210)
Fall, spring. 3 credits. Prerequisites or corequisites: Mathematics 293 and Physics 213.
3 lecs and optional tutorial secs.
Circuit elements and laws, analysis techniques, operational amplifiers. Response of linear systems, with an introduction to complex frequency and phasors, forced response, average power, transfer function, pole-zero concepts, and the frequency spectrum.
Terminal characteristics of diodes and transistors, linear models, bias circuits, and frequency response of small-signal amplifiers.

211 Computers and Programming (also CS 211)
Fall, spring, summer. 3 credits. Prerequisite: CS 100 or equivalent programming experience.
2 lecs, 2 labs, 2 evening exams.
Intermediate programming in a high-level language and introduction to computer science. Topics include program development, proofs of program correctness, program structure, recursion, abstract data types, data structures, and analysis of algorithms. Pascal is the principal programming language.

219, 220 Mass and Energy Balances (also Chem E 219, 220)
219, fall, 220, spring, summer. 3 credits.
Corequisite: physical or organic chemistry. 220 is intended for transfer students who cannot take 219 and requires permission of instructor.
A. Panagiotopoulos, G. F. Scheele. Engineering problems involving material and energy balances. Batch and continuous reactive systems, steady and unsteady states. Introduction to phase equilibrium for multicomponent systems. Humidification processes. Chem E 220 differs from 219 in that it uses only self-paced audiovisual instruction at the convenience of the student. A minimum of seventy clock hours of audiovisual instruction is required to master the subject matter. Student performance in 220 is evaluated by nine tests.

221 Thermodynamics
Fall, spring. 3 credits. Prerequisites: Mathematics 192 and Physics 112.
3 lecs.
The definitions, concepts, and laws of thermodynamics. Applications to ideal and real gases, multiphase pure substances, gaseous reactions. Heat-engine and heat-pump cycles, with an introduction to energy-conversion systems.

222 Introduction to Scientific Computation (also CS 222)
Spring. 3 credits. Prerequisites: CS 100 and Mathematics 112, 122, or 192.
2 lecs, 3 evening exams.
Students write FORTRAN programs to solve representative problems from elementary calculus. Emphasis is on the design of numerical software that is efficient, reliable, stable, and portable. Special topics include supercomputing and parallel computation.

241 Engineering Computation (also CEE 241)
Fall, spring. 3 credits. Prerequisites: CS 100 and Mathematics 293.
Corequisite: Mathematics 294.
J. R. Stedinger, J. F. Abel. This course develops FORTRAN programming proficiency and provides exposure to engineering computation. The art of top-down, modular program design is illustrated with engineering applications. Included are numerical methods for solving engineering problems such as Taylor-series approximations, truncation and round-off errors, roots of functions, solution of simultaneous linear equations, interpolation, numerical differentiation and integration, the solution of ordinary differential equations, and the context and solution of partial differential equations.
Applications are drawn from different areas of engineering.

260 Introductory Engineering Probability (also OR&IE 260)
Fall, spring. 3 credits. Prerequisite: first-year calculus.
3 lecs.
The basic tools of probability and their use in engineering. This may be the last course in probability for some students, or it may be followed by OR&IE 361, Introductory Engineering, Stochastic Processes I, or by OR&IE 370, Introduction to Statistical Theory with Engineering Applications. Definition of probability, random variables; probability distributions, density functions, expected values; jointly distributed random variables; distributions such as the binomial, Poisson, and exponential that are important in engineering and how they arise in practice; limit theorems.

261 Introduction to Mechanical Properties of Materials
Fall, spring. 3 credits.
2 lecs, 1 rec or lab.
The relation of elastic deformation, plastic deformation, and fracture properties to structure and defects on a microscopic scale in metals, ceramics, polymers, and composite materials. Design and processing of materials to achieve high modulus, damping capacity, hardness, fracture strength, creep resistance, or fatigue resistance. Eft- tolerance design methods using fracture mechanics.

262 Introduction to Electrical Properties of Materials
Spring. 3 credits.
2 lecs, 1 rec or lab.
Electrical and structural properties of semiconductors, the operation of p-n junctions and transistors, and the processing methods used to form modern integrated circuits. Electrical conduction in metal films, semiconductors, bipolar and field-effect transistors and light-emitting diodes. Diffusion, ion implantation, oxidation, metallization, and other process steps in fabricating semiconductor devices. Interplay between structural and electrical properties and their application to the design of semiconductor devices and integrated circuits.

264 Computerized-Instrumentation Design (also Engr 264)
Fall, spring. 3 credits. Prerequisites: Engr 100 or CS 100.
1 lec, 1 lab.
For description see Engineering Common Courses.

303 Introduction to Nuclear Science and Engineering I (also NS&E 303)
Fall. 3 credits. Prerequisite: Physics 214 or Mathematics 294.
3 lecs.
For description see NS&E 303.

321 Mathematical Physics I
Fall. 4 credits. Prerequisite: Math 294.
Intended for upper-level undergraduates in the physical sciences.
4 lecs.
Review of vector analysis; complex variable theory, Cauchy-Riemann conditions, complex Taylor and Laurent series, Cauchy integral formula and residue techniques, conformal mapping; Fourier Series; Fourier and Laplace transforms; ordinary differential equations, Green's functions, Bessel functions. Texts: Mathematical Methods for Physicists, by Arfken; Mathematical Physics, by Butkov.
322 Mathematical Physics II
Spring. 4 credits. Prerequisite: A&EP 321. Second of the two-course sequence in mathematical physics intended for upper-level undergraduates in the physical sciences.
Partial differential equations, separation of variables, wave and diffusion equations, Laplace, Helmholtz and Poisson's Equations, transform techniques, Green's functions; integral equations; Fredholm equations, kernels; complex variables, theory, branch points and cuts, Riemann sheets, method of steepest descent; tensors, contravariant and covariant representations; group theory, matrix representations, class and character. Texts: Mathematical Methods for Physicists, by Arfken; Mathematical Physics, by Butkov.

333 Mechanics of Particles and Solid Bodies
Fall, summer. 4 credits. Prerequisites: Physics 112 or 116 and coregistration in A&EP 321 or equivalent or permission of instructor.
Newton's mechanics; linear oscillations; Lagrangian and Hamiltonian formalism for generalized coordinates and constrained motion; non-inertial reference systems, central-force motion; motion of rigid bodies; small vibrations in multi-mass systems; nonlinear oscillations; basic introduction to relativistic mechanics. Emphasis on physical concepts and applications. (On the level of Classical Dynamics, by Marion).

355 Intermediate Electromagnetism
Fall, summer. 4 credits. Prerequisites: Physics 214 or 217 and coregistration in A&EP 321 or equivalent, or permission of instructor.
Topics: vector calculus, electrostatics, magnetostatics, and induction phenomena; solutions to Laplace's equation in various geometries, electric and magnetic materials, electric and magnetic forces, energy storage, skin effect, quasistatics. Emphasis on physical concepts and applications. Topics are designed to open the high-voltage generator, electron guns, and particle accelerators.

356 Intermediate Electrodynamics
Spring. 4 credits. Prerequisite: A&EP 355 and coregistration in A&EP 322 or equivalent, or permission of instructor.
Topics: electromagnetic wave phenomena, transmission lines, waveguides, dispersive media, scattering, radiation, reciprocity, physical optics, special relativity. Emphasis on physical concepts and their application to the design of microwave circuits, antenna arrays, and optically coupled systems.

361 Introductory Quantum Mechanics
Spring. 4 credits. Prerequisites: A&EP 333 or Physics 318; coregistration in A&EP 322 or equivalent and in A&EP 355 or Physics 326.
A first course in the systematic theory of quantum phenomena. Topics include the harmonic oscillator, the Dirac formalism, angular momentum, the hydrogen atom, and perturbation theory. Analytical solutions of the Schroedinger equation are supplemented with numerical solutions on a microcomputer.

363 Electronic Circuits (also Physics 360)
Fall, spring, summer. 4 credits. Prerequisite: Physics 208 or 213 or permission of instructor; no previous experience with electronics is assumed. Fall term is generally less crowded. 1 lec, 2 labs.
This laboratory course focuses on designing, building, and testing analog, digital, and microprocessor-based circuits that are useful in electronic instrumentation. Analog topics include basic circuit concepts, applications of operational amplifiers in linear circuits, oscillators and comparators, transistor circuits and diodes in power supplies, waveformshaping circuits, and protective circuits. Students also design and build digital circuits that incorporate Schmidt triggers, comparators, and combinational and sequential logic using medium-scale integrated circuits. The above circuits are also interfaced to a microprocessor whose architecture, machine instruction set, and programming principles are studied. At the level of Introductory Electronics for Scientists and Engineers, 2d ed., by R. E. Simpson.

423 Statistical Thermodynamics
Fall. 4 credits. Prerequisite: Introductory three-semester-physics sequence plus one year of junior-level mathematics.
Quantum statistical basis for equilibrium thermodynamics, canonical and grand canonical ensembles, and partition functions. Quantum and classical ideal gases and paramagnetic systems. Fermi-Dirac, Bose-Einstein, and Maxwell-Boltzmann statistics. Introduction to systems of interacting particles. At the level of Thermal Physics, by Kittel, and Statistical Physics, by Mandl.

434 Continuum Physics
Spring. 4 credits. Prerequisites: A&EP 333 and 356 or equivalent.
Local conservation laws; stress, strain, and rate-of-strain tensors; equations of motion for elastic and viscous response; waves in solids and fluids; dislocations; ideal fluids, potential flow, Bemouli's equation, vorticity and circulation, lift; viscous incompressible flow and the Navier-Stokes equations, Reynolds number, Poiseuille flow in a pipe, Stokes drag on a sphere; boundary layers, Blasius equations, flow instabilities, Rayleigh-Benard convection and the onset of chaotic flow. Introduction to turbulent flow.

436 Physical and Integrated Optics
Spring. 4 credits. Prerequisite: A&EP 355.
3 lecs, 1 lab.
The fundamentals of optics: diffraction, polarization, interference, birefringence, scattering, Fourier optics. Applications to optical waveguides, nonlinear optics, integrated optics, optical storage, coherent detection, optical communications. Emphasis on hands-on experimental laboratory demonstrations and computer synthesis of optical phenomena.

490 Informal Study in Engineering Physics
Credit to be arranged. Laboratory or theoretical work in any branch of engineering physics under the direction of a member of the staff. The study can take a number for forms; for example, design of laboratory apparatus, performance of laboratory measurements, or theoretical design or analysis. Details to be arranged with respective faculty member.

606 Introduction to Plasma Physics (also EE 552)
Fall. 4 credits. Prerequisites: A&EP 355 or 356 or equivalent. Open to fourth-year students with permission of instructor.
Motion of charged particles in fields, collisions, plasma waves, Boltzmann equation, microinstabilities, Landau damping, introduction to kinetic theory, introduction to M.H.D., single-fluid equations, Tokamak equilibrium, and stability.

607 Advanced Plasma Physics (also EE 553)
Spring. 4 credits. Prerequisite: A&EP 606.
Boltzmann and Vlasov equations; waves in hot plasmas; Landau damping, microinstabilities; drift waves, low-frequency stability, collisional effects; method of dressed test particles; high-frequency conductivity and fluctuations; neoclassical toroidal diffusion, high-powered beams.

608 Plasma Astrophysics (also Astronomy 660)
Spring. 2 credits. Selected topics discussed in detail: (a) the solar corona and the solar wind, (b) hydrodynamic and magnetohydrodynamic flows around compact objects in galactic nuclei, (c) global electrodynamics of double radio sources.

609 Low-Energy Nuclear Physics
Fall. 4 credits. Prerequisite: an introductory course in modern physics, including quantum mechanics.
The nuclear interaction. Properties of ground and excited states of nuclei; models of nuclear structure, alpha, beta, gamma radioactivity; low-energy nuclear reactions—resonant and nonresonant scattering, absorption, and fission. At the level of Introduction to Nuclear Physics, by Enge.

612 Nuclear Reactor Theory
Fall. 4 credits. Prerequisites: a year of advanced calculus and some nuclear physics.
Physical theory of fission reactors. Fission and neutron interactions with matter; theory of neutron diffusion; slowing down and thermalization; calculations of criticality and neutron flux distribution in nuclear reactors. Reactor kinetics. At the level of Nuclear Reactor Theory, by Lamarche.
615 Membrane Biophysics

633 Nuclear Engineering
Fall. 4 credits. Prerequisite: introductory course in nuclear engineering. The fundamentals of nuclear reactor engineering, reactor siting and safety, fluid flow and heat transfer, control, and radiation protection.

634 Nuclear Engineering Design Seminar
Spring. 4 credits. Prerequisite: A&EP 633. A group design study of a selected nuclear system. Emphasis is on safety, siting, and radiation protection in the design of nuclear systems.

636 Seminar on Thermonuclear Fusion Reactors
Fall. 3 credits. Prerequisite: basic course in plasma physics or nuclear reactor engineering, or permission of instructor. Offered alternate years. Analysis of various technological and engineering problems in design and construction of fusion reactors. Topics include basic reactor schemes, materials, mechanical and heat-transfer problems, radiation and safety, superconducting magnets, energy conversion, plasma impurities, and economics.

638 Intense Pulsed Electron and Ion Beams: Physics and Technology
Spring. 2 credits. Prerequisites: A&EP 606 (EE 581) and 607 (EE 582) or equivalent, or permission of instructor. Offered alternate years. Topics include (1) theoretical aspects of intense electron and ion beams, such as equilibria and stability, (2) technology of intense beams, with emphasis on electron and ion power generator principles, and electron and ion diode operation, and (3) applications of intense beams, such as to controlled fusion, microwave generation, and laser pumping. Extensive discussion of experimental results.

651 Nuclear Measurements Laboratory
Spring. 4 credits. Prerequisite: A&EP 609 or equivalent. Primarily for graduate students in nuclear fields. A less-intensive related course, NS&E 551, which has the same lecture but has only one lab period, is intended for students in non-nuclear fields in which nuclear methods are used.

One 2-hour lecture and two 1/2 hour labs. D. D. Clark. Lectures on interaction of radiation with matter, radiation and cell-cell interaction, and nuclear instruments and methods. About fifteen experiments are available in radiation detection, attenuation, and measurement; electronic instrumentation, including computerized systems; activation analysis; neutron radiography; neutron moderation and reactor physics; neutron diffraction; and low-energy nuclear physics with neutron beams. The TRIGA reactor and the Zero Power Reactor critical facility are used. Students select seven or eight experiments to meet their interests and needs. At the level of Radiation Detection and Measurement by Knoll.

661 Microcharacterization
Fall. 3 credits. Prerequisites: Physics 112, 213, and 214, or an introductory course in modern physics. The basic physical principles underlying the many modern microanalytical techniques available for characterizing materials from volumes less than a cubic micron. Discussion centers on the physics of the interaction process by which the characterization is performed, the methodology used in performing the characterization, and the advantages and limitations of each technique, and the instrumentation involved in each characterization method.

662 Microprocessing and Microfabrication of Materials
Spring. 3-4 credits (3 credits plus 1 credit for optional laboratory). Several field trips. An introduction to the fundamentals of fabricating and patterning thin-film materials and surfaces, with emphasis on electronic materials. Vacuum and plasma thin-film deposition processes. Photon, electron, X-ray, and ion-beam lithography. Techniques for pattern replication by plasma and ion processes. Emphasis is on understanding the physics and materials science that define and limit the various processes.

681-689 Special Topics in Applied Physics
Topics, instructors, and credits to be announced each term. Typical topics include quantum superconducting devices, physics of submicron conductors, nonlinear fluctuators, biophysical processes, molecular fluorescence.

711 Principles of Diffraction (also MS&E 610)
Fall. 3 credits. Offered alternate years. Introduction to diffraction phenomena as applied to solid-state problems. Scattering and absorption of neutrons, electrons, and X-ray beams, with particular emphasis on synchrotron radiation X-ray sources. Diffraction from two- and three-dimensional periodic lattices. Fourier representation of scattering centers and the effect of thermal vibrations. Diffraction from almost periodic structures, surface layers, gases, and amorphous materials. Survey of dynamical diffraction from perfect and imperfect lattices. Several laboratory experiments will be conducted.

751, 752 Project
751, fall; 752, spring. Credit to be arranged. Required for candidates for the M.Eng. (Engineering Physics) degree. Informal study under the direction of a member of the university faculty. Students are offered research experience through work on a special problem related to their field of interest.

753 Special Topics Seminar in Applied Physics
Fall. 4 credits. Prerequisite: undergraduate physics. Required for candidates for the M.Eng. (Engineering Physics) degree and recommended for seniors in engineering physics. Special topics in applied science, with focus on areas of applied physics and engineering that are of current interest. Projects chosen are researched in the library and presented in a seminar format by the students. Effort is made to integrate the subjects within selected subject areas such as atomic, biological, optical, plasma, and solid-state physics, as suggested by the students and coordinated by the instructor.

761 Kinetic Theory (also EE 681)
Fall. 3 credits. Prerequisite: EE 407, Physics 561, or permission of instructor. Offered alternate years. 2 lecs. For description see EE 681.

762 Physics of Solid Surfaces and Interfaces
Spring. 3 or 4 credits. Lecture course primarily for graduate and qualified senior students. Primarily for beginning graduate students and seniors. Similar to MS&E 703. Offered alternate years. An experimental approach connecting the basic physics and chemistry of electron and atomic structure with processes at surfaces and interfaces. A critical perspective on principles, with an emphasis on applications and devices from an applied-physics viewpoint. Principles involved in characterization will be discussed more than techniques and equipment. Specific concepts and phenomena will be emphasized, and only those theories and models required for their analysis will be covered. Topics include ultrahigh vacuum, surface crystallography, measurement concepts, gas-solid surfaces, solid-solid interfaces, atomic structure, surface reconstruction, electronic processes, chemical bonding, physical and chemical adsorption, nucleation and growth, particle-solid phenomena, and radiation–solid interface phenomena. At the level of Physics at Surfaces by Zangwill.

CHEMICAL ENGINEERING

101 Nonresident Lectures
Spring. No credit. 1 lec. G. F. Scheele and guest lecturers. Given by lecturers invited from industry and from selected departments of the university to assist students in their transition from college to industrial life.

112 Introduction to Chemical Engineering (also Engr 112)
Fall, spring. 3 credits. Corequisite: physical or organic chemistry or permission of instructor. 2 lecs, 1 rec. F. Rodriguez, M. L. Shuler. For description see Engineering Common Courses.

219 Mass and Energy Balances (also Engr 219)
Fall. 3 credits. Corequisite: physical or organic chemistry or permission of instructor. 3 lecs. 1 computing session. A. Panagiotopoulos. For description see Engineering Common Courses.

220 Mass and Energy Balances (also Engr 220)
Spring, summer. 3 credits. Corequisite: physical or organic chemistry or permission of instructor. Intended for transfer students who cannot take Chem E 219. F. Rodriguez. Self-paced audiovisual instruction in the material of Chem E 219. For description see Engineering Common Courses.
313 Chemical Engineering Thermodynamics
Fall. 4 credits. Corequisite: physical chemistry.
4 lecs. 1 computing session.
K. E. Gubbins.

322 Fluid Mechanics
Fall. 5 credits. Prerequisites: Chem E 219 and engineering mathematics sequence.
3 lecs. 1 computing session. D. L. Koch.

324 Heat and Mass Transfer
Spring. 3 credits. Prerequisite: Chem E 323.
3 lecs. 1 computing session. D. A. Hammer.

332 Analysis of Separation Processes
Spring. 4 credits. Prerequisites: Chem E 313 and 323.
3 lecs. 1 computing session. G. F. Scheele.
Analysis of separation processes involving phase equilibria and mass transfer; some use of the digital computer. Phase equilibria; binary, multicomponent, and extractive distillation; liquid-liquid extraction; gas absorption.

390 Reaction Kinetics and Reactor Design
Spring. 3 credits. Prerequisites: Chem E 313 and 323.
3 lecs. A. B. Anton.
A study of chemical reaction kinetics and principles of reactor design for chemical processes.

432 Chemical Engineering Laboratory
Fall. 4 credits. Prerequisites: Chem E 323, 324, 332, and 390.
2 lecs, 1 lab. G. F. Scheele.
Laboratory experiments in fluid dynamics, heat and mass transfer, kinetics, other operations. Correlation and interpretation of data. Technical report writing.

462 Chemical Process Design
Spring. 4 credits. Prerequisite: Chem E 432.
P. Harriott and R. P. Merrill.
A consideration of process and economic alternatives in selected chemical processes; design and assessment.

472 Process Control
Spring. 3 credits. Prerequisites: Chem E 324, 332, and 390.
3 lecs. 1 lab. P. Clark.
Analysis of the dynamics of chemical processes and design of feedback control systems with emphasis on control of chemical reactors and separation systems.

490 Undergraduate Projects in Chemical Engineering
Variable credit.
Research or studies on special problems in chemical engineering.

564 Design of Chemical Reactors
Spring. 3 credits. Prerequisite: Chem E 390 or equivalent.
3 lecs. P. Harriott.
Design, scale-up, and optimization of chemical reactors with allowance for heat and mass transfer and nonideal flow patterns. HOMEWORK problems feature analysis of data for gas-solid, gas-liquid, and three-phase reaction systems.

565 Design Project
Spring. 3 or 6 credits. Required for students in the M.Eng. (Chemical) program.
Staff.
Design study and economic evaluation of a chemical processing facility, alternative methods of manufacture, raw-material preparation, food processing, waste disposal, or some other aspect of chemical processing.

566 Computer-aided Process Design
Spring. 3 credits. Prerequisite: Chem E 352 or equivalent.
3 lecs. P. Clark.
An introduction to the synthesis and use of computer systems for steady-state simulation and optimization of chemical processes. Synthesis of heat exchanger networks and separation systems.

590 Special Projects in Chemical Engineering
Variable credit. Limited to graduate students. Non-thesis research or studies on special problems in chemical engineering.

640 Polymeric Materials
Fall. 3 credits.
3 lecs. F. Rodriguez.
Chemistry and physics of the formation and characterization of polymers. Principles of fabrication.

642 Polymeric Materials Laboratory
Spring. 2 or 3 credits. Prerequisite: Chem E 640.
F. Rodriguez.
Experiments in the formation, characterization, fabrication, and testing of polymers.

643 Introduction to Bioprocess Engineering
Fall. 3 credits. Prerequisite: Chem E 390 or permission of instructor. No prior background in the biological sciences required.
3 lecs. M. L. Shuler.
A discussion of principles involved in using microorganisms and enzymes for processing. Application to food and fermentation industries and to biological waste treatment.

645 Advanced Concepts in Biological Engineering
Spring. 3 credits. Prerequisite: Chem E 643 or equivalent or permission of instructor.
Fundamentals of biochemical engineering science with emphasis on enzyme processing, mathematical models of cell growth, bioreactors, product recovery, bioseparations, the use of tissue culture, and genetically modified organisms.

[646 Controlled Cultivation of Microbial Cells
Spring (January intersession). 3 credits.
Prerequisite: Microbiology 291 or equivalent.
Not offered 1990-91.
K. Staff.
A projects course. Use of batch- and continuous-stirred jars to explore the physiology of microorganisms under conditions simulating industrial practice.]

654 Polymers in Electronics and Related Areas
Spring. 3 credits. Prerequisite: Chem 640 or permission of instructor.
3 lecs. F. Rodriguez.
Applications of polymers as resistors for microolithography, as insulators, and as conductors. Radiation effects, polymer synthesis, and surface characterization. Additional special topics may be covered.

651 Air Pollution Control
Fall. 3 credits.
3 lecs. P. Harriott.
Origin of air pollutants. Design of equipment for removal of particulate and gaseous pollutants formed in combustion and chemical processing.

673 Adsorption and Catalysis
Fall. 2 credits.
R. P. Merrill.
The physics and chemistry of adsorption on reactive surfaces and catalysis. Emphasis on the use of modern spectroscopic techniques to determine the geometric structure, electronic structure, and reaction sequences on well-defined surfaces. Discussion of several catalytic systems.

675 Synthetic Polymer Chemistry (also MS&E 671 and Chemistry 671)
Fall. 3 credits. Prerequisites: Chem 359-360 or equivalent or permission of instructor.
MS&E 620 is recommended.
For description see Chemistry 671.

681 Dynamics of Colloidal Systems
Fall. 3 credits. Prerequisite: basic understanding of thermodynamics and fluid dynamics.
Fundamental descriptions of colloidal systems under equilibrium and non-equilibrium conditions. Phase equilibria of surfactant systems, thermodynamics of micelle formation, forces between colloidal particles, electrokinetic phenomena, flocculation and agglomeration, transport of surfactant in interfacial systems, stability of emulsions, and dynamics of thin films. Open to advanced undergraduates and graduate students from all fields.

711 Advanced Chemical Engineering Thermodynamics
Fall. 3 credits. Prerequisite: Chem E 313 or equivalent.
3 lecs. P. Clancy.
713 Chemical Kinetics and Dynamics
Fall. 3 credits. Prerequisite: Chem E 390 or equivalent.
3 lecs. J. R. Engstrom.

721 Thermodynamics and Phase Change
Fall. 4 credits. Prerequisite: graduate standing or permission of instructor.
C. T. Avellanid.
For description see M&E 652.

731 Advanced Fluid Mechanics and Heat Transfer
Fall. 3 credits. Prerequisite: Chem E 323 and 324 or equivalent.
3 lecs. D. L. Koch.
Derivation of the equations of motion for Newtonian fluids. Low Reynolds number fluid dynamics, lubrication theory, inviscid fluid dynamics. Boundary layer theory. Convective and conductive heat transfer.

732 Diffusion and Mass Transfer
Spring. 2 credits. Prerequisite: Chem E 731 or equivalent.
C. Cohen.
Conservation equations in multicomponent systems, irreversible thermodynamics, dispersion, and Brownian diffusion. Mass transfer for convective diffusion in liquids. Application to a variety of problems such as coagulation of aerosols, diffusion through films and membranes, liquid-liquid extraction, chemical vapor deposition.

734 Fluid Mechanics of Suspensions
Spring. 3 credits. Prerequisite: Chem E 731, M&AE 601, or equivalent. Offered alternate years. Not offered 1990-91.
D. L. Koch.
Relaxation between macroscopically observed transport and rheological behavior of suspensions and composites, and underlying transport processes occurring on the particle-length scale. Methods of treating interparticle hydrodynamic interactions. Derivation of macroscopic properties using ensemble averages, renormalization, and dynamic simulations. Applications will include free suspensions of solid spheres, fibers, and bubbles, composite solids, and porous media.

741 Selected Topics in Biochemical Engineering
Fall, spring. 1 credit (may be repeated for credit). Prerequisite: Chem E 645 or permission of instructor.
Discussion of current topics and research in biochemical engineering for graduate students.

745 Physical Polymer Science
Fall. 3 credits. Prerequisite: Chem E 711 or equivalent. Offered alternate years.
C. Cohen.

751 Mathematical Methods of Chemical Engineering Analysis
Spring. 4 credits.
3 lecs. P. H. Steen.
Application of advanced mathematical techniques to chemical engineering analysis. Mathematical modeling, scaling, regular and singular perturbation, multiple scales, asymptotic analysis. Linear and nonlinear ordinary differential equations, partial differential equations.

753 Analysis of Nonlinear Engineering Systems: Stability, Bifurcation, and Continuation
Fall. 3 credits. Prerequisite: Chem E 751 or equivalent. Offered alternate years. Not offered 1990-91.
3 lecs. P. H. Steen.

772 Theory of Molecular Liquids
Spring. 3 credits. Prerequisite: Chem E 711 or equivalent. Offered alternate years.
K. E. Gubbins.
Theory of intermolecular forces, and equilibrium statistical mechanics for nonspherical molecules. Distribution functions. Applications to thermodynamics of such fluids using integral equation and perturbation theory techniques. Mixture properties, phase diagrams for mixtures with polar or quadrupolar components. Surface properties.

774 Atomistic Simulation of Materials
Spring. 3 credits. Prerequisite: Competence in FORTRAN, PASCAL, or C. Prior knowledge of statistical mechanics helpful.
2 lecs, 1 computer lab. P. Clancy.
The statistical mechanical theory behind Monte-Carlo and molecular-dynamics computer-simulation techniques. Strong emphasis is placed on students writing their own MC and MD code. Calculation of distribution functions, thermodynamic, kinetic and structural properties. Introduction to the application of computer graphics to simulation. Interparticle forces and application of atomistic simulation of systems containing metals, semiconductors, and biological materials. Issues of code efficiency and vectorization.

790 Seminar
Fall, spring. 1 credit each term.
General chemical engineering seminar required of all graduate students in the Field of Chemical Engineering.

792 Advanced Seminar in Thermodynamics
Fall, spring. 1 credit.
K. E. Gubbins, A. Panagiotopoulos.
A forum for talks by graduate students and faculty members on topics of current interest in thermodynamics and statistical mechanics.

880 Thesis Research
Variable credit. Thesis research for the M.S. degree in chemical engineering.

990 Thesis Research
Variable credit. Thesis research for the Ph.D. degree in chemical engineering.

CIVIL AND ENVIRONMENTAL ENGINEERING

General

113 Computer-aided Design in Environmental Systems (also Engr 113)
Fall. 3 credits.
2 lecs, 1 sec. C. A. Shoemaker.
For description see Engineering Common Courses.

116 Modern Structures (also Engr 116)
Fall, spring. 3 credits.
2 lecs, 1 sec. M. Sansalone.
For description see Engineering Common Courses.

241 Engineering Computation (also Engr 241)
Fall, spring. 3 credits. Prerequisites: CS 100 and Mathematics 293. Corequisite: Mathematics 294.
J. F. Abel, J. R. Stedinger.
For description see Engineering Common Courses.

304 Uncertainty Analysis in Engineering
Fall. 4 credits. Prerequisite: first-year calculus. J. R. Stedinger.
An introduction to probability theory, statistical techniques, and uncertainty analysis, with examples drawn from civil, environmental, agricultural, and related engineering disciplines. The course covers data presentation, probability theory, commonly used probability distributions, parameter estimation, goodness-of-fit tests, confidence intervals, hypothesis testing, simple linear regression, and nonparametric statistics. Examples include structural reliability, models of vehicle arrivals, analysis of return-period calculations, and distributions describing wind speeds, floods, pollutant concentrations, and soil and material properties.

309 Special Topics in Civil and Environmental Engineering
Fall, spring. 1–6 credits. Staff.
Supervised study by individuals or groups of upper-division students on one or more specialized topics not covered in regular courses.

501 Civil and Environmental Engineering Design Project I
Fall. 3 credits. Required for students in the M.Eng.(Civil) program.
School faculty and visiting engineers. Design of major civil engineering project. Planning and preliminary design in fall term; final design in January intersession (CEE 502).

502 Civil and Environmental Engineering Design Project II
503 Professional Practice in Engineering
Spring. 3 credits. Required for and limited to students in the M.Eng.(Civil) program.
W. R. Lynn.
Financial, legal, regulatory, ethical, and business aspects of engineering practice are examined in detail. Students are expected to develop their understanding of the interrelations among the physical, social, economic, and ethical constraints on engineering design.
601 Water Resources and Environmental Engineering Seminar
Fall, spring. 1 credit.
Staff.
Presentation of topics of current interest.

Remote Sensing
411 Remote Sensing: Environmental Applications (also SCAS 461)
Spring. 3 credits. Prerequisite: permission of instructor.
2 lecs, 1 lab. W. R. Philipson.
A survey of how remote sensing is applied in various environmental disciplines. Laboratory emphasis is on using aircraft and satellite imagery for inventorying and monitoring surface features in engineering, planning, agriculture, and natural resource assessments.
610 Remote Sensing Fundamentals (also Agronomy 660)
Fall. 3 credits. Prerequisite: permission of instructor.
2 lecs, 1 lab. W. R. Philipson.
An introduction to equipment and methods used in obtaining information about earth resources and the environment from aircraft or satellite. Coverage includes sensors, sensor and ground-data acquisition, data analysis and interpretation, and project design.
612 Physical Environment Evaluation
Fall. 3 credits. Prerequisite: permission of instructor. Not offered 1990-91.
2 lecs, 1 lab. Staff.
Physical environmental factors affecting engineering planning decisions: climate, soil and rock conditions, water sources. Evaluation methods: interpretation of meteorological, topographic, geologic, and soil maps, aerial photographs, and subsurface exploration records.
613 Image Analysis I: Landforms
Fall. 3 credits. Prerequisite: permission of instructor. Not offered 1990-91.
2 lecs, 1 lab. Staff.
Analysis and interpretation of aerial photographs for a broad spectrum of soil, rock, and drainage conditions. Specific fields of application are emphasized.
614 Image Analysis II: Physical Environments
Fall. 3 credits. Prerequisite: CEE 612 or 613. Not offered 1990-91.
2 lecs, 1 lab. Staff.
Study of physical environments using aerial photographs and other remote sensing methods. Conventional photography, spectral, space, and sequential photography; thermal and radar imageries. Arctic, tropic, and humid climate regions. Project applications.
615 Digital Image Processing
Fall. 3 credits. Prerequisites: facility with algebra (Mathematics 109) and statistics (CEE 304 or Agricultural Economics 310), or permission of instructor.
W. D. Philpot.
An introduction to digital image-processing concepts and techniques, with emphasis on techniques used in remote-sensing applications. Topics include image acquisition, enhancement procedures, spatial and spectral feature extraction, and classification. Assignments will require the use of image-processing software and graphics.
616 Digital Image Analysis
Spring. 3 credits. Prerequisites: calculus (Mathematics 192), statistics (CEE 304 or Agricultural Economics 310), and computer programming (FORTRAN or C), or permission of instructor.
W. D. Philpot.
Pattern recognition, feature extraction, and classification of digital images as used in remote-sensing applications. Both spectral and spatial patterns will be considered. Assignments will require the development of computer programs and will make use of existing image-processing software and graphics.
617 Project—Remote Sensing
On demand. 1-6 credits.
Staff.
Students may elect to undertake a project in remote sensing. The work is supervised by a professor in this subject area.
618 Special Topics—Remote Sensing
On demand. 1-6 credits.
Staff.
Supervised study in small groups on one or more special topics not covered in the regular courses. Special topics may be of a theoretical or applied nature.
619 Seminar in Remote Sensing (also SCAS 662)
Spring. 1 credit. S-U grades only.
W. R. Philipson.
Lectures on current developments in assessing earth resources or the environment. Each week a different topic on remote sensing or geographic information systems is presented by specialists from government, industry, Cornell, or other research or academic institutions.
710 Research—Remote Sensing
On demand. 1-6 credits.
Staff.
For students who want to study one particular area in depth. The work may take the form of laboratory investigation, field study, theoretical analysis, or development of design procedures.
810 Thesis—Remote Sensing
Fall, spring. 1-12 credits. Students must register for credit with the professor at the start of each term.
A thesis research topic is selected by the student with the advice of the faculty member in charge and is pursued either independently or in conjunction with others working on the same topic.

Environmental and Public Systems
321 Microeconomic Analysis (also Engr 321 and Economics 315, section 5)
Fall. 4 credits. Prerequisite: one semester of calculus. A social science elective for engineering students.
R. E. Schuler.
For description see Engineering Common Courses.
322 Economic Analysis of Government (also Engr 322 and Economics 306)
Spring. 4 credits. Prerequisites: one semester of calculus, plus CEE 321 or Economics 315. A social science elective for engineering students.
R. E. Schuler.
For description see Engineering Common Courses.
323 Engineering Economics and Management (also Engr 333)
Spring. 3 credits. Primarily for juniors and seniors.
D. P. Loucks.
For description see Engineering Common Courses.
325 System Perspectives on Solid Waste Management
Fall. 3 credits. Open to juniors and seniors from all colleges who have had freshman chemistry or physics, and a calculus course.
D. W. Ditz, R. E. Schuler.
An introduction to alternative technological solutions to society's solid waste problems with the interdisciplinary perspective of how those proposals interact with a broad range of public, environmental, and economic concerns. Using engineering, economic, legal, and political professionals, an integrated systems approach to problem solving will be emphasized and will culminate in a semester project in solid waste management planning that requires written and oral presentations by small groups. Field trips to operating facilities.
529 Interactive Modelling with Microcomputer Graphics
Spring. 3 credits. Prerequisite: Engr 241 or Engr 222, and permission of instructor.
D. P. Loucks.
Principles of interactive modeling and its application to the design and management of civil, environmental, and water-resources engineering systems. Topics will include tablet and video digitizing, image processing (including editing and overlaying pictures and maps), contouring, opaque and transparent coloring, generating 2-D and 3-D colored graphs, and developing pre- and postprocessors to permit the interactive use of various models for synthesizing designs and operating policies and for predicting system performance. Microcomputers with high-quality color graphics capabilities will be available together with numerous interactive graphics subroutines for use in C or FORTRAN programs.
550 Water and Environmental Resources Problems and Policies
Fall. 3 credits. Intended primarily for graduate engineering and non-engineering students but open to qualified upperclass students. Prerequisite: permission of instructor.
Evaluation, appraisal, and prospects for problems involving water and environmental resources. Organization and public policies in the federal system.
620 Water-Resources Systems I
Fall. 3 credits. Prerequisite: CEE 323 or equivalent.
D. P. Loucks.
Development and application of techniques for deterministic and stochastic optimization and simulation in water-resources planning. River-basin modeling, including reservoir design and operation, irrigation planning and operation, hydropower-capacity development, flow augmentation, flood control and protection, and water-quality models.

621 Water-Resources Systems II
Spring. 3 credits. Prerequisites: CEE 304 and 620 or permission of instructor.
J. R. Stedinger, D. P. Loucks.
Advanced topics in the development and use of optimization and simulation models for water-resources planning. Stochastic hydrologic modeling and stochastic river-basin and reservoir models. Incorporates material in CEE 622.

622 Stochastic Hydrologic Modeling
On demand. 2–3 credits. Prerequisite: OR&IE 370 or CEE 304.
J. R. Stedinger.
Develops statistical techniques used to analyze and model stochastic processes. Examination of Box-Jenkins, fractional-Brownian noise, and other single- and multiple-site stream-flow models; review of flood-frequency estimation issues; analysis of simulation output; parameter estimation and Bayesian inference.

623 Water Quality Systems Analysis
Spring. 3 credits. Prerequisites: Math 294 and optimization (CEE 323, Ag En 475, or OR&IE 320/520).
C. A. Shoemaker.
Applications of optimization and simulation methods to the design and operation of facilities for managing the quality of surface and groundwater. Applications include location of wastewater and hazardous-waste facilities, restoration of dissolved oxygen levels in rivers, and reclamation of contaminated aquifers. Optimization techniques include separable convex (linear) programming, integer programming, and nonlinear programming.

626 Modelling Managed Ecosystems
Fall, on demand. 3 credits. Prerequisites: Mathematics 294, statistics, and population ecology. Not offered 1990–91.
C. A. Shoemaker.
The use of optimization and statistical estimation procedures to develop strategies for managing populations and ecosystems. Primary focus will be on pest management, poikilotherm populations, and mitigation of potential pollution from pesticides.

721 Environmental and Water Resources Systems Analysis Design Project
Fall. 3 credits. Prerequisite: permission of instructor. May extend over two semesters.
Staff.
Design or feasibility study of environmental or water resources systems, supervised and assisted by one or more faculty advisors; individual or group participation. Final report required.

722 Environmental and Water Resources Systems Analysis Research
On demand. Variable credit. Prerequisite: permission of instructor. Preparation must be suitable to the investigation to be undertaken. Staff.
Investigations of particular environmental or water resources systems problems.

723 Environmental and Water Resources Systems Analysis Colloquium
Fall, spring. 1 credit. Staff.
Lectures in various topics related to environmental or water resources systems planning and analysis.

729 Special Topics in Environmental or Water Resources Systems Analysis
On demand. Variable credit.
Staff.
Supervised study, by individuals or small groups, of one or more specialized topics not covered in regular courses.

Fluid Mechanics and Hydrology
331 Fluid Mechanics
Fall. 4 credits. Prerequisite: Engr 203 (may be taken concurrently).
Hydrostatics, the basic equations of fluid flow, potential flow and dynamic pressure forces, viscous flow and shear forces, steady pipe flow, turbulence, dimensional analysis, open-channel flow. Elements of design in water supply systems, canals, and other hydraulic schemes.

332 Hydraulic Engineering
Spring. 4 credits. Prerequisite: CEE 331.
2 lecs, 1 lab, field trip. G. H. Jirka.
Application of fluid-mechanical principles to problems of engineering practice and design: hydraulic machinery, water-distribution systems, open-channel design, river engineering, groundwater flow, and pollutant dispersal. Lectures supplemented by laboratory work and a design project.

430 Descriptive Hydrology
On demand. 2 credits. Intended for non-engineering majors. Prerequisite: permission of instructor.
W. H. Brutsaert.
Introduction to hydrology as a description of the hydrologic cycle and the role of water in the natural environment. Topics include precipitation, infiltration, evaporation, groundwater, surface runoff, floods, and droughts.

431 Geohydrology (also ABEN 471 and Geol 445)
Fall. 3 credits. Prerequisite: permission of instructor.
G. H. Jirka with J.-Y. Parlange and T. S. See(hus (in ABEN) and L. Bloom and L. Cathles (in Geol).
An intermediate course in aquifer geology, groundwater flow, and related design factors. Includes description and properties of natural aquifers, groundwater hydraulics, soil water, and solute transport.

630 Advanced Fluid Mechanics
Fall. 3 credits. Prerequisite: CEE 331. Offered alternate years.
3 lecs. J. A. Liggett.
Introduction to fluid dynamics; conservation of mass, momentum, and energy. Rigorous treatment includes study of exact solutions of the Navier-Stokes equations. Asymptotic approximations at low and high Reynolds numbers. Similitude and modeling. Laminar diffusion of momentum, mass, and heat.

631 Flow and Contaminant Transport Modeling in Groundwater
Spring. 3 credits. Prerequisites: Mathematics 294 or equivalent, Engr 241 or experience in numerical methods and programming, and elementary fluid mechanics.
J. A. Liggett.

632 Analytical Hydrology
Spring. 3 credits. Prerequisite: CEE 331. Not offered 1990–91.
W. H. Brutsaert.

633 Flow in Porous Media and Groundwater
Spring. 3 credits. Prerequisite: CEE 331. Not offered 1990–91.
W. H. Brutsaert.
Fluid mechanics and equations of single-phase and multiphase flow; methods of solution. Applications involve aquifer hydraulics, pumping wells; drought flows; infiltration, groundwater recharge; land subsidence; seawater intrusion, miscible displacement; transient seepage in unsaturated materials.

634 Engineering Micrometeorology
Fall. 3 credits. Prerequisite: CEE 331 or permission of instructor. Not offered 1990–91.
3 lecs. W. H. Brutsaert.
Physical processes in the lower atmospheric environment: turbulent transport in the atmospheric boundary layer; surface-air interaction, disturbed boundary layers; radiation. Applications include sensible and latent heat transfer from lakes, plant canopy flow and evapotranspiration, turbulent diffusion from chimneys and cooling towers, and related design issues.

635 Coastal Engineering I
Spring. 3 credits. Prerequisite: CEE 331.
Linear wave theory, wave generation by wind, analysis of fluid forces on floating and fixed coastal structures and modification of waves and currents by these structures, coastal processes, and coastal sediment motion.
638 Environmental Fluid Mechanics
Spring. 3 credits. Prerequisite: CEE 655. Offered alternate years.
G. H. Jirka.

637 Project—Hydraulics
On demand. Variable credit.
Hours to be arranged. Staff. The student may elect a design problem or undertake the design and construction of special equipment for research projects in the fields of fluid mechanics, hydraulic engineering, or hydrology.

638 Hydraulics Seminar
Spring. 1 credit. Open to undergraduates and graduates and required of graduate students majoring in hydraulics or hydraulic engineering.
Staff. Topics of current interest in fluid mechanics, hydraulic engineering, and hydrology.

639 Special Topics in Hydraulics
On demand. Variable credit.
Staff. Special topics in fluid mechanics, hydraulic engineering, or hydrology.

735 Research in Hydraulics
On demand. Variable credit.
Staff.
The student may select an area of investigation in fluid mechanics, hydraulic engineering, or hydrology. The work may be either experimental or theoretical in nature. Results should be submitted to the instructor in charge in the form of a research report.

Geotechnical Engineering
341 Introduction to Geotechnical Engineering
Spring. 4 credits.

640 Foundation Engineering
Fall. 3 credits. Prerequisite: CEE 341.

641 Retaining Structures and Slopes
Spring. 3 credits. Prerequisite: CEE 341.

642 Highway Engineering (also ABEN 491)
Spring. 3 credits. Prerequisites: junior standing in engineering, fluid mechanics, and soil mechanics (may be taken concurrently).
2 lecs, optional tutorial. Staff. For description see ABEN 491.

643 Pavement Engineering (also ABEN 652)
Fall 4 credits. Limited to engineering seniors and graduate students. Prerequisites: CEE 341 and 642. Offered alternate years.
3 lecs, 1 lab. L. H. Irwin. For description see ABEN 652.

647 Design Project in Geotechnical Engineering
On demand. 1–6 credits.
Staff. Students may elect to undertake a design project in geotechnical engineering. The work is supervised by a professor in the subject area.

648 Seminar in Geotechnical Engineering
Fall, spring. Staff. Presentation and discussion of topics in current research and practice in geotechnical engineering.

649 Special Topics in Geotechnical Engineering
On demand. 1–6 credits.
Staff. Supervised study of special topics not covered in the formal courses.

740 Engineering Behavior of Soils
Fall. 4 credits. Prerequisite: CEE 341.
3 lecs, 1 lab. Staff. Detailed study of the physicochemical nature of soil. Stress states due to geostatic loading and stress-history effects. In-depth evaluation of stress-strain-strength, compressibility, and hydraulic conductivity of many of natural soils. Field-testing methods for determining properties based on laboratory testing. Weekly laboratory sessions include in-situ field testing, simple index tests, and complete laboratory characterization of important soil properties.

741 Rock Engineering
Fall. 3 credits. Prerequisite: CEE 341 or permission of instructor. Recommended: introductory geology.

744 Advanced Foundation Engineering
2 lecs. Staff. A continuation of CEE 640, with detailed emphasis on special topics in soil-structure interaction. Typical topics include lateral and pullout loading of deep foundations, pile group behavior, foundations for offshore structures, pile-driving dynamics, foundations for special structures.

745 Soil Dynamics
Spring. 4 credits. Prerequisite: permission of instructor.
3 lecs, 1 lab. Staff. Study of soil behavior under dynamic loading conditions. Foundation design for vibratory loadings. Introductory earthquake engineering including field and laboratory techniques for determining dynamic soil properties and liquefaction potential. Design of embankments and retaining structures under dynamic loading conditions. Laboratory experiments and demonstrations using resonant column and a range of cyclic testing equipment.

746 Embankment Dam Engineering
Spring. 2 credits. Prerequisites: CEE 641 and 741, or permission of instructor.

747 Case Studies in Geotechnical Engineering
Spring. 3 credits. Prerequisites: CEE 641 and 741. Not offered 1990–91.
748 Tunnel Engineering
2 lecs. Staff.
Principles of analysis and design for earth and rock tunnels. Materials, construction methods, stability and support systems, deformations, and performance monitoring.

749 Research in Geotechnical Engineering
On demand. 1-6 credits.
Staff.
For the student who wants to pursue a particular geotechnical topic in considerable depth.

Environmental Engineering

351 Environmental Quality Engineering
Spring. 3 credits.
3 lecs. L. W. Lion.

352 Water Supply Engineering
Fall. 3 credits. Prerequisite: CEE 351 or permission of instructor.
3 lecs. R. I. Dick.

651 Microbiology of Water and Wastewater
Fall. 2 credits. Prerequisite: one semester of college chemistry.
3 lecs. J. J. Bisogni.
A self-paced tutori al introduction to fundamental aspects of microbiology, organic chemistry, and biochemistry pertinent to environmental engineering. Course work consists of assigned readings, study questions, and brief exams.

653 Chemistry of Water and Wastewater
Fall. 3 credits. Prerequisite: one semester of college chemistry or permission of instructor.
3 lecs-recs. L. W. Lion.
Principles of chemistry applicable to the understanding, design, and control of water and wastewater treatment processes and to reactions in receiving waters. Topics include chemical thermodynamics, reaction kinetics, acid-base equilibria, mineral precipitation/dissolution, and electrochemistry. The focus of the course is on the mathematical description of chemical reactions relevant to engineered processes and natural systems, and the numerical or graphical solution of these problems.

654 Aquatic Chemistry
Spring. 3 credits. Prerequisite: CEE 653 or Chemistry 387–388.
3 lecs. J. J. Bisogni.
Concepts of chemical equilibria applied to natural aquatic systems. Topics include acid-base reactions, buffer systems, mineral precipitation, coordination chemistry, redox reactions, adsorption phenomena and chemical-equilibria computer programs. In depth coverage of topics covered in CEE 653.

655 Pollutant Transport and Transformation in the Environment
Fall. 3 credits. Prerequisite: CEE 331.
J. J. Bisogni, G. H. Jirka.
An introduction to the physical transport and chemical and biochemical transformation processes that govern the fate and distribution of pollutants in the environment. Adve ctive and diffusive mass transport, turbulent diffusion and shear-flow dispersion in water or atmosphere; dispersion in groundwater flow, homogeneous and heterogeneous chemical reactions and their effects on transport phenomena, air-water-soil interface transfer processes. Emphasis on physical mechanisms, with some applications to surface water, groundwater, and atmospheric transport and quality models.

658 Sludge Treatment, Utilization, and Disposal
Spring. 3 credits. Prerequisite: CEE 351 or permission of instructor. May not be offered 1990–91.
3 lecs. R. I. Dick.
Analysis of the quantity and quality of residues produced from municipal and industrial water-supply and pollution-control facilities as a function of process design and operational variables; alternatives for reclaiming or disposing of hazardous and nonhazardous residues with assessment of potential environmental impacts; fundamental factors influencing performance of treatment processes for altering sludge properties prior to reuse or ultimate disposal; and considerations in selection and integration of sludge-management processes to approach optimal design.

659 Environmental Quality Engineering Seminar
Spring. 1 credit. Intended for all graduate students in environmental engineering; open to others with permission of instructor.
R. I. Dick.
Presentation and discussion of current research and design projects in environmental engineering.

755 Environmental Engineering Processes I
Fall. 3 credits. Prerequisite: Previous or concurrent enrollment in CEE 653 or permission of instructor.
3 lecs. J. J. Bisogni.
Theoretical and engineering aspects of chemical and physical phenomena and processes applicable to the removal of impurities from water, wastewater, and industrial wastes and to their transformation in receiving waters. Analysis and design of treatment processes and systems.

756 Environmental Engineering Processes II
Spring. 3 credits. Prerequisites: CEE 651 and 755, or permission of instructor.
3 lecs. J. M. Gossett.
Theoretical and engineering aspects of biological phenomena and processes applicable to the removal of impurities from water, wastewater, and industrial wastes and to their transformation in receiving waters. Biokinetic analysis and design of biological treatment processes.

757 Environmental Engineering Processes Laboratory I
Fall. 1 credit. Prerequisite: concurrent enrollment in CEE 653 and CEE 755.
1 lab. J. J. Bisogni.
Laboratory studies of aquatic chemistry and physical/chemical processes of environmental engineering. Topics include gravimetric analyses; acids/bases; alkalinity; gas chromatography; UV-visible and atomic absorption spectrophotometry; adsorption; filtration; ion exchange; gas transfer; sedimentation; characterization of reactor mixing regimes; coagulation.

758 Environmental Engineering Processes Laboratory II
Spring. 1 credit. Prerequisite: CEE 651 and concurrent enrollment in CEE 756.
1 lab. J. M. Gossett.
Laboratory studies of microbial and environmental engineering processes. Topics include microscopy; biochemical and chemical oxygen demand; enzymatic assays for microbial inhibition; disinfection; aerobic and anaerobic biological treatability studies; enumeration of bacteria.

759 Special Topics in Environmental Engineering
On demand. Variable credits.
Hours to be arranged. Staff.
Supervised study in special topics not covered in formal courses.

851 Thesis—Environmental Engineering
Fall, spring. 1–12 credits. Students must register for credit with the professor at the start of each term.
A thesis research topic is selected by the student with the advice of the faculty member in charge and is pursued either independently or in conjunction with others working on the same topic.

Transportation

361 Introduction to Transportation Engineering
Spring. 3 credits.
A. H. Meyburg.
Introduction to technological, economic, and social aspects of transportation. Emphasis on design and functioning of transportation systems and their components. Vehicle and system technology; traffic flow and control; supply-demand interactions; system planning, design, and management. Institutional and energy issues; environmental impact.

660 Transportation Planning and Policy
Fall. 3 credits. Prerequisite: permission of instructor.
A. H. Meyburg.
Public-sector planning and decision making for transportation. Problems of urban transportation and their implications. A systems-analysis approach to formulation of transportation policy at the local, regional, state, and federal levels. Consideration of urban-transportation planning models.

664 Transportation Systems Design
Spring. 3 credits. Prerequisite: CEE 561.
Staff.
Advanced techniques for physical and operational design of transportation systems, including analytical modeling techniques underlying design criteria. Evaluation of alternative designs. Management and operating policies, including investment strategies. Facility location decisions, networks, and passenger and freight terminals.
761 Transportation Design Project
On demand. Variable credit. Staff.
Design or feasibility study of transportation systems, supervised by one or more faculty advisors. Individual or group participation.

762 Transportation Research
On demand. Variable credit. Staff.
In-depth investigation of a particular transportation planning or engineering problem mutually agreed upon between the student and one or more faculty members.

764 Special Topics in Transportation
On demand. Variable credit. Staff.
Advanced subject matter not covered in depth in other regular courses.

Structural Engineering

371 Structural Behavior
Fall. 4 credits. Prerequisite: Engr 202. 3 lecs., one 2-hour lab, evening exams. P. Gerey.

372 Structural Analysis
Spring. 4 credits. Prerequisite: CEE 371. 3 lecs., one 2-hour lab, evening exams. Staff.

373 Design of Concrete Structures
Fall. 4 credits. Prerequisites: CEE 372 or permission of instructor. Prerequisites or corequisites: CEE 376 and Engr 261. 2 lecs., one 2-hour lab, design project. A. H. Nilson.
Behavior and design of reinforced concrete, prestressed concrete, and composite structures.

374 Design of Steel Structures
Spring. 4 credits. Prerequisite: CEE 372 or permission of instructor. Prerequisites or corequisites: CEE 376 and Engr 261. 3 lecs., one 2-hour sec, evening exams, design project. G. G. Deierlein, T. Pekoz.
Behavior and design of steel members, connections, and structures. Discussion of structural systems for buildings and bridges.

376 Civil Engineering Materials
Fall. 3 credits. 2 lecs., 1 lab. K. C. Hover.
Engineering properties of concrete, steel, wood, and other structural materials. Design characteristics and significance of test results of materials used in engineering works. Developing QA/QC programs and writing specifications. Extensive laboratory testing and report writing.

671 Random Vibration
Fall. 3 credits. Prerequisites: M&AE 326, CEE 779, and ORIE 260; or equivalent and permission of instructor. Offered alternate years.
M. D. Grigoriu.
Review of random-process theory, simulation, and first-passage time. Linear random vibration: second-moment response descriptors and applications from fatigue; seismic analysis; and response to wind, wave, and other non-Gaussian load processes. Nonlinear random vibration: equivalent linearization, perturbation techniques, Fokker-Planck and Kolmogorov equations, Itô calculus, and applications from chaotic vibration, fatigue, seismic analysis, and parametrically excited systems.

762 Fundamentals of Structural Mechanics
Fall. 3 credits. Prerequisite or corequisite: CEE 373.
M. D. Grigoriu.
Theory of elasticity, energy principles, plate flexure, failure theories for structural design, beams on elastic foundation, finite-difference method, plate theory, energy principles, introduction to finite-element method.

673 Advanced Structural Analysis
Fall. 3 credits. Prerequisites: CEE 372 and computer programming.
Evening exams, programming project. Staff.
Matrix analysis of structures, computer programming of displacement (stiffness) method, use of interactive graphical analysis programs, solution methods, errors and accuracy, special analysis procedures, virtual work in matrix analysis, and introduction to nonlinear analysis.

674 Structural Model Analysis and Experimental Methods
Spring. 3 credits. 2 lecs., 1 lab. R. N. White.
Experimental behavior of structures. Dimensional analysis and similarity. Model materials, fabrication, loading, instrumentation techniques, and use of models in design. Experimental stress analysis. Laboratory exercises and project.

675 Concrete Materials and Construction
Spring. 3 credits. Prerequisite: CEE 376 or equivalent.
2 lecs., 1 lab. K. C. Hover.
Materials science, structural engineering, and construction technology involved in the materials aspects of the use of concrete. Cement chemistry and physics, mix design, admixtures, engineering properties, testing of fresh and hardened concrete, and the effects of construction techniques on material behavior. Lab assignments.

678 Low-Cost Housing Primarily for Developing Countries (also Architecture 614)
Fall. 3 credits. May not be offered 1990-91. 2 lecs., conferences. H. Richardson.
A broad, multidisciplinary approach covering technology, architecture, planning, sociology, economy, and cultural aspects. Students work in teams on a term project, applying their own discipline while being introduced to the problems and approaches of other disciplines. For example, engineering students investigate the technological aspects of the subject but also learn about other matters that influence technological decisions, such as cultural and economic factors.

680 Structural Engineering Seminar
Fall, spring. 1 credit. Limited to qualified seniors and graduate students. Staff.
Presentation of topics of current interest in the field of structures.

770 Engineering Fracture Mechanics
Fall. 3 credits. Prerequisite: CEE 772 or permission of instructor. Offered alternate years. Not offered 1990-91.
2 lecs., 1 lab. A. R. Ingraffea.

772 Finite-Element Analysis
Spring. 3 credits. Prerequisites: CEE 672 and 673, or permission of instructor.
Staff.

773 Structural Reliability
Spring. 3 credits. M. D. Grigoriu.
Review of probability theory, practical measures for structural reliability, second-moment reliability indices, probability models for strength and loads, probability-based design codes, reliability of structural systems, imperfection-sensitive structures, fatigue, stochastic finite-element techniques, elementary concepts of probabilistic fracture mechanics.

774 Prestressed Concrete Structures
Spring. 3 credits. Prerequisites: CEE 373 and 376 or equivalent. Recommended: CEE 775.
3 lecs. R. N. White.
Behavior, analysis, design of pretensioned and posttensioned prestressed concrete structures. Flexure, shear, bond, anchorage zone design, cracking, losses. Partial prestressing. Stress, serviceability, structural efficiency of beams, slabs, tension members, frameworks, parking garages, and bridges.

775 Advanced Reinforced Concrete
Fall. 3 credits. Prerequisites: CEE 373 and 376 or equivalent.
3 lecs. A. H. Nilson.
General flexural analysis, deflection analysis, columns with uniaxial and biaxial bending, beam-supported slabs, flat-plate slabs, composite steel-deck slabs, ground-supported slabs, yield-line theory, limit-state analysis, footings, retaining walls, deep beams, tall buildings, and seismic design.

776 Advanced Design of Metal Structures
Fall. 3 credits. Prerequisite: CEE 374 or equivalent. Not offered 1990-91.
T. Peköz.
Preliminary design of structural systems. Design of members and connections. Behavior and computer-aided design of building frames. Design of composite members.
777 Advanced Behavior of Metal Structures
Spring. 3 credits. Prerequisite: CEE 374 or equivalent.

778 Shell Theory and Design
Fall. 2–3 credits. Offered alternate years.
P. Gergely. Fundamentals of practical shell theory. Differential geometry of surfaces; membrane and bending theory of shells; analysis and design of cylindrical shells, polygonal domes, and paraboloids.

779 Structural Dynamics and Earthquake Engineering
Spring. 3 credits. P. Gergely. Modal analysis, numerical methods, and frequency-domain analysis. Introduction to earthquake-resistant design.

780 Advanced Concrete Material Science
Fall. 3 credits. Prerequisites: CEE 376 or equivalent and CEE 675. K. C. Hover. Advanced study of the chemistry, physics, and microstructure of cement and concrete. Investigation of cement manufacture and chemistry, hydration reactions and effect of admixtures. Study of microstructure with scanning electron microscopy, and porosity. Engineering properties and behavior include failure mechanisms and elastic and viscoelastic behavior. Durability. Student presentations.

782 Advanced Topics in Finite-Element Analysis
Fall. 3 credits. Prerequisite: CEE 772. Offered alternate years.
J. F. Abel. A. R. Ingraffea. Lectures and colloquia on selected advanced topics and research in progress, including dynamics, nonlinear analysis, shells, fracture mechanics, fluid dynamics, and computer graphics.

783 Civil and Environmental Engineering Materials Project
On demand. 1–3 credits.
Staff. Individual projects or reading and study assignments involving environmental materials.

784 Design Project in Structural Engineering
Fall, spring. Variable credit.
Students may elect to undertake a design project in structural engineering. The work is supervised by a professor in this subject area.

785 Research in Structural Engineering
On demand. Variable credit.
Hourse to be arranged. Staff. Pursuit of a branch of structural engineering beyond what is covered in regular courses. Theoretical or experimental investigation of suitable problems.

786 Special Topics in Structural Engineering
On demand. Variable credit.
Hourse to be arranged. Staff. Individually supervised study or independent design or research in specialized topics not covered in regular courses.

880 Thesis—Structural Engineering
Fall, spring. 1–12 credits. Students must register for credit with the professor at the start of each term. Geotechnical engineering: section 01; structural engineering: section 02. A thesis research topic is selected by the student with the advice of the faculty member in charge and is pursued either independently or in conjunction with others working on the same topic.

Engineering Management

590 Engineering Management Practice
Fall. 3 credits. Prerequisite: permission of instructor.
K. C. Hover. An introduction to the work and skills of management. Planning, organizing, communicating, controlling, and correcting will be covered in combination of lectures, readings, outside assignments, in-class role-playing exercises, and talks by visiting speakers.

591 Engineering Management Project
Fall. 3 credits. Prerequisite: permission of instructor.
K. C. Hover, M. A. Turnquist. An intensive evaluation of the management aspects of a major engineering project or system. Most students will work on a large group project in the area of project management, but students may also work singly or in small groups on an engineering management topic of special interest to them.

592 Engineering Management Project
Spring. 3 credits. Prerequisite: permission of instructor.

593 Engineering Management Methods I
Fall. 3 credits. Prerequisite: permission of instructor.
M. A. Turnquist. Engineering management methods with an emphasis on modern interactive-software tools. Case studies are used extensively to illustrate the application of these methods to engineering management problems. Methods covered include spreadsheets, database management, statistical analysis, project scheduling, optimization, and quality control.

594 Engineering Management Methods II
Spring. 3 credits. Prerequisite: permission of instructor.
M. A. Turnquist. An extension of CEE 593. Modeling of stochastic systems using spreadsheets, distributed databases, simulation of complex systems, and the use of expert systems in engineering management. Extensive use is made of projects and case studies to illustrate the application of these methods.

595 Construction Planning and Operations
Fall. 3 credits. Prerequisite: permission of instructor.
K. C. Hover. A course on the fundamentals of construction planning: organization of the worksite, construction planning, scheduling, and cost estimating, bidding design of falsework and shoring systems, construction loadings, materials handling for construction, optimization of construction processes, applications of computer methods.

596 Building Systems Integration
Spring. 3 credits. Prerequisite: permission of instructor.
K. C. Hover. Emphasizes the engineering design and construction process as a total systems problem: overall structural planning and the sequence of assembly, impact of assembly details on construction procedures, review of designs for constructability, integration of engineering services, introduction to value engineering, construction documents, and contract administration.

597 Risk Analysis and Management
Spring. 3 credits. Prerequisite: CEE 304 or OR&IE 270 or equivalent.
J. R. Stedinger. The analysis and management of risks in technological systems, including energy production, waste disposal, engineering construction, and transportation. Probability models of failure, exposure, and consequences. Public-sector decision making and regulation of risks.

598 Decision Making in Engineering Systems
Spring. 3 credits. Prerequisite: permission of instructor.
K. C. Hover. An examination of the decision-making behavior of managers and users of engineering systems. Such behavior will be addressed from various perspectives, including economic theories of choice, psychological theories of perception and choice, and consumer theories from marketing research.

COMPUTER SCIENCE
The Department of Computer Science is in both the College of Arts and Sciences and the College of Engineering.

100 Introduction to Computer Programming (also Engr 100)
Fall, spring, summer. 4 credits. Students who plan to take CS 101 or 102 and also 100 must take 101 or 102 first.
2 lecs, 1 rec (optional). 3 evening exams. An introduction to elementary computer programming concepts. Emphasis is on techniques of problem analysis and the development of algorithms and programs. The subject of the course is programming, not a particular programming language. The principal programming language is Pascal. The course does not presume previous programming experience. An introduction to numerical computing is included, although no college-level mathematics is presumed. Programming assignments are tested and run on interactive, stand-alone microcomputers.

101 The Computer Age (also Engr 101)
Fall, summer. 3 credits. Credit is granted for both CS 100 and 101 only if 101 is taken first. An introduction to computer science and programming for students in nontechnical areas. The aims of the course are to acquaint the student with the major ideas in computer science and to develop an appreciation of algorithmic thinking. Topics include the history of computation; microtechnology; the retrieval and transmission of information; scientific computing; computer graphics, art, and music; robotics; natural-language processing, and machine intelligence. Students
become acquainted with the notion of an algorithm by writing several programs in Pascal or LISP and testing them on microcomputers. The amount of programming is about half that taught in CS 100. Each student writes a term paper on some aspect of computing.

102 Introduction to Microcomputer Applications (also Ag Engr 102) Fall. 3 credits. Each lab section limited to 16 students. Not open to engineering students or students who have taken any prior computer courses at Cornell. Students in statutory colleges must enroll in Ag Engr 102.

2 lecs, 2 evening exams. An introduction to the use of application packages on microcomputers. An attempt will be made to assess and demonstrate the capability and limitations of the current generation of personal computers through software for word processing, spreadsheets, databases, and other applications. The course will involve very little programming with high-level languages.

107 An Introduction to SCHEME Spring. 1 credit. Prerequisite: Introductory course in PASCAL, or equivalent programming experience.

1 lec.

An accelerated introduction to SCHEME, a dialect of LISP. Recommended for students who intend to pursue the computer science major. Taught in the first four weeks of the semester.

172 An Introduction to Artificial Intelligence (also Engr 172) Spring. 4 credits. Prerequisites: CS 100 or CS 101; and precalculus-level mathematics.

3 lecs, 2 evening exams.

For description see Engineering Common Courses.

211 Computers and Programming (also Engr 211) Fall, spring, summer. 3 credits. Credit will not be granted for both CS 211 and 212. Prerequisite: CS 100 or equivalent programming experience.

2 lecs, 1 rec, 2 evening exams. Intermediate programming in a high-level language and introduction to computer science. Topics include program development, proofs of program correctness, program structure, recursion, abstract data types, data structures, and analysis of algorithms. Pascal is the principal programming language.

212 Modes of Algorithmic Expression Fall. 4 credits. Credit will not be granted for both CS 211 and 212. Prerequisite: CS 100 or equivalent programming experience.

2 lecs, 2 recs, 2 evening exams. A challenging introduction to programming languages and computer science that emphasizes alternative modes of algorithmic expression. Topics include recursive and higher-order procedures, performance analysis of algorithms, proofs of program correctness, probabilistic algorithms, symbolic hierarchical data, abstract data types, polymorphic functions, object-oriented programming, infinite data types, simulation, and the interpretation of programs. Programs are written in Scheme, a dialect of LISP.

CS 212 emphasizes a varied collection of advanced programming concepts and techniques available in a modern functional programming language. In contrast, CS 211 focuses on perfecting programming skills in a conventional imperative programming language. Corrective transfers between CS 211 and 212 (in either direction) are encouraged during the first few weeks of instruction.

222 Introduction to Scientific Computation (also Engr 222) Spring. 3 credits. Prerequisites: CS 100 and Mathematics 112, 122, or 192.

2 lecs, 1 rec, 2 evening exams. An introduction to elementary numerical analysis and scientific computation. Students write FORTRAN programs and use high-quality numerical software packages to solve representative problems. Emphasis is on efficient, reliable, and stable methods for the basic problems of computational mathematics. Special topics include supercomputing and parallel computation.

280 Discrete Structures Fall, spring, summer. 4 credits. Prerequisite: CS 211, 212 or permission of instructor.

3 lecs.

Covers mathematical aspects of programming and computing. Topics will be chosen from the following: mathematical induction; logical proof; propositional and predicate calculus; combinatorics and discrete mathematics covering manipulation of sums, recurrence relations, and generating-function techniques; basic number theory; sets, functions, and relations, partially ordered sets, graphs.

314 Introduction to Computer Systems and Organization Fall, spring, summer. 4 credits. Prerequisite: CS 211 or equivalent.

2 lecs, 1 sec, 2 evening exams.

Introduction to the logical structure of digital computers. Topics include representation of information, machine-assembling language, the input-output channel, hierarchical storage systems, and microprogramming.

361 Introduction to Theory of Computing Fall. 4 credits. Prerequisite: CS 280 or permission of instructor.

3 lecs.

An introduction to modern theory of computing: automata theory, formal languages, and effective computability.

400 The Science of Programming Spring. 4 credits. Prerequisite: CS 280 or equivalent. Not offered every year.

3 lecs. D. Gries.

The practical development of correct programs based on the conscious application of principles that are derived from a mathematical notion of program correctness. Besides dealing with conventional sequential programs, the course covers implementations of abstract data types and contains an introduction to problems with concurrency. Issues in programming-language design that arise from program correctness are discussed. Programs are written but not run on a computer.

405 Science and the Computer Fall. 4 credits. Prerequisites: Juniors and seniors only; some scientific computing experience recommended. Not offered every year.

2 lecs, 2 evening exams.

How computers affect the conduct of science. Simulation and the scientific method, visualization and the discovery process, notation and the expression of scientific ideas, quantification in the social and biological sciences, the gap between science and the public. Strong writing component.

410 Data Structures Fall, spring, summer. 4 credits. Prerequisite: CS 280 or permission of instructor.

2 lecs, 2 evening exams.

Lists, trees, graphs, and other forms of data structure and their implementation. Relationship between language and data structure, emphasizing abstract data types. Dynamic storage allocation and memory management. Detailed study of searching and sorting methods. Analysis to determine the more efficient algorithm in a given situation.

411 Programming Languages and Logics Spring. 4 credits. Prerequisite: CS 410 or permission of instructor. Not offered every year.

2 lecs.

412 Introduction to Compilers and Translators Spring. 4 credits. Prerequisites: CS 314, 381, 410. Not offered every year.

3 lecs.

Overview of the internal structure of modern compilers, with emphasis on implementation techniques. Topics covered include lexical scanning, simple parsing techniques, symbolic manipulation, type-checking routines, code generation, and simple optimizations. The course entails a compiler implementation project.

414 Systems Programming and Operating Systems Fall. 3 credits. Prerequisite: CS 314 or permission of instructor.

2 lecs, 2 evening exams.

An introduction to the logical design of systems programs, with emphasis on multiprogrammed operating systems. Topics include process synchronization, deadlock, memory management, input-output methods, information sharing, protection and security, and file systems. The impact of network and distributed computing environments on operating systems is also discussed.

415 Practicum in Operating Systems Fall. 2 credits. Prerequisite: CS 410. Corequisite: CS 414.

The practical aspects of operating systems are studied through the design and implementation of an operating system kernel that supports multiprogramming, virtual memory, and various input-output devices. All the programming for the project is in a high-level language.

417 Computer Graphics (also Architecture 374) Fall. 3 credits. Prerequisite: CS 211 or 212. Not offered every year.

2 lecs, 1 lab.

An introduction to the principles of interactive computer graphics, including input techniques, display devices, display files, interactive graphic techniques, two- and three-dimen sional computer graphics, perspective transformations, hidden-surface and hidden-surface algorithms, parametric surfaces, light reflection models, and realistic image synthesis.
418 Practicum In Computer Graphics (also Architecture 375)
Fall. 2 credits. Prerequisite: CS 211 or 212. Recommended: CS 514. Corequisite: CS 417. Not offered every year. 1 lab.
Two or three programming assignments dealing with sophisticated interactive vector graphics programs on calligraphic displays and solid image generation or raster graphics displays.

421 Numerical Solution of Algebraic Equations
Fall. 4 credits. Prerequisites: Mathematics 222 or 294, one additional mathematics course numbered 300 or above, and knowledge of FORTRAN at the CS 222 level. 3 lecs.
Modern algorithms for systems of linear equations, systems of nonlinear equations, and multidimensional optimization. Some discussion of methods that are suitable for parallel computation.

432 Introduction to Database Systems
Spring. 3 credits. Prerequisites: Either CS 211 or 212, and 410, or permission of instructor. Recommended: CS 314. 2 lecs, 1 rec.

433 Practicum In Database Systems
Spring. 2 credits. Corequisite: CS 432. 1 lab.
Issues related to the design and implementation of database-management systems will be addressed. Students will implement a simplified relational database system, including a file-access method and query-processing algorithms.

472 Foundations of Artificial Intelligence
Fall. 3 credits. Prerequisites: CS 107 or CS 212, CS 280 and CS 410. Open to juniors, seniors, and graduate students. 2 lecs, 1 sec.
An introduction to the major subareas and current research directions in artificial intelligence. Topics include knowledge representation, search, problem-solving, natural-language processing, logic and deduction, planning, and machine learning.

473 Practicum In Artificial Intelligence
Spring. 2 credits. Prerequisite: CS 107 or CS 212, CS 280 and CS 410. Corequisite: CS 472. 1 lab.
Project portion of CS 472. Topics include Common LISP programming, representation systems, deductive retrieval, databases and frame languages, and truth-maintenance system implementations.

481 Introduction to Theory of Computing
Spring. 4 credits. Prerequisite: CS 280 or permission of instructor. Credit will not be granted for both CS 381 and CS 481. Corrective transfers between CS 481 and CS 381 (in either direction) are encouraged during the first few weeks of instruction. 3 lecs.
A faster-moving and deeper version of CS 381.

482 (382) Introduction to Analysis of Algorithms
Spring. 4 credits. Prerequisites: CS 410 and either 381 or 481, or permission of instructor. 3 lecs.
Techniques used in the creation and analysis of algorithms. Combinatorial algorithms, computational complexity, NP-completeness, and intractable problems.

486 Applied Logic (also Mathematics 486)
Fall or summer. 4 credits. Prerequisites: Mathematics 222 or 294, CS 100, and some additional course in mathematics or theoretical computer science. 2 lecs, 1 lab to be arranged. Propositional and predicate logic, compactness and completeness by tableaux, natural deduction, and resolution. Equational logic. Herbrand Universes and unification. Rewrite rules and equational logic, Knuth-Bendix method and the congruence-closure algorithm and l-calculus reduction strategies. Topics in Prolog, LISP, ML, or Nuprl. Applications to expert systems and program verification.

490 Independent Reading and Research
Fall, spring. 1–4 credits. Independent reading and research for undergraduates.

600 Computer Science and Programming
Fall. 1 credit. Prerequisite: graduate standing in computer science or permission of instructor. 1 lec.
An introduction to practical, modern ideas in programming methodology. Covers style and organization of programs, basic techniques for presenting proofs of correctness of programs, and the use of a "calculation" for the derivation of programs.

601 Introduction to Programming Logics
Spring. 1 credit. Prerequisite: graduate standing in computer science or permission of instructor. 1 lec.
Exploration of logics for reasoning about programs, with special emphasis on data types and type theory. Comparison with domain theory and logics of computable functions. The Cornell proof development system Nuprl may be used.

611 Advanced Programming Languages
Fall. 4 credits. Prerequisites: CS 410 and 381 or 481, or permission of instructor. 3 lecs.

612 Compiler Design for High-Performance Architectures
Spring. 4 credits. Prerequisites: CS 314, 410, and 412, or permission of instructor. 3 lecs.

613 Concurrent Programming
Spring. 4 credits. Prerequisites: CS 414 and 600, or permission of instructor. 3 lecs.
Advanced techniques in, and models of, concurrent systems. Synchronization of concurrent processes; parallel programming languages; deadlock; verification.

614 Advanced Systems
Spring. 4 credits. Prerequisite: CS 414 or permission of instructor. 2 lecs.
An advanced course in systems, emphasizing contemporary research in distributed systems. Topics may include communication mechanisms, consistency in distributed systems, fault-tolerance, knowledge and knowledge-based protocols, performance, scheduling, concurrency control, and authentication and security issues.

615 Machine Organization
Spring. 4 credits. Prerequisite: CS 314 or permission of instructor. Not offered every year. 3 lecs.

616 RISC Microprocessor Design
Spring. 4 credits. Prerequisite: permission of instructor. Not offered every year. 2 lecs.
This project course involves design and testing of a pipelined reduced-instruction set processor. Typically, about ten students participate in the project and are assigned the design of different components of the processor, such as the ALU or register file.

621 Matrix Computations
Fall. 4 credits. Prerequisites: Mathematics 411 and 431, or permission of instructor. 3 lecs.
Numerical matrix algorithms. Stable and efficient methods for solving systems of linear equations: Gaussian elimination, Cholesky decomposition, bounded and structured systems, the QR factorization, and least-squares methods. The symmetric and unsymmetric eigenvalue problems and related computational problems. The singular value decomposition.

622 Numerical Optimization and Nonlinear Algebraic Equations
Spring. 4 credits. Prerequisite: CS 621. 3 lecs.
Modern algorithms for the numerical solution of multidimensional optimization problems and simultaneous nonlinear algebraic equations. Emphasis is on efficient, stable, and reliable numerical techniques with strong global convergence properties: quasi-Newton methods, modified Newton algorithms, and trust-region procedures. Special topics may include large-scale optimization, quadratic programming, and numerical approximation.

632 Database Systems
Fall. 4 credits. Prerequisites: CS 410 and 432, or permission of instructor. 2 lecs.
Discussion of data models and the implementation of database systems, with an emphasis on current areas of research. Topics include the relational model, database dependency theory, semantic modeling, query optimization, transaction management, and advanced issues in distributed databases.
635 Automatic Text Processing and Information Retrieval
Fall. 3 credits. Prerequisite: CS 410 or permission of instructor.
A course in computer networks and layered protocols. The following topics are presented: network topology design; data transmission within the physical layer; data-link sliding-window protocols; network layer in point-topoint long-haul networks; satellite and packet radio networks and local networks; transport and session layer protocols; internetworking. Selected topics from distributed computing will also be discussed.

643 Design and Analysis of Computer Networks
Fall. 4 credits. Prerequisite: CS 414 or permission of instructor. Not offered every year.
2 lecs.
A course in computer networks and layered protocols. The following topics are presented: network topology design; data transmission within the physical layer; data-link sliding-window protocols; network layer in point-to-point long-haul networks; satellite and packet radio networks and local networks; transport and session layer protocols; internetworking. Selected topics from distributed computing will also be discussed.

655 Mathematical Foundations of Computer Modeling and Simulation (also Mathematics 655)
Fall. 4 credits. Prerequisites: Mathematics 431 and 432, or the equivalent in both content and level of mathematical sophistication, or permission of instructor. Not offered every year.
This course has two parts, one purely mathematical and the other emphasizing applications. The first part is intended to introduce students to theoretical tools that are relevant to the study of robotics, solid modeling, and simulation. These tools will be drawn from the areas of real and complex algebraic geometry, topology, differential geometry, and differential equations. The second part of the course will provide applications that illustrate uses of the mathematics and point the way to needed further developments.

661 Robotics
Fall. 4 credits. Prerequisites: CS 482 and permission of instructor. Not offered every year.
3 lecs.
State-of-the-art in theoretical and experimental robotics, with an emphasis on robot-motion planning. Topics include: Task-level robot planning, collision-free path planning, grasp planning, construction, and propagating uncertainty, planning compliant motions for precision assembly, geometrical planning theories, motion planning with dynamics (and dynamic constraints), computational complexity of robot-motion planning, computational theories of friction, impact, and the physics of manipulation, and error detection and recovery in robotics.

662 Robotics Laboratory
Fall. 1 credit. Prerequisite: graduate standing or permission of instructor. Not offered every year.
1 lab.
Introduction to the use of equipment and techniques in a modern robotics laboratory. Includes CAD programming, force sensing, compliant motion, and mechanical assembly.

664 Machine Vision
Spring. 4 credits. Prerequisites: undergraduate-level understanding of algorithms, knowledge of differential equations, and differential and transformational geometry.
3 lecs.
An introduction to computer vision, with an emphasis on object recognition and geometric matching. The following topics will be covered: edge detection, image segmentation, stereopsis, motion and optical flow, shape reconstruction, shape representations and extracting shapes from images, model-based recognition. Students will be required to implement several of the algorithms covered in the course and evaluate them on both synthetic and real images.

671 Introduction to Automated Reasoning
Fall. 4 credits. Prerequisites: CS 611 and 681 and Mathematics 581. Not offered every year.
3 lecs.
Review of Common Lisp programming and an overview of AI programming techniques. Discussion focuses on practical issues faced by implementors of large Lisp systems. Topics may include implementation techniques, program testing, program optimization, debugging strategies, and the implementation of the Boyer and Moore theorem prover.

672 Artificial Intelligence Programming
Spring. 4 credits. Prerequisite: CS 472 or permission of instructor.
3 lecs.
An introduction to AI programming techniques. Discussion focuses on practical issues faced by implementors of large Lisp systems. Topics may include implementation techniques, program testing, program optimization, debugging strategies, and the implementation of the Boyer and Moore theorem prover.

681 Analysis of Algorithms
Fall. 4 credits. Prerequisite: CS 381 or 481, or permission of instructor.
3 lecs.
Methodology for developing efficient algorithms, primarily for graph theoretic problems. Understanding of the inherent complexity of natural problems via polynomial-time algorithms, randomized algorithms, NP-completeness, randomized reductions. Additional topics such as parallel algorithms and efficient data structures.

682 Theory of Computing
Spring. 4 credits. Prerequisite: CS 381 or 481, or permission of instructor.
3 lecs.
Advanced treatment of theory of computation, computational-complexity theory, and other topics in computing theory.

700 Computer Science Graduate Seminar
Fall, spring. 1 credit. S-U grades only.
For staff, visitors, and graduate students interested in computer science. A weekly meeting for the discussion and study of important topics in the field.

711 Topics in Programming Languages and Systems
Spring. 4 credits. Prerequisites: CS 381 or 481, and 611, or permission of instructor. Not offered every year.
2 lecs.
Topics are chosen at instructor's discretion.

712 Topics in Programming Languages and Systems
Spring. 4 credits. Prerequisite: CS 612 or permission of instructor. Not offered every year.
2 lecs.
Topics are chosen at instructor's discretion.

713 Seminar in Systems and Methodology
Fall, spring. 4 credits. Prerequisites: CS 414 and an advanced Systems course such as CS 613, 614, 632, or 643, or permission of instructor. Not offered every year.
Discussion of contemporary issues in systems and methodology.

714 Distributed Computing
Spring. 4 credits. Prerequisites: CS 414 and an advanced Systems course such as CS 613, 614, 632, or 643, or permission of instructor. Not offered every year.
2 lecs.
Principles of distributed computing and their application to fundamental problems. Considerable time will be devoted to modeling and simulation of algorithms, the theory of concurrency control, security and protection, and issues in fault tolerance (including consensus problems). Other topics may be optimal resource placement, cache management, and the specification of distributed programs, and formal methods.

715 Seminar in Programming Refinement Logics
Fall, spring. 4 credits. Prerequisite: permission of instructor.
Topics in programming logics, possibly including type theory, constructive logic, decision procedures, heuristic methods, extraction of code from proofs, and the design of proof-development and problem-solving systems.

717 Topics in Parallel Architectures
Fall. 4 credits. Prerequisite: CS 612 or permission of instructor. S-U grades only.
2 lecs.
Topics in parallel architectures. Material includes: architectures of parallel computers, parallelizing compilers, operating systems for parallel computers, and languages (functional and logic-programming languages) designed for parallel computation.

719 Seminar in Programming Languages
Fall, spring. 4 credits. Prerequisite: CS 611 or permission of instructor. S-U grades only.
2 lecs.
Topics are chosen at instructor's discretion.

722 Topics in Numerical Analysis
Spring. 4 credits. Prerequisite: CS 621 or 622, or permission of instructor. Not offered every year.
2 lecs.
Topics are chosen at instructor's discretion.

729 Seminar in Numerical Analysis
Fall. Spring. 1 credit (to be arranged). Prerequisite: permission of instructor. S-U grades only.
2 lecs.
Topics are chosen at instructor's discretion.

733 Topics in Information Processing Not offered every year.
2 lecs.
Topics are chosen at instructor's discretion.
734 Seminar in File Processing
Fall. Credit to be arranged. Prerequisite: CS 733 or permission of instructor. Not offered every year.

739 Seminar in Text Processing and Information Retrieval
Fall, spring. Credit to be arranged. Prerequisite: CS 635 or permission of instructor. S-U grades only.

743 Topics in Fault-Tolerant Distributed Computing
Prerequisites: CS 614, 643, or 714. Not offered every year.
1 lec.
A study of the latest results and an exploration of open questions in the area of fault-tolerant distributed computing. Topics may include failure models, reliable broadcasts, synchronizability, knowledge, and network partitioning. This course is particularly suited to students interested in pursuing research in this area.

747 Seminar in Program Logic and Semantics
4 credits. Prerequisite: permission of instructor. S-U grades only. Not offered every year.

749 Seminar in Systems Modeling and Analysis
Fall, spring. 4 credits. Prerequisite: permission of instructor. Not offered every year.
Discussion of advanced topics in modeling and analysis of computer systems and networks, with emphasis on performance.

771 Topics in Artificial Intelligence
4 credits. Prerequisite: permission of instructor. Not offered every year.

772 Seminar in Advanced Robotics
4 credits. Prerequisite: permission of instructor. Not offered every year.

773-774—Proseminar in Cognitive Studies I and II (also Cognitive Studies, Philosophy, Linguistics, and Psychology 773-774)
Fall-spring. 2 credits. R 1.25-2.40. Staff (taught jointly by faculty from Cornell's Cognitive Studies Program, representing fields of computer science, linguistics, philosophy, and psychology).

This is a year-long lecture-and-discussion course which is intended to provide graduate students with an interdisciplinary introduction to the study of knowledge, its presentation, acquisition, and use. Topics may include the psychology of perception and cognition, the philosophy of mind, language, and knowledge; the phonology, syntax, and semantics of natural language; computational approaches to natural language processing, vision, and reasoning; parallel distributed processing, and neuropsychology.

779 Seminar in Machine Learning
Fall, spring. Credit to be arranged. Prerequisite: permission of instructor. S-U grades only.

781 Topics in Analysis of Algorithms and Theory of Computing
Fall. 4 credits. Prerequisites: CS 681 and 682, or permission of instructor. S-U grades only. Not offered every year.
2 lecs.
Topics are chosen at instructor's discretion.

782 Topics in Analysis of Algorithms and Theory of Computing
Spring. 4 credits. Prerequisites: CS 681 and 682, or permission of instructor. S-U grades only. Not offered every year.
2 lecs.
Topics are chosen at instructor's discretion.

783 Fundamentals of Distributed Algorithms
Spring. 4 credits. Prerequisite: A graduate course in algorithms and one in systems, or permission of instructor.
2 lecs.
A research-oriented course in distributed algorithms. Two main models of computation will be considered: the message passing (point-to-point, broadcast) and the shared-memory models. Material from the following topics will be covered: fault-tolerance, agreement, atomic broadcasts, clock synchronization, real-time issues, mutual-exclusion, concurrency control, self-stabilization, knowledge-theoretic algorithms, probabilistic algorithms, secrecy, and authentication.

789 Seminar in Theory of Algorithms and Computing
Fall, spring. 2-4 credits. Prerequisite: permission of instructor. S-U grades only.

790 Special Investigations in Computer Science
Fall, spring. Prerequisite: permission of a computer science adviser. Letter grade only. Independent research or Master of Engineering project.

890 Special Investigations in Computer Science
Fall, spring. Prerequisite: permission of a computer science adviser. S-U grades only. Master of Science degree research.

990 Special Investigations in Computer Science
Fall, spring. Prerequisite: permission of a computer science adviser. S-U grades only. Doctoral research.

ELECTRICAL ENGINEERING

Core Courses

210 Introduction to Electrical Systems
(also Engr 210)
Fall, spring. 3 credits. Prerequisites or corequisites: Mathematics 293 and Physics 213.
3 lecs and optional tutorial sections.
For description see Engineering Common Courses.

233 Introduction to Digital Systems
Fall, spring. 4 credits.
2 lecs, 5 lab experiments.
Introduction to basic analysis, design techniques, and methodology of digital systems. Boolean algebra, integrated circuit components used in digital system implementation, codes and number systems, logic design of combinatorial circuits, and sequential circuits, register transfer systems, and machine organization. Laboratory experiments are performed on a Macintosh computer using a logic simulator.

301 Electrical Signals and Systems I
Fall. 4 credits. Prerequisites: a grade of at least C+ in Engr 210 and C in Mathematics 293 and 294.
3 lecs, 1 rec-computing session.
Continuous- and discrete-time signals and systems; Fourier series and transforms; bilateral Laplace and 2 transforms; convolution; FFTs and DFTs; applications to modulation, filtering, and sampling.

302 Electrical Signals and Systems II
Spring. 4 credits. Prerequisite: EE 301.
3 lecs, 1 rec-computing session.
Linear time-invariant systems as models for electrical networks; network topology; nodal analysis, loop analysis, modified node analysis, and state variable analysis; unilateral Laplace transforms for solving vector differential equations; passivity and related energy storage concepts; elementary nonlinearities.

303 Electromagnetic Waves
Fall, summer co-op session. 4 credits.
Prerequisites: Grads of C or better in Physics 213, 214, and Mathematics 294.
3 lecs, 1 rec.
Maxwell's equations in differential form, wave equation and the Fousny theorem. Fundamentals of electromagnetic waves with emphasis on plane wave effects and the effects of the medium and boundary conditions on wave propagation. Guided waves including transmission lines and rectangular waveguides. Basics of resonant cavities and simple short and dipole antennas.

304 Electromagnetic Fields and Applications
Spring. 4 credits. Prerequisites: Grades of C or better in EE 303 and EE 301.
3 lecs, 1 rec.

306 Fundamentals of Quantum and Solid-State Electronics
Spring. 4 credits. Prerequisites: Physics 214, Mathematics 294, and EE 303.
3 lecs, 1 rec-computing session.
Introductory quantum mechanics and solid-state physics necessary for understanding lasers and modern solid-state electronic devices. Quantum mechanics is presented in terms of wave functions, operators, and solutions of Schroedinger's equation. Topics include the formalism and methods of quantum mechanics, the hydrogen atom, the structure of simple solids, energy bands, Fermi-Dirac statistics, and the basic physics of semiconductors. Applications studied include a simple metal, thermionic emission, and the p-n junction.
308 Fundamentals of Computer Engineering
Spring. 4 credits. Prerequisites: CS 100 and EE 230.
3 lecs, 1 rec-computing session.
An introduction to theoretical topics basic to computer engineering: discrete mathematics; structured computer organization; data structures and algorithms; and computer arithmetic. Practical applications of these concepts.

310 Introduction to Probability and Random Signals
Spring. 4 credits. Prerequisite: Mathematics 294.
3 lecs, 1 rec-computing session.
Introduction to the theory of probability as a basis for modeling random phenomena and signals, calculating the response of systems incorporating these models, and making estimates, inferences, and decisions in the presence of chance and uncertainty. Applications of these models will be given in such areas as communications, control, and device modeling. Specific topics include the basic concept of probability and its presentations through densities, cumulative distribution functions, and characteristic functions; conditional probability; independence; scalar and vector random variables and nonlinear transformations of data; expectation, conditional expectation, moments, correlation; laws of large numbers and central limit theorem; linear least mean square estimation; Bayes decision making.

315 Electrical Laboratory I
Fall. 4 credits. Prerequisite: EE 230 or permission of instructor.
2 lecs, 2 labs.
Basic electrical and electronic instrumentation and measurements involving circuits and fields of both active and passive elements; an experimental introduction to solid-state theory and devices. Introduction of the personal computer as a laboratory aid.

Computer Engineering

230 Introduction to Digital Systems
Fall, spring. 4 credits.
For description see Core Courses.

423 Computer Methods for Circuit Simulation
Fall. 4 credits. Prerequisite: EE 302. Satisfies undergraduate computer-applications requirement.
3 lecs, open lab.
Numerical techniques presented in the context of circuit simulation. Solution of linear and nonlinear algebraic equations; integration, solution of ordinary differential equations; alternative forms of circuit-equation formulation. Starting from a program to simulate simple, linear passive, steady-state circuits, the instructor will add, and the students improve on, procedures that will finally result in a nonlinear transient integrated-circuit simulator that involves most of the techniques discussed in class.

445 Computer Networks and Telecommunications I
Fall. 3 credits. Prerequisites: CS 308, a course in probability, and programming at the level of CS 211.
3 lecs.
Methods and approaches in the design, analysis, and implementation of local area networks and public data networks; circuit switching, packet switching; carrier-sense multiple access with collision detection, token passing, ethernet, buses, and rings; roles and functions of protocols; layering and ISO models.

475 Computer Structures
Fall. 4 credits. Prerequisite: EE 308 or EE 230 and CS 314.
3 lecs, 1 lab.
Methods of designing digital computers and the hardware-software interface to the systems they function with. Topics will include types of control sequencers, memory and I/O organization and interfacing, interrupt hardware design, floating-point hardware and basic architectural alternatives. Laboratory groups will design and build a small digital computer. User-programmable logic devices will be employed for circuit implementation.

476 Microprocessor Systems
Spring. 4 credits. Prerequisite: EE 475.
3 lecs, 1 lab.
System design using microprocessors. Hardware and software techniques employed in interfacing. Assembly language and Pascal programs for interfacing and control of interfaced devices. Study of different microprocessor architectures, memory management, multiprocessing, and multiprocessor systems. Development systems and the use of programmable logic devices will be employed in the laboratory for interfacing the microcomputer to hardware.

524 Differential Equation Numerical Methods for the Electrical Engineer
Spring. 4 credits. Prerequisites: EE 301 and EE 303. EE 423 is helpful. A working knowledge of a scientific programming language is required. Open to both undergraduates and graduates. Satisfies undergraduate computer applications requirement.
3 lecs, open lab.
Numerical methods for ordinary and partial differential equations are presented using examples from areas of electrical engineering. Examples include semiconductor-device simulation, plasma simulation, propagation of solitons in optical fibers, and the modeling of electrostatic fields in micro-mechanical devices. Numerical methods include particle-in-cell simulation techniques; spectral methods; elementary parabolic, elliptic, and hyperbolic methods; and boundary-element method. The fundamental notions of accuracy and error, consistency, stability, and convergence are discussed.

530 VLSI Digital-System Design
Fall and spring. 6 credits (must be taken both semesters). Prerequisite: EE 475 or equivalent.
3 lecs, 1 lab.
Custom VLSI design as seen by a system designer. Switches as logic devices, MOS transistor, MOS logic design, two-phase clocking, stick diagrams, cell layout, regular control structures, simulation, performance analysis, RC timing model, system design for performance, design for testing, semicustom design, systolic arrays, CAD design tools. A chip design project and a design report are required for fall semester. CAD tools are used extensively. Chips are tested for functionality and performance, and the design report is revised during the spring semester.

541 Advanced Computer Architectures
Fall. 3 credits. Prerequisite: EE 308 or permission of instructor.
Design and evaluation of processor architectures are examined in the light of actual implementations of both large-scale and small-scale systems. Topics include microprogramming, parallel and pipelined architectures, interleaved memories, cache and virtual memories, I/O processors, vector and array processors, protection mechanisms, and RISC architectures.

542 Parallel Processing
Spring. 3 credits. Prerequisite: EE 541 or permission of instructor.
3 lecs.
Computer architecture for parallel processors that are designed to provide a high computation rate for large scientific problems; primary emphasis on image processing and highly parallel VLSI-based systems. Other applications considered include signal processing and the solution of PDEs. Performance, processor interconnections, algorithms, programming techniques, and fault tolerance will be discussed. Architecture types to be considered include binary-array processors, pipeline processors, instruction-set computers, systolic arrays, and MIMD systems.

