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We present and analyze a linear programming (LP) algorithm based on replac-

ing the non-negative orthant with larger quadratic cones. For each quadratic

relaxation that has an optimal solution, there naturally arises a parameterized

family of quadratic cones for which the optimal solutions create a path leading

to the LP optimal solution. We show that this path can be followed efficiently,

thereby resulting in an algorithm whose complexity matches the best bounds

proven for interior-point methods. We then extend the algorithm to semidefi-

nite programming (SDP).
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CHAPTER 1

INTRODUCTION

Linear programming is the problem of minimizing (or maximizing) a lin-

ear objective function over a linearly-constrained subset of Rn. In 1947, George

Dantzig formulated the simplex method, the first practical algorithm for solv-

ing linear programming problem [5]. Although the algorithm performs well in

practice, the simplex method is not a polynomial-time algorithm. That is, there

exist problem instances (see the Klee-Minty cube, [15]) on which the simplex

method runs for a number of iterations that is exponential in the number of

decision variables, for certain pivoting rules and starting points.

In [14], Khachiyan proved that the ellipsoid method—which had been de-

veloped and studied by Shor, Nemirovski, and Yudin in the context of general

convex optimization problems—has a worst-case iteration-complexity bound

that is polynomial in the bitlength of the input size of the problem instance,

when applied to linear programming problems. However, its performance in

practice is often inferior to that of the simplex method.

The next breakthrough in linear programming algorithms is due to Kar-

markar [12], who formulated a polynomial-time interior-point algorithm for lin-

ear programming. It is an “interior-point” algorithm because, in contrast to the

simplex method whose iterates are vertices of the linear program’s polyhedral

feasible region, the iterates of Karmarkar’s algorithm stay in the interior of the

feasible region. Karmarkar’s algorithm performs well in practice, in addition to

having a good iteration-complexity bound.

Roughly speaking, Karmarkar uses projective scalings in order to transform
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the linear programming feasible region such that the current iterate lies “in the

center” of the feasible region. This allows the algorithm to take a large enough

step towards the boundary of the scaled region, resulting in good progress to-

wards reaching an optimal solution.

The work of Barnes and of Vanderbei et al. (see [2] and [36]) explores a sim-

plified version of Karmarkar’s algorithm which dispenses with the projective

aspect of the scalings. Instead, they use affine scalings that achieve the same

goal of transforming the feasible region so that each iterate lies “in the center”

of the transformed feasible region. It was later discovered that Dikin had for-

mulated the same algorithm [7, 8] in 1967 (with minor differences, such as in

nondegeneracy assumptions and choice of step length).

Despite its appealing simplicity and good performance in practice (see [35]),

the affine-scaling algorithm in the original form formulated by Dikin has not

been proven to have polynomial complexity bounds. In fact, it is widely be-

lieved that its worst case complexity is exponential in the number of decision

variables (see [22]). However, variants of Dikin’s affine-scaling algorithm have

been studied and proven to have polynomial-time convergence. In particular,

primal-dual algorithms such as [25], [10], and [30] take Dikin’s original idea of

optimizing the objective function over an inscribed ellipsoid around the current

iterate. However, the ellipsoids (or the ellipsoid-like regions) lie in a space that

simultaneously takes into account the primal and the dual iterate.

The cone affine-scaling algorithm studied by Sturm and Zhang in [30], in

particular, is interesting because instead of using an inscribed ellipsoid, it uses a

conic section, the intersection of a cone with an affine subspace that is inscribed

in the linear program’s feasible region. Furthermore, this algorithm generalizes
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to semidefinite programming in a relatively straightforward manner (see [3]).

The idea of considering conic sections had also been used by Megiddo in [21]

and by Todd in [31].

In [4], Chua studies a primal-dual algorithm for semidefinite programming

which could also be seen as a cone affine-scaling algorithm. The algorithm al-

ternates between solving the primal and the dual problem over an inscribed

conic section. This conic section is obtained by taking a quadratic cone that is

contained in the positive semidefinite cone and intersecting it with the affine

constraints of the respective problem. Chua extends this algorithm to apply to

cone optimization problems over symmetric cones.

In the work that we present in this thesis, we develop a linear programming

algorithm that is based on solving a sequence of quadratic cone-based relax-

ations of the linear programming feasible region. This algorithm can be seen as

a primal affine-scaling algorithm, where the “ellipsoid-like” region which pro-

vides this relaxed feasible region is the intersection of a quadratic cone with

an affine linear space. However, in contrast to most affine-scaling algorithms

which deal with regions inscribed in the linear programming feasible region,

our algorithm solves a sequence of relaxations, solving problems over regions

that circumscribe the original feasible region of the linear programming prob-

lem. We then extend the algorithm and the analysis to semidefinite program-

ming.
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The structure of this thesis

In Chapter 2, we introduce basic ideas and results from the theory of linear

programming and conic optimization that are pertinent to the development and

analysis of our algorithm.

Chapter 4 introduces the reader to the class of quadratic cones that are used

in the algorithm. In Chapter 5, we introduce the algorithm and carry out the

analysis for the simplest case of linear programming, even though the analysis

for the semidefinite programming case is similar. We do this because it is easier

to build a more concrete intuition that is needed in the analysis of our algorithm

in the context of linear programming. On the other hand, linear programming

is sufficiently rich in structure, such that when we extend to semidefinite pro-

gramming in Chapter 6, the extension follows relatively easily.
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CHAPTER 2

BACKGROUND

2.1 Linear programming

Linear programming is the constrained optimization problem of minimizing a

linear functional over a region that is described by linear equality and inequality

constraints. We can write any linear programming problem (“linear program”)

in the following standard form:

min 〈c, x〉

s.t. Ax = b (LP)

x ∈ Rn
+,

where c ∈ Rn, b ∈ Rm, and A ∈ Rm×n (an m×n matrix with real entries), with m ≤ n.

We use Rn
+ (Rn

++) to denote the nonnegative (positive) orthant: the set of vectors

in Rn whose coordinates are nonnegative (positive).

We use 〈·, ·〉 to denote an inner product on Rn, which could be chosen to

be the dot product or another inner product. For simplicity and concreteness,

however, in the present section, we choose 〈·, ·〉 to be the dot product.

The constraint “Ax = b” describes an affine linear subspace whose dimen-

sion is (n−the rank of A) = the dimension of the null space of A. We will assume

that A is full-rank. (Otherwise, we can remove some of the rows of A and the

corresponding rows of b to obtain an equivalent system of linear equality con-

straints Âx = b̂ with Â having linearly independent rows, while describing the

same affine linear space as that described by the system Ax = b.) The constraint

“x ∈ Rn
+” is often referred to as the nonnegativity constraint.
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Given a linear programming problem in the form (LP), the associated dual

problem is

max bT y

s.t. AT y + s = c (LP)∗

s ∈ Rn
+.

We write bT y instead of 〈b, y〉 for denoting the inner product on Rm, in order to

reserve the notation 〈·, ·〉 for the inner product on Rn. In relation to (LP)∗, we

refer to (LP) as the primal problem.

We refer to x, which lies in Rn, and (s, y), which lies in Rn+m, as the primal and

dual decision variables, respectively. We refer to 〈c, x〉 and bT y as the primal and

dual objective functions, respectively.

The set of points x that satisfy the constraints Ax = b and x ∈ Rn
+ is referred to

as the feasible region of the primal problem. Similarly, the set of points (s, y) that

satisfy the dual constraints is the feasible region of the dual problem.

Let

Int := {x ∈ Rn
++ | Ax = b}

and

Int∗ := {(s, y) ∈ Rn
++ × R

m | AT y + s = c}.

If Int is nonempty or (LP) is infeasible, then Int is the relative interior of the

feasible region of (LP). Similarly, if Int∗ is nonempty or (LP)∗ is infeasible, then

Int∗ is the relative interior of the feasible region of (LP)∗. If Int or Int∗ are not

empty, we say that the corresponding problem is strictly feasible and we call

elements of Int or Int∗ strictly feasible solutions.
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When the feasible region is empty, we say that the problem is infeasible. We

say that a problem is unbounded if it is feasible but the objective function to be

minimized or maximized does not have a finite minimum or maximum value,

respectively. Note that it is possible to have a bounded problem whose feasible

region is an unbounded set.

Whenever (LP) (and (LP)∗, respectively) is infeasible, we define its optimal

value as +∞ (−∞, respectively). Whenever (LP) (and (LP)∗, respectively) is un-

bounded, we define its optimal value as −∞ (+∞, respectively).

Notation

Throughout this thesis, column vectors are denoted by lowercase letters while

matrices are denoted by uppercase letters. When we consider a vector and its

corresponding diagonal matrix, we denote them using the lowercase and up-

percase versions of the same letter. For instance, for x ∈ Rn, we let X := diag x,

the n × n diagonal matrix whose diagonal entries are given by the vector x. We

use 1 to denote the vector of all ones in Rn.

We use subscripts to denote the entries of vectors and matrices. For instance,

xi is the ith component of a vector x and Xi j is the (i, j) entry of the matrix X.

For vectors x, y ∈ Rn and a given inner product 〈·, ·〉, we use ∠(x, y) to denote

the angle between x and y with respect to this inner product.

We write x.y to denote the componentwise product of the two vectors and

x./y to denote componentwise division. For each integer k, we write xk to de-

note the vector whose ith component is the kth power of the ith component
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of x. For example, x2 = (x2
1, . . . , x

2
n)T , x−1 = (1/x1, . . . , 1/xn)T , and x1/2 =

√
x =

(
√

x1, . . . ,
√

xn)T . Superscripts on matrices denote the usual matrix powers. For

example, X2 = XX, X−1 = the inverse of the matrix X, and X−2 = X−1X−1. If X

is a symmetric positive semidefinite matrix, we use X1/2 and X−1/2 to denote the

positive semidefinite square root matrices of X and X−1, respectively. We use

superscripts with parentheses (e.g., x(k) or X(k)) to denote iterates produced by

an algorithm.

For any set S , int S denotes the interior of S while ∂S denotes the boundary

of S .

Duality theorems for linear programming

One motivation, or interpretation, of the dual problem is as the problem of find-

ing lower bounds for the primal problem’s objective function value. This inter-

pretation is justified by the following fundamental result, commonly known as

weak duality.

Theorem 2.1 (Weak duality). For any feasible solution x for (LP) and any feasible

solution (s, y) for (LP)∗,

〈c, x〉 ≥ bT y.

That is, the value of any feasible primal solution is always an upper bound for the value

of any feasible dual solution.

Proof. Let x and (s, y) be feasible solutions for (LP) and (LP)∗, respectively. Since

Ax = b and AT y = c − s, then

bT y = (Ax)T y = 〈x, AT y〉 = 〈x, c − s〉 = 〈c, x〉 − 〈s, x〉.
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Since both x and s lie in the nonnegative orthant, we know that 〈s, x〉 ≥ 0, which

implies that bT y ≤ 〈c, x〉. �

In fact, we can say something much stronger about the optimal values of the

primal and dual linear programming problems, a result that is known as the

strong duality theorem ([34, Theorem 5.2]).

Theorem 2.2 (Strong duality). If either the dual or the primal problem is feasible, then

the optimal value of the primal problem is equal to the optimal value of the dual problem.

These theorems motivate the notion of the duality gap:

Definition 2.1. Given a feasible solution x for (LP) and a feasible solution (s, y)

for (LP)∗, the duality gap between them is

〈c, x〉 − bT y,

which is also equal to 〈x, s〉 (since s = c − AT y).

Clearly, by the theorems, the duality gap is a measure of how close x and

(s, y) are to being optimal.

Many primal-dual interior-point algorithms (among others: [25, 10, 30, 4])

are based on reducing the duality gap at each iteration. That is, when the cur-

rent duality gap is sufficiently close to zero, the current iterate is a good approx-

imation of the optimal solution.
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2.2 Cone optimization

Consider a generalization of linear programming, where the nonnegativity con-

straint “x ∈ Rn
+” is replaced by a constraint of the form x ∈ K, for sets K ⊆ Rn that

are closed convex cones.

Definition 2.2. Consider a subset K of a finite-dimensional vector space. Then,

• K is convex if for all x, y ∈ K and for all λ ∈ [0, 1], the point x(λ) := λx+(1−λ)y

is also in K.

• K is a cone if for each v ∈ K, λv ∈ K and all scalars λ > 0, the vector λv is

also in the cone K.

• K is a regular cone if it is a cone, its interior is nonempty, and it does not

contain linear subspaces other than {0}.

In the rest of this work, we always assume the cones K that we consider are

closed, convex, and regular, unless explicitly specified otherwise. Intuitively,

regular cones “have a volume” and are “pointed” at the origin. For instance, for

n ≥ 2, a closed halfspace is a closed convex cone that is not regular because it

contains a nontrivial linear subspace. A ray is not regular because its interior is

empty.

By replacing the nonnegative orthant with a (regular closed convex) cone K,

we then obtain a problem of minimizing a linear functional subject to a set of

linear equality constraints and a cone constraint:

min 〈c, x〉

s.t. Ax = b (CP)

x ∈ K.
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We call problems of this form (convex) cone optimization or conic programming

problems. As in the case of linear programming, c ∈ Rn, b ∈ Rm, and A ∈ Rm×n, a

full-rank matrix. The inner product 〈·, ·〉 denotes an inner product on Rn, which

could be the dot product on Rn or another inner product.

Note that although (CP) as we explicitly state here always has decision vari-

ables that lie in Rn, with K ⊆ Rn, we can in fact consider cone optimization prob-

lems over any finite-dimensional Euclidean space E. Because any n-dimensional

Euclidean space E is essentially “the same” as Rn, the way we state (CP) above

is without loss of generality.

Definition 2.3. Given a cone K ⊆ Rn and an inner product 〈·, ·〉, the dual cone is

the set

K∗ := {u ∈ Rn | 〈u, v〉 ≥ 0 ∀v ∈ K}.

From this, it is well-known that for any regular closed convex cone K, the

dual cone K∗ is also a regular closed convex cone.

The dual of (CP) is the problem

max bT y

s.t. A∗y + s = c (CP)∗

s ∈ K∗.

We use A∗ : Rm → Rn to denote the adjoint of A : Rn → Rm, which has the property

that

yT (Ax) = 〈A∗y, x〉

for all y ∈ Rm and x ∈ Rn. When the inner product 〈·, ·〉 is just the dot product,

then the adjoint of A is just AT .
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In the context of cone optimization, we reuse Int := {x ∈ int K | Ax = b}

to denote the interior of the feasible region of (CP) and Int∗ := {(s, y) | s ∈

int K∗ and A∗y + s = c} to denote the interior of the feasible region of (CP)∗.

As before, we say that a problem is strictly feasible if the interior of its feasible

region is not empty.

2.2.1 Example: semidefinite programming

Semidefinite programming (SDP) is a cone optimization problem over the vec-

tor space of symmetric n × n matrices (with real entries), where the cone con-

straint is the set of symmetric positive semidefinite matrices.

An n × n matrix U is positive semidefinite if its eigenvalues are nonnegative.

It is positive definite if its eigenvalues are positive.

We use Sn to denote the space of n × n symmetric matrices, and Sn
+ and

Sn
++ to denote the sets of symmetric positive semidefinite and positive definite

matrices, respectively. From here onwards, whenever we refer to a positive

(semi)definite matrix, we implicitly mean that the matrix is also symmetric.

More specifically, in a semidefinite programming problem, we minimize an

objective functional defined on Sn subject to linear constraints and the constraint

that the feasible matrices must also lie in Sn
+. The following is a semidefinite

programming problem in standard form:

min 〈C, X〉

s.t. 〈Ai, X〉 = bi, ∀i ∈ {1, . . . ,m}, (S DP)

X ∈ Sn
+.
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Here, C, A1, . . . , Am ∈ S
n and b ∈ Rm. We assume that b , 0, m ≤ n(n + 1)/2, and

that C, A1, . . . , Am form a linearly independent set. The decision variable X lies

in the set of symmetric n× n matrices. The inner product 〈·, ·〉 is chosen to be the

trace inner product, which is defined on Rn×n as follows: For U,V ∈ Rn×n,

〈U,V〉 := tr(UT V) =
∑

i, j

Ui jVi j.

When U,V are symmetric matrices, 〈U,V〉 = tr(UT V) = tr(UV).

The dual problem of (S DP) is given by

max bT y

s.t.
m∑

i=1

Aiyi + S = C (S DP)∗

S ∈ Sn
+.

For a set of m fixed symmetric matrices A1, . . . , Am, let us define the operator

A : Sn → Rm as

AX = (〈A1, X〉, . . . , 〈Am, X〉)T

for all X ∈ Sn. LetA∗ : Rm → Sn, the adjoint ofA, be given by:

A∗y =

m∑
i=1

Aiyi,

for all y ∈ Rm.

UsingA andA∗, we can rewrite the primal and dual semidefinite programs

as

min 〈C, X〉

s.t. AX = b (S DP)

X ∈ Sn
+
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and

max bT y

s.t. A∗y + S = C (S DP)∗

S ∈ Sn
+.

To conclude this example, we make explicit how semidefinite programming

fits into the cone optimization “template” provided by (CP) and (CP)∗ above,

which is described to have decision variables that are column vectors, instead

of decision variables that are matrices. We do this by explicitly identifying each

matrix in Sn with a vector in Rn(n+1)/2, writing its upper triangular portion as a

vector in Rn(n+1)/2 by “stacking” its columns.

Consider the mapping svec : Sn → Rn(n+1)/2 given by: for each i, j = 1, . . . , n

with i ≤ j

(svec(X))i+ j( j−1)/2 :=


√

2Xi j, if i , j,

Xi j, if i = j,

for all X ∈ Sn. Note that svec is a linear mapping: svec(λX) = λ svec(X) for any

scalar λ and svec(X + Y) = svec(X) + svec(Y). Furthermore, for any U,V ∈ Sn
+,

〈U,V〉 = svec(U)T svec(V).

That is, using the trace inner product on Sn is equivalent to using the dot prod-

uct (of the images under svec) on Rn(n+1)/2. In other words, the operation svec

preserves the inner product. Hence, the constraint AX = b can also be written

as:

A svec(X) = b,

14



where A is an (m × (n(n + 1)/2)) matrix given by

A :=



svec(A1)T

svec(A2)T

...

svec(Am)T


.