543 VLSI Architectures and Algorithms
Fall. 3 credits. Prerequisite: EE 475 or permission of instructor.
3 lecs.
Since the advent of VLSI, the cost of processing logic is no longer a fundamental constraint on the design of computer architectures. Problems that once were computationally intractable can now be solved on arrays of thousands or even tens of thousands of processors. This course addresses the important question: What are the optimal VLSI structures and algorithms for specific classes of problems? The architectures we will examine include systolic arrays, mesh-connected processors, and data-flow computers, special attention will be given to problems that arise in real-time signal processing.

546 Computer Networks and Telecommunications II
Spring. 3 credits. Prerequisite: EE 545 or permission of instructor.
3 lecs.
Introduction to Integrated Service Digital Network (ISDN); circuit switching fundamentals; time division architectures; packet switching architectures; integration of circuit and packet switching; evolution from ISDN to Broadband ISDN.

547 Computer Vision
Fall. 3 credits. Prerequisites: EE 302 and 475 or 425, or permission of instructor.
Computer acquisition and analysis of image data with emphasis on techniques for robot vision. Computer vision is the construction of explicit meaningful descriptions of physical objects from images. This course will concentrate on descriptions of objects at three levels of abstraction: segmented images (images organized into subimages that are likely to correspond to interesting objects), geometric structures (quantitative models of image and world structures), and relational structures (complex symbolic descriptions of images and world structures). The programming of several computer-vision algorithms will be required.)
348 Image Processing
Spring. 4 credits. Prerequisite: EE 301 or permission of instructor.
3 lecs.
Image formation and perception, digitization, image coding, image enhancement, image restoration, computerized tomography, optical processing, image analysis. The programming of several image-processing algorithms will be required.

563 Communication Networks
Fall. 4 credits.
For description see Communication and Information Systems.

593 RISC Microprocessor Design (also CS 616)
4 credits over two semesters. Prerequisite: EE 539 or consent of instructors.
L. K. Grover and K. K. Pingali
RISC (Reduced Instruction Set Computers) is the newest trend in microprocessor architecture—every leading microprocessor manufacturer including Motorola and Intel has announced RISC microprocessors. In this course, we will design and fabricate CAYUGA, a pipelined RISC microprocessor on a VLSI chip. Students will be given the instruction-set specification of the CAYUGA processor. During the course, they will perform the VLSI layout and simulation of the design. The processor will then be fabricated by MOSIS, after which it will be tested to verify that it meets design goals.

644 Fault-Tolerant Computing
Spring. 3 credits. Prerequisites: EE 541 and 543.
The discipline of fault-tolerant computing deals with digital systems that operate in applications where the cost of failure is high. Effective and efficient techniques are required for tolerating failures in complex digital systems. The real-time needs of many signal processing problems have led to the development of special-purpose systolic arrays. This course covers general fault-tolerance techniques such as masking redundancy and error detecting and correcting codes, with particular emphasis on those suitable for systolic computing.

Circuits, Systems, and Signal Processing

210 Introduction to Electrical Systems
Fall, spring. 3 credits.
For description see Engineering Common Courses.

230 Introduction to Digital Systems
Fall, spring. 4 credits.
For description see Core Courses.

301 Electrical Signals and Systems I
Fall. 4 credits.
For description see Core Courses.

302 Electrical Signals and Systems II
Spring. 4 credits.
For description see Core Courses.

318 Electric and Electromechanical Circuits and Systems
Spring. 4 credits. Prerequisite: EE 315. Integrated lectures and lab.
Concepts and methods for design, construction, testing, and analysis of a variety of electronic circuits and for modeling and analysis of electromechanical devices such as speakers, solenoids, and a variety of motors.

Applications of single-input/single-output classical feedback-control principles illustrated through the design and testing of a DC motor (PWM driven) positional system.

423 Computer Methods for Circuit Simulation
Fall. 4 credits.
For description see Computer Engineering.

425 Digital Signal Processing
Fall. 4 credits. Prerequisite: EE 301.
3 lecs, 1 lab.
Fundamentals of signal analysis, review of Fourier, Laplace, and Z transforms. Sampling theory. Discrete Fourier transform properties and computation (FFT). Digital filter design, the approximation problem for FIR and IIR filters, the realization problem—finite word-length limitations and filter structures.

426 Applications of Signal Processing
Spring. 3 or 4 credits. Prerequisite: EE 425.
1 lec, 2 labs.
Applications of signal processing, including signal analysis, filtering, and signal synthesis. The course is laboratory oriented and emphasizes individual student projects. Design is done with signal-processing hardware and by computer simulation. Topics include filter design (principal digital filtering) and spectral analysis as well as speech coding, speech processing, digital recording, adaptive noise cancellation, and digital signal synthesis.

521 Theory of Linear Systems
Fall. 4 credits. Prerequisite: EE 301 or permission of instructor. Recommended: a good background in linear algebra and differential equations.
3 lecs.

522 Theory of Nonlinear Systems
Spring. 4 credits. Prerequisites: EE 521 or a solid background in linear algebra strongly recommended but not required.
A fairly rigorous introduction to nonlinear systems, including nonlinear differential equations (existence and uniqueness theorems), flows; stability of equilibria and periodic orbits; Lyapunov functions; the Circle Criterion and Popov's Criterion; the Poincaré-Bendixon Theorem.

526 Advanced Signal Processing
Spring. 4 credits. Prerequisites: EE 411 and EE 425. Not offered 1990–91.
3 lecs, 1 lab.

528 Multisensor Digital Signal Processing
Spring. 4 credits. Prerequisite: EE 301, 411, 425 recommended.
Addresses signal processing techniques for the coordinated use of data derived from an array of sensors. Application areas for sensor arrays include radar, geophysics, speech enhancement, and satellite communications. We will discuss propagation and sensor models, beamforming, sidelobe cancellers, source location and direction finding, adaptive detection and estimation, computational approaches (RLS, LMS, and square root) and architectures (systolic arrays and other concurrent schemes). Assignments will involve computer simulations.

548 Image Processing
Spring. 4 credits.
For description see Computer Engineering.

674 Adaptive Parameter Estimation Theory
3 credits.
For description see Power and Control Systems.

679 Advanced Topics in Systems and Control
1–3 credits.
For description see Power and Control Systems.

Communication and Information Systems

310 Probability and Random Signals
Spring. 4 credits.
For description see Core Courses.

411 Random Signals in Communications and Signal Processing
Fall. 3 credits. Prerequisite: EE 302 and 310 or equivalent.
3 lecs.
Introduction to probability models for random signals in discrete and continuous time; Markov chains, Poisson process, queuing processes, wide-sense stationary processes and power spectral densities, Gaussian random processes, including the narrowband case. Electrical engineering phenomena described by such models (e.g., communications channel noise, queues that form in multiple-access telecommunications systems). Response of linear and nonlinear systems to random signals. Elements of estimation and inference as they arise in communications and digital signal processing systems (e.g., problems of extraction of signals from noise via Wiener filtering, power spectral density estimation).

445 Computer Networks and Telecommunications
Fall. 3 credits.
For description see Computer Engineering.

468 Communications and Signal Processing
Spring. 4 credits. Prerequisite: EE 301 or 521, and 411 or equivalent.
3 lecs, 1 rec.

546 Computer Networks and Telecommunications II
Spring. 3 credits.
For description see Computer Engineering.
561 Error-Control Codes
Fall. 3 credits. Prerequisite: EE 301 or EE 521 or equivalent. A strong familiarity with linear algebra is assumed.

3 lec.

An introduction to the theory of error-control codes: linear block codes, convolutional and other trellis codes. Hamming codes, minimum distance, standard array, minimum-distance decoding, cyclic codes. The dual of a code. Methods of error correction and the principles of modern data conversion, transmission, and storage systems are presented. Examples of systems from the "real" world are described, the emphasis of the course is on the fundamentals of theory in the design of digital communication systems.

567 Artificial Neural Networks
Fall. 3 credits. Prerequisite: EE 310, EE 411 recommended.

Artificial neural networks are brainlike in being formed out of many highly interconnected nonlinear memoryless elements. Probability theory will provide the primary analytical approach to design and analysis of neural networks. The course will cover aspects of feed-forward nets (multilayer perceptrons) that can serve as pattern classifiers, dead combining codes. The architecture and design of neural networks through computer simulation and to present an article from the current literature.

564 Decision Making and Estimation
Spring. 4 credits. Prerequisite: EE 411. An introduction to those methods of making rational decisions and inferences and of forming estimates that are central to the problems of communications, detection, and statistical signal processing. Topics covered are drawn from utility theory and rational preferences, Bayes, minimax, and Neyman-Pearson decision theories, Bayes and maximum likelihood point estimation; Cramer-Rao bound, efficient, and consistent estimation, spectral estimation, and robust models for signal extraction.

566-669 Random Processes in Electrical Systems
668, fall; 669, spring. 3 credits each term. Advanced topics in the general area of randomness and uncertainty and their relevance to the analysis and design of electrical systems.

Power and Control Systems
318 Electric and Electromechanical Circuits and Systems
Spring. 4 credits. For description see Circuits, Systems, and Signal Processing.

451-452 Computer-Aided Analysis of Electric Power Systems I and II
451, fall; 452, spring. 4 credits each term. Prerequisite: EE 301. 3 lec-recs, 1 lab-computing session. The so-called second-generation and third-generation simulation tools and their computer implementation for large-scale circuits and systems. Modeling of electric power systems for load-flow, stability, economic-dispatch control, and optimal-power-flow studies.

Special properties of electric power systems that enhance the efficiency of simulation tools used for their analysis. The Kettering Power System Laboratory's digital computer is used as a dynamic "laboratory."
573 Optimal Control and Estimation for Continuous Systems
Fall. 4 credits. Prerequisite: EE 521 or permission of instructor. Not offered every year.
3 lecs.
Control system design through parameter optimization, with and without constraints. The minimum principle; linear regulations, minimum-time and minimum-fuel problems. Computational techniques, properties of Lyapunov and Riccati equations.

574 Estimation and Control in Discrete Linear Systems
Spring. 4 credits. Prerequisites: EE 521 and 411, or permission of instructor.
3 lecs.

564 Foundations of Inference and Decision Making
Spring. 3 credits.
For description see Communication and Information Systems.

674 Adaptive Parameter Estimation Theory
3 credits. Prerequisites: EE 521 and either 526 or 572, or permission of instructor. Recommended: EE 522. Not offered every year.
3 lecs.
Fundamental concepts of adaptive parameter estimation theory as applicable to adaptive filtering, adaptive control, and system identification. Analytical tools are drawn primarily from nonlinear, time-varying feedback-system stability theory. Applications considered include telephony echo cancellation, noise cancelling, differential pulse code modulation, channel equalization, model-following control, and pole placement. Assignments will consist of reports on analysis and simulation studies of adaptive parameter-estimator behavior.

679 Advanced Topics in Systems and Control
1–3 credits. Prerequisite: permission of instructor. Not offered every year.
Topics include robotics, nonlinear feedback system stability, multivariable control, and qualitative theory on nonlinear systems.

Solid-State Electronics
306 Fundamentals of Quantum and Solid-State Electronics
Spring. 4 credits.
For description see Required Courses.

412 Applied Solid-State Physics
Spring. 4 credits. Prerequisite: EE 306.
3 lecs, 1 rec.

431-432 Analysis and Design of Integrated Circuits
431, fall; 432, spring. 4 credits each term. Prerequisites: EE 301 and 315. Concurrent registration in EE 435 is encouraged.
3 lecs, 1 lab.
Analysis and design of analog and digital circuits using semiconductor devices, with emphasis on integrated circuits in bipolar and MOS technologies. Device models for circuit analysis; common circuit configurations; DC analysis, frequency response and speed limitations; feedback and noise sources. Case studies such as design of high-frequency or operational amplifiers and semiconductor memory, reinforced by laboratory and design projects. At the level of Analysis and Design of Analog Integrated Circuits, by Gray and Meyer, and Analysis and Design of Digital Integrated Circuits, by Hodges and Jackson.

433 Microwave Integrated Circuits
Fall. 4 credits; may be taken for 3 credits without laboratory. Prerequisites: EE 303 and EE 306.
3 lecs, 1 lab.
An introduction to the design and testing of high-speed circuits (frequencies above 1 GHz). Topics include: computer-aided design, automated microwave measurement techniques, optoelectronic applications, and GaAs monolithic microwave integrated circuits. Six two-week labs cover the basics of designing, fabricating, and testing microwave integrated circuits.

435-436 Semiconductor Electronics
435, fall; 436, spring. 4 credits each term; may be taken for 3 credits without laboratory with permission of instructor. Prerequisites: EE 306 and 316, or equivalent.
3 lecs, 1 lab.
Semiconductor electronics from point-contact transistor to VLSI and beyond. Fall term: electronic characteristics of semiconductors, carrier transport, band diagrams, semiconductor interfaces, pn-junction diode, Si bipolar transistor (BJT), Si MOS transistor (MOSFET), integrated Si structures such as inverters (NMOS, CMOS). Spring terms: GaAs J-FET, Schottky diode, GaAs metal-semiconductor FET (MESFET), AlGaAs/GaAs modulation-doped FET (MODFET), heterojunction bipolar transistor (HBT), semiconductor lasers and optical detectors, integrated GaAs structures; computer simulation of devices; limits and future of semiconductor electronic devices.

524 Differential Equation Numerical Methods for the Electrical Engineer
Spring. 4 credits.
For description see Computer Engineering.

535 Semiconductor Physics
Fall. 4 credits. Prerequisites: EE 304 and 407, or permission of instructor.
3 lecs.
Foundations of semiconductor physics for the description of carrier transport and optical characteristics of semiconductor materials and structures. Crystal structure and symmetry, energy-band structures, statistics, effective mass theorem, classical transport, scattering, high-field transport, quantum transport, optical absorption and reflection, photoconductivity, light generation, deep levels, and surface and interface phenomena. On or above the level of Fundamentals of Semiconductor Theory and Device Physics, by S. Wang.

538 VLSI Technology
Spring. 4 credits. Prerequisite: EE 435 or permission of instructor.
3 lecs, 1 lab.
Processing technology for high-density silicon integrated circuits for CMOS, BiCMOS, and ECL. Lithography, oxidation, diffusion, ion implantation, thin-film deposition, dry etching, multilevel interconnect, process integration, manufacturing yield, integrated-circuit reliability, future of high-density VLSI. Laboratory includes actual device fabrication in a clean room, measurements, and process simulations. On the level of VLSI Technology, edited by S. M. Sze.

537 Physical Design of High-Speed Computers
Fall. 4 credits. Prerequisites: EE 230 and 431 or 435; or permission of instructor. Recommended companion course: MS&E 463. Integration of computer structures from integrated circuits to modules, boards, and full computer systems, from workstations to supercomputers. Computer packaging architectures; high-speed electrical and optical signal distribution; power distribution and thermal management; functional architecture; manufacturing, measurement, and simulation methods; case studies on workstations, mainframes, and supercomputers, fundamental limits. On the level of Principles of Electronic Packaging, edited by Seraphim, Lasky, and Li. Lectures by outside speakers from the computer industry.

538 Introduction to III-V Compound Semiconductor Materials
Spring. 3 credits. Prerequisites: EE 407 and 436.
J. R. Shealy.
An introduction to III-V compound semiconductor materials and their crystal growth technologies. Topics include the modern epitaxial growth technologies, Molecular Beam Epitaxy and Organometallic Vapor Phase Epitaxy; common methods used for the evaluation of compound semiconductor materials, including Raman spectroscopy. Emphasis is placed on the materials' properties and the related growth and characterization techniques that currently support a variety of research topics in new semiconductor devices.

539 VLSI Digital-System Design
Fall and spring. 6 credits.
For description see Computer Engineering.
634 Advanced Solid-State Devices
Spring. 3 credits. Prerequisite: EE 535 or equivalent.
3 lecs.
A fundamental analysis of device operation, with emphasis on operational limits. Effects of bulk structure, low- and high-field transport characteristics, secondary ionization, transferred electron effects, and the details of junction and contact technology relevant to devices at the limits of microfabrication technology. Applications to microwave amplifiers, generation, and broadband optical detection, including stability, nonlinearity, and noise.

638 Advanced Semiconductor Devices and Processes
Fall. 4 credits. Prerequisite: EE 535, EE 536, or permission of instructor. Not offered every year.
3 lecs, special project or term paper.

Quantum and Opto-Electronics

306 Fundamentals of Quantum and Solid-State Electronics
Spring. 4 credits. For description see Core Courses.

407 Quantum Mechanics and Applications
Fall. 4 credits. Prerequisite: EE 306. 3 lecs, 1 rec.

430 Lasers and Optical Electronics
Fall. 3 credits. Prerequisite: EE 306 or equivalent.
3 lecs, 1 rec-lab.
An introduction to the operation of stimulated-emission devices such as lasers and devices based on linear and nonlinear optics. Material covered includes diffraction-limited optics, propagation of Gaussian laser beams, optical resonators, interaction of radiation with matter, physics of laser operation, laser design. Applications of coherent radiation to nonlinear optics, communication, and research will be discussed as time permits.

437 Fiber and Integrated Optics
Spring. 3 credits lecture only, 4 credits with lab. Prerequisite: EE 306. EE 304 and 430 or equivalents are strongly recommended.
3 lecs, 1 lab-computing session; lab optional.
A detailed treatment of the physical principles of fiber optics, integrated optics, and optical applications to communication and sensing. Topics include mode structure in waveguides, mode coupling, dispersion and bandwidth limitations, optical sources based on semiconductors, detectors and noise, modulation techniques, nonlinear effects in fibers, and optical sensors. Laboratory includes experiments relevant to lasers and fiber optics.

524 Differential Equation Numerical Methods for the Electrical Engineer
Spring. 4 credits. For description see Computer Engineering.

531 Quantum Electronics I
Fall. 4 credits. Prerequisites: EE 306 and 407, or Physics 443.
3 lecs, 1 computer session.
A detailed treatment of the physical principles underlying lasers, related fields, and applications. Topics include the interaction of radiation and matter, including emission, absorption, scattering, and basic spectroscopic properties of key laser media; theory of the laser, including methods of achieving population inversions, dispersive effects, and laser oscillation spectrum.

532 Quantum Electronics II
Spring. 4 credits. Prerequisite: EE 531 or permission of instructor.
3 lecs, 1 rec-computing session.
A continuation of EE 531. Topics include density matrix, nonlinear optical processes; properties of non-linear optical materials; optical parametric oscillators; spontaneous and stimulated Raman and Brillouin processes; theory of coherence; pico- and femto-second optics; ultrafast processes in semiconductors and molecules; optical properties of semiconductor-doped glasses, quantum-well structures, and superlattices.

535 Semiconductor Physics
Fall. 4 credits. For description see Solid-State Electronics.

Plasmas and Large-Scale Fluids

481 Experimental Plasma Physics and Gas Discharges
Fall. 4 credits. Prerequisite: EE 304 or A&EP 356 or equivalent. Fulfills electrical engineering laboratory requirement and constitutes an M.Eng. (Electrical) course pair with EE 480 or 484.
3 lecs, 1 lab.

484 Introduction to Controlled Fusion: Principles and Technology (also M&AE 559 and NS&E 484)
Spring. 3 credits. Prerequisites: EE 301 and 303, or permission of instructor. Intended for seniors and graduate students.
3 lecs.
For description see NS&E 484.

524 Differential Equation Numerical Methods for the Electrical Engineer
Spring. 4 credits. For description see Computer Engineering.

580 Applied Electrodynamics
3 credits. Prerequisites: EE 303 and EE 304, or a grade of B or better in EE 303.
Selected topics in contemporary electrodynamics with emphasis on applications. Theory, design, and uses of high-power microwave devices such as gyrotrons, CARMs, free-electron lasers, and traveling-wave tubes.

Electromagnetic waveguide and cavity modes, charged-particle orbit theory, particle dynamics in electromagnetic fields, field transforms, electron-beam generation and equilibria including self-field effects, waves on beams, low- and high-power microwave devices and their applications. At the level of Microwave Engineering and Applications, by O. P. Gandhi.

581 Introduction to Plasma Physics (also A&EP 606)
Fall. 4 credits. First-year graduate-level course; open also to exceptional fourth-year students with permission of instructor. Prerequisites: EE 531 and 535, or equivalent.
3 lecs.
Plasma state; motion of charged particles in fields; collisions, coulomb scattering; transport coefficients, ambipolar diffusion, plasma oscillations and waves; hydromagnetic equations; hydromagnetic stability and microscopic instabilities; test particle in a plasma, elementary applications. At the level of Plasma Physics for Nuclear Fusion, by Miyamoto.

582 Advanced Plasma Physics (also A&EP 607)
Spring. 4 credits. Prerequisite: EE 581.
3 lecs.
For description see A&EP 607.

583 Electrodynamics
Fall. 4 credits.
For description see Fields, Waves, and Antennas.

[585 Atmospheric and Ionospheric Physics (also Astronomy 575)]
Fall 3 credits. Offered alternate years. Not offered 1990-91.

[586 Solar Terrestrial Physics (also Astronomy 576)]
Spring. 3 credits. Offered alternate years. Not offered 1990-91.
High-latitude ionosphere; electric fields in the polar cap and auroral zone; particle precipitation and the aurora; magnetic and ionospheric storms; plasma instabilities in the ionosphere and magnetosphere; structure and physical processes in the sun, solar corona, and solar wind; interactions between the solar wind and the earth's magnetosphere; trapping, acceleration, and drift of energetic particles in the magnetosphere.

587 Introduction to Antennas and Radar
Fall. 3 credits. Prerequisites: EE 301 and 304 (or at least a B in 303). Open to qualified undergraduates.
For description see Fields, Waves, and Antennas.
588 Electromagnetic Wave Propagation
II
Spring. 3 credits. Prerequisites: EE 587 and 581, or permission of instructor.
3 lecs.
For description see Fields, Waves, and Antennas.

589 Magnetohydrodynamics
3 credits. Prerequisite: EE 581. Offered upon sufficient demand.
The theory of ideal and nonideal magnetohydrodynamical equations with emphasis on application to controlled thermonuclear fusion.
Topics: derivation and domain of applicability; invariants; waves, equilibrium and normal-mode stability analysis; continuous spectrum; energy principle and applications to confinement geometries; nonideal effects, resistivity, finite Larmor radius stabilization. Selected additional topics such as dynamo theory or MHD turbulence.

681 Kinetic Theory (also A&EP 761)
Fall. 3 credits. Prerequisite: EE 407, Physics 561, or permission of instructor.
3 lecs.

682 Nonlinear Phenomena in Plasma Physics
Fall. 3 credits. Prerequisite: EE 582. Offered alternate years.

685 Solar Plasma Physics
Fall. 3 credits.
This course will be coordinated with the two courses on upper atmospheric physics, EE 585 and 586, to provide an integrated view of solar-terrestrial physics for the graduate student intending a research career in space plasma physics. A thorough understanding of electromagnetic theory and some knowledge of fluid mechanics and plasma physics at the level of EE 581 and 582 are assumed.

Fields, Waves, and Antennas
303-304 Electromagnetic Fields and Waves
303, fall; 304, spring. 4 credits each semester. For description see Core Courses.

316 High-Frequency and Microwave Fundamentals
Spring. 4 credits. Prerequisites: EE 301, 303, and 315.
3 lecs, 1 lab.
Laboratory and design studies in high-frequency and fast-pulse circuits, microwaves and electro-optics. Technical report writing. Eight experiments and two design projects.

433 Microwave Integrated Circuits
Fall. 4 credits; may be taken for 3 credits without laboratory. Prerequisites: EE 303 and EE306.
For description see Solid-State Electronics.

534 Microwave Semiconductor Devices
Spring. 4 credits. Prerequisites: EE 433 and 455.
3 lecs, 1 lab. For description see Solid-State Electronics.

563 Electrodyamics
Fall. 4 credits. Prerequisites: EE 301 and EE 304 or equivalent.
3 lecs.
Maxwell's equations, electromagnetic potentials, integral representations of the electromagnetic field, Green's functions. Special theory of relativity, Lienard-Wiechert potentials, radiation from accelerated charges, Cerenkov radiation. Electrodynamics of dispersive dielectric and magnetic media. At the level of Classical Electrodynamics, by Jackson.

584 Microwave Theory
Spring. 4 credits. Prerequisites: EE 301 and 304 or equivalent.
3 lecs, 1 rec.

587 Introduction to Antennas and Radar
Fall. 3 credits. Prerequisites: EE 301 and 304 (or at least a B in 303). Open to qualified undergraduates.
Fundamentals of antenna theory, including gain and effective area, near and far fields, phased arrays, aperture antennas and aperture synthesis. Fundamentals of radar, including detection, tracking, Doppler shifts, sampling, range and frequency aliasing. Pulse compression principles and the ambiguity function, synthetic aperture radars and remote sensing from aircraft and satellites; over-the-horizon (OTH) radars and ionospheric propagation effects; radar astronomy techniques, including range-Doppler mapping of planets and the problem of overspread targets.

588 Advanced Electromagnetic Wave Propagation and Scattering
Spring. 3 credits. Prerequisite: EE 587 or permission of instructor. Offered alternate years. Not offered 1989-90.
3 lecs.
Full-wave solutions of the wave equations, interactions between particles and waves, scattering of radio waves from random fluctuations in refractive index, scatter propagation, incoherent scatter from the ionosphere and its use as a diagnostic tool, scattering from unstable plasma waves, pulse compression and other radar probing techniques.

General
250 Technology in Western Society (also Engr 250)
Fall. 3 credits. Approved for humanities distribution.
For description see Engineering Common Courses.

292 The Electrical and Electronic Revolutions (also Engr 292)
Spring. 3 credits. For description see Engineering Common Courses.

360 Ethical Issues in Engineering
Spring. 3 credits. A social science elective for engineering students. Open to juniors and seniors.
3 lecs.
For description see Engineering Common Courses.

480 Thermal, Fluid, and Statistical Physics for Engineers
Spring. 3 credits. Prerequisite: Physics 214.

491-492 Senior Project
491, fall; 492, spring. 1-8 credits.
Individual study, analysis, and, usually, experimental tests in connection with a special engineering problem chosen by the student after consultation with the faculty member directing the project. An engineering report on the project is required.

495-496 Special Topics in Electrical Engineering
1-4 credits.
Seminar, reading course, or other special arrangement agreed on by the students and faculty members concerned.

591-599 Graduate Topics in Electrical Engineering
1-4 credits.
Seminar, reading course, or other special arrangement agreed on by the students and faculty members concerned.

691-692 Electrical Engineering Colloquium
691, fall; 692, spring. 1 credit each term. For students enrolled in the graduate field of electrical engineering. Lectures by staff, graduate students, and visiting authorities. A weekly meeting for the presentation and discussion of important current topics in the field. Report required.

693-694 Master of Engineering Design
693, fall; 694, spring. 1-10 credits each term.
For students enrolled in the M.Eng. (Electrical) degree program. Uses real engineering situations to present fundamentals of engineering design. Each professor is assigned a section number. To register, see roster for appropriate numbers.

695-699 Graduate Topics in Electrical Engineering
1-6 credits.
Seminar, reading course, or other special arrangement agreed on by the students and faculty members concerned.

791-792 Thesis Research
791, fall; 792, spring. 1-15 credits. For students enrolled in the master's or doctoral program.
These questions from a different Cornell researcher every week. Lectures are geared to the fall introductory geology courses.

100 Frontiers of Geology II
Spring. 1 credit. May be taken concurrently with or after Geol 101, 102, 103, 104, 111, 201, or 202.
1 lec. J. L. Cisne and staff. Like Geol 107, but geared to the spring introductory geology courses.

111 To Know the Earth
Fall. 3 credits. 2 lecs, 1 lab, and field trips. J. E. Oliver. Acquaints the non-scientist with the earth. Geology as an intellectual challenge, a provider of resources, an environment, a danger, a base for culture, and a science among sciences. The story behind landscapes, mountains, earthquakes, volcanoes, oceans, gold, petroleum, and icecaps. The record of the past, the context of the present, the forecast for the future.

201 Introduction to the Physics and Chemistry of the Earth (also Engr 201)
Spring. 3 credits. Prerequisites: Mathematics 191, Physics 112, and Chemistry 207.
2 lecs; 1 rec, lab, or field trip. D. E. Karig.

202 Environmental Geology
Spring. 3 credits. 2 lecs; 1 rec, lab, or field trip. D. E. Karig. In-depth introduction to geologic processes that affect or are affected by human society, including stream behavior and floods, earthquakes, land stability and mass-wasting, and volcanic hazards. This material provides an application of geology to engineering, natural resources, and land-use planning. Local examples are discussed and visited on short field trips. The course can be taken as an introduction to geology, but also serves as a continuation of Geol 101.

210 Introduction to Field Methods in Geological Sciences
Fall. 2 credits. Prerequisite: Geol 101 or 201, or permission of instructor.
3 lecs, 1 lab, field trips. Staff. An introduction to the methods by which rocks are examined in the field. Study of bedrock and surficial geology, including the construction of geologic maps and cross sections and to descriptive stratigraphy. Field and laboratory sessions are held on Saturday mornings during most of these weeks. As an additional lecture, one weekend is devoted to a field trip to eastern New York.

212 Special January Field Trip
Fall. 1 credit. Prerequisites: Geol 101 or 201 or equivalent, and permission of instructor. Travel and subsistence expenses to be announced.
1 lec, field trip. Staff. A trip of one week to ten days during January intersession in an area of interesting geology in the lower latitudes. Interested students should contact the instructor during the early part of the fall semester.

213 Marine and Coastal Geology
Summer. 2 credits. Prerequisites: an introductory course in geology or permission of instructor.
A special one-week course offered at Cornell's Shoads Marine Laboratory (SML), on an island near Portsmouth, New Hampshire. For more details and an application, consult the SML office, G14 Stimson Hall. Estimated cost (including tuition, room, board, and ferry transportation) is $600.

214 Western Adirondack Field Course
Spring. one week at the end of the semester. 1 credit. Prerequisite: Geol 101 or 102 or equivalent. Students should be prepared for overnight camping and share in the cost of camp meals.
W. A. Bassett. Field mapping methods, mineral and rock identification, examination of Precambrian metamorphic rocks and lower Paleozoic sediments, talc and zinc mines.

Junior, Senior, and Graduate Courses
Of the following, the core courses Geol 326, 355, 360, 375, and 386 may be taken by those who have successfully completed Geol 201 or the equivalent or who can demonstrate to the instructor that they have adequate preparation in mathematics, physics, chemistry, biology, or engineering.

326 Structural Geology
Fall. 4 credits. Prerequisite: Geol 101 or 201, or permission of instructor.
3 lecs, 1 lab, field trips. Staff. Nature and origin of deformed rocks at microscopic to macroscopic scales, with emphasis on structural geometry and kinematics.

355 Mineralogy
Fall. 4 credits. Prerequisite: Geol 101 or 201 and Chem 207 or permission of instructor.
1 lec, 1 lab; assigned problems and readings. W. A. Bassett. Examination of minerals by hand-specimen properties and optical microscopy. Geological setting, classification, crystal structures, phase relations, chemical properties, and physical properties of minerals are studied. X-ray diffraction is introduced.

356 Petrology and Geochemistry
Spring. 4 credits. Prerequisite: Geol 355.
2 lecs, 2 labs, 1 field trip, assigned problems and readings. R. W. Kay. Principles of phase equilibrium as applied to igneous and metamorphic systems. Description, classification, chemistry, origin, regional distribution, and dating of igneous and metamorphic rocks. Geophysical distribution of trace elements and isotopes in igneous and metamorphic systems. The petrological evolution of the planets.

375 Sedimentology and Stratigraphy
Fall. 4 credits. Recommended: Geol 102 or 201.
433 Exploration Geosimulation: Data Acquisition and Processing
Fall. 3 credits. Prerequisite or corequisite: Geol 487 or equivalent. Offered alternate years.
3 lecs. L. D. Brown.

434 Exploration Geosimulation II: Analysis and Interpretation
Spring. 3 credits. Prerequisite: Geol 487 or equivalent. Offered alternate years.
3 lecs. L. D. Brown.
Techniques for inferring geologic structure and lithology from multichannel seismic reflection data and crustal refraction data. Migration. Velocity and amplitude interpretation, correlation criteria, resolution, wave-form analysis, seismic structure, and stratigraphy. Seismic modeling. 3-D and VSP. Attribute and tau-p analysis.

441 Geomorphology
Fall. 3 credits. Prerequisite: Geol 102 or 201, or permission of instructor.
2 lecs. 1 lab. A. L. Bloom.
Systematic analysis of landforms constructed by tectonic and volcanic processes and their subsequent progressive destruction by climate-controlled erosional processes.

442 Glacial and Quaternary Geology
Spring. 3 credits. Prerequisite: Geol 441 or permission of instructor. Offered alternate years. Not offered 1990-91. 2 lecs. 1 lab. A. L. Bloom.
Glacial processes and deposits and the chronology of the Quaternary Period.

445 Geohydrology (also Ag Eng 471 and CEE 431)
Fall. 3 credits. Prerequisite: Mathematics 294 and 295 or equivalent. 3 lecs. A. L. Bloom, L. M. Cathles, J.-Y. Parlange, T. S. Steenhuis.
Intermediate-level study of aquifer geology, groundwater flow, and related design factors. Includes description and properties of natural aquifers, groundwater hydraulics, soil water, and solute transport.

452 X-ray Diffraction Techniques
Spring. 3 credits. Prerequisite: Geol 355 or permission of instructor. Offered alternate years. Not offered 1990-91. 1 lec. 2 labs. W. A. Bassett and staff.
Automated X-ray diffractometer, Debye-Scherrer, real-time Laue, high-temperature diffraction, high-pressure diffraction, and pole-figure analysis. Applications in materials science and geophysical sciences. Labs will be held in the new Materials Science X-Ray Facility.

453 Modern Petrology
Fall. 3 credits. Prerequisite: Geol 356. Offered alternate years.
2-1/2 lecs, 1/2 lab. R. W. Kay.
Magma and metamorphism in the context of plate tectonics. Major and trace element chemistry and phase petrology as monitors of the creation and modification of igneous rocks. Temperature and stress in the crust and mantle and their influence on reaction rates and textures of metamorphic rocks. Application of experimental studies to natural systems. Reading from the literature and petrographic examination of pertinent examples.

454 Advanced Mineralogy
Spring. 3 credits. Prerequisite: Geol 355 or permission of instructor. Offered alternate years. 2 lecs. 1 lab. W. A. Bassett.
Crystallography and crystal chemistry of minerals and the methods of their study. X-ray diffraction, optical methods, computer simulation of crystal structures. Emphasis on effects of high pressures and temperatures with implications for understanding of Earth's interior.

456 Geochemistry
Spring. 3 credits. Prerequisite: Chemistry 207 or 211, Geol 101 or 201 or equivalent, and Mathematics 112 or 192. Recommended: Geol 355 and 356.
3 lecs. W. M. White.

474 Modern Depositional Systems
Spring. 3 credits. Prerequisite: Geol 375 or permission of instructor. Offered alternate years. Not offered 1990-91. 3 lecs. T. E. Jordan.
Compositions, textures, sedimentary structures, and facies variations of sediments in modern depositional environments. Clastic and carbonate environments, fluvial, alluvial-fan, delta, estuarine, submarine-fan, carbonate-bank, and sabkha systems. Required field trip during spring recess to region of modern examples and/or rock sequences demonstrating ancient examples.

476 Sedimentary Basins: Tectonics and Mechanics
Spring. 3 credits. Prerequisite: Geol 375 or permission of instructor. Offered alternate years. Not offered 1990-91. 3 lecs. T. E. Jordan.
Subsidence of sedimentary basins from the point of view of plate tectonics and geomechanics. Interactions of subsidence, sediment supply, and environmental characteristics in development of stratigraphic sequences. Framework of active-margin, passive-margin, and cratonic basins; and stratigraphy. Topics include geophysical and stratigraphic modeling, and sequence stratigraphy. Modern and ancient examples.

478 Advanced Stratigraphy
Spring. 3 credits. Prerequisite: Geol 375 or permission of instructor. Offered alternate years. Not offered 1990-91. 2 lecs. 1 lab, possible spring break field trip. T. E. Jordan.
Survey of modern improvements on traditional methods of study of ages and of genetic relations among sedimentary rocks, emphasizing 3-D relationships. Techniques and applications of sequence stratigraphy at scales ranging from beds to entire basins. Physical correlation, dating techniques, and time resolution in sedimentary rocks. Physical controls on the stratigraphic record and numerical modeling.
501 Geohydrology Design Project Seminar
Fall, spring. 1 credit. Required for the M.Eng. degree, geohydrology option.
1 rec., hours to be arranged. L. M. Cables.
In fall, the seminar provides a forum for discussion of courses and development of design projects (see GS 500). In spring, it provides an opportunity to present and discuss design projects.

502 Case Histories in Groundwater Analysis
Spring. 4 credits. L. M. Cables, A. L. Bloom.
Groundwater flow in a specific area, such as a proposed nuclear-waste disposal site, is analyzed in depth. Geological and resource data on the area are presented early in the course. For the remainder of the semester, the material is analyzed by students working as an engineering analysis team. Each student makes a weekly progress report and writes part of a final report. M. Cables are presented in a half-day seminar at end of term.

621 Marine Tectonics
Fall. 3 credits. Prerequisites: Geol 326 and a course in geophysics. Offered alternate years.
Study of geophysical and geological characteristics of the earth's crust beneath the oceans. Emphasis on recent geologic data concerning plate margins in the oceans; island-arc systems, spreading systems, and transforms. Techniques for determining instantaneous and finite plate rotations. Lectures and reviews of recent papers. Term project and paper required.

622 Advanced Structural Geology I
Spring. 3 credits. Prerequisites: Geol 326 and permission of instructor. Offered alternate years.
2 lecs, 1 lab, possible weekend field trips. D. E. Karig, R. W. Allmendinger.
Stress-strain theory and application. Advanced techniques of structural analysis. Topics include finite and incremental strain measurement; microstructure, preferred orientation, and TEM analysis; pressure solution and cleavage development; and experimental deformation. Applications to deformation of unconsolidated sediments, brittle and brittle-ductile deformation of supracrustal strata, and ductile deformation of high-grade metamorphic rocks. Kinematic analysis of shear zones and folds in these regimes.

624 Advanced Structural Geology II
Spring. 3 credits. Prerequisites: Geol 326 and permission of instructor. Offered alternate years.
Not offered 1990-91.
Geometry, kinematics, and mechanics of structural provinces. Concentration on thrust belts, rift provinces, or strike-slip provinces. Techniques of balanced cross sections.

625 Tectonic History of Western North America from Craton to Terranes
Fall. 2 credits. Instructor. Offered alternate years.
Lecture, term paper, quizzes, no final. W. B. Travers.
Seminar on current research on the sequence, style, and mechanics of deformation, with emphasis on growth of the continent in the western United States and southern Canada.

628 Geology of Orogenic Belts
Spring. 4 credits. Prerequisite: permission of instructor.
A seminar course in which students study specific geologic topics of an orogenic belt selected for study during term. The course is intended to complement Geol 781.

635 Advanced Geophysics I: Quantitative Geodynamics
Fall. 3 credits. Prerequisite: Geol 388.
3 lecs. D. L. Turcotte.
Stress and strain, elasticity and flexure, heat transfer, gravity, fluid mechanics, rock rheology, faulting, and flow in porous media.

637 Advanced Geophysics II: Fundamentals of Mantle Convection
Spring. 3 credits. Prerequisite: Geol 388.
3 lecs. D. L. Turcotte.
Fractals and chaos, structure of the mantle, material properties, heat sources, basic equations, linear stability analysis, approximate solutions, numerical solutions, plumes, laboratory experiments, geochemistry, early thermal history, terrestrial planets and satellites.

655 Isotope Geochemistry
Fall. 3 credits. Open to undergraduates. Prerequisite: Geol 356 or permission of instructor. Offered alternate years.
2 lecs. W. M. White.

681 Geotectonics
Fall. 4 credits. Prerequisite: permission of instructor.
2 lecs. J. M. Bird.

687 Seismology
Fall. 3 credits. Prerequisite: T&M 611 or equivalent. Offered alternate years.
3 lecs-recs. B. L. Isacks.
Generation and propagation of elastic waves in the earth. Derivation of the structure of the earth and the mechanism of earthquakes from seismological observations.

695 Computer Methods in Geological Sciences
L. D. Brown, B. L. Isacks.
This course is intended to familiarize students with the growing importance of computers in geological and geophysical research. Students will be required to develop, debug, implement, and document a program relevant to current research in the Department of Geological Sciences. Available facilities include the department's VAX workstations, MEGASEIS seismic computer, Landmark Interpretation Workstation, IFS image processor, and numerous graphics and I/O peripherals. The Cornell National Supercomputer Facility may also be used.
MATERIALS SCIENCE AND ENGINEERING

Undergraduate Courses

201 Elements of Materials Science and Engineering (also Engr 111)
Fall. 3 credits. Prerequisite: permission of instructor. Advanced work on original investigations in geological sciences. Topics change from term to term.

261 Introduction to Mechanical Properties of Materials (also Engr 261)
Fall, spring. 3 credits. For description see Engineering Common Courses.

262 Introduction to Electrical Properties of Materials (also Engr 262)
Spring. 3 credits. For description see Engineering Common Courses.

311 Structural Characterization of Materials
Fall. 4 credits. 3 lecs., 1 lab. Crystal structures and crystal defects, stereographic projection methods. Techniques for materials analysis: X-ray and electron diffraction, optical and electron microscopy. Design of experimental systems for the structural characterization of materials.

332 Electrical and Magnetic Properties of Materials
Spring. 3 credits. Prerequisite: MSE 331 or permission of instructor. Electrical and magnetic properties of metals and semiconductors as affected by microstructure. Design of semiconductor properties by doping. Carrier drift, diffusion, and recombination. Depletion layers in p-n junctions. Design of semiconductor devices. Principles and design of ferromagnetic materials for transformers, permanent magnets, and bubble memories. Fundamentals and design of superconducting materials for high-field magnets and Josephson junctions.

333 Research Involvement I
Fall. 3 credits. Prerequisite: approval of department. Supervised independent research project in association with faculty member and faculty research group of the department. Students design experiments, set up the necessary equipment, and evaluate the results. Creativity and synthesis are emphasized. Typical projects have involved hot isostatic compaction, sputter etching, and mechanical testing of polymer films.

334 Research Involvement II
Spring. 3 credits. Prerequisite: approval of department. May be a continuation of MSE & 333 or a one-semester affiliation with a research group.

335 Thermodynamics of Condensed Systems
Fall. 4 credits. 3 lecs. The three laws of thermodynamics are introduced as a basis for understanding phase equilibria, heterogeneous reactions, solutions, electrochemical processes, surfaces, and defects. One-third of the course involves examples of design and control of materials processing and microstructure.

345 Materials and Manufacturing Processes (also M&AE 312)
Spring. 3 credits. Prerequisite: MSE 335 or permission of instructor. Introduction of absolute rate theory, atomic motion, and diffusion. Applications and design involving nucleation and growth of new phases in vapors, liquids, and solids. Solidification, crystal growth, oxidation and corrosion, radiation damage, recrystallization, gas-metal reactions, and thermomechanical processing to produce desired microstructures and properties.

411 Microprocessing of Materials
Fall. 3 credits. 3 lecs., occasional lab. Materials and processing steps involved in the production of large-scale integrated circuits. Design of processes to give a specific device, e.g., a MOSFET is described, not circuit design. Emphasis is on silicon devices, with mention of Gallium Arsenide. All steps in fabrication of circuits are considered, starting with purification of silicon, single-crystal growth, zone refining, and wafer slicing. Thin-film growth by epitaxy, by chemical or physical vapor deposition, or by thermal oxidation of silicon to SiO2. Doping of layers by diffusion and by ion implantation. Principles and practice of lithography: comparison of near and far UV, electrons and X-rays for resolution, output, and cost. Photoreists. Wet and dry etching. Characterization and testing, yield. Electromigration and other device failure modes.
442 Macroprocessing (also M&AE 512) Spring. 3 credits.
3 lecs.
Deformation processing of materials, including superplastic forming, sheet-metal forming, massive forming, and powder processing. Time, temperature, and strain-rate effects in warm-forming and hot-forming. Characterization of powder-compaction mechanisms and their use in process design. Forming-limit diagrams. Development of microstructure-based criteria for fracture in large deformations. Development of constitutive equations for superplastic flow. Design of a superplastic forming process starting from basic mechanisms. The course includes a comprehensive experimental project in which the constitutive equations for superplastic flow are measured and computer-aided techniques are used to design a superplastic forming process. The forming experiment is carried out, and the results are compared with the predictions from the numerical analysis.

443-444 Senior Materials Laboratory 443, fall; 444, spring. 3 credits.
Projects are available in plasticity of metals and ceramics, mechanical and chemical processing, phase transformations, electrical and ionic conductivity, analysis of defects by electron microscopy, sintering, crystal growth, thin-film fabrication, electronic materials, etc. Emphasis is placed on design of experimental equipment for analysis and evaluation of a material's properties and performance in terms of its processing history and microstructure.

445 Mechanical Properties of Materials Fall. 3 credits. Prerequisites: MS&E 331 and 336, or permission of instructor.
3 lecs.
Relation between stress, strain, and the concept of equivalent stresses and strains; failure criteria for metals, polymers, and ceramics. Applications of fracture mechanics to fail-safe design. Analysis of important mechanical properties such as plastic flow, creep, fatigue, fracture toughness, and rupture and their variation with temperature in terms of the interaction of the microstructure with lattice defects. Application of these principles to the design of improved materials.

447 Materials Design Concepts I Fall. 2 credits.
Speakers from industry and other institutions will give case studies of design problems. Students will write a proposal for a design-study project, which will be approved by the instructor. At the level of Engineering Design, by Dieter.

448 Materials Design Concepts II Spring. 2 credits. Prerequisite: MS&E 447.
Each student is expected to complete an extensive design-study project and give a thirty-minute video-taped talk on a materials-design problem that includes a discussion of economic factors as well as the design of processes and the selection of materials. At the level of Engineering Design, by Dieter.

449 Introduction to Ceramics Fall. 3 credits. Prerequisite: MS&E 331 or permission of instructor.
3 lecs.
Ceramic processes and products, crystal structures, structure of glasses, point defects (point-defect chemistry and relation to nonstoichiometry), line defects, grain boundaries, diffusion in ionic materials (emphasis on the relationships between diffusion and point-defect structure), phase diagrams, phase transformations, kinetics of solid-state reactions (reactions with and between solids: heterogeneous reactions, reactions between different solids, point-defect relaxation, internal reactions), grain growth and sintering. Physico-chemical aspects are emphasized.

450 Physical Metallurgy Spring. 3 credits.
The service and design requirements of engineering alloys and their testing and characterization. The properties of important alloy systems. The selection and design of alloys for various engineering requirements, such as ASME design codes.

452 Properties of Solid Polymers Spring. 3 credits. Prerequisite: Engr 261 or permission of instructor.
3 lecs.

454 Processing of Glass, Ceramic, and Glass-Ceramic Materials Spring. 3 credits. Offered alternate years. Conventional and unconventional techniques for processing glass, glass-ceramic, and ceramic materials. Case studies illustrate the design, engineering, and scientific aspects of such processes. Vapor processes for high-purity optical fibers, hot-processing of ceramic turbine blades, photo-sensitive materials, and powder processing and sintering of ceramics will be discussed. This course is team taught with two scientists from the research and development laboratory of Corning Glass Works.

455 Analysis of Manufacturing Processes (also M&AE 512) Spring. 3 credits. Prerequisite: M&AE 312. 3 recs.
For description see M&AE 512.

459 Physics of Modern Materials Analysis Fall. 3 credits.
The interaction of ions, electrons, and photons with solids, and the characteristics of the emergent radiation in relation to the structure and composition of materials. Aspects of atomic physics that are necessary for understanding techniques of modern materials analysis, such as Auger electron spectroscopy, ion scattering, and secondary ion mass spectroscopy. Design of experiments for near-surface analysis.

463 Principles of Electronic Packaging Fall. 3 credits.
Design and materials needs for packaging technology, from chip to board. Principles involved in key areas of materials science, and other engineering disciplines. Packaging materials to be discussed include metals, ceramics, and polymers.

Graduate-Level Professional Courses

510 Optical Methods and Materials Fall. 3 credits.
Principles of geometric and Gaussian optics, instrumentation required for optical experiments, and methods in optical spectroscopy. Fundamental aspects of the interaction between optical waves and crystalline solids. Materials aspects of optical devices such as optical films and coatings, light-modulation devices, displays, lasers and detectors, optical waveguides, electro-optic devices, optical recording, and applications of high-intensity light beams.

512 Chemical Thermodynamics of Materials Fall. 3 credits.

514 Chemical Processing of Ceramics Spring. 3 credits.
Ultrasonic formation of ceramics, glasses, and composites. Chemical approaches in designing and controlling the surfaces and interfaces of materials, devices, and structures at the molecular level. Topics: organometallic routes to ceramics; sol-gel processing, chemical vapor deposition, and pyrolysis techniques; design, synthesis, and chemical properties of inorganic/organometallic precursors; preparation, surface chemistry, and micromechanics of controlled powders, characterization of chemically processed ceramics; application of sol-gel derived materials; advanced structural ceramics.

516 Thin-Film Materials Science Fall. 3 credits.
This course is a fundamental approach to thin-film science that will cover deposition of films, growth of epitaxial layers, formation of multilayered structures such as superlattices and quantum wells, and interdiffusion and reaction in thin films. The course will begin with the structure and thermodynamics of surfaces and ultrathin films. The conditions for epitaxial growth, such as used in semiconductor heterostructures, will be contrasted with those for amorphous or polycrystalline films. The role of thermal processing for reactive thin films involving the formation of surface oxides, metallic silicides, and aluminaides will be presented.

518 Introduction to Electron Microscopy Spring. 3 credits. Prerequisite: MS&E 331 or permission of instructor.
3 lecs.
Basic optics and operation of scanning and transmission electron microscopes. Image formation, modes of contrast, and resolution in SEM and TEM. Electron diffraction. Images of perfect crystal and defects in two-beam diffraction contrast. Analytical electron microscopy; comparison of EDS, WDS, and EELS. X-ray imaging. Overview of specimen preparation and in-situ microscopy.
502 Practical Electron Microscopy
Spring. 3 credits. Corequisite: MS&E 518-520. Limited to 12 students. A fee will be charged for instrument usage.
Lab.
Students will be instructed in the proper use of a scanning and a transmission electron microscope, and on preparing specimens from initial alignment of the instrument to presentation of the results will be covered. Three or four projects will be completed, including obtaining atomic lattice fringe images and X-ray microanalysis.

553-554 Special Project
553, fall; 554, spring. 6 credits each term.
Research on a specific problem in the materials area.

Graduate Core Courses

601 Thermodynamics of Materials
Fall. 3 credits.

602 Elasticity and Physical Properties of Crystals
Fall. 3 credits.
Cartesian tensors, elastic stress and strain, constitutive relations between stress and strain, symmetry of crystals, generalized tensor representation of elasticity and other reversible and irreversible properties of crystals. Mathematical theory of infinitesimal strain and elasticity with applications, including wave propagation and stress fields of dislocations, mathematical theory of yield stress and plasticity; origin of elastic behavior. At the level of Physical Properties of Crystals, by Nye.

603 Structural Defects in Solids
Spring. 3 credits. Prerequisites: MS&E 601 and 602, or equivalent.

604 Kinetics of Solid-State Reactions
Spring. 3 credits.
Point defects (thermal disorder, component-activity-dependent disorder, influence of dopants, different kinds of associates, Coulomb interaction between point defects), dislocations, interfaces, transport in solids (definition and different kinds of diffusion coefficients, reference frames, electrical conduction, diffusion mechanisms, atomic theory of transport, correlation effects, phenomenological theory of transport including some aspects of thermodynamics of irreversible processes), point-defect relaxation (migration controlled, phase-boundary-reaction controlled), interaction among state reactions involving compound formation, behavior of materials in potential gradients, selected solid-state processes (sintering, solid-state galvanic cells, etc.).

605 Plastic Flow and Fracture of Materials
Fall. 3 credits. Faculty: R. Raj.
Topics in the mechanical behavior of materials from a fundamental standpoint. Atomistic aspects of elastic properties, plastic flow in single crystals and polycrystals, rate-dependent deformation at elevated temperature, mapping of various mechanisms of plastic flow over a wide range of temperature, shear stress and grain size, and superplastic deformation. Fracture is discussed from a thermodynamic as well as an atomistic standpoint. Fracture criteria are developed in terms of crack-tip processes. Cleavage, ductile brittle transition, and intergranular fracture at failure at high temperatures. Emphasis on micromechanical modeling of mechanical behavior. A materials-science approach to modeling that combines concepts from continuum mechanics, thermodynamics, kinetics, and atomic structure.

Related Course in Another Department
Introductory Solid-State Physics (Physics 454)

Further Graduate Courses

610 Principles of Diffraction (also A&EP 711)
Fall. 3 credits. Offered alternate years. For description see A&EP 711.

612 Phase Transformations
3 credits. Prerequisites: MS&E 601 and 604, or equivalent preparation.
Compositional and structural transitions in condensed systems, including spinodal decomposition, chemical transformations, and diffusionless transformations; clustering and ordering in solid solutions; radiation-induced precipitation; condensation and evaporation phenomena; order-disorder transformations; transitions in magnetic, ferroelectric, and superconducting materials; phase equilibria and transitions in surface and grain-boundary layers. Phase transformations in metallic, ceramic, semiconducting, and polymeric systems. Thermodynamic, statistical thermodynamic, structural, and kinetic aspects of the transitions. Modern methods of observation. At the level of The Theory of Transformations in Metals and Alloys, by Christian, Critical Phenomena in Phase Transitions and Superconductors, edited by Mills, Ascher, and Jaffe; and current review articles.

616 Electrical and Magnetic Properties of Materials
3 credits. Prerequisite: Physics 454 or equivalent.
Electronic transport properties of metals and semiconductors, semiconductor devices, optical and dielectric properties of insulators and semiconductors, laser materials, dielectric breakdown, structural aspects of superconducting materials, ferromagnetism, and magnetic materials. At the level of Physics of Semiconductor Devices, by Sze; Ferromagnetism, by Bozworth; and current review articles.

618 Laser Processing of Materials
3 credits. Offered on demand.
Use of high-intensity lasers in the processing of materials to achieve unique microstructures and metastable phase transformations, microstructure of rapidly solidified materials, and current industrial applications.

620 Synthesis of Polymeric Materials
3 credits. Prerequisite: MS&E 520 or permission of instructor.
Preparation of synthetic polymers by step- and chain-growth polymerization; condensation; free radical, anionic, and cationic mechanisms; ring opening and coordination routes. Statistical and kinetic aspects of homopolymer and copolymer formation. Stereochemistry of polymers and spectroscopic methods for polymer analysis. Molecular aspects of polymer design for properties such as conductivity, elasticity, thermal stability, and engineering properties. Topics will also include liquid crystalline polymers, polymers for photoresists, and adhesive-binder polymers. At the level of Principles of Polymerization, by Odian, and current literature.

622 X-Ray Diffraction in Materials Science
Fall. 3 credits. Offered on demand. X-ray scattering and absorption by materials. Reciprocal lattice and Brillouin zones. Space groups and various crystal structures. Diffraction from two- or three-dimensional periodic lattices and effect of thermal vibrations. Experimental techniques in X-ray diffraction with particular emphasis on the use of synchrotron sources. Determination of crystal structure by powder and single-crystal diffraction. Use of X-ray diffraction techniques in materials science in studying phase transformation and texture in materials. Diffraction from surface layers and amorphous materials.

671 Synthetic Polymer Chemistry (also Chem 671 and Chem E 675)
Fall. 3 credits. Offered on demand. Prerequisites: Chem 359-360 or equivalent, or permission of instructor. Recommended: MS&E 620. For description see Chem E 675.

Specialty Courses

707 Solar Energy Materials
3 credits. Offered on demand.
1 lec.
Photovoltaic energy conversion: (1) theory (on the level of Hovel); (2) the role of crystal defects and grain boundaries on the conversion efficiency, and schemes to passivate these defects; (3) current investigations in the DOE program to produce large quantities of solar-grade semiconducting Si; (4) theory and materials for amorphous silicon solar cells.

714 Advanced Transmission Electron Microscopy
Fall. 3 credits. Prerequisites: MS&E 518 and 520.
Offered on demand.
3 lecs.
Courses.

716 Transition Metal Oxides (also Chem 716)
Fall. 3 credits. Offered on demand. For description see Chem 716.

779 Special Studies in Materials Science
Fall, spring. Variable credit. Offered on demand. Supervised studies of special topics in materials science.

798 Materials Science and Engineering Colloquium
Fall, spring. 1 credit each term. Credit limited to graduate students. Lectures by visiting scientists, Cornell staff members, and graduate students on subjects of interest in materials sciences, especially in connection with new research.

799 Materials Science Research Seminars
Fall, spring. 2 credits each term. For graduate students involved in research projects. Short presentations on research in progress by students and staff.

800 Research in Materials Science
Fall, spring. Credit to be arranged. Prerequisite: candidacy for Ph.D. in materials science. Independent research in materials science under the guidance of a member of the staff.

801 Research in Materials Science
Fall, spring. Credit to be arranged. Prerequisite: candidacy for M.S. in materials science. Independent research in materials science under the guidance of a member of the staff.

MECHANICAL AND AEROSPACE ENGINEERING

General and Required Courses

101 Naval Ship Systems (also Naval Science 102)

102 Drawing and Engineering Design (also Engr 102)
Fall, spring. 1 credit. Half-term course offered twice each semester. Enrollment limited to thirty students each half term. Recommended for students without previous mechanical drawing experience. S-U grades optional. 2 lecs, 1 lab. For description see Engineering Common Courses.

117 Introduction to Mechanical Engineering (also Engr 117)
Fall, spring. 3 credits. 2 lecs, 1 lab. For description see Engineering Common Courses.

[119 Introduction to Manufacturing (also Engr 119 or OR & IE 119)]
Spring. 3 credits. May not be offered 1990–91. 2 lecs, 1 lab. For description see Engineering Common Courses.

221 Thermodynamics (also Engr 221)
Fall, spring. 3 credits. Prerequisites: Mathematics 192 and Physics 112. For description see Engineering Common Courses.

312 Fundamentals of Manufacturing Processes (also M&AE 345)
Spring, may be offered in Engineering Cooperative Program. 3 credits. Prerequisites: Engr 202 and 261, or permission of instructor. 2 lecs, 1 lab; evening exams and prelims may be given. Yield criteria and plastic flow. Manufacturing processes for engineering materials, including metals, polymers, ceramics, and composites. Casting, forming, material removal, and joining processes.

323 Introductory Fluid Mechanics
Fall, usually offered in Engineering Cooperative Program. 4 credits. Prerequisites: Engr 202 and 203 and coregistration in 221, or permission of instructor. 4 lecs, evening prelims.
Stresses, kinematics, potential flow, dynamics, momentum, and energy relations. Thermodynamics of compressible flow; dimensional analysis; real fluid phenomena, laminar and turbulent motion, boundary layer; lift and drag; supersonic flow and shock waves.

324 Heat Transfer
Spring, may be offered in Engineering Cooperative Program. 3 credits. Prerequisite: M&AE 323. 3 lecs, evening prelims.

325 Mechanical Design and Analysis
Fall, usually offered in Engineering Cooperative Program. 4 credits. Prerequisites: Engr 202 and 203. 3 lecs, 1 lab. Evening prelims may be given. Lab fee $25. S. E. Landsberger. Application of the principles of mechanics and materials to problems of analysis and design of mechanical components and systems. A hands-on laboratory, the use of machine tools, and a final design project provide direct experience of creative design synthesis.

326 System Dynamics
Spring, may be offered in Engineering Cooperative Program. 4 credits. Prerequisite: M&AE 325, Mathematics 294, and Engr 210. 3 lecs, 1 lab, evening prelims.
Dynamic behavior of mechanical systems: modeling, analysis techniques, and applications; vibrations of single- and multi-degree-of-freedom systems; linear control systems, PDF control, stability analysis. Computer simulation and experimental studies of vibration and control systems.

386 Automotive Engineering
Spring. 3 credits. Prerequisite: M&AE 325 or permission of instructor. 3 lecs. Selected topics in the analysis and design of vehicle components and vehicle systems. Emphasis on automobiles, trucks, and related vehicles. Power plant, drive line, brakes, aerodynamics, suspension, and structure. Other types of vehicle may be considered.

417 Introduction to Robotics
Fall. 4 credits. Enrollment limited. Prerequisite: M&AE 326 or permission of instructor. 3 lecs, 1 lab.

464 Design for Manufacture
Spring. 3 credits. Prerequisites: M&AE 312 and 428 and senior standing. Enrollment limited. Fulfills field design requirement. Principles and methodologies for conceptual design; elimination procedures for selecting design alternatives; emphasis on design for manufacturability, quality, and cost considerations; team design projects from concept, analysis, and computer-aided drafting to manufacturing methods.
514 Modeling, Metrology, and Machining
Fall. 3 credits. Prerequisites: M&E 202 and 203. Not offered 1990-91.
2 lecs, 1 lab. D. L. Bartel.
Selected topics from the study of the human body as a mechanical system. Emphasis on the modeling, analysis, and design of biomechanical systems frequently encountered in orthopaedic engineering and rehabilitation engineering.

478 Feedback Control Systems (also EE 471)
Fall. 4 credits. Prerequisite: EE 302, M&AE 326, and permission of instructor.
3 lecs. Open computer lab.
Analysis techniques, performance specifications, and analog-feedback-compensation methods for single-input, single-output, linear, time-invariant systems. Laplace transforms and transfer functions are the major mathematical tools. Design techniques include root locus, frequency response, and algebraic pole placement. Feedback architectures include PID, PDF, and lead/lag compensation. Applications include robotics, aerospace vehicles, and industrial processes. Computer-aided design laboratory examines modeling and control of a computer-simulated dynamic system.

486 Automotive Engineering Design
Spring. 3 credits. Prerequisite: M&AE 428 and senior standing. Fulfills field design requirement.
Selected topics in the analysis and design of vehicle components and vehicle systems. Emphasis is on automobiles, trucks, and related vehicles. Prerequisite: Senior standing. 2 lecs, 1 lab. D. L. Bartel.

489 Computer-Aided Design Project
Spring. 4 credits. Prerequisite: M&AE 428; limited to seniors in mechanical engineering. A project-oriented design course. Fulfills both field design and computer applications requirements.
2 lecs, 1 sec of computational assignments at CADIF. Students will undertake a complete design of a complex system based on specification of performance and functionality. Evaluation will be on how well the design submitted satisfies objective. Topics vary annually, but typical topics include sailboat or aircraft design. Students will be expected to utilize CAD techniques and commercial software (drafing, solid modeling, finite-element analysis, simulation) as appropriate. Attendance in lectures and completion of interim projects will be mandatory.

512 Analysis of Materials Processing (also MSE 442)
Spring. 3 credits. Prerequisite: M&E 312.
3 lecs. P. Dawson, R. Raj.
Review of the basic principles governing the inelastic behavior of crystalline solids; Application of slab models, bound theories, and slipline theory to problems of forging, extrusion, and rolling. Analysis of sheet-metal forming, including forming limits and springback. Discussion of defect initiation during forming processes.

546 Computer-aided Research, Design, and Development
Fall. 3 credits. Prerequisite: M&E 489 or equivalent. Not offered 1990-91.
2 lecs, 2 lab. D. L. Taylor.
Introduction to a wide range of topics and programming techniques that are useful in the development of engineering models for computer analysis. Emphasis on data structure and integration of existing packages. Extensive use of computer graphics. Intended to prepare students to take an active role in development of CAD software. Topics include computer graphics, data structures, 3-D modeling, rule of new languages (LISP, PROLOG, etc.), and program development and debugging.

590 Mechanical Engineering Design
Spring. 4 credits. Prerequisite: Senior standing. Fulfills both field design and computer applications requirements.
3 lecs. H. Voelcker.
Development of mathematical and computational methods of modeling one-, two-, and three-dimensional solids, using principles from geometry, topology, and computer science. M&AE 410 focuses on models and representation; a sequel, M&AE 611, focuses on algorithms, applications, and systems that use solid models. The pair provide foundations for CAD/CAM research and system development.

610 Solid Modeling
Fall or spring. 4 credits. Prerequisites: Graduate standing, at least two years of engineering mathematics, programming competence.
3 lecs. H. Voelcker.
Introduction to the main principles and current limitations of three technologies central to modem mechanical design and manufacturing: solid modeling, for defining "shapes" unambiguously; geometric toleranceing and dimensional metrology, for specifying and verifying variations in part geometry; and NC machining, for making parts under program control.

657 Microprocessor Applications
Fall. 3 credits. Enrollment limited; intended for graduate students with limited background in digital circuitry; open to undergraduates with permission of instructor. Prerequisite: background in basic laboratory electronics. Fulfills computer applications requirement.
2 lecs, 1 lab.
Introduction to digital circuitry, microprocessors, and microprocessor-based data acquisition and control systems. Basic concepts of data representation, microprocessor and microcomputer structure, parallel and serial input/output, analog-to-digital conversion, and hardware and software requirements for interfacing. Emphasis on applications of the 8088 microprocessor and assembly language programming. Independent laboratory work on several applications projects, including the process control procedures.

677 Mechanical Vibrations
Fall. 3 credits. Open to qualified undergraduates. Prerequisite: M&AE 326 or equivalent.
2 lecs, 1 lab (occasional). Vibration phenomena in single- and multiple-degree-of-freedom linear and nonlinear systems, with emphasis on engineering problems involving analysis and design.

578 Feedback Control Systems Design and Implementation
Spring. 3 credits. Open to qualified undergraduates. Prerequisite: M&E 478 or EE 471, or permission of instructor.
1 lec, 2 labs. M. L. Pisaki.
Further development of the theory, design, and implementation of feedback control systems with particular emphasis on applications, modeling and implementation, and performance evaluation. Digital control is covered briefly. Labs include real-time microprocessor-based control of a D.C.-motor positioning system and a two-link robot arm, and a two-link level-control system.

585 Advanced Topics in Orthopaedic Biomechanics
Fall. 3 credits. Prerequisites: M&AE 489 or equivalent. Not offered 1990-91.
2 lecs, computational assignments at CADIF. D. L. Taylor.
Advanced treatment of topics in the biomechanics of the musculoskeletal system. Fundamental analysis of the musculoskeletal system under static and dynamic conditions, compact and trabecular bone as structural materials, structural analysis of bone-implant systems, remodeling of bone.
670 Mechanical and Aerospace Structures II: Finite-Element Method for Linear Mechanics
Spring. 4 credits. Prerequisite: M&E 569 or permission of instructor. Fullsll computer applications requirement. Introduction to the finite-element method for static and dynamic analysis of mechanical and aerospace structures (and related nonstructural applications such as heat conduction). Primary emphasis on underlying mechanics and the numerical solution of boundary-value problems. Secondary consideration of inherent capabilities and limitations of large, general-purpose structural mechanics programs. Introduction to computational aspects through development of small, special-purpose program segments and the application of large, general-purpose programs. Term project.

678 Optimal Control and Estimation
Fall, on demand. 3 credits. Prerequisite: M&E 478, EE 471, or permission of instructor; programming ability in FORTRAN, Pascal, or C. Corequisite: EE 521. 3 lecs. M. L. Psiaki. Develops the theory of the design of modern multi-input-multi-output feedback control systems using optimal control techniques. Topics covered include trajectory optimization and the minimum principle, bang-bang optimal control solutions, Kalman filtering, LQR/LQE compensator design, suboptimal control and estimation, and applications to regulator and tracking problems. Both linear and nonlinear systems, and continuous-time and discrete-time control, and considered.

679 Modeling and Simulation of Dynamic Systems
On demand. 4 credits. Open to qualified undergraduates with permission of instructor. J. F. Booker. Modeling and representation of physical systems by systems of linear and nonlinear ordinary differential equations in state variable form. Selected applications from diverse fields. Simulation by numerical integration. Components and organization of general-purpose, digital-simulation languages (such as DSL and CSMP). Special techniques for large linear systems. Term project.

682 Hydrodynamic Lubrication: Fluid-Film Bearings
Fall, on demand. 4 credits. Not offered 1990-91. J. F. Booker. Theory of hydrodynamic lubrication and its application to the analysis and design of fluid-film bearings and other devices. General topics include viscous flow in thin films, self-acting and externally pressurized bearings with liquid and gas lubricant films, bearing-system dynamics, and computational methods. Selected special topics such as elastohydrodynamic lubrication and artificial joints. Term project.

685 Optimum Design of Mechanical Systems
Fall. 4 credits. Prerequisite: graduate standing or permission of instructor. Offered alternate years. Not offered 1990-91. D. L. Bartel. The formulation of design problems frequently encountered in mechanical systems as optimization problems. Theory and application of methods of mathematical programming for the solution of optimum design problems.

715 Theory and Practice in Inelastic Deformation
Fall. 4 credits. Prerequisites: graduate standing and introductory finite-element course, or permission of instructor. Offered alternate years. Not offered 1990-91. G. G. Weber. Topics in finite-deformation inelasticity in the framework of modern continuum mechanics. Material and geometric non-linear formulations on theoretical as well as practical grounds. Emphasis is on developing the underlying principles for proper formulation of engineering boundary-value problems with inelastic constitutive equations. Introductory small-scale simulations to illustrate the principles are also developed. Applications include inelastic design, metal forming, polymer processing, ice mechanics, and powder consolidation. Familiarity with compact tensor notation is recommended but not required.

716 Advanced Deformation Process Simulation
Spring. 4 credits. Prerequisites: graduate standing and M&E 715, or permission of instructor. Offered alternate years. Not offered 1990-91. P. R. Dawson. Application of advanced mechanics theories to the simulation of the deformations of solids, with special attention toward materials processing and other severe-loading environments. The selection of model equations based on dominant features of the material behavior and kinematics of a particular application is stressed. The use of state-variable constitutive models are discussed, including micromechanical models such as those of polycrystal plasticity. Assignments consist of simulation projects that assume a working knowledge of the finite-element method.

Energy, Fluids, and Aerospace Engineering

405 Introduction to Aeronautics
Fall. 3 credits. Limited to upperclass engineers; others with permission of instructor. Introduction to atmospheric-flight vehicles. Principles of incompressible and compressible aerodynamics, boundary layers, and wing theory. Propulsion system characteristics. Static aircraft performance; range and endurance. Elements of stability and control.

439 Acoustics and Noise
Spring. 3 credits. Prerequisite: some knowledge of fluid mechanics or permission of instructor. Not offered 1990-91. Sound propagation, transmission, and absorption. Sound radiation by surfaces and flow. Loudspeakers. Room acoustics and noise-control techniques. Hearing, music, noise, and noise-control criteria.

441 Advanced Thermodynamics with Energy Applications
Spring. 3 credits. Prerequisites: M&E 221 and 323, or permission of instructor. 3 lecs. Not offered 1990-91. Brief review of classical thermodynamics. Applications to power cycles and refrigeration cycles of particular interest to energy systems. Other topics include the thermodynamic properties of pure systems, phase and chemical equilibria. Brief introduction to statistical thermodynamics.

449 Combustion Engines
Spring. 3 credits. Prerequisites: Engr 221 and M&E 323. Introduction to combustion engines, with emphasis on the application of thermodynamic and fluid-dynamic principles affecting their performance. Air-standard analyses, chemical equilibrium, ideal-cycle analyses, deviations from ideal processes, combustion knock. Formation and control of undesirable exhaust emissions.

506 Aerosp ace Propulsion Systems
Spring. 3 credits. Prerequisites: M&E 323 or permission of instructor. Offered alternate years. Not offered 1990-91. 3 lecs. Application of thermodynamic and fluid-dynamic principles to the design and performance of aerospace systems. Jet propulsion principles, including rockets. Pollution characteristics. Future possibilities for improved performance.

507 Dynamics of Flight Vehicles
Spring. 3 credits. Prerequisites: M&E 405 and Engr 203, or permission of instructor. Offered alternate years. Introduction to stability and control of atmospheric-flight vehicles. Review of aerodynamic forces and methods for analysis of linear systems. Static stability and control. Small disturbance equations of unsteady motion. Dynamic stability and transient control response. At the level of Dynamics of Flight: Stability and Control, by Etkin.

530 Fluid Dynamics
Fall. 3 credits. Prerequisites: M&E 323 and senior or graduate standing, or permission of instructor. Inviscid fluid dynamics and aerodynamics, including incompressible and supersonic flows, flow over bodies, lift, and drag. Shock waves. Courses 530 and 531 are of interest primarily to seniors and M.Eng. students, however, incoming M.S. or Ph.D. students who will not major in fluid mechanics but need competence in problem solving and basic problem formulation should be interested also. The courses may be taken independently or as a sequence.

531 Boundary Layers
Spring. 3 credits. Prerequisites: M&E 323 and senior or graduate standing, or permission of instructor. Recommended: M&E 530 or equivalent. Review of the Navier-Stokes equation, simple exact solutions, concept of scaling. Classical laminar boundary layer theory. Physical mechanisms of boundary layer formation; flat plate boundary layer. Method of matched asymptotic expansions for singular perturbation problems of boundary layer type. Similarity solutions. Blasius series for boundary layer flow past an arbitrary two-dimensional body. Behavior of boundary layer flows near a separation point. Interactive boundary layer theory. Concepts of stability and transition to turbulence. Deterministic chaos. Some results of stability theory for boundary layers. Fully developed turbulence, turbulent wall layer structure, turbulent boundary layers.
410 ENGINEERING

536 Turbomachinery and Applications
Spring. 3 credits. Prerequisite: M&AE 323 or equivalent.
3 lecs. F. K. Moore.
Aerothermodynamic design of turbomachines in general, energy transfer between fluid and rotor in specific types, axial and radial devices, compressible flow. Three-dimensional effects, surging.

543 Combustion Processes
Spring. 3 credits. Prerequisites: M&AE 323 and 324.
4 lecs. F. C. Gouldin.
An introduction to combustion and flame processes, with emphasis on fundamental fluid dynamics, heat and mass transport, and reaction-kinetic processes that govern combustion rates. Thermochemistry, kinetics, vessel explosions, laminar and turbulent premixed and diffusion flames, droplet combustion, combustion of solids.

554 Solar Engineering Design
Spring. 3 credits. Prerequisites: M&AE 428 and senior standing in M&AE. Fulfills field design requirement. Enrollment limited to 30.
A broad coverage of solar-energy utilization by human-kind. Fundamentals of solar radiation. Direct radiation as a source of heat and work. Indirect radiation utilization or natural collection; water power, windpower, and biomass. The production of liquid and gaseous fuels. Solar architecture and environmental control by both active and passive means. Each student will execute a design project in solar engineering. Course grade will be based on the design project; project proposal, an oral presentation on progress of project, and submission of a final design report.

556 Power Systems
Fall. 3 credits. Corequisites: M&AE 428 and senior standing. Fulfills field design requirement.
P. L. Auer.
A broad survey of methods of large-scale power generation, emphasizing energy sources, thermodynamic cycle considerations, and component description. Power-industry, economic, and environmental factors, trends, and projections.

559 Introduction to Controlled Fusion: Principles and Technology (also EE 484 and NS&E 484)
Spring. 3 credits. Prerequisites: Physics 112, 213, and 214, or equivalent background in electricity and magnetism and mechanics with permission of instructor. Intended for seniors and graduate students.
3 lecs.
This course is intended to give engineering and physics seniors and graduate students an introduction to the physical basis and technological requirements for generating useful power by nuclear fusion. For complete description see NS&E 484.

601 Foundations of Fluid Dynamics and Aerodynamics
Fall. 4 credits. Prerequisite: graduate standing or permission of instructor.
Foundations of fluid mechanics from an advanced viewpoint. Aspects of kinetic theory as it applies to the formulation of continuum fluid dynamics. Surface phenomena and boundary conditions at interfaces. Fundamental kinematic descriptions of fluid flow, tensor analysis, derivation of the Navier-Stokes equations and energy equation for compressible fluids. Viscous flows, boundary layers, potential flows, vorticity dynamics.

602 Incompressible Aerodynamics
Fall or spring. 4 credits. Prerequisite: M&AE 601 or equivalent. Open to qualified undergraduates with permission of instructor.

603 Compressible Aerodynamics
Fall. 4 credits. Prerequisite: M&AE 601 or equivalent, or permission of instructor.

608 Physics of Fluids
Fall. 4 credits. Prerequisite: graduate standing or permission of instructor.
F. C. Gouldin.
Kinetic theory of gases: collisions; transport properties; derivation of the macroscopic equations of mass, momentum, and energy. Statistical mechanics of gases: microcanonical ensemble; partition functions; calculation of thermodynamic properties. Introduction to wave mechanics: harmonic oscillator, rigid rotor, one-electron atom. Atomic and molecular structure: building-up principle, Born-Oppenheimer approximation.

630 Atmospheric Turbulence and Micrometeorology
Spring, on demand. 4 credits. Open to qualified undergraduates with permission of instructor.
Z. Warhaft.
Basic problems associated with our understanding of the structure of the velocity field and the transport of scalars such as temperature and moisture in the lower atmosphere from both theoretical and experimental viewpoints. Topics include the second-order turbulence equations and their closure, Monin-Obukhov theory; diffusion of scalars; spectral characteristics of atmospheric variables; experimental techniques, including remote sensing; and the analysis of random-time series.

639 Aerodynamic Noise Theory
Fall. 4 credits. Prerequisite: Graduate standing and knowledge of fluid mechanics, or permission of instructor.
R. George.
Topics in acoustics relevant to transportation noise sources and control. Lighthill and Ffowcs Williams formulations for sound generation. Deterministic and broadband sources. Propagation, nonlinear effects, absorption, diffraction, and transmission. Applications to aircraft, automobiles, propellers, fans, etc.

651 Advanced Heat Transfer
Spring. 4 credits. Prerequisite: graduate standing or permission of instructor.
M. Y. Louge.

652 Thermodynamics and Phase-Change Heat Transfer (also Chem E 721)
Spring, on demand. 4 credits. Prerequisite: graduate standing or permission of instructor.
C. T. Avedisian.

653 Experimental Methods in Fluid Mechanics, Heat Transfer, and Combustion
Spring. 4 credits.
2 lecs, 1 lab. Z. Warhaft.
Study of experimental techniques for measuring pressure, temperature, velocity, and composition of gases, with emphasis on experimental capabilities and physical principles. Topics include laser velocimetry, hot-wire anemometry, spectroscopy, and laser scattering.

704 Viscous Flows
Fall or spring. 4 credits. Prerequisites: M&AE 601 or T & AM 610, or permission of instructor. Offered alternate years. Not offered 1990-91.
S. F. Shen.
A systematic study of laminar-flow phenomena (including compressibility and heat transfer) and methods of analysis. Exact solutions of the Navier-Stokes equations. Linearized problems; flow at small Reynolds numbers, laminar instability. The boundary-layer approximation; general properties. Transformations for compressibility and axisymmetric effects. Approximate methods of calculation. Separation and unsteady problems. Stability of laminar flows.

732 Analysis of Turbulent Flows
Spring. 4 credits. Prerequisite: M&AE 601 or permission of instructor. Offered alternate years. Not offered 1990-91.
S. B. Pope.
373 Stability of Fluid Flow
Fall. 4 credits. Prerequisite: graduate standing or permission of instructor. Offered alternate years. May be offered 1990-91.
S. Leibovich.

374 Turbulence and Turbulent Flow
Fall. 4 credits. Prerequisite: MSAE 601 or permission of instructor.
J. L. Lumley.
Topics include the dynamics of buoyancy and shear-driven turbulence, boundary-free and bounded shear flows, second-order modeling, the statistical description of turbulence, turbulent transport, and spectral dynamics.

376 Computational Aerodynamics
Spring. 4 credits. Prerequisites: graduate standing, an advanced course in continuum mechanics or fluid mechanics, and some FORTRAN programming experience.
3 lecs. D. A. Caughey.
Numerical methods to solve inviscid and high-Reynolds-number fluid-dynamics problems, including finite-difference, finite-volume, and surface-singularity methods. Accuracy, convergence, and stability; treatment of boundary conditions and grid generation. Focus on hyperbolic (unsteady flow with shock waves) and mixed hyperbolic-elliptic (steady transonic flow) problems. Assignments require programming digital computer.

377 Computational Fluid Mechanics and Heat Transfer
Fall. 4 credits. Prerequisites: graduate standing, an advanced course in continuum mechanics, heat transfer, or fluid mechanics; and some FORTRAN programming experience.
K. E. Torrance.

490 Special Investigations in Mechanical and Aerospace Engineering
Fall, spring. Credit to be arranged. Limited to undergraduate students. Prerequisite: permission of instructor.
Intended for an individual student or a small group of students who want to pursue a particular analytical or experimental investigation outside of regular courses or for informal instruction supplementing that given in regular courses.

491 Design Projects in Mechanical and Aerospace Engineering
Fall, spring. 3-6 credits, to be arranged.
Prerequisite or corequisite: MSAE 428. Fulfills field design requirement.
Intended for individual students or small groups of students who want to pursue particular design projects outside of regular courses.

520 Mechanical Tolerancing and Dimensional Metrology
Spring. 2 credits. Prerequisites: Math 294 and Engr 102; M & AE 312 is helpful. Seven-week course. May be offered 1990-91.
2 lecs. H. B. Voelcker.

592 Seminar and Design Project in Aerospace Engineering
Fall, spring. 2 credits each term. Intended for students in M.Eng (Aerospace) program.
Introduction to topics of current research interest in aerospace engineering by Aerospace faculty and invited speakers. Individual design projects supervised by separate faculty members after introductory sessions.

594 Manufacturing Seminar (also OR&IE 684)
Fall, spring. 1 credit. S-U grades optional.
1 sec.
A weekly, practice-oriented seminar with external speakers for Master of Engineering students in several disciplines who are interested in manufacturing. Conducted in cooperation with the School of Operations Research and Industrial Engineering, the Cornell Manufacturing Engineering and Productivity Program (COMEPP), and the Cornell Society of Engineers.

690 Special Investigations in Mechanical and Aerospace Engineering
Fall, spring. Credit to be arranged. Limited to graduate students.
695 Special Topics in Mechanical and Aerospace Engineering
Fall, spring. Credit to be arranged. Graduate standing and permission of instructor.
Special lectures by faculty members on topics of current research. Two offerings are projected. 1) Seminar in Robotics, by J. C. Koehling (fall or spring); an overview of the design, control, and use of manipulators, from their early development to the present, through the reading and discussion of papers. 2) Chaotic Vibrations, by F. C. Moon (spring); review of classical nonlinear vibration theory, maps and flows which lead to chaos, mathematical models of chaotic physical systems, experimental Poincaré maps, theoretical predictive phenomena, Lyapunov exponents, measures of fractal dimensions, and fractal basin boundaries.

791 Mechanical and Aerospace Research Conference
Fall, spring. 1 credit each term. S-U grades only. For graduate students involved in research projects.
Presentations on research in progress by faculty and students.

794 Graduate Seminar in Manufacturing Processes
Fall, spring. 1 credit. S-U only. Prerequisites: Graduate standing and permission of instructor.
A weekly seminar giving graduate students who are working on manufacturing research topics an opportunity to present their work and discuss it with other students and staff.
Participation of full-time research associates is also anticipated.

799 Mechanical and Aerospace Engineering Colloquium
Fall, spring. 1 credit each term. Credit limited to graduate students. All students and staff invited to attend.
Lectures by visiting scientists and Cornell faculty and staff members on research topics of current interest in mechanical and aerospace science, especially in connection with new research.

890 Research in Mechanical and Aerospace Engineering
Credit to be arranged. Prerequisite: candidacy for M.S. degree in mechanical or aerospace engineering or approval of director.
Independent research in an area of mechanical and aerospace engineering under the guidance of a member of the faculty.

990 Research in Mechanical and Aerospace Engineering
Credit to be arranged. Prerequisite: candidacy for Ph.D. degree in mechanical or aerospace engineering or approval of the director.
Independent research in an area of mechanical and aerospace engineering under the guidance of a member of the faculty.

NUCLEAR SCIENCE AND ENGINEERING
A number of courses in nuclear science and engineering are offered through the School of Applied and Engineering Physics (see A&EP 609, 612, 623, 634, 636, 638, and 651).

121 Fusion, Fusion, and Radiation (also Engr 121)
Spring. 3 credits.
2 lecs, 1 lab demonstration.
This is a course in the Introduction to Engineering series. For description see Engineering Common Courses.
303 Introduction to Nuclear Science and Engineering I (also A&EP 303)
Fall. 3 credits. Prerequisite: Physics 214 or Mathematics 294. This course is designed for juniors or seniors from any engineering field who want to prepare for graduate-level nuclear science and engineering courses at Cornell or elsewhere. It can also serve as a basic course for those who do not intend to continue in the field.
3 lecs. V. O. Kostroun. An introduction to the fundamentals of nuclear reactors. Topics include an overview of the field of nuclear engineering; nuclear structure, radioactivity, and reactions; interaction of radiation and matter, and neutron moderation, neutron diffusion, the steady-state chain reaction, and reactor kinetics. At the level of Introduction to Nuclear Engineering, by Lamarch.

484 Introduction to Controlled Fusion: Principles and Technology (also EE 464 and M&AE 559)
Spring. 3 credits. Prerequisites: Physics 112, 213, and 214, or equivalent background in electricity and magnetism and mechanics, and permission of instructor. Intended for seniors and graduate students.
3 lecs. D. A. Hammer. An introduction to the physical and technology underlying controlled-fusion power. Topics include fundamental aspects of the physics of ionized gases at high temperature (thermonuclear plasma), requirements (in principle) for achievement of net power from fusion, technological problems of an actual fusion reactor, and progress of the fusion program toward overcoming these problems. Both magnetic and inertial confinement fusion are discussed, and comparisons are made between fusion and fission.

551 Nuclear Methods in Non-Nuclear Research Fields
Spring. 3 credits. Prerequisite: Physics 214 or 218, or permission of instructor; some upper-division physics desirable. Primarily for graduate students in geology, chemistry, biology, materials science, and other non-nuclear fields in which nuclear methods are used. Open to qualified undergraduates. A more intensive related course, A&EP 651, which has the same lecture but has an additional lab period, is intended for nuclear specialists.
One 2-hour lecture and one 2-1/2-hour lab. D. D. Clark. Lectures on interaction of radiation with matter, radiation protection, and nuclear instruments and methods including data reduction. About ten experiments are available on radiation detection, attenuation, and measurement; electronic instrumentation, including computerized systems; activation analysis; and emerging applications such as prompt gamma analysis and neutron radiography. The TRIGA reactor is used. Emphasis is on those nuclear methods, particularly instrumented ones using neutrons, that are used in, or are being adapted for, non-nuclear fields, but tracer and other chemical techniques are not included. Students each select seven or eight experiments to meet their interests and needs. At the level of Nuclear Analytical Chemistry, by Brune, Forkman, and Persson.

621 Radiation Effects in Microelectronics
Fall. 3 credits. Prerequisite: Permission of instructor. A seminar intended for seniors and graduate students in engineering or applied physics.
T Th 9:00-10:00, two 1-1/2 hour lectures. S. C. McGuire. An introduction to the physical processes that underlie the malfunction of microelectronic circuitry resulting from exposure to ionizing radiation. Basic device-failure mechanisms, including total-dose effects, single-event upsets, and latchup, as well as the roles that circuit testing and modeling methods play in improving circuit design. Impact of surface radiation typical of low-energy electron and photon sources on device fabrication. Reference materials from the current literature.

OPERATIONS RESEARCH AND INDUSTRIAL ENGINEERING

115 Engineering Application of Operations Research (also Engr 115)
Fall, spring. 3 credits. Enrollment not open to OR&IE upperclass majors.
2 lecs, 1 lab. For description see Engineering Common Courses.

119 Introduction to Manufacturing (also Engr 119 and M & AE 119)
Spring. 3 credits. Enrollment not open to OR&IE upperclass majors.
2 lecs, 1 lab. For description see Engineering Common Courses.

230 Discrete Mathematics
Spring. 3 credits. Prerequisite: one year of calculus or permission of instructor.
3 lecs. A broad but thorough introduction to topics of discrete mathematics of use in a variety of fields of science and engineering. Topics include basic combinatorics and counting techniques, recurrence relations and generating functions, introduction to modular arithmetic with application to coding theory and experimental designs, and basic notions of graph theory with applications in optimization such as maximum flow in a network and project planning.

260 Introductory Engineering Probability (also Engr 260)
Fall, spring, summer. 3 credits. Prerequisite: first-year calculus. Corequisite: Math 293.
3 lecs. For description see Engineering Common Courses.

270 Basic Engineering Probability and Statistics
Fall; also spring, summer if staffing permits. 3 credits. Prerequisite: first-year calculus. Enrollment not open to OR&IE upperclass majors.
3 lecs. Evening prelims. For description see Engineering Common Courses.

320 Optimization I
Fall. 4 credits. Prerequisite: Mathematics 221 or 294.
3 lecs, 1 rec. Formulation of linear programming problems and solution by the simplex method. Related topics such as sensitivity analysis, duality, and network programming. Applications include such models as resource allocation and production planning.

321 Optimization II
Spring. 4 credits. Prerequisite: OR&IE 320 or equivalent.
3 lecs, 1 rec. A variety of optimization methods stressing extensions of linear programming and its applications but also including topics drawn from integer, dynamic, and nonlinear programming. Formulation and modeling are stressed as well as numerous applications.

350 Cost Accounting, Analysis, and Control
Fall; also spring if staffing permits. Upper-class standing only; enrollment limited.
4 credits. 3 lecs, 1 computing-disc. Principles of accounting, financial reports, job-order and process cost systems—historical and standard costs; cost characteristics and concepts for control, analysis, and decision making.

361 Introductory Engineering Stochastic Processes I
Spring. 4 credits. Prerequisite: OR&IE 260 or equivalent.
3 lecs, 1 rec. Basic concepts and techniques of random processes are used to construct models for a variety of problems of practical interest. Topics include the Poisson process, Markov chains, renewal theory, models for queuing and reliability.

370 Introduction to Statistical Theory with Engineering Applications
Fall. 4 credits. Prerequisite: OR&IE 260 or equivalent.
3 lecs, 1 rec. Provides a working knowledge of basic statistics as it is most often applied in engineering and a basis in statistical theory for continued study. Topics include a review of distributions of special interest in statistics; testing simple and composite hypotheses; point and interval estimation; correlation; linear regression.

410 Industrial Systems Analysis
Spring. 4 credits. Corequisites: OR&IE 270 or 370.
3 lecs, 1 computing session. Design of production facilities, including engineering economy, taxation effects, materials handling, process design, and facility layout. Operations analysis, including process scheduling, process evaluation, procedural analysis, project management, methods analysis and design, work measurement, inventory control, job evaluation, and quality engineering and control.

416 Design of Manufacturing Systems
Spring (last 4 weeks). 3 credits. Seniors and graduate students only. Corequisites: at least one of the following courses: OR&IE 417, 451, 525, and 562.
2 lecs. Project course in which students, working in teams, design a manufacturing and/or logistics system and conduct capacity, material flow, and cost analysis of the design. Meetings between project teams and faculty advisors are substituted for most lectures.
417 Layout and Material Handling Systems
Spring. 3 credits. Prerequisite: OR&IE 361.
2 lecs, 1 rec.
Design of the layout of processes and storage areas and the material-handling system for movement of items. Typical equipment used. The functions of identification control, storage, movement, batching, merging, and dispersion. Introduction to new technologies.

421 Production Planning and Control
Fall. 4 credits. Prerequisites: OR&IE 320 and 361, or permission of instructor.
3 lecs, 1 rec.
Introduction to the design, planning, and control of production and distribution systems. Decision making in manufacturing systems is stressed. Topics include inventory planning, work-cell design, work-load smoothing, production planning, and scheduling.

431 Discrete Models
Spring. 4 credits. Prerequisites: OR&IE 320 and CS 211, or permission of instructor.
3 lecs, 1 rec.
Basic concepts of graphs, networks, and discrete optimization. Fundamental models and applications, and algorithmic techniques for their analysis. Specific models studied include flows in networks, network synthesis, sequencing, partitioning, and fair allocation.

432 Applied Linear Algebra and Introductory Nonlinear Programming
Fall. 3 credits. Prerequisite: Math 294 or 221.
Not offered 1990-91.
Emphasis is on the ideas and theory of linear algebra that are especially important in optimization applications. Linear techniques are developed in the context of basic nonlinear programming to illustrate how linear algebra is used to study nonlinear systems. Some assignments provide exposure to existing software; other assignments require careful mathematical thought and exposition.

435 Introduction to Game Theory
Fall. 3 credits.
3 lecs.
A broad survey of the mathematical theory of games, including such topics as two-person matrix and bimatrix games; cooperative and noncooperative n-person games; games in extensive, normal, and characteristic function form. Economic market games. Applications to weighted voting and cost allocation.

451 Economic Analysis of Engineering Systems
Spring. 3 credits. Prerequisites: OR&IE 320 and OR&IE 350.
2 lecs, 1 computing session.
Financial planning, including cash-flow analysis and inventory flow models. Engineering economic analysis, including discounted cash flows and taxation effects. Application of optimization techniques, as in equipment replacement or capacity expansion models. Issues in designing manufacturing systems. Student group project.

462 Introductory Engineering Stochastic Processes II
Spring. 4 credits. Prerequisite: OR&IE 361 or equivalent.
3 lecs, 1 rec.
A selection of topics from the following: martingales, Markov and semi-Markov processes, optimal stopping. Examples and applications are drawn from several areas.

472 Statistical Decision Theory
Fall. 3 credits. Prerequisite: OR&IE 370 or equivalent.
3 lecs.

475 Regression
Fall. Second half of term. 2 credits. Prerequisite: OR&IE 370.
3 lecs, 1 rec.
Linear models; estimation and testing, confidence sets; diagnostics and residual analysis, variable selection and modeling.

476 Experimental Design I
Fall. First half of term. 2 credits. Prerequisite: OR&IE 370.
3 lecs, 1 rec.
One- and two-way ANOVA; blocking with one or two factors; replication and sample-size determination, multiple comparison; selection of best population(s).

499 OR&IE Project
Fall, spring. Credit to be arranged. Prerequisite: permission of instructor.
Project-type work, under faculty supervision, on a real problem existing in some firm or institution, usually a regional organization. Opportunities in the course may be discussed with the associate director.

516 Case Studies
Fall. 4 credits. Only for M.Eng. students in OR&IE.
3 rec-labs.
Students are presented with unstructured problems that resemble real-world situations. Students work in project groups on the formulation of mathematical models, computer analysis of the data and models, and presentation of oral and written reports.

520 Operations Research I: Optimization I
Fall. 4 credits. Prerequisite: Mathematics 221 or 294. Intended for graduate students minoring in operations research. The same course as OR&IE 320, but on the graduate level.
3 lecs, 1 rec.
For description see OR&IE 320.

521 Optimization II
Spring. 4 credits. Prerequisite: OR&IE 320 or 520 or equivalent. Intended for graduate students in other fields. Lectures concurrent with OR&IE 321.
3 lecs, 1 rec.
A variety of optimization methods stressing extensions of linear programming and its applications but also including topics drawn from integer, dynamic, and nonlinear programming. Formulation and modeling are stressed, as well as numerous applications.

523 Operations Research II: Introduction to Stochastic Modeling
Spring. 4 credits. Prerequisite: OR&IE 260 or equivalent. Intended for graduate students in other fields. Lectures concurrent with OR&IE 361.
3 lecs, 1 rec.
Basic concepts and techniques of random processes are used to construct models for a variety of problems of practical interest. Topics include the Poisson process, Markov chains, renewal theory, models for queuing and reliability.

525 Scheduling Theory
Spring. 3 credits. Prerequisite: OR&IE 320. Not offered 1990-91.
3 lecs.
Scheduling and sequencing problems. Single-resource scheduling, parallel processing, flow-shop scheduling. Methodology is drawn from dynamic and integer programming, simulation techniques, and heuristic methods.

561 Queuing Theory and Its Applications
Fall. 3 credits. Prerequisite: OR&IE 361 or permission of instructor.
3 lecs.

562 Inventory Theory
Spring. 3 credits. Prerequisite: OR&IE 421 or permission of instructor.
3 lecs, 1 rec.
Discussion of the nature of inventory systems and their design and control. Periodic and continuous review policies for single-item and single-location problems. Multi-item and multi-echelon extensions. Dynamic and static models are discussed. Distribution problems are analyzed. Applications are stressed.

563 Applied Time-Series Analysis
Fall. 3 credits. Prerequisites: OR&IE 361 and 370 and CS 211, or permission of instructor.
Not offered 1990-91.
3 lecs.
Box-Jenkins models, which are versatile, widely used, and applicable to nonstationary and seasonal time series, are covered in detail. The various stages of model identification, estimation, diagnostic checking, and forecasting are treated. As time permits other topics, such as spectral analysis, filtering and long-range dependence are discussed. Analysis of real data is carried out. Assignments require computer work.

564 Introductory Engineering Stochastic Processes
Spring. 4 credits. Prerequisite: OR&IE 361 or equivalent. Lectures concurrent with OR&IE 462.
3 lecs, 1 rec.
For description see OR&IE 462.

570 Introduction to Statistical Theory with Engineering Applications
Fall. 4 credits. Prerequisite: OR&IE 260 or equivalent. Lectures concurrent with OR&IE 370.
3 lecs, 1 rec.
For description see OR&IE 370.
[575 Experimental Design II
3 lecs, 1 rec.
Fractional factorials.]

[577 Quality Control
Spring, if staffing permits. 3 credits. Prerequisites: OR&IE 270 or 370. Not offered 1990-91.
3 lecs, 1 rec.
Control concepts and methods for attributes and variables; process capability analysis; acceptance sampling plans; elementary procedures for variables; acceptance-rejection procedures.]

[580 Design and Analysis of Simulated Systems
Fall. 4 credits. Prerequisites: CS 211 and OR&IE 370, or permission of instructor.
3 lecs, 1 rec.
Digital computer programs to simulate the operation of complex discrete systems in time. Modeling, program organization, pseudo-random-variable generation, simulation languages, statistical considerations, applications to a variety of problem areas.]

[599 Project
Fall, spring. 5 credits. For M.Eng. students. Identification, analysis, design, and evaluation of feasible solutions to some applied problem in the OR&IE field. A formal report and oral defense of the approach and solution are required.]

[626 Advanced Production and Inventory Planning
Fall. 5 credits.
3 lecs.
Introduction to a variety of production and distribution planning problems; the development of mathematical models corresponding to these problems; a study of approaches for finding solutions.]

[627 Dynamic Programming
Fall. 3 credits. Prerequisite: permission of instructor. Not offered 1990-91.
3 lecs.
Optimization of sequential decision processes. Deterministic and stochastic models, infinite-horizon Markov decision models, policy iterations. Contraction mapping methods. Applications drawn from inventory theory, production control.]

[630-631 Mathematical Programming I and II
630, fall; 631, spring. 3 credits each term. Prerequisites: advanced calculus and elementary linear algebra.
3 lecs.

[632 Nonlinear Programming
Fall. 3 credits. Prerequisite: OR&IE 630. Not offered 1990-91.
3 lecs.
Necessary and sufficient conditions for unconstrained and constrained optimization. Duality theory. Computational methods for unconstrained (e.g., quasi-Newton) problems, linearly constrained (e.g., active set) problems, and nonlinearly constrained (e.g., successive quadratic programming) problems.]

[633 Graph Theory and Network Flows
Fall. 3 credits. Prerequisite: permission of instructor.
3 lecs.

[634 Combinatorial Optimization
Spring. 3 credits. Prerequisite: permission of instructor. Not offered 1990-91.
3 lecs.
Topics in combinatorics, graphs, and networks, including matching, matroids, polyhedral combinatorics, and optimization algorithms.]

[635 Interior-Point Methods for Mathematical Programming
Spring. 3 credits. Prerequisites: Math 411 and OR&IE 630, or permission of instructor.
3 lecs.
Interior-point methods arising from Karmarkar’s algorithm. Application to linear and quadratic programming and the linear complementarity problem. Projective-scaling, affine-scaling, path-following, and potential-reduction methods.]

[636 Integer Programming
Fall. 3 credits. Prerequisite: OR&IE 630.
3 lecs.
Discrete optimization. Linear programming in which the values are restricted to integers. Theory, algorithms, and applications. Cutting-plane methods, enumerative methods, and group-theoretic methods; additional topics are drawn from recent research in this area.]

[639 Convex Analysis
Spring. 3 credits. Prerequisite: Mathematics 411 and 431, or permission of instructor. Not offered 1990-91.
3 lecs.
The theory of finite dimensional convex sets is developed through the study of real-valued convex functions and Fenchel duality. Separation of convex sets, polarity correspondences, recession cones, theorems of Helly and Caratheodory.]

[660 Applied Probability
Fall. 4 credits. Prerequisite: advanced calculus.
3 lecs, 1 rec.

[665 Advanced Queuing Theory
Fall. 3 credits. Prerequisite: OR&IE 660 or equivalent. Not offered 1990-91.
3 lecs.
A study of stochastic processes arising in a class of problems including congestion, storage, dams, and insurance. The treatment is self-contained. Transient behavior of the processes is emphasized. Heavy-traffic situations are investigated.]

[670 Statistical Principles
Spring. 4 credits. Prerequisite: OR&IE 660 or equivalent.
3 lecs, 1 rec.
Review of distribution theory of special interest in statistics: normal, chi-square, binomial, Poisson, t, and F; introduction to statistical decision theory; sufficient statistics; theory of minimum variance unbiased point estimation; maximum likelihood and Bayes estimation; basic principles of hypothesis testing, including Neyman-Pearson Lemma and likelihood ratio principle; confidence interval construction; introduction to linear models.]

[671 Intermediate Applied Statistics
Fall. 3 credits. Prerequisite: OR&IE 670 or equivalent.
3 lecs.
Statistical inference based on the general linear model; least-squares estimation and their optimality properties; likelihood ratio tests and corresponding confidence regions, simultaneous inference. Applications in regression analysis and ANOVA models. Variance components and mixed models. Use of the computer as a tool for statistics is stressed.]

[674 Design of Experiments
Spring. 3 credits. Prerequisite: OR&IE 671 or permission of instructor. Not offered 1990-91.
3 lecs.
Use and analysis of experimental designs such as randomized blocks, balanced incomplete blocks, and Latin squares; analysis of variance and covariance, factorial experiments; statistical problems associated with finding best operating conditions; response-surface analysis.]
676 Statistical Analysis of Life Data
Spring. 3 credits. Prerequisite: OR&IE 671 or equivalent.

678 Asymptotic Methods in Statistics
Spring. 3 credits. Prerequisite: OR&IE 670 or Mathematics 574. Not offered 1990–91.
Large-sample behavior of MLEs and other estimates; chi-square, likelihood ratio, and related tests; Pitman and Bahadur efficiency; LAN families and LAM estimates; statistical applications of Edgeworth expansions; adaptive estimation and semiparametric inference.

680 Simulation
Spring. 3 credits. Prerequisite: permission of instructor. Not offered 1990–91.
3 lecs.
An advanced version of OR&IE 580, intended for Ph.D.-level students.

728-729 Selected Topics in Applied Operations Research
Fall, spring. Credit to be arranged.
Current research topics dealing with applications of operations research.

738-739 Selected Topics in Mathematical Programming
Fall, spring. Credit to be arranged.
Current research topics in mathematical programming.

768-769 Selected Topics in Applied Probability
Fall, spring. Credit to be arranged.
Topics chosen from current literature and research areas of the staff.

790 Special Investigations
Fall, spring. Credit to be arranged.
For individuals or small groups. Study of special topics or problems.

799 Thesis Research
Fall, spring. Credit to be arranged.
For individuals doing thesis research for master's or doctoral degrees.

891 Operations Research Graduate Colloquium
Fall, spring. 1 credit.
A weekly 1-1/2 hour meeting devoted to presentations by distinguished visitors, by faculty members, and by advanced graduate students on topics of current research in the field of operations research.

893-894 Applied OR&IE Colloquium (894 also M&AE 594)
893, fall; 894, spring. 1 credit each term.
A weekly meeting for Master of Engineering students. Discussion of various topics on manufacturing with faculty members and outside speakers.

THEORETICAL AND APPLIED MECHANICS

Basics in Engineering Mathematics and Mechanics

123 Sensors and Actuators (also Engr 123)
Fall. 3 credits.
2 lecs, 1 lab.
For description see Engineering Common Courses.

202 Mechanics of Solids (also Engr 202)
Fall, spring. 3 credits. Prerequisite: coregistration in Mathematics 293.
2 lecs, 1 rec, 4 labs each semester, evening exams.
For description see Engineering Common Courses.

203 Dynamics (also Engr 203)
Fall, spring. 3 credits. Prerequisite: coregistration in Mathematics 294.
2 lecs, 1 rec, 4 labs each semester, evening exams.
For description see Engineering Common Courses.

281 Structures and Machines in Urban Society (also Engr 281)
Fall. 3 credits.
R. Lance.
For description see Engineering Common Courses.

293 Engineering Mathematics
Fall, spring. 4 credits. Prerequisite: Mathematics 192 or 194.
2 lecs, 1 rec, 4 labs during semester, evening exams.
Partial derivatives and multiple integrals; first- and second-order ordinary differential equations with applications in the physical and engineering sciences. Includes microcomputer experiments using computer algebra to solve problems.

294 Engineering Mathematics
Fall, spring. 4 credits. Prerequisite: Mathematics 293.
2 lecs, 1 rec, 4 labs during semester, evening exams.

311 Advanced Engineering Analysis II
Spring. 3 credits. Prerequisite: T&AM 310 or equivalent.
Functions of several variables, introduction to complex variables, analytic functions, conformal mapping, method of residues.

Application to the solution of Laplace's equation, and transform inversion techniques. Examples drawn from fluid mechanics, heat transfer, electromagnetics, and elasticity.

610 Methods of Applied Mathematics I
Fall. 3 credits. Intended for beginning graduate students in engineering and science. An intensive course, requiring more time than is normally available to undergraduates (see T&AM 310–311) but open to exceptional undergraduates with permission of instructor.
3 lecs.
Emphasis is on applications. Linear algebra, calculus of several variables, vector analysis, series, ordinary differential equations, complex variables.

611 Methods of Applied Mathematics II
Spring. 3 credits. Prerequisite: T&AM 610 or equivalent.
3 lecs.
Emphasis on applications. Partial differential equations, transform techniques, tensor analysis, calculus of variations.

612 Methods of Applied Mathematics III
Fall. 3 credits. Prerequisite: T&AM 610 or 611 or equivalent.
First of a 6-credit sequence (T&AM 612 and 613) that develops advanced mathematical techniques for engineers and applied physicists. Review of complex variable theory, conformal mapping, special functions, integral transform, Wiener-Hopf technique, and singular integral equations. Problems drawn from electromagnetics, elasticity, fluid mechanics, heat transfer, and acoustics.

613 Methods of Applied Mathematics IV
Spring. 3 credits. Prerequisite: T&AM 612 or equivalent.
Topics include asymptotic behavior of solutions of linear and nonlinear ODE (e.g., the WKBJ and multiple-scale methods), asymptotic expansion of integrals (method of steepest descent, stationary phase and Laplace methods). Regular and singular perturbation methods for PDE (e.g., method of composite expansions). Other topics (depending on instructor) may include normal forms, center manifolds, Liapunov-Schmidt reducitors, Stokes phenomenon. The course may also include computer algebra (MACSYMA) exercises at the option of the instructor.

Continuum Mechanics

501 Topics in Composites I
Fall. 1 to 3 credits (1 credit each topical minicourse)
Analysis of Composite Structures (T. J. Healey)
Consideration of the simplest problems, seen in terms of classical linear theories of structural mechanics, with an emphasis on anisotropic material properties appropriate to composite structures. Small-deflection bending of thin, elastic beams; analysis of composite beams; small-deflection theory of thin, elastic plates; membrane theory of thin shells, analysis of composite plates and shells.

Biological Composites (J. T. Jenkins)
Overview of the microstructural features and origin of the mechanical properties of bone and soft tissues such as tendon, ligament, muscle, and skin; their use as structural components. Design principles for composite materials mimicking those found in biological systems.
Design Principles for Composite Structures
(R. H. Lance)

Mechanical Testing of Composite Constituents
(Staff)
Theoretical and experimental characterization of strength and life of advanced composite constituents and materials; review of test methods, specimen preparation, testing, data reduction, and analysis; conduct of laboratory experiments for short-term strength distribution of fiber material, interface-strength evaluation, and life strength.

Reliability Models for Composites
(S. L. Phoenix)
Models for fiber strength and fatigue lifetime including flaw statistics, diameter and length effects, and the special role of the Webull distribution; models for the failure of fiber bundles including the role of load sharing and fiber-breakdown laws; models for the strength and stress-rupture of unidirectional composites including the effects of fiber strength distributions and the micromechanics of fiber/matrix stress transfer including matrix creep.

Fracture Testing for Composites
(A. Zehnder)
Fracture-mechanics models for fiber-reinforced composites and their ability to predict the fracture resistance of these materials; performance of simple fracture tests using standardized test methods as well as advanced experimental-mechanics techniques.

502 Topics in Composites II
Fall. 1 to 3 credits (1 credit each topical minicourse)
Fundamentals of elastic fracture mechanics, interface models for a number of composite systems, stiffness reduction, interface crack growth, and fracture toughness of simple composite structures.

Boundary-Element Methods for Composites
(S. Mukherjee)
Boundary-element methods for potential and elasticity problems; modeling of anisotropic elasticity with applications to composites.

Software for Composite Design
(Staff)
Introduction to software for the design of composite structures. Included are MATLAB for matrix computations of orthotropic materials; GENLAM and LAMRANK, for the analysis and design of laminates; C-FRANC (interactive computer graphics), for simulating the fracture of unidirectional, fiber-reinforced composites; and SLAD, for probabilistic analysis of strength and life of fiber bundles and composites. Emphasis is on practical applications in the design of tubes, pressure vessels, beams, and plates.

Effective Properties of Composites
(P. Rosakis)
Review of material anisotropy, field equations, and interface conditions for composite bodies, solutions of fundamental composite problems, Eshelby's inhomogeneity problem, self-consistent methods for computing effective moduli, layered media, periodic arrays of particles, introduction to basic concepts of homogenization theory.

Novel Composite Structures
(A. Ruina)
The design of sports equipment, human-powered vehicles, and other high-performance structures fabricated from composite materials.

Nondestructive Testing of Composites
(W. Sachse)
Issues of process control in composite fabrication, problems related to the inspection of composite components, integrity monitoring and damage assessment, survey of conventional and advanced nondestructive evaluation (NDE) methods for composites, sensors for composite materials, directions in current NDE research applicable to composites.

555 Introduction to Composite Materials
Fall. 3 credits.
2 lecs, 6 labs per semester. R. H. Lance and staff.
Introduction to composite materials: varieties of reinforcements, matrix materials and their properties. Mechanics and failure analysis of lamina, laminates, and wound structures; introduction to micromechanics theories of composites, manufacturing methods, fabrication and assembly techniques, composite applications, environmental effects.

569 Sensors
Fall. 3 credits. Not offered 1989-90.
3 lecs a week, 4 labs a semester.
This course deals with the general properties of sensors and actuators used in measurement and process-control applications involving thermal and mechanical quantities. Considered are sensors and actuators based on a broad range of physical transduction phenomena. Attention is given to the development of sensor models and criteria for evaluating the general performance characteristics of a sensor, including its transduction characteristics and its measurement field. Also studied are algorithms for processing sensor signals to recover the characteristics of the sensor or to remove its effect in a specific measurement application. An integral part of the course is the Sensors Laboratory, which provides students with hands-on opportunities for measuring the characteristics and operational parameters of a broad range of thermo-mechanical sensors.

640 Experimental Mechanics
Fall. 3 credits. Not offered 1989-90.
1 lec, 1 rec, 1 lab.
This course introduces students to the principles of measurement and experimentation in mechanics, acquaints them with some of the techniques for measuring fundamental mechanical quantities, and permits them to explore experimental topics such as the elastic, viscoelastic, and plastic response of materials; the linear and nonlinear vibration of discrete and continuous systems; and acoustic and elastic wave propagation and scattering phenomena.

655 Advanced Composite Materials and Structures
Spring. 3 credits.

663 Solid Mechanics I
Fall. 4 credits. Corequisite: Mathematics 610.
3 lecs, 1 lab. J. T. Jenkins, W. Sachse.
Rigorous introduction to small-strain solid mechanics with emphasis on linear elasticity: stress, strain, tensors, balance laws, energy principles, general theory of linear elasticity, solutions of elementary boundary value problems.

664 Solid Mechanics II
Fall. 4 credits. Prerequisites: Mathematics 610 and T&AM 663, or equivalent.
3 lecs, 1 lab.
Preparation for advanced courses in solid mechanics. Singular solutions in linear elasticity, large deformations, nonlinear elasticity, linear visco-elasticity, mechanics of defects (cracks and dislocations), classical plasticity, and constitutive relations.

666 Fundamentals of Acoustics
Fall. 3 credits. Not offered 1988-89.
3 lecs, biweekly labs.
Introduction to the principles and theories of acoustics. The vibrations of strings, bars, membranes, and plates; plane and spherical acoustic waves; transmission phenomena; resonators and filters; waves in solids and fluids. Application is made to sonic and ultrasonic transducers, music and noise, and architectural acoustics, and an introduction is given to the digital processing of acoustic signals. Laboratory work is required. At the level of Fundamentals of Acoustics, by Kinsler, Prey, Coppens, and Sanders.

751 Continuum Mechanics and Thermodynamics
Fall. 3 credits. Prerequisites: T&AM 610 and 611; and 663 and 664 or equivalents. Offered alternate years.
3 lecs. T. Healey.
Kinematics, conservation laws, the entropy inequality, constitutive equations, frame indifference, material symmetry. Rate-dependent materials and materials with internal variables.

752 Nonlinear Elasticity
Fall. 3 credits. Prerequisites: T&AM 610 and 611; and 663 and 664 or equivalents. Offered alternate years. Not offered 1989-90.
3 lecs. T. Healey.
Review of kinematics and constitutive theory appropriate for large deformations of nonlinearly elastic bodies. The basic field equations of nonlinear elastostatics and elastodynamics. Exact solutions of special problems. Linearization and stability. Nonlinear theories of thin structural members and their relationship to the three-dimensional theory. Introduction to static bifurcation theory with applications to strings, rods, plates, and shells.
[753 Fracture]
Spring. 3 credits. Prerequisites: T&AM 610 or 611; and 663 and 664 or equivalents. Offered alternate years. Not offered 1989–90.
3 lecs.
Topics will be selected from (1) elastic fracture mechanics: K, small-scale yielding, solutions of elastic crack problems; (2) nonlinear rate-independent, small-defomation fracture mechanics: plastic fracture, J-integral, small-scale yielding; (3) rate-dependent fracture mechanics: dynamic fracture, creep fracture; (4) mechanics of failure in polymers, ceramics, composites, and metals: void growth, load transfer between fibers, crazing.

[757 Inelasticity]
Spring. 3 credits. Prerequisites: T&AM 610 and 611; and 663 and 664 or equivalents. Offered alternate years.
3 lecs.

[759 Computational Methods]
Fall. 4 credits. Prerequisites: T&AM 610 and 611; and 663 and 664 or equivalents. Offered alternate years. Not offered 1989–90.
3 lecs. S. Mukherjee.
The aim of this course is to survey a wide range of applications of the boundary element method (BEM) and finite element method (FEM) in solid mechanics. The boundary element method will be introduced and then be used in problems in linear elasticity, diffusion, wave propagation, and problems with material and/or geometric nonlinearities. Finite-element applications will emphasize nonlinear problems in solid mechanics.

[760 Elastic Waves]
Fall. 3 credits. Prerequisites: T&AM 610 or 611; and 665 and 574 or equivalents. Offered alternate years.
3 lecs.

[770 Research Topics in Solid Mechanics]
Spring. 1–3 credits. Prerequisites: T&AM 610 or 611; and 665 and 574 or equivalents. Offered alternate years.
3 lecs. 1–3 faculty members.
Three topics of current research interest to faculty will be presented. The topics for each year will be posted in the late fall. Students may register for one, two, or three credits.

Dynamics and Space Mechanics

[570 Intermediate Dynamics]
Fall. 3 credits.
Two 1 1/4-hour lecs.
Vector and matrix methods for kinematics, Lagrangian and Newtonian mechanics for particles and rigid bodies, Euler's equations for rotating bodies, central-force motion. Small vibrations and stability. Application to robotics, gyroscopes, orbital and spacecraft dynamics.

[574 Vibrations and Waves in Elastic Systems]
Spring. 4 credits. Prerequisites: T&AM 570 and 610.
3 lecs. 1 lab.
Dynamics of elastic continua, including strings, membranes, and beams. Hamilton's principle, balance laws, characteristics, dispersion, phase, and group velocities.

[671 Advanced Dynamics]
Spring. 3 credits. Prerequisite: T&AM 570 or equivalent. Offered alternate years. Not offered 1989–90.
Review of Lagrangian mechanics; Hamilton's principle, the principle of least action, and related topics from the calculus of variations, Hamilton's canonical equations; approximate methods for two-degree-of-freedom systems (Lie transforms); canonical transformations and Hamilton-Jacobi theory; KAM theory.

[672 Celestial Mechanics (also Astronomy 579)]
Spring. 3 credits. Offered alternate years. Not offered 1989–90.
Two 1 1/4-hour lecs.
Description of orbits: 2-body, 3-body, and n-body problems; Hill curves, libration points and their stability; capture problems; virial theorem. Osculating elements, perturbation equations; effects of gravitational potentials, atmospheric drag, and solar radiation forces on satellite orbits; secular perturbations, resonances, mechanics of planetary rings.

[673 Mechanics of the Solar System (also Astronomy 571)]
Spring. 3 credits. Prerequisite: an undergraduate course in dynamics. Offered alternate years. Not offered 1989–90.
Two 1 1/4-hour lecs.

[675 Nonlinear Vibrations]
Fall. 3 credits. Prerequisite: T&AM 574 or equivalent. Offered alternate years.

[776 Qualitative Theory of Dynamical Systems]
Spring. 3 credits. Suggested prerequisite: T&AM 671, Mathematics 517, or equivalent. Offered alternate years.
Review of planar (single-degree-of-freedom) systems. Local and global analysis. Structural stability and bifurcations in planar systems. Center manifolds and normal forms. The averaging theorem and perturbation methods. Melnikov's method. Discrete dynamical systems, maps and difference equations, homoclinic and heteroclinic motions, the Smale horseshoe and other complex invariant sets. Global bifurcations, strange attractors and chaos in free and forced oscillator equations. Applications to problems in solid and fluid mechanics.

Special Courses, Projects, and Thesis Research

[400 Science, Risk, and Public Policy (also Engr 400 and Economics 358)]
Fall. 3 credits. Not offered 1989–90. For description see Engineering Common Courses.

[491-492 Project in Engineering Science]
Fall, 491; Fall, 492. Spring. 1–4 credits, as arranged. Projects for undergraduates under the guidance of a faculty member.

[796-800 Topics in Theoretical and Applied Mechanics]
Fall, spring. 1–3 credits, as arranged. Special lectures or seminars on subjects of current interest. Topics are announced when the course is offered.

[890 Master's Degree Research in Theoretical and Applied Mechanics]
Fall, spring. 1–3 credits, as arranged. S-U grades optional. Thesis or independent research at the M.S. level on a subject of theoretical and applied mechanics. Research is under the guidance of a faculty member.

[990 Doctoral Research in Theoretical and Applied Mechanics]
Fall, spring. 1–9 credits, as arranged. S-U grades optional. Thesis or independent research at the Ph.D. level on a subject of theoretical and applied mechanics. Research is under the guidance of a faculty member.

FACULTY ROSTER

Abed, John F., Ph.D., U. of California at Berkeley. Prof., Civil and Environmental Engineering
Albright, Louis D., Ph.D., Cornell U. Assoc. Prof., Agricultural and Biological Engineering
Anantharam, Venkatachalam, Ph.D., U. of California at Berkeley. Prof., Chemical Engineering
Allmendinger, Richard, Ph.D., Stanford U. Assoc. Prof., Geological Sciences
Allmendinger, Richard, Ph.D., Stanford U. Assoc. Prof., Geological Sciences
Alesheish, Daniel J., Ph.D., Cornell U. Assoc. Prof., Agricultural and Biological Engineering
Amerling, William, Ph.D., Stanford U. Assoc. Prof., Geological Sciences
Anantharam, Venkatachalam, Ph.D., U. of California at Berkeley. Asst. Prof., Electrical Engineering
Aueschleisler, Daniel J., Ph.D., Cornell U. Assoc. Prof., Agricultural and Biological Engineering
Anton, A. Brad, Ph.D., California Inst. of Technology. Asst. Prof., Chemical Engineering
Ast, Dieter G., Ph.D., Cornell U. Prof., Materials Science and Engineering
Auers, Peter L., Ph.D., California Inst. of Technology. Prof., Mechanical and Aerospace Engineering
Avedisian, C. Thomas, Ph.D., Princeton U. Assoc. Prof., Mechanical and Aerospace Engineering
Ballantyne, Joseph M., Ph.D., Massachusetts Inst. of Technology. Prof., Electrical Engineering
Baranzangi, Muawia, Ph.D., Columbia U. Senior Scientist, Geological Sciences
Barret, Donald L., Ph.D., U. of Iowa. Prof., Mechanical and Aerospace Engineering
Bartsch, James A., Ph.D., Purdue U. Asst. Prof., Agricultural and Biological Engineering
Bassett, William A., Ph.D., Columbia U. Prof., Geological Sciences
Bazman, R., Ph.D., Massachusetts Inst. of Technology. Prof., Applied and Engineering Physics
Berger, Toby, Ph.D., Harvard U. J. Preston Levis Professor of Engineering, Electrical Engineering
Bilardi, Gianfranco, Ph.D., U. of Illinois. Asst. Prof., Computer Science
Billera, Louis J., Ph.D., City U. of New York. Prof., Operations Research and Industrial Engineering
Bird, John M., Ph.D., Rensselaer Polytechnic Inst. Prof., Geological Sciences
Birman, Kenneth P., Ph.D., U. of California at Berkeley. Asst. Prof., Computer Science
Bisogni, James J., Ph.D., Cornell U. Assoc. Prof., Civil and Environmental Engineering
Bilard, John M., Ph.D., Glasgow U. (Scotland). Prof., Materials Science and Engineering
Bland, Robert G., Ph.D., Cornell U. Prof., Operations Research and Industrial Engineering
Bloom, Arthur L., Ph.D., Yale U. Prof., Geological Sciences
Bloom, B. D., Massachusetts Inst. of Technology. Asst. Prof., Computer Science
Bojanczyk, Adam W., Ph.D., U. of Warsaw (Poland). Asst. Prof., Electrical Engineering
Booker, John F., Ph.D., Cornell U. Prof., Mechanical and Aerospace Engineering
Brock, Joel D. Ph.D., Massachusetts Inst. of Technology. Asst. Prof., Applied and Engineering Physics
Brown, Geoffrey M., Ph.D., U. of Texas. Asst. Prof., Electrical Engineering
Brown, Larry D., Ph.D., Cornell U. Prof., Geological Sciences
Brutsaert, Wilfried H., Ph.D., U. of California at Davis. Prof., Civil and Environmental Engineering
Buhman, Robert A., Ph.D., Johns Hopkins U. Prof., Applied and Engineering Physics
Burns, Joseph A., Ph.D., Cornell U. Prof., Theoretical and Applied Mechanics
Cadby, K. Bingham, Ph.D., Massachusetts Inst. of Technology. Prof., Nuclear Science and Engineering
Capranica, Robert R., Ph.D., Massachusetts Inst. of Technology. Prof., Electrical Engineering
Cathles, Lawrence M. III, Ph.D., Princeton U. Prof., Geological Sciences
Caughey, David A., Ph.D., Princeton U. Prof., Mechanical and Aerospace Engineering
Chang, Hsin-Dong, Ph.D., U. of California at Berkeley. Asst. Prof., Electrical Engineering
Cisne, John L., Ph.D., U. of Chicago. Prof., Geophysics
Clancy, Paulette, Ph.D., Oxford U. (England). Asst. Prof., Chemical Engineering
Clark, David D., Ph.D., U. of California at Berkeley. Prof., Nuclear Science and Engineering
Clark, Peter A., Ph.D., Carnegie-Mellon U. Asst. Prof., Chemical Engineering
Cohen, Claude, Ph.D., Princeton U. Prof., Chemical Engineering
Coleman, Thomas F., Ph.D., U. of Waterloo. Assoc. Prof., Computer Science
Compton, Richard C., Ph.D., California Inst. of Technology. Asst. Prof., Electrical Engineering
Constable, Robert L., Ph.D., U. of Wisconsin. Prof., Computer Science
Cooke, J., Robert, Ph.D., North Carolina State U. Prof., Agricultural and Biological Engineering
Cool, Terrill A., Ph.D., California Inst. of Technology. Prof., Applied and Engineering Physics
Craighead, Harold G., Ph.D., Cornell U. Prof., Applied and Engineering Physics, and Electrical Engineering
Datta, Ashim K., Ph.D., U. of Florida. Asst. Prof., Agricultural and Biological Engineering
Dawson, Paul R., Ph.D., Colorado State U. Prof., Mechanical and Aerospace Engineering
deBoer, P. Tobias, Ph.D., U. of Maryland. Prof., Mechanical and Aerospace Engineering
Deierlein, Gregory G., Ph.D., U. of Texas at Austin. Asst. Prof., Civil and Environmental Engineering
Delchamps, David F., Ph.D., Harvard U. Assoc. Prof., Electrical Engineering
Denison, Richard C., Ph.D., U. of Illinois. Asst. Prof., Agricultural and Biological Engineering
Dick, Richard I., Ph.D., U. of Illinois. Joseph P. Ripley Professor of Engineering, Civil and Environmental Engineering
Dieckmann, Frederick H., Ph.D., California Inst. of Technology. Prof., Mechanical and Aerospace Engineering
Donald, Bruce, Ph.D., Massachusetts Inst. of Technology. Asst. Prof., Computer Science
Duncan, Michael, Ph.D., California Inst. of Technology. Asst. Prof., Chemical Engineering
Eastman, Lester F., Ph.D., Cornell U. Given Foundation Professor of Engineering, Electrical Engineering
Engstrom, James R., Ph.D., California Inst. of Technology. Asst. Prof., Chemical Engineering
Farley, Donald T., Ph.D., Cornell U. Prof., Electrical Engineering
Fine, Terrence L., Ph.D., Harvard U. Prof., Electrical Engineering
Fleischmann, Hans H., Ph.D., Technische Hoch., Munchen (Germany). Prof., Applied and Engineering Physics
Furry, Ronald B., Ph.D., Iowa State U. Prof., Agricultural and Biological Engineering
Gebremedhin, Kifle G., Ph.D., U. of Wisconsin. Asst. Prof., Agricultural and Biological Engineering
George, Albert R., Ph.D., Princeton U. Prof., Mechanical and Aerospace Engineering
Gergely, Peter, Ph.D., U. of Illinois. Prof., Civil and Environmental Engineering
Giannelis, Emmanuel, Ph.D., Michigan State U. Asst. Prof., Materials Science and Engineering
Gossett, James M., Ph.D., Stanford U. Assoc. Prof., Civil and Environmental Engineering
Gouldin, Frederick C., Ph.D., Princeton U. Prof., Mechanical and Aerospace Engineering
Greenberg, Donald P., Ph.D., Cornell U. Associate Professor at Large, Engineering
Gries, David J., Ph.D., Technische Hoch., Munchen (Germany). Prof., Computer Science
Griгоров, Mirela D., Ph.D., Massachusetts Inst. of Technology. Prof., Civil and Environmental Engineering
Groover, Lew K., Ph.D., Stanford U. Asst. Prof., Electrical Engineering
Gubbins, Keith E., Ph.D., U. of London (England). Thomas R. Briggs Professor of Engineering, Chemical Engineering
Gunckel, Wesley W., Ph.D., Michigan State U. Prof., Agricultural and Biological Engineering
Hagfors, Tor, Ph.D., U. of Oslo (Norway). Prof., Electrical Engineering
Haith, Douglas A., Ph.D., Cornell U. Prof., Agricultural and Biological Engineering
Hammer, Daniel A., Ph.D., U. of Pennsylvania. Asst. Prof., Chemical Engineering
Hammer, David A., Ph.D., Cornell U. Prof., Nuclear Science and Engineering
Harriott, Peter, S.C., Massachusetts Inst. of Technology. Fred H. Rhodes Professor of Chemical Engineering
Hartmanis, Juris, Ph.D., California Inst. of Technology. Walter R. Read Professor of Computer Science
Hauser, Max W., Ph.D., U. of California at Berkeley. Asst. Prof., Electrical Engineering
Healey, Timothy J., Ph.D., U. of Maryland. Asst. Prof., Theoretical and Applied Mechanics
Heath, David C., Ph.D., U. of Illinois. Prof., Operations Research and Industrial Engineering
Heegard, Chris, Ph.D., Stanford U. Assoc. Prof., Electrical Engineering
Hillman, Lloyd W., Ph.D., U. of Rochester. Asst. Prof., Electrical Engineering
Holmes, Philip J., Ph.D., Southampton U. (England). Prof., Theoretical and Applied Mechanics
Hopcroft, John E., Ph.D., Stanford U. Prof., Computer Science
Hover, Kenneth C., Ph.D., Cornell U. Assoc. Prof., Civil and Environmental Engineering
Howe, Douglas J., Ph.D., Cornell U. Asst. Prof., Computer Science
Hui, Chung Y., Ph.D., Harvard U. Assoc. Prof., Theoretical and Applied Mechanics
Hunter, Jean B., Ph.D., Columbia U. Asst. Prof., Agricultural and Biological Engineering
Hutterlocher, Daniel, Ph.D., Massachusetts Inst. of Technology. Asst. Prof., Computer Science
Ingraffea, Anthony R., Ph.D., U. of Colorado. Prof., Civil and Environmental Engineering
Irwin, Lynne H., Ph.D., Texas A & M U. Assoc. Prof., Agricultural and Biological Engineering
Isacsson, Michael S., Ph.D., U. of Chicago. Prof., Applied and Engineering Physics
Isacks, Bryan L., Ph.D., Columbia U. Prof., Geophysical Sciences
Jackson, Peter L., Ph.D., Stanford U. Assoc. Prof., Operations Research and Industrial Engineering
Jenkins, James T., Ph.D., Johns Hopkins U. Prof., Theoretical and Applied Mechanics
Jewell, William J., Ph.D., Stanford U. Prof., Agricultural and Biological Engineering
Jirka, Gerhard H., Ph.D., Massachusetts Inst. of Technology. Prof., Civil and Environmental Engineering
Johnson, J. Richard, Jr., Ph.D., Stanford U. Assoc. Prof., Electrical Engineering
Jordan, Teresa, Ph.D., Stanford U. Assoc. Prof., Geological Sciences
Kang, Daniel E., Ph.D., U. of California at San Diego. Prof., Geological Sciences
Kaufman, Sidney, Ph.D., Cornell U. Acting Prof., Geological Sciences
Kay, Robert W., Ph.D., Columbia U. Prof., Geological Sciences
Kelley, Michael C., Ph.D., U. of California at Berkeley. Prof., Electrical Engineering
Kintner, Paul M., Ph.D., U. of Minnesota. Asst. Prof., Electrical Engineering
Kline, Ronald R., Ph.D., U. of Wisconsin. Asst. Prof., Mechanical and Aerospace Engineering
Koch, Donald L., Ph.D., Massachusetts Inst. of Technology. Asst. Prof., Mechanical Engineering
Koechling, Jeffrey C., Ph.D., Carnegie Mellon U. Asst. Prof., Mechanical and Aerospace Engineering
Kohlstedt, David Ph.D., U. of Illinois. Prof., Materials Science and Engineering
Kostroun, Vaclav O., Ph.D., U. of Oregon. Assoc. Prof., Nuclear Science and Engineering
Kozen, Dexter Ph.D., Cornell U. Assoc. Prof., Computer Science
Kramer, Edward J., Ph.D., Carnegie Inst. of Technology. Prof., Materials Science and Engineering
Krusius, J. Peter, Ph.D., Helsinki U. of Technology (Finland). Prof., Electrical Engineering
Kulhawy, Fred H., Ph.D., U. of California at Berkeley. Prof., Civil and Environmental Engineering
Kusse, Bruce R., Ph.D., Massachusetts Inst. of Technology. Prof., Applied and Engineering Physics
Lance, Richard H., Ph.D., Brown U. Prof., Theoretical and Applied Mechanics
Landsberger, Samuel E., Sc.D., Massachusetts Inst. of Technology. Asst. Prof., Mechanical and Aerospace Engineering
Lee, Charles R., Ph.D., Columbia U. Prof., Electrical Engineering
Lee, Soo-Young, Ph.D., U. of Texas. Asst. Prof., Electrical Engineering
Leibovich, Sidney, Ph.D., Cornell U. Prof., Mechanical and Aerospace Engineering
Li, Che-Yu, Ph.D., Cornell U. Prof., Materials Science and Engineering
Lihoff, Richard L., Ph.D., New York U. Prof., Electrical Engineering
Liggert, James A., Ph.D., Stanford U. Prof., Civil and Environmental Engineering
Lion, Leonard W., Ph.D., Stanford U. Assoc. Prof., Civil and Environmental Engineering
Liu, Philip L.-F., Sc.D., Massachusetts Inst. of Technology. Prof., Civil and Environmental Engineering
Louches, Daniel P., Ph.D., Cornell U. Prof., Civil and Environmental Engineering
Louge, Michel Y., Ph.D., Stanford U. Asst. Prof., Mechanical and Aerospace Engineering
Lovelace, Richard V. E., Ph.D., Cornell U. Prof., Applied and Engineering Physics
Ludington, David C., Ph.D., Purdue U. Prof., Agricultural and Biological Engineering
Luk, Franklin T.-C., Ph.D., Stanford U. Prof., Electrical Engineering
Lumley, John L., Ph.D., Johns Hopkins U. Willis H. Carrier Professor of Engineering, Mechanical and Aerospace Engineering
Lynn, Walter R., Ph.D., Northwestern U. Prof., Civil and Environmental Engineering
MacDonald, Noel C., Ph.D., U. of California at Berkeley. Prof., Electrical Engineering
McCue, Stephen C., Ph.D., Cornell U. Assoc. Prof., Nuclear Science and Engineering
McEasue, Paul R., Ph.D., U. of Michigan. Prof., Electrical Engineering
Marzullo, Keith A., Ph.D., Stanford U. Asst. Prof., Computer Science
Maxwell, William L., Ph.D., Cornell U. Prof., Operations Research and Industrial Engineering
Mayo, J. Raj, Ph.D., Purdue U. Francis N. Woodyard Professor of Materials Science and Engineering
Merrill, Robert P., Sc.D., Massachusetts Inst. of Technology. Herbert Fisk Johnson Professor of Industrial Chemistry, Chemical Engineering
Meyburg, Armin H., Ph.D., Northwestern U. Prof., Civil and Environmental Engineering
Mitchell, Joseph S., Ph.D., Stanford U. Asst. Prof., Operations Research and Industrial Engineering
Moon, Francis C., Ph.D., Cornell U. Prof., Mechanical and Aerospace Engineering
Moore, Franklin K., Ph.D., Cornell U. John C. Ford Professor of Mechanical Engineering, Mechanical and Aerospace Engineering
Muckstadt, John A., Ph.D., U. of Michigan. Prof., Operations Research and Industrial Engineering
Mukherjee, Pratap, Ph.D., Stanford U. Prof., Theoretical and Applied Mechanics
Nelkin, Mark S., Ph.D., Cornell U. Prof., Applied and Engineering Physics
Nelson, Arthur H., Ph.D., U. of California at Berkeley. Prof., Civil and Environmental Engineering
Ober, Christopher K., Ph.D., U. of Massachusetts. Asst. Prof., Materials Science and Engineering
Olbricht, William L., Ph.D., California Inst. of Technology. Assoc. Prof., Chemical Engineering
Oliver, Jacqueline, Ph.D., Columbia U. Irving Porter Church Professor of Engineering, Geological Sciences
O'Rourke, Thomas D., Ph.D., U. of Illinois. Prof., Civil and Environmental Engineering
Otani, Niels F., Ph.D., U. of California at Berkeley. Asst. Prof., Electrical Engineering
Panagiotopoulos, Athanassios, Ph.D., Massachusetts Inst. of Technology. Asst. Prof., Chemical Engineering
Paranghi, Prakash, Ph.D., U. of Wisconsin at Milwaukee. Asst. Prof., Computer Science
Park, Hoon, Ph.D., Cornell U. Prof., Civil and Environmental Engineering
Parlange, Jean-Yves, Ph.D., Brown U. Prof., Agricultural and Biological Engineering
Parlange, Prakash, Ph.D., Cornell U. Prof., Civil and Environmental Engineering and Agronomy
Philipson, Warren R., Ph.D., Cornell U. Prof., Civil and Environmental Engineering
Phlipot, William D., Ph.D., U. of Delaware. Assoc. Prof., Electrical Engineering
Phoenix, S. Leigh, Ph.D., Cornell U. Prof., Mechanical and Aerospace Engineering
Pinegro, Keshav K., Ph.D., Massachusetts Inst. of Technology. Asst. Prof., Operations Research and Industrial Engineering
Pitkin, Ronald E., Ph.D., Cornell U. Assoc. Prof., Agricultural and Biological Engineering
Pollock, Clifford R., Ph.D., Rice U. Assoc. Prof., Electrical Engineering
Pope, Stephen B., Ph.D., Imperial College of Science and Technology (England). Prof., Mechanical and Aerospace Engineering
Pope, Christopher, Ph.D., U. of Illinois. Prof., Electrical Engineering
Pisai, Mark L., Ph.D., Princeton U. Asst. Prof., Mechanical and Aerospace Engineering
Pois, Rajeev, Ph.D., Harvard U. Prof., Materials Science and Engineering
Rand, Richard H., Sc.D., Columbia U. Prof., Theoretical and Applied Mechanics
Reeves, Anthony P., Ph.D., U. of Kent at Canterbury (England). Assoc. Prof., Electrical Engineering
Rehugler, Gerald E., Ph.D., Iowa State U. Prof., Agricultural and Biological Engineering
Renegar, James, Ph.D., U. of California at Berkeley. Assoc. Prof., Operations Research and Industrial Engineering
Resler, Edwin L., Jr., Ph.D., Cornell U. Joseph Newton Pew, Jr., Professor of Engineering, Mechanical and Aerospace Engineering
Resnick, Sidney, Ph.D., Purdue U. Prof., Operations Research and Industrial Engineering
Rhodes, Frank H. T., Ph.D., U. of Birmingham (England). Prof., Geological Sciences
Rhodin, Thor N., Ph.D., Princeton U. Prof., Applied and Engineering Physics
Rodriguez, Ferdinand, Ph.D., Cornell U. Prof., Chemical Engineering
Rokakas, Phoebus, Ph.D., California Inst. of Technology. Asst. Prof., Theoretical and Applied Mechanics
Rounds, Robin, Ph.D., Stanford U. Asst. Prof., Operations Research and Industrial Engineering
Rue, Alan L., Ph.D., U. of Utah. Class of 1912 Professor, Materials Science and Engineering
Ruppert, David, Ph.D., Michigan State U. Prof., Operations Research and Industrial Engineering
Sachs, Wolfgang H., Ph.D., Johns Hopkins U. Prof., Theoretical and Applied Mechanics
Salton, Gerard, Ph.D., Harvard U. Prof., Computer Science
Samorodinskys, Gennady S., Technion-Israel Inst. of Technology. Asst. Prof., Operations Research and Industrial Engineering
Sansalone, Mary J., Ph.D., Cornell U. Assoc. Prof., Civil and Environmental Engineering
Santner, Thomas J., Ph.D., Purdue U. Prof., Operations Research and Industrial Engineering
Sax, Stephen L., Ph.D., Northwestern U. Prof., Materials Science and Engineering
Scheele, George F., Ph.D., U. of Illinois. Prof., Chemical Engineering
Schneider, Fred B., Ph.D., SUNY at Stony Brook. Assoc. Prof., Computer Science
Schubert, Lee W., Ph.D., Yale U. Assoc. Prof., Operations Research and Industrial Engineering
Schuler, Richard E., Ph.D., Brown U. Prof., Civil and Environmental Engineering/Economics
Scott, Norman R., Ph.D., Cornell U. Prof., Agricultural and Biological Engineering
Segre, Alberto M., Ph.D., U. of Illinois. Asst. Prof., Computer Science
Seyler, Charles E., Jr., Ph.D., U. of Iowa. Assoc. Prof., Electrical Engineering
Shealy, J. Richard, Ph.D., Cornell U. Asst. Prof., Electrical Engineering
Shen, Shan-Fu, Sc.D., Massachusetts Inst. of Technology. John Edson Sweet Professor of Engineering, Mechanical and Aerospace Engineering
Shmoys, David B., Ph.D., U. of California at Berkeley. Asst. Prof., Operations Research and Industrial Engineering
Schoemaker, Christine A., Ph.D., U. of Southern California. Prof., Civil and Environmental Engineering
Shuler, Michael L., Ph.D., U. of Minnesota. Prof., Chemical Engineering
Stedinger, Jerry R., Ph.D., Harvard U. Assoc. Prof., Civil and Environmental Engineering
Steinberg, Paul H., Ph.D., Johns Hopkins U. Assoc. Prof., Chemical Engineering
Steinhaus, Tammo S., Ph.D., U. of Wisconsin. Asst. Prof., Civil and Environmental Engineering
Steinhardt, Allan O., Ph.D., U. of Colorado. Asst. Prof., Electrical Engineering
Stewart, Harry E., Ph.D., U. of Massachusetts at Amherst. Assoc. Prof. Civil and Environmental Engineering
String, William B., Ph.D., U. of Michigan. Prof., Chemical Engineering
Subramanian, Devika, Ph.D., Stanford U. Asst. Prof., Computer Science
Sudan, Ravindra N., Ph.D., U. of London (England). I.B.M. Professor of Engineering, Electrical Engineering
Tang, Chung L., Ph.D., Harvard U. Spencer T. Olin Professor of Engineering. Electrical Engineering
Tardos, Eva, Ph.D., Eotvos U. (Hungary). Asst. Prof., Operations Research and Industrial Engineering
Taylor, Dean L., Ph.D., Stanford U. Prof., Mechanical and Aerospace Engineering
Teitelbaum, Ray T., Ph.D., Carnegie-Mellon U. Assoc. Prof., Computer Science
Thomas, Robert J., Ph.D., Wayne State U. Prof., Electrical Engineering
Thompson, Michael O., Ph.D., Cornell U. Asst. Prof., Materials Science and Engineering
Thorpe, James S., Ph.D., Cornell U. Prof., Electrical Engineering
Timmons, Michael B., Ph.D., Cornell U. Assoc. Prof., Agricultural and Biological Engineering
Todd, Michael J., Ph.D., Yale U. Prof., Operations Research and Industrial Engineering
Tong, Hwa-Chung, Ph.D., Cornell U. Prof., Electrical Engineering
Torrance, Kenneth E., Ph.D., U. of Minnesota. Prof., Mechanical and Aerospace Engineering
Toueg, Sam, Ph.D., Princeton U. Assoc. Prof., Computer Science
Travers, William B., Ph.D., Princeton U. Prof., Geological Sciences
Trotter, Leslie E., Ph.D., Cornell U. Prof., Operations Research and Industrial Engineering
Turcotte, Donald L., Ph.D., California Inst. of Technology. Prof., Geological Sciences
Turnbull, Bruce W., Ph.D., Cornell U. Prof., Operations Research and Industrial Engineering
Turquoir, Mark A., Ph.D., Massachusetts Inst. of Technology. Prof., Civil and Environmental Engineering
Van Loan, Charles F., Ph.D., U. of Michigan. Prof., Computer Science
Vavasius, Stephen A., Ph.D., Stanford U. Asst. Prof., Computer Science
Voelcker, Herbert B., Ph.D., Imperial College of Science and Technology (England). Prof., Mechanical and Aerospace Engineering
Walker, Larry P., Ph.D., Michigan State U. Assoc. Prof., Agricultural and Biological Engineering
Warford, Zellman, Ph.D., U. of London (England). Prof., Mechanical and Aerospace Engineering
Weber, G. Gustavo, Ph.D., Massachusetts Inst. of Technology. Assoc. Prof., Mechanical and Aerospace Engineering
White, Lionel L., Ph.D., Columbia U. Prof., Operations Research and Industrial Engineering
Wharton, Charles B., M.S., U. of California at Berkeley. Prof., Electrical Engineering
White, Richard N., Ph.D., U. of Wisconsin. James A. Friend Family Distinguished Professor of Engineering, Civil and Environmental Engineering
White, William M., Ph.D., U. of Rhode Island. Assoc. Prof., Geological Sciences
Wise, Frank W., Ph.D., Cornell U. Prof., Applied and Engineering Physics
Wolf, Edward D., Ph.D., Iowa State U. Prof., Electrical Engineering
Wolga, Joseph George, Ph.D., Massachusetts Inst. of Technology. Prof., Electrical Engineering
Zehnder, Alan, Ph.D., California Inst. of Technology. Assoc. Prof., Theoretical and Applied Mechanics
Zollweg, John A., Ph.D., Cornell U. Assoc. Prof., Chemical Engineering
ADMINISTRATION
Alison P. Casarett, dean
Eleanor S. Reynolds, associate dean
Benjamin Ginsberg, secretary of the graduate faculty

Graduate study at Cornell is pursued through the Graduate School, which administers the many graduate fields of study, or through the various graduate professional schools and colleges.

Programs leading to the degrees of Doctor of Law (J.D.), Doctor of Medicine (M.D.), Doctor of Veterinary Medicine (D.V.M.), and Master of Business Administration (M.B.A.) are not administered by the Graduate School. Information on those programs can be obtained from the Law School, the Medical College (New York City), the College of Veterinary Medicine, and the Johnson Graduate School of Management respectively.

GRADUATE SCHOOL

The graduate program at Cornell permits an unusual degree of accommodation to the needs and interests of the individual student. Degree requirements are kept to a minimum. There are no specific course or credit requirements for the advanced general degrees of Master of Arts, Master of Science, and Doctor of Philosophy, but only such general requirements that best accomplish the aim of graduate study: a period of study in residence, the mastery of one subject, adequate knowledge of allied subjects, oral examinations to establish competency for presentation of a dissertation or thesis, and a satisfactory dissertation or thesis. Certain advanced professional degree programs have specific course or credit requirements that are determined by the faculty of the professional school or college in which the degrees are offered.

A close working relationship between the student and faculty members is essential to the graduate program at Cornell. Under the Special Committee system the student is guided by, and works with, at least two or three faculty members chosen by the student to represent his or her major and minor subjects. The major subject representative is the chair of the Special Committee and usually has the primary responsibility for directing the student's thesis or dissertation research.

Students who want to use the university's facilities for intensive specialized training only and who do not want to become degree candidates may apply for admission as non-degree students.

REQUIREMENTS FOR ADMISSION

To be admitted to the Graduate School, an applicant should:

1) hold a baccalaureate degree or its equivalent, granted by a faculty or university of recognized standing;
2) have adequate preparation for graduate study in the chosen field of instruction;
3) have fluent command of the English language;
4) present evidence of promise in advanced study and research; and
5) take the Graduate Record Examinations General Test for those fields that require the GREs.

Before admission can be final, all applicants whose native language is not English must provide proof of competency in the English language. Acceptable proof could be:

1) a Test of English as a Foreign Language (TOEFL) score of 550 or higher;
2) a degree from a college or university in a country where the native language is English; or
3) two or more years of study in an undergraduate or graduate program in a country where the native language is English.

Information on times and places for the TOEFL examination and Graduate Record Examinations and application forms may be obtained from the Educational Testing Service, Princeton, New Jersey 08540, U.S.A.

Applications for admission to the Graduate School may be submitted at any time during the year. Many fields, however, require that applicants for fall admission submit their completed applications before January 10. Applicants who are also applying for Cornell Graduate School fellowship consideration must submit their completed applications and supporting credentials before January 10.

Inquiries regarding admission and fellowships should be addressed to the Graduate School Admissions Office, Cornell University, Sage Graduate Center, Ithaca, New York 14853-6201.

Inquiries regarding facilities for advanced study and research in a given field, special requirements for such study and research, and opportunities for teaching and research assistantships should be addressed to the graduate faculty representative in the particular field.

More detailed information may be obtained from the following publications: the Graduate School Catalog, 1990-92, available from Cornell University Catalogs, 122 Maple Avenue, Ithaca, NY 14850-4902, and the application Graduate Study at Cornell University, available from the Graduate School, Cornell University, Sage Graduate Center, Ithaca, New York 14853-6201.
The School of Hotel Administration Library, the largest of its kind, provides a comprehensive collection of publications on hotel and restaurant operation, business, and related subjects. The library's resources allow students to search numerous computerized bibliographic databases, including the hospitality industry's most extensive database containing current bibliographic information on the periodical literature of the industry. Among the library's special features are the Herndon and Vehling collections, which contain numerous rare materials.

Statler Hall and J. Willard Marriott Executive Education Center. The all-new hotel comprises 150 guest rooms, an executive education center, restaurants, lounges, and the university's faculty and staff club. It is an industry showcase, one that demonstrates the finest in hospitality and hospitality-education practices. The Statler Hotel is an independent, self-sustaining teaching hotel that provides quality food, beverage, meeting, and lodging services to the Cornell community and campus visitors, including parents and those who visit Cornell as part of the application process. In addition, the Statler Hotel is a practice-management facility for certain classes, internships, and for independent-study projects. It offers part-time jobs to approximately 200 students each semester, preference is given to students in the hotel school.

UNDERGRADUATE CURRICULUM

The School of Hotel Administration offers education in the numerous disciplines required for modern management, including accounting, finance, marketing, operations, communication, properties management, information technology, law, and human-resources management. The school's graduates hold executive positions in a variety of industries, but are especially well represented in the management of hospitality-related enterprises, including the lodging, food-service, and travel industries.

Students are encouraged to pursue a broad range of courses, including those in the humanities, as preparation for assuming positions in the business community. Included in the basic curriculum are courses in financial management, food and beverage operations, administration, and physical-plant management.

To satisfy degree requirements, every undergraduate enrolled in the School of Hotel Administration must complete a minimum of two periods of ten weeks each (or the equivalent) of full-time, supervised, relevant employment. Without advance approval, such credit may not count toward the degree.

The basic program leading to the undergraduate degree in hotel administration, as set forth below, is enriched by a broad selection of free and distributive elective courses offered by the school and elsewhere in the university. For more complete information about undergraduate program requirements, see the school's admissions catalog (available in room 174 Statler Hall).

Requirements for Graduation

The requirements for graduation outlined below are the result of an extensive revision of the school's curricula that was completed in 1988. Regularly enrolled students in the School of Hotel Administration are candidates for the degree of Bachelor of Science. The requirements for that degree are:

1) completion of eight terms in residence;
2) completion, with a minimum average of 2.0, of 120 required and elective credits, as set forth in the table below;
3) completion of two units of practice credit prior to the last term of residence, as defined below;
4) completion of the university requirement in physical education (two units, usually taken during the first two terms of residence);
5) attainment of a grade-point average of at least 2.0 in the final semester.

*Students who plan to attend summer school at Cornell or elsewhere should keep in mind the degree requirement of a minimum of two periods of ten weeks each (or the equivalent) of full-time, supervised, relevant employment.
†Students transferring from other colleges and universities may be allowed appropriate credit against the residence requirement at the time of admission. Transfer students must complete a minimum of five semesters in the program.

Suggested course programs also appear on the following pages. The core courses account for 67 of the 120 credits needed for graduation, the selected subject concentration accounts for 12 credits, and 18 credits are allotted for distributive electives. The remaining 23 credits may be earned in courses chosen from the offerings of any college of the university, provided that the customary requirements for admission to such courses are met.

Students in the School of Hotel Administration who plan to attend summer school at Cornell or elsewhere or who propose to attend any other university, with the expectation that the credit earned will be counted toward the Cornell degree in hotel administration, must obtain the approval of the school in advance. Without advance approval, such credit may not count toward the degree.

Credit earned in military science, aerospace studies, or naval-science courses may be counted in the 23-credit group of free electives. All students are required by the university to take two courses in physical education, but no credit toward the academic degree is allowed for these courses.
Grading System
Letter grades ranging from A+ to F are given to indicate academic performance in each course. These letter grades are assigned a numerical value for each term average as follows: A is equivalent to 4.0, B to 3.0, C to 2.0, D to 1.0, F to 0. For good standing, the student must maintain a minimum average of 2.0. To graduate, a cumulative average of 2.0 and a final-term average of 2.0 are required as minimums. Of the free-elective courses, a maximum of 4 credits each term may be taken on a "satisfactory-unsatisfactory" (S-U) basis.

Students whose term averages are at least 3.3 and who took at least 12 credits of letter grades with no unsatisfactory or incomplete grades are honored by being placed on the Dean's List.

Practice-Credit Requirement
As part of degree requirements, undergraduates enrolled in the School of Hotel Administration must complete a specific set of practice-credit requirements. These requirements are set forth in the Practice Credit Work Handbook for Undergraduates in the School of Hotel Administration. The school registrar distributes copies of this document upon request to enrolled students.

A limited number of upperclass students are encouraged to enroll in management-intern programs that entail six to eight months of on-the-job managerial instruction and experience. For the details on these programs, see the section "Directed Study" on the following pages.

Course Requirements for Graduation
| Required courses | Credits |
|---|
| Operation Management: Hotel Administration 103, 303, 403 | 9 |
| Human-Resources Management: Hotel Administration 211, 212 | 6 |
| Financial Management: Hotel Administration 225, 226, 325 | 10 |
| Food and Beverage Management: Hotel Administration 136, 236, 335 | 12 |
| Marketing and Tourism: Hotel Administration 245 | 3 |
| Properties Management: Hotel Administration 255, 355 | 6 |
| Communication: Hotel Administration 165, 305 | 6 |
| Information Technology: Hotel Administration 174 | 3 |
| Law: Hotel Administration 387 | 3 |
| Quantitative Methods: Hotel Administration 191 | 3 |
| Economics: Economics 101, 102 | 6 |
| Specifically required credits | 67 |
| Concentration | 12 |
| Distributive electives | 18 |
| Free electives | 23 |
| Total credits required for graduation | 120 |

UNDERGRADUATE PROGRAM OF STUDY
The undergraduate curriculum of the School of Hotel Administration is continually being revised and expanded. In some cases, the numbers of old and new courses overlap. Class meeting times for the hotel school are not listed in this edition of this catalog. All meeting times and more detailed information about the courses may be found in the hotel school's Course Supplement, which is issued each semester. It is available from the hotel school registrar, room 178 Statler Hall (telephone 255-3739).

Typical Course Sequences

The following arrangements of courses tend to be more fixed in the freshman and sophomore years, with a greater degree of flexibility characterizing the upperclass years.

Freshman Year
Typically, a freshman schedule will consist of 14 to 16 credits each term, to include the following:

Required courses
H Adm 103, Principles of Management 3
H Adm 136, Food and Beverage Management 4
H Adm 165, Managerial Communication: Writing Principles and Process 3
H Adm 174, Microcomputing 3
H Adm 191, Quantitative Methods 3
Econ 101, Microeconomics 3
Econ 102, Macroeconomics 3
Distributive electives 6
Free electives 0-4 28-32

Sophomore Year

Required courses
H Adm 211, Human-Resources Management 3
H Adm 212, Human Relations Skills 3
H Adm 225, Financial Accounting 3
H Adm 226, Financial Management 4
H Adm 236, Culinary Theory and Practice 4
H Adm 243, Principles of Marketing 3
H Adm 255, Hospitality Facilities Development and Planning 3
Distributive electives 3-6 29-35
Free electives 3-6

Junior Year

Required courses
H Adm 303, Organizational Processes and Design 3
H Adm 325, Hospitality Financial Management 3
H Adm 335, Restaurant Management 4
H Adm 355, Hospitality Facilities Construction and Operation 3
H Adm 365, Managerial Communication: Principles and Practices 3
H Adm 387, Business and Hospitality Law 3
Concentration 6
Free electives 15-26 24-35

Programs in Special Areas

While completing the required courses leading to the bachelor's degree, undergraduates in the school must also select a concentration. 12 elective credits in a major area of instruction. These include operation management, human-resources management, financial management, food and beverage management, marketing, properties management, and communications and hospitality management (self-directed study).

When students select one of these major fields of concentration, they should consult the coordinator of instruction in that area during the sophomore year to plan the sequence of elective courses that will best fit their program.

A list of elective courses offered in the school's special areas of instruction is provided below.

Elective Courses in Hotel Administration

The following is a list of courses currently offered within the School of Hotel Administration that may, as appropriate, be used in partial or full satisfaction of the free-elective allocation or the requirements for the specified area of concentration.

The first digit of the course number is in general indicative of the level of the course; the second digit indicates the curricular area, according to the following scheme:

First digit
1—freshman/introductory
2—sophomore
3—junior
4—senior
5—provisional course offering
6—undergraduate independent study
7—graduate
<table>
<thead>
<tr>
<th>Operation Management</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>H Adm 102, Distinguished Management Lectures</td>
<td>1</td>
</tr>
<tr>
<td>H Adm 203, Club Management</td>
<td>2</td>
</tr>
<tr>
<td>H Adm 304, Rooms-Division Management</td>
<td>2</td>
</tr>
<tr>
<td>H Adm 305, Resort and Condominium Management</td>
<td>3</td>
</tr>
<tr>
<td>H Adm 306, Franchising in the Hospitality Industry</td>
<td>2</td>
</tr>
<tr>
<td>H Adm 401, Seminar in Management Principles</td>
<td>2</td>
</tr>
<tr>
<td>H Adm 402, Hospitality Management Seminar</td>
<td>1</td>
</tr>
<tr>
<td>H Adm 404, Management Organization of the Small Business</td>
<td>3</td>
</tr>
<tr>
<td>H Adm 405, Management Planning for the Hospitality Industry</td>
<td>3</td>
</tr>
<tr>
<td>H Adm 406, Integrated Studies in the Hospitality Industry</td>
<td>3</td>
</tr>
<tr>
<td>H Adm 407, Seminar in Hotel Operations</td>
<td>2</td>
</tr>
<tr>
<td>H Adm 408, Casino Management</td>
<td>2</td>
</tr>
<tr>
<td>H Adm 409, Airline Management</td>
<td>3</td>
</tr>
<tr>
<td>H Adm 501, Creative Management for Organizational Change</td>
<td>3</td>
</tr>
<tr>
<td>H Adm 600, Undergraduate Independent Study—Operation Management</td>
<td>V*</td>
</tr>
<tr>
<td>H Adm 601, Management Intern Program I—Operations</td>
<td>6</td>
</tr>
<tr>
<td>H Adm 602, Management Intern Program II—Academic</td>
<td>6</td>
</tr>
<tr>
<td>H Adm 603, Hotel Ezra Cornell</td>
<td>V*</td>
</tr>
<tr>
<td>H Adm 700, Graduate Independent Research—Operation Management</td>
<td>V*</td>
</tr>
<tr>
<td>Human Resources Management</td>
<td>Credits</td>
</tr>
<tr>
<td>H Adm 313, Training in the Hospitality Industry</td>
<td>3</td>
</tr>
<tr>
<td>H Adm 414, Organizational Behavior and Small-Group Processes</td>
<td>3</td>
</tr>
<tr>
<td>H Adm 416, Special Studies in the Management of Human Resources</td>
<td>3</td>
</tr>
<tr>
<td>H Adm 511, Current Problems in the Management-Labor Relationship</td>
<td>2</td>
</tr>
<tr>
<td>H Adm 512, Managing Organizational Change and Productivity</td>
<td>3</td>
</tr>
<tr>
<td>H Adm 513, Situational Leadership and Organizational Behavior</td>
<td>2</td>
</tr>
<tr>
<td>H Adm 610, Undergraduate Independent Study—Human Resources Management</td>
<td>V*</td>
</tr>
<tr>
<td>H Adm 710, Graduate Independent Research—Human Resources Management</td>
<td>V*</td>
</tr>
<tr>
<td>H Adm 711, Negotiations in the Service Industry</td>
<td>3</td>
</tr>
<tr>
<td>Financial Management</td>
<td>Credits</td>
</tr>
<tr>
<td>H Adm 120, Survey of Financial Management</td>
<td>2</td>
</tr>
<tr>
<td>H Adm 123, Financial Accounting Principles</td>
<td>3</td>
</tr>
<tr>
<td>H Adm 321, Hospitality Management Contracts</td>
<td>1</td>
</tr>
<tr>
<td>H Adm 322, Investment Management</td>
<td>2</td>
</tr>
<tr>
<td>H Adm 323, Hospitality Real-Estate Finance</td>
<td>3</td>
</tr>
<tr>
<td>H Adm 326, Corporate Finance</td>
<td>3</td>
</tr>
<tr>
<td>H Adm 328, Advanced Hospitality Managerial Accounting</td>
<td>3</td>
</tr>
<tr>
<td>H Adm 421, Internal Control in Hotels</td>
<td>2</td>
</tr>
<tr>
<td>H Adm 422, Taxation and Management Decisions</td>
<td>3</td>
</tr>
<tr>
<td>H Adm 620, Undergraduate Independent Study—Financial Management</td>
<td>V*</td>
</tr>
<tr>
<td>H Adm 720, Graduate Independent Research—Financial Management</td>
<td>V*</td>
</tr>
<tr>
<td>H Adm 724, Analysis and Interpretation of Financial Statements</td>
<td>3</td>
</tr>
<tr>
<td>H Adm 729, Hospitality Investments and Portfolio Management</td>
<td>3</td>
</tr>
<tr>
<td>Food and Beverage Management</td>
<td>Credits</td>
</tr>
<tr>
<td>H Adm 336, Principles of Nutrition</td>
<td>5</td>
</tr>
<tr>
<td>H Adm 337, The Composition and Properties of Food</td>
<td>4</td>
</tr>
<tr>
<td>H Adm 338, Nutrition and Fitness in the Resort Hotel and Spa Industry</td>
<td>3</td>
</tr>
<tr>
<td>H Adm 339, Airline Food-Service Management</td>
<td>3</td>
</tr>
<tr>
<td>H Adm 430, Introduction to Wine and Spirits</td>
<td>2</td>
</tr>
<tr>
<td>H Adm 431, Seminar in Independent Restaurant Operations Management</td>
<td>3</td>
</tr>
<tr>
<td>H Adm 433, Food-Service Management in Business, Industry, and Health-Care Facilities</td>
<td>3</td>
</tr>
<tr>
<td>H Adm 434, Desserts Merchandising</td>
<td>3</td>
</tr>
<tr>
<td>H Adm 435, Selection, Procurement, and Supply Management</td>
<td>3</td>
</tr>
<tr>
<td>H Adm 436, Beverage Management</td>
<td>2</td>
</tr>
<tr>
<td>H Adm 437, Seminar in Culture and Cuisine</td>
<td>3</td>
</tr>
<tr>
<td>H Adm 532, Seminar in Chain-Restaurant Operations Management</td>
<td>3</td>
</tr>
<tr>
<td>H Adm 553, Current Issues in Food Safety and Sanitation</td>
<td>3</td>
</tr>
<tr>
<td>H Adm 558, Gastronomy—Understanding Food-and-Wine-Pairing Principles</td>
<td>2</td>
</tr>
<tr>
<td>H Adm 630, Undergraduate Independent Study—Food and Beverage Management</td>
<td>V*</td>
</tr>
<tr>
<td>H Adm 730, Graduate Independent Research—Food and Beverage Management</td>
<td>V*</td>
</tr>
<tr>
<td>Marketing and Tourism</td>
<td>Credits</td>
</tr>
<tr>
<td>H Adm 244, Tourism I</td>
<td>3</td>
</tr>
<tr>
<td>H Adm 245, Hotel Sales Management</td>
<td>2</td>
</tr>
<tr>
<td>H Adm 441, Advertising Strategies</td>
<td>3</td>
</tr>
<tr>
<td>H Adm 444, Tourism II</td>
<td>3</td>
</tr>
<tr>
<td>H Adm 449, International Marketing</td>
<td>3</td>
</tr>
<tr>
<td>H Adm 541, Marketing Communications Strategy</td>
<td>3</td>
</tr>
<tr>
<td>H Adm 542, Marketing Communications Media</td>
<td>3</td>
</tr>
<tr>
<td>H Adm 543, Marketing Research</td>
<td>3</td>
</tr>
<tr>
<td>H Adm 544, Services Marketing</td>
<td>5</td>
</tr>
<tr>
<td>H Adm 548, Marketing Practices in the Casino Industry</td>
<td>2</td>
</tr>
<tr>
<td>H Adm 640, Undergraduate Independent Study—Marketing and Tourism</td>
<td>V*</td>
</tr>
<tr>
<td>H Adm 740, Graduate Independent Research—Marketing and Tourism</td>
<td>V*</td>
</tr>
<tr>
<td>H Adm 742, Strategic Marketing Planning in the Hospitality Industry</td>
<td>3</td>
</tr>
<tr>
<td>Properties Management</td>
<td>Credits</td>
</tr>
<tr>
<td>H Adm 256, Insurance and Risk Management</td>
<td>3</td>
</tr>
<tr>
<td>H Adm 350, Principles of Real Estate</td>
<td>3</td>
</tr>
<tr>
<td>H Adm 351, Hospitality Facilities Design and Analysis</td>
<td>3</td>
</tr>
<tr>
<td>H Adm 352, Hotel Planning and Interior Design</td>
<td>3</td>
</tr>
<tr>
<td>H Adm 353, Introductory Food-Service Facilities Design</td>
<td>3</td>
</tr>
<tr>
<td>H Adm 356, Hospitality Risk Management</td>
<td>3</td>
</tr>
<tr>
<td>H Adm 358, Hospitality-Industry Real Estate</td>
<td>3</td>
</tr>
<tr>
<td>H Adm 451, Seminar in Properties Management</td>
<td>1</td>
</tr>
<tr>
<td>H Adm 453, Advanced Food-Service Facilities Planning and Design</td>
<td>3</td>
</tr>
<tr>
<td>H Adm 454, Restaurant Planning</td>
<td>3</td>
</tr>
<tr>
<td>H Adm 456, Hospitality Facilities Management</td>
<td>3</td>
</tr>
<tr>
<td>H Adm 457, Advanced Development and Construction</td>
<td>3</td>
</tr>
<tr>
<td>H Adm 554, Mixed-Use Development</td>
<td>2</td>
</tr>
<tr>
<td>H Adm 650, Undergraduate Independent Study—Properties Management</td>
<td>V*</td>
</tr>
<tr>
<td>H Adm 750, Graduate Independent Research—Properties Management</td>
<td>V*</td>
</tr>
<tr>
<td>Management Support—Communications</td>
<td>Credits</td>
</tr>
<tr>
<td>H Adm 266, Intermediate French: Le Francais de l'Hotellerie</td>
<td>3</td>
</tr>
<tr>
<td>H Adm 267, Intermediate Spanish: Espanol de Hoteleria</td>
<td>3</td>
</tr>
<tr>
<td>H Adm 364, Advanced Business Writing</td>
<td>2</td>
</tr>
<tr>
<td>H Adm 562, Special Topics in Communication</td>
<td>V*</td>
</tr>
</tbody>
</table>
GRADUATE CURRICULUM

The school's programs for advanced degrees include those of Master of Professional Studies, Master of Science, and Doctor of Philosophy. For further information on graduate programs, consult the school's graduate catalog (available in room 172 Statler Hall; contact Professor John E. H. Sherry, the school's graduate faculty representative; or see the university's Announcement from the Graduate School.

Candidates for the Master of Science or Doctor of Philosophy degrees should refer to the admission and degree requirements set forth in the Announcement. The student's program is developed with the aid and direction of a special committee chosen by the student from members of the Graduate Faculty. This committee also approves the thesis project.

Candidates for the Master of Professional Studies (M.P.S.) degree pursue one of four tracks in their graduate studies. Students whose undergraduate degrees are in areas other than hotel administration follow track I, for which the required two-year program is set forth below.

The curricula for M.P.S. tracks II and III are specifically designed for each student, based on previous experience and career goals. Students who hold four-year degrees in hotel administration from an institution other than Cornell qualify for the track II curriculum. A minimum of three residence units and 48 credits are required to complete track II. Track II students must take 12 credits in a concentration, 6 credits of monograph, 16 elective credits, and any required courses not yet completed prior to their arrival.

Track III is for students who hold a Bachelor of Science degree in hotel administration from Cornell. Two residence units and 32 credits are required to complete track III. Track III students must take 12 credits in a concentration, 6 credits of monograph, and 14 elective credits.

Track IV is for students who hold a master's degree and have no prior degrees in hotel administration. Three residence units and a minimum of 48 credits are required (if no required courses are exempted, 50 credits may be necessary to complete the program). Track IV students must take 12 credits in a concentration, 6 credits of monograph, prerequisites and any required courses not yet completed.

All students are required to designate an area of concentration before their next-to-last term. Each student also writes an investigative report or monograph, under the guidance of an adviser, to meet requirements for the M.P.S. degree.

Required Program for M.P.S. Track I Students

Required courses Credit
H Adm 705, Business Policy 3
H Adm 718, Advanced Human-Resources Management 3
H Adm 725, Graduate Managerial Accounting in the Hospitality Industry 3
H Adm 726, Graduate Corporate Finance 3
H Adm 731, Graduate Food and Beverage Management 3

DIRECTED STUDY

Independent Research

Students may conduct independent research (directed study) projects in any academic area of the school under the direction of a faculty member. Credit is arranged on an individual basis. Only the first 3 credits of directed study may be credited against concentration credits during the undergraduate years. Additional directed study is credited against free electives. To enroll in an independent research project, students must obtain written permission from the school before course registration.

Management-Intern Program

This program is open only to upperclass students. Students accepted into the program earn 12 credits, which can be applied as free electives. With faculty approval some credits might be applied toward a concentration.

Students enrolled in this program have an opportunity to combine managerial readings and previous course work with challenging work experience. Application for admission should be made one semester in advance. Guidance is provided by school staff members under the direction of a faculty committee. Management-intern positions are available at many locations worldwide, including several on the Cornell campus. Students receive both academic and practice credit, and appropriate financial remuneration for the period of the program. The student is charged reduced tuition.

Study Abroad

Programs providing an opportunity to study in a foreign country and develop an awareness of the international component of hospitality industry can contribute to each student's total educational experience. Students in recent years have studied in Italy, Spain, France, and England. Information on the many study-abroad programs operating during the summer and academic year is available at the University Career Center (in Sage Hall). Students should discuss their plans with the school's study-abroad representative, Professor William Kaven, so that all petition and credit-evaluation procedures are followed.
OPERATION MANAGEMENT

COURSES

For up-to-date information about course scheduling, and to obtain a course supplement, contact the hotel school registrar in room 178 Statler Hall, telephone 255-3739.

100 Principles of Management
Fall. 3 credits. Limited to DUS students, non-hotel school students, and transfer students. Required for transfer students. A systems approach to understanding the nature of management in the hotel and restaurant industries.

102 Distinguished Management Lectures
Fall. 1 credit. Limited to hotel school students except by written permission. Elective. A series of lectures given by nonresident speakers prominent in the hotel and restaurant industries or allied fields. Topics include career ladders, company profiles, and business-policy formulation.

103 Principles of Management
Fall. 3 credits. Limited to hotel school freshmen. Required. A systems approach to understanding the nature of management in the hotel and restaurant industries.

203 Club Management
Fall, 7 weeks only. 2 credits. Elective. The private-membership club and how it differs from other forms of business in the hospitality industry. Topics include constitution and by-laws issues, administration and interface with board of directors and committees, recreation management, labor management, and marketing of major tournaments.

303 Organizational Processes and Design
Fall or spring. 3 credits. Limited to 65 students. Required. This course focuses on the design, development, and appropriateness of organizational systems, processes, and structures from a managerial perspective. Students will become familiar with alternative organizations, including hospitality organizations, through readings, case studies, and field experiences.

304 Rooms-Division Management
Fall, second 7 weeks only. 2 credits. Elective. An introductory course concentrating on the fundamentals of rooms-division management. Areas of concentration include front-desk operations and the reservations, housekeeping, and telephone departments. Particular emphasis is on selling strategies, forecasting, rate efficiency, labor management, and guest relations.

305 Resort and Condominium Management
Fall. 3 credits. Not open to freshmen. Elective. A lecture course in the operation of resort hotels and condominiums. Resorts of various types, seasons, and economic levels are considered. Emphasis is on the promotion of business, the provision of facilities, services, and guest entertainment. Contract and noncontract relationships with the travel industry are reviewed. Terminology, rental-pool agreements, S.E.C. regulations, state statutory requirements, developer-management-owner contracts, and relationships in condominiums are reviewed. Tax implications of both condominium ownership and management are fully considered.

306 Franchising in the Hospitality Industry
Spring, weeks 1-7. 2 credits. Prerequisite: H Adm 226. Elective. Relationships between franchisor and franchisee, advantages and disadvantages of franchising, structure and services offered by franchisees. Case studies of leading lodging and restaurant companies currently offering franchises will be discussed. Guest speakers from the franchising industry.

402 Hospitality Management Seminar
Fall. 1 credit. Limited to 20 seniors and graduate students. Elective. A weekly meeting with the H Adm 102 speaker of the week. The subject matter varies from week to week, depending on the area of expertise of the speaker. The class is relatively unstructured, and students are expected to ask questions and enter into discussion.

403 Integrative Senior Requirement
Fall or spring. Required. The integrative senior requirement ensures that hotel school students have an interdisciplinary overview of hospitality-industry operations prior to graduation. Courses 404, 405, 406, 407, 431, and 503 provide this overview, and any one of them will satisfy the course requirement. The credits earned by the student is the credit assigned to the course selected.

404 Management Organization of the Small Business
Fall or spring. 3 credits. Limited to 20 juniors, seniors, and graduate students. Prerequisite: H Adm 325 or equivalent. Elective. The course focuses on the entrepreneur and the decisions made in planning, financing, developing, and operating a new business venture. Case studies and guest speakers will be used. There will be one major term project, which will require the application of the course material to a field consulting project that will result in written and oral reports to the owner of the business and the Small Business Administration.

405 Management Planning for the Hospitality Industry
Spring. 3 credits. Limited to 25 hotel school students. Prerequisites: all required undergraduate courses at the 100, 200, and 300 levels. Elective. The course adopts a managerial perspective to examine the concept of strategic management, including the determination, formulation, implementation, and evaluation of strategic management in the hospitality industry at both the corporate and business-unit level. Class discussion is encouraged.

406 Integrated Studies in the Hospitality Industry
Fall or spring. 3 credits. Limited to 18 seniors and graduate students. Elective. Analysis of case studies involving issues of business strategy, human relations, administration, marketing, and finance. Students will apply course principles through participation in a management simulation exercise. Student groups will make presentations to guest critics.

407 Seminar in Hotel Operations
Spring. 2 credits. Limited to 30 seniors and graduate students. Estimated cost of field trip, $100. Elective. Management theory and practice of hotel operations. How to inquire carefully into real hotel situations will be the major focus of this course. Students will be actively involved in writing and discussing cases on current operations issues.

408 Casino Management
Fall and spring, weeks 1-7. 2 credits. Limited to 50 students. Prerequisite: H Adm 325, 725, or permission of instructor. Estimated cost of field trip, $150. Elective. Topics include the importance of casino operations with a casino hotel and the communication network between the casino and all other departments of the hotel. A field trip to an Atlantic City casino is required.

409 Airline Management
Spring. 3 credits. Limited to 25 students. Prerequisites: H Adm 211 and 212 or written permission of instructor. Fulfills integrative senior requirement. Elective. This course focuses on the airline industry and explores both pre- and post-regulatory climates. Emphasis is on dynamic organizational change in response to fluctuating economic and legal conditions. Topics include business organization, comparative corporate strategies, marketing and distribution networks, operation and service management, union relations, finance, government regulation, and air transport. Case studies will be used and guest lecturers will provide additional insights into the dynamics of airline management. Using the computer-based management simulation called AIRLINE, student teams will manage a regional carrier.

501 Creative Management for Organizational Change
Spring. 3 credits. Limited to 24 students. Elective. Through lectures, exercises, and group problem-solving sessions participants will analyze the characteristics of creative people and organizations, obtain an inventory of their own creative ability, examine blocks to creativity and ways to overcome them, discuss methods for leading creative problem-solving meetings, analyze strategies for producing organizational change, and apply creativity techniques to actual work problems.

503 International Management
Spring. 3 credits. Limited to seniors and graduate students. Prerequisites: H Adm 303, 165, 225, 325, or M.P.S. status. Fulfills the integrative senior requirement. Elective. The course recognizes the globalization of the industry and the importance of international management for those pursuing careers with major companies. It includes a broad overview of key environmental and cultural factors in international management; cross-cultural communication, negotiation, and ethical differences in management; labor supply issues; and issues related to expatriate management. The course format is case studies, discussions, lectures, simulations, and guest speakers.

601 Management Intern Program—Operations
Fall, spring, or summer. 6 credits. Must be taken in conjunction with H Adm 602. Independent research. Elective.
HUMAN-RESOURCES MANAGEMENT COURSES

For up-to-date information about course scheduling, and to obtain a course supplement, contact the hotel school registrar in room 178 Statler Hall, telephone 255-3739.

210 The Management of Human Resources
Fall or spring. 3 credits. Limited to 100 non-hotel school students, no freshmen. Elective. The course examines the role of human-resources management in organizations, starting with an introduction to the personnel function and an analysis of the social, legal, international, and competitive factors influencing HRM. The course focuses on strategic planning and on strategy and policy implementation in the hotel and restaurant industry.

211 Human-Resources Management
Fall and spring. 3 credits. Limited to 100 hotel school students, no freshmen or graduate students. Prerequisite: H Adm 103, H Adm 191 preferred. Required. An introductory study of the human-resources management function, with an emphasis on issues and applications within the hospitality industry. How organizations plan, staff, train, develop, and motivate employees to use their human resources more effectively.

212 Human-Relations Skills
Fall or spring. 3 credits. Limited to 100 students, no freshmen. Prerequisite: H Adm 100 or 103, or by permission of instructor. Lab fee, $15. Required. Discussion and practice of human-relations skills necessary for managing people. Topics include supervising, motivating, and counseling employees; leading effective meetings; conducting creative problem-solving sessions; and time and stress management. Analysis of individual leadership skills and interpersonal and intergroup process skills will be emphasized.

313 Training in the Hospitality Industry
Fall or spring. 3 credits. Limited to 24 students. Prerequisite: H Adm 211. Elective. Training is a fundamental responsibility of hospitality managers and a primary solution to human-resource management problems. The training function within the hospitality industry will be analyzed, and a training and employee development model will be presented. Related subjects such as learning theories, task analysis, the writing of objectives, training methods, and program evaluation will be covered at both the conceptual and experiential levels. Students will gain experience designing and implementing a training program for a hospitality organization.

414 Organizational Behavior and Small-Group Processes
Fall or spring. 3 credits. Limited to 30 hotel school juniors, seniors, and graduate students by written permission of the instructor. Elective. Applications of organizational behavior principles will be explored through lectures, case studies, and management games and exercises. Students will participate in experiential laboratories aimed at enhancing their effectiveness as members or leaders of groups. Topics that will be studied include leadership, decision making, motivation, power, and organizational change.

416 Special Studies in the Management of Human Resources
Fall or spring. 3 credits. Limited to seniors and graduate students, and others with permission of instructor. Prerequisite: H Adm 211. Elective. This course surveys broad, comprehensive human-resources management policy areas (employee relations, staffing, reward systems, and work-system design) from the strategic perspective of the general manager. Case studies and industry guest speakers are utilized. In addition to diagnosing and formulating strategic management-action plans, current trends, essential competencies, and related research developments are examined.

511 Current Problems in the Management-Labor Relationship
Fall. 2 credits. Limited to juniors, seniors, and graduate students. Elective. A seminar course addressing issues affecting industry in general, but with particular emphasis on the service industry. Topics range from wage systems to sexual harassment. The course is for undergraduate students with management career goals who wish to understand the issues facing management in a constantly changing work force and environment.

512 Managing Organizational Change and Productivity
Fall or spring. 3 credits. Limited to juniors, seniors, and graduate students. Elective. The seminar addresses the need for managers to react to a constantly changing work environment. Topics include human-resource management, organizational development, and leadership. The course is for undergraduate students with management career goals who wish to understand the issues facing management in a constantly changing work force and environment.

711 Negotiations in the Service Industry
Fall or spring. 3 credits. Limited to juniors, seniors, and graduate students. Elective. The course examines the roles of managers as negotiators, both within the organization and for the organization. There will be discussion of planning and preparations, tactics, strategies, trends, power, timing, persuasion, the win-win concept, and developing alternatives. Cases are used and there will be opportunity for participation in both individual and team negotiations.

718 Advanced Human-Resources Management
Fall. 3 credits. Limited to hotel school graduate students, and non-hotel school graduate students as space permits by permission of instructor. Prerequisite: H Adm 211, an I/O psychology course, or equivalent. Required. Managers will learn to understand the complexity of their organization's circumstances, to diagnose the contemporary situation, and to accurately anticipate the consequences of managerial action. It examines human-resource management policy areas (planning, labor/employee relations, managerial effectiveness, reward systems, and employee development) from the general manager's perspective within the hospitality/service industry. Besides formulating integrated strategic action plans, current trends, essential competencies, and related research developments will be discussed.

FINANCIAL MANAGEMENT COURSES

120 Survey of Financial Management
Fall or spring. 2 credits. Limited to non-hotel school students. Elective. A survey of accounting principles; organization of corporations; financial statements analysis; and an introduction to managerial decision-making techniques. Emphasis is on analysis and decision making.

123 Financial Accounting Principles
Fall or spring. 3 credits. Limited to non-hotel school students. Elective. An introduction to the basic principles of accounting, involving transaction analysis, flow of accounting data to the financial statements, and careful consideration of accounting for revenues, expenses, assets, liabilities, and owner's equity.

125 Finance
Fall or spring. 3 credits. Limited to non-hotel school students. Prerequisite: H Adm 123. Elective. The course examines fundamental concepts and techniques related to business finance, such as financial statement analysis; time value of money, financial markets, risk, valuation, cost of capital, and capital budgeting.

225 Financial Accounting
Fall. 3 credits. Limited to hotel school students. Required. The basic principles of accounting, including transaction analysis, flow of accounting data to the financial statements, and careful consideration of accounting for revenues, expenses, assets, liabilities, and owner's equity.
226 Financial Management
Spring. 4 credits. Limited to hotel school undergraduates. Limited to 50 students per lab. Prerequisite: H Adm 225 or equivalent. Required.
The course facilitates a broad understanding of both managerial accounting and finance. The overall objective is to develop skill in using accounting information for managerial planning, control, and evaluation and to learn to incorporate accounting knowledge into a framework for short-term and long-term financial decision making. Topics include budgeting, current asset management, short- and long-term financing, capital structure, capital budgeting, cost of capital, and specific applications and issues in the financial structure of the hospitality industry. Required.

321 Hospitality Management Contracts
Spring, last 7 weeks. 1 credit. Elective.
The negotiation and administration of hospitality management contracts are discussed with emphasis on contract concerns of owners, operators, and lenders; financial assessment of owner and operator returns; development of negotiation strategies; and alternative forms of operating agreements. Optional.

322 Investment Management
Fall or spring. 2 credits. Limited to juniors, seniors, and graduate students. Elective.
The course covers institutional and analytical aspects of security analysis and investment management: securities markets, sources of investment information, bonds and stocks valuation, risk-return analysis, behavior of security prices, portfolio analysis, and portfolio management. This course also covers the capital asset pricing theory, the generic stock investment strategy, the screen-to-profile approach, ranked order analysis, and their practical implications for security analysis and investment management. Computer-assisted analysis is discussed and applied in a realistic manner, using large databases and interactive screening computer packages. No previous knowledge of computers is required. Students participate in an investment game in which they select and manage large portfolios under real-life conditions. Required.

323 Hospitality Real-Estate Finance
Spring. 3 credits. Prerequisite: H Adm 325 or equivalent. Elective.
Methods of analyzing real-estate returns for both owners and lenders; financial analysis and investment decision making; appraising and valuing; equity and debt structures, to include: joint ventures; limited partnerships; syndications; construction mortgages; “permanent” debt financing vehicles, to include participating, convertible, seller-financial, and government-assisted loans and mortgages; work-out strategies for distressed properties, and analysis of various forms of operating agreements, to include management contracts, leases, franchises, and referral agreements. Presentations by hospitality-industry real estate practitioners tie course material to current industry practices. Optional.

325 Hospitality Financial Management
Fall. 3 credits. Required.
The course integrates the areas of financial accounting, managerial accounting, and finance and applies the interpretive and analytical skills of each to hospitality-industry situations. Specific topics include uniform system of accounts, revenue and expense tracking and internal control, accounting systems, comparative analysis, capital budgeting decision making, equity and debt-financing structures, and operating agreement forms. Students analyze hospitality operations and projects using the above techniques and present their findings in management report form. Optional.

326 Corporate Finance
Fall. 3 credits. Limited to seniors and graduate students. Prerequisite: H Adm 225 or equivalent. Required.
Topics of interest to the financial policy maker are discussed: financial decision makers that often have no simple answer. Topics include working capital policy, the capital structure decisions in a dynamic framework, debt capacity, lease vs. buy analysis, dividend and retention decisions, project feasibility assessment, the owner operation decision and agency relationship, public/private decisions and market timing, restructuring in the hospitality industry, and creative financing techniques. Required.

724 Analysis and Interpretation of Financial Statements
Fall. 3 credits. Limited to seniors and M.P.S. students. Elective.
The course covers the financial accounting issues that are encountered in reporting the results of operations for corporate enterprises. Accounting principles as well as future extensions are explored and discussed. Emphasis is on the components of financial statements, how and why they are reported, and their impact on the overall financial position of the firm and its acceptance in capital markets. The underlying objective of the financial statement expertise is to analyze a firm as a whole and interpret that analysis. Emphasis is on both outsiders’ views of the company and decision making through interpretation of the statements. Required.

522 Hospitality Revenue Management
Fall. 3 credits. Limited graduate students, and senior by permission of professor. Prerequisite: background in economics, marketing, or finance. Elective.
The course covers new techniques in hotel and restaurant pricing policies, including pricing theory as applied to the service industry, the ideal pricing system, the concept of revenue management, implementing revenue management, the diagnostic system, the cost and demand sides, the simultaneous solution, multipricing systems, market segmentation, product differentiation, price discrimination, feedback mechanisms, and update and control. Required.
726 Graduate Corporate Finance
Spring. 3 credits. Limited to graduate students. Prerequisite: H Adm 726. Recommended: knowledge of algebraic techniques and elementary statistics (students who have not recently had a statistics course are urged to study review books in mathematics and elementary statistics). M.P.S. requirement. An introduction to the principles and practices of business finance, including the development of finance and real-life projects. Topics include risk analysis, valuation concepts, capital budgeting, cost of capital, capital structure, dividend policy, long-term financing, financial planning, short- and intermediate-term financial management, and mergers and consolidations. Computer-assisted decision support models are applied in a realistic manner using interactive packages. The course assumes knowledge of quantitative techniques and basic statistics.

729 Hospitality Investments and Portfolio Management
Fall. 3 credits. Limited to graduate students and a limited number of undergraduates with written permission of instructor. Prerequisite: a background in economics and marketing or finance. Not offered 1990–91. Elective. New techniques in hotel and restaurant pricing policies, which include pricing theory as applied to the service industry, the ideal pricing system, and the concept of revenue management. Also included is the implementation of revenue management; the diagnostic system, the cost side, the demand side, the simultaneous solution, multi-pricing systems, market segmentation, product differentiation, price discrimination, the feedback mechanism, and update and control. New computer programs for revenue and yield management will be critically evaluated.

FOOD AND BEVERAGE MANAGEMENT COURSES

For up-to-date information about course scheduling, and to obtain a course supplement, contact the hotel school registrar in room 178 Statler Hall, telephone 255-3739.

136 Food and Beverage Management
Fall or spring. 4 credits. Limited to hotel school students. Required. An introduction to the principles of food and beverage management, beginning with an overview of the food-service industry at large. Attention is focused on major industry segments, business practices, and trends. Subsequently, detailed consideration is given to the components of the food-service system: marketing, menu planning, logistical support, production, service, controls, and quality assurance. Product and systems differentiation in various industry segments are emphasized throughout.

234 Food and Beverage Control
Fall or spring. 2 credits. Limited to hotel school students. Not offered 1990–91. Elective. This course is designed to acquaint students with the theory and techniques of controlling food and beverage related labor costs in hotels and restaurants. The emphasis is on the duties and responsibilities of the food and beverage controller, analyst, and/or manager. Case studies and typical industry situations supplement required projects.

236 Culinary Theory and Practice
Fall or spring. 4 credits. Prerequisite: H Adm 136 or permission of instructor. Required. This course is designed to introduce the student to food and beverage operations through three major components: fundamental food composition and properties, food products and preparation, and food safety and sanitation. Students will prepare recipes, menus, and production schedules. Students will develop the ability to recognize properly prepared foods through preparing, tasting, and evaluating foods. They will also develop an awareness of potential production problems and how to troubleshoot them.

335 Restaurant Management
Fall or spring. 4 credits. Limited to hotel school students. Prerequisites: H Adm 136 and 236. Approximate cost of utensils and manual, $60. Required. A restaurant-management course in which each student participates as a manager of an upscale, full-service restaurant operation. Lectures cover major topics related to the general management of restaurants, including issues in defining a service philosophy, improving profit margins, securing adequate labor supplies, identifying target markets, and planning for organization growth. Many aspects of production and service in an upscale setting will be experienced, discussed, and demonstrated. The laboratory is based on a hands-on managerial component, from which students become familiar with the various requirements for success of each of the line positions in a restaurant. A significant responsibility of each student is the preparation of a planning and summary report.

336 Principles of Nutrition
Fall. 3 credits. Prerequisites: H Adm 136 and 236, or permission of instructor. Field trip, $40. Elective. Designed especially for students interested in planning menus to meet the nutritional needs of the dining public. Students learn how to market healthful foods and study computer nutrient data bases, nutrition labeling, truth in menus, special diets, fast diets, and the current and future nutritional needs of the population. Discussions include how to counteract the public's misconceptions and myths. Laboratory sessions emphasize creative production of high-quality, nutritious, safe food.

337 The Composition and Properties of Food
Fall. 4 credits. Prerequisite: H Adm 236. Elective. A study of the chemical and microbial properties of raw and cooked foods used and served in the food-service industry. Lectures cover the chemistry of water, carbohydrates, fats, and proteins in relation to food groups. Labs provide the opportunity to produce menu items and to relate food-production techniques to material presented during lectures. Emphasis is placed on development of the student's sensitivity to flavor, texture, aroma, and appearance, and on awareness of food safety.

338 Health and Fitness in the Resort Hotel and Spa Industry
Spring. 3 credits. Limited to 45 juniors, seniors, and graduate students. Field trip, $40. A previous course in nutrition, health, or related field is helpful but not required. Elective. Especially designed for students who are interested in the fitness and nutrition trend in restaurants, resorts, and hotels. Nuts, menu design and the design of fitness programs, equipment, and facilities will be emphasized. Personnel required and legal, medical, and managerial implications will be discussed. Guest speakers from various spas, wellness centers, and fitness centers will be included. Assessing personal fitness levels is included.

339 Airline Food-Service Management
Fall. 3 credits. Limited to juniors, seniors, and graduate students. Field trip, $50. Elective. Airline food service, unique in the food and beverage industry, involves a thorough knowledge of the airline industry and depends on the state of the economy, the financial success of the airline industry, and economies of scale. Students study the planning of airline meals, wine and beverage service, their distribution by specialized companies, and their assembly and delivery by caterers. A field trip to an airline's hub city enables students to visit flight kitchens, vendors, airline representatives and distributors. Guest speakers representing various sectors of the industry (airline food and beverage managers, airline marketing personnel, entrepreneurs who provide goods and services, and in-flight catering executives) are included.

430 Introduction to Wine and Spirits
Fall or spring. 2 credits. Limited to hotel school juniors, seniors, and graduate students, and seniors and graduate students in all other colleges. All students, except those in the hotel school, must be 21 years old. S-U grades only. Elective. An introduction to the major wine-producing regions of the world and what the consumer needs to know to purchase wines, spirits, and beers at retail outlets and in a restaurant setting. Lecture topics include flavor components in wine, pairing wine and food, responsible drinking, selecting quality and value wines, and wine etiquette. Samples from a variety of countries, regions, and vineyards are evaluated. (Preregistered students who do not attend the first class and fail to notify the instructor of their absence are automatically dropped from the instructors' records. The student must then follow the normal drop procedure in his or her school.)