The matrix A is full rank because we assume that A1, . . . , Am form a linearly in-

dependent set.

It is not difficult to see that svec is one-to-one and onto, and thus invertible.

In fact, it is easy to see that its inverse is

(svec−1(x))i j =


xi(i+1)/2 if i = j

xi+ j( j−1)/2 if i , j.

Since svec is linear and invertible, the map svec−1 is continuous and maps open

sets in Rn to open sets in Sn. Since the complement of Sn
+ is open, then the preim-

age, namely the complement of svec Sn
+, is also open. Thus, svec Sn

+, the image of

Sn
+ under the mapping svec, is closed.

Because svec is a linear mapping, the image of Sn
+ under svec is also a cone in

Rn(n+1)/2: Suppose that the vector v is in svec Sn
+. Then, there is some X ∈ Sn

++ such

that v = svec(X) ∈ svec Sn
+. Then for all λ ≥ 0,

λ v = λ svec(X) = svec(λX) ∈ svec Sn
+,

since λX ∈ Sn
+. Thus, svec Sn

+ is a cone. It is easy to see that it is also convex: for

any x, y ∈ svec Sn
+ and λ ∈ [0, 1], linearity of svec guarantees that λx + (1 − λ)y =

svec(λX + (1 − λ)Y) ∈ svec Sn
+ (where X and Y are matrices in Sn

+ that maps to x

and y, respectively).
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We observe that that the interior of svec Sn
+ is not empty, due to the continuity

of svec−1. Since svec is linear and we know that Sn
+ does not contain linear sub-

spaces other than the zero matrix, then svec Sn
+ does not contain linear subspaces

other than the zero vector. Thus, svec Sn
+ is a regular cone.

In addition, since the svec operation preserves the inner product (it is an

isometry), then it also preserves dual cones. In particular, the image of Sn
+ under

this operation is self-dual, like Sn
+ itself.

2.2.2 Duality theorems

As for linear programming, we have a weak duality theorem for conic optimiza-

tion problems (see [27, Chapter 3]).

Theorem 2.3 (Weak duality). For any feasible solution x for (CP) and any feasible

solution (s, y) for (CP)∗,

〈c, x〉 ≥ bT y.

That is, the value of any feasible primal solution is always an upper bound for the value

of any feasible dual solution.

Unfortunately, for general convex cone optimization problems, the optimal

value of the primal problem might not be equal to the optimal value of the dual

problem. There are, however, certain conditions that guarantees a strong duality

theorem like what we have for LP, such as the following “strong duality” result

(see [27, Corollary 3.2.7, Theorem 3.2.8]).

Theorem 2.4. Suppose that the primal problem is feasible and the dual problem is

strictly feasible. Then, the primal problem has an optimal solution.
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As in the case of linear programming, given a pair of feasible solutions x and

(s, y) for (CP) and (CP)∗, respectively, the duality gap between them is

〈c, x〉 − bT y = 〈x, s〉, (2.1)

since s = c − AT y.

2.2.3 Optimality conditions

Consider nonlinear optimization problems in the following form:

min f (x)

s.t. gi(x) ≤ 0, ∀i ∈ {1, . . . , l}, (2.2)

h j(x) = 0, ∀ j ∈ {1, . . . ,m},

where f , gi, h j : Rn → R are assumed to be C1 functions (continuously differen-

tiable).

Then, Fritz John ([11], [19]) provides a set of necessary conditions which

have to be satisfied by any optimal solution to (2.2).

Theorem 2.5 (Fritz John’s Necessary Optimality Conditions). If x̄ is an opti-

mal solution of (2.2), then there exist a vector λ = (λ0, λ1, . . . , λl)T ∈ Rl+1
+ and

µ = (µ1, . . . , µm)T ∈ Rm such that

λ0∇ f (x̄) +

l∑
i=1

λi∇gi(x̄) +

m∑
j=1

µ j∇h j(x̄) = 0, (2.3)

l∑
i=1

λigi(x̄) = 0, (2.4)

 λµ
 , 0. (2.5)

17



Karush, and Kuhn and Tucker, provide a second set of necessary optimality

conditions for nonlinear optimization problems in the form (2.2) ([13, 17], [29,

Theorem 3.25]). This second set of conditions, normally referred to as the KKT

conditions, is similar to Fritz John’s, with one main exception being that KKT

conditions guarantees that there exist λ ∈ Rl+1, µ ∈ Rm such that λ0 = 1, whereas

in the case of Fritz John’s, it is possible that λ0 = 0.

Furthermore, the KKT conditions hold only if certain constraint qualifications—

a set of conditions on the constraints—hold at the optimal point x̄. One set of

such constraints qualifications is as follows: There exists a vector ȳ ∈ Rn such

that

ȳT∇gi(x̄) < 0, ∀i ∈ {i = 1, . . . , l | gi(x̄) = 0} (2.6)

ȳT∇h j(x̄) = 0, ∀ j ∈ {1, . . . ,m}, (2.7)

and that

∇h1(x̄), . . . ,∇hm(x̄) are linearly independent. (2.8)

The conditions (2.6)-(2.8) are known as the Mangasarian-Fromovitz Constraint

Qualifications (MFCQ).

Theorem 2.6 (Karush-Kuhn-Tucker (KKT) Necessary Optimality Conditions).

Let x̄ be a local minimum of the nonlinear optimization problem (2.2).

Assume that at x̄, one of the following constraint qualifications is satisfied:

1. (MFCQ) The constraint qualifications (2.6)-(2.8)

2. (Slater’s condition) The functions gi are convex, h j are affine, and there exists a

feasible solution x̂ such that gi(x̂) < 0 for all i ∈ {1, . . . , l}.
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Then, there exist multipliers λ = (λ1, . . . , λl)T ∈ Rl
+ and µ = (µ1, . . . , µm)T ∈ Rm such

that

∇ f (x̄) +

l∑
i=1

λi∇gi(x̄) +

m∑
j=1

µ j∇h j(x̄) = 0 (2.9)

and

λigi(x̄) = 0, ∀i ∈ {1, . . . , l}. (2.10)

We are interested in applying these optimality conditions to cone optimiza-

tion problems of the form (CP). That is, when the objective function and equality

constraints are linear:

f (x) = 〈c, x〉

and

h(x) = Ax − b.

The only place in which we might have nonlinearity is in the cone constraint.

Supposing that the chosen cone K can be described by l constraints (not neces-

sarily linear):

K =
{
x ∈ Rn | g j(x) ≤ 0,∀ j ∈ {1, . . . , l}

}
,

where each g j is a convex, C1 function, then we can simplify the Fritz John and

KKT optimality conditions as follows.

Corollary 2.7 (Fritz John’s Necessary Optimality Conditions for (CP)). If x̄ is

an optimal solution of (CP), then there exist a vector λ = (λ0, λ1, . . . , λl)T ∈ Rl+1
+ and

µ = (µ1, . . . , µm)T ∈ Rm such that

λ0c +

l∑
i=1

λi∇gi(x̄) + ATµ = 0, (2.11)

l∑
i=1

λigi(x̄) = 0, (2.12)
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 λµ
 , 0. (2.13)

Similarly, the KKT conditions for (CP) are also simplified:

Corollary 2.8 (Karush-Kuhn-Tucker (KKT) Necessary Optimality Conditions for

(CP)). Let x̄ be a local minimum of (CP). Assume that at x̄, one of the following con-

straint qualifications is satisfied:

1. (MFCQ) There exists a vector ȳ ∈ Rn such that

ȳT∇gi(x̄) < 0, ∀i ∈ {i = 1, . . . , l | gi(x̄) = 0} (2.14)

AT y = 0, (2.15)

and that

A : Rn → Rm has rank m. (2.16)

2. (Slater’s condition)The problem (CP) is strictly feasible.

Then, there exist multipliers λ = (λ1, . . . , λl)T ∈ Rl
+ and µ = (µ1, . . . , µm)T ∈ Rm such

that

c +

l∑
i=1

λi∇gi(x̄) + ATµ = 0 (2.17)

and

λigi(x̄) = 0, ∀i ∈ {1, . . . , l}. (2.18)

When the optimization problem at hand is a minimization problem of a con-

vex function over a convex feasible region, then the KKT conditions above are

not only necessary but also sufficient ([29, Theorem 3.34]). That is, if the respec-

tive constraint qualification holds and if there exists (x̄, λ, µ) which satisfies the

conditions given in the respective theorems (Corollaries 2.7 and 2.8), then x̄ is

an optimal solution.
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2.3 The barrier functionals and the local inner products

The (logarithmic) barrier functional for the nonnegative orthant is the functional

f : Rn
++ → R given by

f (x) := −
n∑

i=1

ln xi. (2.19)

In the interior-point methods literature, the barrier functional is used in de-

vising the so-called path-following methods for solving linear programming prob-

lems. These interior-point algorithms solve a sequence of convex optimization

problems that are obtained by removing the constraint “x ∈ Rn
+” from the linear

program to be solved and adding a positive multiple of the barrier functional to

the objective. These problems take the following form:

min 〈c, x〉 − µ
n∑

i=1

ln xi

s.t. Ax = b, (BPµ)

where µ > 0 is called the barrier parameter. We call these problems the barrier

problems.

We note that f forms a “barrier” on the boundary of the positive orthant:

f (x) approaches infinity as x ∈ Rn
++ approaches the boundary of the positive

orthant, because for at least one coordinate i, xi approaches 0. Thus, we can

think of the term µ f (x) in the objective function of (BPµ) as a “penalty” term for

being too close to the boundary of the positive orthant.

Another important property of f is that it is strictly convex on the positive

orthant, which can be confirmed by taking the Hessian of f and showing that

it is positive definite on Rn
++. In particular, with respect to the dot product, the
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Hessian of f at x ∈ Rn++ is

H(x) =



1/x2
1 0 · · · 0

0 1/x2
2 · · · 0

...
...

. . .
...

0 0 · · · 1/x2
n


= X−2. (2.20)

(Recall that we use X to denote diag x, a diagonal matrix whose ith diagonal

component is given by xi.)

Since f (x) is strictly convex on Rn
++ and 〈c, x〉 is linear, the objective of (BPµ)

is also strictly convex on Rn
++. Thus, if (BPµ) has an optimal solution, it must be

unique. Furthermore, if we assume that (LP) and (LP)∗ are strictly feasible, then

for each µ > 0, the problems (BPµ) has an optimal solution in the interior of (LP),

and this optimal solution is unique (see [34, Theorem 17.2]).

Denoting the optimal solution to (BPµ) with x(µ), the set of all such solutions

x(µ) is called the central path:

Central path := {x(µ) | µ > 0}. (2.21)

It can be shown that x(µ) approaches an optimal linear programming solution as

µ approaches zero. Path-following interior-point methods produce iterates that

converge to the optimal linear programming solution by approximately follow-

ing the central path. That is, they approximate x(µ) for a decreasing sequence of

µ. By decreasing µ in a particular fashion, as µ ↓ 0, the iterates which approxi-

mate the corresponding x(µ) can be shown to approach the optimal LP solution.

Since the Hessian of the barrier functional is positive definite on Rn
++, it can

be used to define local inner products (see intrinsic inner products in [27, Chapter
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2]): For each e ∈ Rn
++, the local inner product at e is given by

〈u, v〉e := 〈u,H(e)v〉, (2.22)

for all u, v ∈ Rn. Here, H(e) denotes the Hessian of the barrier functional at e,

with respect to the inner product 〈·, ·〉. The local inner product 〈·, ·〉e induces the

norm

||u||e :=
√
〈u, u〉e. (2.23)

Observe that we can interpret the product of vectors u, v under the local inner

product at e ∈ Rn
++ as just the inner product under 〈·, ·〉 of their images under an

affine scaling. For instance, when 〈·, ·〉 is the dot product, consider the affine

scaling by (diag e)−1 = E−1. Since H(e) = E−2, then

〈u, v〉e = 〈u, E−2v〉 = 〈E−1u, E−1v〉.

The path-following methods and the notions of the central path and a lo-

cal inner product can be extended for cone optimization problems over more

general convex cones K, as long as there exists a “barrier functional” with the

appropriate properties, defined on the interior of the cone. In [26], Nesterov

and Nemirovskii show the existence of such a barrier functional for any closed

convex subset K of Rn, which means that in theory, interior-point methods can

be extended to solve cone optimization problems over general regular closed

convex cones K. Among the “appropriate properties” is that the Hessian of the

barrier functional is positive definite, and can be used to define a local inner

product at each interior point of the cone.

In the case of semidefinite programming, the barrier functional is defined on

Sn
++ and is given by

f ( · ) := − ln(det( · )). (2.24)
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This barrier functional is strictly convex and has a positive definite Hessian.

In particular, its Hessian with respect to the trace inner product, evaluated at

E ∈ Sn
++, is (see [27, Section 1.3]):

H(E)[ · ] = E−1( · )E−1. (2.25)

Then, the local inner product at E ∈ Sn
++ is:

〈U,V〉E := 〈U,H(E)V〉 = tr(UE−1VE−1), (2.26)

for all U,V ∈ Sn, where the inner product 〈·, ·〉 is the trace inner product.

Again, we can interpret 〈U,V〉E as the trace product of the images of U,V

under a particular scaling: Since H(E)[ · ] = E−1( · )E−1, then

〈U,V〉E = tr(UE−1VE−1)

= tr((E−1/2UE−1/2) (E−1/2VE−1/2))

= 〈E−1/2UE−1/2, E−1/2VE−1/2〉,

the trace product between the images of U and V under the scaling E−1/2( · )E−1/2.

Here, E−1/2 denotes the square root of E−1, the symmetric positive definite matrix

that satisfies E−1 = E−1/2E−1/2.

Note that here, we used the “cyclic” property of the trace product: for any

symmetric matrices A, B,C ∈ Sn,

tr(ABC) = tr(BCA) = tr(CAB).
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CHAPTER 3

LITERATURE REVIEW: AFFINE-SCALING ALGORITHMS

In 1967, Dikin proposed an algorithm for linear programming which is now

referred to as Dikin’s affine-scaling algorithm [7]. The main idea of the algo-

rithm is as follows. Given a current iterate x that is an interior point of the linear

programming feasible region, the next iterate is the optimal solution to a restric-

tion of the linear programming problem, in which the nonnegativity constraint

in the linear program is replaced by an inscribed ellipsoid centered at x.

It is not known, however, whether this algorithm has a polynomial-time con-

vergence rate; many believe that it may indeed be an exponential algorithm in

the worst case. One indication that this might be the case is a result of Megiddo

and Shub [22] that the continuous version of the affine-scaling algorithm comes

near each vertex of Klee-Minty’s cube at least once, assuming that the initial

iterate is an appropriate point.

However, many variants of Dikin’s affine-scaling algorithm have been

proven to have polynomial-time convergence. These affine-scaling algorithms

follow a framework inspired by Dikin’s idea of solving a sequence of optimiza-

tion problems over an ellipsoid, or an ellipsoid-like region, that is inscribed in

the feasible region of the linear program.

Our reason for presenting the existing affine-scaling algorithms is to provide

a context in which to view our algorithm—which will be introduced and ana-

lyzed in Chapters 4 and 5—as an affine-scaling algorithm.

The present chapter will be a survey of several affine-scaling algorithms and

will start with an exposition of Dikin’s algorithm. We present a general frame-
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work which we can use to compare the various affine-scaling algorithms and

examine a selection of primal-dual affine-scaling algorithms under this general

framework.

3.1 Setting and notation

The algorithms we discuss in this chapter solve a linear programming problem

of the following form:

max 〈c, x〉

s.t. Ax = b

x ∈ Rn
+,

where c ∈ Rn, b ∈ Rm, and A ∈ Rm×n, together with the dual problem

max bT y

s.t. AT y + s = c

s ∈ Rn
+.

We assume that A is full rank and that cT is linearly independent of the rows

of A. Furthermore, throughout this chapter, 〈·, ·〉 denotes the dot product on Rn

and || · || the 2-norm.

We denote vectors with lowercase letters. For each of these vectors, in partic-

ular x and s, the corresponding uppercase letter is reserved to denote diagonal

matrices with the vector as the diagonal elements. For example, X = diag x and

S = diag s.

26



3.2 Dikin’s affine-scaling algorithm

We first consider Dikin’s affine-scaling algorithm, as presented by Vanderbei

and Lagarias in [35].

The main idea of the algorithm is relatively simple to describe. At each iter-

ation, we have a point x that lies in the interior of the feasible region. To obtain

the next iterate, we replace the nonnegativity constraint of the linear program

with a particular inscribed, closed ellipsoid around x and solve this auxiliary

optimization problem. This problem is feasible (since x is a feasible solution)

and has a unique optimal solution because its feasible region is compact and

strictly convex. We choose the optimal solution to this problem to be the next

iterate.

Algorithm 3.1. Dikin’s affine-scaling algorithm

Initialization Start with a solution x(0) in Int.

kth iteration Let x(k) ∈ Int denote the current iterate.

Let x(k+1) denote the optimal solution to

min 〈c, x〉

s.t. Ax = b

x ∈ Ex(k) ,

where Ex(k) :=

z ∈ Rn

∣∣∣∣∣∣∣
n∑

i=1

(x(k)
i − zi)2

(x(k)
i )2

≤ 1

.

In [36], the proof of convergence relies on assuming that the problem is both
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primal and dual nondegenerate. On the other hand, Dikin’s proof of conver-

gence in, presented in [8], assumes only primal nondegeneracy, allowing the

dual problem to be degenerate.

Search directions

In the pseudocode given above, x(k+1) is described simply as the solution to a

particular optimization problem. We will now find the closed-form solution for

the search direction for finding x(k+1) given x(k). For simplicity of notation, we

will from now on denote the current iterate by x and the next iterate by x̂.

Hence, x̂ is the optimal solution to the following optimization problem:

min 〈c, z〉

s.t. Az = b

z ∈ Ex,

where Ex is an ellipsoid centered at x, given by

Ex =

z ∈ Rn

∣∣∣∣∣∣∣
n∑

i=1

(xi − zi)2

(xi)2 ≤ 1


=

{
z ∈ Rn | ||X−1(x − z)|| ≤ 1

}
.