431 Seminar in Independent Restaurant Operations Management
Fall or spring. 3 credits. Limited to 12 students. Prerequisite: written permission of instructor. Five field trips required; maximum total cost, $250. Elective. The course is designed for students who have a strong interest in food and beverage operations and who may be considering a career as an entrepreneur. Under the supervision of the instructor, and utilizing student-developed case studies, the students visit and analyze various independently owned restaurant operations. Analysis covers, but is not limited to, the restaurant's concept (market), organization, ownership, management, physical structure, staff, front- and back-of-the-house operations, and fiscal integrity. Related current topics in the restaurant industry are required. Classes alternate weekly between field trips and seminar/case presentations.
Food-Service Management in Business, Industry, and Health Care Facilities
Spring, weeks 1–7. 2 credits. Limited to 25 juniors, seniors, and graduate students. Prerequisite: H Adm 136 and 236. Field trip, $150. Elective. This course is designed to explore and analyze the food-service management in business, industry, and health-care facilities, e.g., office-industrial complexes, educational institutions, contact companies, and hospital and extended-care facilities. Characteristics of contract companies, and hospital and industry, and health-care facilities, e.g., office/legal regulations will be presented. Course work involves readings, small investigative projects, discussions, local site visits, and a field trip.

Desserts Merchandising
Spring. 3 credits. Prerequisite: H Adm 236. Elective. A hands-on course providing exposure to a variety of breads, pastries, cakes, and other desserts. Students develop production skills and an appreciation of quality and, by the end of the course, should be able to estimate the resources and time required for producing a particular recipe.

Selection, Procurement, and Supply Management
Spring. 3 credits. Limited to hotel school students. Prerequisite: H Adm 136 or 731. Elective. This course assists students in developing and applying concepts of purchasing and supply management using the hotel and restaurant industries as models to understand the impact that this logistical support system has upon the long-term success of those businesses. Through lectures, discussions, and guest speakers, students are exposed to contemporary, and challenged by future, management practices and strategies used by this system. Additionally, the laboratory enables students to work with the major commodity food groups and become familiar with the market forms, quality ranges, yield, and cost considerations of those products.

Beverage Management
Fall or spring. 2 credits. Limited to 30 hotel school students. Prerequisite: H Adm 430. Elective (concentration requirement). This course is designed for upper-class students who intend to pursue food and beverage as a career. The course deals specifically with the management of beverage operations. Lectures develop skills in and awareness of Dram shop; staff training and responsible customer service; beverage pricing; food and wine pairings; wine-list development; purchases; service; wine regions; cost controls and loss prevention; and creative beverage merchandising. Guest lecturers highlight industry trends and outlooks.

Seminar in Culture and Cuisines
Fall. 3 credits. Limited to 20 students. Prerequisite: H Adm 236. Elective. This seminar explores various cuisines in terms of history, lifestyle, and foods peculiar to a culture. Through readings, research, and meal preparation, students explore various cuisines in depth. The goal of the course is to develop awareness of several international cuisines, enabling students to make comparisons and draw relationships among the food ways of different cultures. Students prepare research reports and oral presentations, and design menus and orchestrate their preparation.

The Restaurant in Society
3 credits. Not offered 1990–91. Elective. This seminar-based course looks at the restaurant from a broad social perspective. Topics include the historical development of the restaurant; cultural, social, and psychologi­cal factors affecting customer and server; the social world of the restaurant, and the place of the restaurant in contemporary society. Relevant implications for both management and consumer are also discussed. Students undertake a project as part of their participation in the course.

Seminar in Chain-Restaurant Operations Management
3 credits. Prerequisite: H Adm 136 or permission of instructor. Not offered 1990–91. Additional cost for field trips. Elective. Chain restaurants account for 40 percent of food-service industry sales and 50 percent of customer traffic. After reviewing the history and development of chain restaurants, the course concentrates on service and operations-management approaches; marketing, expansion, and diversification are discussed. Chains from different industry segments are compared. Topics include corporate versus unit-level priorities and responsibilities, marketing, site selection, menu planning, product development, production planning, facility and equipment design, and recruitment and training. Students conduct research on individual chains and report back to the class.

Current Issues in Food Safety and Sanitation
Spring. 3 credits. Prerequisite: H Adm 136, 236, or permission of instructor. Elective. A study of current issues in food safety and sanitation procedures and regulations that affect managerial decisions in food service and hospitality operations. Topics include risk assessment and hazard analysis; legal responsibilities related to food, food handlers, and equipment and facilities; food-borne illness and other public-health concerns; and certification and training. Certification for NPIF/NRA certification and the Food Protection (ETS) certification exam is offered with this course. The exam is optional.

Specialty Food and Beverage Operations: Guest Chefs
Fall or spring. 3 credits. Prerequisite: H Adm 335 or 732. Elective. The course is designed for students with a strong food and beverage orientation, especially students considering careers in the hotel food and beverage environment, or those who anticipate interacting with current culinary trends. Working in groups, students market, organize, plan, produce, serve, and prepare the financial analysis and accounting relative to four guest chef specialty production nights, and with the chef they produce a dinner at the Statler Hotel.

Catering Management
Fall. 3 credits. Limited to 25 students. Prerequisite: H Adm 335 or permission of instructor. Elective. The catering industry is among the fastest growing segments of the U.S. hospitality industry. This course examines off-premise and on-premise catering for business and social functions, as well as sports events and office catering. Topics include the organizational structure of catering operations, legal aspects of catering businesses, menu design for special functions and its operational implications; marketing from a caterer's perspective; function planning and management; staff recruitment, training, and supervision; and post-event analysis.

Gastronomy: Understanding Food and Wine-Pairing Principles
Spring. 2 credits. Limited to 20 hotel school students. Prerequisites: H Adm 430 and 436 (436 may be taken concurrently). Elective. The course is specifically designed for students entering the food and beverage industry. Through tastings, students learn the principles of pairing wine with food and how to market the concept through wine-list development, on-premise merchandising, promotional events, and staff training. Students are required to design, organize, and present wine and food tastings that are attended by industry guests. Other topics include wine and health, current and pending legislation regarding the sale and consumption of wine, and varietal characteristics of wines produced around the world.

Graduate Food and Beverage Management
Fall. 3 credits. Limited to hotel school graduate students. Estimated cost of field trip, $150. M.P.S. requirement. The course focuses on the technical, managerial, and human-resources skills needed to be successful in food-service management. Topics such as market analysis, concept development, menu planning, operations management, and marketing are addressed in a seminar format. Current and future issues affecting the food-service industry are addressed.

Graduate Restaurant Management
Spring. 3 credits. Limited to hotel school students. Prerequisite: H Adm 731. Estimated expense for clothing and utensils, $95. M.P.S. requirement. A food and beverage management course in which the class operates an upscale restaurant. The production lab allows students to rotate through the various line positions of a restaurant operation. In turn, each student serves as the manager for each line position opportunities for menu planning, marketing, pricing, staffing, forecasting, profit-and-loss analysis. In-depth discussions of management issues related to restaurant operation occur during the lectures/seminars.

MARKETING AND TOURISM
For up-to-date information about course scheduling, and to obtain a course supplement, contact the hotel school registrar in room 178 Statler Hall, telephone 225-3725.

Principles of Marketing
Fall or spring. 3 credits. Not open to freshmen. Required. This course is intended to provide the undergraduate hotel administration student with an overview of the discipline of marketing as it applies to the hospitality industry. The primary aim is to understand how a marketing strategy is devised, especially the interrelationship of company objectives, internal resources, and the external operating environment. A secondary aim is to show how the special nature of services affects the development of marketing strategies in the hospitality industry.
424 Tourism I
Fall. 3 credits. Elective.
This course introduces students to the study of tourism. The origins and evolution of tourism are carefully examined. Students learn about the key variables in marketing planning and their proper application in situation analysis, determination of objectives and budgets; analysis of media mixes, and appropriate strategies for individual casinos will be evaluated. During a field trip to Atlantic City students analyze the market and determine the best strategy for each casino. Students research an assigned casino to formulate data for a marketing plan.

432 Marketing Communication Media
Spring. 3 credits. Elective.
The management of external communication programs for hospitality industry. Topics include advertising, public relations, sales promotion, direct mail, and telemarketing.

449 International Marketing
Spring. 3 credits. Not open to freshmen.
The course approaches real estate from four perspectives: legal, economic, financial, and business. Understanding these perspectives will enable students to make better investment and financing decisions, to use real-estate resources wisely, to understand public-policy issues, and to be prepared for additional courses in real-estate investment, finance, and development.

541 Marketing Communication Strategy
Fall. 2 credits. Limited to 25 juniors, seniors, and graduate students. Prerequisite: H Adm 243. Field trip, $150. Elective.
An overview of the history and scope of casino marketing practices and the behavior patterns of casino players. All market segments are analyzed to determine specific marketing mixes, and appropriate strategies for individual casinos will be evaluated. During a field trip to Atlantic City students analyze the market and determine the best strategy for each casino. Students research an assigned casino to formulate data for a marketing plan.

741 Graduate Marketing Management
Fall. 3 credits. M.P.S. requirement.
The management of the corporate marketing function, with emphasis on firms in the hospitality industry. The emphasis is on developing students' organizational, analytical, and decision-making capabilities through involvement in case experiences. No prior marketing knowledge is assumed.

742 Strategic Market Planning in the Hospitality Industry
Spring. 3 credits. Elective.
The application of strategic management concepts and principles to marketing in the hospitality industry through lectures, discussions, and the development of case studies.
355 Hospitality Facilities Construction and Operation

Spring. 3 credits. Required.
An overview of the operation of hospitality facilities, including operating costs for various types of facilities, types and characteristics of major building systems, and the responsibilities of the engineering and maintenance departments. The renovation needs of hospitality facilities are examined and key managerial aspects of renovations are considered.

356 Hospitality Risk Management

Spring. 3 credits. Elective.
The identification and management of risk associated with fire, security, and safety problems. Topics include design, equipment, staffing, employee training, emergency preparedness, and basic elements of insurance coverage.

358 Hospitality-Industry Real Estate

Spring. 3 credits. Prerequisite: H Adm 350. Elective.
The role of real estate as a factor in the production of income of hospitality businesses and the importance of real-estate asset management in increasing hospitality-corporation shareholder wealth are discussed and analyzed. The process of real-estate valuation and current issues in the valuation of hospitality properties are examined.

451 Seminar in Properties Management

Fall. 1 credit. Elective (concentration requirement).
A course in which faculty, graduate students, and invited speakers present and discuss issues in facilities design, development, and operation.

453 Advanced Food-Service Facilities Planning and Design

Fall. 3 credits. Limited to 12 students. Prerequisite: H Adm 353. Elective.
The course reviews the application of basic concepts of food-service facilities design and planning for a hotel project. Emphasis is on preparing a program, developing equipment layouts, and making presentations to clients.

454 Restaurant Planning

Spring. 3 credits. Prerequisite: H Adm 355 or 751. Elective.
Development, design, and construction of restaurants. Topics include market analysis, site selection, menu development, space allocation, trade practices, regulations, equipment and furnishings, cost estimations, financial analysis, and management responsibilities.

455 Hospitality Facilities Management

Spring. 3 credits. Elective.
Management of the physical plant of hospitality buildings. Systems design and operation, physical-plant maintenance, planning, and budget development; and management of energy programs. Case studies of hospitality facilities.

457 Advanced Development and Construction

Fall. 3 credits. Prerequisite: H Adm 355 or 751. Elective.
The treatment of development as a process, as viewed from the perspective of the owner. Topics include feasibility-study analysis, budgeting, scheduling, construction administration, value engineering, and issues related to site zoning and codes.

751 Project Development and Construction

Fall. 3 credits. Minimum cost of field trip, $200. M.P.S. requirement.
The major elements of the project-development, hotel-planning, and construction process. Topics include the role of the development team, feasibility studies, functional planning and design, architectural and engineering criteria, construction contracts, project scheduling, interpretation of architectural drawings, and building construction. A group project is included and a field trip is required.

COMMUNICATION COURSES

For up-to-date information about course scheduling, and to obtain a course supplement, contact the hotel school registrar in room 178 Statler Hall, telephone 255-3739.

165 Managerial Communication: Writing Principles and Process

Fall or spring. 3 credits. Each lecture limited to 18 students. Because of the strict class-size limitation, a student who chooses to drop this course should notify the instructor no later than the end of the first week of class so another student can fill the opening.) Must be completed in the student's first or second semester after registering in the hotel school or upon being sponsored by the hotel school to the Division of Unclassified Students. Required.
An introduction to written communication within a business context. Students learn how to conceive, plan, and develop those written materials (that provide much of the information that people need to form judgments and make decisions. Focusing on the specific principles, needs, and responsibilities of business communication, the course introduces students to the writing process: analyzing, organizing, researching sources, developing substance, and writing in a clear, precise style. Students write a variety of reports requiring different analytical approaches.

266 Intermediate French: Le Francais de l'Hotelierie

Spring. 3 credits. Limited to 15 students.
Admission priority given to students with a special interest in the hospitality industry. Prerequisite: French 123 or equivalent or written permission of instructor. Elective.
This course offers continuing study of the French language, in the context of business affairs, with specific emphasis on the hospitality industry. Material presented considers cultural, geographic, economic, historical, political, and social contexts within which the business functions. The course is conducted in French, emphasizing a conversational approach. Specialized situations and vocabulary are used in building general competence in practical usage.

267 Intermediate Spanish: Espanol de Hoteleria

Spring. 3 credits. Prerequisite: Spanish 125 or CPT 500. Minimum elective.
An intermediate-level course designed for students interested in improving their proficiency in the language within the thematic context of the hospitality and restaurant industries. The course provides a solid background of essential vocabulary, practice of all skills, and a review of the cultural background of the Hispanic world.

268 Advanced Business Writing

Fall or spring. 2 credits. Limited to 15 juniors, seniors, and graduate students. Prerequisite for undergraduates: H Adm 165 or completion of student's freshman writing requirement. Elective.
This course focuses on the written communications that demand special persuasiveness and control of tone. Writing assignments will give students a chance to apply the theories of communication, semantics, and human relations covered in the course. The kinds of communications that will be analyzed, evaluated, and written include persuasive messages to subordinates and superiors in an organization; sales letters and other promotion materials; and negative messages such as refusals, rejections, and responses to complaints. A major topic is the planning and executing of a job-hunting campaign, for which students prepare resumes, letters of application, and follow-up messages adapted to their individual needs.

365 Managerial Communication: Principles and Practices

Fall or spring. 3 credits. Limited to 24 juniors and seniors per lecture. (Because of the strict class-size limitation, a student who chooses to drop this course should notify the instructor no later than the end of the first week of class so another student can fill the opening.) Prerequisite: H Adm 165 or completion of student's freshman writing requirement, or H Adm 212 or permission of instructor. Required.
A broad study of communication in a management context. Emphasizes the significant role of communication in developing work relationships that enable managers to achieve their goals. It presents the theories and principles of communication that underlie effective performance. Students increase their individual communication abilities by applying these concepts in a variety of managerial contexts, including interacting one-to-one, working in groups, and formally developing and presenting ideas to larger audiences.
582 Special Topics in Communication
Fall or spring. Variable (1–3) credits. Limited to juniors, seniors, and graduate students. Elective.
A special topics course, with the theme selected each semester on the basis of student and industry needs as well as faculty expertise. Most recent offering: "Intercultural Communication in Business" (3 credits). See registrar or communication department's faculty coordinator for details about current topic.

781 Organizational Communication for Managers
Fall or spring. 3 credits. Limited to 15 graduate students; recommended for second- or third-semester M.P.S. students. Elective.
A course in organizational communication focusing on the complex interactions that occur when people communicate in organizations. Using business cases and examples, the course highlights the political, sociological, ethical, and psychological dimensions of business communication. Students analyze communication problems and barriers and design organizational strategies to communicate effectively, whether one-to-one, in small groups, or with larger audiences. Cases are linked with a team exercise that helps students perfect their abilities to write, give oral presentations, or interact effectively with others in a professional, managerial context.

765 Effective Communication in Organizations: A Laboratory Approach
Fall and spring, alternately. 1 credit. Not offered 1990–91. Elective.
Students learn and practice the principles and skills of effective organizational communication. Through case studies, role plays, and simulations, students analyze communication situations and apply communication principles to workplace situations. Emphasis is on the identification and analysis of communication problems and the appropriate application of oral and written communication strategies in business environments.

INFORMATION TECHNOLOGY COURSES
For up-to-date information about course scheduling, and to obtain a course supplement, contact the hotel school registrar in room 178 Statler Hall, telephone 255-3739.

170 Macintosh Tools
Spring. 3 credits. Limited to 25 students outside the hotel school. Elective.
An introductory course in business information systems and computer tools. Students learn basic business computing concepts such as system integrity and the user interface. Finally, the course introduces the student to the personal computer, using electronic spreadsheet, graphics, and word-processing applications. Work is carried out on a Macintosh computer using Microsoft Word and Microsoft Excel.

171 Keyboarding on the Macintosh
Fall, spring, or summer. 2 credits. Limited to 25 students per section. Elective.
An introduction to the Macintosh computer and a beginning course in alphabetic keyboarding. Students learn word-processing skills during the second half of the course.

174 Microcomputing
Fall. 3 credits. Limited to hotel school freshmen or others with permission of the instructors. Spring and summer. 3 credits. Open enrollment. Required.
An introduction to microcomputing to develop functional computer literacy. Students develop skills in five general areas: text, graphics, spreadsheet, list, and communications processing. The course is entirely lab oriented and students work on Macintosh personal computers.

274 Hotel Computing Applications
Fall or spring. 3 credits. Prerequisite: H Adm 174 or equivalent. Elective.
An introduction to management information systems as they are currently used in the hospitality industry. Specific topics include property management systems, reservation systems, communication networks, database structures, point-of-sale systems, methods of system selection, and cost justification. Computer laboratories provide hands-on experience with systems widely used in the hospitality industry and help to develop IBM PC/DOS skills.

374 End-User Business Computing Tools
Fall or spring. 3 credits. Prerequisite: H Adm 174 or equivalent. Elective.
This course explores the personal computer as a managerial tool for the hospitality industry. Concepts of modeling, database, and end-user computing are covered. Students learn to use specific software applications programs to solve original problems. All work is done on the IBM PC.

571 Analysis and Design of Information Systems
Fall. 3 credits. Limited to 15 students. Elective.
For students who may become involved with the analysis and design of computer-based information systems (CBIS). The course is intended to develop competence and confidence in the participants' ability to plan for CBIS, specify their functional design, manage a systems adoption project, deal with system vendors, and function as organizational consultants on CBIS. The course assumes an elementary working knowledge of management information systems and basic business. The course is pragmatic and requires participants teams to analyze and design (and possibly build and test) a software application system.

572 Development of Decision Support Systems
Spring. 3 credits. Prerequisite: H Adm 174 or equivalent. Elective.
The use of computer-based systems to assist human decision makers by supporting their information requirements. The design, implementation, and use of such systems is one of today's fastest growing areas within information systems. The course's perspective is one of design—effective design both requires and enhances understanding.

774 Information Systems for Hospitality Managers
Spring. 3 credits. Limited to 35 students. M.P.S. Requirement.
The physical and technical computing environments in a multi-unit hospitality corporation. Information systems are viewed from various perspectives, i.e., as data-processing systems, management information systems, and decision support systems. The role of information systems in a strategic planning framework is explored. Organizational and infrastructural issues that enhance or detract from system success are explained.

LAW COURSES
For up-to-date information about course scheduling, and to obtain a course supplement, contact the hotel school registrar in room 178 Statler Hall, telephone 255-3739.

283 Law of Securities Regulation
Fall, weeks 1–7. 1 credit. Elective.
For students interested in the financing of new or expanding hotel and restaurant businesses through the sale of stocks and bonds, and the obligations of publicly owned hospitality companies and their officers and directors. The course covers fundamental aspects of the federal securities laws as applicable to the hospitality industry. Problems are drawn from hotels, restaurants, and related businesses.

385 Law of Business I
Fall. 3 credits. Limited to juniors, seniors, and graduate students outside the hotel school, and hotel school students with permission of instructor. Elective.
This course is designed to enable the student to acquire a basic understanding of law and legal relationships in a business context. A variety of subjects are covered, all intended to aid a person in making decisions as an executive charged with managerial responsibilities.

387 Business and Hospitality Law
Fall or spring. 3 credits. Limited to juniors, seniors, and graduate students. Required.
An integrated chronological presentation of contract, agency, and tort concepts as they apply to the legal aspects of hospitality management. Appropriate federal, state, and local cases, statutes, and other materials are examined. The overall objective is to recognize, analyze, and evaluate legal issues for the purpose of making and articulating appropriate decisions.

486 Historical Introduction to Public Hospitality Law
Summer. 3 credits. Elective.
An overview of the development of the legal rights of persons to travel and to have access to public accommodations. Historical sources focus upon the English common law, the United States Constitution, and federal and state civil rights legislation. The course reviews and examines changing American social attitudes toward travel and public accommodations and their influence upon travelers' legal rights and responsibilities. Comparative international legal developments are noted.
487 Real-Estate Law I
Offered on demand. 2 credits. Limited to juniors, seniors, and graduate students. Elective.
Laws governing the acquisition, ownership, and transfer of real estate, beginning with the purchase and sale of a family residence and leading to more-complex transactions involving hotels, motels, condominiums, cooperatives, syndications, and real-estate trusts. Financing aspects, including construction and building loans, mortgages, and mortgage foreclosures are treated from the viewpoint of lender and borrower. The legal relations of landlord and tenant are given special attention, and typical hotel and motel leases are dissected and scrutinized. Applicable tax considerations are focused on all transactions.

580 The Interplay of Law and Ethics in Service Industry Management
Fall and spring. 3 credits. Limited to 25 graduate students or by permission of instructor. Prerequisite: completion of all required hotel school M.P.S. core courses or by permission of instructor. Required. This course is designed to involve graduate students in the ethical aspects of traditional law problems that confront service-industry managers and executives. The American legal environment will be explored as it affects business decisions in the areas of commerce, consumerism, administrative law and practice, regulation of anti-competitive marketing activities, and federal securities regulation.

OTHER COMMUNICATION, INFORMATION TECHNOLOGY, AND LAW COURSES
For up-to-date information about course scheduling, and to obtain a course supplement, contact the hotel school registrar in room 178 Statler Hall, telephone 255-3739.

191 Quantitative Methods
Spring. 3 credits. Required. An introduction to management-science models and statistical techniques applicable to the hospitality industry. The application of quantitative methods to decision making in the hospitality industry. Topics include forecasting, decision analysis, linear programming, probability, and queuing. Computer software packages will be used to facilitate the decision-making process.

490 Housing and Feeding the Homeless
Fall and spring. 4 credits. Limited to 21 students. Prerequisites: H Adm 325 and 303, or HSS 292 and HSS 375, or permission of instructor. Elective. The course explores the economic, social, and political issues of our country’s growing problem of homelessness, as well as the existing and proposed housing and feeding policies and delivery systems that attempt to deal with the issue. Students study the history of homelessness and strategies to alleviate the problem and spend approximately eight days at a shelter or emergency food program to analyze the program and resolve a managerial problem.

592 Service Operations Management
Fall. 3 credits. Prerequisites: H Adm 791 or equivalent. Elective. This course concentrates on three aspects of service operations: delivery-system design (including process design, layout, and location), capacity management (inventory, overbooking, yield management, work measurement, and staffing), and quality management. The course provides students with the concepts and tools necessary to effectively manage a service organization.

599 Development and Management of Wellness in Business Organizations
Spring. 3 credits. Limited to juniors, seniors, and graduate students. Field trip, $40. Elective. An initial evaluation of personal wellness and a collective analysis of the class introduces design, implementation, and evaluation of wellness programs in organizations. Stressors that may cause illness are examined. Case studies and guest speakers from the industry address diagnosing the employee population, sustaining employee participation, evaluating cost/benefit aspects of wellness programs, and choosing alternative health-insurance strategies.

791 Graduate Quantitative Methods
Fall. 3 credits. M.P.S. requirement. An introduction to management-science models and statistical techniques applicable to the hospitality industry. The application of specific quantitative methods to decision making in the hospitality industry. Topics include forecasting, decision analysis, linear programming, probability, and queuing. Computer software packages will be used to facilitate the decision-making process.

INDEPENDENT RESEARCH COURSES
600-690 Undergraduate Independent Study
Fall or spring. Variable credit. Prerequisite: written permission. Only the first three credits of directed study may count as hotel school credits. Each student learns to conduct independent studies, including independent research projects. Students must have in mind a project and obtain agreement from a faculty member to oversee and direct the study.

630 Undergraduate Independent Study in Food and Beverage Management
640 Undergraduate Independent Study in Marketing and Tourism
650 Undergraduate Independent Study in Properties Management
660 Undergraduate Independent Study in Communication
670 Undergraduate Independent Study in Information Technology/Computers
680 Undergraduate Independent Study in Law
690 Undergraduate Independent Study in Management Support—General

700-900 Graduate Independent Research
Fall or spring. Variable credit. Limited to graduate students. Prerequisite: written permission of instructor. Students should obtain a permission form from the hotel school's registrar. As appropriate, graduate students enroll in these courses for thesis or monograph research or for other independent directed study. Students must have in mind a project and obtain agreement from a faculty member to oversee and direct the study.

700 Graduate Independent Research in Operation Management
710 Graduate Independent Research in Human-Resources Management
720 Graduate Independent Research in Financial Management
730 Graduate Independent Research in Food and Beverage Management
740 Graduate Independent Research in Marketing and Tourism
750 Graduate Independent Research in Properties Management
760 Graduate Independent Research in Communication
770 Graduate Independent Research in Information Technology/Computers
780 Graduate Independent Research in Law
790 Graduate Independent Study in Management Support—General
802 Master of Science Thesis Research
803 Graduate Teaching Internship
805 M.P.S. Monograph I
806 M.P.S. Monograph II
900 Doctoral Thesis Research
FACULTY ROSTER

Professorial

Arbel, Avner, Ph.D., New York U. Prof.
Bell, Russell A., Ph.D., Kansas State U. Assoc. Prof.
Berger, Florence, Ph.D., Cornell U. Assoc. Prof.
Brownell, Judith, Ph.D., Syracuse U. Assoc. Prof.
Carvell, Stephen A., Ph.D., SUNY Binghamton. Asst. Prof.
Chase, Robert M., M.B.A., Cornell U. Prof.
Clark, John J., Jr., Ph.D., Cornell U. Prof.
Corgel, John B., Ph.D., U. of Georgia. Assoc. Prof.
Cullen, Thomas, Ph.D., Cornell U. Assoc. Prof.
deRoos, Jan A., M.S., Cornell U. Asst. Prof.
Dev, Chekitan S., Ph.D., Virginia Polytechnic. Asst. Prof.
Dittman, David A., Ph.D., Ohio State U. Dean and E. M. Statler, Professor.
Dunn, David C., Ph.D., Cornell U. Assoc. Prof.
Enz, Cathy A., Ph.D., Ohio State U. Assoc. Prof.
Eyster, James J., Ph.D., Cornell U. Hospitality Valuation Services Professor of Finance and Real Estate
Ferguson, Dennis H., Ph.D., Cornell U. Assoc. Prof.
Geller, A. Neal, Ph.D., Syracuse U. Prof.
Hales, E. Ann, Ph.D., Cornell U. Asst. Prof.
Kaven, William H., Ph.D., Cornell U. Prof.
Kelly, Thomas J., M.S., Cornell U. Assoc. Prof.
Kimes, Sherry E., Ph.D., U. of Texas. Asst. Prof.
Lundberg, Craig C., Ph.D., Cornell U. Blanchard Professor of Human-Resources Management
Marler, Janet H., M.S., Cornell U. Asst. Prof.
Morgan, Michael S., Ph.D., U. of Texas. Asst. Prof.
Mutkoski, Stephen A., Ph.D., Cornell U. Banfi Vintners Professor of Wine Education and Management
Penner, Richard H., M.S., Cornell U. Prof.
Rainsford, Peter, Ph.D., Cornell U. Assoc. Prof.
Redlin, Michael H., Ph.D., Cornell U. Assoc. Dean and Prof.
Renaghan, Leo M., Ph.D., Pennsylvania State U. Assoc. Prof.
Sherry, John E. H., LL. M., New York U. Prof. and Graduate Faculty Representative
Simon, Augusta, Ph.D., Ohio State U. Asst. Prof.
Tabacchi, Mary H., Ph.D., Purdue U. Assoc. Prof.

Adjunct, Visiting, and Other Teaching Staff

Alvarez, Roy, M.Ed., Lecturer
Blanchard, Kenneth, Ph.D., Visiting Assoc. Prof.
Brooks, Earl, M.A., Professor Emeritus
Calaguire, Frank B., S. Visiting Lecturer
D'Aprix, David, B.A., Lecturer
David, Betty B., Lecturer
Ferris, J. David, M.A., Visiting Lecturer
Flash, Dora G., A.B., Senior Lecturer
Huettman, Elizabeth, M.A., Visiting Lecturer
James, Robert, M.B.A., Visiting Lecturer
Kiner, Susan W., M.A., Lecturer
Lang, Barbara, B.S., Lecturer
Lumley, Jane, M.A., Senior Lecturer
Morano, Richard A., D.Ed., Visiting Lecturer
Muller, Christopher C., M. P.S., Lecturer
Neuhaus, Thomas W., M.S., Lecturer
Noden, Malcolm A., Senior Lecturer
Norkus, Gregory X., M.S., Senior Lecturer
O'Connor, Therese A., M.S., Senior Lecturer
Pezzotti, Giuseppe G. B., B.S., Lecturer
Richmond, Bonnie S., M.S., Senior Lecturer
Ridley, Jane S., B.A., Teaching Support Specialist
Sciarabba, Andrew, B.B.A., Visiting Lecturer
Seipel, Lamont, B.S., Visiting Lecturer
Spies, Rupert, Studienassessor, Lecturer
Weaver, Loren E., B.S., Teaching Support Specialist
Weishaupt, Hans F., B.S., Robert A. Beck Chair of Applied Hotel Management
Weiss, Stephen, B.S., Visiting Lecturer
White, Robert, A.O.S., Teaching Support Specialist
Yesawich, Peter C., Ph.D., Visiting Assoc. Prof.
ADMINISTRATION
Francellle M. Firebaugh, dean
Charles McClintock, associate dean; Christine Olson, assistant dean; assistant director, Cornell University Agricultural Experiment Station
Lucinda A. Noble, associate dean, director of Cornell Cooperative Extension
Carol L. Anderson, assistant dean; associate director of Cornell Cooperative Extension
Brenda Bricker, director, admissions
Mary Rhodes, registrar and director, Student Services

FACILITIES
The College of Human Ecology, through its teaching, research, and extension programs, seeks to understand and improve the relations of people to their environments, especially to those settings most critical for growth and development—home, school, work, and leisure. Faculty and students examine individuals in relation to their family, neighborhood, workplace, and community, seeking a balance between theory and practice that will improve the quality of everyday life.

The college is housed in Martha Van Rensselaer Hall. The Division of Nutritional Sciences, an intercollege division supported jointly by this college and the College of Agriculture and Life Sciences, has space in Savage Hall and in Martha Van Rensselaer Hall.

The buildings include administrative and faculty offices, classrooms, auditoriums, and lecture halls; wet chemistry and biochemistry laboratories for nutrition, food science, and textile science; experimental food laboratories; design studios and a computer-aided design laboratory; woodworking shops; experimental observation rooms with one-way vision screens and sound-recording equipment; educational television studios; and a printing and reproduction facility. Also included are learning resource centers for career planning and academic study, a historical costume collection, a human metabolic research unit, a research animal facility, cold rooms, a constant temperature and humidity laboratory, and an experimental nursery school.

Specialized equipment for teaching and research includes biochemical and chemical instruments for spectroscopy, chromatography, radiotracer analysis, electrophoresis, microscopy, and ultracentrifugation; physical testing equipment; and cameras, videotape, and sound recording equipment.

DEGREE PROGRAMS

<table>
<thead>
<tr>
<th>Degree Program</th>
<th>Degree</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biology and Society</td>
<td>B.S.</td>
</tr>
<tr>
<td>Consumer Economics and Housing</td>
<td>B.S.</td>
</tr>
<tr>
<td>Design and Environmental Analysis</td>
<td>B.S.</td>
</tr>
<tr>
<td>Human Development and Family Studies</td>
<td>B.S.</td>
</tr>
<tr>
<td>Human Service Studies</td>
<td>B.S.</td>
</tr>
<tr>
<td>Nutritional Sciences</td>
<td>B.S.</td>
</tr>
<tr>
<td>Policy Analysis</td>
<td>B.S.</td>
</tr>
<tr>
<td>Textiles and Apparel</td>
<td>B.S.</td>
</tr>
<tr>
<td>Individual Curriculum</td>
<td>B.S.</td>
</tr>
</tbody>
</table>

DIVISION OF STUDENT SERVICES

B. Bricker, director, admissions
W. Graham, director, office for planning and information systems

Mary Rhodes, college registrar and director, student services

Persons interested in undergraduate study in human ecology should contact the Office of Admissions, 172 Martha Van Rensselaer Hall. Those interested in graduate study should contact the graduate field representative identified among the faculty of each department. Department faculty are listed on subsequent pages at the beginning of the course descriptions for each department.

Matriculated students can find assistance with matters of academic credit and graduation requirements in the Office of the College Registrar, N101 Martha Van Rensselaer Hall. Assistance with academic advising, career planning and placement, and personal counseling may be obtained from the Office of Student Services, N101 Martha Van Rensselaer Hall.

The Students

The College of Human Ecology undergraduate enrollment is 1,286 with 54 percent in the upper division. About 520 students are graduated each year, and last year 239 freshmen and 144 transfer students matriculated. One hundred faculty members serve as advisers for undergraduates.

The college's undergraduate admissions committee selects applicants who are academically well prepared and appear most likely to profit from the college's various curricula. Admission is selective. In 1989, 887% of freshmen were in the top 10 percent of their high school graduating classes. Fifty-five percent had verbal Scholastic Aptitude Test (SAT) scores over 600 and 80 percent had math scores of 600 or better.

Approximately 75 percent of the student body comes from New York State, with the remainder from other parts of the United States and abroad. Twenty percent were identified as members of minority groups in 1990.

ACADEMIC PROGRAMS

Majors

Each department offers a major, and within most departmental majors there are specific options. The college also offers two interdepartmental majors. Selecting a major means choosing one option in one department. Although a student may satisfy the requirements of more than one major option, he or she is officially certified to graduate under only one. (The college urges students who satisfy more than one major or option to make note of this in the credentials they file in the Career Center and to seek recommendations from faculty associated with the options completed.) Majors include the following options:

- Consumer Economics and Housing (CEH): The department supervises the department major and the policy analysis major.
- Design and Environmental Analysis (DEA): interior design, facility planning and management, human environment relations.
- Human Development and Family Studies (HDFS): does not have separate options. Courses focus on cognitive, personality and social development, infant through adult development, abnormal development, and family studies.
- Human Service Studies (HSS): does not have separate options. Courses focus on three content clusters: human service environments, programs, and processes. A professional internship and senior seminar are required. Students may meet the requirements of an accredited bachelor's degree program in social work.
- Nutritional Sciences (NS): experimental and consumer food studies, nutrition, nutritional biochemistry, clinical nutrition, community nutrition. (By careful planning, students may also meet the minimum academic requirements of The American Dietetic Association.)
- Textiles and Apparel (TXA): apparel design, apparel-textile management, fiber science.
- Interdepartmental Major in Policy Analysis (ID-PA).
- Individual Curriculum: It is possible to develop an individual program of study if none of the above programs fits particular educational and career objectives.

Approximately 185 graduate students have members of the college's faculty chairing their special committees. The college awards 41 master's degrees and 20 doctorates each year.
Changing Majors
Because any student's interests and goals may change as new options emerge, the college provides ways for students to change their majors. A declared major no longer seems to meet a student's educational goals, a counselor or faculty adviser may be able to point out alternatives. If the student decides to make a change, a change-of-major form (available from the Office of the College Registrar, 146 Van Rensselaer Hall) ensures that the change is sent to the department in which the student wishes to major, so an adviser can be assigned to the student.

Students of Mature Status
The college recognizes that students who interrupted their formal education and are returning to school have needs different from those of the average undergraduate. To facilitate the education of mature students, defined as those twenty-four years old or older at matriculation, the college has adopted certain procedures specifically for that group.

Mature students are permitted to enroll for as few as 6 credits without petitioning and are also permitted to extend their residency beyond the normal eight terms.

It is highly recommended that mature students contact Valerie's Sellers, the director of the Continuing Education Information Service, B12 Ives Hall, for information on resources available through that office.

Special Students
Students eligible for special status are those visiting from other institutions and interested in transfer or plan to terminate studies in the student must either apply for admission as a non-degree status of special student may enroll in certain programs in the college; those with a bachelor's degree preparing for graduate study or jobs and careers in human ecology-related fields; those who have interrupted their education and are considering completing degree programs. Students accepted in the non-degrees status of special student may enroll for a maximum of two semesters. During the second semester of attendance, a special student must either apply for admission as a transfer or plan to graduate in the college at the end of the semester.

Special students are expected to take a minimum of 12 credits each semester and to take one-half to two-thirds of their work in the state divisions of the university. Work taken while a person is classified as a special student may be counted toward the requirements of the bachelor's degree.

Empire State Students
Occasionally a student who is completing requirements for a degree through the Empire State College Program is interested in taking a human ecology course. This can be done by registering through the Division of Summer Session, Extramural Study, and Related Programs, B12 Ives Hall. All rules of the extramural study apply, and registrations will be accepted only on a space-available basis and with the written approval of the course instructor.

At the time of registration, Empire State College students provide the extra-curricular with a completed of Empire State College's notification of credit, O-10, to verify enrollment in Empire State College. Such students will be charged 25 percent of the standard extramural tuition per credit.

CONSUMER ECONOMICS AND HOUSING
The behavior of people as consumers and family members is tied to actions with private markets and public sectors of the economy are increasingly important as the economy becomes more service-based. One result has been an increasing demand from business and government for trained individuals who understand consumers, families, the markets in which they deal, and how public policies affect the markets and through them consumers and families. The demand has been sufficient to elevate salaries for well-trained individuals.

The consumer economics and housing major provides such training. The major combines economics with statistics, sociology, and family resource management to study how consumer markets work, how firms and consumers behave, the role governments play in consumer protection, how functions shift between households and markets as prices, incomes, and legislation change, and how changes in the family affect consumer markets.

Students interact with the faculty and with each other both in the classroom and in field-based learning experiences in the Ithaca area, New York City, Washington, or abroad. Students specialize within the major in two of the four areas within the department: consumers and policy, family economics and demography, family resource management and decision-making, and housing.

Graduates in consumer economics and housing are prepared for a wide variety of consumer- and family-related positions in business, government, and non-profit sectors. The major also provides an excellent foundation for further studies in economics, law, graduate business, and policy analysis.

The consumer economics and housing major is flexible. Students are assigned a faculty adviser by the advising coordinator unless the student wants a particular adviser. The earlier the decision to major in CEH is made, the greater the freedom to develop a program to meet individual educational or career goals.

A transfer student or one who plans with a faculty adviser as soon as possible. An appointment may be made directly with an adviser or with the advising coordinator, Peter Zorn.

DESIGN AND ENVIRONMENTAL ANALYSIS
The Department of Design and Environmental Analysis (DEA) is concerned with planning, designing, and managing interior environments to satisfy human needs. Most people spend over 90 percent of their lives inside buildings. Those settings have substantial and far-reaching effects on the quality of our lives. The processes for creating the built environment face enormous challenges. These include frequent social and organizational change, technological advances, new building methods, and finite resources. The program in DEA is dedicated to preparing professionals who can meet these challenges.

Diverse faculty backgrounds and teaching approaches help students to develop their multidisciplinary problem-solving and creative abilities, aesthetic judgment, and analytical thinking. Excellent laboratory, shop, studio, and computer facilities permit exploration of innovative concepts for the design and management of interior environments. The relationship between people and their physical surroundings is explored through a combination of academic courses, field experience, and applied research. Examples of student class projects and faculty work are frequently on display in the department's gallery. The DEA Resource Center includes books, journals, newsletters, and materials samples for student use.

Options
The department offers undergraduate education in three professional areas: interior design, facility planning and management, and human-environment relations. The interior design option is accredited by the Foundation for Interior Design Education Research (FIDER).

To take full advantage of the course sequences and electives, it is important to select an option as early as possible. This is particularly true in the interior design option. Transfer students in the interior design option may need one or two extra semesters to complete the program.

Option I: Interior Design
This interior design option prepares students for professional careers in the planning and design of interior spaces and furnishings. The program emphasizes a problem-solving approach based upon knowledge of buildings and their associated systems, furnishings and interior products, human-environment relations, and design principles. Some students combine this program with one of the other options.

Careers are available in interior design and space planning, interior architecture, facility planning, interior product design, and housing. This program also serves as an excellent preparation for graduate study in interior design, facility management, architecture, and product design.

Option II: Facility Planning and Management
This option is designed to prepare students for professional careers in facility management. The program focuses on the planning, design, and management of facilities for large, complex organizations such as corporations, health-care institutions, research and development laboratories, and universities. Facility planning and management is a basic management function that coordinates and integrates information and expertise from areas such as planning and design, real estate and business administration with human factors, ergonomic, environmental psychology, telecommunication systems, and building codes for the purpose of developing and managing facilities that support individual and organizational effectiveness.

Excellent career opportunities exist in the facility management divisions of private companies, institutions, and the health-care industry. The program is also a good preparation for graduate study in business, planning, or one of the design disciplines and for advanced study in facility planning and management.
Instruction, extension, and research provide diverse opportunities for students to prepare for career development or to acquire the bases for graduate study. Many of the department's majors are interested in clinical psychology, counseling, law, medicine, special education, or university teaching and research that require some graduate study. Others may go directly into employment in business or industry or take bachelor's-level positions as youth counselors, day-care workers, personnel assistants, research technicians, social program assistants, etc.

Academic Advising

Every HDFS major is assigned a faculty adviser in the department, and advising conferences are required at least twice a year. An adviser helps plan the course work and consults with the student about career options. The adviser can also help students find special opportunities for individual study or for experience outside the classroom. Although advisers must sign course schedule cards, it is the student's responsibility to keep track of his or her courses and to make sure that the program meets graduation requirements for the major and the college. Students who need an adviser or who want to change advisers for any reason should check with the department office, in NG14 Martha Van Rensselaer Hall.

Curriculum

HDFS majors usually combine a broad liberal education with a more specialized focus on either a problem of human concern or a substantive area of concentration. Areas of specialization available within HDFS include infant, child, adolescent, and adult development; abnormal development; family studies; and social-personality and cognitive development. Some students combine an HDFS major with premedical or prelaw training or with specialized work in an area outside the department, such as communication arts, nutrition, business, or government.

During their first two years, students are expected to combine a variety of liberal arts courses with HDFS core courses HDFS 115 (Human Development: Infancy and Childhood); HDFS 150 (Families in Modern Society); HDFS 216 (Human Development: Adolescence and Youth); and HDFS 218 (Human Development: Adulthood and Aging). This encourages diversity yet ensures a common base for upper-level courses in the major. Courses within the department vary from lectures and discussions to research and independent study.

All students are encouraged to participate in an experiential learning course in their particular area of interest. The course may focus on a naturalistic or laboratory setting (e.g., nursery school, youth detention center, retirement home) or on a research setting (e.g., interviewing, administering tests, observing behavior).

An HDFS major also takes a number of upper-level departmental courses in particular areas as described in the Student Guide. Additional information is available in the HDFS Office of Undergraduate Education, NG14 Martha Van Rensselaer Hall.

Math Requirement

HDFS majors are required to fulfill a math requirement by passing Education 115 or demonstrating equivalent competency by scoring 20 or above on the Cornell math assessment exam taken during orientation week.

Teaching Certification Option

The cooperative Cornell HDFS-State University College at Cortland education program is designed to meet New York State certification requirements for teaching grades N–6 and grades N–9. The program requires that the student spend three years at Cornell and the senior year and part of two summers registered in absentia at SUC Cortland.

This highly selective undergraduate program offers an alternate to the option of seeking a master's degree in education after the undergraduate studies at Cornell have been completed. Students interested in the program should discuss the merits of each option with the Coordinator of Undergraduate Education in NG22 MVR.

Course work at Cornell must be carefully planned. Elective options will be somewhat limited because it will be necessary to consider thirty-seven Cortland credits and an additional five to nine education courses at Cornell as electives. More information is available in the HDFS Office, NG14 Martha Van Rensselaer Hall.

Honors Program

The honors program leading to a Bachelor of Science degree with honors in HDFS is designed to provide in-depth research experience for students interested in graduate school and to challenge students who enjoy research. Interested students should consult the coordinator of the honors program during their sophomore year.

A grade-point average of 3.3 is recommended for entry into the program, although promising students who lack the grade-point average also may apply if they can otherwise demonstrate their potential for honors work. Honors students must take at least one course in research design, preferably in the sophomore or junior year.

Students spend part of their junior and senior year working on a thesis under faculty supervision, completing the project before March 15 of the senior year when the student's oral examination is held. More information is available in the department's Office of Undergraduate Education, NG14 Martha Van Rensselaer Hall.

Foreign Language Requirement

The Department of Human Development and Family Studies is phasing in the foreign language requirement described below. Students entering in fall semester, 1990, or spring semester, 1991, are strongly encouraged, but not required, to complete the language requirement.

Language Requirement

The HDFS faculty believe that competence in a foreign language is an essential liberal arts goal for the educated HDFS student. Such exposure opens another culture for exploration at both the instrumental and expressive levels, helps students understand language itself, and
encourages knowledge of language as a fundamental intellectual tool and as an essential communicative asset with potential applied benefits. Work toward the foreign language requirement should be undertaken in the freshman and sophomore years.

The following departments teach foreign languages or literature or both in the College of Art and Sciences: Africana Studies and Research Center, Asian Studies, Classics, German Literature, Modern Languages and Linguistics, Near Eastern Studies, Romance Studies, and Russian Literature.

The language requirement may be satisfied in one or two ways:

1) by attaining PROFICIENCY in one language or
2) by attaining QUALIFICATION in two languages.

Proficiency

PROFICIENCY is attained by passing a 200-level course at Cornell (or Chinese or Japanese 161) or by equivalent achievement, to be determined by examination; see below under “Advanced Standing Credit.”

Qualification

QUALIFICATION may be attained in any of the following four ways:

1) Three credits of secondary school study or passing NYS Regents Exam in any one language give QUALIFICATION in that language. This route to QUALIFICATION does not guarantee entrance into a 200-level course. Students who want to continue in this language to seek PROFICIENCY must be placed by examination.

2) Passing the requisite course: 102, 123, or 134 in languages taught by the Department of Modern Languages and Linguistics; Chinese 112–114 or Japanese 160; Japanese 141–142–241, Near Eastern Studies 102 or 122 in Hebrew, 112 in elementary classical Arabic, 214 in Egyptian Arabic or 138 in Turkish; Classics 103 or 104 in Greek; Classics 106 or 107 or 108 in Latin; Classics 112 in modern Greek; 132 in Sanskrit; AS & RC 134 in Swahili.

3) A score of 560 or better on the College Placement Test (CPT).

4) Placement in a 200-level course by special examination (in cases where no CPT is available).

A student may submit a CPT score at the end of a course numbered 122, thus attaining QUALIFICATION without taking 123. This procedure is optional; the student with a score of 500 or better may want to take 123 to be better prepared for the 200-level courses.

Note: Completion of 131–132 language course sequence does not constitute QUALIFICATION.

Speakers of languages other than English may be awarded credit for their bilingual ability. Their English achievement is measured by the Test of English as a Foreign Language (TOEFL), a requirement for matriculation. Their performance in one other language learned outside the academic environment is measured by examination, and evidence of abilities in reading and writing, as well as speaking, is required. A maximum of 6 advanced placement credits are granted to students who demonstrate PROFICIENCY equivalent to course work at the 200 level or above at Cornell. Students may not earn credit both for PROFICIENCY in their native language and for studying English as a second language at Cornell.

Language Course Placement and Credit

Students who have had two or more years of high school study in a language may not register in any course in that language without being placed by examination. Nor may transfer students register without examination, even though they may have been given credit for language work elsewhere.

The type of examination depends on the language course and the level of achievement:

1) French, German, Italian, Russian, and Spanish courses: the standardized College Placement Test (CPT). Entering students who have not taken the CPT at high school and who want to continue their language study must take the CPT at Cornell during orientation week. Students may retake this examination at Cornell if they have studied the language a year or more since last taking the test. To do this, students register with the Academic and Career Counseling services, 203 Barnes Hall, and pay a fee.

2) Latin (all courses except 105 and 107): departmental examination.

3) Greek (all courses except 101, 104, and 111): departmental examination.

4) Arabic: departmental examination.

5) Hebrew: departmental examination.

6) Other languages: special examinations—see the professor in charge.

7) High achievement (students with a CPT score of 650 or better in French, German, Hebrew, Italian, Russian, and Spanish): the Cornell Advanced Standing Examination (CASE).

An entering or continuing student with high achievement scores should take the Cornell Advanced Standing Examination (CASE), even if the student does not want to do any further work in the language, the CASE may provide proficiency status for the language requirement and it may provide up to 6 hours of advanced standing credit. Students who do not have high achievement scores are eligible for the courses listed in the charts below, depending on their scores. For other languages, or for special problems, students should see the professor in charge.

French

<table>
<thead>
<tr>
<th>CPT</th>
<th>Reading Scores</th>
<th>Language Courses</th>
<th>Literature Courses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Below 450</td>
<td>121 or 122</td>
<td>123</td>
<td>200</td>
</tr>
<tr>
<td>450-559</td>
<td>203</td>
<td>201</td>
<td></td>
</tr>
<tr>
<td>560-649</td>
<td>203</td>
<td>211</td>
<td></td>
</tr>
<tr>
<td>650 and above</td>
<td>Apply for the Cornell Advanced Standing Language Examination (CASE)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Italian

<table>
<thead>
<tr>
<th>CPT</th>
<th>Reading Scores</th>
<th>Language Courses</th>
<th>Literature Courses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Below 450</td>
<td>121</td>
<td>123</td>
<td></td>
</tr>
<tr>
<td>450-559</td>
<td>203</td>
<td>201</td>
<td></td>
</tr>
<tr>
<td>650 and above</td>
<td>Apply for the Cornell Advanced Standing Examination (CASE)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

German

<table>
<thead>
<tr>
<th>CPT</th>
<th>Reading Scores</th>
<th>Language Courses</th>
<th>Literature Courses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Below 450</td>
<td>121</td>
<td>123</td>
<td></td>
</tr>
<tr>
<td>450-559</td>
<td>203</td>
<td>201</td>
<td></td>
</tr>
<tr>
<td>650 and above</td>
<td>Apply for the Cornell Advanced Standing Language Examination (CASE)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Russian

<table>
<thead>
<tr>
<th>CPT</th>
<th>Reading Scores</th>
<th>Language Courses</th>
<th>Literature Courses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Below 450</td>
<td>101 or 121</td>
<td>102 or 123</td>
<td></td>
</tr>
<tr>
<td>450-559</td>
<td>203</td>
<td>201</td>
<td></td>
</tr>
<tr>
<td>650 and above</td>
<td>Apply for the Cornell Advanced Standing Examination (CASE)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Spanish

<table>
<thead>
<tr>
<th>CPT</th>
<th>Reading Scores</th>
<th>Language Courses</th>
<th>Literature Courses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Below 450</td>
<td>121</td>
<td>123</td>
<td></td>
</tr>
<tr>
<td>450-559</td>
<td>203 or 211</td>
<td>201</td>
<td></td>
</tr>
<tr>
<td>650 and above</td>
<td>Apply for the Cornell Advanced Standing Examination (CASE)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Latin

Placement by departmental examination.

Hebrew

Placement by departmental examination.

Advanced Standing Credit

Advanced standing credit may be entered on a student’s record as follows. Credit may be granted for high school work for the equivalent of language courses numbered 203, 204. The amount of credit is based on performance of one or more of the following examinations:

a) CPT Advanced Placement Examination. French, Spanish, and German. A score of 4 or 5 yields 3 credits on the French, Spanish, or German language examinations and literature examinations.

Hebrew: Up to 6 credits may be granted, depending on the student’s score on the departmental examination.

Latin: Students should consult the Department of Classics, 120 Goldwin Smith Hall. Students must take the department’s own placement examination during orientation week. A student who is permitted to register in a 300-level course will be given 6 advanced standing credits.
Academic Advising
It is important for a student who is interested in majoring in Human Service Studies to declare that major as early as possible. Once that is done, students work with their assigned faculty advisers to plan course work and related educational activities. Students are free to change advisers. Although faculty advisers must sign the schedule card during course enrollment each term, it is the student's responsibility to keep track of courses and make sure they meet graduation requirements of the major and the college.

Social Work Program
The undergraduate social work major at Cornell has as its principal educational objective the preparation of students for beginning professional social work practice. In addition, the major prepares students for graduate education in social work and contributes to the enrichment of a college education by helping students understand social welfare services, and issues. The social work program is accredited by the Council on Social Work Education. Students who complete all requirements are eligible to apply for beginning-level employment as professional social workers or to apply for advanced standing in a graduate school of social work.

TEXTILES AND APPAREL
The Department of Textiles and Apparel (TXA) focuses on the use of textiles and fibrous materials for apparel and durable household goods, composites, geotechnical, and biomedical applications. Programs in the department, in keeping with the overall mission of the college, emphasize the use of materials to meet human needs. The curriculum includes the application of design principles, physical and materials science, economics and marketing, government policy/ regulation, management of products and their delivery, and technological developments.

Practical problem-solving skills are developed in the department’s laboratories and studios. Academic course work is further enhanced by field and international experiences. Gallery space provides the setting to display design work. In addition, the Cornell University Costume Collection, housed in the department, provides a valuable resource; items from the collection are made available to students for classroom and special-study use.

Academic Advising
All TXA majors are matched with a faculty adviser by the Advising coordinator, S. Kay Obendorf (208 Martha Van Rensselaer Hall). Students are strongly urged to discuss their goals, course selection and sequence, electives, and career plans with their faculty adviser. Students in apparel design must begin early to work with their advisers to develop a professional portfolio of their work. Students are free to change advisers; changes must be recorded with the advising coordinator. Although advisers must sign the schedule card during course enrollment each term, it is the student's responsibility to keep track of his or her courses and to make sure that the program meets graduation requirements of the major and the college.

Ownership and Exhibition of Student Work
All apparel design work done as part of the academic program is the property of the department until it has been released by the instructor. Certain exceptional work may be retained by the department to exhibit for academic purposes. The department is not responsible for loss or theft of student work.

Course Fees
No grade will be given in a course unless the course fee has been paid by the last week of classes.

Key Policy for Apparel Design Studios
To allow design students access to studios for out-of-class work at any hour in which Van Rensselaer Hall is open, and to provide security for the studios, the department has instituted a key policy. Each student in TXA 040, 145, 264, 367, 375, 425, 446, and 465 who submits a security deposit of $50 will be given a key to the studio in which his or her class is held. In the event that any key is lost, the studio will be rekeyed, and the cost will come from the security deposit of the student who lost the key. At the end of each semester, the studio will be assessed for missing and damaged equipment. The total amount assessed will be deducted from the security deposits of all students assigned to that studio. If all keys are returned and no damage or theft is reported, the security deposits will be returned at the end of the semester. Students who do not wish to work in the studio outside of class hours may elect not to have a key and therefore will not be required to submit a security deposit. Under no circumstances will these students be admitted to the studio outside of class hours.

Options
Students may select options in apparel design, apparel-textile management, or fiber science. The curriculum is based on manipulation of form, color, and the physical characteristics and structures of fabric to solve functional and aesthetic apparel problems; the application of economic and marketing principles to consumer and industry problems in the textile-apparel sector; and the study of chemical, physical, and engineering properties of fibrous structures and polymer blends. In previous course work, transfer students may need one or two extra semesters to fulfill the requirements of the major.

Option I: Apparel Design
The study of apparel design includes both functional and aesthetic considerations in the design of body coverings. The program emphasizes a problem-solving approach that enables the student to bring a background in apparel, textiles, and human factors to the design process.

Option II: Apparel-Textile Management
Apparel and textile management combines the fields of apparel and textile with those of economics, business management, and organizational policy. Students combine theory with case studies to find solutions to everyday problems. Course work is drawn from many interrelated disciplines, including textiles, apparel, economics, business management, and communication arts, as well as practical field experiences. This provides students with the experience of working with
professionals from a wide variety of disciplines. Students often combine this option with either Option I (Apparel Design) or III (Fiber Science).

Option III: Fiber Science

Applications for textile structures include advanced engineering composites, protective clothing for industrial and military environments, and biomedical materials, as well as the more traditional applications found in apparel and home furnishings. The fiber science option provides a strong base in mathematics and the physical sciences combined with supporting courses in engineering, consumer economics, and the social sciences.

Career Opportunities

Graduates of programs in the Department of Textiles and Apparel have found challenging employment within the textile and apparel sector, in independent and government-sponsored research, and in community organizations. Recent graduates are working in the fields of new product development, design, management, engineering, communications, and marketing. In addition, the program prepares students for graduate or professional study in fiber and polymer science, textile marketing, apparel design, textiles, or business and management.

INTERDEPARTMENTAL MAJOR IN BIOLOGY AND SOCIETY

Biology and society is a multidisciplinary program for students with special interests in such problems as genetic engineering, environmental quality, food and population, the right to medical care, and the relation between biology, society, and ethics and/or public policy, as well as for students who plan to pursue graduate study in management, health, medicine, and related fields. Because the biology and society major is multidisciplinary, students must attain a basic understanding of each of the several disciplines it comprises, by including introductory courses in the fields of biochemistry, chemistry, mathematics, ecology, ethics, and history. In addition, majors are required to take core courses in biology and society, a set of electives, and a special senior seminar. Course work in the College of Human Ecology must be taken in two of the following three concentrations: human development and the environment, health, or social policy and human services. The other basic requirements of the college must also be met. Programs incorporating those required courses are designed in consultation with a faculty adviser to accommodate each student's individual goals and interests. For further information on the major, including courses of related interest, specific course requirements, and application procedures, see the human ecology Student Guide.

INTERDEPARTMENTAL MAJOR IN POLICY ANALYSIS

As our economy has become more complex, so too has the role of the public sector in our society. An understanding of governmental processes and of how public policies affect the several segments of society has become more important. Individuals with the ability to evaluate government programs critically and trace their impacts quantitatively to consumers, families, business, and industry are in demand at all levels of government and business.

Supervised by the Department of Consumer Economics and Housing, the policy analysis major uses the resources of the college and the university to trace and estimate government's influence in the economy. In the policy analysis major, the student gains a basic understanding of the role of government in the economy and the political environment in which policy is made. Students concentrate on learning the economic, cost/benefit, and statistical skills necessary to evaluate the performance of government programs and policies—consumer policy, housing policy, welfare policy, environmental policy, foreign policy, for example. Because experience in legislative, regulatory, and public administration is helpful in providing the context for policy analysis, involvement in Field and International Study, Cornell-in-Washington, and Cornell Abroad is encouraged. The specific requirements for policy analysis are listed under the interdepartmental majors.

Graduates in policy analysis are attractive to business and industry as well as to government because of their analytical skills in economics, statistics, and their knowledge of political processes. Students also use the major for further work in policy studies, law, and business administration.

The policy analysis major is flexible and allows individual program planning. The faculty adviser assigned by the undergraduate advising coordinator can help develop a program to meet individual educational and career goals. This is particularly important in constructing the appropriate policy concentrations. Transfer students are urged to contact their faculty adviser as soon as possible. An appointment may be made directly to talk either with an adviser or with the advising coordinator, Peter Zorn.

INDIVIDUAL CURRICULUM

A student who has educational and professional objectives that cannot be met satisfactorily within the framework of existing majors in the College of Human Ecology may petition to develop an individual curriculum. To be approved, the curriculum must be within the focus of the college and be interdisciplinary in design, include at least 40 credits in human ecology courses, and not exceed the normal number of credits allowed in the endowed divisions. A student develops an individual curriculum in consultation with faculty advisers from at least two subject-matter fields and the program coordinator.

Such a program of study should encompass a substantial part of the student's undergraduate education and must include at least three semesters. For this reason, a request to follow an individual curriculum should be made as early as possible and must be made before the second semester of the junior year. If an individual curriculum seems advisable, Patti Papapietro, in the Office of Student Services, will provide direction in formally developing a program of study. Although the individual curriculum coordinator must sign the course enrollment schedule during course enrollment each term, it is a student's responsibility to follow the curriculum as planned or to have any necessary revision approved in writing by his or her advisers and the program coordinator in advance of the program change.

SPECIAL OPPORTUNITIES

Several special programs allow students to receive academic credit for fieldwork and internship experience, to study in absentia, or to enter particular graduate programs after the junior year.

Teacher Certification in Home Economics

Students can combine any major in the college with additional course work that leads to a certificate of qualification for teaching home economics (kindergarten through twelfth grade) in New York State and a number of other states.

Human Ecology Field and International Study

Field Study

Field study enables students to learn from participation in a community and organizational setting and from reflection on that experience through discussion, reading, and writing. This process of integrating theory with experience distinguishes field study from work experience and provides the rationale for granting academic credit.

The Human Ecology Field and International Study Office, 159 Martha Van Rensselaer Hall, offers interdepartmental, prefield preparation and field-based courses with an interdisciplinary problem-solving approach to social issues. Field placements are located in the Ithaca area, New York City, Albany, Washington, D.C., Boston, and elsewhere. Courses are open to registration by all Cornell students.

International Study

Study abroad provides students with an opportunity to add an international dimension to their human ecology program through course work focusing on international problems and intercultural understanding and through sponsored programs of study abroad for which credit is available. Course work in a foreign institution will, in general, be planned to increase knowledge of the people and institutions of the country concerned. Fieldwork may provide guided experience in family, community, or agency situations of the country concerned and in an area related to individual student interest in human ecology.

Opportunities for study abroad are available for human ecology students in several ways: through Cornell Abroad, through U.S. college-sponsored programs abroad, and through direct enrollment in a foreign university. In each case, students will remain registered at Cornell during the overseas study, and their study abroad will be credited as part of their Cornell degree program. Applications for study abroad should be submitted to the study-abroad adviser in the Field and International Study Office.
University Programs

Africana Studies and Research Center
Courses taken in the Africana Studies and Research Center (ASRC) may be used to meet some of the distribution requirements of the college. Up to two courses or 8 credits of such courses may be applied toward the 12 additional credits in natural and social sciences (section 1-C of the graduation requirements) or toward the 9 additional credits in communication, analysis, and the humanities (section II-B). This allowance is in addition to the freshmam writing seminar credits that may be taken in ASRC. Other courses taken in the center count as endowed division electives.

A list of ASRC courses approved to meet distribution requirements or as electives is available in the Office of Student Services and in the Office of the College Registrar.

Double-Registration Programs

Johnson Graduate School of Management
A limited number of highly qualified students from Cornell undergraduate divisions, including human ecology, may be accepted by the Johnson Graduate School of Management after the junior year. Students need the approval of the appropriate office and the registrar in the College of Human Ecology. Accepted students should be aware that if the management course work taken in the senior year is in excess of the 21 additional credits allowed in the Cornell endowed divisions, they will be charged for the additional credits on a per-credit basis. Students entering this program must also complete requirements for the degree and major in Human Ecology.

Law School
A small number of highly qualified applicants may be admitted to the Cornell Law School after only three years of undergraduate education. The requirements for admission under these circumstances are more stringent than for acceptance after four years of undergraduate study. Applicants must present outstanding qualifications and strong professional motivation. The junior-year applicant follows the ordinary application procedures for Cornell Law School admission. Interested students should contact the Law School director of admissions to discuss the extraordinary admissions criteria. Since students accepted to this program will be spending their senior year in the Cornell Law School, they need to plan ahead to ensure that distribution requirements for the B.S. degree from the College of Human Ecology will be met. Successful applicants need the approval of the college registrar.

Cornell Medical College
A limited number of highly qualified students from three Cornell divisions, including the College of Human Ecology, may be accepted by the Cornell Medical College after the junior year. To be considered for this program, the student must have completed 105 credits toward graduation by the end of the junior year. Students also need to plan ahead to ensure that distribution requirements for the bachelor of science degree will be met. Accepted students receive 15 credits toward the B.S. degree from their first year of study at the College of Medicine. Interested students should contact the Health Careers Program office in 203 Barnes Hall.

Off-Campus Programs

New York State Assembly Internships
A limited number of session internships with the New York State Assembly are available in spring semester to students of sophomore status and above who are enrolled in New York State colleges or universities. Human ecology students apply to the program through the student’s major department. The New York State Assembly Internship Coordinator will interview applicants. Further information about internship programs may be obtained through the Field and International Study Office, 170 Martha Van Rensselaer Hall.

Ithaca College
Full-time undergraduate students at Cornell may petition to enroll in courses at Ithaca College. Students pay regular tuition to Cornell and only special fees to Ithaca College, if any are charged. Students are allowed to register for one course or 4 credits in Ithaca College courses beyond the minimum requirements of Cornell courses. Acceptance of Cornell students into Ithaca College courses is on a space-available basis. Participation in this program is not guaranteed, and Ithaca College has the right to accept or reject students for any reason it deems appropriate. The program is available only during the fall and spring semesters.

For further information students should contact the college registrar, 146 Martha Van Rensselaer Hall.

PLANNING A PROGRAM OF STUDY

Academic Advising
When students decide to major in a particular department, they are assigned to a faculty adviser by the advising coordinator in that department. The advising coordinator can help match the student’s needs with the special interests of a faculty member. Students are free to change advisers as their own interests change and should see the advising coordinator to discuss such a change. Faculty advisers and counselors in the Office of Student Services, N101 Martha Van Rensselaer Hall, are available to discuss course requirements and electives inside or outside the college, as well as future goals and career opportunities. Although advisers must sign the course enrollment schedule card during course enrollment each term, it is the student’s responsibility to keep track of his or her courses and to make sure that the program meets graduation requirements for the major and the college. Advising coordinators in each department are happy to answer questions about the advising system and the undergraduate major. Students who are exploring alternative majors should work closely with college counselors who are available for planning and referral to department resource faculty.

Completing Graduation Requirements

A summary of record is kept for each student in the Office of the College Registrar, 146 Martha Van Rensselaer Hall. At fall registration each continuing student receives a copy showing which major and graduation requirements have already been met. It is important to check this summary and to bring any questions to the attention of staff members in the Office of the College Registrar. Although a student may complete the requirements of more than one major, he or she is officially certified to graduate under only one.

Electives
Students have individual objectives in choosing courses beyond the minimum requirements of the major. The university is diverse; the departments, centers, and special programs numerous; the fields of study almost unlimited. Counselors and department advisers are available to discuss which courses may interest students and round out their educations.

Students should consult the index of this Announcement for information on where different subjects are taught in the university. Some subjects are taught in more than one division of the university.

Foreign Language Study and Placement
Students who studied a foreign language before coming to Cornell and who want to continue must take either the College Entrance Examination Board (CEEB) achievement test in that language or a departmental language placement test. The latter is given during orientation week in September and again in December, January, and May. Students in human ecology who plan to work with non-English-speaking people in this country or abroad often find it necessary to be proficient in another language. Students who wish to study abroad may find that many study-abroad programs in non-English-speaking countries require the equivalent of two years of college-level language study. For more detailed information, see the section "Advanced Placement of Freshmen."

GRADUATION REQUIREMENTS FOR THE DEGREE OF BACHELOR OF SCIENCE

General

Students applying as undergraduates who do not have the required academic unit in biology, chemistry, or physics are required to show evidence of having met this deficiency before matriculation in the college.

Freshmen and sophomores are required to enroll in at least one human ecology course per semester.

To graduate, students need to

1) meet college credit and distribution requirements,
2) complete requirements for a major,
3) achieve a cumulative average of 1.7 (C-) or better,
4) fulfill residency requirements, and
5) complete two terms of physical education within the first two semesters.

College Requirements

These are the general areas of study and specific courses and credits required of every student in the college. The major you choose may require specific courses listed below or may leave you free to choose among certain courses listed there.

I. **Natural and Social Sciences** (24 credits)

A. **Natural sciences** (6 credits) selected from Biological Sciences 101-103, 102-104, 105-106, 109-110; Chemistry 103-104, 207-208, 215-216; and Physics 101-102, 112, 201 or 202, 207-208. Biological sciences courses must be taken sequentially.

B. **Social sciences** (6 credits) selected from economics (including CEH 110, 111 but excluding Agricultural Economics 221 and 310); psychology (including Education 110, 311, 317; DEA 150; HDPS 115, 216, 217, 218, 219); sociology (including rural sociology, CEH 148, and HDPS 150). Do not take both Economics 101 and CEH 110; Economics 102 and CEH 111; Psychology 275 and HDPS 360; Rural Sociology 101 and Sociology 101; or Sociology 243 and HDPS 150; they are equivalent courses.

C. **Additional credits** (12 credits) selected from any subjects listed above or courses in anthropology (except archaeology), Astronomy 101 or 102; biochemistry; microbiology; genetics and development; Geological Sciences 101; and government.

II. **Communication, Analysis, and the Humanities** (15 credits)

A. **Freshman writing seminars** (6 credits) selected from courses listed in the freshman writing seminar brochure.

B. **Additional credits** (9 credits) selected from art; communication; comparative literature; computer sciences; English; ancient or modern foreign languages; history; history of art; history of architecture; mathematics; music; Natural Resources 407; philosophy; politics; psychology (students should not take both Industrial and Labor Relations 210 and Agricultural Economics 310, since the courses are substantially the same); theatre arts; DEEA 101, 111, or 115; HSS 292; TXA 125, 375; and selected ASRC courses (list available in the Office of Student Services, N101 Martha Van Rensselaer Hall).

III. **Human Ecology** (40 credits)

A. **Requirements for the major** (the number of credits required varies by major and option).

B. **Fifteen credits to include course work in at least two departments outside the major** with two courses totaling 6 credits minimum in one department and one 3-credit course in a second department. Not more than 3 credits of the 15 may be in special studies 400, 401, 402, either departmental or FIS (Field and International Study). These credits cannot be used to fulfill this requirement, nor can an undergraduate teaching assistantship designated "403."

IV. **Additional Credits** (41 credits)

A. **Requirements for the major** (number of credits varies from 0 to 15 credits).

B. **Electives** (number of credits varies from 26 to 41 credits).

Credit requirements in this section are met through courses in the state divisions of Cornell:

- College of Human Ecology (in addition to courses in sections I, II, and III)
- College of Agriculture and Life Sciences
- School of Industrial and Labor Relations
- College of Veterinary Medicine

and through courses in the **endowed divisions of Cornell**:
- Africana Studies and Research Center
- School of Architecture, Art, and Planning
- College of Arts and Sciences
- College of Engineering
- School of Hotel Administration
- Johnson Graduate School of Management

Courses in the endowed divisions in this section may not exceed a total of 21 credits.

V. **Physical Education** (2 credits)

Students who have successfully fulfilled these requirements should have completed at least two terms of physical education in their freshman year.

Related Policies

College course requirement. Freshmen and sophomores are required to enroll in at least one course in the College of Human Ecology each semester. Students who fail to comply with this requirement will be reviewed by the Committee on Academic Status for appropriate action.

Section II. Students who score 4 or 5 on the Princeton AP Exam are awarded 3 credits in English. In addition, students who score 5 on the Princeton Exam are exempt from one freshman writing seminar in addition to the 3 English credits awarded.

In **sections I, II, and III,** the required credits listed are the minimums; credits taken in excess of those minimums (section I, 24 credits; section II, 15 credits and section III, 40 credits) count toward electives (section IV, 41 credits).

In **sections I and II,** courses specified by the major to meet the requirements in the sections may either be used as meeting the credit requirements in those sections or be applied toward the additional credits in section IV.

Section IV. There is no limit to the number of credits that may be taken in the state divisions of Cornell, and therefore students may choose to take additional state credits and graduate with more than 120 credits.

Credits in the endowed divisions in this section may not exceed 21. Any course taken in an endowed division for which a grade of F or U is received will be counted against the 21 endowed credits allowed.

Elected credits earned in Cornell's endowed divisions during summer session, in absence credits, and transfer credits are counted as credits earned in the state divisions and therefore do not count against the 21 credits allowed in the endowed divisions in meeting the requirements of this section.

Not more than 21 credits in section IV may be taken in the endowed divisions of the university except under both of the following conditions:

1) The students must have senior status (must be in the final two semesters prior to graduation);

2) Payment must be made for each credit taken in excess of the 21 allowed, whether or not the courses are passed. For the precise fee per credit, students should call the Office of the Bursar.

Related Policies for Transfer Students

Section I-A. Transfers who are entering human ecology programs in consumer economics and housing, design and environmental analysis, human service studies (with the exception of the social work program), and policy analysis can satisfy the College of Human Ecology's natural science graduation requirements with any course(s) taken to meet a former college's natural science requirements as long as the course(s) transferred dealt with matter, energy, and their interrelationships and transformations. Courses in areas such as psychology and mathematics are not included, even though courses in these areas may have been taken to meet a former institution's natural science requirement.

Section II-A. Transfer students should have taken at least 6 credits in courses in English composition or in courses requiring substantial writing and offering instruction in writing equivalent to that offered in the freshmen writing seminar program at Cornell. Students who have not fulfilled this requirement before transferring must fulfill it after matriculation.

Section III-B. External transfer students can meet the requirement for course work outside the major in the College of Human Ecology by completion of either of the following:

1) 15 credits of work, outside their department, comprised of transfer credit and credit earned in the college,

2) credits all taken in this college (no transfer credit is allowed to meet this requirement), on the basis of the status of the student's matriculation and prorated as follows:

<table>
<thead>
<tr>
<th>Cornell Human Ecology Credits to Satisfy Work outside the Major</th>
</tr>
</thead>
<tbody>
<tr>
<td>Status at Matriculation</td>
</tr>
<tr>
<td>Freshman (1-25 transfer credits)</td>
</tr>
<tr>
<td>Sophomore (26-55 transfer credits)</td>
</tr>
<tr>
<td>Junior (56-85 transfer credits)</td>
</tr>
<tr>
<td>Senior (86-120 transfer credits)</td>
</tr>
</tbody>
</table>

In both options, the courses must be in at least two departments outside the major with two courses comprising 6 credits in one department and at least one 3-credit course in a second department. Transfer students from other Cornell divisions are required to take the full 15 credits outside the major. Note that transfer students are still responsible for completing a total of 40 human ecology credits under section III.
Section IV. Transferred credits for courses applied toward electives do not reduce the 21 Cornell endowed credits that students are allowed. Courses with a passing grade below C—will not transfer to meet human ecology degree requirements.

Section V. Transfer students who have had the equivalent of two semesters of college (and therefore enter as sophomores) are not required to take physical education at Cornell, regardless of whether they took physical education at their first college. Exemption or postponement for medical reasons must be cleared by Gannett Health Center. For further information about exemption from, or postponement of, physical education, students should contact the college registrar, Mary Rhodes, in 146 Martha Van Rensselaer Hall.

Related Policies for Freshmen

Section V. Freshmen are required to take two semesters of physical education during their freshman year. Freshman transfer students entering with 12 or more credits have their physical education requirement reduced to one term.

Residency Requirements

All college curricula are planned to fit within an eight-semester program. An average schedule of 15 credits a semester (in addition to physical education) is considered standard, and if pursued for eight semesters will provide the credits needed for graduation. If the student completes all the requirements—for the major, for distribution, for total credits, and for cumulative average—in fewer than eight semesters, the degree may be conferred at the end of the semester in which the last requirement is met. Students who plan to receive their degrees early should notify the college registrar.

Mature students (those at least twenty-four years old at the time of matriculation) are not required to petition the college registrar for approval to study beyond the usual eight semesters.

Exemptions from Requirements

Students who want an exemption from a specific graduation or major requirement may petition, and approval may be given under certain circumstances. Full information about the petition process is given in the human ecology Student Guide. Petition forms are available in the Office of Student Services, N101 Martha Van Rensselaer Hall.

PROCEDURES

Course Enrollment

Course enrollment occurs in two steps. During pre-enrollment students request courses, and at university registration students complete information forms, receive their schedules, and have their university IDs validated. Students are expected to complete course enrollment during specified times each semester. Failure to do so carries a $10 penalty, which can be waived only if circumstances are completely beyond the student’s control. It is the student’s responsibility to find out the dates of course enrollment.

Freshmen and transfer students enrolling for the first time in the university in the fall term pre-enroll in their courses during the summer before they arrive on campus.

Continuing students pre-enroll for fall semester in March or April, and pre-enroll for spring semester in October or November preceding the beginning of the term.

Since new students starting at midyear do not have an opportunity to enroll in courses until after they arrive on campus, the college tries to reserve places for them in human ecology courses. The orientation schedule given to all new students lists a specified time for enrolling in such courses. For the first three weeks of the term, new students have an opportunity to add courses in other divisions of the university as well as in human ecology.

Pre-enrollment

Course pre-enrollment materials are mailed to each new student. Continuing students are notified of course pre-enrollment dates by poster and by notices in the Cornell Daily Sun. Course pre-enrollment materials are available for continuing students in the Office of Student Services, N101 Martha Van Rensselaer Hall.

Before or during course pre-enrollment, students must complete a course registration form in the Office of the College Registrar. For their advising sessions, students need the list of last-minute changes issued by the college registrar, and the Course and Time Roster issued by the university registrar. Students must have their course enrollment schedule signed by their departmental major faculty adviser, or if they have not declared a major, by a college counselor.

Students file completed pre-enrollment materials by the announced deadline in the Office of the College Registrar, 146 Martha Van Rensselaer Hall.

The following policies and procedures apply to course enrollment.

Permission of Instructor

Certain courses may be taken only with the permission of the instructor as indicated in Cornell University: Courses of Study. For such courses, students must obtain the instructor’s permission before filing their course enrollment form during the pre-enrollment period. Instructors indicate their permission to take the course by signing the student’s course enrollment form.

Students interested in taking a course in the Department of Art in the College of Architecture, Art, and Planning are required to register with the departmental secretary before enrolling in the course. Seniors who want to take an elective course in the Johnson Graduate School of Management are required to obtain permission of the instructor on a course authorization form that the student then files with that school’s registrar in 312 Malott Hall.

Special Studies Courses

Each department in the College of Human Ecology (CEH, DEA, HDFP, HSS, DNS, and TXA as well as the Field and International Study Program) offers special studies courses that provide opportunities for students to do independent work not available in regular courses. One of those courses, designated 300, Special Studies for Undergraduates, is intended primarily for students who have transferred from another institution and need to make up certain course work.

The other special studies courses are 400, Directed Readings; 401, Empirical Research; and 402, Supervised Fieldwork. Those courses are normally taken by upperclass students, and work is supervised on an individual basis by a faculty member in the department in which the course is offered. It is important for students to use the appropriate course number (300, 400, 401, or 402) when enrolling.

A student who wants to take special studies courses talks with the faculty member under whose supervision the study would be done and then prepares a plan of work. If the faculty member agrees to supervise the study, the student completes a multipurpose special studies form, a multipurpose description of the study to be pursued. The student obtains the signatures of the instructor and the department chair as well as the student’s department adviser before submitting it to the Office of the College Registrar. The student also must complete a course registration form in the Office of the College Registrar. Special studies forms and instructions are available in the Office of Student Services.

To register in a special studies course taught in a department outside the college, students should follow the procedures established for that department.

Course Loads

The normal course load in the college ranges from 12 to 18 credits. During the pre-enrollment period no student may enroll for more than 15 credits or five courses, whichever is greater, without special permission from the college registrar. To receive permission, a student attaches a note to the course schedule, citing reason(s) for carrying a heavier load, before submitting it to the Office of the College Registrar.

Credits beyond 15 may be added during the first three weeks of the semester without special permission. Students should avoid planning excessive work loads, the time required to keep abreast of courses tends to increase as the semester progresses. Courses cannot be dropped after the seventh week of classes without petitioning, so students should try to avoid the need to drop courses.

Except for those with mature student status, students must carry at least 12 credits (exclusive of physical education). In special cases, a student may petition to carry between 8 and 12 credits. Forms for petitioning and
Students are responsible for assuring that their academic program meets graduation requirements. Resolve any questions about graduation requirements with the appropriate staff person in the Office of the College Registrar. Students may direct questions about their academic programs to their faculty adviser or to a counselor in the Office of Student Services.

Late University Registration
A student clearing his or her financial obligations after the deadline date on the bursar's bill is considered late. Late registrants are assessed a finance charge on the bursar's bill starting from the date the bill is due. Starting the fourth week of the term the assessment for late registration is as follows:

- fourth week: $85
- fifth week: $95
- sixth week: $105

After the sixth week, $25 is charged for each additional week. After completing late university registration, the student submits the college registration card to the Office of the College Registrar and receives a computer printout of the courses for which he or she is officially registered. Students who fail to register by the seventh week of the term will be withdrawn from the university. Should withdrawn students wish to return, they must reapply through the admissions committee.

Course Enrollment Changes

Deadlines
- During the first three weeks of the term, courses may be added or dropped without charge.
- From the fourth through the seventh week of the term, course changes may be made with the permission of the instructor and payment of a $10 processing fee.
- After the seventh week of the term, no course change may be made without petitioning for approval. Petitions are usually granted only in circumstances beyond a student's control (for example, illness). A student petitioning for medical reasons should provide substantiating medical evidence with the petition.
- A student who submits a petition after the seventh week of the term requesting permission to drop a course must attach a statement from his or her faculty adviser to that petition indicating whether or not the advisor supports the request.

Procedures
It is to the student's advantage to make any necessary course enrollment changes as early in the term as possible. Adding new courses early makes it easier for the student to keep up with course work. Dropping an unneeded course early makes room in the course for other students who may need it for their academic programs.

Some procedures required for course enrollment are also required for course enrollment changes. For example, the instructor's permission must be obtained for a course requiring it, and the same forms for special studies courses must be completed. Aside from the procedures listed below for course enrollment changes, all course change forms for nutritional science majors must be signed by the faculty department adviser.

Waiting List
The Office of the College Registrar maintains waiting lists for students who want to enroll in courses that have been filled. Waiting lists are maintained on a first-come, first-served basis without regard to seniority or other factors. To keep their names active on a waiting list, students must check in person every 48 hours with the Office of the College Registrar. Names of students who do not check in are automatically dropped from the list.

Limited enrollment classes: Students who do not attend the first two class sessions of courses with limited enrollment are automatically dropped from the course list. Students can avoid being dropped from a class by notifying the instructor that unavoidable circumstances have prevented their attendance.

There is no charge for course changes completed during the first three weeks of the term. To make course changes during the first three weeks, a student takes the following five steps:

1) Obtains a course-change form from the Office of the College Registrar, 146 MVR, or from the Office of Student Services, N101 MVR.
2) Completes the form and takes it to the appropriate office for signature: for human ecology courses, the forms should be taken to the Office of the College Registrar; for courses outside the college, the forms should be taken to the appropriate departmental office in the other college.
A student may take up to 15 credits in absentia as long as the courses do not duplicate courses already taken and the in absentia courses are applicable to the requirements of the college. A student's petition for more than 15 credits in absentia may be allowed under the following conditions: (1) the work taken represents a special educational opportunity not available at Cornell, (2) it relates to the student's particular professional goals, and (3) the courses are consistent with the focus of the college. The in absentia petition form is used to request more than 15 credits in absentia.

The college registrar requests approval from the appropriate department if a student wants to apply in absentia credit to requirements for his or her major. If in absentia credit is sought for a modern foreign language in which the student has done work, approval of the Department of Modern Languages and Linguistics (College of Arts and Sciences) must be obtained. The department will recommend the number of credits the student should receive and may require the student to take a placement test after returning to Cornell. The student is responsible for having the registrar of the institution where in absentia study is undertaken send transcripts of grades to the Office of the College Registrar in the College of Human Ecology. Only then will credit be officially assessed and applied to the Cornell degree.

Students receive notice of the petition decision with the intent of college and university regulations. Students may appeal petitions denied by the Committee on Academic Status. Petitions are considered individually, weighing the unique situation of the petitioning student with the intent of college and university regulations. Students can avoid the necessity to petition by clearly observing the deadlines that affect their academic program. See the Course Enrollment Changes section above for some of the important deadlines. If unsure about a deadline, check with a counselor in the Office of Student Services, N101 MVR, or with the Office of the College Registrar, 146 MVR.

Withdrawal
A withdrawal is a termination of student status at the university. Students may voluntarily withdraw at any time by notifying a counselor in the Office of Student Services and the Office of the College Registrar. A student considering such an action is urged to discuss plans with a counselor in the Office of Student Services, N101 MVR. In some instances a student may be given a withdrawal by the Office of the College Registrar. A student who leaves the college without an approved leave of absence or does not return after the leave has expired will be given a withdrawal after the seventh week of the term in which he or she fails to register.

Students who have withdrawn from the college or who have been given a withdrawal by the Office of the College Registrar and who wishes to return at a later date must reapply through the Committee on Admissions for consideration along with all other applicants for admission. If the student was in academic difficulty at the time of the withdrawal, the request for readmission will be referred to the Committee on Academic Status for consideration, and that committee may stipulate criteria under which the student may be readmitted to the college.

Petition Process
The petition process permits students to request exceptions to existing regulations. Petitions are considered individually, weighing the unique situation of the petitioning student with the intent of college and university regulations. Students can avoid the necessity to petition by carefully observing the deadlines that affect their academic program. See the Course Enrollment Changes section above for some of the important deadlines. If unsure about a deadline, check with a counselor in the Office of Student Services, N101 MVR, or with the Office of the College Registrar, 146 MVR. Although many kinds of requests can be petitioned in the college, options other than petitioning may be preferable in some cases. To explore whether a petition is appropriate, the student may discuss the situation with a college counselor in the Office of Student Services or with the college registrar. Students may appeal petitions denied by the college registrar to the Committee on Academic Status. Students who appeal a denial must attach a statement from the student's faculty advisor before CAS will consider the appeal.
After completing the form, submit it to the Office of the College Registrar. Students learn the result of the petition process for the general petition form by checking their mail folder in the student lounge of MVR.

In absentia Petition Form
The in absentia petition form is available in the Office of Student Services, N101 MVR, and in the Office of the College Registrar, 146 MVR. After completing the form, submit it to the Office of the College Registrar. In absentia petitions must have attached to them the catalog descriptions of the courses for which credit is required from the other institution. In absentia petition decisions are sent to students via the U.S. postal service.

GRADES
See the "Grading Guidelines" section for information on the official university grading policies.

S-U Grades
Some courses in the college and in other academic units at Cornell are offered on an S-U basis; that is, in the Cornell University: Courses of Study University regulations concerning the S-U system require that a grade of S be given for work equivalent to a C- or better, for work below that level, a U must be given. No grade point assignment is given to S, and S or U grades are not included in the computation of semester or cumulative averages. A course in which a student receives an S is, however, counted for credit. No credit is received if a junior or senior status and have a cumulative average of not less than B. Transfer students are eligible after completing one year in this institution with a B average. Current members of Omicron Nu elect new members. Not more than 10 percent of the junior class may be elected to membership and not more than 20 percent of the senior class may be elected. Graduate students nominated by faculty members may be elected.

Bachelor of Science with honors recognizes outstanding scholastic achievement in an academic field. Programs leading to a degree with honors are offered to selected students by the Department of Human Development and Family Studies and the Division of Nutritional Sciences. Information about admission to the programs and their requirements may be obtained from the appropriate department or division.

Bachelor of Science with distinction recognizes outstanding scholastic achievement. Consideration will be given to seniors whose academic standing at the end of seven semesters is in the top 10 percent of the graduating class. The honor is conferred on those seniors who are in the top 5 percent of the class after grade point averages have been adjusted by including grades for transfer work and after grades earned in the fifth, sixth, and seventh terms have been given double weighting in the final average. The graduating class includes students who will complete requirements for Bachelor of Science degrees in January, May, or August of the same calendar year.

To be eligible for consideration, transfer students must have completed 45 credits at Cornell. In determining the academic standing of a transfer student, previous work taken at another institution is included in the computation of the student's academic average. Names of seniors who meet these requirements are presented to the faculty of the college for approval.

The primary objectives of the honor society, Phi Kappa Phi, are to promote the pursuit of excellence in higher education and to recognize outstanding achievement by students, faculty, and others through election to membership. Phi Kappa Phi is unique in that it recognizes scholarship in all academic disciplines.
To be eligible for membership students must rank in the top ten percent of the senior class, or in the top five percent of the junior class. Provisions also exist for the election of faculty members and graduate students whose work merits recognition.

NONDEPARTMENTAL COURSE

100 Critical Reading and Thinking

Fall, spring, or summer. 2 credits. Enrollment limited. Priority is given to freshmen and sophomores; juniors and seniors are admitted with permission of the instructor. S-U grades only.

Fall and spring: sec, T R 10:10 or 11:15, plus two 1-hour labs to be arranged. H. Selco.

The objective of this course is to enable students to increase critical reading and thinking abilities. Theory and research associated with a wide range of reading, thinking, and learning skills are examined. Emphasis is placed on developing and applying analytical and evaluative skills. Laboratory instruction is individualized and provides the opportunity to focus intensively on increasing comprehension, reading rate, and vocabulary.

INTERDEPARTMENTAL COURSES

Field and International Study Program

S. Beck, director; R. Bounous, D. Giles, F. McCarthy, S. Gaber

Field Study

Field study enables students to learn from participation in a community and organizational setting and from critical reflection on that experience through discussion, reading, and writing. This process of integrating theory with practice distinguishes experiential education. Students earn credit by participating in internships and community-based research.

The Field and International Study Program (159 Martha Van Rensselaer Hall) offers courses in pre-field preparation and field-based courses with an interdisciplinary problem-solving approach to social issues. Field study programs are located in the Ithaca area, New York City, and Washington, D.C., with other opportunities possible through arrangements with Field and International Study Program faculty. Courses are open to registration by all Cornell students.

International Study

Study abroad provides students with an opportunity to add an international dimension to their human ecology program through course work focusing on international problems and intercultural understanding and through sponsored programs of study abroad for which credit may be earned. Course work in a foreign institution will, in general, be planned to increase knowledge of the people and institutions of the country concerned; fieldwork may provide guided experience in family, community, or agency situations of the country concerned and in an area related to individual student interest in human ecology.

Opportunities for study abroad are available for human ecology students in several ways: through Cornell Abroad, through U.S. college-sponsored programs, and through direct enrollment in a foreign university. Information and applications for study abroad are available in the Field and International Study Program office (MVR 159).

100 Skills for Learning in the Field

Fall or spring. 2 credits. Prerequisite: permission of instructor.

First 7 weeks of semester: W 1:30–4:25. Fall or spring. R. Bounous.

This course trains students to become more effective field learners and enables them to understand and cope with the complex demands of a field placement. Topics include experiential learning, cross-cultural communication, ethnocentrism and cultural relativism, participant observation, investigative interviewing, critical thinking, understanding nonverbal communication, identifying sources of information in the community, and analyzing verbal presentations. All of the concepts are applied through work assignments.

200 Preparation for Fieldwork: Perspectives in Human Ecology

Fall or spring. 4 credits. Limited to 25 students per section. Prerequisite: permission of instructor. Required of all students planning to do FIS 400-level field study or research. T R 10:10–12:05 or 2:30–4:25. D. Giles.

Introduces students to skills essential for field study, internships, community research, and other experiential learning courses. This course focuses on understanding the multiple cultural and social settings that students will encounter in the small group, organizational, and community contexts of their field study. Through a cycle of active learning and reflection, students gain experience in analysis of assumptions and biases, participant observation and interviewing skills, effective verbal and non-verbal communication, and group dynamics. By structuring and reflecting upon their own learning, students are prepared for self-directed, experience-based learning that is the core of field and international study. Working in small task groups, students apply and synthesize these skills in community-based projects. Previous semesters’ projects included “Collegegown Redevelopment,” “Long-Term Health Care,” “Recycling Behavior in Student Neighborhoods,” and “Rural Housing Needs.”

210 Preparation for International and Cross-Cultural Experience

Fall or spring. 3 credits. Not open to freshmen. Prerequisite: permission of instructor; preference given to students planning to study abroad or participate in international internships. T R 12:20–1:40. F. McCarthy.

The course has two main objectives. One is to prepare students for international and cross-cultural experience through the application of observation and interviewing skills, analysis of social and cultural factors in selected countries, and consideration of key issues such as poverty, inequality, industrialization, and class and gender exploitation; the second is to link social factors to the use and distribution of natural resources and provide a framework for understanding the social control of resources and its effects on the life chances and experience of people. Class activities include discussion, lectures, field experiences, skill development, and a small-group presentation. Students will develop interviewing and observation skills through projects that will focus on the countries in which they intend to study or intern. Strongly recommended for students planning to study abroad, to do international internships, or to take FIS 410. FIS 210 may be substituted for FIS 200 with permission of instructor.

400 Directed Readings

For study that predominantly involves library research and independent reading.

401 Empirical Research

For study that predominantly involves data collection and analysis.

402 Supervised Fieldwork

Fall, spring, or summer. 3–15 credits. Limited to 20 students. Prerequisite: FIS 200. Enrollment by permission of instructor. Applications due in the Field and International Study Office during the preceding semester’s course enrollment period. Hours to be arranged. Faculty. Supervised field study involves both responsible participation in a community setting and reflection on that experience through discussion, reading, and writing. Academic credit is awarded for this integration of theory and practice. Credit participation to allow for combined departmental and interdepartmental sponsorship and supervision.

Information on placement opportunities is available in the Field Study Office, 159 Martha Van Rensselaer Hall. Students should begin planning at least a semester in advance for field study.

403 Teaching Apprenticeship

For study that includes assisting faculty with instruction.

406 Sponsored Field Learning or Internships

Fall or spring. 6–15 credits. Limited to 15 students; intended for juniors and seniors. Prerequisite: FIS 200. Enrollment by permission of instructor. Applications are due in the Field and International Study Office during the preceding semester’s course enrollment period. Hours to be arranged. S. Beck.

A course for students seeking interdepartmental sponsorship and supervision of participation in structured, off-campus field experiences or internships operated by non-Cornell or non-credit-granting institutions or agencies. Completion of course requirements is verified by a formal presentation to the college community upon return to Cornell (graduating seniors may make special arrangements). Credit is variable to allow students to arrange for combined interdepartmental and departmental sponsorship and supervision.

Information on course enrollment and internship opportunities is available in the Field Study Office, 159 Martha Van Rensselaer Hall. Students should begin planning more than one full semester before leaving campus for an internship.
407 Field Experience in Community Problem Solving

Fall or spring. 6–15 credits. Limited to 25 students; intended for juniors or seniors. Prerequisite: FIS 200. Enrollment by permission of instructor. Applications due in the Field and International Study Office during the preceding semester's course enrollment period. Sem, R 1:30–4:25; hours in the field to be arranged. Faculty.

A course designed to provide students with a structured, closely supervised field experience encompassing an ecological approach to human problem solving. Interdepartmental teams of up to fifteen students will contract with community businesses, agencies, and organizations as special-projects staff members delegated primary responsibility for problem solving in a designated area of agency need. Students spend twenty hours each week working directly on the projects, three hours each week in seminar, and additional time completing seminar readings and assignments. The seminar is aimed at assisting students in systematically analyzing the complex factors that affect the implementation of new programs, policies, or projects in upstate community settings. Set in this context, the field placement is viewed as a case study in the ecology of organizational decision making. Supervision of all projects is provided jointly by the course instructor and appropriate agency personnel. In addition, each project is subject to review twice during the semester by an oversight committee composed of community and faculty representatives with relevant expertise. Completion of the course is signified by formal project results to the contracting organization's staff, board of directors, or other appropriate administrative units and to members of the oversight committee, together with submission of an academic analysis of the implementation process to the course instructor. Credit is variable to allow students to arrange for combined interdepartmental and departmental sponsorship and supervision.

Information on projects is available during course enrollment in the Field and International Study Office, 159 Martha Van Rensselaer Hall. Students may assist in the planning and project implementation process by making their interests known to the office a full semester before intended enrollment in the course.