Note that in fact, Ex = {z ∈ Rn | ||x − z||x ≤ 1} is a closed unit ball, centered at x,

where the norm is the one induced by the local inner product at x (see (2.22) -

(2.23)). It can be easily shown that Ex ⊆ R
n
+ (see [27, Section 2.2.1]).

Solving for x̂ as above is equivalent to finding a step dx, so that x̂ = x + dx,

28



which is given by the optimal solution of

min 〈c, d〉

s.t. Ad = 0

||X−1d|| ≤ 1.

The last constraint in the above search direction problem is an ellipsoid cen-

tered at the origin. Equivalently, this constraint describes a closed unit ball with

respect to the local inner product norm at x.

If we consider d̃ := X−1d as a transformation of the search direction, scaled

by the matrix X−1, we obtain an optimization problem over the intersection of a

linear subspace with the closed unit ball:

min 〈c̃, d̃〉

s.t. Ãd̃ = 0 (3.1)

||d̃|| ≤ 1.

where Ã := AX and c̃ := Xc.

The optimal solution to the scaled search-direction problem (3.1) is simply

the projection of −c̃ onto the nullspace of Ã, normalized to a unit length:

d̃x = −
Projker AXXc
||Projker AXXc||

= −
(I − (AX)T (AX2AT )−1AX)Xc
||(I − (AX)T (AX2AT )−1AX)Xc||

.

The optimal search direction for the unscaled problem is then

dx = Xd̃x = −
X(I − (AX)T (AX2AT )−1AX)Xc
||(I − (AX)T (AX2AT )−1AX)Xc||

= −
X2(I − AT (AX2AT )−1AX2)c
||X(I − AT (AX2AT )−1AX2)c||

.
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Step length and convergence

In [7, 8], a full step towards the boundary of the ellipsoid is taken. The algorithm

in [36] is very similar to Dikin’s algorithm, but it takes shorter step lengths. With

this particular step length, Dikin was able to prove that the algorithm converges

to an optimal solution of the linear program, although no iteration-complexity

bounds are proven, just by relying on a primal nondegeneracy assumption. This

is in contrast to having to assume both primal and dual nondegeneracy, as is

done in [36].

3.3 A general framework for affine-scaling algorithms

The variants of affine-scaling algorithms differ from one another in the choice

of search direction and the choice of step length at each iteration. In this section,

we focus on examining how the search directions are obtained. We consider

three settings: primal-only, dual-only, and primal-dual.

3.3.1 The primal setting

Recall that the search direction in Dikin’s algorithm is obtained by solving the

scaled problem

min 〈(Xc), d̃〉

s.t. (AX)d̃ = 0

||d̃|| ≤ 1

30



and recovering the search direction for the original problem by multiplying the

optimal d̃ by X.

We can generalize Dikin’s approach by considering primal affine-scaling

methods where the search direction dx is obtained by solving the scaled search-

direction problem

min 〈(Dc), d̃〉

s.t. (AD)d̃ = 0

||d̃|| ≤ 1,

where D is the scaling matrix, followed by multiplying the optimal solution by

D. Note that the scaling matrix D has to be a diagonal matrix with positive

diagonal entries, because we want to consider only scalings that are invertible

and fix the nonnegative orthant.

The search direction is then

dx = −
DProjker ADDc
||Projker ADDc||

, (3.2)

where for any vector u ∈ Rn, the projection of u onto ker AD is

Projker ADu = (I − (AD)T (AD2AT )−1AD)u. (3.3)

Hence, the primal affine-scaling search direction with scaling matrix D is

dx = −
D2(I − AT (AD2AT )−1AD2)c
||D(I − AT (AD2AT )−1AD2)c||

. (3.4)

When D = X, we obtain Dikin’s search direction described in the previous sec-

tion.
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3.3.2 The dual setting

We can think of applying the affine-scaling algorithm described above to a prob-

lem in dual form. Alternatively, suppose that in addition to having a primal

strictly feasible solution, we also have a dual strictly feasible solution. As we

update the primal iterate as described in the above section, we can use the same

scaling matrix to obtain a new strictly feasible dual solution.

As we scale the primal problem with a scaling matrix D, obtaining the prob-

lem:

min 〈(Dc), x̃〉

s.t. (AD)x̃ = b

x̃ ∈ Rn
+,

we obtain the corresponding scaled dual problem:

max bT ỹ

s.t. (AD)T ỹ + s̃ = Dc

s̃ ∈ Rn
+.

Note that x is feasible for the unscaled primal problem if and only if D−1x is

feasible for the scaled version, and that (s, y) is feasible for the unscaled dual

problem if and only if (s̃, ỹ) = (Ds, y) is feasible for the scaled version.

Given a fixed x that is feasible for the primal problem, we can replace the

dual objective as follows

bT y = (Ax)T y = (D−1x)T (AD)T y = −(D−1x)T (Ds) + a constant.
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This allows us to write the corresponding scaled dual problem as:

min 〈(D−1x), s̃〉

s.t. (AD)T ỹ + s̃ = Dc

s̃ ∈ Rn
+.

Then, the Dikin search direction for the dual problem is obtained by solving

the following scaled dual search direction problem.

min 〈(D−1x), d̃s〉

s.t. (AD)T d̃y + d̃s = 0

||d̃s|| ≤ 1.

That is, if (d̃s, d̃y) is the optimal solution to this problem, then the Dikin search

direction is (ds, dy) = (Dd̃s, d̃y).

The constraint “(AD)T d̃y + d̃s = 0” means that a feasible d̃s must lie in the

space orthogonal to the kernel of AD. So, the optimal solution d̃s must be in the

direction of the projection of D−1x onto this linear space:

d̃s = −
Proj(ker AD)⊥(D−1x)

||Proj(ker AD)⊥(D−1x)||
,

where for any vector u ∈ Rn, the projection of u onto (ker AD)⊥ is

Proj(ker AD)⊥u = (AD)T (AD2AT )−1ADu. (3.5)

Hence, the search direction in the original space is:

ds = −
AT (AD2AT )−1b

||(AD)T (AD2AT )−1b||
. (3.6)

We know that (ds, dy) must satisfy AT dy + ds = 0. So,

dy =
(AD2AT )−1b

||(AD)T (AD2AT )−1b||
(3.7)
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produces a feasible search direction (ds, dy).

The “standard” dual affine-scaling method uses the scaling matrix D = S −1.

For examples of work on dual affine-scaling algorithms, see [1] and [33].

3.3.3 The primal-dual setting: the V-space

In the analysis of primal-dual interior-point methods, we must consider primal

and dual solutions, x ∈ Int and (s, y) ∈ Int∗, simultaneously. One setting for

doing this is often referred to as “the V-space”, a notion which was developed

in [16] and [23] in the context of linear complementarity problems and in [24]

in the linear programming context, among others. We introduce the V-space in

this section and use it in the next section to describe a unifying framework for

viewing various primal-dual affine-scaling algorithms.

The following theorem states that analyzing pairs of strictly feasible primal

and dual solutions (x, s, y) ∈ Int × Int∗ is in a sense equivalent to analyzing their

image under a particular mapping to the positive orthant.

Theorem 3.1. Assume that A is full-rank and that Int, Int∗ are nonempty.

The mapping (x, s, y) 7→ x.s = (x1s1, . . . , xnsn)T is a bijection from Int × Int∗ onto

Rn
++.

Proof. We will first show that given a vector w in Rn
++, there exists at most one

pair of solutions x ∈ Int, (s, y) ∈ Int∗ that maps to w. Then, we will prove that

there must exist at least one such a pair of solutions that maps to w.

In order to prove the two parts of the theorem, we utilize the following
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weighted barrier problem, where w ∈ Rn
++ is a given vector

min f (x) := 〈c, x〉 −
n∑

i=1

wi log xi (3.8)

s.t. Ax = b.

We note that the domain of f is Rn
++, so the feasible region of the problem

(3.8) is precisely Int, and that f is strictly convex. The KKT conditions for this

barrier problem, which are necessary and sufficient, are as follow: The solution

x is optimal for the above problem if and only if there exists some y ∈ Rm such

that x and y together satisfy:

(c − w./x) − AT y = 0, (3.9)

Ax = b. (3.10)

We are now ready to prove the theorem. We first consider an arbitrary w ∈

Rn
++ and show that it has a unique preimage in Int × Int∗, assuming that there is

a primal-dual pair of solutions that maps to w.

Thus, assume that x ∈ Int and (s, y) ∈ Int∗ such that w = x.s. Therefore,

s = w./x. Furthermore, since (s, y) is a feasible dual solution, then the first KKT

condition, namely (3.9), is satisfied by x. Since x is a feasible primal solution,

the second KKT condition, namely (3.10), is also satisfied. This implies that x

is optimal for (3.8). Moreover, since f is strictly convex, then f has at most one

minimizer; so x is a unique point in Int such that there is some (s, y) ∈ Int∗ that

together with x maps to w. Furthermore, s is uniquely determined by x, and the

corresponding y is uniquely determined by s since we assume that A is full rank.

This proves uniqueness.

Next, we prove the existence of the preimage of w. Let val denote the optimal
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value of (3.8). We assume that Int is nonempty, so we know that (3.8) is feasible

and val < ∞. Suppose that {x(k)} is a sequence of points in Int such that { f (x(k))}

converges to val. We claim that {x(k)} has a subsequence that converges to a

point in Int. By continuity of f , this point must be an optimal solution of (3.8).

To show the existence of this subsequence, we only need to show that {x(k)} lies

in a compact subset of Int.

Suppose that {x(k)} did not lie in a compact subset of Int, then {x(k)} must be

either unbounded or has a limit point on the boundary of Rn
++. We claim that it

cannot have a limit point in the boundary of Rn
++. Suppose to the contrary that it

had a limit point x̂ on the boundary, where x̂ j = 0 for some index j. This means

that f (x(k))→ ∞ since ln x(k)
j → −∞, resulting in a contradiction.

We now show that it cannot be unbounded: suppose there is a subsequence

(for simplicity, also denoted {x(k)}) such that ||x(k)|| → ∞.

Since Int∗ is nonempty, consider any fixed (s̃, ỹ) ∈ Int∗. We know that c =

s̃ + AT ỹ and s̃ ∈ Rn
++. Therefore,

f (x(k)) = 〈c, x(k)〉 −

n∑
i=1

wi ln x(k)
i

= bT ỹ + 〈s̃, x(k)〉 −

n∑
i=1

wi ln x(k)
i

≥ bT ỹ + ||x(k)||min
i

s̃i −

n∑
i=1

wi ln x(k)
i .

Since ||x(k)|| → ∞, then

||x(k)||min
i

s̃i −

n∑
i=1

wi ln x(k)
i → ∞,

which, again, results in a contradiction since limk→∞ f (x(k)) = val < ∞.

So, there must be a sequence of points {x(k)} that converges to an optimal
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solution of (3.8), call it x. By the optimality conditions for (3.8), there exists y

such that c−w./x−AT y = 0. Let s := w./x. Clearly, x.s = w, and furthermore, AT y+

s = c. This proves the existence of a preimage (x, s, y) for each w ∈ Rn
++, thereby

proving that the mapping (x, s, y) 7→ x.s from Int × Int∗ to Rn
++ is a bijection. �

Viewing Rn
++ as the image of the above bijection, we refer to Rn

++ as the V-

space. Finding a search direction for a primal-dual algorithm, for instance, could

be done by finding a direction in the V-space instead of considering the primal

and dual components of the search direction separately.

Recall our discussion on the (primal) central path in Section 2.3. For prob-

lems in the dual form (LP)∗, we also have the same notion of a (dual) central

path, defined as follows. The dual central path consists of points (s(µ), y(µ)) for

all µ > 0, where for each µ, (s(µ), y(µ)) is the optimal solution to the following

barrier problem:

min bT y − µ
n∑

i=1

ln si

s.t. AT y + s = c. (BPµ)∗

Similarly, the primal-dual central path is defined as the set

{(x(µ), s(µ), y(µ)) | µ > 0},

where x(µ), (s(µ), y(µ)) lie on the primal and the dual central paths, respectively.

The following theorem provides a geometric insight on the image of the

primal-dual pairs of solutions that lies on the primal-dual central path under

the bijection described in Theorem 3.1.

Theorem 3.2. Assume that A is full-rank and that Int, Int∗ are nonempty.
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The primal-dual central path for (LP) is the set

{
(x, s, y) ∈ Int × Int∗ | x.s = µ1 for some µ > 0

}
,

where 1 denotes the vector of all ones.

Proof. Suppose (x̂, ŝ, ŷ) ∈ Int × Int∗ lies on the (primal-dual) central path. Let us

first show that x̂.ŝ = µ1 for some µ > 0. We know that there is some µ > 0 such

that x̂ is the optimal solution to

min
x

fµ(x) := 〈c, x〉 − µ
n∑

i=1

ln xi (3.11)

s.t. Ax = b,

where the domain of fµ is Rn
++, and such that (ŝ, ŷ) is the optimal solution to

max
s,y

f ∗µ (s, y) := bT y + µ

n∑
i=1

ln si (3.12)

s.t. AT y + s = c.

The KKT conditions for (3.11) are as follow. A feasible solution x for (3.11) is

optimal if and only if x together with some y ∈ Rm satisfy

(c − µx−1) − AT y = 0

Ax = b.

Similarly, the following are the KKT conditions for (3.12). A feasible solution

(s, y) for (3.12) is optimal if and only if (s, y) together with some x ∈ Rm satisfy

µs−1 − x = 0

Ax = b

AT y + s = c.
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Note that since x̂ is optimal for (3.11), then there exists some ȳ ∈ Rm such

that the first set of KKT conditions are satisfied. These KKT conditions imply

that (µx̂−1, ȳ) is a strictly feasible dual solution. Furthermore, it is easy to see

that x̂ together with (µx̂−1, ȳ) satisfy the second set of KKT conditions, showing

that in fact (µx̂−1, ȳ) is an optimal solution for (3.12). Since f ∗ is a strictly convex

function, (3.12) must have at most one optimal solution. This means that ȳ = ŷ

and ŝ = µx̂−1. Thus, x̂.ŝ = µ1.

We now show the converse. Suppose that (x̂, ŝ, ŷ) ∈ Int × Int∗ where x̂.ŝ = µ1

for some µ > 0. Then, it is easy to see that µŝ−1 − x̂ = 0, showing that the second

set of KKT conditions are satisfied by (ŝ, ŷ) together with x̂.

Similarly, it is easy to see that c − µx̂−1 − AT ŷ = 0, showing that the first set of

KKT conditions are satisfied by x̂ together with ŷ.

These two observations show that x̂ is optimal for (3.11) and (ŝ, ŷ) is optimal

for (3.12) for the given value of µ. This proves that (x̂, ŝ, ŷ) lies on the central

path. �

In particular, the above two theorems imply the following easy corollary

about the mapping (x, s, y) 7→
√

x.s.

Corollary 3.3. Assume that A is full-rank and that Int, Int∗ are nonempty. Then

1. The mapping (x, s, y) 7→
√

x.s is a bijection from Int × Int∗ onto Rn
++.

2. The primal-dual central path for (LP) is the set

{
(x, s, y) ∈ Int × Int∗ |

√
x.s = ν1 for some ν > 0

}
.
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More specifically, this corollary is a direct consequence of Theorems 3.1 and

3.2, together with the fact that the mapping w 7→
√

w is a bijection on Rn
++.

3.3.4 The primal-dual setting: search directions

For the primal-dual case, we will introduce the general derivation of the search

direction in the V-space, the scaled space on which we can simultaneously con-

sider the primal and dual iterates. Suppose that we have a pair of strictly feasi-

ble solutions (x, s, y) ∈ Int × Int∗. We choose a scaling matrix

D = S −1/2X1/2, (3.13)

where S = diag s and X = diag x, so that the primal solution x and the dual

solution s are mapped to:

D−1x = X−1/2S 1/2x =
√

x.s

Ds = S −1/2X1/2s =
√

x.s.

That is, they are mapped to the same point, namely

v :=
√

x.s. (3.14)

By Corollary 3.3, (x, s, y) lies on the primal-dual central path if and only if v is a

multiple of the vector of all ones.

The search directions in the primal and dual spaces are denoted (dx, ds, dy).

However, we often will focus our attention to just dx and ds, treating the s-

component as the “main” dual solution, because for a fixed choice of ds, the

choice of dy is uniquely determined (under the assumption that A is full-rank).

These directions correspond to the search directions px, ps in the transformed
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space: px = D−1dx and ps = Dds. (The y-component of the search direction is not

scaled: dy = py.)

Because dx and ds always lie in orthogonal subspaces ker A and (ker A)⊥, re-

spectively, then px and ps also lie in orthogonal subpsaces, namely ker AD and

(ker AD)⊥, respectively. Then we can solve for one search direction, which we

will denote by pv, then orthogonally decompose pv into px and ps:

px = Projker AD pv,

ps = Proj(ker AD)⊥ pv.

Once px, ps are found, we can transform them back to obtain dx, ds. Therefore, in

order to specify the set of possible scaled search directions px, ps, it is sufficient

to specify the constraints on pv.

The various primal-dual affine-scaling algorithms that we will see differ in

the choice of scaled search direction pv. That is, in obtaining pv, they solve opti-

mization problems over different Dikin-ellipsoid-like constraints in the V-space.

As for the objective value, minimizing the duality gap between the current

strictly feasible primal and dual solutions makes sense, and this is what serves

as the objective to be minimized in all primal-dual affine-scaling algorithms that

we will discuss in this chapter.

To write this objective in terms of pv, we observe that if we update our solu-

tion to x + dx and s + ds, the new duality gap is

〈x + dx, s + ds〉 = 〈x, s〉 + 〈x, ds〉 + 〈s, dx〉 + 〈dx, ds〉.

Note however, that dx lies in the nullspace of A while s lies in its orthogonal

space. So, 〈dx, ds〉 = 0. Furthermore, rewriting the above expression in terms of
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the corresponding scaled points, we obtain that the duality gap is equal to

〈v, v〉 + 〈v, ps〉 + 〈v, px〉 = 〈v, v〉 + 〈v, (px + ps)〉 = 〈v, v〉 + 〈v, pv〉.

Since for fixed x and s, 〈v, v〉 is a constant, we can just minimize 〈v, pv〉.

In fact, all three primal-dual affine-scaling algorithms that we will see obtain

pv by solving problems of the following form:

min 〈v, pv〉

s.t. pv ∈ E, (3.15)

where E is a region that can be seen a primal-dual analog of the Dikin’s ellipsoid.

The algorithms differ in the choice of the ellipsoidal constraint E and in the step

size.

3.4 Primal-dual affine-scaling algorithms

In this section, we will compare several primal-dual affine-scaling algorithms,

due to Monteiro, Adler, and Resende in [25]; Jansen, Roos, and Terlaky in [10];

and Sturm and Zhang in [30]. We will use the framework just described to

introduce the algorithms.

In each of the following sections, let (x, y, s) denote the current iterate and let

D = S −1/2X1/2 be the scaling matrix and v =
√

x.s be the current iterate in the

scaled space, as specified in (3.13)-(3.14).
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3.4.1 Monteiro, Adler, and Resende

The search direction

The scaled search direction pv that is used in this algorithm is obtained by solv-

ing

min 〈v, pv〉

s.t. ||pv|| ≤ 1.

Note that the “Dikin ellipsoid” in this case is just a closed unit ball in the

V-space. Hence, the optimal solution is pv = − v
||v|| , which resulted in the fol-

lowing search directions in the unscaled primal and dual spaces (omitting the

normalizing factor of 1
||v|| to put more focus on the direction itself and less on the

length):

dx = Dpx = −D ProjkerADv,

ds = D−1 ps = −D−1 Proj(kerAD)⊥v.

Using (3.3) and (3.5), and substituting in v =
√

x.s = D−1x = Ds, we obtain:

dx = −D ProjkerAD(Ds)

= −D ProjkerAD(Dc)

= −D(I − (AD)T (AD2AT )−1AD)Dc

= −D2(I − A(AD2AT )−1AD2)c, (3.16)
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ds = −D−1 Proj(ker AD)⊥(D−1x)

= −D−1(AD)T (AD2AT )−1(AD)D−1x

= −AT (AD2AT )−1Ax

= −AT (AD2AT )−1b, (3.17)

dy = (AD2AT )−1b. (3.18)

In the second equality for dx above, we used the fact that Ds = D(c − AT y) =

Dc − (AD)T y and that Proj(ker AD)⊥((AD)T y) = 0.

Note that the search direction (dx, ds, dy) given in (3.16) - (3.18) above coin-

cides with the primal affine-scaling search direction in (3.4) and the dual affine-

scaling search direction in (3.6) - (3.7) for this particular D, when omitting the

normalizing constant.

Remarks

We can also obtain this search direction by starting from a different point of

view, namely by considering the barrier function problem for the primal prob-

lem, with parameter µ > 0:

min 〈c, x〉 − µ
n∑

i=1

ln xi

s.t. Ax = b.
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The KKT conditions for this problem is as follows: x is optimal if there exist

s ∈ Rn, y ∈ Rm such that

XS1 = µ1

Ax = b

AT y + s = c.

Suppose that (x, s, y) ∈ Rn+n+m satisfies

Ax = b

AT y + s = c.

Then, we can take a Newton step (dx, ds, dy) towards a point (x + dx, s + ds, y + dy)

that satisfies the KKT conditions for the above barrier problem. This direction

must satisfy

S dx + Xds = −XS1 + µ1

Adx = 0

AT dy + ds = 0.

The algorithm of Monteiro et al. solves the search direction (dx, ds, dy) for

µ = 0. That is, the search direction that satisfies:

S dx + Xds = −XS1

Adx = 0

AT dy + ds = 0.
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The solution of the above system is:

dx = −S −1X
(
I − AT (AS −1XAT )−1AS −1X

)
c, (3.19)

ds = −AT (AS −1XAT )−1b, (3.20)

dy = (AS −1XAT )−1b, (3.21)

which agrees with the direction in (3.16) - (3.18) when we explicitly write D =

S −1/2X1/2.

3.4.2 Jansen, Roos, Terlaky

The search direction

The scaled search direction pv that is used in this algorithm is obtained by solv-

ing

min 〈v, pv〉

s.t. ||V−1 pv|| ≤ 1.

Here, the Dikin ellipsoid is the ellipsoid in the V-space described by the con-

straint ||V−1 pv|| ≤ 1, where V = diag v. We can think of this region as just the

closed unit ball that has been scaled by the scaling matrix V , or equivalently,

as the closed unit ball with respect to the local inner product norm at v. This

is in contrast to just a closed unit ball with respect to the 2-norm in the scaled

search-direction problem that is used by Monteiro, Adler, and Resende’s algo-

rithm. The optimal solution of this problem is pv = − v3

||v2 ||
, which corresponds to
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the search direction (again, omitting the normalizing constant):

dx = Dpx = −D Projker ADv3

ds = D−1 ps = −D−1 Proj(ker AD)⊥v3.

Using (3.3) and (3.5), and substituting in D = S −1/2X1/2 and v3 = S 3/2X3/2
1 =

DS 2X1 = D−1S X2
1, we obtain:

dx = −D(I − (AD)T (AD2AT )−1(AD))DS 2X1

= −D2(I − AT (AD2AT )−1AD2)S 2X1

= −S −1X(I − AT (AS −1XAT )−1AS −1X)S 2X1,

ds = −AT (AD2AT )−1(AD)D−1S X2
1

= −AT (AD2AT )−1AS X2
1

= −AT (AS −1XAT )−1AS X2
1

dy = (AS −1XAT )−1AS X2
1.

Remarks

We note that the search direction in [25] and that in [10] coincide if v and v3 are

scalar multiples of one another. This happens if v is a scalar multiple of 1, the

vector of all ones. Therefore, by Corollary 3.3, the two search directions coincide

whenever the current iterate (x, s, y) lies on the central path.
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3.4.3 Sturm and Zhang

The search direction

The scaled search direction pv in this algorithm is obtained by solving

min 〈v, pv〉

s.t. cos ∠


 1
1

 ,
 v

v + pv


 ≥

√
2n − 1

2n
.

Here, the “Dikin elipsoid” is in fact a convex quadratic cone. We con-

sider the set of all vectors (v, v + pv) whose angles with (1,1) are at most

arccos
√

(2n − 1)/(2n) in Rn+n
++ .

The above problem might not have a solution if the angle between 1 and v is

too large. Hence, we assume that the initial iterate v lies within a neighborhood

of e (i.e. the current solution lies in a neighborhood of the central path) given

by:

N(β) := {v ∈ Rn
+ |
√

n − 1 tan ∠(1, v) ≤ β, }

for some β ∈ (0, 1). That is, the angle between 1 and v is at most arccos
√

n−1
n−1+β2 .

The solution to the optimization problem above is given by the following

theorem (see [30, Theorem 2.1]):

Theorem 3.4. If v ∈ N(β) for some β ∈ (0, 1) and v , 0, then the optimal solution to

the above problem is given by

pv = −
ξ + 1
ξ

v +
ξ − 1
ξ

〈1, v〉
n − 1

1,

where ξ =
√

2n/(1 − δ2) − 1 and δ =
√

n − 1 tan ∠(1, v).
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The theorem asserts that, provided that the current iterate v lies in a particu-

lar neighborhood, the optimal scaled search direction pv is a linear combination

of −v and 1. Thus, the search direction is

dx = −
ξ + 1
ξ

DProjker(AD)v +
ξ − 1
ξ

〈1, v〉
n − 1

DProjker(AD)1,

ds = −
ξ + 1
ξ

D−1Proj(ker(AD))⊥v +
ξ − 1
ξ

〈1, v〉
n − 1

D−1Proj(ker(AD))⊥1.

Remarks

Recall that the search direction of the primal-dual affine-scaling algorithm of the

search direction in [25] is pv = − v
||v|| . Thus, the search direction of the algorithm

of Sturm and Zhang is in fact a linear combination of that in [25] with the vector

of all ones.

We again observe that when v is a scalar multiple of the vector of all ones,

then the search direction of Sturm and Zhang coincides with the search direc-

tions of Monteiro et al. and of Jansen et al.

In [3], this algorithm is extended to semidefinite programming. In [6], the

semidefinite programming version of [25] and [10] are presented.

3.5 Other related work

Two other papers contain works that are closely related to the work that we

present in this thesis. The first is the work by Chua [4] where he develops a

primal-dual algorithm for semidefinite programming and general symmetric

cone optimization problems. Chua’s algorithm can be seen as a cone affine-
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scaling algorithm which alternates between solving a restriction of the primal

problem (over a quadratic cone that is inscribed in the positive semidefinite

cone) and solving a restriction of the dual problem (over a different quadratic

cone that is inscribed in the positive semidefinite cone). The second is the work

by Litvinchev [18] which develops a primal algorithm for linear programming,

based on the same family of quadratic cones. Litvinchev’s algorithm will be

discussed thoroughly because of the similarities with our work, in the way it

utilizes quadratic cone relaxations for finding search directions.

Our algorithm is related to the above two works through the use of the same

family of quadratic cones, among others. We postpone our discussion of Chua’s

and Litvinchev’s work until Section 5.8 because we will be able to present a

more thorough discussion after we introduce this family of quadratic cones in

the next chapter, and after we present and thoroughly analyze our algorithm in

Chapter 5. In addition, Chua’s and Litvinchev’s algorithms are quite different

from the three that we just presented and do not quite fit the V-space-based

primal-dual framework under which we presented the three primal-dual affine-

scaling algorithms in the preceding section.

50



CHAPTER 4

A FAMILY OF QUADRATIC CONES AND THE QUADRATIC-CONE

RELAXATIONS OF LP

4.1 The quadratic cones

The standard second-order cone in Rn is the set

KS O =

{
x ∈ Rn | x1 ≥

√
x2

2 + . . . + x2
n

}
.

Geometrically, it is the set of points whose angle with the vector e1 :=

(1, 0, . . . , 0)T is at most π/4. We can rewrite the inequality describing KS O as

KS O =

{
x ∈ Rn | 〈e1, x〉 ≥

1
√

2
||e1|| ||x||

}
,

where, here and throughout this chapter, 〈·, ·〉 denotes the dot product in Rn and

|| · || the 2-norm.

So, e1 is the “center direction” of the second-order cone, with every other

point in the cone lying within an circular slice of the cone, centered at e1. Rear-

ranging the inequality, we obtain

〈e1, x〉
||e1|| ||x||

≥
1
√

2
,

or equivalently,

∠(e1, x) ≤ arccos
1
√

2
= π/4.

It is now more apparent that the cone KS O consists of points x whose angles with

e1 are at most π/4.

In fact, for each e ∈ Rn and each θ ∈ [0, π/2], the set

{x ∈ Rn | 〈e, x〉 ≥ cos θ ||e|| ||x||}
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is a cone, consisting of points x which form angles that are at most θ with the

center direction e. When θ is near zero, the corresponding cone is “thinner”,

approaching a ray, while for a greater value of θ, the cone is “wider”. The cones

are convex as long as θ is at most π/2, with the cone being a halfspace when θ is

exactly π/2.

The family of cones that we are interested in are the cones which contain the

nonnegative orthant. In particular, for each r ∈ [0, 1], define

K1,r := {x ∈ Rn | 〈1, x〉 ≥ r||x||} , (4.1)

the set of points whose angle with 1 := (1, . . . , 1)T ∈ Rn (the vector of all ones)

are at most arccos r
√

n . Note that when r is near one, the resulting cone is thinner,

while when r is near zero, the resulting cone is wider, approaching a halfspace.

Since r does not exceed one, the cone cannot be too thin and always contains the

nonnegative orthant, as we will see in the next section.

4.1.1 Properties of the cone K1,r

Proposition 4.1. For each r ∈ [0, 1], the cone K1,r contains the nonnegative orthant.

Proof. Suppose that x ∈ Rn
+. Then, 〈1, x〉 ≥ 0 and

〈1, x〉2 =

 n∑
i=1

xi

2

≥

n∑
i=1

x2
i = ||x||2 ≥ r2||x||2,

showing that x ∈ K1,r. This proves that Rn
+ ⊆ K1,r. �

When r = 0, the cone K1,0 is the halfspace {x ∈ Rn | 〈1, x〉 ≥ 0}. Thus, K1,0

is a closed convex cone whose interior is nonempty, but it is not a regular cone
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because it contains a nontrivial linear subspace: For any x ∈ ∂K1,0, the linear

subspace spanned by x is also contained in ∂K1,0. However, for all r ∈ (0, 1], we

claim that K1,r is regular.

Note that we can extend the cones described in (4.1) for all r ∈ [0,
√

n], but

for r > 1, the cones K1,r do not contain Rn
+. In particular, K1,

√
n is a single ray in

the direction of the vector of all ones. (To see this, suppose that x ∈ K1,
√

n. Then,

〈1, x〉 ≥
√

n||x||.

Since ||1|| =
√

n, then either x = 0 or x satisfies

cos ∠(1, x) =
〈1, x〉
||1|| ||x||

≥

√
n
||1||

= 1.

Since cos ∠(1, x) cannot exceed 1, it is exactly equal to 1, which means that x must

be a positive multiple of 1.)

Proposition 4.2. For each r ∈ [0, 1], the dual of the cone K1,r is

K∗
1,r =

{
s ∈ Rn | 〈1, s〉 ≥

√
n − r2||s||

}
.

In other words, K∗
1,r = K

1,
√

n−r2 .

Proof. First, consider the case when r = 0. The cone K1,0 is the halfspace {x ∈

Rn | 〈1, x〉 ≥ 0}. Clearly, the dual consists only of positive multiples of 1, which

we know from the preceding discussion to be just the cone K1,
√

n. Thus, K∗
1,0 =

K1,
√

n.

For r ∈ (0, 1], we first show that K
1,
√

n−r2 ⊆ K∗
1,r. Suppose that s ∈ K

1,
√

n−r2 .

Then, the angle between s and 1 satisfies

∠(1, s) ≤ arccos
√

(n − r2)/n.
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For all x ∈ K1,r,

∠(x, s) ≤ ∠(1, x) + ∠(1, s).

Therefore, for all x ∈ K1,r,

arccos
〈x, s〉
||x|| ||s||

≤ arccos(r/
√

n) + arccos
√

(n − r2)/n

〈x, s〉
||x|| ||s||

≥ cos
(
arccos(r/

√
n) + arccos

√
(n − r2)/n

)
=

r
√

n

√
n − r2

n
− sin

(
arccos

r
√

n

)
sin

arccos

√
n − r2

n


=

r
√

n − r2

n
−

√
n − r2

n
r
√

n
= 0,

showing that 〈x, s〉 ≥ 0 for all x ∈ K1,r. Thus, K
1,
√

n−r2 ⊆ K∗
1,r.

Next, we show that K∗
1,r ⊆ K

1,
√

n−r2 for r ∈ (0, 1]. Suppose that s < K
1,
√

n−r2 .

If 〈1, s〉 ≤ 0, then there exists a point x near 1 such that 〈x, s〉 < 0, showing

that s < K∗
1,r. Then, consider s < K

1,
√

n−r2 where

0 < 〈1, s〉 <
√

n − r2||s||.

This means that the angle between 1 and s is large,

∠(1, s) > arccos
√

(n − r2)/n,

and that we can construct an element of K1,r such that the angle between s and

this element is greater than π/2 (hence, its inner product with s is negative).

Without loss of generality, assume that 〈1, s〉 = n. This implies that

n <
√

n − r2||s||,

and hence, √
||s||2 − n >

√
nr2

n − r2 . (4.2)
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Letting

x := 1 −

√
n(n − r2)

r2(||s||2 − n)
(s − 1),

we can easily check that

〈1, x〉 = n and 〈x, x〉 =
n2

r2 ,

which implies that 〈1,x〉
||x|| ||1|| = r

√
n . That is, x ∈ K1,r.

However, by (4.2),

〈x, s〉 = 〈1, s〉 −

√
n(n − r2)

r2(||s||2 − n)
〈s − 1, s〉

= 〈1, s〉 −

√
n(n − r2)

r2

√
||s||2 − n

< n −

√
n(n − r2)

r2

√
nr2

n − r2 = n − n = 0,

showing that s < K∗
1,r. This concludes our proof. �

Corollary 4.3. For each r ∈ [0, 1], the cone K∗
1,r = K

1,
√

n−r2 is contained in the nonneg-

ative orthant.

Proof. From the definition of the dual cone, it is straightforward to see that if

K1 ⊆ K2, then K∗1 ⊇ K∗2 .
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Since K1,r ⊇ R
n
+, then K∗

1,r ⊆ (Rn
+)∗ = Rn

+. �

4.1.2 The cones Ke,r

For each e ∈ Rn
++, define

Ke,r := {x ∈ Rn | 〈1, x./e〉 ≥ r||x./e||} , (4.3)

where the notation “x./e” means “component-wise division of x by e”. Note that

this operation is well-defined because e does not have any zero components.

Let E denote the diagonal matrix whose diagonal components are the vector

e. Since e ∈ Rn
++, then E has an inverse, E−1, and both are linear scalings on Rn

which fix Rn
++. It is not difficult to see that

x ∈ Ke,r if and only if E−1x = x./e ∈ K1,r. (4.4)

In other words,

E−1Ke,r = K1,r or, equivalently, Ke,r = EK1,r, (4.5)

where E−1Ke,r denotes image of Ke,r under the scaling by E−1, namely {E−1x | x ∈

Ke,r}; similarly for EK1,r.

More generally, for any scaling matrix D that fixes Rn
+, observe that

DKe,r = KDe,r. (4.6)

By any scaling matrix D, we mean any diagonal n × n matrix with positive di-

agonal entries. These are scalings that are invertible and fix the nonnegative

orthant. Hence, any linear program that is scaled by such a matrix D remains a

linear program.
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It easily follows that Ke,r inherits some of the important properties of K1,r.

Corollary 4.4. For each e ∈ Rn
++ and r ∈ [0, 1], the cone Ke,r contains the nonnegative

orthant.