408 The Ecology of Urban Organizations: New York City Field Experience

Fall or spring. 9–15 credits. Limited to 25 students; intended for juniors and first-semester seniors. Prerequisite: FIS 200 and permission of instructor. Applications due in the Field and International Study Office during the preceding semester's course enrollment period. Students may enroll in FIS 408 for up to 15 FIS credits. Information on placements is available in 159 Martha Van Rensselaer Hall. Students should begin planning at least a semester in advance for field study.

410 Advanced Seminar: Analysis of International Experience

Fall or spring. 3 credits. Prerequisites: experience abroad and permission of instructor. T R 2:30–4. F. McCarthy.

This course provides a context for the integration and interpretation of cross-cultural experience for students returning to the United States after extended periods abroad. Building on an understanding of international processes shaping and directing an interdependent world, the course relates personal experience to socioeconomic factors structuring living situations at home and abroad. Among the issues to be pursued are reentry and (re)acculturation, patterns and conditions of work, relationships and patterns of exchange, ideology and social explanation, personal autonomy and institutional contexts, power and authority, gender exploitation and oppression, and forms of response. The course will feature readings, special projects, presentations, and discussions encouraging and facilitating the analysis and understanding of individual cross-cultural experience. The purpose of the course is to encourage the analysis and integration of cross-cultural experience in relation to international processes, academic interests, and personal concerns of students.

414 The Sociology of Organizations: New York Urban Environment

Fall. 3 credits. Prerequisite: Sociology 211. Not open to freshmen. S-U grades optional. Credit is variable to allow students to arrange for combined interdepartmental and departmental sponsorship and supervision.

This course acquaints students with the basic sociology of organizations throughout the New York metropolitan area. Students should not register for this course.

10 Introduction to Consumer Economics

Fall. 3 credits. S-U grades optional. Students who have taken Economics 101 or another introductory microeconomics course should not register for this course.

11 Introduction to Consumer Economics II

Spring. 3 credits. S-U grades optional. Students who have taken Economics 102 or another introductory microeconomics course should not register for this course.

210 Intermediate Microeconomics

Fall. 4 credits. Prerequisite: CEH 110 or equivalent. Course packets on sale in department at approximate cost of $15. E. Lees, M W F 10:15–11:10, disc, W 2:30 or 3:35 or R 2:30 or 3:35. Two evening prelims. L. Gosse. Theory of demand and consumer behavior including classical and indifference curve analyses; theories of production and cost; models for the following markets—competitive, monopoly, monopolistic competition, oligopoly, and inputs; general equilibrium; welfare economics; public goods; risk.

212 Family Resource Management

Fall. 3 credits. Open to freshmen. S-U grades optional. Class notes for sale at Kinko's. M W F 2:30. R. Keyes. An introduction to management concepts and theories of efficient resource utilization from a social systems perspective. The focus is on the family's use of resources to attain goals and meet demands. A systems framework is used to analyze family managerial behavior throughout the life-cycle and specific situations such as single-parent, blended, and low-income families.
232 Consumer Decision Making
Spring. 3 credits. Prerequisite: CEH 110 or permission of instructor.
M W F 10:10. E. S. Maynes.
This course is designed to help individuals make more effective choices as consumers. In pursuit of this goal, the course introduces the student to relevant concepts, theories, and research from economics, consumer economics, marketing, and statistics. Topics covered include informationally imperfect markets, assessing consumer information, seeking redress, bargaining, dealing with inflation, decision-making rules, the concept and measurement of quality, and consumerism. Students prepare price-quality maps of local consumer markets. A second part of the course introduces the student to the concept of consumer sovereignty and assesses the performance of markets as critiqued by economists and consumerists.

233 Marketing and the Consumer
Spring. 3 credits. Prerequisite: CEH 110 or equivalent.
M R 8:40-9:55. Staff.
This course introduces students to marketing—the processes and institutions by which products are conceived, tested, priced, advertised, distributed, and evaluated. Case studies and outside lecturers are used to impart reality to the course. Emphasis is given to the viewpoint of both the seller and the consumer. Students are required to undertake a paper involving a marketing problem.

247 Housing and Society
Spring. 3 credits. S-U grades optional.
P. Chi.
A survey of contemporary American housing issues as related to the individual, the family, and the community. The course focuses on the current problems of the individual housing consumer, the resulting implications for housing the American population, and governmental actions to alleviate housing problems.

300 Special Studies for Undergraduates
Fall or spring. Credits to be arranged. Hours to be arranged. Staff.
Special arrangements for course work to establish equivalency for courses not transferred from a previous major or institution. Students prepare a multipage description of the study they want to undertake, on a form available from the Student Services Office. The form, signed by both the instructor directing the study and the head of the department, is filed at course registration or during the change-of-registration period.

301 Special Studies for Undergraduates
Fall or spring. 1 credit. Prerequisite: a course in introductory microeconomics and cost/price analysis in a CEH 300- or higher-level course. S-U grades only.
Six 1-1/2 hour weeks, weeks 2-4 of term. Hours to be arranged. Staff.
Topics covered will be utility maximization, marginal analyses, derivation of demand curves, price and income effects, present value, and other relevant topics.

315 Personal Financial Management
Fall. 3 credits. Preference given to human ecology students; limit 200; not open to freshmen. S-U grades optional.
The study of personal financial management at various income levels and during different stages of the family life cycle. Topics include the use of budgets and record keeping in achieving family economic goals, the role of credit and the need for financial counseling, economic risks and available protection, and alternative forms of saving and investment.

325 Economic Organization of the Household
Spring. 3 credits. Prerequisite: CEH 110 or equivalent. S-U grades optional.
Theories and empirical evidence about how households spend their resources are used to investigate the ways they alter the amounts and proportions of time and money spent in various activities, their size, and their time in response to changing economic forces.

330 The Economics of Consumer Policy
Fall. 3 credits. Open to juniors, seniors, and graduate students. Prerequisites: CEH 110-111 or permission of instructor. Class packets on sale at Campus Store.
Students are acquainted with the basic approaches to consumer policy and perform economic analyses of specific consumer policy issues. Three specific areas of policy intervention are addressed: externalities and public goods; anti-trust and regulation of "Natural" monopolies; and markets characterized by imperfect information. Policy discussions are reinforced through the use of specific real-world examples. Students are required to submit a research paper focusing on one specific area of policy intervention discussed in class.

341 The Economics of Consumers' Housing Decisions
Fall. 3 credits. Prerequisite: CEH 110 or equivalent. S-U grades optional. CEH 210 or equivalent. S-U grades optional.
T R 9:30-10:45. J. L. Jacobson.
This course is designed to acquaint students with the economic issues associated with consumers' housing decisions. The focus of the course is on the development of economic models that characterize these decisions, although attention is also paid to the empirical support for the models. The specific decisions considered include: housing consumption, mobility, tenure choice, home improvement, housing maintenance, and mortgage choice. As time permits, the issue of discrimination in the mortgage and housing markets is also considered.

348 Household and Family Demography
Spring. 3 credits. Prerequisite: RSOC 101 or equivalent. S-U grades optional. Students cannot receive credit for both CEH 348 and CEH 148.
This course identifies important trends in U.S. household and family structure, examines the demographic, social, and economic forces behind recent changes in household structure, and evaluates current and future consequences and policy implications of these changes for both households and society. Topics include historical and contemporary trends in the size and composition of families and households, trends in marriage, divorce, remarriage, contraception, childbearing, and living arrangements, and interrelationships between household division of labor. Policy implications of all of the above are also considered.

355 Wealth and Income
Fall. 3 credits. Open to sophomores, juniors, and seniors; graduate students may elect to audit and write a research paper for 1 to 2 credits under CEH 600. Prerequisites: CEH 110-111 or equivalent. S-U grades optional.
M W F 1:25. J. Germer.
The wealth and income positions of American households are defined and discussed, and their economic determinants discussed along with the impacts of tax and expenditure policies and the economics of the political positions for and against such policies.

356 The Economics of Welfare Policy
Spring. 3 credits. Prerequisite: CEH 110 or equivalent. S-U grades optional.
Using the tools of economics, this course examines welfare policy. Included are an examination of which populations are affected, what behavior various policies are likely to encourage, and how welfare distribution occurs as a result of various welfare policies. Also evaluated are various proposals for welfare reform.

365 Economics of Consumer Law
Spring. 3 credits. Prerequisite: CEH 110 or equivalent. S-U grades optional.
M W F 1:25. Staff.
For course arranged. Staff.
Economic analysis of the roles played both by the courts and by federal and state regulatory legislation in altering consumer markets, consumer behavior, and consumer welfare. Topics include economic analyses of contract law, products liability, and accident law, as well as of the activities of such agencies as the Federal Trade Commission, the Food and Drug Administration, and the Consumer Product Safety Commission.

400-401-402 Special Studies for Undergraduates
Fall and spring. Credits to be arranged. S-U grades optional. Hours to be arranged. Staff.
For advanced independent study by an individual student on a credit basis and for experimental basis with a group of students in a field of CEH not otherwise provided through course work in the department or elsewhere at the university. Students prepare a multipage description of the study they want to undertake, on a form available from the Counseling Office. This form must be signed by the instructor directing the study and the department chair and filed at course registration or during the change-of-registration period.

400 Directed Readings
For study that predominantly involves library research and independent reading.

401 Empirical Research
For study that predominantly involves data collection and analysis.
452 HUMAN ECOLOGY

402 Supervised Fieldwork
For study that involves both responsible participation in a community setting and reflection on that experience through discussion, reading, and writing. Academic credit is awarded for this integration of theory and practice.

411 Time as a Human Resource
A set of historical and contemporary readings examining time management concepts and applications. Investigates changes in time use of family members in relation to social change. Explores meanings of market work, household work, and leisure in the context of family choices at different stages of the life cycle. Investigates current research concerning time allocations made by family members to household and market work. Examines use of time as a measure of household production.

415 Financial and Human Capital Investments
Fall. 3 credits. Prerequisites: CEH 110 or 111; CEH 315. TR 10:10–11:25. R. Heck.
This course approaches investment decisions from the viewpoint of the individual consumer and/or household. Investigates a broad array of investment choices including: human capital investments in one’s self and other family members; real estate investments; small businesses; and the traditional financial investments such as bonds, stocks, and mutual funds. Analyzes each investment choice within a general cost/benefit framework using basic economic principles or concepts of imputed values/costs; time costs; after-tax values; expected values (risk); present and future values, and in light of the goals and financial plan of the household.

431 Consumer Behavior
Fall. 3 credits. Open to seniors and graduate students. Prerequisite: CEH 110 or equivalent. TR 12:20–1:15. Staff.
This course analyzes how the consumer makes decisions. The student is exposed to theoretical and institutional analysis of consumer decision-making processes. Emphasis is placed on consumer attitudes and decisions at different stages of the life cycle, including the elderly. Special attention is given to government intervention and alternative family economic policies. The course examines interrelationships between housing conditions, neighborhood transition, and community development. Both theoretical and empirical perspectives on residential patterns, neighborhood change, and community power will be examined. Special attention is given to government intervention policies that deal with fair housing, residential segregation, neighborhood revitalization, and community development.

448 Housing Programs and Policy
Spring. 3 credits. Prerequisite: CEH 247 or permission of instructor. S-U grades optional. Offered alternate years.
M W F 2:30–3:45. P. Chi.
A study of interrelationships between housing conditions, neighborhood transition, and community development. Both theoretical and empirical perspectives on residential patterns, neighborhood change, and community power will be examined. Special attention is given to government intervention policies that deal with fair housing, residential segregation, neighborhood revitalization, and community development.

450 Economics of Health, Health-care Expenditures, and Health Policy
Fall. 3 credits. Prerequisite: CEH 110 or equivalent.
TR 1–2:15. Staff.
A study of the health-care market as distingushed from other markets by consumers’ relative information disadvantage. Topics include a theoretical and institutional analysis of the health-care system and its role in the consumer decision-making process, conflicts of interest between institutional objectives of health-care providers and public and private health-care insurers and any relation to inefficient provision of medical services, and the role of government intervention and alternative systems of medical care provision in reducing medical costs and increasing accessibility.

485 Evaluation of Public Policies
Fall. 3 credits. Prerequisites: CEH 110 or equivalent and an introductory statistics course. Recommended: CEH 210 or equivalent.
This course provides an introduction to the techniques used to evaluate public policies and programs. It will begin with a review of basic concepts in evaluative research: causal inference, validity, and experimental and quasi-experimental designs. The remainder of the course will concentrate on the tools of cost benefit analysis as a device for evaluating the effectiveness of government programs. Discussions of the techniques, issues, and problems of cost benefit analysis will be highlighted by examples of its use in a variety of public policy areas. Economic analysis and statistical techniques will be emphasized.

600 Special Problems for Graduate Students
Fall and spring. S-U grades optional. Hours to be arranged. Staff.
Independent advanced work by graduate students recommended by their chair and approved by the head of the department and the instructor.

601 Research Workshop in Consumer Economics and Housing
Fall and spring. 1–3 credits. S-U grades only. W 12:20. Staff.
Research seminar designed to provide a forum for graduate students in consumer economics and housing to present their own thesis research at an early stage and to provide critical input for other graduate students.

602 Family Resource Management Concepts
Fall. 3 credits. Prerequisite: graduate standing. Class notes for sale at Kinko’s. TR 2:30–3:45. R. Key.
Introduction at the graduate level to theories and empirical research on family resource allocation behavior. Particular attention is paid to problems associated with the modeling and measurement of theoretical concepts.

603 Economics of Consumer Demand
Fall. 3 credits. Prerequisite: CEH 210 or Economics 311 or 313 or concurrent enrollment in one of the three. S-U grades optional.
Introduction at the graduate level to theories and empirical research on household demand, consumption, and savings. Particular attention is paid to problems associated with the demand for consumer durables, with applications to housing.

604 Economics of Household Behavior
Spring. 3 credits. Prerequisite: CEH 210 or Economics 311 or 313 or concurrent enrollment in one of the three. S-U grades optional.
M W F 1:25. D. Mont.
Examination of theoretical and empirical literature concerning market work, human capital formation, household production, and family formation.
114 Drawing
Spring. 3 credits. Each section limited to 38 students. Priority given to DEA majors. Minimum cost of materials, $50.
A studio drawing course open to students with previous drawing experience. Focus is on descriptive, design-oriented drawing to improve abilities of visual analysis, develop visual communication skills, and enhance general visual awareness.

115 Drawing for Interior Design
Spring. 3 credits. Interior design students only. Priority given to DEA majors. Option I majors must take DEA 102 and DEA 115 concurrently. Minimum cost of materials, $100.
A studio drawing course for interior designers. Discussion groups on drawing techniques are held to develop a visual understanding and vocabulary. Students are introduced to the functions of line, shape, and value. Perspective, spatial, and conceptual drawing are emphasized.

117 Drawing the Clothed Figure
Spring. 3 credits. Enrollment limited to 18 students. A basic drawing course is highly recommended. Priority given to TXA Option I students. S-U grades optional. Approximate cost of textbook, $30; minimum cost of supplies, $40.
To improve the student's ability to illustrate two-dimensionally the interaction of draped fabric and the human form and to develop awareness of clothing as a design medium. Emphasis is on development of techniques and skills in selected media necessary for the communication of design ideas.

150 Introduction to Human-Environment Relations
Fall. 3 credits.
Introduction to the influence of physical environment on human behavior. Topics include environmental influences on crowding, community, crime, and friendship; environmental trends associated with characteristics such as stages in life cycle, life styles, social class, family structures, and handicaps; person-environment fit for lighting, acoustics, indoor air quality and ventilation, and thermal comfort; introduction to human factors and systems analysis; effects of environment on perception-cognition; user-responsive design; participatory design programming; and post occupancy evaluation.

201 Design III: Basic Interior Design
Fall. 5 credits. Each section limited to 38 students. Prerequisites: DEA 101, 102, and 115 (minimum grade of B–) recommended: DEA 111 and 150. Coregistration in DEA 203 is required. Minimum cost of materials, $150; shop fee, $10; optional field trip, approximately $100; diazo machine fee, $8.
Beginning interior design studio. Focus is on development of basic proficiency in interior design skills. The course is structured around a series of elementary interior and interior-product design problems of 3 to 5 weeks in length.

202 Design IV: Basic Interior Design
Spring. 5 credits. Each section limited to 18 students. Prerequisites: DEA 201 and 203. Prerequisites or corequisites: DEA 111 and 204. Minimum cost of materials, $120; diazo machine fee, $8.
Second interior design studio. Emphasis of the course is on continued development of basic proficiency in design skills through exposure to a selected set of interior and interior-product design problems of limited complexity. Each problem of 3 to 5 weeks duration is structured to emphasize different aspects of the design process.

203 Design Communications
Communication techniques for architectural and interior designers. Students study the various forms of communication used throughout the design process, from programming and cost justification through construction documentation, and the most effective utilization of those forms. Both verbal and visual presentation methods are stressed.

204 Introduction to Building Technology
Spring. 1 credit. M 2:30-4:25. W. Sims.
Introduction to building technology for interior designers and facility managers. Emphasis is placed on developing basic understanding of buildings and building systems and their implications for interior design and facility management. Covers basic building types, structural systems; construction materials and methods; HVAC systems; plumbing, electrical, lighting, fire, and security systems; and telephone, computer, and other communication systems.

210 Responsive Design for the Elderly
Spring. 2 credits. 7-week course. Prerequisite: DEA 150
T R 9:05. E. Ostrander.
The course deals with the rationale, database, and design requirements for creating responsive designs that address elderly user's needs. The literature on conceptual models, theories, and research approaches used to create database-based design requirements and guidelines are investigated. This information should be understood by anyone who intends to design, plan, or manage physical environments that meet the needs of "old" people.

250 The Environment and Social Behavior
Fall. 3 credits. Prerequisite: DEA 150 or permission of instructor.
A combination seminar-and-lecture course for students interested in the social sciences, design, or facility management. Through projects and readings the influence of environmental form on social behaviors such as aggression, cooperation, communication, community, and crime is explored. Also covered are the influences of stage in life cycle, family structure, and social class on environmental needs and purposes. Implications for the planning, design, and management of complex environments such as offices, hospitals, schools, and housing are emphasized.

251 Historic Design I: Furniture and Interior Design
Spring. 3 credits. Prerequisites: DEA 101 and 111. Recommended sequence: DEA 251, 252, and 553.
M W F 9:05. G. C. Millican.
A study of the patterns of historical development and change in architecture, furniture, and interiors from people's earliest expressions to the mid-eighteenth century as they reflect the changing cultural framework of Western civilization, excluding America.

252 Historic Design II: Furniture and Interior Design
Fall. 3 credits. Prerequisite: DEA 101. Corequisite: DEA 111. Recommended sequence: DEA 251, 252, and 553.
M W F 9:05. G. C. Millican.
A study of the patterns of historical development and change as revealed through American architecture, furniture, and interiors, 1650-1885. Design forms are considered individually, collectively, and in their historical context as they express the designers' values and ideals of American civilization.

261 Fundamentals of Interior Design
Fall. 3 credits. Enrollment limited to 20 students. Intended for nonmajors but open to DEA majors. Minimum cost of materials, $30.
A studio course that emphasizes the fundamental principles of design applied to the planning of residential interiors and coordinated with family and individual needs. Studio problems explore choices of materials, space planning, and selection and arrangement of furniture, lighting, and color. Illustrated lectures, readings, and introductory drafting and rendering techniques are presented.

300 Special Studies for Undergraduates
Fall or spring. Credit to be arranged.
Hours to be arranged. Department faculty.
Special arrangement for course work to establish equivalency for courses not transferred from a previous major or institution. Students prepare a multiproficiency description of the study they want to undertake on a form available from the Student Services Office. The form, signed by both the instructor directing the study and the head of the department, is filed at course registration or during the change-of-registration period.

301 Design V: Intermediate Interior Design
Fall. 5 credits. Prerequisites: DEA 111, 150, 201, 202, 203, and 204. Corequisite: DEA 303. Recommended: DEA 459. Minimum cost of materials, $150; shop fee, $10; optional field trip, approximately $100; diazo machine fee, $8.
Intermediate-level interior design studio. The course is organized around a series of interior and interior-product design problems of intermediate-level complexity, 3 to 5 weeks in duration. Focus is on development of design skills and on understanding of a selected set of generic problem types.
302 Design VI: Intermediate Interior Design
Spring. 5 credits. Prerequisites: DEA 301 and 303. Co-requisite: DEA 304. Minimum cost of materials, $150; shop fee, $10; diazo machine fee, $8.
S. Danko.
Second-semester, intermediate-level interior design studio. Continued emphasis on development of design skills and exposure to generic problem types with an emphasis on communication and construction detailing. National design competitions form the basis for studio projects.

303 Introduction to Furnishings, Materials, and Finishes
Fall. 1 credit.
Basic understanding of furniture types and systems; interior products and equipment such as workstations; window, wall, and floor coverings; ceiling and lighting systems; and materials and finishes. Emphasis is placed on criteria for selection of furnishings materials and finishes for typical interior design and facility management problems.

304 Introduction to Professional Practice of Interior Design
Spring. 1 credit.
Introduction to organizational and management principles for delivery of interior design and facility management services. Covers basic organizational structures and basic management functions within interior design and facility management organizations, work flow and scheduling, legal responsibilities and concerns, contracts, basic contract documents such as working drawings and specifications, supervision of construction and installation, and cost estimation.

325 Human Factors: Ergonomics-Anthropometrics
Spring. 3 credits. Recommended: A 3-credit statistics course and DEA 150.
Implications of human physical and physiological characteristics and limitations on the design of settings, products, and tasks. An introduction to engineering anthropometry, biomechanics, control/display design, work physiology, and motor performance. Course includes practical exercises and field project work.

349 Graphic Design
Spring. 3 credits. Enrollment limited to 20 students. Recommended: design background. Priority given to DEA majors. Approximate cost of materials, $50.
The fundamentals of lettering, typography, layout, and presentation techniques. Printing processes and the application of photography and illustration are also covered. A series of projects explores problems typical of the graphic design field.

350 Human Factors: The Ambient Environment
Fall. 3 credits. Recommended: DEA 150.
An introduction to human-factors considerations in lighting, acoustics, noise control, indoor air quality and ventilation, and the thermal environment. The ambient environment is viewed as a support system that should promote human efficiency, productivity, health, and safety. Emphasis is placed on the implications for planning, design, and management of space and facilities. Course includes a field project.

353 Historic Design III: Contemporary Design
Spring. 3 credits. Recommended sequence: DEA 251, 252, and 353.
A historical study of the emergence and development of contemporary design, 1885 to the present. Examines the social, economic, technical, and stylistic forces that shape the design forms of the present and includes a critical analysis of selected examples of architecture, interiors, and furniture.

361 Residential Design
Spring. 3 credits. Approximate cost of materials, $30.
An introduction to residential architectural design. While designing a solution for specific occupant needs, students consider site, orientation, climate, and materials. Drafting work consists of plans, elevations, perspectives, and presentation of solutions. Lectures, discussions, and required readings.

400-401-402-403 Special Studies for Undergraduates
Fall or spring. Credits to be arranged. S-U grades optional.
Hours to be arranged. Department faculty.
For advanced independent study by an individual student or for study on an experimental basis with a group of students in a field of DEA not otherwise provided through course work in the department or elsewhere at the university. Students prepare a multiplicity of the study they want to undertake on a form available from the Counseling Office. This form must be signed by the instructor directing the study and the department chair and filed at course registration or within the change-of-registration period after registration. To ensure review before the close of the course registration or change-of-registration period, early submission of the special studies form to the department chair is necessary. Students, in consultation with their supervisor, should register for one of the following subdivisions of independent study.

400 Directed Readings
For study that predominantly involves library research and independent reading.

401 Empirical Research
For study that predominantly involves data collection and analysis, or laboratory or studio projects.

402 Supervised Fieldwork
For study that involves both responsible participation in a community setting and reflection on that experience through discussion, reading, and writing. Academic credit is awarded for this integration of theory and practice.

403 Teaching Apprenticeship
For study that includes teaching methods in the field and assisting faculty with instruction. Students must have demonstrated a high level of performance in the subject to be taught and in the overall academic program.

454 Facility Planning and Management Studio
Spring. 4 credits. Prerequisite: DEA 459 or permission of instructor. Letter grades only. Minimum cost of materials, $100.
For advanced undergraduates interested in facility planning and management. Purpose is to provide basic tools, techniques, and concepts useful in planning, designing, and managing facilities for large, complex organizations. Covers strategic and tactical planning for facilities, space forecasting, space allocation policies, programming, site selection, building assessment, space planning and design, furniture specifications, and moves. Sociopsychological, organizational, financial, architectural, and legal factors are considered.

455 Research Methods in Human-Environment Relations
Spring. 3 credits. Prerequisites: DEA 150 or permission of instructor, and a statistics course.
M W F 9:05. E. Ostrander.
The course develops the student's understanding and competence in the use of research and analytical tools to study the relationship between the physical environment and human behavior. Emphasis is placed on selection of appropriate methods for specific problems and the policy implications derived from research. Topics include research design, unobtrusive and obtrusive data-collecting tools, the processing of qualitative and quantitative data, and effective communication of empirical research findings.

459 Programming Methods in Design
Fall. 3 credits.
M W F 11:15. E. Ostrander.
Introduction to environmental programming. Emphasis on formulation of building requirements from user characteristics and limitations. Diverse methods for determining characteristics that will enable a particular environmental setting to support desired behaviors of users and operators. Methods include systems analysis, soft system, behavior circuit, behavior setting, and user characteristic approaches. Selection of appropriate methods to suit problems and creation of new methods or techniques are emphasized.
499 Design VII: Advanced Interior Design
Fall and spring. 6 credits. Option I majors must take 6 credits of DEA 499. They are strongly encouraged to satisfy the basic 6-hour DEA 499 requirement in the fall semester and to continue with studio in the spring semester. Prerequisites: DEA 301, 302, 303, and 304. DEA 302 and 499 may not be taken concurrently. Minimum cost of materials, $150; diazo machine fee, $8 per semester.

MT W R 1:25-4:25. Department faculty. A comprehensive design—problem-solving experience involving completion of an advanced interior design problem selected by the student and approved by the instructor. The course consists of five phases of three to four weeks each: programming, schematic design and evaluation; design development, including material and finish selection; design detailing; and in-process documentation and the preparation of a professional quality design presentation.

600 Special Problems for Graduate Students
Fall or spring. Credit to be arranged. S-U grades optional. Hours to be arranged. Department faculty. Independent advanced work by graduate students recommended by their chair and approved by the head of the department and instructor.

645 Design Process and Methods
Spring. 3 credits. Limited to 15 graduate and advanced undergraduate students. Prerequisite for undergraduates: permission of instructor.

Focuses on thinking processes and techniques that support creative problem solving. Design methodologies of famous designers such as da Vinci, Ben Franklin, and Charles Eames will be examined through discussions and applications to short studio problems by the students. Topics include a historical overview of the design process and methods in both professional practice and education, creative problem solving in management and design, perceptual blocks to creativity, and the inherent merits and pitfalls in the four realms of thinking: analytical, intuitive, synthetic, and evaluative.

650 Programming Methods in Design

M W F 11:15 and an hour to be arranged. E. Ostrander.

A course intended for graduate students who want a more thorough introduction to environmental programming methods than is provided by DEA 459. Each student is required to attend DEA 459 lectures, meet with the instructor and other graduate students for an additional class each week, and do additional readings and projects.

651 Human Factors: Ergonomics-Anthropometry
Spring. 4 credits. Recommended: DEA 150.

TR 9:05–11 and an hour to be arranged.

A. Hedge.

A course intended for graduate students who want a more thorough grounding in human factors than is provided by DEA 325. Each student is required to attend DEA 325 lectures, meet with the instructor and other graduate students for an additional class each week, and do additional readings and projects.

652 Human Factors: The Ambient Environment
Fall. 4 credits. Recommended: A 3-credit statistics course and DEA 150.

TR 2:30–4 and one hour to be arranged.

A. Hedge.

A course intended for graduate students who want a more thorough grounding in human factors than is provided by DEA 350. Each student is required to attend DEA 350 lectures, meet with the instructor and other graduate students for an additional class each week, and do additional readings and projects.

653 Psychology of Workplace Design
Spring. 3 credits. Prerequisite: DEA 250/660 or permission of instructor.

M 7–10 p.m. F. Becker.

Intended for students interested in the planning, design, and management of facilities for complex organizations. The purpose of the course is to explore how characteristics of the workplace, including furniture and equipment and policies governing their use and allocation, affect individual and organizational effectiveness. Special topics, such as the human implications of new information technologies and work at home, are also covered.

654 Facility Planning and Management Studio
Spring. 4 credits. Prerequisite: permission of instructor.

Letter grades only. Minimum cost of materials, $100.

TR 1:25–4:25 and a one-hour seminar to be arranged. W. Sims.

For graduates in facility planning and management. The purpose of the course is to present fundamental tools, techniques, and concepts useful in the planning, design, and management of complex facilities. Covers strategic and tactical planning for facilities, space forecasting, space allocation policies, programming, site selection, building assessment, space planning and design, furniture specifications, and moves. Sociopsychological, organizational, financial, architectural, and legal factors are considered.

655 Research Methods in Human-Environment Relations
Spring. 4 credits. Prerequisites: DEA 150 or permission of instructor, and a statistics course.

Letter grades only.

M W F 9:05, and an hour to be arranged. E. Ostrander.

The course develops the graduate student's understanding and competence in the use of research and analytical tools to study the relationship between the physical environment and human behavior. Students attend DEA 455 lectures but have more extensive readings and projects and meet an additional hour each week.

659 Seminar on Facility Planning and Management
Fall. 1 credit. For graduate students and advanced undergraduates interested in careers in facility planning and management. S-U grades only.

M 4:30–5:45 F. Becker.

Series of seminars led by Cornell faculty members and other professionals directly involved in facility planning and management. Topics include strategic space planning, space standards, office automation, project management, energy conservation, building systems, wire management, lighting, and acoustics.

660 The Environment and Social Behavior
Fall. 4 credits. Prerequisite: DEA 150 or permission of instructor.

TR 3:35–5, plus an hour to be arranged.

F. Becker.

A combination seminar-and-lecture course for graduate students with interests in social sciences, facility management, or design. Graduate students attend DEA 250 lectures but have more-extensive readings and meet an additional hour each week.

668 Design Theory Seminar
Fall. 3 credits. Enrollment limited to 15 students.

M 2:00–7:00 R. Beckman.

Directed toward advanced undergraduate and graduate students with interest in the theory of design. The purpose is to provide an understanding of major theoretical ideas underlying design movements of the twentieth century. Explores these ideas through readings, lectures by faculty and visitors, student presentations of research papers, and seminar discussions.

899 Master's Thesis and Research
Fall or spring. Credits to be arranged. Prerequisite: permission of the chair of the graduate committee and the instructor. S-U grades optional. Hours to be arranged. Department graduate faculty.

HUMAN DEVELOPMENT AND FAMILY STUDIES COURSES

To develop observational skills, increase understanding of behavior and its development, and acquaint students with basic methodological concepts underlying the scientific study of behavioral development with emphasis on children. Direct experience in applying observational methods in laboratory and real-life settings is emphasized. Discussion groups may accompany the observation experience.

115 Human Development: Infancy and Childhood
Fall or summer. 3 credits. S-U grades optional. M W F 11:15. P. Schoggen and participating lecturers.

Provides a broad overview of theories, research methods, and the status of scientific knowledge about human development from infancy through childhood. Attention is focused on the interplay of psychological and environmental factors in changing behavior and shaping individuals' perceptual, linguistic, neurophysiological, social, and cognitive development.

150 Families in Modern Society
Spring or summer. 3 credits. S-U grades optional. Students cannot receive credit for both HDFS 150 and Sociology 243. M W F 11:15. P. Moen.

Contemporary family roles and functions are considered as they appear in U.S. history, as they change over the life course, and as they are influenced by cultural and economic forces that impinge on them.

216 Human Development: Adolescence and Youth
Spring or summer. 3 credits. Prerequisite: HDFS 115. S-U grades optional. M W F 12:20. Staff.

Provides a broad overview of theories, issues, and research in the study of human development from early adolescence to early adulthood (young adulthood). Attention is focused on the interplay of biological and cognitive factors, interpersonal relationships, social structure, and cultural values in shaping the individual's development. The role of adolescence in both the individual's life course and the evolution of the culture as a whole is also considered. Familial, peer group, educational, and work contexts for development are discussed.

218 Human Development: Adulthood and Aging
Fall. 3 credits. Prerequisite: HDFS 115. S-U grades optional. M W F 2:30. Staff.

Provides a general introduction to theories and research in adult development and aging. Psychological, social, and biological changes from youth through late adulthood are discussed. Both individual development within generations and differences among generations are emphasized.

242 Participation with Groups of Children in the Early Years
Fall or spring. 4 credits (3 credits possible, but not recommended). Limited to 20 students (limit depends on availability of placements and of supervision). Prerequisites: HDFS 115 and permission of instructor. Recommended: HDFS 111 or Interdepartmental 100. S-U grades optional.

W 10:10-12:05, plus 2 half-days of fieldwork (for 4 credits) or 1 half-day of fieldwork (for 3 credits). In morning or afternoon. S. West.

A field-based course designed to combine experience in child-care centers with theory and supervision, intended to develop the student's ability to understand and relate effectively to young children. Course structure integrates lectures and discussions, workshops, films, projects, reading, writing, and sharing of field experiences. Students are placed in local nursery schools, day-care centers, Head Start programs, and kindergartens.

243 Participation with Groups of Children Ages Six through Twelve
Fall. 4 credits. Limited to 20 students (limit depends on availability of placements). Permission of instructor required. Prerequisites: HDFS 115. Recommended: HDFS 111. Not offered 1990-91.

R 10:10-12:05, plus 2 half-days of fieldwork. Staff.

A field-study course structured to integrate knowledge from practicum, lectures, discussions, and readings to provide a better understanding of child development in school settings. Each student will work in one classroom with an experienced teacher.

258 Historical Development of Women as Professionals, 1800 to the Present (also Women's Studies 238)

The historical evolution of the female professions in America (midwifery, nursing, teaching, librarianship, home economics, and social work) as well as women's struggles to gain access to medicine, law, and the sciences. Lectures, reading, and discussion are geared to identifying the cultural patterns that fostered the conception of gender-specific work, and the particular historical circumstances that created these different work opportunities. The evolution of "professionalism" and the consequences of professionalism for women, family structures, and American society are also discussed.

270 Abnormal Development and Psychopathology
Spring. 3 credits. Limited to sophomores, juniors, and seniors. Prerequisites: HDFS 115, Psychology 101, or Education 110; a course in statistics (e.g., Psych 350, Soc 301, Educ: 352 or 353, Ag Ec 310 or equivalent); and an introductory biology course.

A research-based survey of the cognitive, emotional, and biological aspects of abnormal development across the life span. The major mental illnesses will be covered, including schizophrenia, anxiety disorders, affective disorders, and personality disorders as well as psychopathological issues of childhood. Emphasis will be placed on the development of psychopathology, current theories and models of etiology, and intervention strategies. This course is intended to be a rigorous introduction to the scientific study of psychopathology and psychopathological development; minimal attention to psychotherapy.

300 Special Studies for Undergraduates
Fall or spring. Credit to be arranged.

Not offered 1990-91.

M W F 9:05. Staff.

This course focuses on (1) various biological, psychological, and sociological theories that attempt to explain deviant behavior among adolescents; (2) research that addresses issues of problematic behavior; and (3) presentations by human services personnel and agencies concerning their programs and policies toward problematic adolescents. These will be integrated during class discussions.

333 Cognitive Processes in Development
Fall. 3 credits. Prerequisite: HDFS 115 or equivalent. Not offered 1990-91.

M W F 11:15. Staff.

A survey of theories and problems in the development of selected cognitive processes: attention, perception, mediation processes, and language. The focus is on the first two years of life.

344 Infant Behavior and Development
Fall. 3 credits. Prerequisites: HDFS 115, a biology course, and a statistics course. Not open to freshmen.

T R 1:00-2:15. S. Robertson.

Behavior and development from conception through the first two years after birth will be examined in traditional areas (e.g., perception, cognition, socioemotional, language, motor). The fundamental interconnectedness of these aspects of development will be strongly emphasized, as well as their relation to the biology of fetal and infant development. Topics with implications for general theories of development will be emphasized (e.g., the functional significance of early behavior, the nature of continuity and change, the role of the environment in development). Conditions which put infants at risk for poor development (e.g., premature birth, exposure to environmental toxins, maternal depression) and topics with current social, ethical, or political implications (e.g., infant day care, fetal rights) will also be considered. An emphasis on research methodology in the study of early behavior and development will be maintained throughout the course.
458 HUMAN ECOLOGY

346 The Role and Meaning of Play
Spring. 2 credits. Limited to 30 juniors and seniors. Prerequisite: HDFS 115. Recommended: HDFS 111.
W 7:30–9 p.m. J. Ross-Bernstein.
The aim of this course is to examine the play of children ages three through seven. Through seminar discussions, workshops, films, and individual presentations, the student will explore the meanings and validity of play in the lives of young children, the different ways that children play and the value of each, and the effect of the environment in enhancing and supporting play.

347 Human Growth and Development: Biological and Social Psychological Considerations (also Biology and Society 347 and Nutritional Sciences 347)
Spring. 3 credits. Prerequisites: Biological Sciences 101 or 109 or equivalent, and HDFS 115 or Psychology 101. Offered alternate years.
A review of major patterns of physical growth from the fetal period through adolescence, with consideration given to biological and socioenvironmental determinants of growth, as well as to physical and psychological consequences of variations in growth patterns. Normal patterns of growth are examined; an analysis of major sources of variations in growth (normal and atypical) follows.

348 Advanced Participation in Preschool Settings
Fall or spring. 3 or 4 credits. Prerequisites: HDFS 242 and permission of instructor. Recommended: HDFS 346.
Two or 3 half-days' participation (morning or afternoon) and an hour group conference each week.
Ross-Bernstein/ West.
An advanced, supervised fieldwork experience with a focus on helping children build relationships to support learning and personal development. Students are expected to define their own goals and progress with supervising teacher and instructor; to keep a journal; and to plan, carry out, and evaluate weekly activities for children in a variety of curriculum areas.

354 Families in Cross-cultural Perspective
Fall. 3 credits. Prerequisites: HDFS 115 and HDFS 150 or Rural Sociology 100, or equivalent. S-U grades optional. Not offered 1990–91.
M W F 11:15. Staff.
The sociological study of families from a comparative perspective, looking at similarities and differences across cultures and across ethnic groups. A major focus is on the interdependence of the family system and social institutions.

359 American Families in Historical Perspective (also Women's Studies 357)
Spring. 3 credits. Prerequisite: HDFS 150 or one 200-level social science or history course. S-U grades optional. Human ecology students must register for HDFS 355. Not offered 1990–91.
This course provides an introduction to and overview of problems and issues in the historical literature of American families and the family life cycle. Reading and lectures demonstrate the pattern of American family experience in the past, focusing on class, ethnicity, sex, and region as important variables. Analysis of the private world of the family deals with changing cultural conceptions of sexuality, sex roles, generational relationships, stages of life, and life events. Students are required to do a major research paper on the history of their family, covering at least two generations and demonstrating their ability to integrate life-course development theory, data drawn from the social sciences, and historical circumstances.

360 Personality Development in Childhood
Spring. 3 credits. Prerequisites: HDFS 115 or Psychology 101, plus one other course in HDFS or psychology. Students cannot receive credit for both HDFS 360 and Psychology 275.
Study of relevant theoretical approaches to and empirical findings regarding the development of the child's personality. The influence of parents and other environmental factors on the child are examined. Topics covered include attachment, autonomy, identification, moral development, and social behavior.

361 The Development of Social Behavior
Spring. 3 credits. Limited to 100 students.
Prerequisite: HDFS 115 or Psychology 128. Offered alternate years. Not offered 1990–91.
Issues in the development of social behavior are viewed from the perspective of theory and research. An attempt is made to apply our understanding of social behavior to education, childrearing, and group behavior. Likely topics include bases of social behavior in early childhood, the role of peers, the development of aggressive behavior, the development and functioning of attitude and value systems, conformity and deviation, and the function and limits of experimental research in the study of social development.

362 Close Relationships across the Lifespan
Fall. 3 credits. Prerequisite: HDFS 115 or equivalent. S-U grades optional.
This course analyzes the nature and function of close relationships from infancy through adulthood. Special emphasis is given to the interplay between innate tendencies and social experience, and the effects of social cognitive development. The material presented is drawn from a wide variety of theoretical and empirical literatures. Topics include attachment in human infants, childhood relationships with parents and peers, interpersonal attraction, intimacy and commitment, marriage, divorce, and the role of close relationships in physical and mental health.

364 The Psychology of Television
Spring. 3 credits. Limited to 100 students. Preference given to juniors and seniors.
Prerequisite: a developmental or psychology course; HDFS 115 or Psychology 101 preferred.
This course covers an overview and topical survey of the research literature regarding the influence of television. Topics include (1) the introduction of television from 1950 to 1960 and its direct effects, (2) the audience for television, (3) the content of television, (4) behavioral mechanisms of influence: imitation, disinhibition, arousal/desensitization, (5) the psychological research of the 1960s and 1970s, and cognitive mechanisms of influence: mainstreaming and resonance; formal features, comprehension, and perceived reality; current issues in research from 1980 on; the role of advertising, governments, policies and advertisements; and television over the life span.

372 Typical and Atypical Intellectual Development
Spring. 3 credits. Prerequisites: HDFS 115, a course in statistics, and a course in biology. Not offered 1990–91.
This course provides a comprehensive historical examination of both normal and abnormal intelligence, focusing on the antecedents of contemporary views of the heritability of intelligence, brain-behavior linkages, expertise, generality, and cognitive modifiability. It concludes with an examination of current theories, with an emphasis on the instructor's own biocultural theory.

397 Experimental Child Psychology
Fall. 4 credits. Prerequisite: one course in statistics and permission of instructor.
Intended primarily for students interested in entering graduate programs involving research in child psychology. Not offered 1990–91.
T R 2:30–4; lab, hours to be arranged.
L. C. Lee.
A study of experimental methodology in research with children. Includes lectures, discussions, and practicum experiences covering general experimental design, statistics, and styles and strategies of working with children.

398 Junior Honors Seminar
Fall. 2 credits. Permission of the coordinator of the honors program and the registrar. Enrollment limited to students in the honors program.
Hours to be arranged. R. Savin-Williams.
Reports and discussion of research and selected thesis topics by faculty and honors students.

400–401–402–403 Special Studies for Undergraduates
Fall or spring. Credits to be arranged.
Enrollment limited to juniors and seniors with a minimum 3.0 G.P.A. Permission required.
Prerequisites: HDFS 115, 150, 216, 218 or an equivalent number of courses in psychology or sociology. S-U grades optional.
Hours to be arranged. Department faculty.
For advanced independent study by an individual student or for study on an experimental basis with a group of students in a field of HDFS not otherwise provided through course work in the department or elsewhere at the university. Students prepare a multipage description of the study they want to undertake, on a form available from the Student Services Office. This form must be signed by the instructor directing the study, the student's faculty adviser, and the coordinator of undergraduate education (NG21 Martha Van Rensselaer Hall) and filed at course registration or within the change-of-registration period after registration. To ensure review of the close of the course registration or change-of-registration period, early submission of the special studies form to the Office of Undergraduate Education is necessary. Students, in consultation with their supervisor, should register for one of the following subdivisions of independent study (guidelines for each are available in NG14 Martha Van Rensselaer Hall):
400 Directed Readings
Prerequisites: In addition to those listed above, a statistics or methods course and at least one course directly linked to the area of study. For study that predominantly involves library research and independent study.

401 Empirical Research
Prerequisites: In addition to those listed above, a statistics or methods course and at least one course directly linked to the area of study. For study that predominantly involves data collection and analysis, or laboratory or studio projects.

402 Supervised Fieldwork
Prerequisites: In addition to those listed above, an observation or participation course. For study that involves both responsible participation in a community setting and reflection on that experience through discussion, reading, and writing. Academic credit is awarded for this integration of theory and practice.

403 Teaching Apprenticeship
Prerequisites: In addition to those listed above, must have taken the course or equivalent and received a grade of B+ or higher. For study that includes assisting faculty with instruction.

414 Policies and Programs for Adolescents
Spring. 3 credits. Prerequisite: HDFS 216, or permission of instructor. S-U grades optional. Offered alternate years. Not offered 1990–91.

431 Learning in Children
Fall. 3 credits. Prerequisite: HDFS 115 or equivalent. Limited to 20 students.

432 Cognitive Development and Education
Spring. 3 credits. Prerequisite: HDFS 115 or equivalent. Limited to 20 students.

434 The Growth of the Mind: A View from Piaget's Theory
Spring. 4 credits. Open to undergraduate and graduate students. Prerequisites: A course in human experimental psychology, statistics, or HDFS 115 or equivalent, or permission of the instructor. S-U grades optional. Not offered 1990–91.

440 Internship in Cornell Nursery School
Fall or spring. 10–12 credits. Prerequisites: HDFS 115 and 242. Recommended: HDFS 346 and 348. Permission of instructor required.

441 Introduction to Ecological Psychology
Fall. 3 credits. Limited to graduate and upper-division undergraduate students. Prerequisite: permission of instructor. Letter grades only. Not offered 1990–91.

456 Families and Social Policy
Fall. 3–4 credits. Prerequisite: one course in the area of the family or in sociology. S-U grades optional. Not offered 1990–91.

464 Developmental Theory and Research on Homosexuality
Spring. 4 credits. Permission of instructor required.

481 Introduction to Ecological Psychology
Fall. 3 credits. Limited to graduate and upper-division undergraduate students. Prerequisite: permission of instructor. Letter grades only. Not offered 1990–91.

483 Learning in Children
Fall. 3 credits. Prerequisite: HDFS 115 or equivalent. Limited to 8 students.

484 Supervised Fieldwork
Prerequisites: In addition to those listed above, an observation or participation course. For study that involves both responsible participation in a community setting and reflection on that experience through discussion, reading, and writing. Academic credit is awarded for this integration of theory and practice.

485 Teaching Apprenticeship
Prerequisites: In addition to those listed above, must have taken the course or equivalent and received a grade of B+ or higher. For study that includes assisting faculty with instruction.

486 Cognitive Development and Education
Spring. 3 credits. Prerequisite: HDFS 115 or equivalent.

487 Thinking and Reasoning
Fall. 3 credits. Prerequisite: HDFS 115. W 2:30–5. B. Koslowski.

The course will examine the areas of logical thinking (in formal as well as real-world contexts), the process of making logical and "natural" inferences, problem solving and transfer, causal reasoning, scientific reasoning, theories of evidence and expert vs. novice reasoning. Two general issues will run through the course: the extent to which children and adults apply rules of numeration that are described by various types of models, and the extent to which various models accurately describe the kind of thinking that is required by the types of problems and issues that arise and must be dealt with in the real world.
488 Development in Context (also Psychology 488)
Spring. 4 credits. Open to juniors, seniors, and graduate students. Prerequisites: one course in statistics (which may be taken simultaneously) and two courses in social sciences, or one in human biology and one in social sciences. Letter grades only.
The course examines highlights of what is known about human development in the actual settings in which human beings live and grow. The material presented reveals how development in its various aspects—cognitive, emotional, and social—occurs through the progressive interplay between the maturing capacities and characteristics of an active, exploring, thinking human organism and the changing situational, cultural, and historical contexts in which the person lives. Particular emphasis is given to the role of family, peer group, school, workplace, community, and social structure and belief systems of the larger society. Course work is carried out primarily through the analysis of selected studies that shed light on critical issues in development. The main focus is not on the specific findings but on key processes and principles of development to which the findings point. Students are offered guidance and experience in analyzing and evaluating research reports, with particular emphasis on the nature and intellectual excitement of the scientific process and the implications of scientific knowledge for public policy and practice. The course is organized in terms of successive stages in the life course. At each stage the material presented will emphasize change and continuity in the two-way developmental processes taking place between a biologically maturing person and the progressively more complex environments into which the person moves through life.

498 Senior Honors Seminar
Fall and spring. 1 credit. Required for, and limited to, seniors in the HDFS honors program.
Hours to be arranged. R. Savin-Williams.
This seminar is devoted to discussion and presentation of honors theses being completed by the senior students.

499 Senior Honors Thesis
Fall or spring. Credit to be arranged. Prerequisite: permission of thesis adviser and coordinator of honors program. S-U grades optional.
Department faculty.

Topics Courses
Fall or spring. 2-4 credits. Prerequisites and enrollment limits vary with topic being considered in any particular term. Permission of instructor required.
Hours to be arranged. Department faculty.
This series of courses provides an opportunity for advanced undergraduates to explore an issue, a theme, or research in the areas of departmental concentration. Topics vary each time the course is offered. Descriptions are available at the time of course registration. Although the courses are usually taught as seminars, a subject may occasionally lend itself to lecture, practicum, or other format.

415 Topics in Adolescent Development
435 Topics in Cognitive Development

445 Topics in Early-Childhood Education and Development
455 Topics in Family Studies
465 Topics in Social and Personality Development
475 Topics in Atypical Development
485 Topics in the Ecology of Human Development

The Graduate Program
HDFS graduate courses are only open to undergraduates with instructor's permission.

General Courses

617 Adolescence
Spring. 3 credits. Not offered 1990-91.
Hours to be arranged. Staff.
Critical examination of seminal theoretical and empirical writings on adolescent development. Empirical research on specific questions chosen by students is considered in the light of these approaches.

631 Cognitive Development
Spring. 3 credits. Letter grades only. Offered alternate years. Not offered 1990-91.
Hours to be arranged. Staff.
Faculty members involved in the course will present their area of specialization in cognitive development. These areas will include perception, attention, memory, language, thinking and reasoning, learning, creativity, and intelligence.

640 Infancy
Spring. 3 credits. Not offered 1990-91.
Critical review of major issues of contemporary concern in the field of infant behavior and development, based on readings of selected research papers and review articles. The overall intent is to develop an analytic understanding of where the field stands at present with respect to various topical issues and to identify directions for future research.

641 Early-Childhood Education
Fall. 3 credits. Not offered 1990-91.
W 1:25-4:00. M. Potts.
Survey of major issues in the theoretical and research literature of early-childhood education.

650 Contemporary Family Theory and Research
Fall. 3 credits.
T:R 9:30-12. E. Wethington.
Sociological and psychological theories and research in the area of the family are examined with reference to the relationship between the family and society, the processes of socialization and social control, the reproduction of gender and social class, and the development of deviance.

660 Personality and Socialization
Fall. 3 credits. Not offered 1990-91.
Hours to be arranged. J. Condy.
Major issues in personality development and socialization, with special emphasis on theoretical models and empirical issues.

670 Developmental Psychopathology
Spring. 3 credits. Prerequisite: an undergraduate course in abnormal psychology or psychopathology; a course in multivariate statistics; and substantive course work in neuropsychology or related biological science.
Hours to be arranged. M. Lenzenweger.
Overview of current theories and empirical research on functional and organically based psychological disorders. Topic areas to be covered include autism, schizophrenia, anxiety disorders, affective disorders, and personality disorders. Focus is on the developmental and etiology of psychopathology.

Topical Seminars
Seminars offered irregularly, with changing topics and instructors. Content, hours, credit, and instructors to be announced. Seminars offer concentrated study of specific theoretical and research issues.

618 Seminar in Adolescence
Topics include peer relations, parent-teen relationships, self-esteem, youth and history, work, and moral development.

633 Seminar on Language Development
Topics include acquisition of meaning in infancy, precursors of language in early infancy, and atypical language development.

635 Seminar in Cognitive Development
Topics include early attention, perception, memory, and communication. Assessment and intervention in relation to these processes will be considered when possible.

645 Seminar on Infancy
Topics covered in depth include the role of emotions in early development, infant stimulation and early experience, and the assessment of infant developmental competencies.

646 Seminar in Early-Childhood Education
Topics include analysis of models and settings, design of assessment techniques, program evaluation, and early childhood in a cross-cultural context.

655 Seminar in Family Studies
Topics include the sociology of marital status, the single-parent family, work-family linkages, women and work, and families and social change.

665 Seminar in Personality and Social Development
Focuses on selected issues related to personality and social development. The issues selected vary each year according to current importance in the field and student interests.

675 Seminar in Developmental Psychopathology
Topics include learning disabilities, therapeutic interventions in atypical development, child abuse and maltreatment, family factors in the etiology of functional disorders, and cognitive characteristics of atypical groups.

685 Seminar in Human Development and Family Studies
Topics include development of self-concept, sex-role identity, observational methods, and interviews in developmental research.
690 Seminar on Ecology of Human Development
Topics include the institutional setting as a determinant of behavior, the poor family, and the identification and measurement of ecological variables.

Individualized Special Instruction
700-706 Special Studies for Graduate Students
Fall or spring. Credits and hours to be arranged. S-U grades at discretion of instructor. Department faculty. Independent advanced work by graduate students recommended by their Special Committee chair with approval of the instructor.

700 Directed Readings
For study that predominantly involves library research and independent study.

701 Empirical Research
For study that predominantly involves collection and analysis of research data.

702 Practicum
For study that predominantly involves field experience in community settings.

703 Teaching Assistantship
For students assisting faculty with instruction. Does not apply to work for which students receive financial compensation.

704 Research Assistantship
For students assisting faculty with research. Does not apply to work for which students receive financial compensation.

705 Extension Assistantship
For students assisting faculty with extension activities. Does not apply to work for which students receive financial compensation.

706 Supervised Teaching
For advanced students who assume major responsibility for teaching a course. Supervised by a faculty member is required.

899 Master’s Thesis and Research
Fall or spring. Credit to be arranged. S-U grades only. Prerequisite: permission of thesis advisor. Department graduate faculty.

999 Doctoral Thesis and Research
Fall or spring. Credit to be arranged. S-U grades only. Prerequisite: permission of thesis advisor. Department graduate faculty.

HUMAN SERVICE STUDIES COURSES

101 Human Services in Contemporary Society
Fall. 3 credits. Limited to freshmen and sophomores or permission of instructor. Hours to be arranged. D. Barr. A lecture and discussion course designed as an introduction to the community base of services. Current and historical human services are examined. Emphasis is placed on social services, education, and health and mental health services. Barriers to service delivery are discussed, such as racism, sexism, classism, sexual preference, physical disability, and age. Issues that impact on service delivery will also be discussed, including civil rights, structure of the family, employment, and equal opportunity.

203 Groups and Organizations
Spring. 3 credits.

210 The Elements of Helping
Fall. 3 credits.

215 Human Sexuality
Fall. 3 credits. Prerequisites: an introductory course in human sexuality will be explored in an interdisciplinary knowledge base for human service professionals. Examines the social behavior in the human environment from ecological, ethological, historical, cultural, and social system perspectives. Applications are made to professional practice at the micro level (counseling with individuals and families or other small groups) and at the macro level (social planning for vulnerable groups in our society).

280 Racism in American Society (also ASRC 280)
Fall. 3 credits.

292 Research Methods
Spring. 3 credits.

315 Human Sexuality
Spring. 3 credits. Recommended: one course in communication arts, education, research, or sociology (equivalent social science course). Recommended: one course in biology. S-U grades optional.

325 Education as a Human Service
Fall. 3 credits.

346 Determinants of Behavior
Fall. 3 credits. Prerequisites: introductory sociology and introductory psychology and one course in human development.

HUMAN SERVICE STUDIES 461

246 Determinants of Behavior
Fall. 3 credits. Prerequisites: introductory sociology and introductory psychology and one course in human development.

Provides an interdisciplinary knowledge base for human service professionals. Examines social behavior in the human environment from ecological, ethological, historical, cultural, and social system perspectives. Applications are made to professional practice at the micro level (counseling with individuals and families or other small groups) and at the macro level (social planning for vulnerable groups in our society).

292 Research Methods
Spring. 3 credits.

W 7:30-10 p.m. C. McClintock.

Students will learn the logic and methods of social science research and develop skill in transforming issues of interest to them into researchable questions. Readings, written assignments, and in-class exercises focus on stating hypotheses, designing studies to test hypotheses, measuring variables, and interpreting findings.

300 Special Studies for Undergraduates
Fall or spring. Credit to be arranged. Hours to be arranged. Department faculty.

Special arrangement for course work to establish equivalency for training in a previous major or institution. Students prepare a multicopy description of the study they want to undertake on a form available from the Student Services Office. The form, signed by both the instructor directing the study and the head of the department, should be filed at course registration during the change-of-registration period.

315 Human Sexuality
Spring. 3 credits. Limited to 500 students.

Prerequisite: an introductory course in human development and family studies, psychology, or sociology (or equivalent social science course). Recommended: one course in biology. S-U grades optional.

W 7:30-10 p.m.; sec to be arranged. A. Parrot.

The aim of this course is to provide students with an understanding of the interactions and interrelationships of human behavior that influence social behavior and development. There will be a social policy orientation focusing on the evolution of sexual norms, customs, and legislation within changing sociopolitical systems. Biological developmental components of human sexuality will also be addressed. An underlying issue is the influence of our social and cultural system on the development of sexual needs, standards, and values. Research and theory in human sexuality will be explored in an interdisciplinary approach drawing on human and organizational behavior, biology, history, communication arts, education, research theory, law, sociology, and psychology.
325 Health-care Services and the Consumer
Fall. 3 credits. Limited to 50 students. S-U grades optional. Offered alternate years. Next offered 1991–92.

Hours to be arranged. A. Parrot.
Developments in the health field that affect the availability and kinds of health services. Emphasis is placed on interrelationships between institutions and agencies and the part each can play in prevention, diagnosis, and treatment of disease and disability. Focus will include historical and current trends, quality health care, consumer issues, ethical issues, politics and policies, and the problems of health care.

330 Ecology and Epidemiology of Health
Fall. 3 credits. Prerequisite: a statistics or research design course. Recommended: biology course. S-U grades optional. Offered alternate years. Hours to be arranged. Staff.
Ecological and epidemiological approaches to the problems of achieving human health within the physical, social, and mental environment. The course introduces epidemiological methods to the students and surveys the epidemiology of specific diseases such as AIDS, hepatitis, Legionnaires' disease, plague, cancer, herpes, and chlamydia. Application of epidemiology to health care will be discussed.

340 The Politics of Public Budgeting
Spring. 3 credits. Limited to 50 students: juniors, seniors, or permission of instructor. T R 10:10–11:25. R. Buchanon.
The course examines the theory and practice that have developed to plan and control raising and spending public funds. The study of public budgeting includes the examination of techniques for controlling spending and methods for raising revenues. Because these fiscal decisions are made in a political environment, the course will take a multidisciplinary approach, synthesizing both the political and economic aspects of budgeting. Students will assume the roles of the different actors in the budgetary process to learn both the institutional dynamics of the process and the political constraints involved.

360 Introduction to Program Planning and Development
Fall and spring. 3 credits. Not offered spring 1991.
M W F 9:05. M. Miroit.
The course provides an introduction to program planning and development in the delivery of human services. Models of program planning, development, and delivery will be analyzed in relation to practice. The processes of conceptualizing a program and the context of planning and development (political, organizational, economic, and social) will be examined. Basic tools and techniques available to planners will be identified and selected skills developed. Issues related to ethics, power, authority, confidentiality, and accountability will be included. Professional roles and competencies needed will be highlighted throughout the course. Students will apply the planning and development process to individual projects.

370 Social Welfare as a Social Institution
Fall. 3 credits.
A philosophical and historical introduction to social welfare services. The course reviews the social context from which programs and the profession of social work have evolved. It discusses the political and ideological processes through which public policy is formed and how policies are translated into social welfare programs. Basic issues in welfare are discussed in the context of present program designs, public concerns, and the interrelationships and support of services in the community.

400-401-403 Special Studies for Undergraduates
Fall or spring. Credits to be arranged. S-U grades optional.
Hours to be arranged. Department faculty.
For independent study by an individual student in advanced work not otherwise provided in the department or elsewhere at the university, or for study on an experimental basis with a group of students in advanced work not otherwise provided in the department. Students prepare a multiscopy description of the study they want to undertake on a form available from the Counseling Office. This form must be signed by the instructor directing the study and the department chair and filed at course registration or within the change-of-registration period after registration. To ensure review before the close of the course registration or change-of-registration period, early submission of the special-studies form to the chair is necessary. Students, in consultation with their supervisor, should register for one of the following subdivisions of independent study.

400 Directed Readings
For study that predominantly involves library research and independent readings.

401 Empirical Research
For study that predominantly involves data collection and analysis or laboratory or studio projects.

403 Teaching Apprenticeship
Prerequisite: Students must have taken the course (or equivalent) in which they will be assisting and have demonstrated a high level of performance. For study that includes assisting faculty with instruction.

414 Professional Internship in Human Service Studies
Fall, spring, or summer. 4–7 credits. Limited to juniors and seniors majoring in human service studies. Prerequisite: FIS 100 or permission of instructor. Pre-course enrollment is required. Weekly seminar meets concurrently with FIS 409.
Sem, T 1:30–4:25. Placement hours to be arranged. R. Bounous.
Students intern for a minimum of 10 hours a week in a human service organization and attend a weekly seminar with a focus on integrating classroom and field-based learning. The course is structured as an opportunity for students to learn experientially and, at the same time, provide meaningful services to human service organizations. Interns are expected to take active roles in structuring, monitoring, and assessing their learning under the guidance of a faculty instructor.

417 The Politics of Power in the Human Services
Spring. 3 credits. Offered alternate years. Next offered 1991–92.
Hours to be arranged. Staff.
The framework of the course will take an analytical world view with some understanding of a capitalist political economy and the historically colonial relationship between the American ruling class and peoples of color, the poor, and the powerless. In addition, the course will analyze the effects of these structural and historical facts on people's lives today. The relationship between a classed, racist, and sexist society and the human services will also be included by exploring the nature of empowerment. The course will focus systematically on both micro and macro levels.

460 Human Service Planning Methods
Spring. 3 credits. Prerequisite: HSS 292. Not offered 1990–91.
Hours to be arranged. Staff.
The course is designed to bridge the theoretical and practical aspects of human service planning courses and practice. It is intended to introduce undergraduates to the basic tools and techniques that social planners use. Five modules are included that explain and provide explanations for how social planners cut, analyze, and synthesize information and data in planning and policy development in the human services and that make sense of the political and social contexts of the process.

465 Community Decision Making
Fall. 3 credits. S-U grades optional.
T R 12:20–2:15. Staff.
Identification and discussion of factors that influence the outcome of community issues. Topics include political participation, decision-making processes, the interests and resources of key decision makers, and community change. Concurrent participation in community activities is desirable but not required.

471-472 Social Work Practice I and II
Introduction to concepts and methods used in a generalist, task-centered model of social work practice. Examination of the values and ethics of professional practice. Students learn skills appropriate for working with individuals, groups, families, and communities. Class content is integrated with concurrent supervised fieldwork. Placements are made in social agencies in Tompkins and surrounding counties. Students are encouraged to provide their own transportation, but car pools will be arranged for those who cannot. The department reimburses transportation costs when funds are available, but students may have to pay their own expenses. A lab fee for field-related expenses will be charged to every student in the course. Each student must have a current driver's license.

471 Social Work Practice I
Fall. 9 credits. Limited to 25 social work students. Prerequisites: introductory psychology, introductory sociology, one course in human development, grades of C+ or better in HSS 246 and 370, and permission of instructor before registration.
LeCs, M W 10:10–12:05; fieldwork, T R for 8 hours each day. C. Shapiro, R. Bounous.
472 Social Work Practice II
Spring. 9 credits. Limited to 25 social work students. Prerequisites: grade of B- or better in HSS 471 and satisfactory performance in fieldwork.

473 Section 01 Senior Seminar in Social Work
Spring. 3 credits. Prerequisites: HSS 471-472. (HSS 472 may be taken concurrently).
The course integrates and expands on learning from courses in human behavior, social policy, and social work methods. Topics will include professional ethics, human responses to loss, and lifestyle diversity, with an emphasis on integrating theory with issues in professional practice.

473 Section 02 Senior Seminar
Fall and spring. 3 credits. Prerequisite: field work or permission of instructor. Limited to 18 junior and senior HSS majors.
Hours to be arranged. Staff.
The course will focus on a particular problem, such as poverty, crime, illiteracy, teen pregnancy, and so forth. Solutions to the problem will be sought by applying an understanding of the areas of human service environments, programs, and processes. Specifically, those solutions will be sought via student study and analysis of the problem, assessments of both current or existing and desired or ideal human services needed to address the problem, and identification of the desired outcomes of such services or of resolution of the problem. Through this process, students will also learn effective ways to create social changes. Work requirements include several individual short papers and a group project.

475 Social Policy
Spring. 3 credits. Prerequisite: HSS 370 or Government 111 or Sociology 141. S-U grades optional. Students should have field or work experience in a human-service program before or while taking this course.
An examination of the policy-making process and the influence of national policies as they affect the distribution of social services. Frameworks for analyzing social policy are used to evaluate existing social programs and service-delivery systems. Implications for change in policies at the national, state, and local levels are discussed.

478 Housing and Feeding the Homeless (also Hotel Administration 490)
Fall and spring. 4 credits. Limited to 20 students.
T R 8:40-9:55. J. Ford. J. Eyster, A. Hales Through discussion, a field placement practicum, students will explore the economic, social, and political issues of our country's growing problem of homelessness and the existing and proposed housing and feeding policies and delivery systems that are attempting to deal with homelessness. Students will study the history of homelessness, the description of the subgroups of the homeless population, and strategies to prevent and alleviate the problem. The fieldwork involved in this course will require approximately eight days spread over the semester at a project location.

Topical Seminars and Practicums
Seminars and practicums, offered periodically and reflecting faculty and student interest, with changing topics and instructors. Content, time, credits, and instructors to be announced.

613 Seminar in Health and Mental Health Services
Spring. 3 credits. Limited to graduate students. S-U grades only.
Hours to be arranged. L. Lazar.
Topics include the effects of new knowledge and problems on the organization and delivery of health and mental health services, developments in health and mental health policies and legislation, and the planning of community mental health services. Current challenges to the delivery of health services, including alcohol and drug problems, AIDS, stress-related disabilities, and depression, will be examined.

669 Seminar in Program Planning and Development
Topics include microlevel program planning, third-sector organizations, and intergovernmental influences on program planning, policy formation, program implementation, and mainstreaming. Two or more human services are examined.

689 Seminar in Program Evaluation and Evaluative Research
The seminar is topically organized according to student and faculty projects. Focuses on professional issues in evaluation practice, including consulting, ethics and standards, preparation of conference and publication materials, and various methodological issues.

Continuing Education for Professionals
These courses are not a part of the department's regular graduate offerings but are designed to provide continuing education for professionals through the extramural division.

507-508 Professional Improvement I and II
Fall, spring, or summer. 3-6 credits. Enrollment is determined by various factors, including nature of content, funding, resources, facilities, and instructor. S-U grades optional. Intended for extramural (evening) and off-campus instruction. May be repeated with the permission of the instructor.
A series of special-problem seminars, classes, and activities designed for in-service and continuing education of practitioners in helping professions, such as home economics teachers, social workers, public health planners, and adult educators. Specific content of each course varies with group being served but includes work and class time appropriate to number of credits.

The Graduate Program
Human service studies graduate courses are open to undergraduates only with the instructor's permission.
The courses listed below will be taught regularly (annually or in alternate years).

622 Health and Human Services Management
Fall. 3 credits.
Designed as an integrating seminar for students interested in health and human services administration and consulting, the course focuses on the management process and attempts to develop students' problem-solving and decision-making skills through the analysis of cases. The case method is particularly suited to strengthen diagnostic, analytical, and conceptual processes as well as managerial skills by facilitating synthesis, integration, and the application of theory to actual situations. A number of major themes are explored, such as matrix organization, governance and corporate structure, professional relationships, organizational culture, leadership and change, motivation, group processes, conflict management, and negotiation.

625 Health Care Services: Consumer and Ethical Perspectives
Fall. 3 credits. Limited to 30 students; undergraduates with permission of instructor. Offered alternate years.
The course will focus on consumer and ethical issues faced by the health care field today. Broad topics to be discussed include ethical standards and guidelines, health care costs and accessibility of services, government role in health care delivery, private industry role in health care, services for the medically indigent and elderly, practitioner burnout and training, who should receive transplants, reproductive technology availability, using animals in medical research, and baby and grammar doe cases.

627 Legal Aspects of Health-Services Delivery
Spring. 3 credits.
Hours to be arranged. Staff.
This course introduces principles of the law that are specifically applicable to health-services delivery. Topics considered include the liability of hospitals and their staff and personnel for injuries to patients; medical records and disclosure of information; consent to medical and surgical procedures; responsibility for patients' personal property, collection of bills; medical staff privileges; and confidential communications.

628 Medical-Service Issues in Health Administration (also Biology and Society 428)
Spring. 3 credits.
M W 2:15-3:30. V. Utermohlen.
A survey of the issues that affect interactions between the health-care consumer and the medical team, including disease processes (how disease occurs and progresses), the health-care team and illness, third-party payment and illness, and resource allocation.
629 Strategic Planning and Marketing in Health Care
Spring. 3 credits.
The course is designed for students interested in the strategic planning process who may be pursuing careers in health-care management, health planning, and management consulting. It attempts to integrate and apply students' knowledge, skills, and analytical abilities in the planning and implementation of health services at the institutional level. The strategic planning process is viewed as an essential element of corporate management, a dynamic endeavor that enables organizations to cope with change and meet community health-care needs in an increasingly competitive environment. Useful concepts and methods for assessing internal and external opportunities are stressed. Cases, visiting discussion leaders, and student reports help to focus and synthesize the course sessions and materials. The cases include analyses of organization and strategies for planning, environmental assessment, marketing approaches, political strategy formulation, diversification and corporate restructuring, and hospital systems.

630 Comparative Health-Care Systems: Canada, the United States, and Third World Countries
Fall. 3 credits. Open to graduate students and seniors.
Hours to be arranged. J. Ford.
An overview of health services is given within the larger context of the social and economic development policies of Canada, the United States, and third world countries. Sociocultural, economic, and managerial factors are stressed as keys to the formulation of realistic strategies. Resource allocations for health services are assessed against the backdrop of changing rates of economic growth. The relevance of high-technology solutions in developing countries is examined.

631 Primary Health-Care Services: Policy and Planning
Spring. 3 credits. S-U grades optional.
TR 2:30–3:45. R. Battistella.
The concept of primary care is used to enhance understanding of the direction and purpose of ongoing changes in health services organization and financing. Pressures on indemnity insurance and solo fee-for-service medicine are examined in the context of the transition of unmanaged to managed delivery systems. The course is divided into two parts: Part 1 examines the development of health maintenance organizations and related forms of managed care systems in highly competitive markets. Considerable attention is given to the relationship between physicians and management with respect to such subjects as medical practice styles, productivity, quality assurance, and utilization control objectives. Many of the managerial topics are found amplified by a select group of visiting speakers.

632 Labor Relations in the Health Industry
Spring. 1 credit.
W 4–6 (course meets for 5 sessions only). W. Abelow.
This course provides an overview of major topics and current issues concerning unionization in the health industry. It emphasizes a practical, direct approach to dealing with union organizing and elections, collective bargaining, strikes, and labor contract administration in the health industry. The history of unionization in the field and an analysis of applicable laws are covered. Particular emphasis is placed on the role of government and other regulatory agencies in the negotiation process. Students work with current actual cases and materials. Students have the option of taking a final examination or submitting a short research paper.

633 HMO Development and Management
Spring. 1 credit.
TR 4:00–6:00 (course meets for 4 sessions only). F. Yanni.
The major goal of this course is to provide students with the conceptual framework for understanding the role of health maintenance organizations (HMOs) in today’s health economy and to provide an introduction to the planning, development, and operation of HMOs.

634 Health Care Organization—Providers and Reimbursement
Fall. 3 credits. Limited to 30 students. Prerequisite: graduate standing or permission of the instructor.
TR 12:20–1:45. R. Buchanan.
The course will provide an introduction at the graduate level to the organization of health-care providers in the United States, the interrelationships of health services, and major sources and methods of paying for care. The course will describe how health services are structured in the United States and how these different services interrelate along the continuum of care. The course will describe and analyze the different sources of payments and how reimbursement policies affect the type and location of care. In analyzing public and private sectors in the delivery and reimbursement of health care, the course will also be presented.

635 Field Studies in Health Administration and Planning
Fall or spring. 1–4 credits.
Hours to be arranged. D. Brown.
Students interested in developing administrative and program-planning research skills are given an opportunity to evaluate an ongoing phase of health care agency activity in the light of sound administrative practice and principles of good medical care. In planning and carrying out the research, students will work closely with a skilled practicing administrator and members of the school’s faculty.

636 Financial Management of Health and Human Service Organizations
Spring. 3 credits. Limited to 30 students. Prerequisite: a financial accounting course or permission of instructor.
The objectives of the course are to provide students with a basic understanding of the financial environment surrounding health and human service administrators and to acquaint students with the financial tools necessary to manage health and human service organizations. The course presents an overview of the financial markets and the methods and techniques used in the financial management of health and human service organizations. It will focus mainly on health-care organizations, but the financial practices and approaches presented in the readings and class discussions will also be appropriate to other human service agencies. In addition to discussing acute-care hospitals, the course will present an understanding of the financial management of long-term care facilities, HMOs, home health care, hospice programs, and other human-service programs.

652 Preparing Professionals in the Human Services
Spring. 3 credits. U grades optional. Offered alternate years; next offered 1991–92.
Students analyze the assumptions and concepts that underlie preprofessional and continuing professional education for volunteers, paraprofessionals, and professionals in the human services (for adult and continuing education, home economics, and social work education). A variety of preservice and in-service programs will be analyzed in terms of goals, means of implementation, and evaluation. Factors that influence these programs are examined, including educational setting, licensure, accreditation, legislation, evaluation of performance. Students have opportunities to participate in educational programs in human service professions and community education. Students may develop or modify a model for providing professional education at the preservice or in-service level.

655 Leadership in Human Services
Spring. 3 credits. Limited to 20 students. S-U grades optional.
W 7:30–10 p.m. R. Babcock.
The course surveys some classic and contemporary leadership theories and their associated theories of personality and motivation. Human service organizations are examined in terms of their unique leadership needs and responses to various leadership styles. Through lectures, case analyses, visiting speakers, and student presentations, the relationships between leadership theories and the special features of human service organizations are explored. Translating leadership theory into practice is emphasized. Special leadership topics, such as gender and race, volunteering, ethics, and working with boards of directors, will be considered, according to class interest.

658 Professional Ethics and Public Policy
Spring. 3 credits. Limited to 16 students.
Hours to be arranged. J. Ziegler.
This course will explore current issues of ethics and public policy against a background of theories of ethical behavior. Questions of how public officials and managers of public and non-profit agencies and private enterprises act will be examined. How do standards of ethical behavior in the professions get established? How are public policy issues with ethical implications resolved? Reading will be drawn from political philosophy, contemporary social science, and imaginative writing. Class participation is essential. Open to seniors and graduate students.
660 Social Policy and Program Planning in Human Services
Spring. 3 credits. S-U grades optional.
A review of the public policy process in education, health, and social welfare services as it pertains to program development. The course includes the history, definitions, and boundaries of the policy process; the relationships of the policy process to political economy, social structure, intergovernmental relations, and cultural values and beliefs; theories of planning and program development in human services; the role of evaluation in program planning and implementation, with special emphasis on monitoring and feedback of effects into the policy and planning process; selected current issues in policy and planning processes, such as regulatory and legislative constraints; the respective roles of clients or consumers and professional planners and providers; and problems and prospects in the coordination among the various human services.

661 Designing and Implementing Health and Human Service Programs
Spring. 3 credits. Limited to graduate students. S-U grades optional.
M 4-7. I. Lazar.
The translation of legislation into programs will be described, and the major sources of support for health and human service agencies and programs will be examined. Students will learn to identify potential sources of program support and to develop applications and campaigns for such support. Grant-proposal writing, response to contract requests from governmental agencies, applications to foundations, and techniques of fund-raising will be described and practiced. Students will be expected to write several grant proposals under conditions and time constraints simulating the actual processes. As part of the simulation there will be no grades of incomplete or late papers accepted in this course.

664 The Intergovernmental System and Human Service Program Planning
Fall. 3 credits. Open to seniors who have had a course in American government.
T R 2:30-4. J. Ziegler.
An in-depth review of the intergovernmental system in America and its relevance to the formulation of human service and urban/rural economic development policies and programs. Issues of decision making, fiscal arrangements, and public and private sector interactions are explored as they are affected by intergovernmental relationships. The course provides students with an analytic framework for understanding public policy issues in human services, education, and economic development among various governmental levels.

665 Human Service Politics in the Local Arena
Spring. 3 credits. Offered alternate years. Next offered 1991-92.
This seminar investigates policy making in the local political arena, with special reference to human service programs and issues. (Graduate students who need an introduction to the local political arena should consider taking HSS 465 prior to this course.) Topics include community power and citizen participation, with special reference to social movements and social movement organizations. Implications for both practice and research will be emphasized.

670 Management in Public and Nonprofit Organizations
Fall. 3 credits.
T 6:30-9 p.m. C. Crawford.
This course presents an overview of the distinctive characteristics of organizations in public and private nonprofit sectors and their implications for managing human service organizations. Through a mixture of theoretical and case-study literature students will become familiar with the major conceptual and managerial issues that confront the administrator in health and human service agencies in the public and nonprofit sector.

671 Decision Tools for Administrators and Planners
Spring. 3 credits.
T 6:30-9 p.m. C. Crawford.
This is a decision course that will familiarize students with a variety of tools that can be used to conceptualize problems, decision alternatives, criteria, and futures and to essentially improve the decision-making process. Students will acquire a basic understanding of how people cope with decisional conflicts and the sources of error in decision processes. They will also be introduced to techniques that can be applied in making decisions.

672 Management Information Systems in Health and Human Services
Spring. 3 credits.
W 1:00-3:30. C. Crawford.
This course reviews how information systems can be developed and made useful for administrators and other professional staff in human services. Readings and assignments reflect a balance between technical and organizational or human aspects of information systems. Major topics include the organizational and managerial context for information systems in the human services, approaches to systems analysis and database development, data analysis for decision making, and presentation of information for understanding programs and policies. Students will do computer assignments and case studies of management information systems issues in human service and other organizational settings.

674 Organizational Behavior in Human Service
Fall. 3 credits. Limited to 20 students. S-U optional. Not offered 1990-91.
W 7:30-10 p.m. R. Babcock.
The course surveys organizational behavior in human service organizations with emphasis on the micro dimensions. Similarities and differences among human service and other organizations are stressed. Individual behavior at the human service workplace is viewed in relation to topics such as personality, motivation, group dynamics, communication, leadership, power, and conflict. A seminar format is followed, including lectures, group discussions, student presentations, exercises, and case studies.

685 Health and Welfare Policy
Fall. 3 credits.
Health and welfare issues are seen as reflecting alternate solutions to the broader institutional problems of allocation (economics), control (politics), and normative behavior (morality). A basic tenet is that health and welfare policy is deeply rooted in social values and the availability of economic resources. Health policy is interpreted from a multidisciplinary perspective in which change emanates from structural dynamics accompanying socioeconomic development such as the evaluation of the economy from the entrepreneurial to the managerial to the post-industrial stages, together with shifts in social and political ideology—libertarianism, welfare statism, and secular humanism.

688 Long-Term Care and the Aged: Alternative Health and Social Service Delivery Systems
Spring. 3 credits.
Alternatives for the organization and delivery of long-term care services are examined within the context of public-financing constraints. Progressive long-term care is viewed as a continuum encompassing medical and social services positioned to optimize independent living. Relevant experience from other highly developed countries is presented. Visiting speakers from the government and the private sector are featured, and field trips provide additional insights into the many challenges and opportunities in long-term care policy and management.

690 Measurement for Program Evaluation and Research
Fall. 3 credits.
Hours to be arranged. Staff.
The course reviews measurement theory and its application to the evaluation of human service programs. Topics include validity, reliability, scaling methods, basic principles of instrument design, and methods of data collection, including interviewing strategies, testing, self-reports, observation and content analysis, and data coding. Attention is given to issues such as ethical and managerial concerns that arise in applied settings.

691 Program Evaluation and Research Design
Spring. 3 credits.
T R 2:30-3:45. W. Trochim.
The course reviews research design and its application to the evaluation of human service programs. Major topics include experimental, quasi-experimental, cross-sectional, and exploratory research designs, basic sampling theory, and use of qualitative and quantitative methods. Attention is given to issues that arise in the application of research designs to the evaluation of programs, including problems of randomization, causal inference, replication, and utilization of results. Skills covered include stating and testing hypotheses, critical analysis of research reports, use of computers in research, and development of a research proposal.
HUMAN ECOLOGY

[692-693 Program Evaluation In Theory and Practice

692, fall; 693, spring. 4 credits each semester. Prerequisites for HSS 692: 690 and 691 or 696, or permission of instructor. Prerequisite for HSS 693: 692. Students must register for both semesters. Offered alternate years. Next offered 1991–92.

Hours to be arranged. J. Greene.

This course constitutes a one- or two-semester practicum in which the class designs and conducts a program evaluation in the human services. Students are involved in all phases of the evaluation from design through the production and dissemination of a final report. Emphasis is on research methods in the social sciences. Application of knowledge developed in prerequisite courses is stressed (for example, planning and managing an evaluation, ethics, methods of data collection, data processing, and strategies for analysis and feedback of results.)

695 Strategies for Policy and Program Evaluation

Fall. 3 credits. Prerequisites: HSS 690 and 691 or 696, or equivalent. Offered alternate years.

This course examines a wide range of approaches to the evaluation of policies and programs in the human services. The approaches are examined with respect to their purposes, key audiences, and methodologies, as well as their philosophical, political, and value frameworks. Analysis of commonalities and differences across evaluation approaches is used to judge the appropriateness of a given strategy for a particular context.

696 Qualitative Methods for Program Evaluation

Spring. 3 credits. Prerequisites: HSS 690 and 691 or equivalent.

This course presents a qualitative approach to applied research and the evaluation of human service programs. Topics include the epistemological assumptions underlying this approach, questions of entry into setting, methods for data collection and data analysis, reporting, confidentiality of participants, and the ethics of qualitative inquiry. The course aims to help students understand how, when, and why a qualitative approach to social inquiry can be used appropriately and effectively and how qualitative and quantitative approaches might be mixed effectively.

699 MPS Problem Solving Project

Fall or spring. Credits to be arranged. For students recommended by their chair and approved by the instructor in charge for independent advanced work. S-U grades optional.

Field faculty.

704-705 Internship in Human Service Studies

Fall, spring, or summer. 1–15 credits. S-U grades optional.

Hours to be arranged. Graduate faculty.

Internship placement in human services is determined by availability and students' academic and professional goals. Opportunities are available in public and private human service organizations at the national, state, and local levels. Internships are consistent with students' needs and desires. The duration of an internship is negotiated between the student and the agency, while course credit and residence units are arranged between the student and the Special Committee.

790 Advanced Seminar in Program Evaluation

Spring. 3 credits. S-U grades optional. Prerequisite: permission of instructor.

This course is intended for students with at least three courses in evaluation (HSS 690 series or equivalent) and statistics through multiple regression. The seminar focuses on analysis and appraisal of current literature on program evaluation and research, with emphasis on the links between program evaluation and program planning and administration. Attention is given to two or more service areas (health, social welfare) and to applications across those areas.

889 Master's Thesis and Research

Fall and spring. Credit to be arranged. Prerequisite: permission of the chair of the graduate committee and the instructor. S-U grades optional.

Hours to be arranged. Department graduate faculty.

899 Doctoral Thesis and Research

Fall and spring. Credit to be arranged. Prerequisite: permission of the chair of the graduate committee and the instructor. S-U grades optional.

Hours to be arranged. Department graduate faculty.

TEXTILES AND APPAREL COURSES

140 Apparel Studio

Fall. 1 credit. Limited to 12 students; open to TXA majors or students transferring into TXA. Minimum cost of materials, $40; lab fee, $5.

Lec, F 8–9:55. A. Racine.

An introduction to the concepts of shaping, reinforcing, joining, and detailing textile materials in a variety of apparel forms. A remedial course to help students reach the level of proficiency in construction skills necessary for further study in apparel design.

125 Art and Visual Thinking

Fall. 3 credits.

An introduction to the visual arts and design that explores aesthetic and cross-cultural dimensions of visual experience. Augmented by slide presentations and films, lectures emphasize relationships between visual forms and technology and social, political, and cultural interpretations that distinguish works of art from other man-made objects. Museum and gallery visits arranged when feasible.

135 Introduction to Textiles

Fall. 3 credits. Each lab limited to 16 students. Prerequisite or corequisite: Chemistry 103 or 207. Maximum cost of supplies and textbook, $40; lab fee, $10.

An introduction to the basic properties of textile materials, with consideration of their technology, cultural, symbolic, and economic importance. Behavior of textile materials is observed in a variety of environmental conditions that influence aesthetics, comfort, and performance. This course is designed to provide a basis for further study in textiles, but it also contains sufficiently broad coverage of the subject to be used as an elective course.

144 Introduction to Apparel Design

Summer only. 3 credits. Limited to 20 students. Prerequisite: permission of the instructor. Cost of supplies and materials, $50. A. Racine.

A studio course that focuses on designing apparel through the flat-pattern method. Students use original sketches as a basis for their designs and develop full-scale patterns for individual and group projects that are brought to various stages of completion. Emphasis is placed on creative expression and a thorough understanding of principles and techniques needed to produce apparel.

145 Apparel Design I

Spring. 4 credits. Limited to 15 students; priority given to TXA majors or students transferring into TXA. Prerequisite: TXA 040 or basic sewing skills. Recommended: an art or drawing course. Apparel design majors should take course during the first year.

Minimum cost of materials, $100; lab fee, $10.

Intensive study of principles and processes of flat-pattern design and fitting techniques, with emphasis on development of creative expression in fashion apparel.

146 Clothing: The Portable Environment

Fall. 3 credits. Average cost of materials, $30; lab fee, $10.

An introduction to the physical function of clothing for individuals of varying ages, for sports and recreation, for the physically handicapped, for a variety of occupations and climates, and for hazardous environments such as under water or outer space.

238 Textiles for Interiors

Fall. 3 credits (2 credits with TXA 135 prerequisite; enter course 10/1/90). MWF 1:05–1:55. F. Kozen.

An introduction to textile products for residential and contact interiors. Students learn to select fibers and fabrics based on their properties and product end-use requirements. Product performance evaluation and specification are stressed. Until October 1, course is an introduction to fiber, yarn, and fabric production and characteristics.

[242 Apparel Industry: Field Experience

Staff.

A five-day field trip to a major apparel center such as New York City. Cost includes accommodation and museum visits. Tours cover fiber, fabric, and design firms; manufacturers, retailers; and promotion and media establishments of the multifaceted apparel and textile industry.

R 2:30–4:25. A. Netravali.

An introduction to the basic properties of textile materials, with consideration of their technology, cultural, symbolic, and economic importance. Behavior of textile materials is observed in a variety of environmental conditions that influence aesthetics, comfort, and performance. This course is designed to provide a basis for further study in textiles, but it also contains sufficiently broad coverage of the subject to be used as an elective course.

144 Introduction to Apparel Design

Summer only. 3 credits. Limited to 20 students. Prerequisite: permission of the instructor. Cost of supplies and materials, $50. A. Racine.

A studio course that focuses on designing apparel through the flat-pattern method. Students use original sketches as a basis for their designs and develop full-scale patterns for individual and group projects that are brought to various stages of completion. Emphasis is placed on creative expression and a thorough understanding of principles and techniques needed to produce apparel.

145 Apparel Design I

Spring. 4 credits. Limited to 15 students; priority given to TXA majors or students transferring into TXA. Prerequisite: TXA 040 or basic sewing skills. Recommended: an art or drawing course. Apparel design majors should take course during the first year.

Minimum cost of materials, $100; lab fee, $10.

Intensive study of principles and processes of flat-pattern design and fitting techniques, with emphasis on development of creative expression in fashion apparel.

146 Clothing: The Portable Environment

Fall. 3 credits. Average cost of materials, $30; lab fee, $10.

An introduction to the physical function of clothing for individuals of varying ages, for sports and recreation, for the physically handicapped, for a variety of occupations and climates, and for hazardous environments such as under water or outer space.

238 Textiles for Interiors

Fall. 3 credits (2 credits with TXA 135 prerequisite; enter course 10/1/90). MWF 1:05–1:55. F. Kozen.

An introduction to textile products for residential and contact interiors. Students learn to select fibers and fabrics based on their properties and product end-use requirements. Product performance evaluation and specification are stressed. Until October 1, course is an introduction to fiber, yarn, and fabric production and characteristics.

[242 Apparel Industry: Field Experience

Staff.

A five-day field trip to a major apparel center such as New York City. Cost includes accommodation and museum visits. Tours cover fiber, fabric, and design firms; manufacturers, retailers; and promotion and media establishments of the multifaceted apparel and textile industry.
248 Dress: A Reflection of American Women's Roles
Fall and summer. 3 credits. Enrollment limited to 40 students. S-U grades optional.

Historical survey of changing patterns of American women's dress from the colonial period to the present day and of cultural, economic, and political forces that affected changes and women's development. Slides, film clips, and the Cornell University Costume Collection will be used for lectures and discussion. Students will investigate various topics in fashion, etiquette, and the roles of women.

284 Apparel Design II
Fall. 4 credits. Each section limited to 10 students. Prerequisite: TXA 145. Recommended: two art or drawing courses. Apparel design majors should take TXA 264 and 367 in the same academic year, preferably during the sophomore year. Minimum cost of materials, $100; lab fee, $10. M W 2:30-4:25. Staff.

This studio course examines two interrelated methods of apparel design. Through exercises, principles and processes of draping, fitting, and advanced flat pattern making are studied. Assigned problems require the students to make judgments regarding the design process, the nature of materials, body structure, function, and fashion.

300 Special Studies for Undergraduates
Fall or spring. Credit to be arranged. Hours to be arranged. Department faculty. Special arrangement for course work to establish equivalency for courses not transferred from a previous major or institution. Students prepare a multiplicity description of the study they want to undertake on a form available from the Student Services Office. The form, signed by both the instructor directing the study and the department chair, is filed at registration period.

331 The Textile and Apparel Industries
Fall. 4 credits. Prerequisites: Economics 101 and 102 or CEH 110 and 111 and an upper-division course in either apparel or textiles, excluding field experiences. Course fee, $12. Lecs, T R 8:30-9:55 rec, W 3:35 or W 7:30-8:20 p.m. S. Hester.

A critical review of the textile and apparel industries, including structure and marketing practices, and government policies that affect industry decisions and operations in such areas as energy, safety, and the environment. The role of labor unions is examined as well as the effects of international trade of textile and apparel products.

336 Fundamentals of Color and Dyeing
Fall. 4 credits. Prerequisite: College Natural Science Requirements. Lab fee, $15. Lecs, M W F 10:10-11, lab, M 1:25-4:25. C. C. Chu.

Color is an extremely important and useful factor in everybody's daily life, e.g., the clothes we wear, the food we eat, the house we live in. This course will emphasize theories and scientific principles of color, providing a framework for the use of colors in design, marketing, or research. How colorants are used on fabrics will be addressed. Although fabrics are chiefly used to illustrate color in the class, much of the information and knowledge will be useful to non-textile majors. Guest lecturers from industry will provide the practical aspects of color in business.

337 Formation and Structure of Textile Fabrics
Spring. 3 credits. Prerequisite: TXA 135. Recommended: college algebra.
Lecs, M W F 9:05. P. Schwartz.
This course covers (1) how fabrics are made (2) how the method of manufacture influences fabrics properties, and (3) how the method of manufacture limits potential applications of fabrics. The technical aspects of textile fabrics are covered in detail. Available production technologies are reviewed. Properties of woven, knitted, and nonconventional fabrics, methods of producing structural designs, and means of designing fabrics to specifications are covered.

367 Apparel Design III
Spring. 3 credits. Prerequisite: TXA 264. Recommended: 3 art or drawing courses. Apparel design majors should take TXA 264 and 367 in the same academic year, preferably during the sophomore year. Minimum cost of materials, $100; lab fee, $10. M W 12:25-3:20. A. Racine.

Advanced apparel students prepared to challenge and refine their design skills will be presented with a variety of complex studio problems in apparel design. The Cornell Costume Collection is used for illustration and inspiration.

375 Visual Studies: Color and Surface Design
Spring. 3 credits. Minimum cost of materials, $75; lab fee, $10. T R 1:25-4:25. S. Niezelski.

This studio experience is augmented by slide presentations that demonstrate the use of decorative and repeat patterns as an applied textile art form; lecture materials reference both the history and current trends in surface design and color. Projects explore design problem-solving skills, systems of color classification, and principles of two-dimensional form; portfolio presentation skills are emphasized.

400-401-402-403 Special Independent Studies for Undergraduates
Fall or spring. Credits to be arranged. S-U grades only.
Hours to be arranged. Department faculty.

For advanced independent study by an individual student or for study on an experimental basis with a group of students in a field of TXA not otherwise provided through course work in the department or elsewhere at the university. Students prepare a multiplicity description of the study they want to undertake on a form available from the Counseling Office. This form must be signed by the instructor directing the study and the department chair, and presented with a variety of complex studio problems in apparel design. The Cornell Costume Collection is used for illustration and inspiration.

403 Teaching Apprenticeships
Fall or spring. 2-4 credits. Prerequisites: student must have upperclass standing, have demonstrated a high level of performance in the subject to be taught and in the overall academic program, and have permission of the instructor and the department chair. S-U grades only.

Apprenticeship includes both a study of teaching methods in the field and assisting the faculty with instruction.

419 Computer-Aided Apparel Design
Fall. 3 credits. Prerequisites: TXA 367 and 3 art or drawing courses. Minimum cost of materials, $50. Lab fee, $10.

An advanced studio course that uses microcomputers and the AutoCAD software program for solving a variety of problems in apparel design. The computer is used in all stages of the design process from conception to presentation.

431 The Textile and Apparel Industries—Field Experiences
Spring-term break. 1 credit. Prerequisite: TXA 331.
Lecs.

For study that predominantly involves data collection and analysis, or laboratory or studio projects.

432 Product Quality Assessment
Spring. 3 credits. Prerequisites: TXA 135 and Statistics. Lab fee, $15.

This course covers the testing and evaluation of textile fibers, yarns, fabrics, and garments, with emphases on the meaning and use of standards, the philosophy of testing, quality control, and statistical evaluation of test data. Common day-to-day tests done in textile and apparel industry will be reviewed and their significance discussed. Laboratory sections will be used to introduce students to various test methods and to generate data for analysis and evaluation.
439 Biomedical Materials and Devices for Human Body Repair
Lecs, T 3-35. C. C. Chu.
Survey of materials and devices for repair of injured, diseases, or aged human tissues/or organ. It includes properties of synthetic and biological materials, wound healing processes, medical devices for repair of wounds, blood vessels, hearts, joints, bones, nerves, male impotence, vision/hearing/voice, and drug control/release.

446 Apparel Design: Intermediate Functional Clothing Design
Spring. 3 credits. Prerequisites: TXA 146 and TXA 264 or permission of instructor. Not available to students who have taken DEA 445. 1 field trip, approximate cost $125; minimum cost of materials, $100; lab fee, $10.
Advanced physical theory concerned with the function of clothing. Special current topics in the field will be studied. Students will be engaged in both group and individual research projects that result in the design and development of apparel items.

461 Issues in Management and Marketing
Spring. 3 credits. Prerequisite: TXA 351 or permission of instructor. Course fee, $12.
The course will focus on management and marketing issues of concern to the textile and apparel sector. Management topics will include labor and productivity issues, governmental interaction, adoption of technology, and the problem of foreign competition. Topics in distribution and marketing will address the importance of industry-consumer interaction, changes in the domestic and international marketplace, and the role of trade and consumer associations.

485 Apparel Design: Product Development and Presentation
Fall. 3 credits. Prerequisites: minimum of three drawing or art courses and TXA 367 or permission of instructor. Minimum cost, $100; lab fee, $10.
Lecs, T R 1:25-4:25. Staff.
Through studio problems in apparel design, students examine the influence of manufacturing technology and cost on apparel products. Lines of garments are developed to various stages from sketches to finished samples.

600 Special Problems for Graduate Students
Fall or spring. Credit to be arranged. S-U grades optional.
Hours to be arranged. Department faculty.
Independent advanced work by graduate students recommended by their chair and approved by the department chair and instructor.

[620 Physical Properties of Fiber-Forming Polymers and Fibers]
Fall. 3 credits. Prerequisite: permission of instructor. Offered alternate years. Not offered 1990-91.
Lecs, M W 2:30-3:45. A. Netravali.
Formation and properties of fiber-forming polymers, rubber, glassy, and crystalline states. Dynamics of network response. Fiber structure, relationship between chemical structure and physical properties of man-made and natural fibers. Mechanical, thermal, and viscoelastic properties of fibers and testing methods.

[621 Characterization of Fibrous Materials]
Spring. 3 credits. Prerequisite: TXA 620 or permission of instructor. S-U grades optional. Offered alternate years. Not offered 1990-91.
A study of the principles of the major analytical characterization methods and the application of these methods to the study of fiber properties and structure. Topics include microscopy, s-x ray diffraction, spectroscopy, magnetic resonance, and mass spectrometry. The student completing this course should be able to select methods and measurements that would best characterize a given structural property.

[631 Textiles and Apparel: International Production and Trade]
Spring. 3 credits. Prerequisite: TXA 351, Econ 361, or permission of instructor. Offered alternate years. Not offered 1990-91. Course fee, $12.
Lecs, T R 8:30-9:55. S. Hester.
The course will focus on worldwide patterns of production and trade in the textile and apparel industries. Reasons for international trade will be examined, as well as the international environment that underlies trade in those commodities. Other topics include the international organizations and agreements relevant to textiles and apparel and the resulting protective trade policies on the part of developed and developing nations.

[635 Special Topics in Textiles]
Fall. 1-3 credits. Prerequisite: permission of instructor.
M W F 2:30-3:45. A. Netravali.
An in-depth study of one or more selected topics in polymers, fibers, or textiles. The course content will vary; consult instructor for more details.

[636 Fiber Chemistry]
Fall. 3 credits. Offered alternate years. Prerequisite: permission of instructor.
Lecs, M W F 11:15. C. C. Chu.
An in-depth coverage of the important natural and synthetic fibers currently being used in industry, agriculture, medicine, apparel, and engineering. They include cellulose, silk, wool, polyelectrolytes, polypeptides, polypropylene, and acrylics. In each fiber, the synthesis of polymer, fiber formation, and structure, chemical and physical properties, and applications will be discussed.

[637 Graduate Seminar in Textiles and Apparel]
Fall and spring. No credit. S-U only.
R 12:20-1:10. R. Schwartz, fall; M. Govindaraj, spring.
New developments, research, and topics of major concern to the field of textiles and apparel are discussed by faculty members, students, and speakers from industry, government, and academia.

639 Mechanics of Fibrous Structures
Spring. 3 credits. Prerequisite: permission of instructor. Offered alternate years.
A study of the mechanics of textile structures: creep phenomena and the dynamic properties of fibers and yarns; idealized yarn and fabric models and their relationship to research data; special topics in the deformation of yarns and fabrics in tension, shear, and compression stress; fabric bending and buckling; and the mechanical behavior of nonwoven textile materials.

899 Master's Thesis and Research
Fall or spring. Credits to be arranged. Prerequisite: permission of the chair of the graduate committee and the instructor. S-U grades optional.
Hours to be arranged. Field graduate faculty.

999 Doctoral Thesis and Research
Fall or spring. Credit to be arranged. Prerequisite: permission of the chair of the graduate committee and the instructor. S-U grades optional.
Hours to be arranged. Field graduate faculty.

FACULTY ROSTER
Assoc. Prof., Human Service Studies
Anderson, Carol L., Ph.D., Iowa State U. Assoc. Prof., Human Development and Family Studies
Avery, Robert B., Ph.D., U. of Wisconsin.
Assoc. Prof., Consumer Economics and Housing
Babcock, Robert J., Ed.D., Cornell U. Assoc. Prof., Human Service Studies
Barr, Donald J., Ph.D., Indiana U. Prof., Human Service Studies
Battistella, Roger M., Ph.D., U. of Michigan.
Prof., Human Service Studies
Becker, Franklin D., Ph.D., U. of California at Davis.
Prof., Design and Environmental Analysis
Beckman, Ronald H., M.S., Pratt Inst. Assoc. Prof., Design and Environmental Analysis
Biesdorf, Heinz B., Ph.D., U. of Innsbruck (Austria). Prof., Emeritus, Consumer Economics and Housing
Boegly, Carolyn 0., M.S., U. of Wisconsin.
Assoc. Prof., Cooperative Extension
Prof., Design and Environmental Analysis
Buchanan, Robert J., Ph.D., U. of Virginia.
Assoc. Prof., Human Service Studies
Bryant, W. Keith, Ph.D., Michigan State U.
Prof., Consumer Economics and Housing
Matson, Robert J., Ph.D., U. of Virginia.
Asst. Prof., Human Service Studies
Bushnell, Allen R., M.F.A., Cranbrook Acad. of Art. Assoc. Prof., Design and Environmental Analysis
Chi, Peter S., Ph.D., Brown U. Prof., Consumer Economics and Housing
Chu, Chih-Chang, Ph.D., Florida State U. Assoc. Prof., Textiles and Apparel
Cochran, Moncrieff, Ph.D., U. of Michigan. Assoc. Prof., Human Development and Family Studies
Condy, John C., Ph.D., U. of California at Los Angeles. Prof., Human Development and Family Studies
Cornelius, Steven W., Ph.D., Pennsylvania State U. Assoc. Prof., Human Development and Family Studies
Crawford, Catherine M., Ph.D., SUNY at Albany. Asst. Prof., Human Service Studies
Danko, Sheila, M.I.D., Rhode Island School of Design. Asst. Prof., Design and Environmental Analysis
DeWeese, Gail, Ph.D., Virginia Polytechnic Institute and State U. Asst. Prof., Textiles and Apparel
Doris, John L., Ph.D., Yale U. Prof., Human Development and Family Studies
Eckernode, John J., Ph.D., Tufts U. Assoc. Prof., Human Development and Family Studies
Firebaugh, Francille M., Ph.D., Cornell U. Prof., Consumer Economics and Housing
Ford, John L., Ph.D., U. of Michigan. Assoc. Prof., Human Service Studies
Gerner, Jennifer L., Ph.D., U. of Wisconsin. Assoc. Prof., Consumer Economics and Housing
Govindaraj, Muthu, C.Sc., C. of Mechanical and Textile Engineering (Czechoslovakia). Asst. Prof., Textiles and Apparel
Greene, Jennifer C., Ph.D., Stanford U. Assoc. Prof., Human Service Studies
Hahn, Alan J., Ph.D., Indiana U. Assoc. Prof., Human Service Studies
Hazan, Cindy, Ph.D., U. of Denver. Asst. Prof., Human Development and Family Studies
Heck, Ramona K.Z., Ph.D., Purdue U. Assoc. Prof., Consumer Economics and Housing
Hedge, Alan, Ph.D., U. of Sheffield (England). Assoc. Prof., Design and Environmental Analysis
Hester, Susan B., Ph.D., Virginia Polytechnic Institute and State U. Asst. Prof., Textiles and Apparel
Hogarth, Jeannie M., Ph.D., Ohio State U. Assoc. Prof., Consumer Economics and Housing
Jacobsen, Linda A., Ph.D., U. of Wisconsin. Asst. Prof., Consumer Economics and Housing
Key, Rosemary J., Ph.D., Ohio State U. Asst. Prof., Consumer Economics and Housing
LaQuatra, Joseph Jr., Ph.D., Cornell U. Asst. Prof., Design and Environmental Analysis
Lazar, Irving, Ph.D., Columbia U. Prof., Human Service Studies
Lee, Lee C., Ph.D., Ohio State U. Assoc. Prof., Human Development and Family Studies
Lemley, Ann T., Ph.D., Cornell U. Assoc. Prof., Textiles and Apparel
Lenzenweber, Mark F., Ph.D. Yeshiva U. Asst. Prof., Human Development and Family Studies
Lust, Barbara C., Ph.D., City U. of New York. Assoc. Prof., Human Development and Family Studies
McClintock, Charles C., Ph.D., SUNY at Buffalo. Assoc. Prof., Human Service Studies
Maynes, E. Scott, Ph.D., U. of Michigan. Prof., Consumer Economics and Housing
Minor, Marion E., Ph.D., Cornell U. Prof., Human Service Studies
Mosen, Phyllis, Ph.D., U. of Minnesota. Assoc. Prof., Human Development and Family Studies
Mont, Daniel M., Ph.D., U. of Wisconsin at Madison. Asst. Prof., Consumer Economic and Housing
Mueller, B. Jeanne, Ph.D., U. of Wisconsin. Prof., Human Service Studies
Netravali, Anil, Ph.D., North Carolina State U. Asst. Prof., Textiles and Apparel
Noble, Lucinda A., Ph.D., U. of North Carolina. Prof., Human Service Studies
Obendorf, Sharon K., Ph.D., Cornell U. Prof., Textiles and Apparel
Ostrander, Edward R., Ph.D., U. of Illinois. Assoc. Prof., Design and Environmental Analysis
Parrot, Andrea, Ph.D., Cornell U. Asst. Prof., Human Service Studies
Pollak, Patricia B., Ph.D., Syracuse U. Assoc. Prof., Consumer Economics and Housing
Potts, Marion H., Ph.D., Penn State U. Prof., Human Development and Family Studies
Reschovsky, James D., Ph.D., U. of Michigan. Asst. Prof., Consumer Economics and Housing
Ricciuti, Henry N., Ph.D., Fordham U. Prof. Emeritus, Human Development and Family Studies
Begley, George, M.F.A., U. of California at Davis. Assoc. Prof., Human Development and Family Studies
Ziegler, Jerome M., M.A., U. of Chicago. Prof., Human Service Studies
Zorn, Peter M., Ph.D., U. of California at Davis. Assoc. Prof., Consumer Economics and Housing
The school operates in four areas: (1) resident instruction, (2) extension and public service, (3) research, and (4) publications. It provides instruction to undergraduates and graduate students who are preparing for careers in the field, as well as to men and women already engaged in industrial relations activities and the general public through its Extension and Public Service Division.

The school's Conference Center, part of the extension division, initiates and hosts conferences covering the full scope of industrial and labor relations. The center provides continuing education and information to practitioners and scholars.

The Research Division develops materials for resident and extension teaching and originates studies in industrial and labor relations. The Publications Division publishes and distributes the research results.

DEPARTMENTS OF INSTRUCTION
Courses in the school are organized into six departments:

Collective Bargaining, Labor Law, and Labor History
In the study of workers, employers, and the government policies affecting them, members of this faculty concentrate on subjects of industrial and labor relations best understood by reliance on the fields of administration, economics, history, and law. Courses explore subjects within the framework of American society, stress fundamental forces of change, and analyze texts and empirical data with methods drawn from the social sciences, the humanities, and the legal professions.

Economic and Social Statistics
Economic and Social Statistics includes the principles of statistical reasoning, statistical methods, and the application of statistical tools of analysis.

International and Comparative Labor Relations
International and Comparative Labor Relations is concerned with industrial and labor relations systems and labor markets in other parts of the world. Countries include those in Western Europe, as well as the newly industrializing countries in Asia and the Third World.

Labor Economics
Labor Economics deals with labor markets: that is, the institutional arrangements, terms, and conditions under which workers supply their labor and under which firms demand their labor. Faculty members are especially concerned with understanding the workings of labor markets and the effects of various public policies. The topics dealt with in courses and research include the following: analysis of the labor force, employment and unemployment, wages and related terms of employment, income distribution, income security programs, health and safety in industry, retirement, pensions and social security, economic aspects of collective bargaining, and economic demography.

Organizational Behavior
By studying individuals, groups, single organizations, and associations or organizations, persons in the field of Organizational Behavior understand human behavior within organizations as well as the actions of the organizations themselves. At the individual level of analysis, courses consider motivation, leadership, attitudes, personality, group processes, organizational change, and worker participation. At the organizational level, courses examine occupations, deviance in the workplace, conflict, power, organizational design, public policy regarding organizations, and industrial conflict. The department also offers courses on research methods in organizational research and general survey courses in both psychological and sociological research.

Personnel and Human Resource Studies
This department offers specialization in personnel management or human resource studies. Personnel management focuses on employer-employee relationships and deals with such topics as human-resource planning, staffing, computer applications to personnel, personnel information systems, training, management development, performance appraisal, compensation administration, organization development, and the sociological environment of personnel management. The study of human resource policy focuses on government efforts to enhance the population's ability to be employed. Although primarily concerned with governmental measures that influence the supply of labor (for example, training, education, health, mobility, and immigration), the subject area also includes policies in private industry that relate to the demands for labor.

A full list of required and elective courses is available from the Office of Student Services, 101 Ives Hall.

RESIDENT INSTRUCTION
This division conducts the on-campus programs leading to the degrees of Bachelor of Science, Master of Industrial and Labor Relations, Master of Science, and Doctor of Philosophy from Cornell.

Office of Student Services
Staff members from the Office of Student Services, 101 Ives Hall, work closely with faculty and faculty committees to administer degree programs for the school and many of the school's support services. The office's responsibilities include the admitting and orienting of new students, maintaining students' personal and academic records, and counseling students on personal and academic problems. The office also works closely with seniors who are planning graduate study.
Counseling and Advising

New students will be provided advising on orientation, academic procedures, and course registration by counselors in the Office of Student Services.

Each of the school's academic departments names faculty members to serve as advisers for students who wish to consult with them regarding career possibilities in the field, postgraduate programs, or similar matters. Questions or issues related to graduation requirements, course registration, and related academic procedures should be raised with counselors in the Office of Student Services.

Minority Programs

Cornell University administers a variety of special opportunity programs designed to provide financial assistance and other forms of assistance to (1) minority students and (2) low-income students meeting program guidelines. The purpose of these programs is to open access to a Cornell education for capable students who otherwise might not secure the admissions consideration, financial assistance, or supportive services necessary for their success at the university. The associate director for minority education in the Office of Student Services provides academic and personal counseling to all ILR minority students. ILR offers a variety of support services to enhance academic achievement. For details, prospective students should contact ILR Admissions.

STUDY OPTIONS

Several study options are open to ILR undergraduates, making it possible to tailor a program to fit special circumstances.

One such option is the five-year ILR master's degree. With early planning, some students may earn the M.S. degree in the fifth year. Using another option, some ILR students arrange for dual registration in the Johnson Graduate School of Management, earning their bachelor's degree in ILR and a master's degree in the Johnson Graduate School of Management after five years of study.

Some students elect to spend a semester in New York City, Albany, or Washington, D.C., with a chance to observe actual labor problems solving as interns in congressional offices, labor organizations, personnel offices, and state and federal agencies. For more information, see "Special Academic Programs," below.

Study abroad options are also available at a number of foreign universities. Qualified students may spend a semester or a full year studying abroad.

A number of ILR courses deal directly with today's problems and involve fieldwork in the Ithaca area and elsewhere in New York State.

The ILR program allows juniors and seniors who want to conduct their own research to receive course credit for individually directed studies if the program is supervised by a faculty member.

Study in Absentia

Registration in absentia enables a student to seek admission in another American institution for a semester or a year and transfer credit toward completion of the Cornell degree. This study option requires the development of a plan of study, a statement of appropriate reasons for study away from the university (e.g., availability of courses not offered at Cornell), good academic standing, approval of the plan by the director of student services, and payment of a special in absentia registration fee. Work course taken in absentia is usually not evaluated for transfer credit until the work has been completed and the student has returned to the school. Students then submit a course syllabus and other evidence of content to the chairman of the department that might have offered the respective course, or to a counselor in the Office of Student Services if the course is more appropriate as a general elective.

Leave of Absence or Withdrawal

If a student desires to withdraw or to take a leave of absence from the university, an interview should be scheduled with a counselor in the Office of Student Services. Counselors will assist students in petitioning for approval of a leave of absence and in contacting the appropriate offices or departments of the university.

REQUIREMENTS FOR GRADUATION

To earn the Cornell Bachelor of Science degree in industrial and labor relations, the student needs to successfully complete 120 credits. This requires eight terms for an average of 30 credits a year although some students accelerate their studies.

Required Courses

(55 credits)

The curriculum prescribes the courses and subjects listed in the table below, to be taken in the terms indicated during the freshman, sophomore, and junior years. In the senior year, all courses will be electives.

<table>
<thead>
<tr>
<th>Course or Subject</th>
<th>Credits</th>
<th>Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>Freshman Year</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Freshman Seminars*</td>
<td>6</td>
<td>Fall and spring</td>
</tr>
<tr>
<td>Econ 101-102</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Micro-Macroeconomics*</td>
<td>6</td>
<td>Fall and spring</td>
</tr>
<tr>
<td>Psych 101, Introduction to Psychology*</td>
<td>3</td>
<td>Fall</td>
</tr>
<tr>
<td>ILRCB 100, United States Labor History in the Nineteenth Century</td>
<td>3</td>
<td>Fall</td>
</tr>
<tr>
<td>ILROB 120, Macro Organizational Behavior and Analysis</td>
<td>3</td>
<td>Fall</td>
</tr>
<tr>
<td>ILRST 210, Statistics I</td>
<td>4</td>
<td>Spring</td>
</tr>
<tr>
<td>Any two of the following:</td>
<td>6</td>
<td>Spring</td>
</tr>
<tr>
<td>ILRCB 101, United States Labor History in the Twentieth Century</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ILRL 140, Development of Economic Institutions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ILROB 121, Micro Organizational Behavior and Analysis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physical education</td>
<td>0</td>
<td>Fall and spring</td>
</tr>
</tbody>
</table>

Sophomore Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
<th>Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>ILRCB 201, Labor Relations</td>
<td>3</td>
<td>Fall</td>
</tr>
<tr>
<td>ILRL 240, Economics of Wages and Employment</td>
<td>3</td>
<td>Fall</td>
</tr>
<tr>
<td>ILRST 211, Statistics II</td>
<td>3</td>
<td>Fall</td>
</tr>
<tr>
<td>ILRPR 260, Personnel Management</td>
<td>3</td>
<td>Fall or spring</td>
</tr>
<tr>
<td>ILRCB 200, Collective Bargaining</td>
<td>3</td>
<td>Spring</td>
</tr>
<tr>
<td>Ag Econ 221, Financial Accounting</td>
<td>3</td>
<td>Spring</td>
</tr>
<tr>
<td>ILRCB 101 or ILRL 140 or ILROB 121</td>
<td>3</td>
<td>Spring</td>
</tr>
</tbody>
</table>

Junior Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
<th>Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>ILRL 340, Economic Security</td>
<td>3</td>
<td>Fall or spring</td>
</tr>
</tbody>
</table>

Elective Courses

(65 credits)

From the courses offered by the school, students must select a minimum of 27 credits of ILR elective courses. No more than 9 of these credits may be satisfied by ILR 499, Directed Studies, or ILR 497-498, Internships, or ILR 495, Honors Program.

Undergraduates are required to select one course in the humanities and one intensive writing course (each for a minimum of three credits) from a list of designated courses to be completed during the sophomore, junior, or senior years.

The remaining 35 credits may be selected from the courses of any other college at Cornell, but a student who takes more than 35 credits in the endowed colleges (the College of Architecture, Art, and Planning; the College of Arts and Sciences; the Johnson Graduate School of Management; the College of Engineering; and the School of Hotel Administration) will be billed for the additional tuition at the current cost per credit.

The number of credits that may be taken in the courses of any other college at Cornell, but a student who takes more than 35 credits in the endowed colleges (the College of Architecture, Art, and Planning; the College of Arts and Sciences; the Johnson Graduate School of Management; the College of Engineering; and the School of Hotel Administration) will be billed for the additional tuition at the current cost per credit.

The number of credits that may be selected from the courses of any other college at Cornell, but a student who takes more than 35 credits in the endowed colleges (the College of Architecture, Art, and Planning; the College of Arts and Sciences; the Johnson Graduate School of Management; the College of Engineering; and the School of Hotel Administration) will be billed for the additional tuition at the current cost per credit.

SCHEDULING AND ATTENDANCE

Schedule Changes

Occasionally it may be necessary for a student to request changes in his or her course schedule either before a term begins or during the semester. Such requests must be directed to the Office of Student Services to avoid possible loss of academic credit.

Class Attendance

It is each student's responsibility to attend all scheduled classes unless approved excuses have been given by the faculty. In some courses an instructor may permit a maximum number of class absences without a grade penalty or dismissal from the course. An explanation for absence from class may be occasionally be secured from the Office of Student Services in advance of the expected absence. An approved absence may be warranted:
ACADEMIC STANDING AND GRADES

Academic Integrity
In 1987 the faculty of the School of Industrial and Labor Relations approved a revised code of academic integrity. This code, while based on the Cornell University code, varies somewhat.

Absolute integrity is expected of all Cornell students in all academic undertakings. They must in no way misrepresent their work, fraudulently or unfairly advance their academic status, or be a party to another student’s failure to maintain academic integrity. The code specifically prohibits:

1) knowingly representing the work of others as one’s own;
2) using or obtaining unauthorized assistance in any academic work;
3) fabricating data in laboratory or field work;
4) giving fraudulent assistance to others;
5) fabricating data in support of laboratory or field work.

Full details on the applications of these prohibitions to course work, term papers, examinations, and other situations are listed in the code. Copies are available from the Office of Student Services.

Dean’s List
A Dean’s List is compiled for each of the four undergraduate classes each term on the seventh day following receipt of final grades from the registrar. Eligibility for the Dean’s List is determined by applying all of the following criteria:

1) achievement of a term average for freshmen of 3.3 or better, for sophomores of 3.4 or better, and for juniors and seniors of 3.6 or better;
2) a minimum course load for the term of 12 letter-graded credits;
3) completion of all courses registered for at the beginning of the term;
4) satisfaction of all good-standing requirements.

Academic Standing
Good standing requires that all of the following criteria be met at the end of each term:

1) an average of C– (1.7) for the semester’s work, including a minimum of 8 completed and letter-graded credits;
2) no failing grades in any course, including physical education;
3) a cumulative average of C– (1.7) for all completed terms.

If at the end of any term a student fails to maintain good standing or if overall academic performance is so marginal as to endanger the possibility of meeting school and university degree requirements, his or her record is reviewed by a committee on Academic Standards and Scholarships. The committee may issue a written warning to the student at that time. If a student does not improve after the written warning, he or she may be denied permission to register for the next term.

Involuntary Separation from the School for Academic Reasons
A student may be denied permission to re-register at the end of any term when he or she has failed:

1) to establish good standing after a semester on warning;
2) to maintain an average of 1.7 in any term after a previous record of warning;
3) to achieve good standing after being on warning any two previous semesters;
4) two or more courses in one term or has a term average of 1.0 or below.

The Academic Standards and Scholarship Committee may decide to permit a student to remain on warning more than one semester if there has been significant improvement even though the cumulative average is still below 1.7.

S-U Grading Policy
An undergraduate may register to receive a final grade of S (Satisfactory) or U (Unsatisfactory) in courses that offer this option—either in the school or in other divisions of the university—subject to the following conditions:

1) the S-U option may be used in ILR and in out-of-college course electives only, not in directed studies;
2) students are limited to registering in two S-U courses a term;
3) S-U registration is limited to 4 credits for each course;
4) students registering for S-U grades must be in good standing;
5) students must fulfill the graduation requirement of 105 letter-graded credits.

IRL faculty members assign a grade of U for any grade below C– and a grade of S for any grade of C– or better. A grade of U is considered equal to an F in determining a student’s academic standing, although it is not included in the cumulative average.

No change of grading (from letter to S-U or from S-U to letter) may be made after the first three weeks of class. There are no exceptions to this restriction, and appeals will not be accepted.

Grades of Incomplete
A grade of incomplete is assigned when the course has not been completed for reasons that are acceptable to the instructor. It is understood that the work may be completed later and credit given. Instructors may grant a grade of incomplete for a limited number of clearly valid reasons, but only to students with substantially completed course. A firm and definite agreement on the conditions under which it may be made up must be made with the instructor. The school’s policy allows a maximum of two full terms of residence for removal of a grade of incomplete. If it is not made up within this time, the grade automatically becomes an F.

SPECIAL ACADEMIC PROGRAMS
To meet the special academic objectives of some students, the school’s faculty has established several special academic programs. For additional information, students should contact a counselor in the Office of Student Services.

Dual Registration in the Johnson Graduate School of Management
Dual informal registration in the Johnson Graduate School of Management leads to a Bachelor of Science degree in industrial and labor relations and a master’s degree in management after five years of study and is open to students who meet the requirements of the Johnson Graduate School of Management.

Early planning by each student, preferably in the sophomore year, is desirable to ensure that the expectations of the Johnson Graduate School of Management and ILR curriculum requirements are fulfilled. Students interested in the very limited and selective program of the Johnson Graduate School of Management should contact the Admissions Office, 319 Malott Hall, and a counselor at the Office of Student Services.

Five-Year Master of Science Degree Program
With early planning it is possible to earn the M.S. degree in a fifth year of study. This program is designed specifically for those who wish concentrated study in an area of specialization in the school for a Master of Science degree. Students considering this program should consult a counselor in the Office of Student Services after their freshman year.

Internships
The Credit Internship Program has provided students with a vivid understanding of problems in labor and industrial relations through observation and participation in “real-life” labor problem solving. A number of selected students spend a term of the junior year in New York City, Washington, D.C., in close contact with practitioners. Their activities include independent research under direction of ILR faculty members and seminars drawing on fieldwork experience with employers, labor organizations, and government agencies. More information about this program is available from the Office of Student Services.
Honors Program

Undergraduates who are ranked in the top 20 percent of their class at the end of the junior year may propose a two-semester research project, an honors thesis, for review by the Committee on Academic Standards and Scholarships. When approved, the candidate for graduation with honors works for two semesters (for 3 credits in each term) to research, write, and then defend the thesis.

Study Abroad

Cornell students with strong academic records and the necessary preparation in required and elective courses are encouraged to consider study abroad. The university currently has agreements with universities in Germany, Israel, England, and the Scandinavian countries that permit undergraduates to register for courses while maintaining Cornell registration and financial aid for a semester or a year. Information about those opportunities may be requested from Cornell Abroad, in the Center for International Studies, 130 Uris Hall.

Some study abroad programs require the development of language proficiency and preparation in appropriate courses at Cornell. Students should consult the Office of Student Services and Cornell Abroad in the freshman and sophomore years to be sure that they comply with the academic and procedural requirements for study abroad.

COLLECTIVE BARGAINING, LABOR LAW, AND LABOR HISTORY

100 Introduction to U.S. Labor History: Nineteenth Century
Fall. 3 credits.
C. Daniel, I. DeVault, G. Korman, N. Salvatore.
This two-semester sequence covers the major changes in the nature of work, the workplace, and the institutions involved in industrial relations in the United States through the end of the nineteenth century.

101 Introduction to U.S. Labor History: The Twentieth Century
Spring. 3 credits.
C. Daniel, I. DeVault, G. Korman, N. Salvatore.
This two-semester sequence covers the major changes in the nature of work, the workplace, and the institutions involved in industrial relations in the United States from the end of the nineteenth century up to the present.

200 Collective Bargaining
Fall or spring. 3 credits.
C. Erickson, C. Gramm, H. Katz, S. Kuruvilla.
A comprehensive study of collective bargaining, the negotiation and scope of contracts, the day-to-day administration of contracts; the major substantive issues in bargaining, including their implication for public policy; and the problem of dealing with industrial conflict.

201 Labor Relations Law and Legislation
Fall, spring, or summer. 3 credits.
T. Crivens, M. Gold, J. Gross, R. Lieberwitz.
A survey of the law governing labor relations. The legal framework in which the collective bargaining relationship is established and bargaining takes place is analyzed. Problems of the administration and enforcement of collective agreements are considered, as are problems of protecting individual employee rights in the collective labor relations context. Also serves as an introduction to the legal system and method and to legal and constitutional problems of governmental regulation of industrial and labor relations.

301 Labor Union Administration
Fall. 3 credits. Prerequisites: ILRCB 100 and 201.
G. Brooks.
Study and analysis of the structure and operations of American unions, including the complicated internal life of the organizations: the varied environments in which unions develop and grow or decline; the relationship of national unions, local unions, and members in the many different aspects of internal union government, the ways in which unions are set up to handle organizing, collective bargaining, contract administration, and political activity; and the widespread movement toward merger and consolidation of unions that began in the sixties and continues today. All of these will involve a study of union constitutions and other primary documents, in addition to secondary readings. Attention will be given to relevant legislation, current problems of unions, and the eternal problems of attaining union democracy.

303 Research Seminar in the Social History of American Workers
Fall or spring. 4 credits. Limited to upperclass students who have demonstrated their ability to undertake independent work and who have received permission of the instructor.
G. Korman.
An examination of a different subject each year.

304 Seminar in the History, Administration, and Theories of Industrial Relations in the United States
Fall or spring. 4 credits. Prerequisite: permission of instructor.
C. Daniel, I. DeVault, G. Korman, N. Salvatore.
Designed to explore the social, economic and political background of industrial relations in the history of the United States. Examines a different subject each year.

305 Labor in Industrializing America: 1865-1920
Fall. 3 credits. Prerequisites: ILRCB 100 and 101.
N. Salvatore.
Examines the experience of working people in the years between the Civil War and World War I. It will explore both the workers themselves—their organization, diverse cultures, ethnic and racial traditions, and political activities—and the dramatic changes in industry that restructured American life during this period.

381 Jewish Workers in Europe and America, 1835-1948
Fall or spring. 4 credits. Open to sophomores, juniors, and seniors.
G. Korman.
This course in comparative history examines the complex experiences of the Yiddish-speaking immigrant workers and their families. A special subject of interest is the extraordinary history of the Jewish working classes between 1924 and 1948.

384 Women and Unions
Fall or spring. 4 credits. Not offered 1990-91.
I. DeVault.
This course explores various aspects of unions' attempts to organize workers: why some workers join unions and others do not; the techniques used by both unions and employers during organizing campaigns; and the present law of organizing and proposed amendments to that law. Includes an examination.

403 The Law of Workers' Compensation
Fall, weeks 1-7. 2 credits. Prerequisite: ILRCB 201/501 or permission of instructor.
J. Burton.
A survey of legal aspects of workers' compensation, the program that provides cash benefits, medical care, and rehabilitation services to workers disabled by work-related injuries and diseases.

404 Contract Administration
Fall, weeks 1-7. 2 credits. Prerequisites: undergraduates, ILRCB 200 and 201; graduate students, ILRCB 500 and 501.
Staff.
This course bridges the gap between ILRCB 200 (500), Collective Bargaining, and ILRCB 602, Arbitration. It focuses on various aspects of dispute settlement process prior to final resolution. The intent of the course is to expand the knowledge of students rather than to develop personal skills. It includes such topics as (1) the historical development of contractual grievance process, (2) the merits of various alternative processes that have been adopted by unions and managements in the United States, (3) the impact of external law on the behavior of the parties in the adjustment process, (4) a comparison of the U. S. system with systems in other industrialized economies, (5) current issues and problems in the systems, (6) nonunion grievance processes, and (7) ongoing experimental alternatives to the standard systems.
406 History of the Black Worker in the United States
Fall. 3 credits. Prerequisite: ILRCB 100. J. Gross.
Intended to introduce the student to the history of the black worker in the United States through a review and analysis of the existing literature of black labor history and through source documents from the National Archives. Discussions will center around the black worker in agriculture, industry, and government; black worker migrations; black workers and organized labor; and black workers, discrimination, and the law.

407 Contemporary Trade Union Movement
Fall. 3 credits. Prerequisites: ILRCB 100/502, upperclass standing. N. Salvatore.
An examination of contemporary trade union issues in the context of labor's history since World War II. Among the issues to be discussed are centralization of union power, union democracy, political action, and strategies of collective bargaining. A series of speakers from the union movement will address the class. Midterm, final, and term paper are required.

482 Ethics at Work
Fall or spring. 7 weeks. 2 credits. M. Gold.
Major theories of ethics are used to examine a number of ethical issues in the employment relationship, including genetic screening of job applicants, random drug testing of employees, affirmative action, discipline for off-duty conduct, whistle-blowing, worker safety and cost/benefit analysis, comparable worth, strikes by employees providing crucial services, and crossing a picket line.

484 Employment Discrimination and the Law
Fall. 4 credits. Prerequisite: ILRCB 201/501 or equivalent. T. Craven, M. Gold.
An examination of legal problems involving employment discrimination based on race, color, religion, sex, national origin, or age. The impact of developing principles of law on discrimination, and the social sciences. Topics will be selected from among the following: affirmative action and reverse discrimination, the right to life (from abortion to capital punishment), comparable worth, and constitutional rights such as freedom of speech.

495 Honors Program
Fall and spring (yearlong course). 3 credits each term. Admission to the ILR senior honors program may be obtained under the following circumstances: (a) a student must be in the upper 20 percent of their class at the end of their junior year; (b) an honors project, entailing research leading to completion of a thesis, must be proposed to an ILR faculty member who agrees to act as thesis supervisor; and (c) the project, endorsed by the proposed faculty sponsor, is submitted to the Committee on Academic Standards and Scholarships. Accepted students embark on a two-semester sequence. The first semester consists of determining a research design, familiarization with germane scholarly literature, and preliminary data collection. The second semester involves completion of the data collection and progress on the honors thesis. At the end of the second semester, the candidate is examined orally on the completed thesis by a committee consisting of the thesis supervisor, a second faculty member designated by the appropriate department chair, and a representative of the Academic Standards and Scholarship Committee.

497-498 Internship
Fall or spring. 497, 3 credits; 498, 6 credits. Staff.
All requests for permission to register for an internship must be approved by the faculty member who will supervise the project and the chairman of the faculty member's academic department before submission for approval by the Committee on Academic Standards and Scholarships. Under the approval of the internship, the Office of Student Services will register each student for 497, for 3 credits graded A to F for individual research, and for 498, for 6 credits graded S-U, for completion of a professionally appropriate learning experience, which is graded by the faculty supervisor.

499 Directed Studies
Fall or spring. 3 credits. J. Burton.
For individual research, conducted under the direction of a member of the faculty, in a special area of labor relations not covered by regular course offerings. Registration is normally limited to seniors who have demonstrated ability to undertake independent work. Eligible students should consult a counselor in the Office of Student Services at the time of course registration to arrange for formal submission of their projects for approval by the Academic Standards and Scholarship Committee.

500 Collective Bargaining
Fall or spring. 3 credits. C. Gramm, H. Katz, S. Kuruvilla.
A comprehensive study of collective bargaining, with special emphasis on philosophy, structures, process of negotiations, and administration of agreements. Attention is also given to problems of handling and settling industrial controversy, the various substantive issues, and important developments and trends in collective bargaining.

501 Labor and Employment Law
Fall, spring, or summer. 3 credits. T. Craven, M. Gold, R. Lieberwitz.
A survey and analysis of the laws governing labor relations and employee rights at the workplace. The first half of the course examines the legal framework within which collective bargaining takes place, including union organizational campaigns, negotiations for and enforcement of collective bargaining agreements, and the use of economic pressure. The second half of the course surveys additional issues of rights in employment, including such topics as employment discrimination, the developing law of "unjust dismissal," and union democracy.

502 History of Industrial Relations in the United States since 1865
Spring. 3 credits. C. Daniel, I. DeVaught, G. Korman, N. Salvatore.
This introductory survey course emphasizes historical developments in the nineteenth century. Special studies include labor union struggles over organizational alternatives and such other topics as industrial conflicts, working-class life styles, radicalism, welfare capitalism, union democracy, and the expanding authority of the federal government.

600 Advanced Seminar in Labor Arbitration
Spring. 3 credits. Limited to juniors, seniors, and graduate students. Prerequisites: ILRCB 602 or equivalent and permission of instructor. Not offered 1990-91. J. Gross.
An advanced seminar in labor arbitration emphasizing the practical aspects of current labor arbitration techniques and problems. Subjects considered range from laboratory exercises in the presentation of an arbitration case, the preparation of prehearing and posthearing briefs, and the writing of an arbitration opinion and award, to the investigation and evaluation of the experience of labor arbitrators, with selected case problems arising in state and federal employment and public education as well as in the private sector.

601 The Bargaining Process: Theory and Practice
Fall. 3 credits. Prerequisite: ILRCB 200/500. Not offered 1990-91. D. Lipsky.
Focus is on theories of the bargaining process, including economic, behavioral, game-theoretic, political, and social-psychological approaches to the bargaining process. Will consider union wage policy, particularly the formulation of union goals in bargaining, Union and management preparation for negotiations, bargaining strategies and tactics, and bargaining power are some of the facets of the bargaining process that will be discussed. Attempts at empirical verification of various bargaining theories will also be considered. Theoretical and analytical principles will be developed in assigned readings and class discussions. The application and practical relevance of these principles will be explored through mock negotiations and other exercises.
602 Arbitration
Fall or spring. 4 credits. Limited to 21 students. Prerequisites: undergraduates, ILRCB 200; graduate students, ILRCB 500; permission of instructor.
A study of the place and function of arbitration in the field of labor-management relations, including an analysis of principles and practices, the law of arbitration, the handling of materials in briefs or oral presentation, the conduct of a mock arbitration hearing, and the preparation of arbitration opinions and post-hearing briefs.

603 Governmental Adjustment of Labor Disputes
Fall or spring. 3 or 4 credits. Prerequisites: undergraduates, ILRCB 200; graduate students, ILRCB 500. Not offered 1990-91. Staff.
An examination of the various governmental techniques for dealing with labor disputes in both the private and public sectors, including mediation, fact-finding arbitration (both voluntary and compulsory), the use of injunctions, and seizure. The course also examines the application of these techniques under the Railway Labor Act, Taft-Hartley Act, and various state acts.

604 Readings in the Literature of American Radicalism and Dissent
Fall or spring. 3 credits. Limited to seniors and graduate students.
N. Salvatore.
Each term, concentration is on a different historical aspect of American radicalism and dissent.

605 Readings in the History of Industrial Relations in the United States
Fall. 3 credits. Limited to seniors and graduate students.
C. Daniel, G. Korman, N. Salvatore.
A seminar covering, intensively, original printed sources and scholarly accounts for different periods in American history.

606 Theories of Industrial Relations Systems
Fall or spring. 3 credits. Limited to seniors and graduate students. Prerequisites: seniors, ILRCB 100, 101, 200; graduate students, ILRCB 500.
H. Katz.
This course will trace the evolution of theory and research on industrial relations. Topics include: theories of the labor movement, institutional models and evidence regarding what unions do, the origins of internal labor markets and their relationship with unionization, models of strikes, empirical assessments of arbitration, research on union decline, and empirical evidence of the impacts of new technology.

607 Values in Law, Economics, and Industrial Relations
Fall or spring. 3 credits.
J. Gross.
An examination of the often hidden values and assumptions that underlie the contemporary U.S. systems of employment law, work and business, and industrial relations. Classroom discussions and student research projects will use novels and short stories (as well as the literature of industrial and labor relations) to focus on issues such as: discrimination, law, economics and the state, work and business, power, conflict and protest, and rights and justice.

608 Special Topics in Collective Bargaining Labor Law, and Legislation
Fall or spring. 3 credits. Prerequisites: undergraduates, ILRCB 201, graduate students, ILRCB 502.
Staff.
The areas of study are determined each semester by the instructor offering the seminar.

609 Law of Workers' Compensation
Fall. 3 or 4 credits. Prerequisite: ILRCB 201/501 or permission of instructor.
J. Burton.
A survey of legal aspects of workers' compensation, the program that provides cash benefits, medical care, and rehabilitation services to workers disabled by work-related injuries and diseases. Includes a brief introduction to the disability benefits provided by the Social Security program and to negligence suits by injured workers.

650 Service Work and Workers in Historical Perspective
Fall or spring. 3 credits.
I. DeVault.
This course takes a historical perspective on the development of a service economy in the United States. Readings will include general and theoretical works, but the main focus will be recent historical scholarship on specific occupations and situations in the "nonproductive" workforce. Students will explore primary sources for research on the subject and write research papers.

651 Industrial Relations in Transition
Spring. 3 credits. Limited to seniors and graduate students.
C. Erickson, H. Katz.
Considers whether recent developments such as concession bargaining, worker participation programs, and the growth of nonunion firms represent a fundamental transformation in industrial relations practice. Will review recent research and new theories arguing that such a transformation is occurring, including the work of Piore and Sabel, Bluestone and Harrison, and Kochan, McKenzie, and Katz. Will also review the counterarguments and evidence put forth by those who believe no such transformation is under way. Material will focus on industrial relations practice in the private sector in the United States, although some attention will be paid to developments in Western Europe, the United Kingdom, and Japan.

655 Employment Law
Spring. 3 credits. Prerequisites: ILRCB 201/501.
M. Gold, C. Gramm, or J. Burton.
This course will examine a number of major federal and state laws designed to protect workers in their employment relationships. The historical and theoretical rationales, the major statutory, judicial, and administrative developments, and evidence of the effectiveness of each law will be examined. Where pertinent, consideration will also be given to current controversies surrounding the laws. The material covered will be selected from the following: the Fair Labor Standards Act, unemployment insurance, workers' compensation, the Occupational Safety and Health Act, the Employee Retirement Income Security Act, the doctrine of employment at will, Social Security, workers' right-to-know, plant closings, and protection of workers' privacy.

680 Problems in Union Democracy
Fall or spring. 3 credits.
M. Gold.
Unions are considered as an example of private government, and union democracy is examined by standards and customary practices in both public and private governments. Included are such elements as elections, self-government by majority; rights of minorities; the judicial process, including impartial review; local-national relationships; constituency and representation; legislative process; and executive power and functions. The regulation of private government by the state will be considered.

681 Selected Topics in Labor and Employment Law
Fall or spring. 3 credits. Prerequisite: ILRCB 201/501 or equivalent.
M. Gold, R. Lieberwitz.
A survey of the law of employment discrimination, internal union democracy, public sector labor relations, and individual rights in the workplace such as privacy, free speech, and due process. Topics covered may vary with the instructor.

682 Seminar in Labor Relations Law and Legislation
Fall or spring. 3 credits. Limited enrollment. Prerequisite: permission of instructor.
R. Lieberwitz.
Legal problems in public employment and other areas of labor relations affecting the public interest.

683 Research Seminar in the History of Industrial Relations
Fall or spring. 3 credits. Prerequisites: undergraduates, ILRCB 100 and 101; graduate students, ILRCB 502.
The areas of study are determined each semester by the instructor offering the seminar.

686 Collective Bargaining in the Public Sector
Fall or spring. 3 credits. Prerequisites: undergraduates, ILRCB 200 and 201; graduate students, ILRCB 500 and 501.
Staff.
An examination of the development, practice, and extent of collective bargaining between federal, state, and local governments and their employees. The variety of legislative approaches to such matters as representation rights, unfair practices, scope of bargaining, impasse procedures, and the strike against government are considered along with implications of collective bargaining for public policy and its formulation.

687 Current Issues in Collective Bargaining
Fall or spring. 3 or 4 credits. Limited to 25 students. Prerequisites: ILRCB 200/500, and permission of instructor.
Staff.
An intensive study of the most significant current issues and problems facing employers and unions in their relations with each other, with particular emphasis on the substantive matters in contract negotiations and administration of the provisions of collective bargaining agreements. A major research paper is usually required.
476 INDUSTRIAL AND LABOR RELATIONS

476 Constitutional Aspects of Labor Law
Spring. 3 credits. R. Lieberwitz. In-depth analysis of the Supreme Court decisions that interpret the United States Constitution as it applies in the workplace. This study will focus on the First Amendment, Fifth Amendment, Fourteenth Amendment, and Commerce Clause, with issues including freedom of speech and association, equal protection, due process, and other issues in the area of practical and civil rights. The course entails a high level of student participation in class discussion, and assignments include a research paper.

703 Theory and Research in Collective Bargaining
Spring. 3 credits. Open to graduate students who have had ILRCB 500 and ILROB 723 or their equivalents. Recommended: a statistics course beyond the level of ILRST 510. C. Gramm. This is a second-level course in collective bargaining that builds on the institutional research covered in ILRCB 500. The existing literature in the area of collective bargaining is appraised for its theoretical and empirical content. Efforts are made to explore the appropriate role for theory and empirical analysis in moving research in collective bargaining toward a more analytical perspective and to identify and appraise the underlying paradigms used to study collective bargaining-related issues.

705 The Economics of Collective Bargaining
Spring. 3 credits. Prerequisites: ILRCB 500, ILRLE 540 (or their equivalents) and an understanding of multiple regression analysis; or permission of instructor. A. Hadi. Focuses on both the economic analysis of unions and collective bargaining in our economy and on the economic forces that affect collective bargaining. The method is to identify and modelize the structural determinants of relative bargaining power. On this basis, the course examines both the economic outcomes of collective bargaining and current bargaining trends in a variety of industries. Tentative theoretical analyses of unionism (neoclassical, institutionalist) are compared. The statistical techniques and empirical results of research on the union effect on economic outcomes (wages, prices, inflation, profits, productivity, earnings inequality) are also evaluated. The effect of technology, corporate structures, and public policy on union bargaining power is outlined, and a number of case studies of collective bargaining in the private sector are reviewed. A term paper is required.

784 Employment Discrimination and the Law
Fall. 4 credits. Prerequisite: ILRCB 501 or equivalent. T. Grivens, M. Gold. An examination of legal problems involving employment discrimination based on race, color, religion, sex, national origin, or age. The impact of developing principles of law on preemployment inquiries, testing, seniority and promotions, and other personnel policies, and practices and procedures are discussed. The requirements of affirmative action under Executive Order 11246, as amended, are analyzed. Special attention is given to the role of state law in resolving employment discrimi-

nination claims and the procedural framework for raising and adjudicating such claims before administrative agencies and the courts.

798 Internship Analysis
Fall or spring. 1–3 credits. Designed to grant credit for individual research under direction of a faculty member by graduate students who have been selected for an internship. All requests for permission to register for ILRCB 798 must be approved by the faculty member who will supervise the project.

799 Directed Studies
Fall or spring. Credit to be arranged. For individual research conducted under the direction of a member of the faculty.

980 Workshop in Collective Bargaining, Labor Law, and Labor History
Fall and spring. 2 credits. Enrollment limited to M.S. and Ph.D. candidates in the department. S-U grades only. Staff. This workshop is designed to provide a forum for the presentation of current research being undertaken by faculty members and graduate students in the Department of Collective Bargaining, Labor Law, and Labor History, and by invited guests. All M.S. and Ph.D. candidates in the department who are at work on their theses are strongly urged to enroll. Each student in the course will be expected to make at least one presentation during the year, focusing on the formulation, design, execution, and results of that student’s thesis research.

ECONOMIC AND SOCIAL STATISTICS

210 Statistical Reasoning I
Fall or spring. 4 credits. Not open to engineering or graduate students. Attendance at the first discussion section of the term is essential. An introduction to the basic concepts of statistics: measures of location and dispersion, estimation and confidence intervals, hypothesis tests, regression and correlation. Students are taught to use a computer at the beginning of the term and use it for weekly assignments.

211 Statistical Reasoning II
Fall or spring. 3 credits. Prerequisite: ILRST 210 or suitable introductory statistics course. Attendance at the first discussion section of the term is essential. A continuation of ILRST 210. Application of statistical techniques to the social sciences. Topics include statistical inference, review of simple regression, multiple regression and correlation, applications of regression, elements of time series analysis, and the design of sample surveys. A computer is used throughout the course. Students who have taken an introductory course in statistics without a computer will be expected to obtain brief instruction during the first few weeks of the semester.

310 Design of Sample Surveys
Fall. 3 credits. Prerequisite: two terms of statistics. P. McCarthy. Application of statistical methods to the sampling of human populations. A thorough treatment of the concepts and problems of sample design with respect to cost, procedures of estimation, and measurement of sampling error. Analysis of nonsampling errors and their effects on survey results (for example, interviewer bias and nonresponse error). Illustrative materials are drawn from such fields as market research and attitude and opinion research.

312 Applied Regression Methods
Spring. 3 credits. Prerequisite: ILRST 211 or equivalent. A. Hadi. The course starts with a review of those parts of matrix algebra that provide the vocabulary and skill necessary to construct and manipulate linear regression models. The standard least-squares theory is then developed, and regression analysis techniques are applied to problems arising in economics, industry, government, and the social sciences. Computer packages are used as an aid to obtain problem solutions. Additional topics are deviations from assumptions, multicollinearity, variable selection methods, and analysis of variance.

313 Graphical Methods for Data Analysis
Fall. 3 credits. Prerequisite: ILRST 211 or equivalent. Not offered 1990–91. Staff. Classical and recently developed graphical methods for analysis and display. Characteristics of effective and honest graphs with comparison of alternative methods for understanding data. Includes study of current computer programs and methods expected to be practical in the near future: graphing of univariate data, bivariate plots, multivariate data, graphical methods of data analysis; the specification, modification, and control of graphs; study of interaction between choice of display and underlying patterns.

410 Techniques of Multivariate Analysis
Fall. 3 credits. Prerequisite: two statistics courses or permission of instructor. Staff. The techniques of multivariate statistical analysis, the associated assumptions, the rationale for choices among techniques, and illustrative applications. Some matrix algebra and related mathematics are introduced. Includes some regression, correlation, principle components, multivariate tests on means, variances, and covariances; relations between sets of varieties; and discriminatory analysis.

411 Statistical Analysis of Qualitative Data
Spring. 3 credits. Prerequisite: two statistics courses or permission of instructor. Staff. An advanced undergraduate and beginning graduate course. Includes treatment of association between qualitative variables, rank-order methods, and other nonparametric statistical techniques, including those related to chi-squared.

499 Directed Studies
For description, see the section on Collective Bargaining, Labor Law, and Labor History.
510 Statistical Methods for the Social Sciences I
Fall or spring. 4 credits.
A nonmathematical course for graduate students in the social sciences without previous training in statistical method. Emphasis is on the discussion of technical aspects of statistical analysis and on initiative in selecting and applying statistical methods to research problems. The subjects ordinarily covered include analysis of frequency distributions, regression and correlation analysis, and selected topics from the area of statistical inference. Students are taught to use a computer at the beginning of the term and use it for weekly assignments.

511 Statistical Methods for the Social Sciences II
Fall or spring. 3 credits. Prerequisite: ILRST 510 or an equivalent introductory statistics course.
This is a second course in statistics for graduate students that emphasizes applications in the social sciences. Topics include review of simple linear regression, multiple regression (theory, model building, model violations), and analysis of variance. Statistical computing packages are used extensively. (Students who have taken an introductory course in statistics without a computer course will be expected to obtain brief instruction during the first few weeks of the semester.)

610 Seminar in Modern Data Analysis
Spring. 3 credits. Prerequisite: two statistics courses or permission of instructor.
An advanced survey of modern data analysis methods. Topics include exploratory data analysis, robust methods, regression methods, and diagnostics. Extensive outside readings cover recent and historical work. Participants should have some knowledge of multiple regression, including the use of matrices (ILRST 312 may be taken concurrently), and some experience using a computer.

611 Statistical Computing
Spring. 3 credits. Prerequisite: Linear algebra, knowledge of a programming language, and statistics at least through multiple regression.
P. Velleman, M. Wells.
A survey of new aspects of statistical computing using the recent book on the subject by Ronald Thisted. Includes: basic numerical methods, numerical linear algebra, nonlinear statistical methods, numerical integration and approximation, smoothing and density estimation. Additional special topics may include: Monte Carlo methods, statistical graphics, computing-intensive methods, parallel computation, computing environments. Designed for graduate students in the statistical sciences and related fields interested in new advances. Students may be asked to write programs in a programming language of their choice.

711 Sensitivity Analysis in Linear Regression
Fall. 3 credits. Prerequisite: ILRST 312 or equivalent.
A. Hadi.
A course on regression for students in statistical sciences and related fields. Attempts to narrow the gap between the theory and practical application of the linear regression model. Classical and recently developed statistical procedures are discussed. Students will be expected to read articles and thoroughly analyze real-life data sets using computer-packaged programs. Topics include: role of variables in a regression equation, regression diagnostics (outliers, leverage points, influential observations, generalized linear models, errors-in-variables, and multicollinearity.

712 Theory of Sampling
Fall. 3 credits. Prerequisite: calculus and at least one semester of mathematical statistics.
P. J. McCarthy.
A companion course to ILRST 310, Design of Sample Surveys, stressing the development of the fundamentals of sampling theory. Attention is paid to recent progress in the field. Occasional illustrative material is given to indicate the application of the theory.

[713 Empirical Processes with Statistical Applications]
Fall. 3 credits. Prerequisite: a course at the technical level of Math 572 and 574 or permission of instructor. Not offered 1990-91.
Staff.
The statistical analysis of life history data is playing an increasing role in the social, natural, and physical sciences. We will formulate and solve various practical problems in the statistical analysis of life history data using the modern theory of stochastic processes. We will examine the martingale dynamics for point processes relevant to life history data. Both parametric and nonparametric inference for multiplicative intensity models will be considered. The large sample properties of the proposed procedures will be discussed in detail using recent extensions of functional central limit theorems for martingales.

799 Directed Studies
For description, see the section on Collective Bargaining, Labor Law, and Labor History.

INTERNATIONAL AND COMPARATIVE LABOR RELATIONS

331 Comparative Industrial Relations Systems: Non-Western Countries
Spring. 3 credits (1 additional credit may be arranged with the instructor). Open to juniors and seniors.
Staff.
A study of the industrial relations systems of less-developed countries and industrialized non-Western countries, including Japan, the Soviet Union, Yugoslavia, India, and several others. Emphasis is on government labor policies, trade unions, and collective bargaining. Also included is a review of international organizations concerned with labor problems.

332 Labor in Developing Economies
Spring. 3 credits. Prerequisite: ILRLE 240, Economics 311, or permission of instructor.
G. Fields.
The economic problems of labor in less-developed nations. Among the subjects included are determinants of income and wage structures in less-developed countries; labor demand and unemployment; labor supply and migration; human resource policy; and development strategy and employment growth.

337 Special Topics: Comparative History of Women and Work
Fall. 4 credits.
I. DeVault.
This seminar will explore the similarities and differences between different cultures' assumptions about the work of women as well as women's experiences in varying work circumstances throughout history. Beginning with theoretical pieces and overviews of the history of women and work, most of the course will consist of in-depth examinations of specific work situations or occupations across time and geography. Comparative examples will be taken from the United States, Europe, and the Third World.

[381 Jewish Workers in Europe and America, 1825-1948]
Fall or spring. 4 credits. Open to sophomores, juniors, and seniors. Not offered 1990-91.
Staff.
For description, see the section on Collective Bargaining, Labor Law, and Labor History.

430 European Labor History
Fall. 3 credits.
J. Windmuller.
The development of trade unions in Great Britain, France, and Germany between 1850 and 1950. Patterns of union organization, political party trade union links, the growth of industrial relations systems, and the evolution of public policies toward labor are emphasized.

[448 Topics in Twentieth Century Economic History: The Economics of Depression and the Rise of the Managed Economy]
Fall. 4 credits. Prerequisites: ILRLE 240 or Economics 312. Not offered 1990-91.
G. Boyer.
For description, see the section on Labor Economics.

499 Directed Studies
For description, see the section on Collective Bargaining, Labor Law, and Labor History.
530 Comparative Industrial Relations Systems: Western Europe
Fall. 3 credits. For graduate students. Staff.
Students in this course attend the lectures in ILRIR 330 (see description for ILRIR 330). If enrollment warrants, they will also meet separately at a time to be arranged for discussion of topics in ILRIR 330 and related topics.

531 Comparative Industrial Relations Systems: Non-Western Countries
Spring. 3 credits. For graduate students. Staff.
Students in this course will attend the lectures in ILRIR 331 (see description for ILRIR 331). If enrollment warrants, they will also meet separately at a time to be arranged for discussion of topics in ILRIR 331 and related topics.

532 Labor in Developing Economies
Spring. 3 credits. For graduate students. G. Fields.
Students in this course attend the lectures in ILRIR 332 (see description for ILRIR 332). If enrollment warrants, they will also meet separately at a time to be arranged for discussion of topics in ILRIR 332 and additional topics.

537 Comparative History of Women and Work
Fall. 4 credits. For graduate students. I. DeVault.
Students in this course attend the lectures in ILRIR 337 (see description for ILRIR 337). If enrollment warrants, they will also meet separately at a time to be arranged for discussion of topics in ILRIR 337 and additional topics.

630 Seminar in International and Comparative Labor Problems
Spring. 3 credits. J. Windmuller.
This seminar will be concerned with international aspects of labor organizations and industrial relations. Specific topics will include an examination of international labor movements, the role of the International Labor Organization, the international affairs interests of unions in the United States and other countries, and the labor relations policies of multinational corporations.

643 Special Topics in Labor Economics
Fall or spring. 3 or 4 credits. Staff.
For description, see the section on Labor Economics.

698 International Human Resource Policies and Institutions
Fall. 3 credits. J. Bishop.
For description, see the section on Personnel and Human Resource Studies.

799 Directed Studies
For description, see the section on Collective Bargaining, Labor Law, and Labor History.

LABOR ECONOMICS

140 Development of Economic Institutions
Spring. 3 credits. Prerequisite for non-ILR students: permission of instructor. G. Boyer.
Provides students with an understanding of the historical roots of the economic system currently dominant in Western Europe and the United States. The course will focus on (a) the process of European economic growth prior to 1914, (b) the effect of industrialization on labor in Great Britain, and (c) the historical evolution of economic thought from Adam Smith to J. M. Keynes.

240 Economics of Wages and Employment
Fall, spring, or summer. 3 credits. Prerequisites: Economics 101-102 or equivalent. Staff.
This course analyzes the characteristics and problems of the labor market by applying to them the theory and elementary tools of economics. Behavior on both the demand (employer) and supply (employee) sides of the market is analyzed to gain a deeper understanding of the effects of various governmental programs targeted at the labor market. Topics covered include education and training, fringe benefits and the structure of compensation, labor-force participation and its relationship to household production, issues regarding occupational choice, an analysis of migration, labor-market discrimination, and the effects of unions.

332 Labor in Developing Economies
Spring. 3 credits. G. Fields.
For description, see the section International and Comparative Labor Relations.

340 Economic Security
Fall or spring. 3 credits. J. Burton, R. Hutchens, G. Jakubson. The economic and social effects of income security measures. Analysis of programs offering protection against economic loss due to industrial accidents, temporary and permanent disability, illness, old age, premature death, and unemployment, as well as private efforts to provide security, and the problems of integrating public and private programs. An examination is made of proposals for amending or modifying economic security measures.

343 Problems in Labor Economics
Fall or spring. 3 or 4 credits. Staff.
Devoted to new policy issues and to recent literature in the field. The specific content and emphasis varies in response to the interests of the faculty member teaching the course. A course will be offered in 1989-90 on social experiments and economic policy.

344 Comparative Economic Systems: Soviet Russia
Fall. 4 credits. Not offered 1990-91. A comparative analysis of the principles, structure, and performance of the economy of Soviet Russia. Special attention is devoted to industry and labor.

345 Corporate Finance and Labor Markets
Spring. 4 credits. Prerequisite: ECON 101, 102 or equivalent, and accounting. J. Abowd.
The course covers the following topics (with emphasis on labor market applications and implications): (1) the concept of net present value, the valuation of real corporate assets, and the relations between risk and return; (2) capital budgeting decisions and the cost of capital; (3) investment financing decisions and the role of financial markets; (4) capital structure, the Modigliani-Miller propositions, and the relation between debt and equity financing; (5) valuation of corporate debt, options, and other financial assets; and (6) financial planning mergers, and portfolio management. Students must attend the lab.

348 The Economics of Unemployment
Fall. 4 credits. Prerequisite: ILRLE 240/540 or permission of instructor. R. Smith.
This course introduces students to several issues fundamental to an understanding of unemployment: the social costs; definitional questions and measurement problems; the patterns of unemployment; and the various types of unemployment, their causes, and the policies that can or have been pursued to alleviate unemployment. The course is designed for undergraduate and graduate students who have taken a survey course in labor economics or its equivalent.

441 Income Distribution
Fall. 4 credits. Open to upperclass and graduate students. R. Hutchens.
Explores income distribution in the United States and the world. Topics to be covered include functional and size distributions of income, wage structure, income-generating functions and theories, discrimination, poverty, public policy and income distribution, and changing income distribution and growth.

442 Economics of Employee Benefits
Spring. 4 credits. O. Mitchell.
An analysis and appraisal of private health, welfare, and pension plans. Consideration of the origin and development of employer, union, and joint programs and a critical examination of the financing, administration, and general effectiveness of the plans.

446 Labor Market Discrimination
Fall or spring. 4 credits. O. Mitchell.
Examines differences in labor market rewards by gender, race, age, and other worker characteristics from both a theoretical and an empirical perspective. Economic modeling and statistical methodology (including computer analysis) are stressed. Students need some background in microeconomics and data analysis.

447 Economic Policy toward the Aging
Fall. 4 credits. O. Mitchell.
Explores labor market and social policy concerning older workers and retirees. Topics to be covered include labor market trends of the elderly, labor market institutions affecting older people (e. g., mandatory retirement, unemployment, pensions), and government policies, Social Security, health insurance, and retirement income regulation. Cross-national perspectives will be addressed as well.
448 Topics in Twentieth Century Economic History: The Economics of Depression and the Rise of the Managed Economy
Fall. 4 credits. Prerequisites: ILRLE 240 or Economics 312.
Topics covered include: the causes of the Great Depression in the United States; the economics of the New Deal; the causes of high unemployment in interwar Great Britain; the rise of Keynesian economics and the development of demand management policies in Great Britain and the United States after 1945.

495 Honors Program
Fall and spring (yearlong course). 3 credits each term.
For description, see the section on Collective Bargaining, Labor Law, and Labor History.

497-498 Internship
Fall or spring. 3 and 6 credits.
For description, see the section on Collective Bargaining, Labor Law, and Labor History.

499 Directed Studies
For description, see the section on Collective Bargaining, Labor Law, and Labor History.

532 Labor in Developing Economies
Spring. 3 credits.
G. Fields.
For description, see the section International and Comparative Labor Relations.

540 Labor Economics
Fall or summer. 3 credits. Prerequisites: Economics 101–102 or equivalent. Required of graduate students majoring or minoring in labor economics and M.I.L.R. candidates.
Staff.
This course analyzes the characteristics and problems of the labor market by applying to them the theory and elementary tools of economics. Behavior on both the demand (employer) and supply (employee) sides of the market is analyzed to gain a deeper understanding of the effects of various government programs targeted at the labor market. Topics covered include education and training, fringe benefits and the structure of compensation, labor-force participation and its relationship to household production, issues regarding occupational choice, an analysis of migration, household production, and the relationship between the labor market and public assistance, and unemployment and welfare issues. Asymptotic, non-parametric, and econometrics are discussed. Case studies are considered to illustrate the uses of these techniques, to acquaint the student with major current government programs and legislation, and to estimate these programs' economic impacts. Throughout, the primary analytic framework used by the instructor is microeconomics.

541 Social Security and Protective Labor Legislation
Spring. 3 credits. Prerequisite: ILRLE 540. Normally required of graduate students majoring or minoring in labor economics and required of M.I.L.R. candidates.
J. Burton, R. Hutchens, G. Jakubson.
The economic and social effects of income security measures. Analysis of programs offering protection against economic loss due to industrial accident, temporary and permanent disability, illness, old age, premature death, and unemployment, as well as private efforts to provide security, and the problems of integrating public and private programs. An examination is made of proposals for amending or modifying economic security measures.

642 Work and Welfare: Interactions between Cash-Transfer Programs and the Labor Market
Fall. 4 credits. Prerequisite: some familiarity with microeconomics.
R. Hutchens.
Emphasizes the interactions in analyzing the relationship between the labor market and cash-transfer programs such as social security, public assistance, and unemployment and wages in determining the level and distribution of cash transfers. Investigates the connection between cash transfers and labor supply. Topics include determinants of cash-transfer demand and supply, the negative income tax experiments, and program incentives for withdrawal from the labor force (for example, incentives for early retirement implicit in old-age insurance). A paper on a specific program is required.

643 Special Topics in Labor Economics
Fall or spring. 3 or 4 credits.
Staff.
Devoted to new policy issues and to recent literature in the field. The specific content and emphasis varies in response to the interests of the faculty member teaching the course.
Courses offered in 1989-90 include economic policy toward the elderly; economics of collective bargaining, twentieth-century economic history, income maintenance policy, economics of discrimination, and models for limited dependent variables and panel data.

644 The Economics of Occupational Safety and Health
Spring. 4 credits. R. Smith.
The course analyzes the problem of occupational injuries and illnesses in the United States. The first section concentrates on legal requirements, judicial interpretations, and legal implications of the Occupational Safety and Health Act, then shifts to such questions as the need for, and appropriate goals of, the act; the stringency of safety standards considered in a benefit-cost framework; the difficulties in enforcing the act; and estimates of the impact of the act.

647 Evaluation of Social Programs
Fall. 4 credits. R. Ehrenberg.
An introduction to the methodologies used by economists to evaluate the impacts of social programs. General evaluation methodology, cost-benefit analysis, and econometrics are discussed. Case studies are considered to illustrate the uses of these techniques, to acquaint the student with major current government programs and legislation, and to estimate these programs' economic impacts. Throughout, the primary analytic framework used by the instructor is microeconomics.

648 Economic Analysis of the University
Spring. 4 credits. R. Ehrenberg.
This course seeks to illustrate the complexity of decision making in a nonprofit organization and to show how microeconomic analysis in general, and labor market analysis in particular, can be useful applied to analyze resource allocation decisions at universities. Among the topics covered are financial aid, tuition, admissions policies, endowment policies, faculty salary determination, the tenure system, mandatory retirement policies, merit pay, affirmative action, comparable worth, collective bargaining, resource allocation across and within departments, undergraduate versus graduate education, research costs, libraries, athletics, and "socially responsible" policies. Lectures and discussions of the extensive readings will be supplemented by presentations by Cornell administrators and outside speakers who have been engaged in university resource allocation decisions or have done research on the subject.

740 Economic Analysis of Collective Bargaining
Fall. 4 credits. J. Abowd.
Examines theoretical and empirical advances in the study of the development of bargaining units and the ongoing relationship between organized employees and their employers. It concentrates on economic models that link the performance of the firm and product market to the outcomes of the organizing and bargaining processes. Bargaining unit formation, contract negotiation, strikes, employer investment decisions, employment, profitability and capital valuations are all considered. Detailed statistical analyses that use bargaining unit level information on characteristics of the international, national, and local labor and product markets are part of the course.

741 Analysis of Longitudinal Data in the Social Sciences
Spring. 4 credits. G. Jakubson.
Considers methods for the analysis of longitudinal data, that is, data in which a set of individual units are followed over time. The focus will be on both estimation and specification testing of these models. The course will consider how these statistical models are linked to underlying theories in the social sciences. Course coverage will include panel data methods (including fixed vs. random effects models for both linear and non-linear systems) and, if time permits, duration analysis.

742 Economics of Employee Benefits
Spring. 3 credits. O. Mitchell.
Students in this course attend the lectures in ILRLE 442 (see description for 442). If enrollment warrants, they will also meet separately at a time to be arranged for discussion of topics in 442 and additional topics.

744 Seminar in Labor Economics
Fall. 3 credits. ILRLE 744 and 745 constitute the Ph.D.-level sequence in labor economics. R. Ehrenberg.
Reading and discussion of selected topics in labor economics. Applications of economic theory and econometrics to the labor market and human resource areas.

745 Seminar in Labor Economics
Spring. 3 credits. R. Hutchens G. Jakubson.
Reading and discussion of selected topics in labor economics. Applications of economic theory and econometrics to the labor market and human resource areas.

746 Labor Market Discrimination
Fall or spring. 4 credits. O. Mitchell.
Students in this course attend the lectures in ILRLE 446 (see description for ILRLE 446). If enrollment warrants, they will also meet separately at a time to be arranged for discussion of topics in ILRLE 446 and additional topics.
480

INDUSTRIAL AND LABOR RELATIONS

747 Economic Policy toward the Aging
Fall. 4 credits.
O. Mitchell.
Students in this course attend the lectures in ILRL 447 (see description for 447). If enrollment warrants, they will also meet separately at a time to be arranged for discussion of topics in 447 and additional topics.

798 Internship
For description, see the section on Collective Bargaining, Labor Law, and Labor History.

799 Directed Studies
For description, see the section on Collective Bargaining, Labor Law, and Labor History.

940 Workshop in Labor Economics
Fall or spring. 3 credits. Intended for Ph.D. students who have started to write their dissertations.
Focus is on the formulation, design, and execution of dissertations. Preliminary plans and portions of completed work are presented for discussion.

ORGANIZATIONAL BEHAVIOR

120 Introduction to Macro Organizational Behavior and Analysis
Fall. 3 credits.
Staff.
The relationship between industry and the economy as a whole and its implications for other social institutions in American society (including stratification, politics, and American values) is discussed. The nature of industrial organizations and of complex organizations in general, emphasizing authority relations, goals, the division of labor, and bureaucracy.

121 Introduction to Micro Organizational Behavior and Analysis
Spring or summer. 3 credits.
Staff.
Deals with the relationship between the individual and the organization and such basic psychological processes as need satisfaction, perception, attitude formation, and decision making. The individual is described as a formal and informal group member. Within this area, particular emphasis is placed on leadership, problem solving, and conflict resolution.

320 The Psychology of Industrial Engineering
Fall. 4 credits.
T. Hammer.
A study of the human factors in the industrial engineering of work, workplaces, tools, and machinery. The course examines the aspects of individual and social psychology that operate in the work setting and that should be taken into account in the design of jobs. These include limitations of the human sensory system; individual difference in skills, abilities, motives, and needs; group dynamics; intrinsic motivation; job satisfaction; conflict.

323 Introduction to the Study of Attitudes
Fall. 4 credits. Open to juniors and seniors. Staff.
Designed to acquaint the student with what is known about (1) origins of human attitudes, (2) the determinants of attitude change, and (3) the measurement of attitude differences. Studies employing clinical, experimental, and survey techniques are discussed. Each student designs, executes, and analyzes his or her own research study.

324 Work Organizations, Troubled Employees, and Employee Assistance Programs
Spring. 3 credits. Limited to 40 students. Prerequisite: one or more courses in sociology and psychology.

H. Trice.
Focus is on the relationship between organizational life and psychiatric-criminal behaviors. Covers (1) the nature and etiology of psychiatric disorders such as alcoholism, other drug and substance abuse, and the major neuroses; (2) corporate and white-collar criminal behavior; (3) the role of occupational and organizational risk factors in etiology; (4) various types of organizations that represent societal responses to trouble: employees, mental hospitals, prisons, jails, halfway houses, shelter workshops, and self-help groups such as Alcoholics Anonymous. Puts differential emphasis on programs within work organizations that attempt to deal with troubled employees, job-based alcoholism, and employee assistance programs. Field format divides class into small groups for application in local relevant organizations. The development, strategies, and effectiveness of employee assistance programs will receive special attention.

325 Organizations and Social Inequality
Spring. 4 credits.
Examines the central role that organizations in industrial societies play in allocating income, status, and other resources to individuals. Marxist conceptions of class and Weberian conceptions of occupational status, mandate and license, occupational groups.

326 Sociology of Occupations
Fall or spring. 3 credits. Limited to 45 students. Prerequisite: one or more courses in sociology.

H. Trice.
Focuses on (1) the societal characteristics of occupations: division of labor, social stratification, mandate and license, occupational ideologies, stories, and tradition; (2) nature and expression of professionalization of occupations; (3) organizational characteristics of occupations: accommodation to formal organizations, occupational associations, and occupational mix; (4) social psychological characteristics of occupations: temperamental and intellectual role demands, occupational attraction, identity, and commitment, and occupational self-images; (5) relationship between occupational structure and organizational structure. Field format divides class into small groups for application among local occupational groups.

327 Psychology of Industrial Conflict
Fall. 4 credits.
Staff.
An application of frustration theory to the analysis of conflict and stress in organizations and society. Comparisons are made between industrial relations, race relations, international relations, and other settings. Readings include behavioral research findings from a variety of studies in industry. Relevant contributions from experimental, social, and clinical psychology are also considered.

328 Cooperation, Competition, and Conflict Resolution
Spring. 4 credits. Prerequisite: two courses in social psychology or equivalent.
An examination of theory and empirical evidence relating to the resolution of interpersonal, integrational, and international conflict. Specific attention is devoted to studying factors that contribute to the development of cooperative or competitive bonds between parties to a conflict. The following topics are studied: the availability and use of threat; the credibility, intensity, and costs of threat; fractioning and escalating conflict. Personality and situational factors that regulate conflict intensification are stressed.

329 Organizational Cultures
Fall or spring. 3 credits. Limited to 45 students. Prerequisite: one or more courses in sociology.

H. Trice.
This course reviews the concept of culture as it has evolved in sociology and anthropology, applying it to formal organizations in workplaces such as corporations and unions. The course first examines the nature of ideologies as sense-making definitions of behavior, concentrating on the cultural forms that carry these cultural messages, rituals, symbols, myths, sagas, legends, and organizational stories. Considerable attention will be given to rites and ceremonies as a cultural form in organizational life that consolidates many of these expressive forms into one. The course will examine the nature of ceremonial behavior such as rites of passage, rites of enhancement, and rites of degradation, including the role of language gestures, physical settings, and artifacts in ceremonial behavior. The presence of subcultures and countercultures in organizational behavior will also receive attention, especially the part played by occupational subcultures in formal organizations. Emphasis will be placed on empirical examples from both the occupational behavior literature and the professor’s field research. Field format divides class into small groups for application in local relevant organizations.

370 The Study of Work Motivation
Fall. 4 credits. Open to juniors and seniors with permission of instructor.
Staff.
Designed to acquaint the student with the basic concepts and theories of human motivation with implications for organizational change and job design. Focus is on theories of worker motivation and on research approaches and results as these apply to individuals and groups in formal organizations. Readings are predominantly from the field of organizational psychology, supplemented by relevant contributions from experimental, social, and clinical psychology. Each student will design, execute, and analyze a research study of his or her own.
371 Individual Differences and Organizational Behavior
Fall or summer. 4 credits. Recommended: some acquaintance with the substance and methods of behavioral or social science
L. Greenfield.
This course examines personality from a comparative psychodynamic point of view. Social behavior, authority relationships, and work motivation are used to illustrate how various theories could be applied to understand behavior and experience in organizations.

372 Sociological Models of Organizations
Spring. 3 credits. Prerequisites: ILROB 120 and 121 or equivalent.
P. Tolbert.
Introduces students to the basic issues involved in the sociological analysis of organizations. Traces organizational theory from Max Weber to the most recent research. Among the themes to be discussed are internal structure of organizations, communication in organizations, decentralization, organizational change, organizational technology, and organizational environments.

373 Organizational Behavior Simulations
Fall. 3 credits. Prerequisites: ILROB 120 and 121 or equivalent.
R. Stem.
Basic principles of organizational behavior are studied through readings and participation in four simulation games. The first game, The Organizational Game: Design, Change, and Development, by Miles and Randolph, simulates traditional organization, while the second, The Fuzzy Game, by Paton and Lockett, simulates a cooperative. A third game models executive decision making and a fourth, work organization. Organizational design, decision making, and conflict are the central topics of discussion. The contrasting bases of power in the organizations permit the study of the assumptions underlying organization structure and process.

374 Technology and the Worker
Fall. 3 credits.
S. Barley.
Examines the theory and research pertaining to the social implications of technology and technological change for the work worlds of blue-collar, white-collar, and professional workers. At issue are alternate conceptions of technology as a social phenomenon, approaches to the study of technology in the workplace, the reactions of individuals and groups to technological change, the construction of a technology’s social meaning, and the management of technological change. A broad range of technologies will be considered, but particular emphasis will be given to automation, electronic data processing, and sophisticated microelectronic technologies, including CAD-CAM systems, telecommunication networks, medical imaging technologies, artificial intelligence, and personal computers.

421 Studies In Organizational Behavior: Regulating the Corporation
Fall or summer. 3 credits.
R. Stem.
Will examine public and private power from an organizational perspective. The resource-dependence approach to organization-environment relations provides a framework for interpreting government attempts at the regulation of corporate behavior. Topics cover the structure and functioning of government regulatory agencies and corporate responses to regulation, including corporate strategy, change, and political influence. The role of interest groups such as consumer or citizens organizations is also considered. Research and case materials focus on the implementation of environmental protection, occupational health and safety, equal opportunity, antitrust, and rate-setting regulations.

422 Organizations and Deviance
Fall. 3 credits.
W. Sonnenstuhl.
Focuses upon the deviant actions of organizations, including such behaviors as price fixing, environmental pollution, illegal campaign contributions, and discrimination in hiring and promotion. Examines the origins of such behaviors within organizations, the processes by which they become institutionalized, and the processes by which they become defined as deviant organizational actions. Within this context, the course will examine such contemporary cases as Exxon’s Valdez oil spill, Iran-Contraagate, drug testing, and the federal savings and loan scandal. These events raise troubling questions about what it means to live and work within an organizational society, and they cannot be dismissed as instances of a few individuals gone bad.

423 Evaluation of Social Action Programs
Fall or spring. 3 credits.
H. Trice.
A consideration of the principles and strategies involved in evaluation research, experimental research designs, process evaluation, and adaptations of cost benefits and cost efficiency to determine the extent to which intervention programs in fields such as training and therapy accomplish their goals. The adaptation of these strategies to large social contexts such as child guidance clinics, mental health clinics, and programs in the poverty areas, such as Head Start, is considered. Includes fieldwork and emphasizes assessment of program implementation.

424 Study of Public Sector Bureaucracy
Spring. 3 credits. Prerequisite: permission of instructor.
S. Bacharach.
Field research in public sector organization such as a school bureaucracy or a social welfare bureaucracy. Students conduct a major study in which they integrate themes from organizational theory. Theoretical issues such as decentralization, participation, and communication are discussed in the seminar.

425 Sociology of Industrial Conflict
Spring. 4 credits.
R. Stem.
The focus is on the variety of theoretical and empirical evidence available concerning social, economic, and political causes of industrial conflict. The manifestations of conflict, such as strikes, labor turnover, absenteeism, and sabotage, and the influence of the environments in which they occur are emphasized.

426 Theories of Industrial Society
Fall. 4 credits. Prerequisites: ILROB 120 and permission of instructor.
S. Bacharach.
Concentrates primarily on the works of Weber and Marx and will consist of readings in the original texts.

427 The Professions: Organization and Control
Fall. 4 credits.
P. Tolbert.
Focus is on the sources of power and control exercised by professional groups in contemporary society. A number of issues will be examined in this context including the role of professions in society, processes through which an occupational group becomes defined as a profession, sources of control that professional associations have over their members, relations between professionals and nonprofessionals in organizations, and the relationship between unionization and professionalization of occupations.

428 Organizational and Political Behavior in School Districts
Fall. 4 credits. Prerequisite: permission of instructor.
S. Bacharach.
This course is intended to provide students with research experience through the study of the administrative and governance processes in school districts. The students will be required to work with school district and union personnel while investigating the following areas: (a) structure and process of decision making in urban and rural school districts, (b) organizational conflict as reflected in school board meetings, (c) the variations in, and effect of, leadership style, as evidenced by different superintendents’ advisory techniques, (d) the collective bargaining process as reflected in both contracts and actual negotiations, (e) the effect of the Taylor Law on the structure and process of decision making in school districts, and (f) the effects of administrative law on conflict in school districts. Students will be responsible for the collection of data and the presentation of a final report of their project.

475 Organizational and Political Behavior in School Districts
Spring. 4 credits. Enrollment limited. Prerequisite: permission of instructor.
S. Bacharach.
A continuation of ILROB 475, but 475 is not a prerequisite. This course is strictly a research field seminar. Students will be required to work with school districts and union personnel while investigating the following areas: (a) labor contracts with school districts, (b) relations between teachers’ unions, school boards, and superintendents, (c) teachers’ unions’ involvement with school district policies.
478 Applied Topics in Organizational Behavior
Fall. 4 credits. Prerequisites: two courses in organizational behavior beyond the 100 level. H. Trice.

495 Honors Program
Fall and spring (yearlong course). 3 credits each term.
For description, see the section on Collective Bargaining, Labor Law, and Labor History.

497-498 Internship
Fall or spring. 3 and 6 credits.
For description, see the section on Collective Bargaining, Labor Law, and Labor History.

499 Directed Studies
For description, see the section on Collective Bargaining, Labor Law, and Labor History.

520 Micro Organizational Behavior and Analysis
Fall or spring. 3 credits.
Staff.
Survey of concepts, theories, and research from the fields of organizational and social psychology as these relate to the behavior of individuals and groups in organizations. Job attitudes, motivation, performance, leadership and power, group formation, perception, and organizational climate. A preliminary course for advanced work in organizational behavior.

521 Macro Organizational Behavior and Analysis
Spring. 3 credits.
Staff.
Formal organizations are studied from the perspectives of classical organization theory, human relations theory, and comparative and cross-cultural analysis. Contemporary theories and quantitative approaches to organizational structure are also considered in some detail. Intended to be preliminary to more intensive work in organizational behavior.

522 Organizations and Environments
Spring. 3 credits.
P. Tolbert.
This course will survey the literature on organization-environment relations including work on organizational dependence and power, management of uncertainty, and other aspects of interorganizational cooperation and conflict. The objective of the course is to provide students with a general theoretical understanding of the way in which organizations can shape their environment and in which the environment constrains and shapes organizations.

524 Groups in Work Organizations
Fall. 4 credits. Enrollment limited. Permission of instructor required.
L. Gruenfeld.
This is an experiential learning course designed primarily for advanced students who have a comprehensive background in the theory and methods of the behavioral sciences. Work group members study their roles and relationships to each other, the task, other work groups, and especially authorities. Students write a number of self-reflective papers in which they conceptualize their experiences and relate them to theory and methods in organizational behavior and experience.

525 Labor and Monopoly Capital: The Growth of Large United States Firms in the Past Century
Spring, 7 weeks only. 2 credits.
Staff.
A critical review of two recent books with very different explanations for the rise of large, hierarchically differentiated corporations in the United States: Harry Braverman, Labor and Monopoly Capital, and Alfred D. Chandler, The Visible Hand. These books are supplemented by articles on patterns of industrialization and internal structural transformation of large firms in the United States economy.

526 Science and Innovation in Industry
Fall. 3 credits. Prerequisites: ILROB 120, 121/520, 521 or permission of instructor.
S. Barley.
This course seeks to impart an understanding of how industrial R&D is organized, as well as an appreciation for the practical problems that arise when firms employ a significant number of scientists, engineers, and other technical workers. It is designed for students who have a general research interest in R&D or who anticipate working for firms in which R&D plays an important role. The course will bring relevant theoretical perspectives to bear on pragmatic issues surrounding technical innovation and the employment of scientists and engineers. Representative topics include: the organization of scientific and technical communities, the industrialization of research, the nature of scientific and technical work, new patterns of industrial relations, organizational strategies for fostering innovation, and the careers of scientists and engineers.

527 Leadership in Organizations
Spring. 3 credits. Prerequisites: two organizational behavior courses at the 300 level or advanced courses in sociology or psychology.
L. Gruenfeld.
An examination of theories and research findings from the behavioral sciences that are relevant to leadership and the influence process in groups and organizations. Personality, situational factors, interpersonal processes, interpersonal perception as well as motivation to lead and to follow will be discussed. The implications for leadership training, organization development, and action research are explored.

528 Cross-Cultural Studies in Organizational Behavior
Spring. 3 credits. Limited. Permission of instructor before registering in course.
L. Gruenfeld.
Designed for students interested in social psychological theory and research in international culture comparisons of behavior and experience in organizations. Variables such as power distance, individualism-collectivism, universalism-particularism and attitudes toward authority as well as work motivation will be examined. Upon completion of the readings and discussion of conceptual materials and consideration of several international comparison studies, each student will prepare and present a paper on a topic of his/her own choice usually related to his/her country of origin (China, Japan, German, USA, etc.).

529 Personality in Organization
Fall. 4 credits. Open to undergraduates with permission of instructor.
L. Williams.
This advanced course considers psychodynamic theories of organizational diagnosis at the individual and group levels. Topics include leadership, power, authority, work motivation, intervention, and change. The topics are discussed and applied in small study groups. The professor's role is as a consultant and resource person. Class members study and research their own behavior and present their qualitative and quantitative findings to the class. Students are expected to have background and interest in both research methods and theory.
The seminar analyzes the general nature of social movements and considers how the EAP movement fits into that perspective. Will examine the distinctive core tasks performed by EAP workers. These join with the unique ideology of compassion derived from the social movement to form the ingredients for an emerging occupation. Other specific features of this emerging occupation that will be examined are: the types of employee behavioral problems encountered in working populations, role of supervisors, union stewards, and peers in EAP referrals, the role of EAP workers in working with job performance problems, use of constructive confrontation in supervisory/steward training. Will analyze clinical issues involved in EAP work and the interface between the workplace and the treatment place. Similarly, both internal and external marketing of EAPs will be examined, followed by a review of the relationship between these programs and contractual agreements, "just cause" in alcohol, drug, and mental health arbitration cases, including drug testing.

Organizations as Social Networks
Spring. 3 credits. Prerequisites: one or more courses in organizational behavior, sociology, psychology, anthropology, or political science. A course in statistics or research methods would be helpful.

S. Barley.

Increasing attention has been devoted to the idea that social structures can be fruitfully investigated as social networks. In particular, organizational and inter-organizational structures may be analyzed as patterned relationships among individuals, groups, and even other organizations. Such networks appear to be strong predictors of a variety of social dynamics including attitude similarity, the diffusion of innovation, turnover, and the allocation of organizational resources. A variety of methods for collecting and analyzing network data, including graph theory, sociometry, clique detection, centrality analysis, blockmodeling, and the quadratic assignment procedures will be used. Recent published research will involve work with actual data sets and relevant computer programs.

Social Regulation and Control of Institutions
Spring. 7 weeks only. 2 credits. Prerequisites: two organizational behavior courses at the 300 level, or advanced courses in sociology or psychology.

R. Stern.

Interorganizational relations are examined in terms of network control agents and target objects. The dynamics of control relationships based on political bargaining, the distribution of power, economic rewards and costs, and historical circumstances are examined in the context of their evolution through organizational adaptation to the environment. Subject matter includes core tasks of organizational change and application of a control perspective to the institutions of American business, government regulations, athletics, and education.

Cooperative Strategies for Improving Organizational Performance
Spring. 4 credits.
M. Gaffney.

The course will concentrate on presentation and analysis of series of case studies involving projects using cooperative strategies to improve organizational performance. Emphasis will be given to cases in which union and management have been working together to enhance productivity and the quality of working life. Cases will be examined against a background of the research literature on improving organizational performance. Students will be responsible for a term paper.

Systems of Labor Participation in Management
Fall. 4 credits. Prerequisites: senior standing and permission of instructor.
T. Hammer.

Examines the theory and practice of worker participation in systems ranging from informal shop-level participation to self-management. Special emphasis is placed on socio-technical systems of job design and work restructuring that give workers control over the labor process. Attention is also given to legislated programs of participation (codetermination) and to participation in employee-owned firms.

Seminar in Field Research I
Fall. 4 credits. Enrollment limited. Prerequisite: permission of instructor.
H. Trice.

Recent research efforts are examined and the dynamic nature of the research process is emphasized. The realities of field research are explored, including problems of gaining and sustaining rapport, the initial development of research interviews and observation data, and their conversion to quantitative instruments. Participants share in the exploration of appropriate theories and concepts, and the possibility of actual field participation in an ongoing research project is explored.

Seminar in Field Research II
Spring. 4 credits. Prerequisites: ILROB 677 and permission of instructor.
H. Trice.

Continuation of recent research efforts is examined, and the dynamic nature of the research process is emphasized. The realities of field research are explored, including problems of gaining and sustaining rapport, the initial development of research interviews and observation data and their conversion to quantitative instruments. Participants share in the exploration of appropriate theories and concepts, and the possibility of actual field participation in an ongoing research project is explored.

Issues of Measurement in Research on Organizations
Fall. 4 credits
T. Hammer.

Concerns the study of tests and measures used to assess central variables in organizational behavior and related fields. Students will learn where to find measures suitable for their research purposes and will examine the theories that define the constructs being measured; the empirical information available about different measures; construction, reliability, and validity; and the ways in which the instruments have been used in research and practice.

Analysis of Published Research in Organizational Behavior
Fall. 3 credits. Prerequisites: ILROB 520 and 521.
R. Stern, L. Gruenfeld.
An advanced research methods course that critically examines published research papers in the field of organizational behavior in terms of research design and method as well as theory.
726 Selected Topics in Organizational Behavior
Fall 3 credits. Prerequisites: ILR ROB 520 and 521 and permission of instructor.
S. Bailey
An advanced pro-seminar that seeks to develop an interdisciplinary perspective on selected topics in organizational behavior. The topics themselves will change from year to year depending on participants' interests. Course is designed to allow students and the instructor to jointly pursue significant scholarly inquiry into one or more areas of organizational theory. Emphasis will be placed on exploring the relevance of tradition in related disciplines (anthropology, linguistics, philosophy, sociology, etc.) that may enrich our understanding of organizational life.

727 Work and Industrial Conflict
Spring, weeks 7–14. 2 credits.
R. Stern
A concentrated examination of the sociology of industrial conflict. The seminar focuses on classic formulations of conflict theory in sociology, then the social, political, economic causes of industrial conflict. Forms of conflict to be studied include strikes, turnover, absenteeism, and sabotage. Some discussion of the implications of various types of worker management of firms for industrial conflict will be included.

728 Theories of Motivation and Leadership
Spring. 2 or 4 credits. Prerequisites: ILR ROB 520 and 521.
T. Hammer
Two independent but sequence-connected minicourses.
(1) Theories of Work Motivation. 7 weeks. 2 credits.
Course will provide an introduction to basic concepts of human motivation in general, with particular emphasis on the theories that explain and predict work motivation. Students will examine the empirical research that tests the validity of the theories and shows how and under what conditions different motivation models can be used in practice in work organizations.
(2) Theories of Leadership and Power. 7 weeks. 2 credits.
Several current microtheories of leadership-power and related research are examined. The disciplinary perspective employed is social psychology and the level of analysis emphasized is action and experience of individuals in groups.

729 Organizational Change and Intervention
Fall. 3 credits. Graduate students only; no exceptions.
L. Williams
This seminar is concerned with planned and unplanned change in organizations. It is designed to analyze theory in practice. Particular attention will be paid to the role of internal and external change agents. Several applied research programs such as the Center for Creative Leadership, Tavistock, and SRC will also be examined. Class members will be encouraged to analyze contemporary changes such as mergers and acquisitions.

770 The Cultures of Work Organizations
Fall. 3 credits. Open only to graduate students.
H. Trice
The course considers both administrative and occupational cultures in the workplace. It takes an anthropological perspective, focusing on ideologies as the main ingredient of cultures but emphasizing the role of cultural forms, e.g., myths, stories, sagas, language, rites and ceremonies, and physical settings of meaning. It pays special attention to the place of subcultures and countercultures in the makeup of administrative culture and to occupations as a major source of subcultures. The role of the environment in which organizations are embedded, and its influence on workplace cultures, is also included. Forms of cultural leadership and approaches to reading and changing cultures are also considered.

772 Interpretative and Anthropological Approaches for Studying Organizations
Fall. 3 credits. Prerequisites: two graduate-level courses in organizational behavior, sociology, anthropology, or psychology.
S. Bailey
Focuses on a variety of interpretative and anthropological methods for studying and analyzing organizational life. By reading and discussing examples of published research and by conducting their own field research, students will become familiar with the following research traditions as they have been used in organization studies: participant observation, ethnography, ethnomet hodology, ethnosemantics, textual analysis, graphic analysis, and critical theory. The constraints and benefits of each approach will be emphasized as will be the actual research procedures used by those who employ the approach.

788 Internship
For description, see the section on Collective Bargaining, Labor Law, and Labor History.

789 Directed Studies
For description, see the section on Collective Bargaining, Labor Law, and Labor History.

920 Organizational Behavior Workshop
Fall. 2 credits. Limited to M.S. and Ph.D. candidates in the department.
S-U grades only. Staff
This workshop is designed to provide a forum for the presentation of current research undertaken by faculty members and graduate students in the Department of Organizational Behavior and by invited guests. All M.S. and Ph.D. candidates in the department who are at work on their theses are strongly urged to enroll. Each student in the course will be expected to make at least one presentation during the year, focusing on the formulation, design, execution, and results of that student's thesis research.

PERSONNEL AND HUMAN RESOURCE STUDIES

260 Personnel Management
Fall, spring, and summer. 3 credits. Open only to ILR students. Non-ILR students may take ILRP 461.
Staff
An introductory overview of the management of human resources from an institutional perspective. Topics include human resource decisions dealing with staffing, employee development, work-system rewards, and employee relations. Emphasis is on (a) problem-solving and decision-making approaches; (b) operational methods, technologies, and practices; (c) application of relevant behavioral science theory and research; and (d) legislation and other environmental constraints having an important bearing on the effective utilization of human resources by an enterprise.

266 Personal Computer Basics
Fall, spring, and summer. 2 credits. Limited to 20 students.
E. vonBorstel
This 7-week course provides basic skills in the use of IBM personal computers (PCs). It covers basic hardware, terminology, fundamentals of the Disk Operating System, LOTUS 1–2–3, and dBASE III Plus. Emphasis is placed on hands-on experience using examples demonstrating human resource issues and PC-based solutions. This course is a prerequisite to several advanced Human Resource Management electives.

360 Human Resource Economics and Public Policy
Fall or spring. 3 credits. Open to sophomores, juniors, and seniors.
V. Briggs, J. Bishop
A review of contemporary labor-market trends, data systems, and theories pertaining to public efforts to use and develop the employment potential of the nation's human resources. The major segments of the nation's educational training enterprise—public education, higher education, employer-provided training, apprenticeship, and special training programs for the disadvantaged—is examined in depth. Special policy issues pertaining to youth, rural workers, welfare reform, job creation, worker relocation, economic development, targeted tax credits, industrial policy, and "enterprise zone" proposals will be examined. Comparisons are made with other industrialized nations.

361 Effective Supervision
Fall or summer. 3 credits. Limited to juniors and seniors. Prerequisite: ILRP 260 or equivalent.
W. Wasmuth
This course covers twenty-five major topics that make a critical difference in the life of a newly appointed or experienced supervisor. Theoretical and real-life case examples are provided from office, factory, union, nonunion, large, and small organizations and cover technical, psychological, social, and political issues at the supervisory level.
This seminar will consider functions, current issues, and policy development in New York State human resource development and employee relations. The role of the state in protective labor law administration, human resource programs, its function as a neutral party in labor disputes in the public and private sector, and legislation affecting employee-employer relations and economic development will be reviewed. Students will be assigned individual research topics that will be discussed in the seminar and developed into a term paper.

Women at Work
Fall or spring. 3 or 4 credits. Prerequisite: ILRPR 260 or equivalent. Staff
Various aspects of female occupational roles in twentieth-century United States. Historical, social, and legal factors that influence women's choice of careers, work socialization and training, and subsequent labor-market experience. Working women's entry-level jobs, opportunities for advancement, and income are compared to men's.

Human Resource Management for Small Business
Fall. 4 credits. R. Risley
This course will be taught using a series of case studies developed from small firms. After an initial introductory section exploring the human resource management issues most critical to the growth and development of small businesses, the balance of the course will focus on selected human resource management issues raised by the various case studies. Students will analyze the problems of each case and prepare a report setting forth their recommendations for resolving the human resource problems and achieving the desired business objectives. Every second week the class will meet for a two-hour session to present and discuss the student reports concerning each case. Owners and managers of the small business firms studied will be present to discuss each case with the students.

Human Resource Management in Organization
Fall and spring. 4 credits. Open to juniors and seniors out-of-college ONLY. R. Bretz, W. Frank
An introductory level survey course that is designed to introduce the student to the methods and processes of human resource management in work organizations. It is primarily intended to acquaint non-industrial relations majors with the personnel management function so that they may better understand the rationale behind human resource decisions. Factors external to the organization are discussed in regard to their impact on human resource decision making. The course includes the integration of topics such as analyzing and designing jobs, the causes and consequences of employee satisfaction, attendance, and turnover, motivating and evaluating employee performance; recruiting and selecting employees; compensating the work force; and dealing with organized labor unions. Throughout the course, emphasis is placed on the importance of the supervisor or manager in the implementation of personnel policy.