Proof. Suppose that x ∈ Rn
+. Clearly, E−1x ∈ Rn

+ ⊆ K1,r as well. Thus, by (4.4), we

see that x ∈ Ke,r. �

We can extend the cone definition (4.3) to all values of r ∈ [0,
√

n]. Note that

the cone Ke,0 is just the halfspace {x ∈ Rn | 〈e−1, x〉 ≥ 0}, while

Ke,
√

n = EK1,
√

n = E{γ1 | γ ≥ 0} = {γe | γ ≥ 0}

is a ray in direction e. The cones Ke,0 are closed convex cones whose interiors are

nonempty, but they are not regular because their boundaries are hyperplanes,

which are nontrivial linear subspaces. On the other hand, for all r > 0, the cones

Ke,r do not contain any nontrivial linear subspaces, and therefore are regular

cones. For r ∈ [0, 1], the following proposition describes the dual of the cones

Ke,r.

Corollary 4.5. For each r ∈ [0, 1] and each e ∈ Rn
++, the dual of Ke,r with respect to the

inner product 〈·, ·〉, denoted K∗e,r, is

K∗e,r = Ke−1,
√

n−r2 .

In other words,

K∗e,r =
{
s ∈ Rn | 〈1, s.e〉 ≥

√
n − r2||s.e||

}
.

Furthermore, K∗e,r ⊆ R
n
+.

Proof. We have that s ∈ K∗e,r if and only if for each x ∈ Ke,r,

〈s.e, x./e〉 = 〈s, x〉 ≥ 0.
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Since x ∈ Ke,r if and only if x./e ∈ K1,r, then s ∈ K∗e,r if and only if s.e ∈ (K1,r)∗, if

and only if s ∈ E−1K
1,
√

n−r2 . From this, and using Proposition 4.2 and (4.5),

K∗e,r = E−1K∗
1,r = E−1K

1,
√

n−r2 = Ke−1,
√

n−r2 .

Furthermore, we know from Corollary 4.3 that K∗
1,r ⊆ R

n
+. Since E−1 is a

diagonal matrix with only positive components in its diagonal, then it maps

Rn
++ to Rn

++. Therefore, K∗e,r = E−1K∗
1,r ⊆ R

n
+. �

4.2 Quadratic-cone relaxations of LP

Given r ∈ [0, 1] and e ∈ Rn
++, consider the following pair of cone optimization

problems, where the conic constraints are given by Ke,r and its dual:

min 〈c, x〉

s.t. Ax = b (QPe,r)

x ∈ Ke,r,

max bT y

s.t. AT y + s = c (QPe,r)∗

x ∈ K∗e,r.

We are interested in (QPe,r) and (QPe,r)∗ in relation to the pair of linear pro-
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gramming problems

min 〈c, x〉

s.t. Ax = b (LP)

x ∈ Rn
+,

max bT y

s.t. AT y + s = c (LP)∗

s ∈ Rn
+.

We assume that cT and the rows of A are linearly independent (in particular, A is

full rank) and that b , 0. Thus, the zero vector is not a feasible primal solution

and the set of optimal solutions of (LP) is not the entire feasible region.

We note that since Ke,r ⊇ R
n
+ and K∗e,r ⊆ R

n
+, then (QPe,r) is a relaxation of (LP)

while (QPe,r)∗ is a restriction of (LP)∗.

We make the standard assumption that (LP) and (LP)∗ are strictly feasible,

which implies that each has an optimal solution. However, whether (QPe,r) has

an optimal solution and (QPe,r)∗ is feasible depend on the choices of r and e.

Since (QPe,r) is a relaxation of (LP), then (QPe,r) is always feasible. However,

it might not have an optimal solution; that is, it might have unbounded objec-

tive. On the other hand, since (QPe,r)∗ is a restriction of (LP)∗, which is assumed

to have an optimal solution, then (QPe,r)∗ would never have unbounded objec-

tive, but it could have an empty feasible region.

For a fixed choice of r, we will give a name to the set of vectors e for which

(QPe,r) has an optimal solution.
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Definition 4.1. Given (LP) and r ∈ [0, 1], let Swath(r) denote the set of points

e ∈ Int such that (QPe,r) has an optimal solution.

We will later show that, when (QPe,r) has an optimal solution, the dual prob-

lem (QPe,r)∗ does too (Section 5.1).

Proposition 4.6. Assume that (LP) and (LP)∗ are strictly feasible, with cT and the

rows of A linearly independent. Then,

1. Swath(0) is the central path for (LP)

2. For 0 ≤ r1 ≤ r2 ≤ 1, Swath(r1) ⊆ Swath(r2).

In particular, this implies that if (LP) and (LP)∗ are strictly feasible, then for each r ∈

[0, 1], Swath(r) is nonempty.

Proof. A point e ∈ Int lies on the central path if and only if it is the optimal

solution to a barrier problem (BPµ) for some µ > 0:

min 〈c, x〉 − µ
n∑

i=1

ln xi

s.t. Ax = b.

That is, e lies on the central path if and only if there exist some µ > 0 and y ∈ Rm

such that the following KKT conditions are satisfied

c − µ(e−1) − AT y = 0 (4.7)

Ae = b (4.8)

e ∈ Rn
++. (4.9)

60



On the other hand, a point e lies in Swath(0) if and only if e ∈ Int and the

optimization problem (QPe,0) below has an optimal solution

min 〈c, x〉

s.t. Ax = b

〈1, x./e〉 ≥ 0.

That is, e ∈ Swath(0) if and only if e ∈ Int and there exist some x ∈ Rn
+, µ ≥ 0, and

y ∈ Rm such that the following KKT conditions are satisfied

c − µ(e−1) − AT y = 0 (4.10)

Ax = b (4.11)

〈1, x./e〉 ≥ 0 (4.12)

µ(〈1, x./e〉) = 0. (4.13)

Since we assume that cT and the rows of A are linearly independent, then c does

not lie in the range of AT . This implies that e−1 also must not lie in the range of AT

and that µ must be strictly positive. Furthermore, since µ > 0, then 〈1, x./e〉 = 0,

or equivalently, x lies on the boundary of Ke,0.

Thus, the second set of KKT conditions, (4.10) - (4.13), can be summarized as

follows:

1. There exists some µ > 0, y ∈ Rm such that c − µ(e−1) − AT y = 0, and

2. There exists some x that satisfies: Ax = b and 〈1, x./e〉 = 0.

We claim that the existence of such an x that satisfies condition #2 is guar-

anteed whenever for the given e, condition #1 above is satisfied. To see this:

The point e satisfies Ae = b and 〈1, e./e〉 > 0. Thus, there exists a solution x that
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meets the above condition if and only if there exists a direction v ∈ ker A such

that 〈1, v./e〉 , 0. Such a direction v exists as long as e−1 is not orthogonal to ker A.

That is, as long as there exists some µ > 0, y ∈ Rm such that c − µ(e−1) − AT y = 0.

Therefore, the KKT conditions (4.10) - (4.13) for e ∈ Int are exactly the same

as the KKT conditions (4.7) - (4.9): e ∈ Int and there exist some µ > 0 and y ∈ Rm,

c − µ(e−1) − AT y = 0.

To prove the second assertion, we begin by noting that for each e ∈ Int and

cone-width parameters r1, r2 ∈ [0, 1] with r1 ≤ r2, Ke,r1 ⊇ Ke,r2 .

Suppose that e ∈ Swath(r1), then (QPe,r1) has an optimal solution. Then

(QPe,r2) also has an optimal solution since it is feasible and (QPe,r1), which is

its relaxation, has an optimal solution. This shows that e is also in Swath(r2),

proving the second assertion.

In Section 2.3, we saw that if (LP) and (LP)∗ are strictly feasible, then the cen-

tral path is nonempty. This, together with the previous two assertions, implies

that for all r ∈ [0, 1], the set Swath(r) is nonempty. �

Furthermore, we can make the following claim when e ∈ Swath(r).

Proposition 4.7. Suppose that cT and the rows of the constraint matrix A are linearly

independent and b , 0. Fix r ∈ (0, 1]. If e ∈ Swath(r), then (QPe,r) has a unique

optimal solution.

Proof. If e ∈ Swath(r), then (QPe,r) has an optimal solution. We wish to show that

there is in fact exactly one optimal solution. Suppose that x∗ and x̂ are distinct

optimal solutions for (QPe,r). Letting v := x∗ − x̂, we see that

Av = 0 and 〈c, v〉 = 0.
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Then, for all λ ∈ [0, 1], x(λ) := x̂ + λv is optimal as well. Furthermore, since the

objective function is linear and cT is assumed to be linearly independent of the

rows of A, each x(λ) lies on the boundary of the feasible region. That is,

0 = 〈1, x(λ)./e)〉2 − r2||x(λ)./e||2.

Expanding the right-hand side,

0 =
(
〈1, x̂/e〉2 − r2〈||x̂||2

)
+ 2λ

(
〈1, x̂./e〉〈1, v./e〉 − r2〈x̂./e, v./e〉

)
+λ2

(
〈1, v./e〉2 − r2||v./e||2

)
.

Since x̂ is on the boundary of the cone, then 〈1, x̂/e〉2 − r2||x̂||2 = 0. So,

0 = 2
(
〈1, x̂./e〉〈1, v./e〉 − r2〈x̂./e, v./e〉

)
+ λ

(
〈1, v./e〉2 − r2||v./e||2

)
.

Since this has to hold for all λ ∈ [0, 1], then it must be the case that

〈1, v./e〉2 − r2||v./e||2 = 0

and

〈1, x̂./e〉〈1, v./e〉 − r2〈x̂./e, v./e〉 = 0.

The first equality implies that v is on the boundary of the cone. From this, and

by the Cauchy-Schwartz inequality, we have that

〈x̂./e, v./e〉 ≤ ||x̂./e|| ||v./e||

=
1
r2 〈1, x̂./e〉〈1, v./e〉.

So, we know that r2〈x̂./e, v./e〉 ≤ 〈1, x̂./e〉〈1, v./e〉. Furthermore, we know that

equality holds if and only if v is a scalar multiple of x̂.

Hence, the second equality implies that x̂ and x∗ are scalar multiples of one

another: x̂ = γx∗ for some γ > 0. Since x∗, x̂ are feasible, b = Ax∗ = Ax̂ = γAx∗,

which implies that b = 0, contradicting our assumption.

Thus, (QPe,r) has at most one optimal solution. �
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4.3 Solving (QPe,r)

That (QPe,r) can be solved easily is important in Chapter 5 for showing that we

have an algorithm that could be practical computationally. We describe how we

can find the optimal solution for (QPe,r) when e ∈ Swath(r). Furthermore, we can

identify the case when e < Swath(r) by detecting when (QPe,r) has unbounded

objective (note that (QPe,r) is feasible since we assume that (LP) is). We do this

by solving the Fritz John optimality conditions for (QPe,r).

Fix e ∈ Rn
++ and consider r ∈ (0, 1). We start by noting that the cone Ke,r is

described by the inequality

〈1, x./e〉 ≥ r||x./e||,

which is equivalent to the following two inequalities:

〈1, x./e〉2 − r2||x./e||2 ≥ 0 and 〈1, x./e〉 ≥ 0.

Note that the first inequality describes the cone Ke,r and its “mirror image”,

−Ke,r. The second inequality is only satisfied by vectors in Ke,r.

We will consider the Fritz John optimality condition for a relaxed version of

(QPe,r):

min 〈c, x〉

s.t. Ax = b (4.14)

−(〈1, x./e〉2 − r||x./e||2) ≤ 0,

where we omit the constraint 〈1, x./e〉 ≥ 0. For simplification purposes, we will

solve the Fritz John conditions for this relaxed system. Among the solutions

which satisfy the optimality conditions for (4.14), we can check whether it is
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truly feasible (and optimal) for (QPe,r) by checking if it satisfies the omitted con-

straint 〈1, x./e〉 ≥ 0.

The Fritz John optimality condition for the relaxed problem (4.14) is as fol-

lows: The solution x ∈ Rn is optimal for (QPe,r) if there is 0 , (y, µ, λ) ∈ Rm+1 and

µ, λ ≥ 0 such that (x, y, µ, λ) satisfies

−λ
(
〈1, x./e〉(1./e) − r2(x./e2)

)
− AT y + µc = 0,

Ax = b,

−(〈1, x./e〉2 − r||x./e||2) ≤ 0

λ(〈1, x./e〉2 − r2||x./e||2) = 0.

We know that λ , 0. Otherwise, µc − AT y = 0 where (y, µ) , 0, which contra-

dicts our assumption that cT and the rows of A are linearly independent. Thus,

we can assume that λ = 1. We know that an optimal solution x must lie on the

boundary of Ke,r, so the last equality is satisfied.

Simplifying, we need only solve the following conditions for (x, y, µ):

−
(
〈1, x./e〉(1./e) − r2(x./e2)

)
− AT y + µc = 0, (a)

Ax = b, (b)

〈1, x./e〉2 − r2||x./e||2 = 0. (c)

If such a solution exists and if 〈1, x./e〉 ≥ 0, then x is the optimal solution to

(QPe,r) and e ∈ Swath(r). On the other hand, if such a solution does not exist,

then (QPe,r) is unbounded and e < Swath(r).

The first two equations are linear in x, thus the set of points (x, y, µ) that
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satisfy (a) and (b) are solutions to:

 −((e−1)(e−1)T − r2E−2) −AT c

A 0 0




x

y

µ

 =

 0

b

 , (4.15)

which is an underdetermined system, with m+n+1 variables and m+n equations.

Since we assume that c and the rows of A are linearly independent, it is easy to

see that the (m + n) × (m + n + 1) matrix on the left hand side above is also full

rank. Thus, the above system has a one-dimensional solution space.

We first solve for a solution z(0) = (x(0), y(0), µ(0)) satisfying (4.15) and a direc-

tion v = (vx, vy, vµ), a vector in the nullspace, which together describe the solution

set for (4.15): {
z(0) + λv | λ ∈ R

}
.

We can then solve for a solution which also satisfies (c) by solving for λ such

that

〈1, (x(0) + λvx)./e〉2 − r2〈(x(0) + λvx)./e, (x(0) + λvx)./e〉 = 0. (4.16)

Note that (4.16) is a quadratic in λ, so we can solve for its roots: λ(1), λ(2). In the

case that the roots are not real-valued, then we can conclude that the problem

has no optimal solution, or equivalently, that e is not in Swath(r). Otherwise,

we have two candidates for the optimal solution for (QPe,r), namely

x(1) = x(0) + λ(1)vx and x(2) = x(0) + λ(2)vx,

together with y(i) = y(0) + λ(i)vy and µ(i) = µ(0) + λ(i)vµ, for each i = 1, 2.

Then, for each i = 1, 2, we need to check that 〈1, x(i)./e〉 ≥ 0 in order to deter-

mine whether x(i) is feasible for (QPe,r). If 〈1, x(i)./e〉 < 0, then x(i) is not feasible

for (QPe,r) since it lies not in Ke,r but in −Ke,r.
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For each x(i) that is feasible, we need to check that it is indeed the minimiz-

ing solution—not one that maximizes 〈c, ·〉—by checking that the corresponding

“µ”, namely

µ(i) = µ(0) + λ(i)vµ,

is positive.

Thus, the optimal solution for (QPe,r) is the feasible x(i) whose corresponding

µ(i) is positive. Furthermore, we know that there cannot be two such feasible

solutions which correspond to optimal solutions (Proposition 4.7).

If no such an x(i) exists, we can conclude that (QPe,r) does not have an optimal

solution and that e is not in Swath(r).

4.4 Local inner product viewpoint

Thus far, we have described the cones Ke,r in terms of the inner product 〈·, ·〉

which at the beginning of this chapter we chose to be the dot product. Our

discussions on the dual cones and dual quadratic-cone optimization problems

have also been done with respect to 〈·, ·〉.

However, in the analysis that follows (in Chapter 5), there are settings in

which it is most natural to consider dual cones with respect to a different inner

product. In particular, for each e ∈ Rn
++ and each r ∈ [0, 1], the cone Ke,r can be

described most naturally in terms of the local inner product at e.

To prepare ourselves for this type of analysis in Chapter 5, we use this section

to understand this viewpoint, switching from the dot product to the local inner

products.
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4.4.1 Norms and angles with respect to the local inner product

Consider a fixed e ∈ Rn
++. Recall from (2.22) that the local inner product at e is

defined using the Hessian of the standard log-barrier function for the positive

orthant, evaluated at the point e under consideration:

〈u, v〉e := 〈u,H(e)2v〉 = 〈u, E−2v〉 = 〈u./e, v./e〉,

where E = diag e, the diagonal matrix whose diagonal entries are the compo-

nents of e. This local inner product induces the norm || · ||e which is given by

||u||e =
√
〈u, u〉e.

We can think of using a different inner product as ‘changing the “geome-

try”’ of Rn, in the sense that lengths of vectors and angles between vectors are

defined, or measured, differently (in comparison to their lengths and angles

when we use the inner product 〈·, ·〉). Relating the local inner product at e with

the inner product 〈·, ·〉, lengths of vectors are changed in the following manner:

||u||e :=
√
〈u, u〉e =

√
〈u./e, u./e〉 = ||u./e||.

That is, we can think of the length of u with respect to the norm || · ||e as

the length of the image of u under the affine scaling by the diagonal matrix E−1

(mapping u to E−1u = u./e) with respect to the norm || · ||.

For instance, note that for any e ∈ Rn
++, the length of e in terms of the norm

induced by the local inner product at e is always
√

n:

||e||2e = 〈e, e〉e = 〈e./e, e./e〉 = 〈1,1〉 = n,

because under the image of e under the affine scaling E−1 is just 1, whose length

with respect to the norm || · || is
√

n.
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Angles between vectors are also changed in the same manner. In the point

of view of the inner product 〈·, ·〉, given two vectors u and v in Rn, the cosine of

the angle between them is

cos(∠(u, v)) =
〈u, v〉
||u|| ||v||

.

Replacing the inner products and norms from 〈·, ·〉 to 〈·, ·〉e and || · ||e, we define

the angle between u and v with respect to this local inner product, which we

denote ∠e(u, v), to satisfy

cos(∠e(u, v)) =
〈u, v〉e
||u||e ||v||e

.