Strategic Organization and Human Resources Management Simulation
3 credits. Limited to juniors and seniors. Prerequisite: ILRPR 260 or equivalent. W. Wasmuth. This course uses a simulation model and an open-systems approach as means to enhance students' skills in strategic planning and managerial decision making. Attention will be given to the implications and efforts of strategic human resources management and supervisory decisions as measured by ten organizational performance indicators, including quality of work life, employee productivity, customer satisfaction, employee retention, internal control, and the bottom line. Each student will be assigned to a group (team) of five members and must be committed to the work of that group. An individual research paper is also required.

Immigration and the American Labor Force
Fall. 3 credits. V. Briggs. Assesses the role that immigration continues to play as a source of human resource development in the United States. Immigration will be placed in an evolutionary context but primary attention will be given to post-1965 development. In addition to legal immigration, border commuters, illegal immigration, "maquiladoras," refugees, asylum seekers, and nonimmigrant workers are also examined. Comparisons are also made with immigration systems of other nations. Public policy aspects are explored in depth.

Honors Program
Fall and spring (yearlong course). 3 credits each term. For description, see the section on Collective Bargaining, Labor Law, and Labor History.

Internship
Fall or spring. 3 and 6 credits. For description, see the section on Collective Bargaining, Labor Law, and Labor History.

Directed Studies
For description, see the section on Collective Bargaining, Labor Law, and Labor History.

Personnel Management
Fall or spring. 3 credits. Open to graduate students. A survey course covering the major areas of the management of human behavior in work organizations. Consideration is given to such aspects of personnel work as job analysis, motivation, human resource planning, recruitment and selection, training, management development, organization development, compensation, and employee and labor relations. Emphasis is on the application of theory and research to the solution of personnel problems.

Personnel and Human Resource Management: Policy and Practices
Fall. 4 credits. Limited to 30 students, seniors and graduate students only. Prerequisites: ILRPR 260/560, electives in personnel and human resource management, and permission of instructor. R. Risley. This seminar will be concerned with issues of current importance to leading practitioners and explore the policies and practices developed to meet organizational goals. Changing concepts of the P/HR function within organizations and new policies and programs to meet changing needs will receive special attention. Outstanding leaders from the practitioner area will serve as guest seminar leaders during the term. Students will be required to do background reading for each topic as well as read the advanced material prepared by the guest leader. Students should be prepared to be active participants in the seminar discussions.

Employer Training: Economic and International Perspectives
3 credits. J. Bishop. Examines the training and learning that occurs on jobs from both an economic and comparative international perspective. Will investigate the scale of the training enterprise, how it is accomplished, why some companies and nations train much more than others and what impact training has on organizational performance and national competitiveness. Training will also be examined from the worker's perspective. The distinction between training and learning, how individuals influence the amount of training they receive and what determines the amount and kind of training they desire. The training institutions and customs of countries like Japan, Sweden, Germany, France, and the United Kingdom will be compared to their American counterparts and an effort will be made to understand why investments in employer training are so much more substantial in Japan and Germany than in the United States and whether there is any role for public policy in the stimulation or improvement of employer training.

Training and Development: Theory and Practice (also Education 685, Communication 685, and International Agriculture 685)
Spring and summer. 4 credits. F 9:05-12:05. W. Frank, D. Deshler, R. Colle.
Analysis, design, conduct, administration, and evaluation of training programs for the development of human resources in small-farm agriculture, rural health and nutrition, literacy and nonformal education, and general community development. Designed for scientists, administrators, educator-trainers, and social organizers in rural and agricultural development programs in the United States and abroad.
659 Internal Staffing: Managing Careers in Organizations
Spring or summer. 4 credits. Limited to 30 students. Prerequisites: ILRST 210 or ILRPR 266 or 560 or equivalent and permission of instructor.
Staff.
Analysis of the movements of people within organizations and the management of career development processes. Selected topics include job search and choice processes, career planning methods and techniques, career and life stages, mentoring, employment security programs, midlife career changes, career and family integration, criteria for internal promotions, succession planning, and the role of performance evaluation and assessment centers in placement decisions.

660 Seminar in Personnel or Human Resource Studies
Fall or spring. 3 credits.
A “floating” seminar designed to give faculty and students an opportunity to pursue specific topics in detail, with an emphasis on theory and research. Topics vary from semester to semester. Interested students should consult current course announcements for details.

661 Applied Personnel and Organizational Development Practice
Spring. 3 credits. Prerequisites: undergraduates, ILRPR 260; graduate students, ILRPR 560 or equivalent.
Staff.
Deals with personnel development technique and organizational development intervention methodology. Students examine and practice group methods, feedback and processing technique, active listening, one-to-one counseling, behavior modeling, role playing, the case method, team building, survey-guided intervention, and other relevant methods, techniques, and issues. This course combines pertinent literature with the opportunity for hands-on practice in a workshop setting. Students have responsibility for developing and delivering scholarly papers that explore a specific method, technique, and/or critical issue. In addition, a final project requires a comprehensive proposal that describes an organizational development intervention.

662 Managing an Organization through Simulation Training
Spring or summer. 3 credits. Limited to a total of 40 ILR and hotel administration students, seniors and graduate students only. Prerequisite: ILRPR 260/560 or equivalent and permission of instructor.
W. Wasmuth.
Techniques of simulation are applied to a hotel banquet facility to enable students working in a small group (task force) to accomplish the following objectives: (1) plan and develop strategies to solve a variety of realistic problems in a supportive low-risk simulated setting; (2) provide direct feedback to the participants as to the effects of their decisions on ten organizational performance indicators, including morale, turnover, productivity, customer satisfaction, and profit/loss; (3) understand the interrelationships of the indicators and of various parts of an organization through an open systems approach; (4) develop an awareness of how group interaction affects the quality and timeliness of team decision making; (5) demonstrate communication skills in organizing and reporting significant results of team accomplishments. Also, each student will prepare an individual research project that focuses on some aspect of the simulation experience.

663 Performance Appraisal and Organizational Effectiveness
Fall. 4 credits. Limited to 30. Prerequisites: ILRPR 260/560 and one course in statistics.
R. Bretz.
This course covers the measurement and evaluation of both individual and organizational performance. It is based on the concept that organizational effectiveness and performance are largely a function of the effectiveness and performance of individuals within the organization. Improving organizational effectiveness and productivity involves improving the effectiveness and performance of individuals and work groups that make up the organization. The course begins by exploring the concept of organizational effectiveness, proceeds with a treatment of the measurement of work performance at the individual and group levels, and concludes with an emphasis on planning, measuring, and controlling organizational performance through the integration of performance from the organization to the individual levels. Different methods of appraising performance are considered and evaluated in terms of their impact on the individual, the appraiser, and the organization.

664 Seminar in Organizational Communication
Spring. 3 credits. Prerequisite: permission of instructor.
W. Frank.
Seminar centers on selected issues and relevant research involved in the study of communication with formal organizations. Organizational structure and design, patterns of information flow, and individual and group determinants of communication effectiveness will be important concerns.

665 Case Studies in Personnel Administration
Spring. 4 credits. Prerequisite: ILRPR 260/560 plus two other courses in personnel and human resource studies and permission of instructor.
Staff.
An analysis of personnel management activities and their impact on organizational objectives and administration. Cases, incidents, and field data derived from a variety of institutional settings provide a framework for examining and explaining the various roles played by personnel managers. Students with a special interest in personnel are encouraged to use this course as a "capstone" to their studies.

666 Cost-Benefit Analysis for Human Resource Management
Spring. 4 credits. Prerequisites: ILRPR 260/560 or equivalent, one course in statistics, one elective in personnel and human resource studies, and permission of instructor.
J. Boudreau.
This seminar explores how to account for the contribution of personnel and human resource management programs and decisions to achieving organizational goals. It emphasizes a systematic decision-making system that organizes the discipline of personnel and human resource management and can assist in planning and evaluating programs. Topics include the role of financial and nonfinancial statements in managing personnel and human resources, cost-benefit analysis for programs, managing human resources as a profit center, and identifying personnel and human resource management constituents to address their goals.

667 Employee Relations
Fall. 4 credits. Prerequisites: ILRPR 260/560 or equivalent and permission of instructor.
L. Dyer.
Explores the policies, programs, and practices used by employers to promote the just and humane treatment of employees, especially managerial, professional, and other employees not covered by collective bargaining contracts. Includes such policies as the protection of employee rights and the nature of processes used to communicate organizational opportunities and rewards; such programs as employee assistance plans and due process procedures; and elements of such practices as employee communication and supervision. Treats these as a "package" to be considered in totality and developed strategically. Considers variations in employee relations strategies, the motives of employers in establishing such strategies, and the effects of these strategies on relevant individual and organizational outcomes.

668 Staffing, Employee Selection and Utilization
Fall or spring. 4 credits. Prerequisites: ILRST 510 or ILRPR 260 or 560 or equivalent, plus ILRPR 266; working knowledge of factor analysis, item analysis, regression analysis, and ANOVA; and permission of instructor.
J. Boudreau.
An analysis of the staffing process as applied to employing organizations. Topics include recruitment, selection processes and techniques, legal issues in selection, and the relationship between staffing and other organizational practices.

669 Administration of Compensation
Fall or spring. 4 credits. Limited to 30 students. Prerequisites: ILRPR 260/560 or equivalent, ILRPR 266 and basic statistics or permission of instructor.
B. Gerhart, G. Milkovich, R. Risley.
Major emphasis is on the decisions and issues involved in the design and administration of pay systems. Topics include behavioral and economic theories and research related to compensation, administration, and factors influencing decisions about pay levels, hierarchies, forms, and administration of pay. Also focuses on the effects of various pay systems on employee behaviors and firm performance.
690 Personnel Information Systems
Spring. 4 credits. Limited to 20 students.
Prerequisites: ILRPR 260/560 or the equivalent; ILRPR 266; advanced electives in personnel; at least one course in statistics; and permission of instructor.
B. Gerhart.
Explores the development, implementation, and management of computerized personnel information systems and their use in human resource management. Intermingles two types of activities. One (the more theoretical) involves the study of the essential components of such systems and the steps involved in designing and running them. The other (the more applied) involves the actual use of systems on both the PC (e.g., DBASE III PLUS) and the mainframe (e.g., SAS). Considerable in- and out-of-class time is spent working through a series of exercises that require (1) the identification of data needs, (2) the retrieval of appropriate data from one of two databases, (3) data analysis, and (4) data presentation. The objective is for students to develop the skills needed to become intelligent users of database management systems in personnel work.

691 Human Resource Planning
Spring. 4 credits. Limited to 30 students.
Prerequisites: ILRPR 560 or equivalent, one course in statistics, and permission of instructor.
L. Dyer, G. Milkovich.
The process of human resource planning as practiced by public and private employers. Included are topics such as forecasting human resource needs, programming, techniques to meet forecasted needs, and methods of controlling the supply of human resources. The seminar is organized around a computer simulation game in which students make policy and program decisions for a fictional organization. Decisions are evaluated on the basis of their contributions to the organization's human resource and profit objectives.

692 Training the Displaced and Disadvantaged
Fall or spring. 3 credits. Prerequisite: permission of instructor.
J. Bishop.
Examines public and private efforts to lower unemployment and underemployment of displaced and disadvantaged workers. The seminar examines the scope of the problem, its causes, and why specific programs have worked and others have not. Topics covered will include training for displaced workers, rehabilitation of the disabled, job-search training, tax credits for hiring, vocational training, ETV, public service employment, assisting new business, and industrial policy. The seminar also investigates how the structure of the economy influences the ability of targeted training and job creation to achieve sustained reductions in unemployment and draws lessons from the experience of other societies.

693 Design and Administration of Training Programs
Spring. 3 credits. Prerequisites: ILRPR 560 or equivalent and permission of instructor.
W. Frank.
An analysis and exploration of the training and retraining function as applied in business, government, and industrial organizations. Consideration is given to learning theory as well as to the concept framework and practical approaches with which learning activities are developed at the workplace at all levels.

694 Personal Computer Applications in Human Resource Management and Labor Relations
Spring. 4 credits. Limited to 22 students.
Prerequisites: ILRPR 260/560 or equivalent; ILRPR 266; at least one upper-level PHRS elective; basic statistics; and permission of instructor.
J. Boudreau, B. Gerhart.
Personal computer applications in organization decision making. This is true in human resource management and labor relations as well as in other areas. This course is designed to present students with current personal computer software packages and to explore how they can be used to improve human resource decision making. The course involves hands-on personal computer cases designed to present human resource situations that can be analyzed using PC applications. In addition, students will have opportunities to design their own applications and present them to the class.

695 Education, Technology, and Productivity
Fall. 3 credits.
J. Bishop.
The seminar investigates the nexus between the education and training occurring in schools and at the workplace and the technological progression, productivity, and competitiveness of firms, individuals, and nations. We will investigate (1) how technological progress is changing the nature of work and what this implies for reform of education and training, (2) why United States productivity has not increased in the past fourteen years, (3) how education and training contribute to the growth and competitiveness, (4) why educational achievement has declined, and (5) how the responsibility for education and training should be apportioned among individuals, firms, private nonprofit organizations, and government.

696 Personnel Administration and Government Regulations
Fall. 4 credits. Prerequisite: ILRPR 260 or equivalent.
R. Risley.
A survey and analysis of government legislation and regulations affecting human resource management in nongovernment organizations, examining the framework within which management must operate. Government agencies' methods of enforcing such regulations are covered, along with the requirements' responsibilities for failure to comply with these legal requirements. Emphasis will be on human resource policy development and administration to meet legal requirements. Topics include FLSA, OSHA, ERISA, Employee Rights, Employment at Will, EAP and Title VII.

698 International Human Resource Policies and Institutions
Fall. 3 credits.
J. Bishop.
A comparative study of human resource policies and institutions in Western Europe, North America, Japan, and East Asia (with special emphasis on math and science education) and of the effects of these institutions on productivity, growth, and equality of opportunity. The institutions studied include primary and secondary education, apprenticeship and higher education. Data on the consequences of policies is presented and an effort made to understand how human resource policies and institutions have contributed to the rapid growth and low levels of inequality in Europe, Japan, and the Pacific Rim nations. Another focus of the course is understanding the causes of the low levels of achievement of American high school students relative to their counterparts abroad.

699 Contemporary European Labor Markets
Spring. 3 or 4 credits (1 additional credit available for those who elect to prepare a special report).
J. Bishop.
Aggregate unemployment rates in Europe have risen from 3-4 percent in the 1960s to 11 percent in the late 1980s. The course is an examination of the causes and consequences of this transformation of European labor markets. In the process of addressing these questions, we review the recent history of these economies, their labor market institutions, and government labor market policies in a comparative framework. Some European nations—Sweden, Norway, Switzerland, and Austria—have kept their unemployment rates low and the reasons for their success will be explored. The questions of why labor market institutions that performed so well in the 1960s are performing so poorly now can only be addressed in the context of an overall theory of unemployment. The course examines the debate that currently over the causes of European unemployment and between the advocates of Keynesian, new classical (rational expectations and real business cycle theorems), and new Keynesian (efficiency wage, implicit contracts, and overlapping contracts) theories of aggregate unemployment.

760 Seminar in Personnel or Human Resource Studies
Fall or spring. 3 credits. Prerequisites: ILRPR 560, ILRST 510/511, and ILRPR 669 and permission of instructor.
Staff.
A "floating" seminar designed to give faculty and students an opportunity to pursue specific topics in detail, with emphasis on theory and research. Topics may vary from semester to semester. Interested students should consult current course announcements for details.

781 Human Resource Economics and Public Policy
Spring. 3 credits.
V. Briggs.
A review of contemporary labor-market trends, data collection systems, and theories as they relate to public policy efforts to develop the employment potential of the nation's human resources. The major segments of the nation's educational training enterprise—public education, higher education, employer-provided training, apprenticeship, and special training programs for the disadvantaged—are examined in depth. Special policy issues pertaining to youth, rural workers, welfare reform, job creation, industrial policy, wage subsidies, and worker relocation will be examined. The role of research to policy formulation and methods of evaluation of social programs will be reviewed. Comparison will also be made with other industrialized nations.
Topics in Compensation Theory and Research
Fall. 4 credits. Prerequisite: ILRPR 669.
G. Milovich.
Examines recent developments in theory, research, and practice related to compensation. Discusses the relevance of theory and research to compensation decision making. Topics include strategic perspectives, variable compensation including gainsharing, bonus, spot awards, etc., risk and leverage in pay, egalitarian and meritocratic structures, and the relationship between pay, employee behaviors, and organization.

Internship
For description, see the section on Collective Bargaining, Labor Law, and History.

Directed Studies
For description, see the section on Collective Bargaining, Labor Law, and History.

Workshop in Personnel and Human Resource Studies
Fall or spring. 2 credits. Enrollment limited to M.S. and Ph.D. candidates. S-U grades only.
Staff
The workshop is designed to provide a forum for the presentation and discussion of current research being undertaken by graduate students, faculty members, and invited guests in the field of personnel and human resource studies. All M.S. and Ph.D. candidates in the Department of Personnel and Human Resource Studies are urged to enroll; candidates in other departments are cordially invited to do so. Each participant will have an opportunity to contribute to the collective wisdom of the others in the formulation, design, and execution of his or her research, as well as to become current on the latest developments in the field.

INTERDEPARTMENTAL COURSES

Employment Policy and Practice
Fall or spring. 3 credits.
O. Mitchell.
The object of this course is to introduce non-I&LR students to labor market policy and practice. Throughout the semester we emphasize topical issues and problems, including effective compensation policy, the value of education and training, and the relationship between pay, employee behavior, and organization.

Science, Technology, and the American Economy
Fall or spring. 4 credits.
V. Briggs.
Examines the influences of the growth of science and the spread of technology on the development of the American economy. Although attention will be given to evolutionary influences, the primary focus will be upon the post-World War II experiences as a result of the introduction of electronics. The vantage point will be the linkage of these developments with employment, unemployment, income, and productivity considerations. Public policy issues such as research and development policy, national defense priorities, the development of the biotechnology industry, the agricultural revolution, savings and investment rates, retraining and education needs, etc., will be explored. The experiences of other industrial nations will also be discussed.

Writing in Industrial and Labor Relations
Fall or spring. 3 credits. Limited to 20 students.
J. Farley.
This course will require close reading of four books in the field of industrial and labor relations and careful writing about them. Students will also have an opportunity to practice writing about the world of work for different audiences with an eye to publication.

Metropolitan
The following courses are open only to participants in the Extension Division in New York City. These courses are not open to undergraduate or graduate students matriculated in the Ithaca ILR programs. ILR Credit and Certificate Program courses at the Labor College are offered for four credits. Courses and course credits earned in Extension Division Certificate programs are not automatically accepted as transfer credits or as a basis of admission to the resident ILR undergraduate and graduate programs in Ithaca. Student applications for course transfer are evaluated by the ILR school on an individual basis.

Statistical Reasoning I
Fall or spring. 4 credits.
An introduction to the basic concepts of statistics: measures of location and dispersion, estimation and confidence intervals, hypothesis testing, regression and correlation. Students are taught to use a computer at the beginning of the term and use it for weekly assignments.

Personnel Management
Fall or spring. 3 credits.
Focuses on management of personnel in organizations. Deals with manpower planning, recruiting, selection, wage and salary administration, training, performance appraisal, organizational development, and the administration of personnel department activities. Special attention is paid to government manpower policy and its implication for personnel management.

Labor Union Administration
Fall or spring. 3 credits.
A review of the operations of American unions, including a general theoretical framework but with major emphasis on practical operating experience. The course will consider the formal government of unions; organizational or institutional purposes and objectives; and how these are achieved; the underlying structure and relationship among members, locals, and national organizations; the performance of the primary function of organizing; negotiating; contract administration; and the effect of the Landrum-Griffin Act.

Sociology of Occupations
Fall or spring. 3 credits.
Focuses on (1) the changing character of American occupations within the context of social change; (2) occupational status—differences in income, prestige, and power and the resultant general phenomenon of social stratification; (3) vertical and horizontal occupational mobility; (4) recruitment and socialization into occupational roles; (5) the process of professionalization; and (6) comparison of personnel occupations with the career and organizational patterns of other occupations. A major sociological theme is the relationship between occupational structure and workplace structure.

Economics of Collective Bargaining
Fall or spring. 3 credits.
Economic aspects of the negotiation, terms, and effects of union-management agreements at the individual firm, industry regional, and national levels. Topics examined include forces influencing contract demands and terms, employer adaptation to higher wages and benefits; industry differences in competitiveness, firm size, and markets; regional location of industry, international competition, government regulations; labor supply; inflation, recession, and unemployment.

History of Industrial Relations in the United States
Fall or spring. 3 credits.
This review of the history of industrial relations in the United States emphasizes developments in the twentieth century. The course concentrates on the American worker, both union and nonunion; labor movements; and the environmental forces that have shaped industrial relations in the United States. Readings are selected from scholarly accounts and original sources.

Collective Bargaining
Fall or spring. 3 credits.
A comprehensive study of collective bargaining: the negotiation and scope of contracts; the day-to-day administration of contracts; the major substantive issues in bargaining, including their implications for public policy; and the problems of dealing with industrial conflict.

Labor Relations Law and Legislation
Fall or spring. 3 credits.
A survey of the law governing labor relations. The legal framework in which the collective bargaining relationship is established and bargaining takes place is analyzed. Problems of the administration and enforcement of collective agreements are considered, as are problems of protecting individual employee rights in the collective labor relations context. Also serves as an introduction to the legal system and method and to legal and constitutional problems of governmental regulation of industrial and labor relations.

Statistics (Statistical Reasoning)
Fall or spring. 3 credits.
An introduction to the basic concepts of statistics: description of frequency distribution (averages, dispersion, and simple correlation) and introduction to statistical inference. Prerequisite to certain specialized courses on applications of statistics offered in various departments.
To provide basic education and training in standards for safety and health, industrial Fall or spring. 3 credits.

367 Safety and Health in the Workplace

368 Health, Welfare, and Pension Plans Fall or spring. 3 credits.

An analysis and appraisal of private health, welfare, and pension plans. A consideration of the origin and development of employer, union, and joint programs and a critical examination of the financing, administration, and general effectiveness of the plans.

400 Union Organizing

This course explores various aspects of unions' attempts to organize workers; why some workers join unions and others do not; the techniques used by both unions and employers during organizing campaigns, and the present law of organizing and proposed amendments to the law.

440 Employment Discrimination and the Law Fall or spring. 3 credits.

An examination of legal problems involving employment discrimination based upon race, color, religion, sex, national origin, or age. The impact of developing principles of law on preemployment inquiries and testing, seniority and promotions, and other personnel policies, practices, and procedures will be discussed. The prerequisites of affirmative action under Executive Order No 11246, as amended, will be analyzed. Special attention will be given to the role of state law in resolving employment discrimination claims and the procedural framework for raising and adjudicating such claims before administrative agencies and the courts.

602 Arbitration Fall or spring. 3 credits.

A study of the place and function of arbitration in the field of labor-management relations, including an analysis of principles and practices, the law of arbitration, the handling of materials in briefs or oral presentation, the conduct of an arbitration hearing, and the preparation of an arbitration opinion.

681 Labor Relations Law Fall or spring. 3 credits.

An advanced course in labor law, covering such topics as emergency labor disputes, legal problems of labor relations in public employment, labor and the antitrust laws, civil rights legislation, rights of individual employees and union members, and legal problems of union administration.

684 Labor Relations Law

Fall or spring. 3 credits.

An examination of legal problems involving employment discrimination based upon race, color, religion, sex, national origin, or age. The impact of developing principles of law on preemployment inquiries and testing, seniority and promotions, and other personnel policies, practices, and procedures will be discussed. The prerequisites of affirmative action under Executive Order No 11246, as amended, will be analyzed. Special attention will be given to the role of state law in resolving employment discrimination claims and the procedural framework for raising and adjudicating such claims before administrative agencies and the courts.

241 Arbitration 3 credits.

A study of the place and function of arbitration in the field of labor-management relations, including an analysis of principles and practices, the law of arbitration, the handling of materials in briefs or oral presentation, the conduct of an arbitration hearing, and the preparation of an arbitration opinion.

242 Public Sector Collective Bargaining Fall or spring. 3 credits.

This course is designed as an introduction to collective bargaining in the public sector. The course examines the historical development of bargaining in public employment, the evolution of state and federal and bargaining theory and practices, as well as impasse resolutions techniques frequently found in this sector. Special emphasis will be given to developing an understanding of the similarities and differences between public and private sector bargaining and how they have affected tactics and strategies employed by the parties.

243 Growth of American Business and Management History Fall or spring. 3 credits.

The growth and cycles of American business enterprise produced significant changes in education, government, work, the family, the ethnic composition of the population, and the landscape. As business and industry expanded, new methods evolved for managing these enterprises. This course will examine the development of managerial practices, the relationship of management to the work force, and the social ramifications of capitalist expansion.

245 Public Sector Labor Law 3 credits.

A survey and analysis of the New York State Public Employees Fair Employment Act is made as well as a comparison with other state laws covering public employees. The course will examine the extent to which the law protects and regulates concerted actions by employees in the public sector. The intent is to study and understand the law as written, but more importantly how it has been interpreted by the courts of New York State in its application. Major emphasis will be employee and employer rights, including recognition and certification, improper practices, strikes, grievances, and disciplinary procedures of the New York State Public Employment Relations Board.

247 Labor and the American Economy 3 credits.

Will help the student understand how economic theories relate to the economic problems confronting the American citizen in general and the American union member in particular. Emphasis will be placed on contemporary economic theories and how their proponents attempt to solve American economic problems.

251 Principles and Practices of Management Fall or spring. 3 credits.

Presents the theory and processes of management with an emphasis on supervision. Management functions of planning, organizing, staffing, and evaluating are included. Concepts and theories are presented, and case studies are analyzed. Motivating people, exercising leadership, and effectively developing employees are emphasized.

252 Contract Bargaining Fall or spring. 3 credits.

Examines the principles of contract bargaining, including bargaining environments and structures as well as standards used in bargaining. Students will learn to prepare bargaining demands, cost economic items, draft noneconomic contract language, negotiate economic and noneconomic issues, and resolve a contract bargaining impasse. The course will consider the impact of contract bargaining outcomes on workers, unions, employers, and the public.

253 Labor History Fall or spring. 3 credits.

Focuses on the role of the steward in administering the union contract in the workplace. Students will evaluate grievance and arbitration contract clauses, the grievance procedure in practice, the role of the union steward, the role of local and international unions, negotiation of grievances, and preparation for arbitration. Students will analyze the impact of grievance and arbitration procedures on workers, unions, and employers.

254 Labor Law Fall or spring. 3 credits.

Examines the principles of labor law by looking at social philosophy and the historical context of federal labor legislation from the 1930s. Students will concentrate on major provisions of the National Labor Relations Act, examining how the National Labor Relations Board and the federal courts have interpreted the national labor laws. Discussion will include new directions in labor legislation and interpretation with consideration given to the impact of labor law on workers, unions, and employers.

255 Labor History Fall or spring. 3 credits.

Reviews American labor history from the perspective of workers' social dimensions of the development of the working class, reform and revolutionary movements, and the emergence of craft, industrial, and public employee unions. Included will be a discussion of the development of trade union institutions and leaders and the evolution of union political activities and collective bargaining. Special attention will be paid to the involvement of women and minority workers with unions.

256 Dispute Resolution Fall or spring. 3 credits.

Examines third-party participation in dispute resolution in private and public sector collective bargaining. Development of dispute resolution methods in American labor relations; issues and practices in neutral, binding arbitration of grievances and mediation; conciliation; and fact-finding procedures will be discussed. We will also look at exclusive labor-management mechanisms to settle industry disputes.
257 Personnel Administration
Fall or spring. 3 credits.
Designed to provide an overview of personnel practices in the modern organization. It will focus on manpower planning, employment, training and development, motivation, and performance appraisal and communication for students who are currently supervising or personnel practitioners or for those aspiring to those positions.

258 Labor Education II
Fall or spring. 3 credits.
The course will be divided into two parts. Part I is planned to develop an understanding of the theories of program organization and administration, including budgeting, which is necessary if labor education is to be transferred to the local union level. Part II joins theory and practice in the effort to (1) provide rank and file union leaders with the opportunity to develop and use research skills, (2) garner subject matter expertise, (3) formulate course outlines from which to teach, and (4) select appropriate teaching methods and prepare materials for classroom use. Practice teaching is a necessary component of such an advanced course, again providing experiences that combine theory and practice.

259 Organizational Behavior
Fall or spring. 3 credits.
Designed to illustrate how behavioral science theory leads to research and how theory and research provide a basis for practical application in business, industry, education, and government.

260 Labor Education III
Fall or spring. 3 credits.
This course is designed to give labor educators advanced teaching techniques and specific methodology for expanding their training. Instruction will be combined with practical teaching experience in three-hour laboratories. Students will learn to polish their presentation style by studying voice projection, rhetorical techniques, timing and pacing of class units, controlling individual disruptors to the progress of the class, and finally, summarizing the work accomplished.

261 Labor, Government, and Politics
3 credits.
A survey of the ways the American political system affects labor and how organized labor affects the system through voting, political parties, and interest groups.

262 Trends in Worker Participation
Fall or spring. 3 credits.
This course will examine the existence of worker participation models in the context of our changing global economy. We will examine both the external and internal forces that are giving rise to greater labor-management cooperation on the one hand, and increased management hostility toward unions, on the other. We will examine the historical struggle of workers and management for control over the work process and the impact that decades of Taylorism have had in shaping the labor-management relationship. We will review worker participation structures in Germany, Sweden, and Japan, and discuss their usefulness as a model for the American workplace. Finally, it will examine case studies of joint decision-making approaches used in U.S. workplaces, with a special emphasis on the auto industry.

263 Contemporary Labor Problems
Fall or spring. 3 credits.
A survey of the major challenges that confront the American labor movement. Students are briefed on the background of each problem and discuss and analyze a broad range of solutions proposed by the experts.

264 Labor Education I
Fall or spring. 3 credits.
An examination of the ways in which students in field activities in connection with current Extension Division programs.
Hutchens, Robert M., Ph.D., U. of Wisconsin. Prof., Labor Economics
Jakovson, George H., Ph.D., U. of Wisconsin. Asst. Prof., Labor Economics
Katz, Harry C., Ph.D., U. of California at Berkeley. Prof., Collective Bargaining, Labor Law, and Labor History
Korman, A. Gerd, Ph.D., U. of Wisconsin. Prof., Collective Bargaining, Labor Law, and Labor History
Kuruvilla, Sarosh C., Ph.D., U. of Iowa. Asst. Prof., Collective Bargaining, Labor Law, and Labor History
Lipsky, David B., Ph.D., Massachusetts Inst. of Technology. Prof., Collective Bargaining, Labor Law, and Labor History
McCarthy, Philip J., Ph.D., Princeton U. Prof. Emeritus, Economic and Social Statistics
Milkovich, George, Ph.D., U. of Minnesota. Prof., Personnel and Human Resource Studies
Miller, Frank B., Ph.D., Cornell U. Prof. Emeritus, Personnel and Human Resource Studies
Mitchell, Olivia S., Ph.D., U. of Wisconsin. Assoc. Prof., Labor Economics
Risley, Robert F., Ph.D., Cornell U. Prof., Emeritus, Personnel and Human Resource Studies/Extension
Ross, Philip, Ph.D., Brown U. Prof., Collective Bargaining, Labor Law, and Labor History
Salvatore, Nicholas, Ph.D., U. of California at Berkeley. Assoc. Prof., Collective Bargaining, Labor Law, and Labor History
Seeber, Ronald L., Ph.D., U. of Illinois. Assoc. Prof., Extension
Smith, Robert S., Ph.D., Stanford U. Prof., Labor Economics
Stem, Robert N., Ph.D., Vanderbilt U. Assoc. Prof., Organizational Behavior
Tolbert, Pamela S., Ph.D., U. of California. Asst. Prof., Organizational Behavior
Trice, Harrison M., Ph.D., U. of Wisconsin. Prof. Emeritus, Organizational Behavior
Velleman, Paul F., Ph.D., Princeton U. Assoc. Prof., Economic and Social Statistics
Wells, Martin T., Ph.D., U. of California at Santa Barbara. Asst. Prof., Economic and Social Statistics
Williams, Lawrence K., Ph.D., U. of Michigan. Prof., Organizational Behavior
Windmuller, John P., Ph.D., Cornell U. Prof. Emeritus, Collective Bargaining, Labor Law, and Labor History/International and Comparative Labor Relations
LAW SCHOOL

ADMINISTRATION
Russel K. Osgood, dean of the law faculty and professor of law
Jane L. Hammond, law librarian and professor of law
Robert A. Hillman, associate dean for academic affairs and professor of law
Anne Lukingbeal, associate dean for student affairs
Albert C. Neimeth, associate dean and director of alumni affairs and placement
Frances M. Bullis, assistant dean for development and public affairs
Richard D. Geiger, assistant dean for admissions

LAW SCHOOL
The primary function of the Law School is to prepare attorneys for both public and private practice who are equipped to render skillful professional service and who are thoroughly conscious of the important role played by the law as a means of social control. The curriculum is designed to prepare students for admission to the bar in all American states and territories.

Ordinarily, a student who is admitted to the Law School must have a baccalaureate degree from an approved college or university. The course of study leading to the degree of Doctor of Law (J.D.) covers three academic years. A number of students will be admitted to a program of study leading to the degree of Doctor of Law "with specialization in international legal affairs."

There are combined graduate degree programs with the Johnson Graduate School of Management, the College of Arts and Sciences, the Department of City and Regional Planning, the School of Industrial and Labor Relations, and the graduate divisions in economics, history, and philosophy, as well as a special opportunity for highly qualified undergraduates in the College of Arts and Sciences to register in the Law School during their senior year.

The graduate program of the Cornell Law School admits only a few students each year. The LL.M. degree (Master of Laws, Legum Magister) and the J.S.D. degree (Doctor of the Science of Law, Jurisprudentiae Scientiae Doctor) are conferred. A small number of law graduates may also be admitted as special students, to pursue advanced legal studies without being degree candidates.

For further information, refer to the Law School catalog, obtainable from the assistant dean for admissions, Myron Taylor Hall.

FIRST-YEAR COURSES
500 Civil Procedure
502 Constitutional Law
504 Contracts
506 Criminal Justice
507 Legal Process
508 Practice Training I
509 Practice Training II
512 Property
515 Torts

UPPERCLASS COURSES
600 Accounting and Finance for Lawyers
602 Administrative Law
603 Admiralty
604 Advanced Civil Procedure
605 Alternative Dispute Resolution
607 American Indian Law
608 American Tort Law from a European Perspective
609 Antitrust Law
610 Arbitration (also ILR 602)
611 Asian Americans, Civil Rights, and the Law
614 Civil Rights Legislation
616 Commercial Law
618 Comparative Law
619 Comparative Public Law of the United States and the United Kingdom
620 Conflict of Laws
621 Constitutional Law II: The First Amendment
622 Corporations
624 Criminal Procedure
626 Debtor-Creditor Law
634 Employment Law
635 Environmental Aspects of Water
636 Environmental Law
640 Evidence
642 Family Law
643 Federal Courts
644 Federal Income Taxation
645 Feminist Jurisprudence
648 Gender Discrimination
649 Government Benefit Law
650 Immigration and Refugee Law
651 Injunctions
652 Insurance
653 Intellectual Property
654 Intellectual Property in Europe
655 International Business Transactions
657 International Taxation
658 Labor Law
660 Land-Use Planning
661 Law and Economics
663 Law and Social Science
665 The Law of Mergers and Acquisitions (also NBA 572)
666 Law, Society, and Morality (also Philosophy 342)
668 Lawyers, Clients, and Society
672 Local Government
677 Products Liability
679 Public International Law
681 Resolution of Private International Disputes
682 Securities Regulation
684 Soviet Law
685 Sports Law
688 Taxation of Corporations and Shareholders
690 Taxation of Partnership Income
692 Trial Advocacy
694 Trusts and Estates

PROBLEM COURSES AND SEMINARS
700 American History: African-Americans and the Supreme Court
702 American Legal Theory
704 Children in Litigation Clinic
707 Commercial Shopping Centers Development
708 Constitutional Law and Political Theory
710 Contemporary Legal Theory (also Philosophy 444)
712 Current Topics In Anglo-American Criminal Justice
716 Empirical Studies of the Legal System
718 Employment Litigation Seminar
720 Estate Planning Clinic
FACULTY ROSTER

Alexander, Gregory S., J.D., Northwestern U. Prof.
Aman, Alfred C., Jr., J.D., U. of Chicago. Prof.
Barceló, John J. III, J.D., Harvard U. A. Robert Noll Professor of Law
Clermont, Kevin M., J.D., Harvard U. Prof.
Eisenberg, Theodore, J.D., U. of Pennsylvania. Prof.
Farina, Cynthia, J.D., Boston U. Assoc. Prof.
Green, Robert A., J.D., Georgetown U. Asst. Prof.
Hay, George A., Ph.D., Northwestern U. Prof.
Henderson, James A., Jr., LL.M., Harvard U. Frank B. Inglessi Professor of Law
Hillman, Robert A., J.D., Cornell U. Prof.
Johnson, Sheri L., J.D., Yale U. Prof.
Krent, Robert B., LL.B., Boston U. Prof.
Leibowitz, Samuel S., Leibowitz Professor of Trial Techniques
Morgan, Peter W., LL.B., Harvard U. Edward Cornell Professor of Law
Powell, John A., J.D., Yale U. Prof.
Roberts, Ernest F., LL.B., Boston Coll. Prof.
Schwab, Stewart J., Ph.D., U. of Michigan.
Siliciano, John A., J.D., Columbia U. Assoc. Prof.
Simson, Gary J., J.D., Yale U. Prof.
Taylor, Winnie, LL.M., U. of Wisconsin. Prof.
Williams, David C., J.D., Harvard U. Assoc. Prof.
Williams, Susan H., J.D., Harvard U. Assoc. Prof.
Wolfram, Charles W., LL.B., U. of Texas.
Charles Frank Reavis Sr. Professor of Law

Simson, Gary J., J.D., Yale U. Prof.
Taylor, Winnie, LL.M., U. of Wisconsin. Prof.
Williams, David C., J.D., Harvard U. Assoc. Prof.
Williams, Susan H., J.D., Harvard U. Assoc. Prof.
Wolfram, Charles W., LL.B., U. of Texas.
Charles Frank Reavis Sr. Professor of Law
John P. McKeown, director of finance and academic affairs
Dick R. Wittink, director, doctoral program
James W. Schmoller, associate dean
Ann L. Calkins, assistant dean for external relations
Mariea Noblitt, director of admissions
Paul Brenner, director of corporate relations
Nancy A. Culligan, business manager and director of personnel
Laurie Holtman, director of career services
Linda Myers, managing editor, Cornell Enterprise, and publications coordinator
Rhea J. Nickerson, assistant to the dean
Donald Schneidker, librarian
Harriet Peters, director of advising and student activities
Linda Pike, managing editor, Administrative Science Quarterly
John P. McKeown, director of finance and business operations and director of executive education
Ann C. Weibel, director of financial aid, and registrar
L. Joseph Thomas, director of the Executive Development Program
Eugene Ziegler, director of computing services

The Johnson Graduate School of Management prepares men and women for managerial careers in business. The school offers course work in many disciplines to provide potential managers with an understanding of the complexities of the professional world in which they will operate and of the organizations of which they will become a part.

A bachelor's degree or its equivalent is required for admission to the two-year program leading to the Master of Business Administration (M.B.A.) degree. Nearly half of the students have a background of undergraduate studies in arts and sciences, and about one-quarter in engineering. Ten percent of the students begin their graduate training immediately after receiving their bachelor's degrees and the remaining 90 percent following work experience.

Combined degree programs allow highly qualified Cornell students to register in the school during their senior year, thereby earning a master's degree in less than the usual time.

The doctoral program, administered through the Graduate School, provides an advanced level of education in business for those who seek careers in teaching and research at leading universities.

More detailed information about these programs is available in the Cornell University Announcement, Johnson Graduate School of Management, obtainable from the Office of Admissions and Student Affairs, Johnson Graduate School of Management, Malott Hall.

UNDERGRADUATE ONLY

NBA 300 Entrepreneurship and Enterprise Prerequisite: Introductory Accounting or equivalent, or permission of instructor.

This course provides a disciplined look at the entrepreneur and small business management. It deals with the formation and the acquisition of enterprises from the viewpoint of individuals who desire to become the principal owners. Reviews include legal and tax aspects, valuation techniques, organization forms, and venture-capital sources, as well as planning techniques necessary to launch a successful venture.

NCC COMMON CORE COURSES

NCC 500 Financial Accounting
NCC 501 Quantitative Methods for Management
NCC 502 Microeconomics for Management
NCC 503 Marketing Management
NCC 504 Behavioral and Organizational Science
NCC 505 Macroeconomics and International Trade
NCC 506 Managerial Finance
NCC 507 Management Information Systems
NCC 508 Production and Operations Management

NBA MANAGEMENT ELECTIVE COURSES

Accounting

NBA 500 Intermediate Accounting
NBA 501 Advanced Accounting
NBA 502 Managerial Cost Accounting
NBA 504 Taxation Affecting Business and Personal Decision Making
NBA 505 Auditing
NBA 506 Financial Information and Evaluation
NBA 507 Federal Income Tax
NBA 508 Accounting for Mergers and Consolidations

Behavioral and Organizational Science

NBA 660 Strategy Implementation: Process and Politics
NBA 661 Organizational Theory
NBA 662 Power and Interpersonal Influence

Economics

NBA 522 Managerial Economics
NBA 533 Business and Economic Forecasting
NBA 567 Managing Groups
NBA 568 Organizational Politics
NBA 569 Organizational Design
NBA 670 Strategy Formulation

Finance

NBA 540 Financial Policy Decisions
NBA 541 Economic Evaluation of Capital Investment Projects
NBA 542 Investment Management and Security Analysis
NBA 543 Financial Markets and Institutions
NBA 544 Bank Management
NBA 545 Finance Theory
NBA 546 Options, Bonds, and Commodities
NBA 547 Investment Banking
NBA 548 Trading
NBA 549 Strategic Decision Making
NBA 550 Financial Instruments and Contracts

General Management

NBA 560 Business Law
NBA 561 Advanced Business Law
NBA 562 An Introduction to Estate Planning
NBA 563 Strategic Business Policy Issues
NBA 564 Entrepreneurship and Enterprise
NBA 565 Law of Business Associations
NBA 567 Management Writing
NBA 568 Oral Communication
NBA 569 Effective Management Consulting
NBA 570 Negotiations for Managers
NBA 571 Business and American Society
NBA 572 Law of Mergers and Acquisitions
NBA 574 Health-Services Organization and Financing
NBA 575 Health and Welfare Policy Analysis
NBA 576 Alternative Health and Social Service Delivery Systems
NBA 577 The External Environment of Business
NBA 578 Ethics
NBA 579 Business Strategy and Policy
International Management
NBA 580 Industrial Policy: Lessons for the United States from Japan and Europe
NBA 581 The International Context of International Management
NBA 579 Business Strategy and Policy
NBA 582 International Trade and Finance
NBA 583 International Environment of Business
NBA 584 Management of the Multinational Corporation
NBA 585 Comparative International Management
NBA 586 Business in Europe and Latin America
NBA 589 Business in Japan
Management Information Systems
NBA 600 Data-Base Management
NBA 601 Information Systems in Manufacturing
NBA 603 Systems Analysis
NBA 607 Supplemental Studies in MIS
Marketing
NBA 620 Marketing Research
NBA 621 Advertising Management
NBA 622 Marketing Strategy
NBA 623 Models and Methods for New Products
NBA 624 Marketing Decision Analysis
NBA 625 International Marketing
NBA 626 Consumer Behavior
NBA 627 Market Communications
NBA 628 Market Planning
NBA 629 Industrial Marketing
NBA 630 Marketing Research Project
NBA 631 Marketing Science
NBA 632 Marketing Analysis and Planning
Operations Management
NBA 640 Production Management
NBA 641 Business Logistics Management
[NBA 642 Applied Econometrics Not offered 1988-89.]
NBA 643 Management Science
NBA 644 Projects in Operations Management

NMI AND NRE RESEARCH AND ADVANCED STUDIES
NMI 500-502 DIRECTED READINGS AND RESEARCH
NRE 502 Doctoral Seminar in Marketing
NRE 503 Doctoral Seminar in Economics
NRE 504 Doctoral Seminar in Accounting
NRE 508 Doctoral Seminar in Operations Management
NRE 509 Doctoral Seminar in Organizational Behavior
NRE 513 Doctoral Seminar in Finance
NRE 514 Doctoral Seminar in Decision Aiding
NRE 515 Doctoral Seminar in Behavioral and Experimental Economics

FACULTY ROSTER
Anderson, Philip, Ph.D., Columbia U. Asst. Prof., Organizational Behavior
Bell, Nancy, Ph.D., U. of California at Berkeley. Asst. Prof., Organizational Behavior
Ben-Daniel, David J., Ph.D., Massachusetts Inst. of Technology. Don and Margi Berens Professor of Entrepreneurship
Bierman, Harold, Jr., Ph.D., U. of Michigan. Nicholas H. Noyes Professor of Business Administration
Bughin, Joseph B., J.D., Cornell U. Prof., Agricultural and Business Law
Carr, Peter, Ph.D., U. of California at Los Angeles. Asst. Prof., Finance
Conway, Richard W., Ph.D., Cornell U. Prof., Information Systems
DeGraba, Patrick, Ph.D., U. of Pennsylvania. Asst. Prof., Economics
Dyckman, Thomas R., Ph.D., U. of Michigan. Ann Whitney Olin Professor of Accounting
Elliott, John A., Ph.D., Cornell U. Assoc. Prof., Accounting
Freeman, John, Ph.D., North Carolina at Chapel Hill. Prof., Organizational Behavior
Hass, Jerome E., Ph.D., Carnegie-Mellon U. Prof., Managerial Economics and Finance
Hilton, Ronald W., Ph.D., Ohio State U. Prof., Accounting
Isen, Alice, Ph.D., Stanford U. S. C. Johnson Professor of Marketing
Jarrow, Robert A., Massachusetts Inst. of Technology. Ronald P. and Susan E. Lynch Professor of Investment
Kasa, Kenneth, Ph.D., U. of Chicago. Asst. Prof., Economics
Krackhardt, David, Ph.D., U. of California at Irvine. Asst. Prof., Organizational Behavior
Kumar, Akhil, Ph.D., U. of California at Berkeley. Asst. Prof., Management Information Systems
Libby, Robert, Ph.D., U. of Illinois. Prof., Accounting, and Behavioral and Organizational Science
Lind, Robert C., Ph.D., Stanford U. Prof., Economics, Management, and Public Policy
McAdams, Alan K., Ph.D., Stanford U. Assoc. Prof., Managerial Economics
McClain, John O., Ph.D., Yale U. Prof., Quantitative Analysis
Malik, Kavindra, Ph.D., U. of Pennsylvania. Asst. Prof., Operations Research
Morse, Dale, Ph.D., Stanford U. Assoc. Prof., Accounting
O'Hara, Maureen, Ph.D., Northwestern U. Assoc. Prof., Finance
Orman, Levent, Ph.D., Northwestern U. Assoc. Prof., Information Systems
Rao, Vithala R., Ph.D., U. of Pennsylvania. Prof., Marketing/Quantitative Methods
Robinson, Lawrence W., Ph.D., U. of Chicago. Asst. Prof., Operations Management
Russo, J. Edward, Ph.D., U. of Michigan. Assoc. Prof., Marketing and Behavioral Science
Shaw, Wayne H., Ph.D., U. of Texas at Austin. Asst. Prof., Accounting
Smidt, Seymour, Ph.D., U. of Chicago. Nicholas H. Noyes Professor of Economics and Finance
Tarr, Curtis W., Ph.D., Stanford U. Prof., Management
Thaler, Richard H., Ph.D., U. of Rochester. Henrietta Louis Johnson Professor of Management

Thomas, L. Joseph, Ph.D., Yale U. Nicholas H. Noyes Professor of Manufacturing, Operations Management
Wiggins, James B., Ph.D., Massachusetts Inst. of Technology. Asst. Prof. Finance
Winink, Dick R., Ph.D., Purdue U. Prof., Marketing and Quantitative Methods

Lecturers
Katz, Jan, Ph.D., Massachusetts Inst. of Technology. Visiting Asst. Prof., International Business and Marketing
Mink, Barbara E. M.A., Cornell U. Lec., Management Communication
Pike, Alan, M.A., Cornell U. Lec., Management Communication
Rosen, Charlotte, Ph.D., Cornell U. Sr. Lec., Coordinator, Management Communication
Smith, Donald E., M.B.A., B.S.M.E., U. of Pittsburgh. Lec., Industrial Marketing

Adjunct, Visiting, and Faculty
Abowd, John, Ph.D., U. of Chicago. Visiting Assoc. Prof., Industrial and Labor Relations
Agarwal, Manoj, Ph.D., SUNY Buffalo. Visiting Assoc. Prof., Marketing
DeBondt, Werner F. M., Ph.D., Cornell U. Visiting Asst. Prof., Finance
Johnson, Blair T., Ph.D., Purdue U. Visiting Asst. Prof., Marketing
Pempel, T. J., Ph.D., Columbia U. Prof., Government
Schnorrer, James W., Ph.D., Northwestern U. Lec., Business History
Phillips, William E., Executive-in-Residence
ADMINISTRATION
Cuberto Garza, director
Carole Bisogni, associate director for academic affairs
Betty Lewis, graduate faculty representative, Field of Nutrition
T. Colin Campbell and William Arion, division honors chairs

THE DIVISION
Nutritional science deals with the intricate relationship of food, nutrition, and health. At Cornell, the focal point for this broad field of study, which ranges from nutrient chemistry to world hunger, is the Division of Nutritional Sciences.

The division is affiliated with both the College of Human Ecology and the College of Agriculture and Life Sciences and brings together specialists from many disciplines in the biological and social sciences. Their work covers undergraduate and graduate teaching, nutrition research, and nutrition education for the public through Cornell Cooperative Extension.

The faculty in the division are working toward two closely related goals: increasing our knowledge of nutrition and health, and applying what we know to people's everyday problems. This approach carries over to undergraduate education. Students who major in nutritional sciences learn how to interpret basic research from the laboratory and from the social sciences. They also come to understand the practical implications of their studies.

Many students have the chance to test out their ideas by conducting a research project or working in the community.

FACILITIES
Most of the faculty members of the division work in Savage Hall and Martha Van Rensselaer Hall. In addition to housing offices, classrooms, and seminar rooms, those buildings contain research facilities, specialized laboratories, a human metabolic research unit, and interactive terminals for the university's computer system.

The division's Learning Resource Center in Martha Van Rensselaer Hall is used by many students for individual study and small group discussions. The Learning Resources Center contains class materials, audiovisual aids, and supplementary books and periodicals for independent study and special projects in nutrition. Savage Hall also has a graduate reading room.

THE MAJOR
The B.S. degree program with a major in nutritional sciences (NS) provides students with thorough foundations in the basic sciences and the broad field of nutritional sciences. By supplementing the core curriculum with different electives, students can pursue a variety of career interests including medicine and other health careers, fitness and sports nutrition, clinical nutrition, dietetics, nutritional biochemistry, nutrition education and communications, and consumer foods and agriculture.

ACADEMIC ADVISING
Every student majoring in nutritional sciences is assigned a faculty adviser from the division. An effort is made to match interests, and students may change advisers at any time if their goals and interests change. Regular student-adviser conferences are required at least twice a year. The adviser not only helps students select courses but can often suggest opportunities for individual study or experience outside the classroom.

The specific course requirements for graduation are available on request. Questions about undergraduate study should be addressed to Carole Bisogni, associate director for academic affairs, 335 Martha Van Rensselaer Hall.

THE CORE CURRICULUM
In 1990 the faculty revised the undergraduate requirements for a nutrition major establishing a single option or core curriculum for all students entering the major in August 1990. The curriculum includes introductory chemistry and biology, organic chemistry, biochemistry, physiology, and math as well as introductory courses in the social sciences. Students complete five core courses in nutritional sciences: Nutrition and Health: Concepts and Controversies; Social Science Perspectives on Human Nutrition, Nutritional and Physicochemical Aspects of Foods, Physiological and Biochemical Bases of Nutrition, and Methods in Nutritional Sciences. Students select a minimum of three advanced courses in nutritional sciences in the area of their interest. A strong foundation in chemistry and biology is required for the major. New majors, including transfer students, should plan chemistry courses carefully to assure the appropriate sequence of courses. All students who have adequate preparation in high school mathematics and chemistry are encouraged to take Chemistry 207-208. For information about specific course requirements for the core curriculum, consult the Human Ecology Student Guide or obtain information from the division's Academic Affairs Office, 335 MVR.

Students entering the major before August 1990 may complete the requirements in effect when they matriculated or they may complete the new requirements. Students should contact their advisers or the DNS Academic Affairs Office, 335 MVR, for information about switching to the new requirements.

CAREER OPTIONS AND COURSE PLANNING
The core curriculum is viewed as the minimum requirements for a major in nutritional sciences. Students should consult with their advisers to develop program that will prepare them for entry-level jobs or graduate study in the field(s) of their particular interests. Independent study involving research or field study may be chosen to enhance a course program. A summary of suggested areas from which students can choose electives for different career interests follows.

Medicine and Other Health Careers:
Students add physics and calculus to the core curriculum. Nutrition courses of special interest include those focused on the relationship of nutrition to disease, behavior, growth, development, and aging. Other electives may include genetics, advanced biology, sociology, psychology, humanities, public policy, and language.

Fitness and Sports Medicine:
Students can complete the Applied Exercise Science Concentration at Ithaca College which includes courses in kinesiology, exercise physiology, and biomechanics. Nutrition courses of special interest relate to growth and development, regulation of body weight, and community nutrition and health. For information about the Applied Exercise Science Concentration, contact the DNS Academic Affairs Office, 335 MVR.

Dietetics and Clinical Nutrition:
Students can complete the academic requirements for the American Dietetic Association (ADA) by adding courses in foods, nutrition and disease, microbiology, management, statistics, and nutritional care to the core curriculum. For additional information about meeting ADA requirements see Anne Kendall-Casella, N206B MVR, or Joan Koch, 373 MVR.

Nutritional Biochemistry:
Recommended electives include calculus, physics, genetics, advanced biology and chemistry, toxicology, and nutritional sciences courses related to the physiology, biochemistry, and metabolism of different nutrients and disease states.

Nutrition Communications and Community Nutrition:
Suggested electives include courses in communications, education, human development, human service studies, public policy, and nutritional sciences courses related to community nutrition, maternal and child nutrition, geriatric nutrition, nutrition and disease, and food economics.
Consumer Foods: Recommended electives include courses in business, economics, communications, food science, microbiology, and nutritional science courses related to the physicochemical aspects of foods, management, experimental foods, and food chemistry.

FIELD STUDY
Structured field experience in a community agency or health-care facility can be taken for credit in several ways: through the Human Ecology Field and International Study Program, as an independent study course, as a class project, or as a summer study project.

INDEPENDENT STUDY ELECTIVES
Independent study courses (NS 400, 401, 402) can be used to obtain credit for more diverse or intensive experience than the classroom can offer, whether this involves laboratory work, library research, or field study. Any student interested in independent study should obtain the sponsorship of a faculty adviser and the approval of Carole Bisogni or consider applying to the honors program.

HONORS PROGRAM
The honors program, leading to a B.S. degree with honors in nutritional sciences, gives official recognition to students who have demonstrated excellence in their academic work and their capacity for independent study.

In addition to fulfilling the requirements for a major option in nutritional sciences, students in the honors program take courses on designing and evaluating research, complete an original piece of research, and prepare an honors thesis. The honors project may be laboratory or field research or deal with policy and program development. Animals may be used in some research studies.

For more information, students should contact T.D. Tohill (NS 204), Martha Van Rensselaer Hall or William Arion, 227 Savage Hall, honors chairs.

COURSES RECOMMENDED FOR NONMAJORS
Courses in nutritional sciences can strengthen programs of study in biological sciences, biology and society, medicine, agriculture, food science, human development, human services, and other fields.

NS 115, Nutrition and Health: Concepts and Controversies, is open to all students. After NS 115, nonmajors with limited backgrounds in chemistry and biology may elect NS 245, Social Science Perspectives on Human Nutrition; NS 222, Maternal and Child Nutrition; NS 247, Food for Contemporary Living; NS 315, Obesity and the Regulation of Body Weight; NS 349, Geriatric Nutrition; and NS 457, National and International Food Economics. Nonmajors with strong backgrounds in chemistry and the biological sciences may consider NS 331, Physiological and Biochemical Bases of Human Nutrition, as well as many advanced nutritional sciences courses.

GRADUATE PROGRAMS
Graduate study is administered by the Field of Nutrition, a group of more than fifty faculty members from throughout the university who have a common interest in nutritional problems. In the M.S. and Ph.D. degree programs, students may specialize in animal nutrition, human nutrition, international nutrition, nutritional biochemistry, foods, or general nutrition. Research is emphasized in all graduate programs. Field experience may be a component of concentrations in community, international and public-health nutrition, and nutrition education.

The specialties and interests represented by faculty in the Field of Nutrition provide almost unlimited opportunity for graduate study. Cornell's extensive laboratory and agricultural facilities ensure that students interested in experimental nutrition have exceptional choice and thorough training. As the largest faculty in the country devoted to the study of human nutrition, the field includes specialists in biochemical, metabolic, epidemiological, and sociocultural research. Opportunities to work with community and federal agencies are available to students interested in nutrition and public policy. Students in international nutrition are expected to conduct their thesis research abroad.

For more information about the graduate program, interested persons may write for the brochure Graduate Study in Nutrition, available from the Graduate Student Representative, Field of Nutrition, Cornell University, MVR Hall, Ithaca, New York 14853-6301; telephone (607)255-4140.

COURSES

115 Nutrition and Health: Concepts and Controversies
Fall. 3 credits. S-U grades optional.
M W F 1:25. Evening prelims, times to be arranged. D. Levitsky.
This course is intended to be an introduction to the basic concepts of nutritional sciences and the role that nutrition, exercise, and other health behaviors play in the promotion of human health. Concepts and contemporary controversies involved in weight control, cardio-vascular disease, cancer, special nutrition of infants and elderly, and nutrition and behavior will be discussed. Emphasis is on understanding the biological mechanisms through which good nutrition and regular exercise influence health.

222 Maternal and Child Nutrition
Spring. 3 credits. Prerequisites: NS 115 and a college biology course or permission of the instructor. S-U grades optional.
M W F 2:30. V. Utermohlen.
Involves the study of nutritional requirements in pregnancy, lactation, infancy, and childhood growth through adolescence. Topics include the relationship between maternal diet and pregnancy outcome; analysis of different methods of infant feeding; and nutritional status of pregnant women, children, and adolescents in the United States and in developing countries.

245 Social Science Perspectives on Human Nutrition
Fall. 3 credits. Prerequisite: NS 115.
Social science theories, concepts, and methods that contribute to understanding of human food and nutrition will be presented, including perspectives from history, anthropology, sociology, psychology, demography, economics and political science. The course will provide integrating biological and social science frameworks for viewing human nutrition, as well as examine differences between social science and biological viewpoints. Students will apply social science analysis to contemporary nutrition topics, issues, and problems.

247 Food for Contemporary Living
Fall and spring. 3 credits. Each section limited to 16 students. Prerequisite: NS 115. Permission of instructor during course registration required (permission-of-instructor forms must be obtained from and returned to 335 Martha Van Rensselaer Hall). Laboratory coat required. Three evening prelims to be arranged.
Lec, M 12:20-1:10; lab, T R 10:10-12:40. J. Koch.
This course will promote an understanding and integration of sound nutritional practice in the scientific concepts and techniques of food preparation in a health-conscious society. High priority will be given to factors that influence meal planning, selection, and preparation of food, such as resources available; ethnic, cultural, and behavioral considerations; food presentation; as well as sensory quality evaluation. A positive regard for safe food handling practices and storage procedures is stressed.

300 Special Studies for Undergraduates
Fall or spring. Prerequisites: permission of instructor. S-U grades optional.
Special arrangements to establish equivalency for courses not transferred from a previous major or institution. Students prepare a description of the study they want to undertake on a form available from the Student Services Office. The form, signed by both the instructor directing the study and the associate director for academic affairs, is filed at course registration or during the change-of-registration period.

420 Nutritional Aspects of Raw and Processed Foods (also Food Science 420)
Fall. 3 credits. Prerequisites: organic chemistry and Food 100 or NS 115. S-U grades optional. Not offered 1990-91.
An evaluation of factors that affect the nutritional quality of foods and diets. Nutritional quality is defined. Methods and approaches for assessing nutritional quality are presented. Factors that may alter the nutritional quality of foods and food supplies (e.g., agricultural practices, processing, storage, cooking, fortification, government regulations, and new technologies) are discussed.]
498 NUTRITIONAL SCIENCES

315 Obesity and the Regulation of Body Weight (also Psychology 316)
This course is a multidisciplinary discussion of the causes, effects, and treatments of human obesity. Topics include the biopsychology of eating behavior, genetics of obesity, role of activity and energy metabolism, psychosocial determinants of obesity, anorexia nervosa, therapy and its effectiveness, and social discrimination.

331 Physiological and Biochemical Bases of Human Nutrition
Spring. 3 credits. Prerequisites: Biological Sciences 350 or 351 or equivalent. S-U grades optional.
M W F 10:10. T. C. Campbell.
The biochemical and physiological bases for human nutritional requirements, including digestion and absorption, energy metabolism, food intake regulation, lipids, carbohydrates, protein and amino acids, minerals, vitamins, and relationship of nutrition to major chronic diseases.

332 Methods in Nutritional Sciences
Spring. 3 credits. Each section limited to 18 students. Prerequisites: NS 245, NS 345, NS 331 or concurrent registration and permission of instructor during course registration (permission-of-instructor forms must be obtained from and returned to 335 Martha Van Rensselaer Hall). Two evening prelims to be scheduled.
Introduction to principles and procedure of analytical techniques and data analysis in human nutrition with emphasis on analytical skills and technical knowledge necessary to understand how we know about nutrient functions and how we measure and interpret nutrient status of individuals. Topics will include methods of analysis of nutrients and metabolites in foods, tissues, and body fluids and methods for assessing individual food intake and nutrition knowledge, attitudes, and practice. A limited number of experiments using variations in diet and various techniques for obtaining and analyzing samples will be conducted to further understanding of the principles underlying the observational methods, their associated problems and pitfalls, and their reliability. The course will culminate with an independent project in which student will adapt a published procedure to test a hypothesis they have identified.

345 Nutritional and Physicochemical Aspects of Food
Spring. 3 credits. Prerequisite: college course in organic chemistry or biochemistry. S-U grades optional.
T R 2–3:15. R. Parker, B. Lewis.
This course offers students exposure to a wide range of issues related to nutritional, physical, and chemical properties of foods. Emphasis will be placed on determinants of food quality (appearance, flavor, odor, texture, nutritional value), including structural and compositional factors, physical, chemical, enzymatic and nonenzymatic phenomena, and processing and preparation techniques. Also discussed will be issues related to food safety, regulation, and food composition data bases.

346 Introduction to Physicochemical Aspects of Food—Laboratory
Spring. 2 credits. Each section limited to 18 students. Prerequisites: NS 345 or concurrent registration, a college course in organic chemistry and permission of instructor during course registration (permission-of-instructor forms must be obtained from and returned to 335 Martha Van Rensselaer Hall). S-U grades optional.
M W 2–4:25. R. Parker, B. Lewis.
Laboratory exercises designed to illustrate principles related to food quality and ingredient functionality and to introduce students to the analytical methodology associated with food evaluation.

347 Human Growth and Development: Biological and Social Psychological Considerations (also Human Development and Family Studies 347 and Biology and Sociology 347)
Spring. 3 credits. Prerequisites: Biological Sciences 101 or 109 or equivalent; Human Development and Family Studies 115 or Psychology 101 and NS 115 or equivalent. Offered alternate years.
A review of major patterns of physical growth from the fetal period through adolescence, with consideration of biological and socioenvironmental determinants of growth, as well as physical and psychological consequences of variations in growth patterns. An examination of normal patterns of growth is followed by an analysis of major sources of variations (normal and atypical).

349 Geriatric Nutrition
Fall. 3 credits. Prerequisites: NS 115.
Aims of the course are to acquaint students with effects of aging on nutritional needs; to teach them methods of nutritional assessment that are appropriate for use with the elderly; and to give them information on nutritional interventions that have been shown to have positive effects on the nutritional and health status of older individuals.

361 Biochemistry and Human Behavior (also Psychology 361)
Fall. 3 credits. Prerequisites: Biological Sciences 101–102, Chemistry 103–104, Psychology 125, or permission of instructor. A fundamental knowledge of human biology and chemistry is essential. S-U grades optional.
M W F 9:05. B. Strupp.
A survey of the scientific literature on the role of brain and body biochemical changes as determinants of human behavior. The topics covered include action and effects of psychopharmacologic agents, the biology of learning and memory, the role of abnormal biochemistry in cognitive disorders, biochemical theories of psychosis, and effects of nutrition on behavior.

378 Food, Nutrition, and Service Management
Fall. 3 credits. Prerequisites: NS 247 or permission of instructor. S-U grades optional.
T R 2:30–4:05. J. Koch.
Applications of organization and management principles and theory to foodservice organizations, operations, and nutrition services. Emphasis is placed on leadership development, decision making/problem solving, procurement, production, distribution and quality assurance in food and nutrition services, human resource management, and financial planning in food and nutrition services. Other experiences may be possible in community foodservice operations.

398 Honors in Nutritional Sciences
Fall. 1 credit. Limited to students admitted to the division honors program. S-U grades only.
T 2:30–4. Division faculty.
Research design. Analysis of research papers on selected topics.

400–401–402–403 Special Studies for Undergraduates
Fall or spring. Credits to be arranged. S-U grades optional.
Division faculty.
For advanced independent study by an individual student or for study on an experimental basis with a group of students in a field of nutritional sciences not otherwise provided through course work in the division or elsewhere at the university. Students prepare a description of the study they want to undertake on a form to be signed by the instructor directing the study and the associate director for academic affairs. The form, available from the Counseling Office, is filed at course registration or within the change-of-registration period. To ensure review before the close of the course registration or change-of-registration period, students should submit the special-studies form to the associate director for academic affairs as early as possible.

400 Directed Readings
For study that predominantly involves library research and independent reading.

401 Empirical Research
For study that predominantly involves data collection and analysis or laboratory or studio projects.

402 Supervised Fieldwork
For study that involves both responsible participation in a community setting and reflection on that experience through discussion, reading, and writing. Academic credit is awarded for this integration of theory and practice.

403 Teaching Apprenticeship
For study that includes assisting faculty with instruction.

[415 Field-based Learning in Nutrition
Fall, spring, or summer. 2–6 credits. S-U grades optional. Prerequisites: junior, senior, or graduate standing; 9 hours of coursework in NS; and permission of instructor. Not offered 1990–91.
Hours in placement arranged individually.
Undergraduate and graduate students are placed, according to their interests and backgrounds, in organizations and agencies that provide nutrition and food services. Students may be required to provide their own transportation to placements.]
441 Nutrition and Disease
Fall. 4 credits. Prerequisites: NS 331 and a human physiology course. S-U grades optional.
W F 10:10 and F 8:15. V. Utermohlen. Study of the physiologic and metabolic anomalies in chronic and acute illnesses and the principles of nutritional therapy and prevention. The topics covered include diabetes mellitus, starvation, obesity, nutritional assessment, nutritional pharmacology, severe injury, infection, cancer, gastrointestinal diseases, liver disorders, renal diseases, cardiovascular diseases, and pediatrics. Original research papers, books, review papers, and publications of professional organizations are used throughout the course.

442 Implementation of Nutrition Care
Fall. 3 credits. Limited enrollment. Prerequisites: NS 247, concurrent registration in NS 441 (or equivalent background in either course), and permission of instructor during course registration. (Permission-of-instructor forms must be obtained from and returned to 335 Martha Van Rensselaer Hall.) S-U grades optional.
Lec, M W F 9:05; lab 1 T 2:30–4:20, lab 2 R 11:15. G. Armbruster. Development of skills necessary to implement nutrition care plans: interviewing and counseling, dietary assessment, calculation of therapeutic diets and menu planning, and quality assurance are covered.

443 Community Nutrition and Health
Spring. 3 credits. Prerequisites: NS 245 and NS 351 or concurrent enrollment in 331. S-U grades optional. The field-project component of this course may involve off-campus activity; students are responsible for their own transportation.
M F 11:15; disc, W 2:30–4:30. A. Gillespie and Division faculty. Study of human nutrition and health problems from a community perspective: programs and policies related to nutrition at local, state, and federal levels; and approaches and techniques for effective application of social science theories and research in community nutrition programs.

444 Physiochemical Aspects of Food—Laboratory
Fall. 1 credit. Prerequisite: NS 446 or concurrent registration. S-U grades optional.
T 1:25–4:25. G. Armbruster. Laboratory experiments designed to illustrate (a) the physiochemical behavior of colloidal systems, (b) chemical reactions of some food components, and (c) effects of temperature, pH, moisture, inorganic salts, and enzymes on physiochemical changes in natural foods, food components, and food mixtures.

456 Experimental Foods Methods
Spring. 3 credits. Prerequisites: NS 446, 447 and/or 448.

457 National and International Food Economics
Spring. 3 credits. Prerequisites: Econ 101 or CEH 110 and junior standing, or permission of instructor. S-U grades optional.
M W F 9:05. E. Thorbecke. Examination of individual components essential for an understanding of the United States and world food economies. Analysis of the world food economy. Review and analysis of (a) the major economic factors determining the demand for food, the composition of food consumption, and nutritional intake; and (b) the major economic factors affecting food production and supply. Examination and evaluation of the effectiveness of various food policies and programs in altering food consumption patterns. Principles of nutritional planning in developing countries within the context of the process of economic and social development.

488 Applied Dietetics in Foodservice Systems
Spring. 3 credits. Limited to 30 students. Prerequisites: NS 378, Applied Microbiology, learning theory course, and permission of instructor (permission-of-instructor forms must be obtained from and returned to 335 Martha Van Rensselaer Hall.) S-U grades optional. Uniform required.
Lec, M W 9:05; lab, M or W 1:30–6. J. Koch. Students will gain experience in care and use of institutional equipment, menu planning, recipe development, job analysis and evaluation, volume food production, applied sanitation, in-service training, and other skills required to operate/manage a foodservice program. Some laboratories will be arranged through Cornell Dining.

498 Honors in Nutritional Sciences
Spring. 1 credit. Limited to students admitted to the division honors program. Students may register in NS 499 concurrently.
T 2:30–4. T. C. Campbell, coordinator. Informal presentation and discussion of current topics in food and nutrition in which all members participate. Written reports on topics discussed may be required. Delineation of honors research problems in consultation with faculty advisor.

499 Honors Problem
Fall and spring. Credits to be arranged. Open only to students in the division honors program.
Disc, T 11:15, plus additional hours to be arranged. Division faculty; T. C. Campbell, coordinator. An independent literature, laboratory, or field investigation. Students should plan to spend the work over two semesters.

600 Special Problems for Graduate Students
Fall or spring. Credit to be arranged. Limited to graduate students recommended by their chair and approved by the instructor in charge. S-U grades optional. Hours to be arranged. Division faculty.

601-604 Advanced Nutrition Series
A series of nutrition courses offered jointly by the Division of Nutritional Sciences and the Departments of Animal Science and Poultry Science. Prerequisites: courses in nutrition, physiology, and biochemistry, including intermediary metabolism, or permission of instructor.

601 Proteins and Amino Acids (also Animal Science 601)
Fall. 2 credits. Prerequisites: physiology, biochemistry, and nutrition, or permission of instructors. Letter grade only. Offered even-numbered years. Not offered 1991–92.

602 Lipids
Fall. 2 credits.
T R 11:15. A. Bensadoun. Advanced course on biochemical, metabolic, and nutritional aspects of lipids. Emphasis is on critical analysis of current topics of lipid methodology, lipid absorption, lipoprotein secretion, structure, and catabolism; mechanisms of hormonal regulation of lipolysis and fatty acid synthesis; and cholesterol metabolism and atherosclerosis.

604 The Vitamins
Fall. 2 credits.
T R 10:10. G. F. Combs, Jr. Lectures on nutritional aspects of the vitamins, including recent developments in nutritional and biochemical interrelationships with other nutrients and metabolites.

607 Nitrogen Metabolism (also Biological Sciences 650)
Spring. 2 credits. Prerequisites: Chemistry 358 or 360 and Biological Sciences 330 or 351, or permission of instructor. Offered alternate years. Not offered 1990–91.
T R 9:05. Staff.

The course will cover most aspects of nitrogen metabolism. The first section will consider nitrogen fixation and assimilation in bacteria and the metabolism and biological importance of purines, pyrimidines, porphyrins, alkaloids, and amines. This will be followed by discussion of the pathways of amino acid biosynthesis and degradation. The final section will include discussion of protein
618 Teaching Experience
Fall or spring. No credit. Limited to division graduate students and students who have permission of instructor. No grades given.
Hours to be arranged. Division faculty; C. Bisogni, coordinator.
Designed to provide experience in teaching nutritional sciences by direct involvement in college courses under supervision of a faculty member. The aspects of teaching and the degree of involvement vary, depending on the needs of the course and the experience of the student.

619 Field of Nutrition Seminar (also Animal Science 619)
Fall or spring. No credit. No grades given. M 4:30. Faculty and guest lecturers. Lectures on current research in nutrition.

620 Food Carbohydrates (also Science 620)
Spring. 2 credits. Prerequisites: Biological Sciences 330 or equivalent. Letter grades only. Offered alternate years; next offered 1991–92. T R 10:10. J. Brady, B. Lewis.
A consideration of the chemistry of carbohydrates, including sugars and complex carbohydrates (starches, pectins, hemicelluloses, gums, cellulose, and conjugated carbohydrates). Emphasis is on intrinsic chemistry, functionality in food systems, and changes occurring during food processing and storage.

626 Special Topics in Food
Spring. 2 credits. Hours to be arranged. G. Armbruster, B. Lewis.
Current research related to food is reviewed in the context of basic principles and their application to the quality of food.

627 Special Topics in Food
Spring. 2 credits. Prerequisite: organic chemistry. Recommended: biochemistry. S-U grades optional. May be repeated for credit with permission of instructor. W 7:30–9:30 P.M. N. Mondy.
Current research related to international food production and processing and toxicants in the food chain.

630-633 Advanced Nutrition Laboratory
Fall or spring. 1–5 credits. Limited to 12 students. T 2:30–5:30, 9–12. 631–633; T R 2:30–5:30. Division faculty. Laboratories on the anthropometric, dietary, clinical, and biochemical assessment of human nutritional status. The individual courses are taught in sequence over the entire semester. Any or all of the modules may be taken for credit.

630 Anthropometric Assessment
Spring, weeks 3–5. 1 credit. Prerequisites: NS 331 or equivalent and permission of instructor. T 2:30–5:30, 9–12. J. Haas.
Overview of methods of assessing nutritional and health status, techniques of anthropometry, body composition, energy expenditure and physical performance applicable to children and adults.

631 Dietary Assessment
Fall. 1 credit. 7 weeks only. Prerequisites: statistics and NS 331 or equivalent. Enrollment limited. Not for credit. R 2:30–5:30. D. Sanjur.
Study of methods and techniques for assessing dietary intakes at the individual and household levels.

632 Clinical Assessment
Spring. 1 credit. Prerequisites: NS 441, 630, 631, and Biological Sciences 330 or 331; NS 332 or Biological Sciences 430; and permission of instructor. T R 2:30–5:30. V. Utermohlen and division faculty.
Study of methods and techniques for clinical assessment of nutritional status and diagnosis of nutritional disorders.

633 Human Metabolic Studies
Spring. 1 credit. Prerequisite: NS 331. Limited to 20 students. S-U grades optional. Hours to be arranged; 6 meetings over a 3-week period, 2-1/2 hours each. D. Roe.
Instruction in the principles of human metabolic studies and how these are carried out. Includes how to plan and write a protocol for a study; how to select an appropriate experimental design; how to select subjects; how to design, prepare, and analyze diets; how to make collections of urine and feces; and how to examine data for subject period and treatment effects. Assigned readings, which will be discussed in class, will be from selected recent papers in which techniques of human metabolic studies are described. Learning experiences will include participation in a six-day study.

634 Vitamins and Coenzymes (also Biological Sciences 634)
Spring. 2 credits. Prerequisites: organic chemistry 253 or 357–358 and Biological Sciences 330 or 331, or their equivalents in biochemistry. Offered alternate years. Next offered 1991–92. T R 10:10. M. N. Kazarinoff.
Lectures on the chemistry, biochemistry, and physiology of vitamins and coenzymes. Emphasis is placed on the relationship of structure and function, and mechanisms are examined in detail. Readings from the current primary literature are assigned weekly.

635 Mechanisms of Metabolic Regulation
(also Biological Sciences 635)
Spring. 2 credits. Prerequisites: Chemistry 358 or 360 and either Biological Sciences 330 or 331 or permission of instructor. Offered alternate years. T R 9:05. Division faculty.
Lectures only. The identification and characterization of regulatory steps in metabolism are considered from both theoretical and practical aspects. The intracellular mechanisms of regulation are stressed, with specific examples examined in detail.

636 Integration and Coordination of Energy Metabolism(also Biological Sciences 637)
Fall. 3 credits. Prerequisites: Biological Sciences 330 and 331, or equivalent. M W 9:05. W. J. Aronson.
The elements and dynamics of energy metabolism in higher animals are systematically developed through biochemical characterizations of the metabolic components and structure of major tissues and organs, stressing correlations with physiologic functions. Mechanisms that control energy metabolism within individual tissues and coordinate these processes in an intact animal are analyzed in the contexts of selected physiologic and pathologic stresses.
637 Epidemiology of Nutrition
Spring. 3 credits. Taught in conjunction with Advanced Epidemiology (Vet Med 665).
Limited to graduate students. Prerequisites: Statistics and Biomtry 602 or 604 or equiva­lent, NS 331 or equivalent, Vet Med 664 or equivalent.
Hours to be announced. J.-P. Habicht.
Course covers principles of nutritional epidemiology, impact assessment of nutrition intervention programs, and nutritional surveillance. Teaching principles of using nutritional information for decision making, including the levels of evidence about nutrition and health for making decisions. The course shows how the biochemistry and physiology of nutrition can be related to epidemiological assessment and research strategies.

638 Epidemiology of Nutrition Seminar
Spring. 3 credits. Reserved for graduate students planning field intervention studies; by permission of instructor. Prerequisite: NS 636.
Hours to be announced. J.-P. Habicht.
Covers the meta-analysis, design, measurement, and analytic issues involved in developing, implementing, and analyzing studies of field interventions with nutritional impact.

639 Epidemiology Seminar (also
Statistics and Biomtry 639)
Fall and spring. 1 credit. Limited to graduate students; others by permission of instructor. S-U grades only.
Hours to be announced. J.-P. Habicht, H. Erb.
This course will develop skills in the preparation and interpretation of epidemiological data by discussing current research topics and issues.

644 Community Nutrition Research Seminar
Fall and spring. No credit. No grades given.
Hours to be announced. A. Gillespie and community nutrition faculty.
The seminar series focuses on research presentations in nutrition education and other areas of community nutrition. Cornell faculty and graduate students and outside invited speakers present research proposals, results from research, theoretical bases for research, program evaluations, and discuss current issues in community nutrition research. The format varies but always includes discussion by participants.

645 Community Nutrition
Spring. 2 credits. Limited to graduate students with a major or minor in human nutrition who have had a previous course in community nutrition.
M 1:25–3. A. Gillespie and community nutrition faculty.
Students will be actively involved in discussing community nutrition needs assessments, program planning and development, evaluation of impact, the implications of public policy and current issues in community nutrition.

646 Seminar in Physicochemical Aspects of Food
Spring. 1–3 credits. Prerequisite: a college course in organic chemistry or biochemistry. S-U grades optional.
TR 2–3:15; disc to be arranged. B. Lewis, R. Parker.
An introduction to physicochemical aspects of food, for graduate students who have had limited or no work in this area. The seminar uses the lectures of NS 345 as a basis for supplementary readings and critical review of research on selected topics.

650 Public Health Nutrition
Spring. 3 credits. For graduate students with a major or minor in nutrition and undergraduate nutrition majors in their senior year. Prerequisite: NS 331 or equivalent.
Lectures cover social, environmental, and disease variables that influence the nutrition of infants, children, and adults. Students gain experience in nutritional assessment methods. Endemic nutritional problems (such as obesity, dental caries, and anemias) of public health importance of the United States are discussed. Student presentations are made in class. Field experience is offered.

651 Nutrition and the Chemical Environment (also Toxicology 651)
Fall. 3 credits. Prerequisite: NS 331 or equivalent. S-U grades optional. Not offered 1990–91.
An overview of an interactions between drugs and nutrition is presented. Specific lecture topics include food-drug incompatibilities, drug-induced nutritional deficiencies, and nutritional teratology. Students will obtain methods skills in selection of animal models, in nutritional pharmacology, and in research designs appropriate to human studies.

652 Nutrition Counseling
Spring. 1 or 2 credits. Prerequisite: NS 441 and 442. S-U grades only.
Principles and procedures of nutritional counseling in clinical practice are presented. Emphasis on subject matter and process skills necessary to develop, implement, and evaluate nutritional care plans for individuals and groups. Includes workshops, simulation techniques, and work with clients in selected settings.

659 The Nutrition, Physiology, and Biochemistry of Mineral Elements (also Veterinary Medicine 759 and Biological Science 615)
Fall. 3 credits. Prerequisites: basic physiology, intermediate biochemistry, and general nutrition. Offered alternate years. Not offered 1991–92.
Lectures and discussions on nutritional aspects and physiological, biochemical, and hormonal factors relating to the major macro and micro elements. Included is information on the chemistry of ions and complexes, methods used in research on biologically important minerals, absorption, transport, homeostasis, essentiality, toxicity, and requirements of mineral elements. Lectures and class discussions will emphasize recent developments and experimental approaches.

660 Special Topics in Nutrition
Fall or spring. 3 credits maximum each term. Registration by permission of the instructor.
Hours to be arranged. Division faculty.
Designed for students who want to become informed in any specific topic related directly or indirectly to nutrition. The course may include individual tutorial study, experience in research laboratories, a lecture series on a special topic selected by a professor or a group of students, and/or selected lectures of another course already offered. Topics may be changed so that the course may be repeated for credit.

669 Field Seminar on Nutrition in Government
Spring. 1 credit. Limited to 15 students. S-U grades only.
V. Thermolen.
This 2-3 day seminar provides an overview of policy decision making and implementation of nutrition programs at the state and national levels. Seminars alternate yearly between Washington, D.C. and Albany, NY. Provides opportunities to meet and confer with staff members of the legislature and selected government and private agencies. An orientation meeting and follow-up group discussion and summary report are also part of this seminar.

670 Clinical Field Studies
Fall, spring, or summer. 15 credits maximum.
Limited to graduate students in clinical nutrition. Prerequisites: NS 441, 442, 630, 631, 632, 653 and 652. S-U grades only. Not offered 1990–91.
Full-time study at off-campus clinical sites. Division faculty.
The delivery of nutritional care in hospitals, outpatient clinics, and community settings.

680 International Nutrition Problems, Policy and Programs
Fall. 3 credits. Prerequisite: permission of instructor.
Designed for graduate students who want to learn about the important nutritional problems of developing countries. The major impacts of malnutrition related to poverty and their underlying causes are discussed. Emphasis is placed on programs and policies that can assist poor countries and communities to improve their nutritional and health status.

681 Nutritional and Public Health Importance of Human Parasitic Infections
Fall. 2 credits. Prerequisites: graduate student status or permission of instructor. S-U grades optional. Offered alternate years. Not offered 1991–92.
Reviews the scientific evidence for relationships between human nutritional status and common human parasitic infections. Concentrates on malnutrition (protein-energy malnutrition, anemia) in developing countries. Parasitic infections emphasized are malaria, hookworm, ascaris, schistosomiasis, and trichuriasis. Format is lecture-demonstration-discussion.
502 NUTRITIONAL SCIENCES

[682 Isotope Kinetics (also Biological Sciences 752)]
Spring. 2 credits. Prerequisite: Calculus. S-U grades optional. Not offered 1990-91.

[683 Field Studies in International/Community Nutrition]
Fall. 1 credit. Graduate student status or permission of instructor required. S-U grades only.

[685 Food and Nutrition Policy (also Agricultural Economics 685)]
Fall. 3 credits. Prerequisites: Consumer Economics and Housing 310 or Consumer Economics and Housing 605 or Economics 311 or 313 or Agricultural Economics 415 or equivalent. Knowledge of multiple regression. S-U grades optional.

[698 Special Topics in International Nutrition]
Fall and spring. 3 credits maximum each term. Registration by permission of instructor. M. Latham and faculty in Program in International Nutrition.

This option is designed for graduate students, mainly those with a concentration in international nutrition, who wish to become familiar with some specific topic related to international nutrition that is not adequately covered in an existing course. Usually one or more students will approach a professor and arrange for tutorial study on an agreed topic. This will usually be achieved by extensive use of literature and discussions of this with the faculty members. In certain semesters it may consist of a small seminar or lecture course on a subject not now adequately covered in an existing course. On occasion it may involve laboratory or field work. Because the topics change, the course may be repeated for credit.

700 Current Topics in Toxicology (also Toxicology 898)
Fall or spring. 1–3 credits. S-U grades optional.

Hours to be arranged. Staff. A discussion of the most current developments in various areas of toxicological research and testing. Faculty and students will participate jointly in evaluating research findings and provide seminars and discussion of such material. For information regarding topic, contact the office of the Graduate Field of Environmental Toxicology, 16 Fennewall Hall, 255–8008.

702 Seminar in Toxicology (also Toxicology 702)
Fall or spring. 1 credit. S-U grades only. T 12:20 or W 12:20. Staff.

The seminar program covers topics in biochemical, genetic, nutritional, veterinary, and regulatory toxicology and ecotoxicology and environmental chemistry. Included are presentations of basic research studies as well as fundamental concepts and research activities involving environmental problems of a toxicological nature. Presentations are given by speakers from Cornell and visitors.

703 Seminar in Nutritional Science
Fall and spring. 1 credit. S-U grades only. T 12:20 or W 12:20. Division faculty.

Presentations of original articles pertinent to the Nutritional Sciences. Students will learn how to make professional presentations and how to critique the presentations by others. In addition, students will learn how to read and interpret original articles published in a wide variety of journals.

FACULTY ROSTER

Sanjur, Diva M., Ph.D., Cornell U. Prof.
Sobal, Jeffery, Ph.D., U. of Pennsylvania. Assoc. Prof.
Stephenson, Lani, Ph.D., Cornell U. Assoc. Prof.
Stipanuk, Martha H., Ph.D., U. of Wisconsin. Assoc. Prof.
Thorbecke, Erik, Ph.D., U. of California. H. E. Babcock Professor of Economics and Food Economics.
Utermohlen, Virginia, M.D., Columbia U. Assoc. Prof., Nutritional Sciences/Biochemistry, Molecular and Cell Biology.

Other Teaching Personnel
Kendall Casella, Anne, R.D., Ph.D., Cornell University. Lecturer
Koch, Joan M. L., R.D., Ph.D., Cornell University. Senior Lecturer
Strupp, Barbara, Ph.D., Cornell University. Lecturer

Joint Appointees
Apgar, B. Jean, Visiting Assoc. Prof., U.S. Plant, Soil, and Nutrition Laboratory/Nutritional Sciences
Bauman, Dale, Prof., Animal Science/Nutritional Sciences
Combs, Gerald F., Jr., Prof., Poultry Science/Nutritional Sciences
McCormick, Charles, Assoc. Prof., Poultry Science/Nutritional Sciences
Miller, Dennis, Assoc. Prof., Food Science/Nutritional Sciences
Van Campen, Darrell R., Assoc. Prof., U.S. Plant, Soil, and Nutrition Laboratory/Nutritional Sciences
Van Soest, Peter J., Prof., Animal Science/Nutritional Sciences
Warner, Richard G., Prof., Animal Science/Nutritional Sciences
Military instruction began at Cornell University in 1868 under the provisions of the Morrill Act of 1862. Since that time, officer education has been highlighted by the construction of Barton Hall in 1914, establishment of a formal Reserve Officers Training Corps (ROTC) unit in 1916, and the evolution of a program that, while teaching drill and ceremonies, places greater emphasis on the development of leadership and managerial skills. Throughout the years, Cornell's program of officer education has provided many outstanding civilian and military leaders well equipped for success as a result of knowledge and skills gained from their involvement in the officer education program. Part of pursuing undergraduate and graduate degrees, the programs of officer education allow the student to prepare for a commission as an officer in either the United States Army, Navy, Marine Corps, or Air Force. Each service program is headed by a senior military officer who also serves as a full professor on the Cornell faculty.

MILITARY SCIENCE

Lieutenant Colonel Robert N. d'Entremont, Quartermaster Corps, United States Army, Professor of Military Science and Commanding Officer, U.S. Army ROTC Instructor Group
Major Edward R. Murdough, Engineer Corps, United States Army Reserve
Major Robert E. Newman, Field Artillery, United States Army National Guard
Major James S. Jenkins, Jr., Infantry, United States Army
Captain Timothy M. Kaseman, Aviation, United States Army
Captain Frank G. Keating, Quartermaster Corps, United States Army

United States Army ROTC Program

The primary objective of the Army Officer Education Program at Cornell is to commission the officer leadership of the United States Army. Intermediate objectives are to provide students with an understanding of the fundamentals of responsibility, integrity, and self-discipline, as well as an appreciation of the citizen's role in national defense. The application of the decision-making process to a variety of situations is given major emphasis as a valuable aid in developing leadership potential.

These objectives are achieved through a program normally covering four years. A two-year program is available, however, and is discussed in a later section. The program includes specific courses in military science, more general academic subjects that assure a well-rounded education, practical training in leadership through participation in the Cadet Corps (including attendance at one six-week summer camp at an Army installation), and the opportunity to participate in a number of extracurricular activities. The combination prepares the student for commissioning and effective performance in the many branches of the Army. The student's academic major, academic performance, leadership ability, personal desires, and the needs of the Army determine the branch of the Army in which he or she is commissioned upon graduation.

Requirements for Enrolling

Applicants must be citizens of the United States (Noncitizens may enroll in selected portions of the program.)

An applicant's vision must be correctible to a minimum of 20/20 in one eye and 20/400 in the other eye. Height must be at least sixty inches for men, fifty-eight inches for women, and no more than eighty inches for men and seventy-two inches for women, although exceptions may be considered. The weight requirement varies according to age, height, and sex. Overall sound mental and physical condition is essential, and students are required to undergo periodic physical examinations. Enrollment in the program is subject to the approval of the professor of military science. Enrollment in specific courses by students not formally enrolled in the program must be approved by course instructors.

Four-Year Program

The Four-Year Program is open to students in their freshman year or, with the approval of military and university authorities, to sophomores in a five-year degree program. Former Officers of the Armed Forces of the United States and students entering Cornell with AROTC credit from secondary or military schools (Junior Division AROTC) may receive advanced standing.

Under the Four-Year Program students enroll in the Basic Course (Mil S I and II) during the first two years, and the Advanced Course (Mil S III and IV) during the next two years. A total of fourteen credits of military subjects is taken. In addition, academic-enrichment courses are required in such fields as written communications, math logic, computer science, human behavior, military history, and perhaps a foreign language. Specific requirements are determined by the student and his or her adviser after initial enrollment. Throughout the four years, cadets spend an additional two hours each week each semester in practical leadership training for which there is no academic credit. All cadets attend a six-week camp, with pay, between the junior and senior years.

Basic Course (Mil S I and Mil S II)

Students in the first year of the Basic Course take one classroom course in military science in the fall and spring semesters, for which they receive academic credit. These courses include study of the U.S. organization for defense and principles and techniques of leadership and management.

Students also participate in leadership modules that include rappelling, orienteering, drill and ceremony, physical training, winter survival, and individual tactical training. These modules are designed to promote personal development and enrichment. While they do not receive academic credit for these activities, students receive physical education credit. Typical freshman participation in Army officer education is 48 1/2 program-related hours.

During the fall of the second year, the student takes a three-credit class in military history, including the evolution of warfare and armed conflict in society. In the spring, the student takes a one-credit course in map reading and spends approximately two hours a week in practical leadership training, land navigation, and military skills.

Advanced Course (Mil S III and Mil S IV)

The Advanced Course of the Four-Year Program is open to students who have successfully completed the Basic Course and are accepted by the Professor of Military Science for further enrollment. It is also open to students who have gained appropriate advanced standing through either successful completion of basic summer programs (see the description of the Two-Year Program) or prior military training. Any student entering the Advanced Course must have two years of academic work remaining at Cornell or another degree-granting institution. The student must pass such physical and aptitude tests as may be prescribed. In addition, the past performance and desire of each student is evaluated to determine if he or she has the potential for eventual commissioning.

When students are accepted for the Advanced Course, they execute a written contract with the U.S. government. Under terms of the contract, they agree to complete the Advanced Course and to accept a commission if tendered. Concurrently with the signing of the contract, students enlist in the United States Army Reserve for control purposes.

Classroom study in the Advanced Course includes one military science course each semester on such subjects as leadership and management, small-unit tactics, and command and staff organization and functions. The two hours a week of practical leadership training continues, and between the junior and senior years all cadets attend a six-week advanced summer camp currently conducted at Fort Bragg, North Carolina.

Two-Year Program

The Two-Year Program consists of the last two years (the Advanced Course) of the regular Four-Year Program. To qualify for the Two-Year Program, a student must successfully complete a six-week summer Basic Camp or receive placement credit for prior military service.

The Two-Year Program is open to selected students who have two years of academic study remaining at Cornell or another accredited degree-granting institution.
Applications are accepted October to April of the sophomore year. Selectees complete the six-week camp before registering in the Advanced Course. Selected students may be eligible for up to six academic credit hours for successful completion of Basic Camp.

Scholarships
Scholarships are awarded on the basis of merit and are available for two, three, or four years. AROTC scholarships are awarded each year to outstanding Basic Camp participants and students in the freshman and sophomore classes. Cadets who are awarded scholarships continue to receive support until graduation as long as they fulfill the requirements. Scholarship cadets receive a stipend for university tuition, required fees, textbooks, and classroom materials for the duration of their scholarship. Scholarship cadets and Advanced Course cadets also receive $100 a month for up to ten months a year.

Commissioning
All students who successfully complete the Advanced Course, including the advanced summer camp, are commissioned as second lieutenants in the United States Army Reserve or Regular Army upon graduation.

Distinguished Military Graduates
Selected senior cadets with high academic achievement and outstanding military qualities are designated Distinguished Military Graduates after fulfilling all obligations for a baccalaureate degree. All cadets, scholarship and nonscholarship, are eligible to compete for this distinction.

Service Obligations
A variety of active duty and reserve combinations are available. The manpower requirements of the Army and the qualifications of the cadets determine the option. An officer beginning active duty first attends the Officer Basic Course (normally ten to sixteen weeks) of the assigned branch. Upon completion of this course the officer is assigned to a unit and location that is determined by the desires of the individual and the requirements of the Army. Those officers selected for reserve duty attend the Officer Basic Course, after which they are released to reserve status.

Scholarship cadets, whether commissioned in the Regular Army or the Reserve, generally serve four years on active duty and four years in reserve status; however, some may serve eight years on reserve duty.

Choice of Branch
Cadets in the second year of the Advanced Course (normally the senior year) may specify the branch of the Army—such as Infantry, Corps of Engineers, Armor, Signal Corps, Field Artillery, Air Defense, Artillery, Ordnance, Chemical, Adjutant General, Quartermaster, Finance, Medical Service, Military Intelligence, Military Police—in which they prefer to serve. They are notified in the spring, before commissioning, of the branch to which they are assigned. The likelihood of appointment in a chosen branch depends upon the student's academic and officer education performance, degree area, and the needs of the Army at that time.

Graduate Study
Active duty deferments, or educational delays, may be granted to individuals who want to attend graduate school at their own expense. Requests will be considered on the basis of needs of the service. Admission to graduate school is the student's responsibility.