That is, ∠e(u, v) is defined as

∠e(u, v) := arccos
(
〈u, v〉e
||u||e ||v||e

)
. (4.17)

Again, we can interpret ∠e(u, v) as the angle between the images of u and v under

the affine scaling E−1, with respect to the inner product 〈·, ·〉.

Recall the cone Ke,r which we introduced in Section 4.1. For each e ∈ Rn
++, we

can re-express the cone Ke,r in terms of the local inner product at e:

Ke,r = {x ∈ Rn | 〈1, x./e〉 ≥ r||x./e||}

= {x ∈ Rn | 〈e, x〉e ≥ r||x||e} . (4.18)

Rearranging the inequality in the second line, we see that Ke,r is the set of points

x which satisfy
〈e, x〉e
||x||e ||e||e

≥
r
√

n
.

That is, x ∈ Ke,r if and only if

cos(∠e(e, x)) ≥
r
√

n
,

or equivalently,

∠e(e, x) ≤ arccos
(

r
√

n

)
.
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4.4.2 Dual cones with respect to the local inner product

In Corollary 4.5, we compute the dual of the cone Ke,r with respect to the dot

product, 〈·, ·〉:

K∗e,r = Ke−1,
√

n−r2 .

Recall that the notion of the dual of a set depends on the inner product being

used. We will now investigate what the dual cones with respect to the local

inner products look like.

Fix two vectors e, ê ∈ Rn
++, and let us consider the dual cone of Ke,r with

respect to the local inner product at ê, 〈·, ·〉ê, which we will denote “K∗êe,r”:

K∗êe,r = {s̃ | 〈x, s̃〉ê ≥ 0, ∀x ∈ Ke,r}

= {s̃ | 〈x./ê, s̃./ê〉 ≥ 0, ∀x ∈ Ke,r}

= {Ê2s | 〈x, Ê−2Ê2s〉 ≥ 0, ∀x ∈ Ke,r}

= {Ê2s | 〈x, s〉 ≥ 0, ∀x ∈ Ke,r}

= Ê2K∗e,r. (4.19)

Thus, for any local inner product 〈·, ·〉ê, the dual cone of Ke,r with respect to

this local inner product is

K∗êe,r = Ê2K∗e,r = Ê2Ke−1,
√

n−r2

= KÊ2e−1,
√

n−r2 , (4.20)

where the last equality follows from (4.6).

The setting that we will be particularly interested in is when ê = e. Then,

Ê2e−1 = E2e−1 = e, and

K∗ee,r = Ke,
√

n−r2 . (4.21)
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Note that when e = 1, (4.21) reduces to the assertion of Proposition 4.2,

namely that K∗
1,r = K

1,
√

n−r2 where the dual is with respect to 〈·, ·〉 = 〈·, ·〉1, the

dot product.

4.4.3 Primal-dual pairs of quadratic problems with respect to

the local inner product

In Section 4.2, we considered the primal-dual pair of quadratic cone optimiza-

tion problems

min 〈c, x〉

s.t. Ax = b (QPe,r)

x ∈ Ke,r,

max bT y

s.t. AT y + s = c (QPe,r)∗

s ∈ K∗e,r,

specified for each r ∈ (0, 1) and e ∈ Rn
++. The dual cone in the constraint of

(QPe,r)∗ is taken with respect to the dot product, 〈·, ·〉.

We can also consider the dual of quadratic-cone optimization problems with

respect to these local inner products.

Consider some ê ∈ Rn
++. Writing the primal problem using the local inner
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product at ê,

min 〈Ê2c, x〉ê

s.t. Ax = b (QPe,r)

x ∈ Ke,r,

the dual problem with respect to the local inner product at ê is

max bT ỹ

s.t. Ê2AT ỹ + s̃ = Ê2c (QPe,r)∗ê

s̃ ∈ K∗êe,r.

We note that here, Ê2AT : Rm → Rn is the adjoint of A : Rn → Rm with respect to

〈·, ·〉ê: for each ỹ ∈ Rm and each w ∈ Rn,

yT (Aw) = 〈AT y,w〉

= 〈(Ê2A)T y, Ê−2w〉

= 〈(Ê2A)T y,w〉ê.

Again, for the quadratic-cone optimization problem (QPe,r), we are particu-

larly interested in the dual with respect to 〈·, ·〉e, the local inner product at the

same point e:

max bT ỹ

s.t. E2AT ỹ + s̃ = E2c (QPe,r)∗e

s̃ ∈ K∗ee,r.

Consider the linear constraint E2AT ỹ + s̃ = E2c in the description of (QPe,r)∗e

above. That (s̃, ỹ) satisfies this constraint can be equivalently written as

s̃ ∈ E2c +L⊥e , . (4.22)

72



where L := {x | Ax = 0} = ker A, the kernel of A, and L⊥e is its orthogonal

complement with respect to the local inner product at e. Indeed, since L⊥ =

{AT y | y ∈ Rm}, it suffices to show that E2L⊥ = L⊥e .

However, note that v ∈ L⊥e if and only if

〈v, x〉e = 0

for all x ∈ L. That is, if and only if

0 = 〈v, x〉e = 〈v, E−2x〉 = 〈E−2v, x〉

for all x ∈ L. So, v ∈ L⊥e if and only if E−2v ∈ L⊥. Thus, L⊥e = E2L⊥, proving

(4.22).

4.5 The tangent space

Recall that for a continuously differentiable function p : Rn → R and a point x̄

satisfying p(x̄) = 0 and ∇p(x̄) , 0, the tangent space at x̄ to the set {x | p(x) = 0}

consists precisely of the vectors v satisfying ∇p(x̄)T v = 0 (see [20, Chapter 6]).

Fix e ∈ Int and r ∈ (0, 1). Suppose that x̄ lies on the boundary of the cone Ke,r,

then pe,r(x̄) = 0 where pe,r : Rn → R is given by

pe,r(u) := 〈1, u./e〉2 − r2〈u./e, u./e〉.

Thus, assuming that x̄ , 0 and ∇pe,r(x̄) , 0, the tangent space at x̄ to the set

{x | pe,r(x) = 0} = ∂Ke,r

consists of vectors v such that 〈∇pe,r(x̄), v〉 = 0.
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Denote this tangent space Te,r,x̄. Since

∇pe,r(x̄) = 〈1, x̄./e〉(e−1) − r2(x̄./e2),

we see that ∇pe,r(x̄) , 0 for all x̄ , 0. Thus, Te,r,x̄ consists of vectors v such that

〈1, x̄./e〉〈1, v./e〉 − r2〈x̄./e, v./e〉 = 0. (4.23)

If x is the optimal solution for (QPe,r) then x lies in ∂Ke,r, and furthermore,

it satisfies the Fritz John conditions which we state in Section 4.3. In particular,

there exist y ∈ Rm and µ > 0 such that

〈1, x./e〉(e−1) − r2(x./e2) = AT y − µc.

Therefore, if x is optimal for (QPe,r), then Te,r,x consists of all vectors v which

satisfy:

0 = 〈(AT y − µc), v〉 = yT (Av) − µ〈c, v〉. (4.24)

We are mainly interested in tangent directions v that are also in L (recall that

L = ker A) because we are interested in examining points x + λv which remain

feasible for (QPe,r) for infinitesimal λ.

Thus, following (4.24), the space Te,r,x ∩ L consists of vectors v where the

inner product between c and v must be zero (since µ > 0):

Te,r,x ∩ L = {v ∈ Rn | Av = 0, 〈c, v〉 = 0}.

In particular, we note that the description of the vectors v that belong to

Te,r,x ∩L above is independent of e, r, or x. This means that for any ê ∈ Swath(r)

and x̂ that is optimal for (QPê,r), the set

{v ∈ Rn | Av = 0, 〈c, v〉 = 0}
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is tangent to Kê,r at x̂.

Thus, from here onwards, we eliminate the subscripts from “Te,r,x ∩ L” and

let

T := Te,r,x ∩ L = {v ∈ Rn | Av = 0, 〈c, v〉 = 0}. (4.25)

We remark that T is a subspace of L of codimension 1. In particular, the vector

c (alternatively, the vector e − x) and vectors in T together span L.

We close this section with the following fact about vectors in T . This propo-

sition will be used in proving Lemma 5.9, a result about the projection of an

optimal solution of a quadratic cone relaxation to the space orthogonal to L

with respect to the local inner product at the current iterate.

Proposition 4.8. Suppose x is optimal for (QPe,r), and T is as given in (4.25). Suppose

that v ∈ T with 〈v, x〉e , 0. Then, there exist w ∈ Rn and λ > 0 such that

λv = x + w

and

〈x,w〉e = 〈e,w〉e = 0.

Proof. Let w(λ) := λv − x. Then,

〈w(λ), x〉e = λ〈v, x〉e − ||x||2e .

Choose λ̄ := ||x||2e
〈v,x〉e

so that 〈w(λ̄), x〉e = 0. Then, using (4.23) and the fact that

〈e, x〉e = r||x||e (since x lies on the boundary of Ke,r), we note that

λ̄ =
||x||2e
〈v, x〉e

=
r2||x||2e

〈e, x〉e〈e, v〉e
=

r||x||e
〈e, v〉e

.
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Hence, again using the fact that 〈e, x〉e = r||x||e,

〈e,w(λ̄)〉e = λ̄〈e, v〉e − 〈e, x〉e

=
r||x||e
〈e, v〉e

〈e, v〉e − 〈e, x〉e

= r||x||e − 〈e, x〉e = 0.

�
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CHAPTER 5

A LINEAR PROGRAMMING ALGORITHM

We consider a linear programming problem in standard form:

min 〈c, x〉

s.t. Ax = b (LP)

x ∈ Rn
+,

whose dual problem is

max bT y

s.t. AT y + s = c (LP)∗

s ∈ Rn
+.

Here, c ∈ Rn, A ∈ Rm×n, and b ∈ Rm. We assume that b , 0 and that cT and the

rows of A are linearly independent. Throughout this chapter, 〈·, ·〉 is chosen to

be the dot product on Rn and || · || the 2-norm.

In Chapter 4, we introduced the quadratric cones Ke,r. Recall that, for each

r ∈ (0, 1) and e ∈ Rn
++, the quadratic-cone optimization problem

min 〈c, x〉

s.t. Ax = b (QPe,r)

x ∈ Ke,r,

is a relaxation of (LP). Furthermore, because K∗e,r ⊆ (Rn
+)∗ = Rn

+, then the dual

quadratic-cone optimization problem

max bT y

s.t. AT y + s = c (QPe,r)∗

s ∈ K∗e,r,
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is a restriction of (LP)∗. Although in Chapter 4 we considered cones Ke,r for

all r ∈ [0, 1], we consider only cones with parameter r ∈ (0, 1) throughout the

present chapter.

Consider a fixed r ∈ (0, 1) and a vector e ∈ Rn
++ that is a feasible solution for

(LP). If (QPe,r) has an optimal solution x, then x is not a feasible solution for

(LP) because it lies outside of the nonnegative orthant. However, the objective

value at x is a lower bound for the optimal value of (LP). Furthermore, since

e is strictly feasible for (LP), the objective value at e is an upper bound for the

optimal value of (LP). Recall that for each r ∈ (0, 1), we define Swath(r) as

the set of vectors e that are strictly feasible for (LP) and for which (QPe,r) has

an optimal solution. Then, given e ∈ Swath(r), we can obtain another strictly

feasible solution with better (smaller) objective value by choosing a point that

lies in the line segment between e and x.

This observation inspires an algorithm for solving linear programs of the

form (LP), which we sketch below.

Algorithm 5.1. Fix r ∈ (0, 1).

Initialization: Find an initial direction e(0) ∈ Swath(r).

Iteration k: As long as the stopping criterion has not been achieved:

Find an optimal solution, x(k), of (QPe(k),r).

Choose a step size t(k) > 0 and let e(k+1) = 1
1+t(k) (e(k) + t(k)x(k)).

In this chapter, we will make this algorithm more precise and prove the

polynomial-time convergence towards an optimal solution for (LP).
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Throughout the chapter, we consider r as a fixed parameter, taking a value

in the open interval (0, 1). We also make the following additional assumptions

about (LP) and (LP)∗:

• b , 0, which implies that x = 0 is not a feasible solution.

• The rows of A and cT are linearly independent, which means that optimal

solutions lie on the boundary of the feasible region.

• (LP) and (LP)∗ are both strictly feasible.

In particular, these assumptions imply that

• For each r ∈ (0, 1), the set Swath(r) is not empty (see Proposition 4.6).

Therefore, there exists an initial iterate e(0) ∈ Swath(r) for the algorithm.

• If e ∈ Swath(r), then (QPe,r) has a unique optimal solution (see Proposition

4.7). This ensures that given an iterate e(k), the next iterate is well-defined

since x(k) is unique once t(k) is chosen.

We will show that at each iteration, there exists a choice of the step size t(k)—

which depends on the current iterate (x(k), e(k))—which guarantees that the algo-

rithm terminates in polynomial time, with the sequence {e(k)} converging to the

optimal solution of (LP).

In particular, we will show that choosing t(k) = r
2||x(k)./e(k) ||

produces an iter-

ation complexity of O(
√

n log(γ0/ε)) for reducing the duality gap from γ0 to ε,

matching the best complexity bounds for interior-point methods in the litera-

ture. Here, the constant hidden in O(
√

n log(γ0/ε)) depends on r and will be

explicitly computed at the end of Section 5.5.
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5.1 The dual solution and the duality gap

Even though our algorithm does not explicitly involve solving the dual

quadratic-cone optimization problem, almost all parts of our analysis rely on

examining the feasible solutions of the dual problem. We start by discussing

the solution to the dual problem and by making explicit the stopping criterion

hinted in Algorithm 5.1.

The dual solution

Given a point e ∈ Swath(r) and a corresponding x (= x(e)) optimal for (QPe,r), we

can find an optimal solution to the dual quadratic programming problem easily,

from the KKT conditions that must be satisfied by x. That is, for some y ∈ Rm

and λ ≥ 0,

c − AT y − λ(〈1, x./e〉(e−1) − r2(x./e2)) = 0 (5.1)

〈1, x./e〉 − r||x./e|| = 0, (5.2)

Ax − b = 0. (5.3)

Recall that for vectors u, v ∈ Rn and integer k, we use u.v to denote

component-wise multiplication, u./v to denote component-wise division, and

uk to denote component-wise exponentiation, raising each component of u to

the kth power. We use this notation frequently throughout the chapter.

It is easy to see that y together with s := λ(〈1, x./e〉(e−1) − r2(x./e2)) satisfy the

linear equality constraint of (QPe,r)∗. Taking the inner product of (5.1) with e− x,
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which we know to lie in the null space of A, we can find the actual value of λ:

0 = 〈c, e − x〉 − 〈AT y, e − x〉

−λ
(
〈1, x./e〉〈e−1, e − x〉 − r2〈x./e2, e − x〉

)
= 〈c, e − x〉 − λ(n − r2)〈1, x./e〉.

This gives us

λ =
〈c, e − x〉e

(n − r2)〈1, x./e〉
=

〈c, e − x〉
(n − r2)r||x./e||

(since 〈1, x./e〉 = r||x./e|| for optimal x, by (5.2)). Therefore,

s =
〈c, e − x〉

(n − r2)r||x./e||
(〈1, x./e〉(e−1) − r2(x./e2))

=
〈c, e − x〉

(n − r2)r||x./e||
(r||x./e||(e−1) − r2(x./e2)),

that is,

s =
〈c, e − x〉

n − r2

(
e−1 − r

x./e2

||x./e||

)
. (5.4)

Using (5.4), we obtain

〈1, s.e〉 = 〈c, e − x〉 ≥ 0,

〈s.e, s.e〉 =
〈c, e − x〉2

n − r2 ,

which implies that s satisfies the inequality that defines the quadratic cone K∗e,r

tightly:

〈1, s.e〉 −
√

n − r2||s.e|| = 0.

This shows that s lies on the boundary of the dual cone K∗e,r. Thus, (s, y) is feasi-

ble for (QPe,r)∗.

To see that (s, y) is in fact optimal for (QPe,r)∗, we need only show that the

duality gap between x and (s, y) is zero. Taking the inner product of x and s
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gives this duality gap (see (2.1))

〈x, s〉 =
〈c, e − x〉

n − r2

(
〈x, e−1〉 − r

〈x, x./e2〉

||x./e||

)
=
〈c, e − x〉

n − r2

(
r||x./e|| − r

||x./e||2

||x./e||

)
= 0,

which concludes our proof that (s, y) is optimal for (QPe,r)∗.

Thus, given our assumptions on (LP) and (LP)∗, having e in Swath(r) implies

that both (QPe,r) and (QPe,r)∗ have optimal solutions, and that strong duality

holds between them.

The duality gap and the stopping criterion

The duality gap between x and (s, y), where s is given by (5.4), is always zero

which tells us that this choice of s always gives an optimal solution for the dual

quadratic-cone optimization problem. However, thus far, this does not tell us

much about how close e is to an optimal (LP) solution.

Fortunately, (s, y) is always a feasible solution to the dual linear program-

ming problem, due to the observation that the dual quadratic cone K∗e,r is always

contained in the nonnegative orthant. Thus, e and (s, y) is a pair of feasible so-

lutions to the primal-dual linear programming pair, with a duality gap of 〈e, s〉.

Computing this quantity using the choice of s from (5.4),

〈e, s〉 = 〈1, s.e〉 = 〈c, e − x〉,

showing that we can compute the duality gap just from “primal information”—

the center direction e together with x, the optimal solution to (QPe,r)— and using

dual solutions only for the analysis.
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Many primal-dual linear programming algorithms use the duality gap as a

measure of proximity to optimality and as a stopping criterion (see [25, 10, 30, 4],

among others). Although our algorithm is not a primal-dual algorithm, a strictly

feasible dual solution for the linear programming looms in the background at

each iteration, and we can easily compute the duality gap between our current

iterate e with this dual solution.

Thus, we shall use the duality gap between this pair of strictly feasible solu-

tions as a measure of proximity to optimality and as a stopping criterion. That

is for a chosen ε > 0, we stop only when 〈c, e(k) − x(k)〉 < ε.

5.2 Keeping the iterates in Swath(r)

Given a current iterate e ∈ Swath(r) and x that is optimal for (QPe,r), let us denote

the next iterate as a function of the step size t > 0:

e(t) :=
1

1 + t
(e + tx). (5.5)

From here onwards, we will use e and e(t) instead of e(k) and e(k+1) for denoting

consecutive iterates, to keep the notation simple and to emphasize our focus in

the next few sections on analyzing the best choice of step size t.

In choosing the value of t, we must ensure that e(t) is strictly feasible for

(LP). Furthermore, we must make sure that e(t) lies in Swath(r) to guarantee the

existence of an optimal solution for (QPe(t),r)∗, for otherwise the algorithm will

be “stuck” at the next iteration.

Fortunately, an upper bound for t that guarantees this condition is not ter-

ribly hard to find. Furthermore, the ideas behind how we might find such an
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upper bound, using duality theory for conic optimization, are esthetically ap-

pealing.

Lemma 5.1. Suppose that e ∈ Swath(r), x optimal for (QPe,r), and (s, y) is optimal for

(QPe,r)∗. Let e(t) = 1
1+t (e + tx). As long as 0 < t < r

||x./e|| , then e(t) > 0 and s lies in the

interior of K∗e(t),r.

Proof. First, we show that e(t) > 0 for 0 < t < r
||x./e|| . Observe that since r < 1 and

since ||x./e|| ≥ ||x./e||∞, then

r
||x./e||

<
1

||x./e||∞
=

1
maxi |xi/ei|

.

Then, for all index i, t <
∣∣∣∣ ei

xi

∣∣∣∣. In particular, for each index i where xi < 0,

ei + txi > ei +

∣∣∣∣∣ei

xi

∣∣∣∣∣ xi > 0.

Thus, e(t) = 1
1+t (e + tx) > 0, as desired.

Next, we wish to show that for 0 < t < r
||x./e|| , s satisfies:

〈1, s.e(t)〉 ≥ 0 and

〈1, s.e(t)〉2 − (n − r2)||s.e(t)||2 > 0. (5.6)

We first note that

(1 + t)〈1, s.e(t)〉 = 〈1, s.e〉 + t〈1, s.x〉 = 〈1, s.e〉 = 〈c, e − x〉,

and

(1 + t)2〈s.e(t), s.e(t)〉 = ||s.e||2 + 2t〈s.e, s.x〉 + t2〈s.x, s.x〉

=
〈1, s.e〉2

n − r2 + 2t〈s.e, s.x〉 + t2〈s.x, s.x〉
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Therefore, (5.6) is satisfied if and only if

2t〈s.e, s.x〉 + t2〈s.x, s.x〉 < 0.

Using s as given by (5.4) and the fact that 〈1, x./e〉 = r||x./e|| for x optimal for

(QPe,r), we have that

〈s.e, s.x〉 = −
〈c, e − x〉2

(n − r2)2 r||x./e||
(
1 −

r〈x./e, (x./e)2〉

||x./e||3

)
, (5.7)

〈s.x, s.x〉 =
〈c, e − x〉2

(n − r2)2 ||x./e||
2(

1 −
2r〈x./e, (x./e)2〉

||x./e||3
+

r2〈(x./e)2, (x./e)2〉

||x./e||4

)
. (5.8)

Since t must be positive, we need only to choose t that satisfies

t < −2
〈s.e, s.x〉
〈s.x, s.x〉

= 2γ
r

||x./e||
,

where

γ :=
1 − r〈x./e,(x./e)2〉

||x./e||3

1 − 2r〈x./e,(x./e)2〉

||x./e||3 +
r2〈(x./e)2,(x./e)2〉

||x./e||4

.

It is easy to see that γ is nonnegative: the denominator is a positive multiple

of ||s.x||2 where s.x , 0, so it is positive, while the numerator is positive because

〈x./e, (x./e)2〉 =

n∑
i=1

(
xi

ei

)3

≤ ||x./e||33 ≤ ||x./e||
3.

Since
r2〈(x./e)2, (x./e)2〉

||x./e||4
=

r2

||x./e||4

n∑
i=1

(
xi

ei

)4

≤ 1,

then

r2

||x./e||4
〈(x./e)2, (x./e)2〉 −

r
||x./e||3

〈x./e, (x./e)2〉 ≤ 1 −
r〈x./e, (x./e)2〉

||x./e||3
,

which implies that

1 −
2r〈x./e, (x./e)2〉

||x./e||3
+

r2〈(x./e)2, (x./e)2〉

||x./e||4
≤ 2

(
1 −

r〈x./e, (x./e)2〉

||x./e||3

)
.
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Dividing both sides by the left-hand side, we see that 1 ≤ 2γ, or equivalently,

that γ ≥ 1
2 .

Thus, assuming that e(t) ∈ Rn
++, choosing 0 < t < r

||x./e|| is sufficient to guaran-

tee that s is in the interior of K∗e(t),r, as desired. �

Proposition 5.2. Suppose that e ∈ Swath(r) and x optimal for (QPe,r). Let e(t) =

1
1+t (e + tx). As long as 0 < t < r

||x./e|| , then e(t) ∈ Swath(r).

Proof. First note that since Ax = b and Ae = b, then Ae(t) = b. Furthermore,

Lemma 5.1 shows that e(t) > 0 for 0 < t < r
||x./e|| . To show that e(t) ∈ Swath(r), it

remains to show that (QPe(t),r) has an optimal solution.

Theorem 2.4 states that if the primal problem of a pair of primal-dual conic

optimization problems is feasible and the dual problem is strictly feasible, then

the primal problem has an optimal solution.

We know that (QPe(t),r) is feasible: e(t) is a (strictly) feasible solution. There-

fore, if we can show that (QPe(t),r)∗ has a strictly feasible solution, Theorem 2.4

then implies that (QPe(t),r) has an optimal solution, as desired.

To show that (QPe(t),r)∗ has a strictly feasible solution, we only need to pro-

duce one point that lies in the interior of its feasible region. Our candidate for

this point is none other than (s, y), the optimal solution for (QPe,r)∗, where s is

defined in (5.4).

We know that (s, y) satisfies the linear constraint AT y + s = c. Furthermore,

by Lemma 5.1, s lies in the interior of K∗e(t),r, showing that (s, y) is indeed strictly

feasible for (QPe(t),r)∗.

This concludes our proof that that choosing 0 < t < r
||x./e|| is sufficient to
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guarantee that (QPe(t),r) has an optimal solution, and thereby concluding the

proof of the proposition. �

Lemma 5.1 is essential not only in proving the above proposition, but also in

the proof of other results in this chapter.

5.3 Primal and dual monotonicity

Given e ∈ Swath(r) and x that is optimal for (QPe,r), let e(t) := 1
1+t (e + tx) denote

the next iterate. Assuming that 0 < t < r
||x./e|| , so that e(t) ∈ Swath(r), let x(e(t))

denote the optimal solution to (QPe(t),r) and (s(e(t)), y(e(t))) the optimal solution

to (QPe(t),r)∗.

It may not be immediately evident why “moving e towards x” always re-

duces the duality gap. That is, why

〈c, e(t) − x(e(t))〉 ≤ 〈c, e − x〉. (5.9)

Note that for the duality gap to be monotonically decreasing, it is sufficient to

have that the objective value of the primal iterates be monotonically decreasing:

〈c, e(t)〉 ≤ 〈c, e〉 (5.10)

and to have the objective value of the corresponding quadratic cone relaxation

optimal solutions be monotonically increasing:

〈c, x(e(t))〉 ≥ 〈c, x〉. (5.11)

While it is easy to see why (5.10) must hold (that is, because e(t) is a convex

combination of e and x, where the objective value of x is smaller than that of e),

it may not be as immediately obvious why (5.11) holds.
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To see why (5.11) must hold, we again appeal to the dual problem. From

Lemma 5.1, we see that for all 0 < t < r
||x./e|| , the optimal dual solution (s, y) of

(QPe,r)∗ is a strictly feasible solution to (QPe(t),r)∗. This means that the optimal

value of (s(e(t)), y(e(t))) is at least as large as the optimal value of (s, y). Since

strong duality holds for both pairs of quadratic-cone optimization problems,

then

〈c, x〉 = bT y ≤ bT y(e(t)) = 〈c, x(e(t))〉,

as desired.

Hence, it makes sense to think of the property (5.10) as “primal mono-

tonicity” and of (5.11) as “dual monotonicity”, noting that the sequence {e(k)}

of strictly feasible primal solutions has monotonic decreasing objective values

while the sequence {(s(k), y(k))} of strictly feasible dual solutions has monotonic

increasing objective values.

In the following sections, we will show that the duality gap is not only de-

creasing, but that it is reduced by a significant multiplicative factor at least at

every other iteration. In one case (Proposition 5.3), the large reduction in dual-

ity gap is due to a significant decrease of primal objective value while in another

case (Proposition 5.5), it is due to a significant increase of dual objective value.

5.4 A simple bound on the duality gap reduction

To ensure that the sequence of points {e(k)} converges to an optimal (LP) solution

in polynomial time, the inequality (5.9) is not sufficient. We would need to be

able to say that 〈c, e(t) − x(e(t))〉 is not just smaller than 〈c, e − x〉, but that it is

quite significantly smaller.
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Fortunately, in the case when ||x./e|| is not too large, it is not hard to observe

that the duality gap reduction that resulted from taking a step of order r/||x./e||

is quite significant.

Proposition 5.3. Suppose that e ∈ Swath(r), x is optimal for (QPe,r), with ||x./e|| ≤
√

n. We let e(t) = 1
1+t (e + tx). Then, taking a step of size t = η r

||x./e|| , for some η ∈ (0, 1),

reduces the duality gap by a factor of
(
1 − ηr

2
√

n

)
.

Proof. Since we choose t = η r
||x./e|| ,

〈c, e(t) − x(e(t))〉 =
1

1 + t
〈c, e〉 +

t
1 + t

〈c, x〉 − 〈c, x(e(t))〉

≤
1

1 + t
〈c, e〉 +

t
1 + t

〈c, x〉 − 〈c, x〉

=

(
1 −

t
1 + t

)
〈c, e − x〉

≤

(
1 −

ηr
2
√

n

)
〈c, e − x〉,

where the first inequality is due to dual monotonicity, (5.11), and the second

inequality is due to ||x./e|| ≤
√

n. �

Hence, choosing η = 1
2 , for instance, will reduce the duality gap by a factor

of
(
1 − r

4
√

n

)
.

Note that the significant reduction of duality gap in the case that is covered

by Proposition 5.3 is due to a large decrease of the primal objective value.

5.5 Further bounds on the duality gap reduction

In the proof of Proposition 5.3 above, the significant bound on the duality gap

reduction relies on the relatively large distance between e and e(t) compared to
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the distance between e and x, which is controlled by the step size t. Naturally,

when ||x./e|| is small, t is large, and we achieve a large duality gap reduction.

However, when ||x./e|| is large, the step size t is small, and the distance be-

tween e and e(t) is only a small fraction of the distance between e and x. Thus,

in order to obtain a better bound on the duality gap reduction, we need to show

that not only is 〈c, x(e(t))〉 greater than 〈c, x〉, but also that it is quite significantly

greater. That is, we desire a good lower bound for the quantity 〈c, x(e(t)) − x〉.

The results that we will mention in this section in fact show that 〈c, x(e(t))− x〉 is

large when ||x(e(t))./e(t)|| is large. This result shows that a good improvement is

achieved at least at every two iterations.

Letting (s, y) be the optimal solution for (QPe,r)∗ and (s(e(t)), y(e(t))) the op-

timal solution for (QPe(t),r)∗, we can rewrite 〈c, x(e(t)) − x〉 in terms of the dual

solutions as follows

〈c, x(e(t)) − x〉 = bT (y(e(t)) − y)

= (Ax(e(t)))T (y(e(t)) − y)

= 〈x(e(t)), AT (y(e(t)) − y)〉

= 〈x(e(t)), s − s(e(t))〉. (5.12)

That is, the inner product between x(e(t)) and s− s(e(t)) provides the amount

of change of objective value. We will not be solving for s(e(t)), but we can come

up with a different feasible solution (but not necessarily an optimal solution) for

(QPe(t),r)∗ relatively easily.

Of course, (s, y) is feasible for (QPe(t),r)∗ due to our choice of t (see proof of

Proposition 5.2). However, we would like to produce another solution, call it

(s′, y′), that better approximates (s(e(t)), y(e(t))) in the sense that the objective
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value of (s′, y′) is quite significantly larger than that of (s, y).

Supposing that such a solution (s′, y′) could be found, then

〈c, x(e(t)) − x〉 ≥ 〈x(e(t)), s − s′〉.

Using this idea, we find the following lower bound for 〈c, x(e(t)) − x〉 for a par-

ticular choice of step size t.

Recall that we use L to denote the nullspace of A, the constraint matrix spec-

ifying the affine linear constraint of (LP) and of its quadratic-cone relaxations.

Note that the lower bound for 〈c, x(e(t)) − x〉 below is expressed in terms of

the norm || · ||e(t), induced by the local inner product at e(t), and in terms of a

projection onto L⊥e(t) , the orthogonal complement of L with respect to the local

inner product at e(t).

Proposition 5.4. Suppose that e ∈ Swath(r), x is optimal for (QPe,r), and (s, y) is

optimal for (QPe,r)∗. Let e(t) := 1
1+t (e + tx).

Then, taking t = r
2||x./e|| and letting x(e(t)) denote the optimal solution for (QPe(t),r),

we have that

〈c, x(e(t)) − x〉 ≥ R ||Proj
L
⊥e(t) x(e(t))||e(t),

where R := ||s.e(t)||
n

(
r
√

n − β2 − β
√

n − r2
)

and β := r
√

1+r
2 .

We do this switch of inner products because computations with respect to

this local inner product turn out to be the simplest and most natural, as we shall

see when we prove this proposition in Section 5.6.
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This result implies that the new duality gap has the following upper bound

〈c, e(t) − x(e(t))〉 = 〈c, e(t)〉 − 〈c, x〉 − 〈c, x(e(t)) − x〉

≤
1

1 + t
〈c, e − x〉

− R ||Proj
L
⊥e(t) (x(e(t)))||e(t). (5.13)

By explicitly computing a lower bound for ||Proj
L
⊥e(t) (x(e(t)))||e(t), we obtain

the following bound on the duality gap reduction.

Proposition 5.5. Suppose that e ∈ Swath(r), x is optimal for (QPe,r), and (s, y) is

optimal for (QPe,r)∗. As usual, we let e(t) = 1
1+t (e + tx). Assume that n ≥ 4.

Choose t = r
2||x./e|| and let x(e(t)) denote the optimal solution for (QPe(t),r). If

||x(e(t))./e(t)|| >
√

n, then

〈c, e(t) − x(e(t))〉 ≤

1 −
r
(
1 −

√
1+r

2

)
4
√

3n

 〈c, e − x〉.

While the duality gap reduction in Proposition 5.3 relies on primal-objective

improvement, the duality gap reduction in Proposition 5.5 relies on showing im-

provement in the dual objective. This idea, that an improvement can be made in

either the primal or the dual, can be found elsewhere in the linear programming

interior-point method literature, such as in [37] and [9].

From Proposition 5.3 and Proposition 5.5, we obtain our main result.

Theorem 5.6. Fix r ∈ (0, 1) and assume that n ≥ 4. Suppose that we have an initial

iterate e(0) in Swath(r). For each k = 0, 1, . . ., given the current iterate e(k), let x(k) denote

the optimal solution for (QPe(k),r) and define the next iterate as follows

e(k+1) :=
1

1 + t(k) (e(k) + t(k)x(k)),
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with t(k) = r
2||x(k)./e(k) ||

.

Then, for each k, at least one of the following holds:

〈c, e(k+1) − x(k+1)〉 ≤

1 −
r
(
1 −

√
1+r

2

)
4
√

3n

 〈c, e(k) − x(k)〉, (5.14)

〈c, e(k+2) − x(k+2)〉 ≤

(
1 −

r
4
√

n

)
〈c, e(k+1) − x(k+1)〉. (5.15)

Proof of Theorem 5.6. We do this by induction on k. Starting at e(0), we know from

Proposition 5.2 that with t(0) = r
2||x(0)./e(0) ||

, then e(1) ∈ Swath(r).

Assuming that that e(k) ∈ Swath(r), we consider four cases:

1. If ||x(k)./e(k)|| ≤
√

n and ||x(k+1)./e(k+1)|| ≤
√

n, then we can apply Proposition

5.3 with η = 1
2 to conclude that

〈c, e(k+1) − x(k+1)〉 ≤

(
1 −

r
4
√

n

)
〈c, e(k) − x(k)〉

≤

1 −
r
(
1 −

√
1+r

2

)
4
√

3n

 〈c, e(k) − x(k)〉,

since r
4 ≥

r
(
1−
√

1+r
2

)
4
√

3n
for all r ∈ (0, 1).

2. If ||x(k)./e(k)|| ≤
√

n and ||x(k+1)./e(k+1)|| >
√

n, then

〈c, e(k+1) − x(k+1)〉 =

(
1 −

t
1 + t

)
〈c, e(k) − x(k)〉 − 〈c, x(k+1) − x(k)〉

≤

(
1 −

r
4
√

n

)
〈c, e(k) − x(k)〉 − 〈c, x(k+1) − x(k)〉

≤

1 − r
4
√

n
−

r
(
1 −

√
1+r

2

)
4
√

3n

 〈c, e(k) − x(k)〉

≤

1 −
r
(
1 −

√
1+r

2

)
4
√

3n

 〈c, e(k) − x(k)〉,
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where the first and second inequalities are due to Proposition 5.3 and

Proposition 5.5, respectively.

3. On the other hand, if ||x(k)./e(k)|| >
√

n but ||x(k+1)./e(k+1)|| ≤
√

n, then Proposi-

tion 5.3 again implies that

〈c, e(k+2) − x(k+2)〉 ≤

(
1 −

r
4
√

n

)
〈c, e(k+1) − x(k+1)〉.