Benefits
Each cadet in the Advanced Course (Mil S II and Mil S IV) receives $100 a month for up to ten months a year. While attending the advanced summer camp (between the junior and senior years), each cadet receives approximately $600 and an allowance for travel to and from camp. Each semester, approximately $180 is provided to cover textbooks, supplies, and fees for scholarship recipients.

A cadet in the Two-Year Program receives the same payments as cadets in the Advanced Course and, in addition, receives approximately $700 and a travel allowance for summer Basic Camp attendance before entering the Advanced Course.

Military Science Courses
All cadets take one course and a leadership laboratory each semester in military science. The number of hours a week spent in the classroom varies from semester to semester, as does the credit received for each course.

Freshman Year (Mil S I)

Mil S 101 United States Organization for Defense
Fall. 1 credit. Required.
Staff.
Students examine the U.S. defense structure in terms of organization, mission, personnel, and relationships among military forces and between the military forces and various branches and departments of the government. The United States Army force structure is examined at all levels. The complexities and magnitude of operating the defense organization are studied to provide a framework for subsequent instruction.

Mil S 102 Leadership Theory
Spring. 1 credit. Required.
Staff.
This course allows students to develop a basic understanding and appreciation of the theories of social and organizational psychology and behavior as they apply to the military setting. Attention is given to leader types, the source and exercise of authority, and the impact of varying styles of leadership on motivation and organization effectiveness. The student is introduced to the concepts of integrity, ethics, and professionalism.

Sophomore Year (Mil S II)

Mil S 321 Armed Conflict and Society
Fall. 3 credits. Required.
Staff.
This course provides practical knowledge of the various forms of topographic representation. Students interpret and use maps in terrain association and land navigation. Knowledge of topography is complemented by an orientation on significant environmental influences from physical, social, and climatic factors. Portions of the course offer practical experience in land navigation and orienteering.

Junior Year (Mil S III)

Mil S 331 Theory and Dynamics of the Military Team
Fall. 2 credits. Required.
Staff.
After an initial introduction to techniques of presenting briefings, students are provided with a broad understanding of the principles and application of teamwork in military organizations. Particular emphasis is given to leadership responsibilities of the commander as the team coordinator. Additionally, students have an opportunity to develop an understanding of the roles and contributions of the various branches of the Army in support of the military team.

Mil S 332 Leadership in Small-Unit Operations
Spring. 2 credits. Required.
Staff.
This course provides an understanding of the nature of decision making and the tactical application of the military team. Through the use of conferences and extensive practical exercises, students develop familiarity with the factors influencing the leader's decisions; the processes of planning, coordinating, and directing the operations of military units to include troop-leading procedures; and development of operation plans and orders.

Senior Year (Mil S IV)

Mil S 441 Contemporary Military Environment I
Fall. 2 credits. Required.
Staff.
An overview of the functions, responsibilities, and interrelationships between the small-unit leader, the commander, and the staff, using a combat arms battalion as a typical organizational structure. Detailed discussions focus on actions of the small-unit leader, communication skills, the military justice and legal system, the threat environment, and the logistical support of the army in the field.

Mil S 442 Contemporary Military Environment II
Spring. 2 credits. Required.
Staff.
A continuation of Mil S 424. Students examine the leadership environment of the Army officer. Conferences and seminars examine the techniques of effective military leadership with special attention given to professionalism and ethical considerations in the armed forces during peacetime and armed conflict.
Practical Leadership Training

All Army Officer-Education Students

In the leadership laboratory, all of these objectives are accomplished by emphasizing practical leadership positions and hands-on experience. Types of practical laboratory activities include an introduction to rifle marksmanship, mountaineering, physical training, land navigation and orienteering, signal communications, tactics, and orientation and training exercises at military installations.

As with many laboratory periods, no credit is given, and participation is required for successful completion of the AROTC program. Students will receive physical education credit for the laboratory. Students register as follows:

Mil S I Leadership Laboratory I
- **Fall**
- Mil S 251 Mil S 152
- Mil S I cadets select either rappelling-drill and physical training, or ranger training. In the spring, class choices are winter survival-land navigation or ranger training. These interesting and challenging activities do not provide academic credit but may be used for physical education credit if adequate hours have been accrued.

Mil S II Leadership Laboratory II
- **Fall**
- Mil S 251 Mil S 252
- Cadets meet for two hours each week as members of the cadet organization to participate in practical leadership exercises. Types of practical activities include familiarization in rifle marksmanship, orienteering, drill and ceremonies, signal communications, physical fitness training, tactics and field exercises, and discussions.

Mil S III Leadership Laboratory III
- **Fall**
- Mil S 351 Mil S 352
- Cadets meet for two hours a week to prepare for a six-week summer camp that follows the junior year. Emphasis is on the development of individual skills in leadership techniques and practical skills. Cadets rotate among leadership positions to develop an ability to apply decision-making processes to a myriad of situations. They also acquire technical expertise and proficiency in signal communications, physical fitness, drill and ceremonies, rappelling, orienteering, tactics, water survival, and other military skills. This also includes two to three hours a week devoted to physical fitness.

Mil S IV Leadership Laboratory IV
- **Fall**
- Mil S 451 Mil S 452
- Senior cadets plan and operate the leadership laboratory programs for Mil S I-IIII cadets. The development of planning and supervisory skills is emphasized. Cadets have an opportunity to practice leadership skills developed during previous ROTC training and summer camp experiences. This also includes two to three hours a week devoted to physical fitness.

Professional Military Education (PME) Requirements

In addition to the ROTC classes and leadership laboratories above, a number of courses are required as part of the student’s academic program. These courses are offered by the university and round out the student’s professional education. The PME component of the ROTC program requires at least one college course in each of the following areas: human behavior, written communication skills, military history, math logic, and an introduction to computers. These courses must be completed prior to graduation and commissioned. Course requirements are approved by the Professor of Military Science.

NAVAL SCIENCE

Captain J. R. Carey, United States Navy, Professor of Naval Science and Commanding Officer, Naval ROTC Unit

Lieutenant J. M. Fleming, United States Navy Reserve

Major J. M. Higgins, United States Marine Corps Commander D. R. Kukulski, United States Navy

Lieutenant S. R. LaPorte, United States Navy

Lieutenant J. D. Lilly, United States Navy

Lieutenant W. A. Powell, United States Navy

The objective of the Naval Officer Education Program is to prepare selected students for service as commissioned officers in the United States Navy or United States Marine Corps by supplementing their undergraduate education with instruction in essential concepts of naval science and fostering development in the qualities of leadership, integrity, and dedication to their country and the naval services. The program is compatible with most undergraduate major fields of study, including five-year baccalaureate degree programs on a case-by-case basis.

The objective is achieved through a broad program, normally covering four years, that combines specific courses in naval science and specified academic subjects to supplement weekly professional development sessions in which the practical aspects of naval science and leadership procedures are stressed. It also includes at least one summer-at-sea period.

Non-naval officer education students. Though the Navy–Marine Corps program has been designed to prepare future officers, Naval science courses are open to all students at Cornell University as space limitations allow.

Requirements for Enrollment

An applicant for Naval ROTC at Cornell must be a citizen of the United States. Applicants must have reached their seventeenth birthday by June 30 of the entering year and be less than twenty-five years of age by June 30 of the calendar year in which they are commissioned. Waivers of the upper age limit may be available for applicants who have prior active duty military service. Applicants must also meet physical and medical requirements. Interested students should visit the Naval ROTC Unit in Barton Hall.

Programs

There are two types of Naval programs: the Scholarship Program and the College Program. They differ primarily in benefits to the student and type of commission earned.

Scholarship Program

The Naval Officer Education Program provides approximately five thousand scholarships in more than sixty-six universities nationwide to selected students who want to serve in the Navy or Marine Corps. Financial support is provided students during college preceding the award of the baccalaureate degree.

Benefits

The program provides uniforms, full tuition, most instructional fees, textbooks, nonconsumable supplies, and $100 a month for a maximum of forty months.

Successful completion of the Scholarship Program leads to a regular commission in the Navy or Marine Corps. Applicants must have prior active duty, have physical examination and, applying to, and being accepted by, one of the colleges or universities throughout the country that offers an NROTC program.

Second, by enrolling in the College Program at Cornell and being recommended by the professor of naval science for a scholarship after at least one semester in the program.

Third, by entering through the Two-Year Scholarship Program.

College Program

There are two College Programs available. Both lead to a commission in the Navy or Marine Corps Reserve and a minimum of three years of active duty.

Each of these programs provides textbooks for naval science courses, uniforms, and a subsistence allowance of $100 a month from the beginning of the junior year.

The regular College Program is three to four years long. Academic requirements for students in this program are somewhat less than those for scholarship students, as noted in the curriculum section of this booklet.

The Two-Year College Program begins the summer before the junior year, when students attend a required program with pay at the Naval Science Institute in Newport, Rhode Island.

Summer Training

Each summer, students in the Scholarship Program spend approximately four to six weeks on a Navy ship, the unit sail-training vessel Vindicator, or with a naval activity anywhere in the world for on-the-job training. College Program students attend one summer training session of the same duration between the junior and senior years. While attending summer training sessions, midshipmen are paid approximately $500 a month.

Active Duty Requirements

As required by Section 2107, Title 10, United States Code, selected applicants must enlist in the United States Naval Reserve for eight years in pay grade E-1 (seaman recruit) before being appointed midshipman, USNR, and receiving compensation. Students who are disenrolled from the NROTC Scholarship Program for
reasons beyond their control may be excused from their enlisted status. It should be understood that officers commissioned in the Regular Navy or Marine Corps serve on active duty for a minimum of four years. Those commissioned in the Naval or Marine Corps Reserve serve a minimum of three years on active duty. Specialized training following commissioning adds additional active duty requirements in some cases.

Choice of Assignment
Graduates have an opportunity to request the duty they prefer upon graduation. These requests are given careful consideration, and every effort is made to assign the newly commissioned officer the duty of his or her choice.

Among the types of assignments are duty in nuclear propulsion for surface ships and submarines, naval aviation, and large and small surface ships. Other specialties are available on a limited basis.

Marine Corps Options
The United States Marine Corps is an integral part of the Naval Services and is commanded by the Commandant of the Marine Corps. One-sixth of the NROTC scholarship students may be Marine selects who will be designated Marine-option midshipmen. Upon successful completion of the program they will be appointed second lieutenants in the United States Marine Corps.

Marine-option midshipmen will follow the same program as other NROTC midshipmen for the first two years. Beginning with the junior year, Marine-option midshipmen will be taught Marine oriented courses by a Marine officer instructor. For first class summer training (after the junior year), known as the USMC Officer Candidate School, Marine-option students will travel to Quantico, Virginia, where they will undergo six weeks of intensive training. Upon commissioning the following year as second lieutenants, they will be assigned to the Basic School at Quantico, Virginia. After the Basic School, the Marine officer is assigned duty in a variety of occupational fields. Among the duties available are Infantry, Aviation, Artillery, Tracked Vehicles, Engineers, Communications, Electronics, Supply, Administration, and Computer Science. The officer may serve on board naval vessels or at shore installations of the Marine Corps or Navy, in this country or overseas.

The Marine Corps has a postgraduate training system similar to objectives and organization to that of the Navy. Marine officers selected for aviation receive flight training at the Naval Air Station, Pensacola, Florida, along with their Navy counterparts.

Curriculum
A student has three categories of requirements to fulfill as a midshipman. The first of these requirements is a weekly naval professional development session each semester. The second requirement is a naval science course each semester. The last set of requirements consists of other required courses prescribed by the Navy to meet the growing need for more and better technically educated junior officers.

Navy Professional Laboratories
Nav S 141-142, 241-242, 341-342, or 441-442
All students in the program participate in one ninety-minute professional development session each week. The session is held from 2:30 until 4:00 on Wednesday afternoon. This period is planned and implemented for the most part by the midshipmen officers in the battalion organization and consists of both drill and professional information briefings. Students gain experience in actual leadership situations and at the same time learn the fundamentals of seamanship, military formations, movements, commands, discipline, courtesies, and honors. During information briefings special emphasis is given to applied leadership as it relates to the administrative and managerial aspects of a Navy or Marine Corps officer's duties.

Naval Science Courses
All Navy and Marine midshipmen take one naval science course together each semester during their freshman and sophomore years. Navy-option students continue to take a naval science course each semester during their junior and senior years. Marine-option students are required to take the History of Amphibious Warfare and the Evolution of War courses in either their junior or senior year, depending on when the courses are offered.

Freshman Year (Navy and Marines)
Nav S 101 Fundamentals of Naval Science
Fall. No credit.
Two-hour class each week (lecture-recitation). Lt. Walter A. Powell, USN.
A study of fundamental aspects of naval science, including its conceptual contributions to sea power, factors involved in the physical development of naval forces, resources that must be managed, and prospects for the future.

Nav S 102 Naval Ship Systems I (also Mechanical and Aerospace Engineering 101)
Spring. 3 credits. Three lecture-recitation classes each week.
Prof. M. Louge, Lt. Walter A. Powell, USN.
An introduction to primary ship-systems and their interrelationship. Basic principles of thermodynamics, propulsion, mechanical operation, internal communications, electronics, ship structure, and other marine systems are considered.

Nav S 157 Principles of Sailing
Fall and spring. Physical education credit.
One class each week.
Lt. Walter A. Powell, USN.
Instruction in basic sailing skills and safety principles. Students sail small and large boats on Cayuga Lake, weather permitting. Focus is U.S. Navy Class B inshore skipper and offshore crewman A certifications.

Sophomore Year (Navy and Marines)
Nav S 201 Naval Ships Systems II (Weapons)
Fall. 3 credits.
Three classes each week.
Lt. John M. Fleming, USNR,
Lt. Jason D. Lilly, USN.
The principles and theories used in the development of naval weapons systems are examined. Initially, extensive study is made of sensing and detection systems, especially radar and sonar, followed by discussions of ancillary systems for computer tracking, stability, and weapons control and delivery.

Nav S 202 Sea Power and Maritime Affairs
Spring. 3 credits.
Three classes each week.
Lt. John M. Fleming, USNR,
Lt. Jason D. Lilly, USN.
Discussions examine the history of the Navy as a force in diplomacy. Relationships between Congress and the military for determining the national defense policy are also explored. An integrated examination of current events and issues gives a historical perspective throughout the course.

Junior Year (Navy)
Nav S 301 Principles of Navigation (also Agricultural Engineering 305)
Fall. 4 credits.
Four classes each week (lecture-recitation-project work).
Lt. Steven R. LaForce, USN.
The course covers coordinate systems, chart projections, navigational aids, instruments, compass observations, tides and currents, and soundings. It also includes celestial navigation, time, spherical trigonometry, motion of the stars and sun, star identification, position fixing, use of the nautical almanac, electronic navigation systems, and air navigation.

Nav S 302 Naval Operations
Spring. 3 credits.
Three lectures each week.
Lt. Steven R. LaForce, USN.
The course covers the application of command and control principles and the integration of sensors and weapons systems in the conduct of naval operations. Visual and electronic communications methods, data-systems employment, tactical disposition of forces, and fleet logistics support are studied. Topics in shiphandling are also discussed.

Senior Year (Navy)
Nav S 401 Organizational Behavior and Small Group Processes (also Hotel Administration 414)
Fall. 3 credits.
Current research is examined to provide a conceptual framework for understanding group processes within organizations. In addition, students participate in experiential laboratories aimed at enhancing their effectiveness as members or leaders of groups. Topics include stages of group development, leadership, decision making, motivation, individual versus group needs, organizational communication, power, and organizational change.
OFFICER EDUCATION

Nav S 402 Naval Administration Topics
Spring. Two credits.
Two classes each week. Cdr. Dennis R. Kukulski, USN.
A variety of topics important to the naval officer for both professional and managerial development are reviewed. The material is directed at the midshipman for his own understanding of naval administration and for use in the role of the division officer in counseling his subordinates. Through the use of lectures, situation problems, and role playing, the student will learn about the various aspects of Navy management and administration.

Junior or Senior Year (Marine Options)
Nav S 310 Evolution of War
Fall. 3 credits.
3 classes each week. Major James M. Higgins, USMC.
A study of warfare that examines the relationship of military strategy to geography, economics, sociology, technology, and national political realities and values; the evolution of warfare, including principles of war, weapons, and associated equipment; and the effects of nuclear weapons and guerrilla warfare on traditional concepts of national strategy.

Nav S 410 History of Amphibious Warfare
Spring. 3 credits.
Three lectures-recitations each week. Major James M. Higgins, USMC.
The history of the development, theory, techniques, and conduct of amphibious operations from 490 B.C. to the present. Special emphasis will be on amphibious operations conducted in the central Pacific during World War II. Additionally, the future potential of amphibious operations will be discussed.

Other Required Courses

Navy Option Scholarship Program
To be eligible for a commission in the United States Navy, midshipmen must successfully complete all the requirements for a baccalaureate degree in any field of study offered by Cornell University and complete courses in the following subjects (specified courses to be approved by the Professor of Naval Science):
- American military affairs or national security policy (one year)
- English (one year)
- Calculus (one year)
- Calculus-based physics (one year)
- Computer science (one term)
- Modern foreign language (one term)—this requirement may be waived by the professor of naval science under some circumstances.
The calculus requirement must be satisfied by the end of the sophomore year and the physics requirement by the end of the junior year.
Although free choice of academic majors is permitted, students are encouraged to pursue majors in engineering and the physical sciences to meet the technological requirements of the modern Navy.

Navy Option College Program
Navy-option College Program students must complete one year of college-level study in mathematics, physical science, and English as a prerequisite for commissioning. The mathematics course must be completed by the end of the junior year; the physical science course by the end of the senior year. In addition, one term of computer science is required. College Program students who desire entry into the Navy-option Scholarship Program should fulfill all of the requirements applicable to Navy-option scholarship students to be eligible and competitive for a scholarship controlled by the Chief of Naval Education and Training.

Marine Option
Any midshipman, in either the Scholarship Program or the College Program, who completes all of Cornell University's degree requirements in any academic major is eligible for a commission in the United States Marine Corps or United States Marine Corps Reserve. Marine-option students take the same naval science courses and naval professional laboratories as Navy-option students for the freshman and sophomore years. During the junior and senior years, Marine-option students meet with the Marine officer instructor for naval professional laboratories and take two naval science courses. In addition, two semesters of courses (a minimum of three hours each) in the subject area of American military affairs or national security policy are required. One semester of a modern foreign language must be completed.

University Courses
A wide range of courses satisfy Naval ROTC specified courses. Students should consult their naval science adviser concerning appropriate course selections. A partial list of those Cornell University courses that meet academic requirements of the program follows.

Calculus
- Math 111, and 112 or 122 Calculus
- Math 191 and 193 or 192 Calculus for Engineers
Physics
- Phys 112 or 116, and Phys 213 or 217
- Phys 207–208 Fundamentals of Physics
Computer Science
- Engr 100 Introduction to Computer Programming
- Com S 100 Introduction to Computer Programming
- Com S 102 Introduction to Microcomputer Applications
- Ag En 102 Introduction to Microcomputer Applications
- Ag Ed 247 Instructional Applications of the Microcomputer
American Military Affairs or National Security Policy
- An updated list of courses satisfying the prerequisites of this category is published annually.
- English
Fulfilled by completing freshman writing seminar course requirements.

Extracurricular Activities
The NROTC midshipman at Cornell is offered a broad range of activities in which to participate. Each summer, as an optional part of their summer training, midshipmen sail aboard the unit sail-training vessel Vindicator to distant ports of call. Back at Cayuga Lake, a highly respected sail-training program offers instruction, both in small sailboats and in large boat sailing on board Vindicator, to all who want to participate. The unit offers a comprehensive sports program in which most midshipmen participate. The naval unit has won the Independent Division All Sports Trophy for fifteen of the last twenty-one years. Midshipmen participate in a myriad of social events, including the annual Navy/Marine Corps ball, the All Service military ball, and traditional naval mess nights.

DEPARTMENT OF AEROSPACE STUDIES
Colonel Kent E. Wolcott, United States Air Force, Professor of Aerospace Studies and Commander, Air Force ROTC Detachment 520
Captain James D. Marchio, United States Air Force
Captain Timothy E. Edem, United States Air Force
Captain Peter Sefcik, Jr., United States Air Force

The objective of the Air Force officer education program at Cornell is to prepare men and women for positions as officers in the United States Air Force. The program is designed to teach students about the role, mission, and organization of the Air Force and the historical development of airpower, and to develop their leadership and management skills. Additionally, students study national security policy and formulation and the role of the military in a modern democratic society. The objectives are achieved through Four-Year and Two-Year programs. These programs include specific courses in aerospace studies and practical laboratories.

Extra-curricular activities
The Air Force officer education program is open to any undergraduate or graduate student enrolled in any major field of study. The student's academic course of study is often a prime factor in determining the kind of career pursued in the Air Force. (See Air Force Careers, below.)

Applicants must be U.S. citizens. Noncitizens may enroll and receive certificates acknowledging completion of the course but cannot receive a commission.

Applicants who are interested in flying (as pilot or navigator) or missile duty should make that request known at the time they enter the program.

All applicants receive physical examinations at no cost and, to be accepted, must meet certain physical requirements.
Those students who are interested in qualifying for flying categories (pilot or navigator) must meet more stringent physical requirements. Students are given physicals at Air Force expense to determine if they qualify.

Though the program is designed to prepare future Air Force officers, Department of Aerospace Studies courses are open to all students at Cornell.

Four-Year Program
The Four-Year Program is open to all freshmen. Sophomores may enter the program but require departmental approval. Students in a five-year degree program may enroll in their freshman or sophomore year.

Veterans of the U.S. armed forces and students entering Cornell from military schools may receive advanced standing, subject to approval by the Professor of Aerospace Studies.

The Four-Year Program consists of the General Military Course (GMC) and the Professional Officer Course (POC). For scholarship cadets, the first year of the GMC carries no military commitment, and students may withdraw at any time. For nonscholarship cadets, both years of the GMC carry no military commitment, and students may withdraw at any time.

General Military Course
Students in the General Military Course (GMC) take one credit of classroom work offered by the Department of Aerospace Studies each semester. During the freshman year the student examines the organization and mission of the United States Air Force and the role of U.S. military forces in the contemporary world. In the sophomore year, the student studies the history and development of military aviation and American air power. In both years, officerhood and professionalism within the United States Air Force are emphasized.

Students also spend 1-1/2 hours a week in a leadership laboratory. Leadership Laboratory provides cadets with the opportunity to practice those skills they learn in their aerospace studies classes. These laboratories focus on the development of officer qualities through such activities as drill and ceremonies, a variety of guest speakers, and practical leadership exercises. In addition, all students participate in summer field training for four weeks between their sophomore and junior years.

Professional Officer Course
The Professional Officer Course (POC) is a two-year advanced course of instruction. Students who are accepted for the POC must have successfully completed or validated the basic course and must meet the academic and physical standards. Each cadet accepted into the POC must sign an agreement to complete the program and accept, if tendered, a commission in the United States Air Force on graduation.

Classroom study in the POC requires three hours a week each semester. In the junior year, cadets study Air Force leadership and management at the junior officer level. During the senior year, cadets study the elements of national security and the military's role in American society. Leadership laboratory requires a minimum of 1-1/2 hours a week in the junior and senior years. In the leadership laboratory, cadets are exposed to advanced leadership experiences and apply principles of leadership and management learned in the classroom.

Two-Year Program
The Two-Year Program consists of the last two years (Professional Officer Course) of the regular Four-Year Program plus a six-week summer training course preceding enrollment. (Details of the Professional Officer Course are given above.)

The Two-Year Program is open to all students with two years of academic study remaining at Cornell (graduate or undergraduate) or at schools under crosstown or consortium agreement. Applications are accepted from October through April of the year preceding the applicant's planned entry into the program. Selectees are then required to successfully complete a six-week summer training program at government expense.

Scholarships
Air Force ROTC offers four-year scholarships on a competitive basis to high school seniors and graduates who will major in selected scientific and technical areas such as engineering, mathematics, meteorology, and computer science. Four-year scholarships also are awarded on a limited basis to individuals who will major in nontechnical areas. Scholarship information can be obtained from a high school counselor, from Air Force ROTC officers at a campus offering Air Force ROTC, from a local Air Force recruiter, or from AFROTC/RROO, Maxwell AFB, AL 36112-6663. The deadline for submitting a four-year scholarship application is December 1 of the year preceding the academic year in which a student wants to enter the program. Students should apply early.

Scholarships for 3-1/2, 3, 2-1/2, and 2 years also are available to college students. Applications for these scholarships should be made to the Professor of Aerospace Studies during the freshman or sophomore years of college. Special one-year scholarships are available to students majoring in meteorology and computer science. Applications for these scholarships should be made to the Professor of Aerospace Studies during the junior year of college. All selections are based on the student's major, scores achieved on the Air Force Officer Qualifying Test, the student's overall grade point average, and the rating from an interview board composed of Air Force ROTC staff officers. All scholarships pay, at a minimum, $8,000 toward tuition and provide a $100 monthly nontaxable allowance during the school year.

Fees
An initial uniform deposit of $30 is required on entry into AFROTC. There are two subsequent $30 uniform payments due, one on entry into the POC and the final one before commissioning, at which point the cadet owns the uniform.

Benefits
All cadets in the advanced program (POC) receive a $100-a-month, nontaxable subsistence allowance for the academic year. During the four- or six-week summer field training (see below), each cadet receives the pay allowance authorized by current directives, plus an allowance for travel to and from the field site. Most textbooks and supplies required for Department of Aerospace Studies courses are provided.

All cadets are eligible to participate in field trips made to Air Force bases throughout the country. Scholarship and advanced cadre (POC) are entitled to space-available travel on Air Force aircraft flying within the continental United States.

Field Training
There are two types of field training: a four-week course for cadets in the Four-Year Program and a six-week course for Two-Year Program applicants. Students in these programs normally attend field training between their sophomore and junior years.

Field training is designed to stimulate the development of military leadership and skills through meaningful experiences. The curriculum consists of aircraft, aircrew, and survival orientation; junior officer training; physical training; small arms training; a social-actions program; and supplemental training. Special emphasis is placed on career orientation and interaction with other young officers in fields of interest to the student. The six-week training program is unique because it has an additional sixty hours of Air Force ROTC academic course work that substitutes for the freshman and sophomore Aerospace Studies courses.

Pilot candidates attend a three-week light aircraft training program between their junior and senior years unless they already hold a private pilot's certificate. Objectives of the program are to train and motivate qualified cadets toward a rated career and to screen those cadets who have the potential to become Air Force pilots.

In addition to field training, cadets may volunteer and, if selected, attend one of many Advanced Training Programs. Some of these programs include Army Airborne Training, Cadet Training Officer Program, Strategic Defense Initiative Organization (SDIO), and the Royal Air Force Exchange Program.

Commissioning Obligations
All students who successfully complete the AFROTC advanced program (POC) and who are awarded a baccalaureate degree and are tendered a commission enter the Air Force as second lieutenants.

Second lieutenants commissioned in nonflying categories are required to serve on active duty for four years. Pilots are required to serve on active duty for eight years after completing flying training and receiving their initial rating. Naval aviators serve five years after completing training. Some newly commissioned officers are allowed to postpone active service to earn advanced degrees through the Educational Delay Program.
Air Force Careers
Air Force policy has been to assign new officers to a career field appropriate to their educational background. Students in the engineering-scientific category may be assigned to practice in their specialty in research and development, communications, aeronautics, astronautics, design and development, the biological sciences, computer design and maintenance, meteorology, space, or various other engineering and scientific fields. Those graduating in the nontechnical category can anticipate assignments in manpower management, administration, logistics, police and investigation, intelligence, personnel, transportation, information, and numerous other career fields, including nonrated operations. They will use their educational backgrounds in positions of responsibility and be given the opportunity to develop further their managerial and administrative skills. Any undergraduate major is suitable for those who meet the educational qualifications desired in becoming pilots or navigators. After completion of flying training they are assigned primary duties flying various kinds of aircraft.

Officers who elect missile duty will train and be assigned to one of the operational missile bases as a crew member. This type of assignment provides an opportunity for a young officer to develop technical skills in various kinds of weapons systems.

Curriculum
Students in the Four-Year Program are required to take all courses listed below. Students in the Two-Year Program are required to take all of the courses listed for the junior and senior years.

Freshman Year
Air S 161 United States Military Forces
Fall. 1 credit.
One class each week.
A study of current U.S. military forces with emphasis on the analysis of the doctrine and mission of the United States Air Force. Army and Navy operations, as contributions to the total national defense, are reviewed. Current factors affecting today's professional military officers are considered.

Air S 162 Aerospace Operations
Spring. 1 credit.
One class each week plus a field trip to a local military installation.
The aerospace forces of the United States are studied with emphasis on the organization and resources of the United States Air Force. The elements of strategic offensive, defensive general-purpose, and aerospace support forces throughout the world are also studied.

Sophomore Year
Air S 211 Development of Military Aviation
Fall. 1 credit.
One class each week.
Factors leading to the development of aviation and the concepts and doctrine for the employment of air power are studied. Topics to be reviewed and analyzed include the history of manned flight, the effects of World War I on the uses of aviation, the development of pre-World War II aircraft, and the political struggles for an independent U.S. air arm. The role of air power in World War II, including strategic bombing, tactical air power, and the role of air superiority in warfare, is examined.

Air S 212 American Air Power since 1947
Spring. 1 credit.
One class each week.
The employment of the Air Force since World War II in military and nonmilitary operations to support national objectives is discussed. Factors leading to the development of effective communication skills through the use of the interpersonal communication model. Part two explores the impact that both individual and group behavior have on organizational goals, with special emphasis on management theories that have evolved to explain human motivation. Part three deals with leadership as a function of the management principle of directing. Attention is given to the impact that various leadership styles have on human motivation and organizational effectiveness. Current leadership research and theory and the responsibilities of command are considered. Case-study exercises and oral and written assignments are required.

Air S 322 Management
Spring. 3 credits.
Two classes each week.
Introductory course that deals with the basic principles of management, including planning, organizing, staffing, and controlling. Students will visit local production facilities to observe the latest manufacturing techniques and study qualitative methods and computer-generated financial reports used to enhance the management decision-making process. Considered is the role of management in the development of a corporate code of ethics. Case studies, problem sets, and oral presentations are required.

Senior Year
Air S 462 National Security Forces in Contemporary American Society
Fall. 3 credits.
Two classes each week.
This course examines American national security policies in the post-World War II period by seeking to understand the people, politics, and processes involved in their formulation and implementation.

AS 463 Political-Military Relations
Spring. 4 credits.
Cadets enroll in a pre-designated Cornell University government department course dealing with U.S. national security affairs. In addition, cadets are required to meet for a 50-minute weekly discussion section.
The courses and fees described in this catalog are subject to change or cancellation at any time by official action of Cornell University. Enrollment in any course is limited by the space available. Other restrictions are included in the course description. Most courses are coeducational. The specific time and place of class meetings, as well as information about fees, are available at physical education course registration. Course fees are billed through the Office of the Bursar.

Additional course offerings may be listed at registration, since the curriculum is frequently reviewed and changed.

Administrative Officers

Alan E. Gantert, director

George S. "Jack" Writer, assistant director

Courses

- **Field Hockey**
 - Spring.
 - Two classes a week, Fieldhouse and Schoellkopf stadium.
 - Instruction in basic and advanced skills. 6-aside competition on astroturf surface.

- **Fitness and Conditioning**
 - Fall and spring.
 - Two classes a week, Teagle Hall.
 - Physical fitness program that embodies features of stretching exercises, weight lifting, and jogging. Students work on their individual training needs.

- **Flexibility and Toning**
 - Fall and spring.
 - Two classes a week, Helen Newman Hall.
 - Overall stretching exercises.

- **Judo**
 - Fall and spring.
 - Fee charged.
 - Two classes a week, Teagle Hall.
 - Conditions and increases suppleness. Develops skills in the two parts of judo: standing techniques (throws and trips) and mat techniques.

- **Lacrosse**
 - Fall.
 - Two classes a week, Helen Newman Field.
 - Instruction and practice in basic skills (cradling, passing, catching, goal shooting, checking) and team play.

- **Nautius**
 - Fall and spring.
 - Enrollment limited to capacity of facilities. Fee charged.
 - Two classes a week, Schoellkopf Hall.
 - Advanced weight lifting on specifically designed apparatus. There are ten stations in the room.

- **Power Lifting**
 - Fall and spring.
 - Teagle Hall.
 - Introduces the student to the proper use of free weights for improving physical condition and muscular strength. Instruction with focus on the relation between high-rep light weight lifting, low-rep heavy lifting, and the development of bulk, strength, and endurance.

- **Wellness and Fitness**
 - Fall and spring.
 - Two classes a week, Helen Newman Hall Wellness Lab.
 - Flexibility exercises and strength-building concepts with various equipment and cardiovascular endurance tests. Body-fat testing and submaximal treadmill test included.
Aquatic Courses

Beginning Swimming
Fall, spring, and summer.
Two classes a week, Helen Newman Hall and Teagle Hall.
Instruction and practice in basic skills leading to passing the basic swimming proficiency test.

Advanced Beginning Swimming
Fall and spring.
Two classes a week, Helen Newman Hall and Teagle Hall.
This course is ideal for all who have taken one term of Beginning Swimming, regardless of whether the swimming test was successfully completed. Areas of special emphasis are the crawl stroke and rotary breathing, back crawl, sidestroke, breaststroke, diving, treading water, and underwater swimming. The primary objective of the advanced beginning swim course is to strengthen the student's confidence and competence.

Intermediate Swimming
Fall and spring.
Two classes a week, Helen Newman Hall and Teagle Hall.
Practice and perfection of basic skills and five basic strokes.

Advanced Swimming
Fall and spring.
Two classes a week, Helen Newman Hall and Teagle Hall.
Practice and perfection of the eleven basic strokes.

Basic and Emergency Water Safety
Fall and spring.
Two classes a week, Helen Newman Hall.
The American Red Cross Basic and Emergency Water Safety course involves practice and execution of survival techniques and lifesaving skills. Emergency Water Safety is a prerequisite for W.S.I.

Lifeguard Training
Fall and spring.
One class a week, Teagle Hall.
An American Red Cross certification course. Practice and execution of survival and lifesaving skills. Certification is awarded on satisfactory completion of the course.

American Red Cross Water Safety Instructor Certification
Fall and spring. Prerequisite: American Red Cross emergency water safety course.
Three or five classes a week, Helen Newman Hall and Teagle Hall. Students must not miss first class.
American Red Cross water safety instructor certification is awarded on satisfactory completion of the course.

Water Safety Instructor Refresher Course
Spring.
Five classes a week, Teagle Hall.
Selected sessions of the basic water safety instructor certification course.

Introduction to Water Aerobics
Fall and spring.
Two classes a week, Teagle Hall and Helen Newman Hall.
Offers the participant all the components of a standard aerobics class with music, rhythmical routines, resistance activities, cardiovascular conditioning, stretching, and flexibility but in an aquatic environment.

Scuba Diving
Fall, spring, and summer. Fee charged.
Teagle Hall.
Program includes skill training in a pool and open-water training in Cayuga Lake. P. A. D. I. certification awarded upon successful completion.

Advanced Open-Water Scuba Diving
Fall and spring. Fee charged.
Advanced-level open-water training in Cayuga Lake. For those who have completed the basic course.

Rescue Diver
Fall and spring. Fee charged.
Advanced course for scuba divers. For those who have completed Advanced Open-Water Scuba Diving.

Dive Master
Fall and spring. Fee charged.
Hours to be arranged. Teagle Hall.
Advanced-level scuba course open only to those who have completed the rescue diver course.

Bahamas Scuba Diving
Fall and spring. Fee charged.
This course is offered during intersession periods. One week of sailing and diving in the Bahamas. See the information sheet at the registration table.

Beginning Synchronized Swimming
Fall.
Two classes a week, Helen Newman Hall.
Swimming stunts, including the tub, marlin, log roll, front and back tuck somersaults, and front and back pikes.

Advanced Synchronized Swimming
Spring.
Two classes a week, Helen Newman Hall.
Preparing, practicing for, and presenting an aquatic show.

Aquatic Conditioning
Fall and spring. Prerequisite: good swimming ability.
Two classes a week, Teagle Hall and Helen Newman Hall.
Introduction to, and practice of, different training methods. Final objective: to swim 2,500 yards during class period.

Board Sailing (Wind Surfing)
Fall, spring, and summer. Fee charged.
Ten instructional lessons plus free practice times. The equipment is furnished.
A Mistral Board Sailing Academy certificate is awarded on successful completion of the course.

Water Skilling
Fall and summer. Fee charged.
Three classes a week. Introductory course for beginning water skiers. Conducted on the east shore of Cayuga Lake. Students must provide their own transportation to and from the lake.

Dance

Aerobic Dance
Fall and spring. Fee charged.
Two classes a week.
A simple dance program designed to keep the cardiovascular system in top shape by making the body demand increased amounts of oxygen.

Ballroom Dancing
Fall and spring. Fee charged. Students and their partners must sign up at course registration.
Includes instruction in the waltz, Charleston, rumba, and tango.

Fencing

Fencing I
Fall and spring. Fee charged.
Two classes a week, Helen Newman Hall.
Includes warm-up exercises and all basic offensive and defensive moves. Equipment is furnished.

Fencing II
Fall and spring. Fee charged. Prerequisite: Fencing I or the equivalent.
Two classes a week, Helen Newman Hall.
Interclass competition is stressed. Equipment is furnished.

First Aid

Standard First Aid
Fall and spring. Textbook fee charged.
Two classes a week, Schoellkopf Hall.
American Red Cross standard first-aid course. Certification is awarded on satisfactory completion of the course.

Advanced First Aid
Fall and spring. Fee charged.
Advanced-level American Red Cross certification is awarded on satisfactory completion of the course.

Cardiopulmonary Resuscitation (CPR)
Fall and spring. No credit. Fee charged.
One class a week for four weeks, Schoellkopf Hall.
American Red Cross CPR certification is issued on satisfactory completion of the course.

Golf

Instruction in Golf
Fall and spring. Fee charged.
Two classes a week, Mokley golf course.
Instruction by PGA professional is geared to all levels of experience and ability. The objective is to give beginners enough skill to play, and to give more-advanced players direction in their thinking, practice, and play, through a thorough understanding of fundamentals. Equipment is furnished.
Recreational Golf
Fall and spring. Limited to students who are experienced golfers. Fee charged.
Moakley golf course. Students must provide their own clubs. Twelve rounds of nine holes each must be played to complete the program.

Gymnastics
Beginning Gymnastics
Fall and spring.
Two classes a week, Teagle Hall.
Basic instruction in tumbling, dance for gymnastics, and use of all pieces of apparatus.

Intermediate Gymnastics
Fall and spring.
Two classes a week, Teagle Hall.
Beginning gymnastics or interscholastic or collegiate team experience.

Jogging
Jogging
Fall, spring, and summer.
Two classes a week, Barton Hall and track.
A program to meet the needs of each participant. Increases capacity from jogging a few hundred yards to three miles at the end of twelve weeks.

Jogging Tours
Fall and spring.
Two classes a week, Barton Hall.
Each class consists of a two-to-three-mile jogging tour of a local area.

Martial Arts
Basic Karate
Fall and spring. Fee charged.
Two evening classes a week, Teagle Hall.
A beginning course taught by professional staff.

Advanced Karate
Fall and spring. Fee charged.
Two evening classes a week, Teagle Hall.
Open to those who have taken Basic Karate or the equivalent.

Kung Fu
Fall and spring.
Two classes a week, Teagle Hall.
Exploration of conditioning and fitness procedures used in the major martial arts, such as karate or judo. Covers circular movement for generating strong blocks, kicks, and punches.

Martial Arts and Aerobic Exercises
Fall and spring.
Three classes a week, Teagle Hall.
Blend of ten basic martial-art techniques in a framework of rhythmic exercises.

Self-Defense for Women
Fall and spring. Fee charged.
HOURS TO BE ARRANGED, Teagle Hall.
Basic methods of physical protection for women.

Tae Kwon Do
Fall and spring. Fee charged.
A Korean martial art distinguished by its emphasis on high and powerful kicks. Basic kicking, punching, and blocking are emphasized.

Tai Chi Chuan I and II
Fall and spring.
Two classes a week, Teagle Hall.
Introduction to Tai Chi, a system of graceful, slow-movement exercises that aim at nurturing relaxation, deep breathing, and improved circulation.

Outdoor Program
See the brochure Cornell University Outdoor Program for more information about courses.

Backpacking in the Finger Lakes Region
Fall, spring.
Classes lead to a full weekend on the trail.

Bicycle Day Touring
Fall and spring.
Afternoon or weekend rides. No overnights.

Bicycle Touring and Camping
Fall and spring.
Rides lead to overnight weekend tours.

Mountain Biking
Fall and spring.
One afternoon per week for five weeks.

Canoe Camping
Fall, spring, and summer.
Outings finish with an Adirondacks expedition.

Canoeing, Flat-Water
Fall, spring, and summer.
Afternoon or weekend outings to local lakes and streams. No overnights.

Canoeing, White-Water
Fall and spring.
Includes three days of white-water trips.

Caving
Fall and spring.
Explore caves in Pennsylvania.

Cross-Country Skiing I and II
Spring.
Six 3 1/2-hour classes. Meets once each week immediately following spring registration.
Van transportation provided for groups of twelve students and two instructors. Ski rental optional.

Cross-Country Skiing-Day Touring
Spring.
Four full-day weekend outings.
Emphasis on backwoods touring. Ski rental optional.

Telemark Skiing
Spring.
Three evenings of lift skiing, local area, plus one afternoon of backcountry skiing.

Adirondack Ski Expedition
Winter break.
Ten-day winter camping and skiing trip.

Hiking in the Finger Lakes Region
Fall and spring.
Includes four weekend days of hiking.

Technical Ice-climbing
Spring.
Includes four weekend days of climbing in February or April during January break.

White-Water Kayaking I & II
Fall and spring.
Includes three days of white-water trips plus pool sessions.

Environmental Awareness
Fall and spring.
A backpacking/hiking course for those interested in the local ecology.

Outdoor Leadership
Fall and spring.
For those interested in becoming Outdoor Program instructors.

Basic Rock Climbing
Fall, spring, and summer. No experience required. Meets one afternoon a week for eight weeks. Uses indoor Lindseth climbing wall for all classes.

Shawangunks Rock-climbing Expedition
Fall and spring.
Includes a four-day climbing camp.

Basic Mountaineering Skills
Fall, spring, and summer. Seven afternoons at local parks and wilderness areas, some classes on indoor Lindseth climbing wall.

Wilderness Emergency Care
Fall and spring.
Friday evenings plus weekend. Training in medical care for the backcountry. Awards Standard First Aid and CPR certification.

Wilderness Skills—Expedition
Fall and spring.
Introductory course. Includes a wilderness backpacking expedition during fall break or spring break.

Wyoming Mountaineering Expedition
Summer.
Full-time course for the entire month of June to train outdoor instructors.

Rifflery
Rifflery
Fall and spring. Fee charged.
Two classes a week, Barton Hall. Instruction and practice in the techniques of target rifflery from various shooting positions.

Trap and Skeet Shooting
Fall and spring. Fee charged.
Two-hour class one afternoon a week.
Teagle Hall.
Includes lectures and shooting at the Tompkins County Rod and Gun Club range. Guns and shells are furnished.

Hunter Safety
Fall and spring.
Hours to be arranged, Barton Hall. Instruction in hunter safety leads to New York State certification for bow and gun.

Basic Pistol
Fall and spring.
Barton Hall range. Instruction in the use of the pistol in the three modes of fifty-foot competitive target shooting—slow fire, timed fire, and rapid fire. Emphasis placed on safety and responsibility while firing.

Introduction to Fly Fishing and Basic Flaying Techniques
Fall and spring. Fee charged. One class a week, Helen Newman Hall/ Schoellkopf Hall. Introduction in fly casting skills and the art of tying artificial flies. Special Conditions: N.Y.S. fishing license required and each student must provide their own wader boots.
Sailing

Principles of Sailing
Fall, spring, and summer. Fee charged.
One class a week, Cayuga Lake.
Instruction in basic sailing skills and safety principles. Students sail small and large boats on Cayuga Lake, weather permitting.

Intermediate Sailing
Fall. Fee charged.
One class a week, Cayuga Lake.
Instruction in more-advanced techniques for those already familiar with the basic principles of sailing.

Skating

Introduction to Skating
Fall and spring. For beginning to intermediate skaters. Fee charged.
Three classes a week for half a term, Lynah Rink.
Students provide their own hockey skates or rent them at Lynah Rink.

Beginning and Low-Intermediate Figure Skating
Fall and spring. Fee charged.
Three classes a week for half a term, Lynah Rink.
Instruction and practice in basic figure skating techniques: forward and backward crossovers, turns, and spirals. Students provide their own figure skates or rent them at Lynah Rink.

Intermediate and Advanced Figure Skating
Fall and spring. Limited to experienced skaters. Fee charged.
Three classes a week for half a term, Lynah Rink.
Advanced figure skating techniques. Students provide their own figure skates or rent them at Lynah Rink.

High-Intermediate and Advanced Figure Skating
Fall and spring. Fee charged.
Three classes a week, Lynah Rink.
Advanced figure skating techniques. Students provide their own figure skates or rent them at Lynah Rink.

Introduction to Ice Hockey
Fall and spring. Fee charged.
Two classes a week, Lynah Rink.
Stick handling, passing, and shooting are stressed. Students provide their own skates and sticks; all other equipment is furnished.

Intermediate Hockey
Fall and spring. Fee charged. Prerequisite: beginning hockey or participation in organized hockey.
Two classes a week, Lynah Rink.
This course is designed for the intermediate hockey player. Advanced techniques taught include positioning, power play, penalty killing, and offensive and defensive attack. Each session emphasizes game situations and scrimmaging. Skates and hockey sticks must be supplied by the participants. All other necessary equipment will be supplied.

Skiing

Skiing Conditioning
Fall. Fee charged.
Two classes a week, Helen Newman Hall.
Exercises designed to increase flexibility, strength, and endurance in preparation for the ski season.

Downhill Skiing
Spring. Fee charged.
One class a week, Greek Peak or Song Mountain.
Transportation, instruction, ski-lift fees, and skiing time are offered in a package deal. Greek Peak and Song Mountain personnel are present at registration to explain the program and accept fees. Bus transportation to Greek Peak is provided six afternoons a week for six weeks. Bus transportation to Song Mountain (Friday only).

Cross-Country Skiing - See Outdoor Program.

Tennis

Indoor Tennis
Spring. Fee charged.
Two classes a week, Kite Hill tennis bubble.
Classes for all levels of play. Emphasizes strategy for intermediate and advanced groups.
Space limitation requires doubles play.

Beginning Outdoor Tennis
Fall.
Three classes a week for half a term. Helen Newman courts.

Intermediate Outdoor Tennis
Fall.
Three classes a week for half a term. Kite Hill courts.
Use of fundamental strokes, lobs, and drop shots; doubles strategy.

Advanced Outdoor Tennis
Fall. Limited to experienced players.
Three classes a week for half a term. Kite Hill courts.
Emphasizes strategy.

Volleyball

Introduction to Volleyball
Fall and spring.
Two classes a week, Barton Hall.
Fundamentals of ball handling, serves, defensive blocks, and position play are stressed. Classes will scrimmage.

Intermediate Volleyball
Fall and spring.
Two classes a week, Barton Hall.
Passing and blocking strategy; scrimmages in class.

Advanced Volleyball
Fall and spring.
Two classes a week, Fieldhouse.
Offensive and defensive team strategy is emphasized in class scrimmages.

Yoga

Yoga I
Fall, spring, and summer. Fee charged.
Two classes a week, Teagle Hall.
Fundamentals of hatha-yoga. Covers basic postures, breathing techniques, and deep relaxation. Introduces chanting.

Yoga II
Fall and spring. Fee charged. Two classes a week, Teagle Hall.
Designed for those who have completed Yoga I or its equivalent.

Independent Study

Independent Study
Fall and spring.
Independent study is designed for those who have difficulty fitting any of the regularly scheduled courses into their academic program. Class activities will be based on personal fitness programs. A term paper is required. Special permission to enter this program must be granted by the program director.
THE DIVISION
Cornell University’s Division of Summer Session, Extramural Study, and Related Programs provides a wide variety of educational opportunities beyond the degree-granting programs of the university. These programs serve virtually all age groups in a great variety of formats and time frames. The division office is located in B12 Ives Hall, Ithaca, New York 14853-3901 (telephone: 607/255-4987).

ADMINISTRATION
Charles W. Jermy, Jr., acting dean
Jennifer T. Cook, summer session catalog production manager
Alicia C. Dowd, division media manager
Judith K. Eger, director, Programs in Professional Education and Special Programs
Abbie H. Eller, director, Cornell University Summer College
Mary K. Grieser, administrative course coordinator
Ralph Janis, director, Cornell’s Adult University
Anita M. Krook, registrar, summer session and extramural study
Valerie A. Sellers, director of administration
Diane E. Sheridan, director of finance
Judy M. VanDermark, director, Cornell University Conference Services

SUMMER SESSION
The Cornell University Summer Session provides unique and unusually attractive opportunities for study and recreation at a time when the Cornell campus and the Finger Lakes region of central New York are at their loveliest and the Ithaca weather is at its best. Participants may choose from a wide spectrum of courses scheduled during three-, eight-, and six-week sessions. In addition, dozens of special programs are presented in varying formats, including on-site fieldwork and overseas study. Although admission is open to persons of all ages, the majority of summer session participants are matriculated Cornell students. Classes meet daily and are usually kept small to foster a close association between students and teachers. For information, consult the Summer Session Office, B12 Ives Hall, or call 607/255-4987.

SUMMER COLLEGE
High school juniors and seniors attend regular university courses through Cornell University Summer College and may earn college credit. They also explore career options through specially designed workshops. Students live in residence halls, become familiar with campus life, and attend seminars describing the college admissions process. The program is designed to help ease the transition from high school to college. For information call 607/255-6202.

EXTRAMURAL STUDY
The extensive credit-course offerings of the university are available to area residents on a part-time basis. Those interested may apply for admission to practically any course in the university and will be admitted if they receive the instructor’s written approval. The division also offers an Official Visitor’s Program that allows persons to attend classes in many divisions of the university on a space-available basis at a reduced charge. Visitors are required to obtain written permission of the instructor. In this program no credit is given and no record is kept of attendance or performance. For information, contact the Extramural Office in B12 Ives Hall or call 607/255-4987.

WINTER SESSION
Winter Session provides an opportunity to earn three to four credits between the fall and spring semesters. This quiet time on campus allows students to enjoy classes that are generally smaller and to concentrate on intensive study. Students may enroll in scheduled courses or design an independent study with a faculty member.

CORNELL’S ADULT UNIVERSITY
Cornell’s Adult University (CAU) offers one-week noncredit courses on campus during the summer and weekend seminars at off-campus locations during the fall and spring. Conceived as a program for alumni, CAU has greatly broadened its mission in the area of adult education. All courses and seminars are inspired by the belief that learning never ends and that one of the roles of a great university is to provide a bridge between traditional, formal education and informal, noncredit study. For information, consult Cornell’s Adult University, 626B Thurston Avenue, or call 607/255-6260.

PROGRAMS IN PROFESSIONAL EDUCATION
Because of Cornell’s leadership in both theoretical and applied research, the university offers unique opportunities for professional growth to persons in science, technology, government, business, and industry. The division’s Programs in Professional Education are intensive updates taught by Cornell faculty members whose research involves areas of importance to the corporate sector and the professions. Programs in Professional Education can also respond to the needs and interests of corporations and professional societies by developing programs both on and off campus that are suited to their particular educational purposes. For information, telephone 607/255-7259.

CONFERENCE SERVICES
Excellent facilities, a beautiful campus, and a conference office concerned with each group’s special needs make Cornell an ideal setting for conferences and meetings. Professional groups from all over the country come to Cornell to take advantage of this special learning environment. The staff is available to answer questions, advise on creative program ideas, assist in planning, make special arrangements, secure accommodations, and handle other administrative details. For information about conferences at Cornell, consult Cornell University Conference Services, Box 3, Robert Purcell Union, or call 607/255-6290.

CONTINUING EDUCATION INFORMATION SERVICE
The extramural study registrar provides free information, counseling, and referral to women and men who have been out of school for several years and want to resume their education. Anyone who wants to take courses, begin an undergraduate or graduate degree program, or complete an unfinished degree is welcome to meet with the registrar. Information about conferences at Cornell, conference services, Continuing Education Information Service, B12 Ives Hall, or call 607/255-4987.

Africana Studies
464 Politics, Conflict, and Social Change in Southern Africa
A program in African languages is also offered. Consult the department for a complete listing.

Agricultural Economics
310 Introductory Statistics
320 Business Law
Anthropology
101-102 Introduction to Anthropology
242 American Indian Philosophies I: Power and World Views
<table>
<thead>
<tr>
<th>Department</th>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Archaeology</td>
<td>100</td>
<td>Introduction to Archaeology</td>
</tr>
<tr>
<td></td>
<td>300/333</td>
<td>The Crannog Archaeology Project</td>
</tr>
<tr>
<td></td>
<td>360</td>
<td>Field Archaeology in Greece</td>
</tr>
<tr>
<td></td>
<td>361</td>
<td>Summer Program in Etruscan Archaeology at La Plana</td>
</tr>
<tr>
<td>Other field study opportunities are usually available through this department.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Architecture</td>
<td>125</td>
<td>Introductory Architecture Studio</td>
</tr>
<tr>
<td></td>
<td>131</td>
<td>Introduction to Architecture</td>
</tr>
<tr>
<td>Consult the Department of Architecture office for a complete list of summer design offerings.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Art</td>
<td>121</td>
<td>Introductory Painting</td>
</tr>
<tr>
<td></td>
<td>123</td>
<td>Landscape Painting</td>
</tr>
<tr>
<td></td>
<td>131</td>
<td>Introductory Intaglio</td>
</tr>
<tr>
<td></td>
<td>133</td>
<td>Introductory Lithography</td>
</tr>
<tr>
<td></td>
<td>141</td>
<td>Introductory Sculpture</td>
</tr>
<tr>
<td></td>
<td>151</td>
<td>Introductory Drawing</td>
</tr>
<tr>
<td></td>
<td>158</td>
<td>Conceptual Drawing</td>
</tr>
<tr>
<td></td>
<td>159</td>
<td>Life and Still-Life Drawing</td>
</tr>
<tr>
<td></td>
<td>161</td>
<td>Introductory Photography I</td>
</tr>
<tr>
<td></td>
<td>168</td>
<td>Black-and-White Photography</td>
</tr>
<tr>
<td></td>
<td>169</td>
<td>Color Photography</td>
</tr>
<tr>
<td></td>
<td>171</td>
<td>Computer Art</td>
</tr>
<tr>
<td></td>
<td>221</td>
<td>Painting II</td>
</tr>
<tr>
<td></td>
<td>261</td>
<td>Photography II</td>
</tr>
<tr>
<td></td>
<td>263</td>
<td>Color Photography</td>
</tr>
<tr>
<td></td>
<td>321</td>
<td>Painting III</td>
</tr>
<tr>
<td></td>
<td>361</td>
<td>Photography III</td>
</tr>
<tr>
<td></td>
<td>379</td>
<td>Independent Studio</td>
</tr>
<tr>
<td>Astronomy</td>
<td>105</td>
<td>An Introduction to the Universe</td>
</tr>
<tr>
<td></td>
<td>106</td>
<td>Essential Ideas in Relativity and Cosmology</td>
</tr>
<tr>
<td>Biological Sciences</td>
<td>107-108</td>
<td>General Biology</td>
</tr>
<tr>
<td></td>
<td>205</td>
<td>Ethics and Health Care</td>
</tr>
<tr>
<td></td>
<td>206</td>
<td>Drawing the Human Figure</td>
</tr>
<tr>
<td></td>
<td>209</td>
<td>Introduction to Natural Science Illustration</td>
</tr>
<tr>
<td></td>
<td>245</td>
<td>Plant Biology</td>
</tr>
<tr>
<td></td>
<td>261</td>
<td>Principles of Ecology</td>
</tr>
<tr>
<td></td>
<td>281</td>
<td>Genetics</td>
</tr>
<tr>
<td></td>
<td>331</td>
<td>Principles of Biochemistry, Lectures</td>
</tr>
<tr>
<td></td>
<td>407</td>
<td>Advanced Laboratory Techniques</td>
</tr>
<tr>
<td></td>
<td>408</td>
<td>Molecular Biology for Teachers</td>
</tr>
<tr>
<td>Chemistry</td>
<td>103-104</td>
<td>Introduction to Chemistry</td>
</tr>
<tr>
<td></td>
<td>207-208</td>
<td>General Chemistry</td>
</tr>
<tr>
<td></td>
<td>251-252</td>
<td>Introduction to Experimental Organic Chemistry</td>
</tr>
<tr>
<td></td>
<td>253-255</td>
<td>Elementary Organic Chemistry</td>
</tr>
<tr>
<td></td>
<td>421</td>
<td>Introduction to Inorganic Research</td>
</tr>
<tr>
<td></td>
<td>433</td>
<td>Introduction to Analytical Research</td>
</tr>
<tr>
<td></td>
<td>461</td>
<td>Introduction to Organic Research</td>
</tr>
<tr>
<td></td>
<td>477</td>
<td>Introduction to Research in Physical Chemistry</td>
</tr>
<tr>
<td>Classics</td>
<td>104</td>
<td>Intensive Greek</td>
</tr>
<tr>
<td></td>
<td>107</td>
<td>Intensive Latin</td>
</tr>
<tr>
<td></td>
<td>205</td>
<td>Intermediate Latin</td>
</tr>
<tr>
<td>Classical Civilization</td>
<td>102</td>
<td>Bioscientific Terminology</td>
</tr>
<tr>
<td></td>
<td>109</td>
<td>The Art of Argument: An Introduction to Rhetoric</td>
</tr>
<tr>
<td></td>
<td>113</td>
<td>Word Power: Greek and Latin Elements in the English Language</td>
</tr>
<tr>
<td></td>
<td>114</td>
<td>Word Power for the Biological Sciences</td>
</tr>
<tr>
<td>Communication</td>
<td>116</td>
<td>Theories of Human Communication</td>
</tr>
<tr>
<td></td>
<td>120</td>
<td>Introduction to Mass Media</td>
</tr>
<tr>
<td></td>
<td>150</td>
<td>Writing for Media</td>
</tr>
<tr>
<td></td>
<td>201</td>
<td>Oral Communication</td>
</tr>
<tr>
<td></td>
<td>204</td>
<td>Effective Listening</td>
</tr>
<tr>
<td></td>
<td>234</td>
<td>Photo Communication</td>
</tr>
<tr>
<td></td>
<td>250</td>
<td>Newswriting for Newspapers</td>
</tr>
<tr>
<td></td>
<td>272</td>
<td>Principles of Public Relations and Advertising</td>
</tr>
<tr>
<td></td>
<td>301</td>
<td>Business and Professional Speaking</td>
</tr>
<tr>
<td></td>
<td>342</td>
<td>Electronic Media</td>
</tr>
<tr>
<td></td>
<td>363</td>
<td>Organizational Writing</td>
</tr>
<tr>
<td></td>
<td>365/565</td>
<td>Scientific Writing</td>
</tr>
<tr>
<td></td>
<td>410</td>
<td>Organizational Communication</td>
</tr>
<tr>
<td></td>
<td>460-461</td>
<td>Video Communication</td>
</tr>
<tr>
<td></td>
<td>490</td>
<td>History of Television</td>
</tr>
<tr>
<td></td>
<td>625</td>
<td>Communicating for Social Change</td>
</tr>
<tr>
<td></td>
<td>790</td>
<td>Participatory Approaches to Action Research</td>
</tr>
<tr>
<td>Comparative Literature</td>
<td>105</td>
<td>The Hero in Literature</td>
</tr>
<tr>
<td></td>
<td>236</td>
<td>Greek Mythology</td>
</tr>
<tr>
<td></td>
<td>354</td>
<td>Modern Drama</td>
</tr>
<tr>
<td></td>
<td>372</td>
<td>Selections from Contemporary World Literature</td>
</tr>
<tr>
<td>Computer Science</td>
<td>100</td>
<td>Introduction to Computer Programming</td>
</tr>
<tr>
<td></td>
<td>101</td>
<td>The Computer Age</td>
</tr>
<tr>
<td></td>
<td>102</td>
<td>Introduction to Microcomputer Applications</td>
</tr>
<tr>
<td></td>
<td>211</td>
<td>Computers and Programming</td>
</tr>
<tr>
<td></td>
<td>222</td>
<td>Introduction to Scientific Computation</td>
</tr>
<tr>
<td></td>
<td>314</td>
<td>Introduction to Computer Systems and Organization</td>
</tr>
<tr>
<td>Economics</td>
<td>101</td>
<td>Introductory Microeconomics</td>
</tr>
<tr>
<td></td>
<td>102</td>
<td>Introductory Macroeconomics</td>
</tr>
<tr>
<td></td>
<td>105</td>
<td>Principles of Accounting</td>
</tr>
<tr>
<td></td>
<td>205</td>
<td>Managerial Accounting for Planning and Control</td>
</tr>
<tr>
<td></td>
<td>208</td>
<td>An Introduction to Environmental Policy</td>
</tr>
<tr>
<td></td>
<td>311</td>
<td>Intermediate Microeconomic Theory</td>
</tr>
<tr>
<td></td>
<td>312</td>
<td>Intermediate Macroeconomic Theory</td>
</tr>
<tr>
<td></td>
<td>313</td>
<td>Intermediate Microeconomic Theory (Calculus Section)</td>
</tr>
<tr>
<td></td>
<td>314</td>
<td>Intermediate Macroeconomic Theory (Calculus Section)</td>
</tr>
<tr>
<td></td>
<td>319</td>
<td>Introduction to Statistics and Probability</td>
</tr>
<tr>
<td></td>
<td>333</td>
<td>Theory and Practice of Asset Markets</td>
</tr>
<tr>
<td></td>
<td>361/561</td>
<td>International Trade Theory and Policy</td>
</tr>
<tr>
<td></td>
<td>365/565</td>
<td>Japanese Economy</td>
</tr>
<tr>
<td></td>
<td>383</td>
<td>Marxist Political Economy</td>
</tr>
<tr>
<td>Education</td>
<td>311</td>
<td>Educational Psychology</td>
</tr>
<tr>
<td></td>
<td>420</td>
<td>Field Experience</td>
</tr>
<tr>
<td></td>
<td>497</td>
<td>Informal Study</td>
</tr>
<tr>
<td></td>
<td>590</td>
<td>Special Topics in Education</td>
</tr>
<tr>
<td></td>
<td>620</td>
<td>Internship In Education</td>
</tr>
<tr>
<td></td>
<td>630</td>
<td>Special Problems in Agricultural and Occupa­tional Education</td>
</tr>
<tr>
<td></td>
<td>730</td>
<td>Seminar In Agricultural and Occupa­tional Education</td>
</tr>
<tr>
<td></td>
<td>800</td>
<td>Master's-Level Thesis Research</td>
</tr>
<tr>
<td></td>
<td>900</td>
<td>Doctoral-Level Thesis Research</td>
</tr>
<tr>
<td>English</td>
<td>Labor Economics</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>108 Writing about Film</td>
<td>140 Development of Economic Institutions</td>
<td></td>
</tr>
<tr>
<td>109 The Art of Argument: An Introduction to Rhetoric</td>
<td>240 Economics of Wages and Employment</td>
<td></td>
</tr>
<tr>
<td>131 Critical Reading and Writing</td>
<td>540 Labor Economics</td>
<td></td>
</tr>
<tr>
<td>132 The Personal Essay</td>
<td>Organizational Behavior</td>
<td></td>
</tr>
<tr>
<td>137 Writing Workshop</td>
<td>121 Introduction to Microorganizational Behavior and Analysis</td>
<td></td>
</tr>
<tr>
<td>150 The Modern Imagination</td>
<td>371 Individual Differences and Organizational Behavior</td>
<td></td>
</tr>
<tr>
<td>156 American Authors</td>
<td>Personnel and Human Resource Studies</td>
<td></td>
</tr>
<tr>
<td>160 Afro-American Autobiography</td>
<td>266 Personal Computer Basics</td>
<td></td>
</tr>
<tr>
<td>165 Fantasy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>227 Shakespeare</td>
<td>360 Human Resource Economics and Public Policy</td>
<td></td>
</tr>
<tr>
<td>270 The Reading of Fiction</td>
<td></td>
<td></td>
</tr>
<tr>
<td>280 Creative Writing</td>
<td>468 Strategic Organizational and Human Resources Management Simulation</td>
<td></td>
</tr>
<tr>
<td>289 Expository Writing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>319 Chaucer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>327 Shakespeare</td>
<td></td>
<td></td>
</tr>
<tr>
<td>472 Irish Literature</td>
<td></td>
<td></td>
</tr>
<tr>
<td>477 Children's Literature</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Floriculture and Ornamental Horticulture</td>
<td></td>
<td></td>
</tr>
<tr>
<td>210 Architectural Sketching in Watercolor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>French Literature</td>
<td></td>
<td></td>
</tr>
<tr>
<td>201 Introduction to French Literature</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geological Sciences</td>
<td></td>
<td></td>
</tr>
<tr>
<td>101 Introductory Geological Science</td>
<td></td>
<td></td>
</tr>
<tr>
<td>102 Introduction to Historical Geology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>401 Summer Field Geology in Utah, Wyoming, and Idaho</td>
<td></td>
<td></td>
</tr>
<tr>
<td>German Literature</td>
<td></td>
<td></td>
</tr>
<tr>
<td>201 Introduction to German Literature I: Prose</td>
<td></td>
<td></td>
</tr>
<tr>
<td>202 Introduction to German Literature II: Drama</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Government</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100.1 Revolutionaries and Power in Latin America</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100.2 Race, Education, and Politics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>111 The Government of the United States</td>
<td></td>
<td></td>
</tr>
<tr>
<td>131 Introduction to Comparative Government and Politics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>161 Introduction to Political Theory</td>
<td></td>
<td></td>
</tr>
<tr>
<td>181 Introduction to International Relations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>310 Power and Poverty in America</td>
<td></td>
<td></td>
</tr>
<tr>
<td>316 The American Presidency</td>
<td></td>
<td></td>
</tr>
<tr>
<td>317 Political Parties and Elections</td>
<td></td>
<td></td>
</tr>
<tr>
<td>318 The American Congress</td>
<td></td>
<td></td>
</tr>
<tr>
<td>328 Constitutional Politics: The United States Supreme Court</td>
<td></td>
<td></td>
</tr>
<tr>
<td>333 Government and Politics of the Soviet Union</td>
<td></td>
<td></td>
</tr>
<tr>
<td>357 The Politics of European Integration</td>
<td></td>
<td></td>
</tr>
<tr>
<td>385 Contemporary American Foreign Policy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>382 International Relations of the Middle East</td>
<td></td>
<td></td>
</tr>
<tr>
<td>History</td>
<td></td>
<td></td>
</tr>
<tr>
<td>101-102 Introduction to American History</td>
<td></td>
<td></td>
</tr>
<tr>
<td>151-152 Introduction to Western Civilization</td>
<td></td>
<td></td>
</tr>
<tr>
<td>242 Europe since 1789</td>
<td></td>
<td></td>
</tr>
<tr>
<td>253 Russian History since 1800</td>
<td></td>
<td></td>
</tr>
<tr>
<td>268 Ancient Rome: From the Myth of Romulus to the Myth of Cleopatra</td>
<td></td>
<td></td>
</tr>
<tr>
<td>314 History of American Foreign Policy, 1912 to the Present</td>
<td></td>
<td></td>
</tr>
<tr>
<td>319 The Frontier in American Thought and Culture</td>
<td></td>
<td></td>
</tr>
<tr>
<td>342 Hiroshima and Nagasaki</td>
<td></td>
<td></td>
</tr>
<tr>
<td>History of Art</td>
<td></td>
<td></td>
</tr>
<tr>
<td>202 Survey of European Art: Renaissance to Modern</td>
<td></td>
<td></td>
</tr>
<tr>
<td>261 Introduction to Art History: Modern Art</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hotel Administration</td>
<td></td>
<td></td>
</tr>
<tr>
<td>171 Keyboarding on the Macintosh</td>
<td></td>
<td></td>
</tr>
<tr>
<td>174 Information Systems</td>
<td></td>
<td></td>
</tr>
<tr>
<td>486 Historical Development of the Public Right to Travel and Its Impact on American Society</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Human Development and Family Studies</td>
<td></td>
<td></td>
</tr>
<tr>
<td>115 Human Development: Infancy and Childhood</td>
<td></td>
<td></td>
</tr>
<tr>
<td>150 Families in Modern Society</td>
<td></td>
<td></td>
</tr>
<tr>
<td>216 Human Development: Adolescence and Youth</td>
<td></td>
<td></td>
</tr>
<tr>
<td>445 Topics in Early Childhood Education and Development: Education of the Emotionally Disturbed Child</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Human Service Studies</td>
<td></td>
<td></td>
</tr>
<tr>
<td>380 Community Mental Health</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Industrial and Labor Relations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Collective Bargaining</td>
<td></td>
<td></td>
</tr>
<tr>
<td>101 Introduction to the United States Labor History: The Twentieth Century</td>
<td></td>
<td></td>
</tr>
<tr>
<td>200/500 Collective Bargaining</td>
<td></td>
<td></td>
</tr>
<tr>
<td>201/501 Labor Relations Law and Legislation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>608 Special Topics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Economic and Social Statistics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>210-211 Statistical Reasoning</td>
<td></td>
<td></td>
</tr>
<tr>
<td>510-511 Introductory Statistics for the Social Sciences</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Marine Science</td>
<td>Consult the Shoals Marine Laboratory office for a complete list of summer offerings in marine science.</td>
<td></td>
</tr>
<tr>
<td>Mathematical Studies</td>
<td></td>
<td></td>
</tr>
<tr>
<td>101 History of Mathematics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>105 Finite Mathematics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>109 Precalculus Mathematics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>111-112 Calculus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>123 Analytic Geometry and Calculus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>192 Calculus for Engineers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>200 Basic Concepts of Mathematics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>231 Linear Algebra</td>
<td></td>
<td></td>
</tr>
<tr>
<td>293/294 Engineering Mathematics with Microcomputers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>421-422 Applicable Mathematics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>431 Introduction to Algebra</td>
<td></td>
<td></td>
</tr>
<tr>
<td>486 Applied Logic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Medieval Studies</td>
<td></td>
<td></td>
</tr>
<tr>
<td>102 Knights and Ladies</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Microbiology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>290-291 General Microbiology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Military Science</td>
<td></td>
<td></td>
</tr>
<tr>
<td>102 Leadership Theory</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Modern Languages and Linguistics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aymara</td>
<td></td>
<td></td>
</tr>
<tr>
<td>131-132-133 Aymara</td>
<td></td>
<td></td>
</tr>
<tr>
<td>135-136 Aymara Laboratory</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chinese</td>
<td></td>
<td></td>
</tr>
<tr>
<td>160 Introductory Intensive Chinese (Mandarin)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>201-202 Intermediate Chinese Dutch</td>
<td></td>
<td></td>
</tr>
<tr>
<td>131-132 Dutch Elementary Reading Course</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Near Eastern Studies
103 Elementary Hebrew
292 Women in the Hebrew Bible

Nutritional Sciences
660 Special Topics in Nutrition

Operations Research and Industrial Engineering
260 Introductory Engineering Probability
270 Basic Engineering Probability and Statistics
622 Operations Research I

Philosophy
100 Ethics: Theory and Practice
101 Introduction to Philosophy
103 Reasoning and Writing
145 Contemporary Moral Issues
231 Introduction to Formal Logic
245 Ethics and Health Care

Physical Education
Consult the Physical Education Office for a complete list of summer offerings for credit and recreation.

Physics
101-102 General Physics
112 Physics I: Mechanics and Heat
213 Physics II: Electricity and Magnetism
214 Physics III: Optics, Waves, and Particles
400 Informal Advanced Laboratory
500 Informal Graduate Laboratory
510 Advanced Experimental Physics
520 Projects in Experimental Physics

Psychology
101 Introduction to Psychology: The Frontiers of Psychological Inquiry
128 Introduction to Psychology: Personality and Social Behavior
199 Sports Psychology
205 Perception
214 Knowledge and Reasoning
265 Psychology and Law
280 Introduction to Social Psychology
283 Groups and Relationships
325 Introductory Psychopathology
350 Statistics and Research Design
380 Community Mental Health
469 Psychotherapy: Its Nature and Influence

Rural Sociology
101 Introductory Sociology
109 Famine
206 Gender and Society
208 Technology and Society
213 Social Indicators and Data Management
324 Environment and Society
415 Roots of Revolution in Latin America
437 Aging: Issues in the 1990s

Sociology
101 Introduction to Sociology
103 Introduction to Sociology: Microsociology
243 Family
283 Groups and Relationships
347 Aging: Issues in the 1990s

Spanish Literature
201 Introduction to Hispanic Literature

Textiles and Apparel
144 Introduction to Apparel Design

Theatre Arts
108 Writing about Film
120 The Unfashionable Human Body
211 Dance Composition Workshop
252 Technical Production Studio
283 Introduction to Voice and Speech for Performance
287 Summer Acting Workshop
327 Modern Drama
354 Stagecraft Studio
362 Lighting Design and Technology
475 Seminar in the Cinema

Theoretical and Applied Mechanics
202 Mechanics of Solids
203 Dynamics

Writing
137 Writing Workshop

English
101-102 English as a Second Language
211 English as a Second Language
215 English for Later Bilinguals
French
101 French Basic Course I
123 Continuing French
203-204 Intermediate Composition and Conversation
German
121-122 Elementary German
609-610 Old Norse
631-632 Elementary Reading Course
Italian
101 Italian Basic Course I
123 Continuing Italian
Japanese
160 Introductory Intensive Japanese
203-204 Intermediate Japanese
403 Teaching of Japanese as a Foreign Language
Linguistics
101 Theory and Practice of Linguistics
Quechua
131-132-133 Quechua
135-136 Quechua Laboratory
Russian
123 Continuing Russian
203 Intermediate Composition and Conversation
Sinhala
Spanish
101 Spanish Basic Course I
110 Spanish Basic Conversation Course
123 Continuing Spanish
203 Intermediate Composition and Conversation

Music
101 The Art of Music
105 Introduction to Music Theory
331 Summer Session Choir

Natural Resources
215 Environmental Disruption and Regulation
218 The Superfund Program: Policy and Science at Hazardous Chemical Waste Sites
219 Introduction to Natural History of the Finger Lakes Region
230 Food, Famine, and Population: Resource Policy and Management
NEW YORK STATE COLLEGE OF VETERINARY MEDICINE

ADMINISTRATION
Robert D. Phemister, dean
S. Gordon Campbell, associate dean for academic affairs
Douglas D. McGregor, associate dean for research
Donald F. Smith, associate dean for veterinary education
Neil L. Norcross, secretary of the college
John A. Lambert, assistant dean for administration
John C. Semmler, assistant dean for public affairs
Marcia J. Sawyer, director of student affairs and admissions
Gloria R. Crissey, registrar, director of financial aid

DEPARTMENT CHAIRS
Anatomy: A. deLahunta
Avian and Aquatic Animal Medicine: B. Calnek
Clinical Sciences: D. Smith
Microbiology, Immunology, and Parasitology: R. Avery
Pathology: B. Pauli
Pharmacology: G. Sharp
Physiology: D. Robertshaw

THE COLLEGE
The College of Veterinary Medicine offers a professional program that requires four years of full-time academic and clinical study of the normal and abnormal structure and function of the animal body and the diagnosis, treatment, and prevention of animal disease.

Graduates of the college receive the Doctor of Veterinary Medicine (D.V.M.) degree, which is recognized by licensing boards throughout the world. Graduates generally enter private practice or become engaged in one of the increasing number of other biomedical activities.

Admission requires a minimum of three years of college work, including specific prerequisite courses and experience. Applications must be filed approximately one year before the proposed matriculation date. The competition for admission is keen, since there are many more qualified applicants than can be admitted.

Graduate programs in veterinary research and postdoctoral training in clinical specialties are open to Doctors of Veterinary Medicine and some highly qualified holders of baccalaureate degrees and lead to the degree of Master of Science or Doctor of Philosophy.

More detailed information is contained in the Announcement of the New York State College of Veterinary Medicine, which may be obtained by writing to the college.

Note: 500- and 600-level courses are open only to veterinary students except by written permission from the instructor.

ANATOMY
500 Gross Anatomy: Small Animal Fall.
501 Gross Anatomy: Large Animal Spring.
502 Microscopic Anatomy First year.
504 Neuroanatomy and Clinical Neurology First year.
505 Applied Anatomy Fall.
506 Applied Anatomy Spring.
507 Animal Development Fall.
508 Anatomy of the Fish and Bird Spring.
600 Special Projects in Anatomy Fall and spring.
601 Research Opportunities in Veterinary Medicine Fall, January, spring, and summer.
602 Advanced Clinical Neurology Fall.

AVIAN AND AQUATIC ANIMAL MEDICINE
[255 Poultry Hygiene and Disease Spring.]
555 Avian diseases Fall.
614 Research Opportunities in Veterinary Medicine Fall, January, spring, and summer.
630 Diseases of Aquarium Fish Spring.
[631 Fish Health Management Spring.]
[663 Veterinary Medicine in Developing Nations Spring.]
672 Aquavet I: Introduction to Aquatic Veterinary Medicine Mid-May to mid-June.
673 Aquavet II: Health Management in Confined Populations of Invertebrates and Fish Summer.
770 Advanced Work in Avian Diseases Fall and spring.
772 Advanced Work in Aquatic Animal Diseases Fall and spring.
773 Advanced Work in Avian Immunology Fall and spring.

CLINICAL SCIENCES
520 Preventive Medicine in Animal Health Management Spring.
545 Clinical Epidemiology Fall.
547 Practice Management Fall and spring.
548 Anesthesiology Fall.
561 Theriogenology I Spring.
562 Theriogenology II Fall.
563 Large Animal Medicine and Surgery Fall.
564 Large Animal Medicine and Surgery Spring.
566 Radiographic Techniques Fall.
567 Clinical Nutrition Fall.
568 Foundations of Clinical Science I Fall.
569 Foundations of Clinical Science II Spring.
570 Theriogenology Service Spring.
572 Senior Seminar Fall and spring.
574 Large Animal Surgery Service Fall and spring.
575 Ambulatory Service Fall and spring.
577 Clinical Anesthesia Fall and spring.
579 General Medicine and Surgery Spring.
580 Radiology Service Fall and spring.
581 Animal Nutrition Fall.
582 Large Animal Surgical Exercises Spring.
583 Small Animal Medicine and Surgery Fall.
584 Small Animal Medicine and Surgery Spring.
587 Small Animal Surgical Exercises Spring.
589 Small Animal Medicine Service Fall and spring.
591 Small Animal Surgery Service Fall and spring.
593 Ophthalmology Service Fall and spring.
594 Large Animal Medicine Service Fall and spring.
596 Opportunities in Veterinary Medicine Fall, spring, and summer.
598 Dermatology Service Fall and spring.
600 Journal Reading I Spring.
601 Dentistry Spring.
616 Research Opportunities in Veterinary Medicine Fall, spring, and summer.
644 Introduction to Epidemiology Fall.
665 Study Designs Spring.
675 Special Problems in Large Animal Medicine Fall and spring.
676 Special Problems in Large Animal Surgery Fall and spring.
677 Special Problems in Large Animal Obstetrics Fall and spring.
678 Bovine Embryo Transfer Spring.
680 Poisonous Plants Fall.
681 Horse Health Management Spring.
VETERINARY MEDICINE

683 Elementary Biostatistics Spring.
684 Horse Lameness Spring.
685 Introduction to Practice Management January.
686 Goats: Management and Diseases Spring.
688 Special Problems in Small Animal Medicine Fall and spring.
689 Special Problems in Small Animal Surgery Fall and spring.
690 Veterinary Dermatology Spring.
692 Computers in Veterinary Medicine Spring.
695 Advanced Equine Surgical Techniques Spring.
696 Basic and Therapeutic Horseshoeing Spring.
697 Advanced Techniques in Food Animal Surgery Spring.
703 Special Projects in Immunology Fall and spring.
704 Doctoral-Level Thesis Research Fall and spring.
708 Special Topics in Comparative Pathology Fall.
709 Independent Studies in Epidemiology Fall and spring.

DIAGNOSTIC LABORATORY
531 Regulatory Medicine Spring.
601 Dentistry Spring.
611 Mastitis Spring.
700 Special Projects in Diagnostic Endocrinology Fall and spring.
701 Special Projects in Infectious Diseases Fall and spring.
702 Special Topics in Infectious Diseases Fall and spring.
703 Doctoral-Level Thesis Research Fall and spring.
704 Master's-Level Thesis Research Fall and spring.

MICROBIOLOGY, IMMUNOLOGY, AND PARASITOLOGY
315 Basic Immunology Lectures (also Biological Sciences 305) Fall.
316 Basic Immunology Laboratory (also Biological Sciences 307) Fall.
317 Pathogenic Virology (also Biological Sciences 308) Spring.
318 Pathogenic Bacteriology and Mycology Spring.
[331 Medical Parasitology Fall.]
510 Veterinary Parasitology Fall.
515 Veterinary Immunology Spring.
516 Infectious Diseases I: Bacteriology and Mycology Fall.
517 Infectious Diseases II: Virology and Viral Diseases Fall.
518 Infectious Diseases III: Infectious and Zoonotic Diseases Spring.
605 Special Projects in Microbiology Fall and spring.
606 Small Animal Infectious Diseases Spring.
607 Virus Diseases of Cattle Fall.

609 A Health Program for Sheep Spring.
615 Research Opportunities in Veterinary Medicine Fall, spring, and summer.
651 Clinical Parasitology of Avian Species Spring.
700 The Biology of Animal Viruses and Viral Pathogenesis Fall.
[705 Advanced Immunology Lectures Spring.]
706 Immunology Seminar Series Fall and spring.
707 Advanced Work in Bacteriology, Virology, Immunology Fall and spring.
[708 Selected Topics in Animal Virology Spring.]
709 Laboratory Methods of Diagnosis Fall and spring.
710 Microbiology Seminars Fall and spring.
713 Special Projects in Immunology: Topic to be announced Fall.
737 Advanced Work in Parasitology Fall and spring.
[767 Immunoparasitology Spring.]
783 Seminars in Parasitology Fall and spring.

PATHOLOGY
535 Veterinary Pathology I Fall.
536 Veterinary Pathology II Spring.
539 Introduction to Laboratory Animal Medicine Spring.
540 Pathology Service Fall and spring.
549 Laboratory Animal Clinical Rotation Spring.
571 Clinical Pathology Spring.
636 Wildlife Pathology Fall.
637 Postmortem Pathology Fall and spring.
638 The Bottom Line Fall and spring.
639 Autotutorial in Laboratory Animal Medicine and Science Fall and spring.
640 Principles of Toxicological Pathology Fall.
641 Clinical Immunology Spring.
[642 Public Policy and Laboratory Animal Science Spring.]
643 The Use of Animal Models to Explore Physiologic and Pathologic Mechanisms in Animals and Man Fall.
[701 Pathobiology of Disease: Cell Growth, Differentiation, and Neoplastic Transformation Spring.]
[702 Pathobiology of Disease: Tumor Cell Biology Spring.]
703 Pathobiology of Disease: Extracellular Matrix Spring.
[704 Pathobiology of Disease: Advanced Immunopathology Fall.]
[705 Pathobiology of Disease: Toxicologic Pathology Fall.]
706 Pathobiology of Disease: Advanced Reproductive Pathology Fall.
[707 Pathobiology of Disease: The Inflammatory Process Spring.]
[708 Pathobiology of Disease: Inherited Neuromuscular Diseases Spring.]
[709 Pathobiology of Disease: Advanced Clinical Pathology Spring.]

PHARMACOLOGY
528 Pharmacology I Fall.
529 Pharmacology II Spring.
610 Introduction to Chemical and Environmental Toxicology (also Toxicology 610) (also Food Science 610) Fall.
620 Advanced Clinical Pharmacology Spring.
621 Toxicology (also Toxicology 621) Spring.
622 Special Projects in Pharmacology Fall, spring, and summer.
629 Research Opportunities in Veterinary Medicine Fall, January, spring, and summer.
[700 Calcium and Other Second Messengers in Cell Activation Fall.]
[701 Receptors and Ion Channels Fall.]
[703 Receptor Binding: Theory and Techniques (also Biological Sciences 790, Sec. 02) Spring.]
704 CNS Neuropharmacology: Mechanisms-Synaptic Transmission Fall.
705 Mechanisms of Receptor-G Protein-Coupled Signal Transduction Spring.

Special Projects and Research
[710 The Role of Calcium in Stimulus-Secretion Coupling Fall, spring, and summer.]
[712 The Receptor for Immunoglobulin E on Tumor Mast Cells Fall, spring, and summer.]
713 Mechanisms of Growth-Factor Action Fall, spring, and summer.
[714 Central Nervous System Neutransmitters Fall, spring, and summer.]
716 Neurobiology of Seizure Disorders Fall, spring, and summer.
717 Single-Channel Recording Fall, spring, and summer.
718 Structure-Function of the Nicotinic Acetylcholine Receptor Fall, spring, and summer.
719 Computer Modeling of Drug-Receptor Interactions Fall, spring, and summer.
720 Modulation of Nicotinic Acetylcholine Receptor Function by Substance P Fall, spring, and summer.
721 Molecular Mechanisms of Pharmacological Blockade of Voltage-Dependent Calcium Channels Fall, spring, and summer.
Lipids (Biological Sciences 619 and Nutritional Sciences 602) Fall.
625 Problems in Dog and Cat Behavior Spring.
626 Problems in Equine Behavior Spring.
627 Acid-Base Relations (also Biological Sciences 715) Fall, spring, and summer.
628 Graduate Research in Animal Physiology (also Biological Sciences 719) Fall and spring.
Plasma Lipoproteins (Biological Sciences 712) Spring.
Cardiac Electrophysiology (Biological Sciences 713) Fall.
Physiology of Fluids (Biological Sciences 714) Spring.
Seminar on Insect Physiology (Biological Sciences 716, also Entomology 685) Spring.
Structure and Function of Joints with Emphasis on Arthritis (Biological Sciences 717) Fall.
[Evolution of Color Vision [Biological Sciences 718] Spring.]
720 Special Problems in Physiology Fall and spring.
726 Systems Physiology I Fall.
727 Systems Physiology II Spring.
752 Biological Membranes and Nutrient Transfer (also Biological Sciences 618) Spring.
[Animal Biotechnology [Biological Sciences 725] Fall.]
758 Molecular Mechanisms of Hormone Action (also Biological Sciences 658) Spring.
759 Nutrition and Physiology of Mineral Elements (also Biological Sciences 615 and 659) Fall.
Fundamentals of Endocrinology, Lecture (Animal Science 427) Fall.
Fundamentals of Endocrinology, Laboratory (Animal Science 428) Fall.
FACULTY ROSTER

Antczak, Douglas F., Ph.D., U. of Cambridge (England) Assoc. Prof., Microbiology, Immunology, and Parasitology
Appel, Max J., Ph.D., Cornell U. Prof. Microbiology, Immunology, and Parasitology
Appleton, Judith A., Ph.D., U. of Georgia. Asst. Prof., Microbiology, Immunology, and Parasitology
Avery, Roger J., Ph.D., U. of Newcastle-upon-Tyne (England) Prof., Microbiology, Immunology, and Parasitology
Babish, John, Ph.D., Cornell U. Assoc. Prof., Pharmacology
Ball, Barry A., Ph.D., Cornell U. Asst. Prof., Clinical Sciences
Barr, Stephen C., Ph.D., Louisiana State U. Asst. Prof., Clinical Sciences
Bell, Robin G., Ph.D., Australian National U. Assoc. Prof., Microbiology, Immunology, and Parasitology
Blue, Julia T., Ph.D., U. of Pennsylvania. Assoc. Prof., Clinical Sciences
Bowman, Dwight D., Ph.D., Tulane U. Asst. Prof., Microbiology, Immunology, and Parasitology
Bowser, Paul R., Ph.D., Auburn U. Assoc. Prof., Avian and Aquatic Animal Medicine
Calnek, Bruce W., D.V.M., Cornell U. Prof., Avian and Aquatic Animal Medicine
Campbell, S. Gordon, Ph.D., Cornell U. Assoc. Prof., Microbiology, Immunology, and Parasitology
Carmichael, Leonard E., Ph.D., Cornell U. John M. Olm Professor of Virology, Microbiology, Immunology, and Parasitology
Casey, James W., Ph.D., U. of Chicago. Assoc. Prof., Microbiology, Immunology, and Parasitology
Center, Sharon A., D.V.M., U. of California at Davis. Assoc. Prof., Clinical Sciences
Ceriore, Richard A., Ph.D., Rutgers U. Asst. Prof., Pharmacology
Cooper, Barry J., Ph.D., U. of Sydney (Australia). Assoc. Prof., Pathology
Corradino, Robert A., Ph.D., Cornell U. Assoc. Prof. Physiology/Section of Physiology
Cummings, John F., Ph.D., Cornell U. Prof., Anatomy
deLahunta, Alexander, Ph.D., Cornell U. Prof., Anatomy
Dobson, Alan, Ph.D., U. of Aberdeen (Scotland). Prof., Physiology/Section of Physiology
Dubovi, Edward J., Ph.D., U. of Pittsburgh. Assoc. Prof., Diagnostic Laboratory
Ducharme, Normand G., D.V.M., U. of Montreal (Canada). Assoc. Prof., Clinical Sciences
Erb, Hollis N., Ph.D., U. of Guelph (Canada). Assoc. Prof., Clinical Sciences
Farnum, Cornelis, Ph.D., U. of Wisconsin. Asst. Prof., Anatomy
Flandes, James D., D.V.M., U. of California at Davis. Asst. Prof., Clinical Sciences
Fortune, Joanne E., Ph.D, Cornell U. Assoc. Prof., Physiology
Fox, Francis H., D.V.M., Cornell U. Prof., Clinical Sciences
French, Tracy W., D.V.M., Purdue U. Assoc. Prof., Pathology
Fubini, Susan L., D.V.M., U. of Georgia. Asst. Prof., Clinical Sciences
Gilmour, Robert, Ph.D., SUNY—Upstate Medical Center. Assoc. Prof., Physiology
Gould, William J., D.V.M., Cornell U. Asst. Prof., Clinical Sciences
Grohn, Yrjo T., Ph.D., College of Veterinary Medicine, Helsinki (Finland). Asst. Prof., Clinical Sciences
Guard, Charles L. III, Ph.D., Case Western Reserve U. Assoc. Prof., Clinical Sciences
Hackett, Richard P., Jr., D.V.M., Ohio State U. Assoc. Prof., Clinical Sciences
Hansel, William, Ph.D., Cornell U. Prof., Physiology/Section of Physiology
Harvey, H. Jay, D.V.M., Kansas State U. Assoc. Prof., Clinical Sciences
Heronion, John D., Ph.D., SUNY at Albany. Assoc. Prof., Diagnostic Laboratory
Hermanson, John W., Ph.D., U. of Florida. Asst. Prof., Anatomy
Hinz, Harold F., Ph.D., Cornell U. Prof., Clinical Sciences
Hornbuckle, William E., D.V.M., Oklahoma State U. Assoc. Prof., Clinical Sciences
Horne, William A., Ph.D., Cornell U. Asst. Prof., Pharmacology
Houpt, Katherine A., Ph.D., U. of Pennsylvania. Prof., Physiology/Section of Physiology
Houpt, T. Richard, Ph.D., U. of Tennessee. Prof., Physiology/Section of Physiology

Environmental Research, Center for (CER), 17, 363
European history. See History, European
European studies, concentration in, 314
Examinations
advanced placement, 6
College Entrance Examination Board (CEEB), 6
College Placement Test (CPT), 7, 125, 126
Cornell Advanced Standing Examination (CASE), 8, 126
departmental advanced standing, 6
evening, 12
final, 12
Test of English as a Foreign Language (TOEFL), 125
Excess-hours tuition, 10
Exchange programs. See individual schools and colleges
Exercise concentration program, 496
Extensive courses (ILR), 488–90
Extension education, 63, 66
Extramural courses, 515
Facilities. See individual schools and colleges
Facility planning and management, 438
Faculty roster. See individual schools and colleges
FALCON (intensive language program), 130, 145, 226, 250, 252
Family studies, human development and, 439, 456–61
Farm management and finance, 37, 49, 50
Fees and expenses
to add/drop/change courses, 10
application, 10
billing and payment, 11
excess-hours tuition, 11
course enrollment, 10
late registration, 9
physical education, 11
refund policies, 10
tuition, 10
Field and International Study Program (human ecology), 442, 449–50
Fieldwork. See individual schools and colleges, departments, and special programs
Film, 285, 290–92. See also Theatre Arts
Final examinations, 12
Financial aid, 5
Financial management, 428–30
Fishery science, 81, 82, 349, 350
Floriculture and ornamental horticulture, 41, 70–74
Fluid mechanics, 383, 386
Food and beverage management, 430
chemistry, 75, 76
industry management, 39, 74, 75
production, 74
science, 74–77
Foreign language requirement. See individual schools and colleges, departments, and special programs
Foreign languages. See specific language
Forestry, 81, 82, 83
French. See also Romance studies
language, 427
placement in, 6
literature, 269–71
advanced placement in, 6, 125
major, 227
Freshman writing seminars, 311. See also individual schools and colleges
Gamelan Ensemble, 246
Gannett Health Center, 5
General education courses, 134
Geological sciences, 135, 186, 372–73, 401–404
Geometry and topology, 222–23, 224, 225

German
area studies major, 187
language and linguistics, 227
placement in, 125
literature. See Literature, German
advanced placement in, 6, 125
major, 187
Studies, Department of, 187–94
Glee Club, 245
Gothic, 229
Government, Department of, 194–202
Grad(e)s, 12. See also individual schools and colleges
Graduate School, 421
Graduation, requirements for, 11. See also individual schools and colleges
Greek
advanced placement in, 6
language, 160, 162, 165
linguistics, 175
studies, 134, 135, 143, 160–63, 164, 209, 210
Hebrew, 248, 310
advanced placement in, 6, 125
Hirpetology, 350
Hieroglyphics, 248
High Energy Synchrotron Source, Cornell (CHESS), 363
Hindi-Urdu, 229
Hispanic American Studies Program, 22
Histology, 341
Historical preservation, 111, 119, 121
History
African, 295, 296, 297, 298, 299
Afro-American, 204, 205, 206, 295, 296, 297, 298
American, 205–7
architectural. See Architecture, history of
art, 215–18
Asian, 146, 208–9
comparative, 203–4
department of, 202–14
advanced placement in, 7
development, 203
European
ancient, 209–10
early modern, 210
modern, 210, 314
labor, 473
Latin American, 208
Medieval, 210, 314
Native American, 44, 45
and Philosophy of Science and Technology, Program in, 308–10
Renaissance, 210–12
of science, 204–5
history of Art, Department of, 215–18
advanced placement in, 6
Histite, 236
Honors. See individual schools and colleges, departments, and special programs
Horses, 54, 55
Horticulture, 41, 77, 97–98. See also Plant Sciences
Hotel Administration, School of, 423–36
curriculum, 423
facilities, 423
faculty, 436
foreign languages, 426
grasing system, 424
independent research, 426
management intern program, 426
practice requirement, 424
requirements for graduation, 423, 424
study abroad, 426
Human Biology Program, 308
Human development and family studies, 439–41, 450–61

INDEX 525
It is the policy of Cornell University actively to support equality of educational and employment opportunity. No person shall be denied admission to any educational program or activity or be denied employment on the basis of any legally prohibited discrimination involving, but not limited to, such factors as race, color, creed, religion, national or ethnic origin, sex, age, or handicap. The university is committed to the maintenance of affirmative-action programs that will assure the continuation of such equality of opportunity. Sexual harassment is an act of discrimination and, as such, will not be tolerated. Inquiries concerning the application of Title IX may be referred to Cornell's Title IX coordinator (coordinator of women's services) at the Office of Equal Opportunity, Cornell University, 234 Day Hall, Ithaca, New York 14853-2801 (telephone: 607 255-3976).

Cornell University is committed to assisting those persons with disabilities who have special needs. A brochure describing services for persons with disabilities may be obtained by writing to the Office of Equal Opportunity, Cornell University, 234 Day Hall, Ithaca, New York 14853-2801. Other questions or requests for special assistance may also be directed to that office.