4. The remaining case is when ||x(k)./e(k)|| >
√

n and ||x(k+1)./e(k+1)|| >
√

n. In this

case, Proposition 5.5 implies that

〈c, e(k+1) − x(k+1)〉 ≤

1 −
r
(
1 −

√
1+r

2

)
4
√

3n

 〈c, e(k) − x(k)〉.

�

This theorem ensures a significant duality gap between the kth and the (k +

1)th iterates if ||x(k)./e(k)|| ≤
√

n or if both ||x(k)./e(k)|| >
√

n and ||x(k+1)./e(k+1)|| >
√

n.

In the case that ||x(k)./e(k)|| >
√

n but ||x(k+1)./e(k+1)|| ≤
√

n, the theorem does not

provide a bound on the duality gap reduction between the kth and the (k + 1)th

iterates. That is, the duality gap is guaranteed to be reduced by the given factors

only at every other iteration.

Recall that r
4 ≥

r
(
1−
√

1+r
2

)
4
√

3n
for all r ∈ (0, 1). So, considering the worst case that

the duality gap is reduced significantly only every other iteration, by the weaker

bound of 1 −
r
(
1−
√

1+r
2

)
4
√

3n
,

〈c, e(k+2) − x(k+2)〉 ≤

1 −
r
(
1 −

√
1+r

2

)
4
√

3n

 〈c, e(k) − x(k)〉,
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which means that after k̄ iterations,

〈c, e(k̄) − x(k̄)〉 ≤ γ0

1 −
r
(
1 −

√
1+r

2

)
4
√

3n


k̄/2

,

where γ0 := 〈c, e(0) − x(0)〉, the initial duality gap.

In order to achieve a final duality gap of ε, for some ε > 0, it is then sufficient

to satisfy

γ0

1 −
r
(
1 −

√
1+r

2

)
4
√

3n


k̄/2

≤ ε,

or equivalently

log γ0 +
k̄
2

log

1 −
r
(
1 −

√
1+r

2

)
4
√

3n

 ≤ log ε.

Since log(1 + δ) ≤ δ for all δ > −1 1, then we want k̄ such that

log γ0 +
k̄
2

−
r
(
1 −

√
1+r

2

)
4
√

3n

 ≤ log ε,

or equivalently,

k̄ ≥
8
√

3n

r
(
1 −

√
1+r

2

) log(γ0/ε).

Thus, k̄ = O
( √

n
r(1−

√
(1+r)/2)

log(γ0/ε)
)

Note that, treating r as a fixed parameter, the iteration complexity is

O(
√

n log(γ0/ε)). As a function of r, however, we see that the choice of r which

give the best bound is when r is bounded away from both 0 and 1.

We conclude this section by noting that the final conclusion of Theorem 5.6

can be strengthened slightly: after k̄ iterations, the duality gap is reduced by a

1To see this, observe that the function F(δ) := log(1 + δ) is concave and F′(0) = 1.
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factor of 1 −
r
(
1 −

√
1+r

2

)
4
√

3n


k̄−1

.

To see why this is the case, consider the four cases that we listed in the

proof of the theorem. If for some iteration k, we are in the second case, where

||x(k)./e(k)|| ≤
√

n and ||x(k+1)./e(k+1)|| >
√

n, then

〈c, e(k+1) − x(k+1)〉 ≤

1 − r
4
√

n
−

r
(
1 −

√
1+r

2

)
4
√

3n

 〈c, e(k) − x(k)〉

≤

(
1 −

r
4
√

n

) 1 −
r
(
1 −

√
1+r

2

)
4
√

3n

 〈c, e(k) − x(k)〉

≤

1 −
r
(
1 −

√
1+r

2

)
4
√

3n


2

〈c, e(k) − x(k)〉,

resulting in twice the multiplicative factor of reduction, compared to the duality

gap reduction that is guaranteed in the first and fourth cases.

On the other hand, if for some iteration k, we are in the third case, where

||x(k)./e(k)|| >
√

n and ||x(k+1)./e(k+1)|| ≤
√

n, we cannot say much about the duality

gap 〈c, e(k+1) − x(k+1)〉 other than that it is less than 〈c, e(k) − x(k)〉. Note however,

that if among any k̄ iterations, this “bad” case occurs κ times, the previous “very

good” case occurs at least κ − 1 times. Thus, we can in fact assert that for any

number of iterations k̄,

〈c, e(k̄) − x(k̄)〉 ≤

1 −
r
(
1 −

√
1+r

2

)
4
√

3n


k̄−1

〈c, e(0) − x(0)〉.
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5.6 Proving Proposition 5.4

In the next two sections, we consider a fixed step size of t = r
2||x./e|| .

Recall that we would like to obtain a solution (s′, y′) that is feasible for

(QPe(t),r)∗ and whose objective value is significantly better than (s, y). Such a

solution (s′, y′) provides the following lower bound (see (5.12))

〈c, x(e(t)) − x〉 ≥ 〈x(e(t)), s − s′〉.

We can rewrite 〈x(e(t)), s − s′〉 in terms of the local inner product at e(t) as

follows

〈x(e(t)), s − s′〉 = 〈x(e(t)), E(t)2(s − s′)〉e(t).

We switch inner products here because, as we will see more concretely in the

proofs of the results which follow later, it is most natural to carry out our analy-

sis using the local inner product at e(t), since the cones Ke(t),r, K∗e(t),r, and K∗e(t)

e(t),r are

more naturally expressed in terms of 〈·, ·〉e(t).

We remark that any (s′, y′) is a feasible solution for (QPe(t),r)∗ if and only if

(E(t)2s′, y′) is a feasible solution for

max bT y

s.t. E(t)2AT ỹ + s̃ = E(t)2c

s ∈ E(t)2K∗e(t),r = K∗e(t)

e(t),r.

This problem is just (QPe(t),r)∗ scaled by E(t)2, or equivalently, the dual of (QPe(t),r)

with respect to the local inner product at e(t), which we discussed in greater

length in Section 4.4.3. We denote this problem as (QPe(t),r)∗e(t) .
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Therefore, we will instead focus on finding a point (s̄′, ȳ′) that is feasible for

(QPe(t),r)∗e(t) and whose objective value is significantly better than that of

(s̄, ȳ) := (E(t)2s, y),

providing the lower bound

〈c, x(e(t)) − x〉 ≥ 〈x(e(t)), s̄ − s̄′〉e(t).

The problem of finding such an s̄′ can be rephrased as the problem of finding

a vector v̄ of unit norm (with respect to || · ||e(t)) and a positive scalar R which

satisfy:

1. 〈x(e(t)), v̄〉e(t) > 0,

2. v̄ ∈ L⊥e(t) (where L is the nullspace of A), and

3. The || · ||e(t)-ball centered at s̄ of radius R is contained in K∗e(t)

e(t),r.

With R and v̄ that satisfy the above conditions, choose

s̄′ := s̄ − Rv̄.

The second of the above conditions ensures the existence an ȳ′ ∈ Rm such that

E(t)2AT ȳ′ + s̄′ = c (ȳ′ is uniquely determined by the choice of s̄′ since A is full

rank) while the third condition ensures that s̄′ ∈ K∗e(t)

e(t),r. Thus, (s̄′, ȳ′) is feasible

for (QPe(t),r)∗e(t) .

Furthermore, the first condition ensures that

〈c, x(e(t)) − x〉 ≥ 〈x(e(t)), s̄ − s̄′〉e(t) = R〈x(e(t)), v̄〉e(t) > 0.

Therefore, we will first compute a radius R that guarantees that Be(t)(s̄,R) ⊆

K∗e(t)

e(t),r, where Be(t)(s̄,R) denotes the ball of radius R centered at s̄, with respect to

|| · ||e(t).
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Lemma 5.7. Let β ∈ (0, r]. Suppose that e(t) = 1
1+t (e + tx) ∈ Swath(β). If ŝ ∈ K∗e(t)

e(t),β,

then K∗e(t)

e(t),r contains the ball Be(t)(ŝ,R) where

R =
||ŝ||e(t)

n

(
r
√

n − β2 − β
√

n − r2
)
.

Proof. By (4.21),

K∗e(t)

e(t),r = Ke(t),
√

n−r2

and

K∗e(t)

e(t),β = K
e(t),
√

n−β2 .

A nonzero vector ŝ is in K
e(t),
√

n−β2 if and only if its angle with e(t) does not exceed

arccos
√

(n − β2)/n, or equivalently, if and only if

cos ∠e(t)(ŝ, e(t)) ≥
√

(n − β2)/n. (5.16)

(Note that in this proof, we consider angles, lengths, and projections with re-

spect to the local inner product at e(t).) Moreover, for ŝ ∈ K
e(t),
√

n−β2 ⊆ Ke(t),
√

n−r2 ,

the point in the boundary of the cone Ke(t),
√

n−r2 closest to ŝ is the projection of

ŝ onto the ray whose angle with ŝ is smallest among all rays whose angle with

e(t) is arccos
√

(n − r2)/n. Call the projection of ŝ to this ray p̂. Clearly, the angle

between ŝ and p̂ is

∠e(t)(ŝ, p̂) = arccos
√

(n − r2)/n − ∠e(t)(ŝ, e(t)).
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Therefore, the distance from ŝ to the boundary of Ke(t),γ is given by

||ŝ − p̂||e(t) = ||ŝ||e(t) sin ∠e(t)(ŝ, p̂)

= ||ŝ||e(t) sin
(
arccos

√
(n − r2)/n − ∠e(t)(ŝ, e(t))

)
= ||ŝ||e(t)

(
sin arccos

√
(n − r2)/n cos ∠e(t)(ŝ, e(t))

− sin ∠e(t)(ŝ, e(t)) cos(arccos
√

(n − r2)/n)
)
.

Using (5.16),

||ŝ − p̂||e(t) ≥ ||ŝ||e(t)

( √
1 − (n − r2)/n

√
(n − β2)/n

−
√

1 − (n − β2)/n
√

(n − r2)/n
)

=
||ŝ||e(t)

n

(
r
√

n − β2 − β
√

n − r2
)
,

as desired. �

Lemma 5.7 provides the desired lower bound R of the distance from s̄ to the

boundary of the cone K∗e(t)

e(t),β, under the assumption that e(t) is in Swath(β) (in

addition to being in Swath(r)) for a smaller cone-width parameter β. This is a

nontrivial assumption, because Swath(β) ⊆ Swath(r), for β ≤ r.

In the lemma below, we will choose a particular value for β, namely β :=

r
√

1+r
2 , and show that for the step of length t = r

2||x./e|| , it is guaranteed that e(t) ∈

Swath(β).

Lemma 5.8. Let β = r
√

1+r
2 . Suppose that e ∈ Swath(r), x is the optimal solution for

(QPe,r), and (s, y) is the optimal solution for (QPe,r)∗. Let e(t) = 1
1+t (e+ tx). Then, taking

t = r
2||x./e|| implies that s ∈ K∗e(t),β and e(t) ∈ Swath(β).

Proof. We wish to show that for t = r
2||x./e|| , the dual solution s lies in the interior

of K∗e(t),β, or equivalently, that the following inequality is satisfied,

〈1, s.e(t)〉2 − (n − β2)〈s.e(t), s.e(t)〉 > 0 (5.17)
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and that 〈1, s.e(t)〉 ≥ 0. Recall that

(1 + t)〈1, s.e(t)〉 = 〈1, s.e〉 + t〈1, s.x〉 = 〈1, s.e〉 = 〈c, e − x〉 ≥ 0,

and

(1 + t)2〈s.e(t), s.e(t)〉 =
〈1, s.e〉2

n − r2 + 2t〈s.e, s.x〉 + t2〈s.x, s.x〉.

Therefore, s ∈ K∗e(t),β if and only if

−
r2(1 − (β/r)2)

n − r2 〈c, e − x〉2 − (n − β2)
(
2t〈s.e, s.x〉 + t2〈s.x, s.x〉

)
> 0.

In (5.7) and (5.8), we computed 〈s.e, s.x〉 and 〈s.x, s.x〉, reproduced below:

〈s.e, s.x〉 = −
〈c, e − x〉2

(n − r2)2 r||x./e||
(
1 −

r〈x./e, (x./e)2〉

||x./e||3

)
,

〈s.x, s.x〉 =
〈c, e − x〉2

(n − r2)2 ||x./e||
2
(
1 −

2r〈x./e, (x./e)2〉

||x./e||3
+

r2〈(x./e)2, (x./e)2〉

||x./e||4

)
.

Letting η := t||x./e||
r , to simplify the notation, and using the values of 〈s.e, s.x〉

and 〈s.x, s.x〉 above, the inequality (5.17) is equivalent to

〈c, e − x〉2r2

n − r2

(
−(1 − (β/r)2 +

n − β2

n − r2

(
1 −

r〈x./e, (x./e)2〉

||x./e||3

) (
2η − η2 1

γ

))
> 0,

where

γ :=
1 − r〈x./e,(x./e)2〉

||x./e||3

1 − 2r〈x./e,(x./e)2〉

||x./e||3 +
r2〈(x./e)2,(x./e)2〉

||x./e||4

.

From the proof of Lemma 5.1, we know that γ ≥ 1
2 . Using this, and since

〈c,e−x〉2r2

n−r2 > 0 and 〈x./e,(x./e)2〉

||x./e||3 ≤ 1, we see that in order to satisfy (5.17), it is sufficient

to choose η such that we satisfy:

−
(
1 − (β/r)2

)
+ 2

n − β2

n − r2 (1 − r)η (1 − η) > 0

or equivalently,

(1 − r)η (1 − η) >
1 − (β/r)2

2
n − r2

n − β2 .
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Substituting for β = r
√

1+r
2 , then 1 − (β/r)2 = 1−r

2 . Furthermore, using

n − r2

n − β2 < 1,

it is then sufficient to satisfy

η(1 − η) ≥
1 − r

2
1

2(1 − r)
=

1
4
.

Hence, choosing η = 1
2 , or equivalently, choosing t = r

2||x./e|| , guarantees that

s ∈ int K∗e(t),β. Furthermore, since (QPe(t),β)∗ has a strictly feasible solution, then

for this choice of t, we know that e(t) ∈ Swath(β). �

We conclude this section with the proof of Proposition 5.4, whose statement

we reproduce below.

Proposition (Proposition 5.4). Suppose that e ∈ Swath(r), x is optimal for (QPe,r),

and (s, y) is optimal for (QPe,r)∗. As usual, we let e(t) = 1
1+t (e + tx).

Then, taking t = r
2||x./e|| and letting x(e(t)) denote the optimal solution for (QPe(t),r),

we have that

〈c, x(e(t)) − x〉 ≥ R ||Proj
L
⊥e(t) x(e(t))||e(t),

where R := ||s.e(t)||
n

(
r
√

n − β2 − β
√

n − r2
)

and β := r
√

1+r
2 .

Proof. Recall, from the exposition at the start of the present section, that we

would like to find a unit vector v̄ and a positive scalar R which satisfy:

1. 〈x(e(t)), v̄〉e(t) > 0,

2. v̄ ∈ L⊥e(t) (where L is the nullspace of A), and

3. The unit ball centered at s̄ of radius R is contained in K∗e(t)

e(t),r.
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With R and v̄ that satisfy the above conditions, letting s̄′ := s̄ − Rv, we have

the following lower bound on the increase of the dual solution objective value:

〈c, x(e(t)) − x〉 ≥ 〈x(e(t)), s̄ − s̄′〉e(t) = R〈x(e(t)), v̄〉e(t) > 0.

By Lemma 5.8, taking t = r
2||x./e|| , we have that e(t) ∈ Swath(β) for β = r

√
1+r

2 .

Hence, we can apply Lemma 5.7 which shows that

R :=
||s̄||e(t)

n

(
r
√

n − β2 − β
√

n − r2
)

works, where ||s̄||e(t) = ||s.e(t)|| since s̄ = s.e(t)2.

As for the choice of v̄, note that the projection of x(e(t)) onto L⊥e(t) , denoted

Proj
L
⊥e(t) x(e(t)), clearly satisfies the second of the above conditions. Furthermore,

it has a positive inner product with x(e(t)), satisfying the first condition. In par-

ticular, choosing

v̄ :=
Proj

L
⊥e(t) x(e(t))

||Proj
L
⊥e(t) x(e(t))||e(t)

,

we see that

〈x(e(t)), v̄〉e(t) =

〈
x(e(t)),

Proj
L
⊥e(t) x(e(t))

||Proj
L
⊥e(t) x(e(t))||e(t)

〉
e(t)

= ||Proj
L
⊥e(t) x(e(t))||e(t).

Therefore,

〈c, x(e(t)) − x〉 ≥ R ||Proj
L
⊥e(t) x(e(t))||e(t),

where R := ||s.e(t)||
n

(
r
√

n − β2 − β
√

n − r2
)

and β := r
√

1+r
2 , as desired. �

5.7 Proving Proposition 5.5

Proposition 5.4 provides an expression for a good lower bound for 〈c, x(e(t))− x〉

in terms of a multiple of ||Proj
L
⊥e(t) x(e(t))||e(t). To render this bound useful, we
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need to compute an expression for the length of this projection.

Throughout this section, we rely on observations about the tangent spaces

to the quadratic cones, which we discussed more thoroughly in Section 4.5. In

particular, we will consider the set T , which is defined in (4.25) as the intersec-

tion between L and the space tangent to the cone Ke(t),r at the optimal solution

x(e(t)) of (QPe(t),r).

Lemma 5.9. Suppose that e ∈ Swath(r), x is optimal for (QPe,r), and (s, y) is optimal

for (QPe,r)∗. As usual, we let e(t) = 1
1+t (e + tx) and let x(e(t)) be the optimal solution for

(QPe(t),r). Then, for all 0 < t < r
||x./e|| ,

||Proj
L
⊥e(t) x(e(t))||2e(t) =

||x(e(t))||2e(t) sin2 θ

1 +
(||x(e(t))||e(t)−r)2

n−r2 sin2 θ
,

where θ denotes the angle between x(e(t)) and its projection onto T .

Proof. Choose v ∈ T which minimizes sin2 ∠e(t)(x(e(t)), v) among all vectors in T .

That is, v is a scalar multiple of the projection of x(e(t)) onto T , with respect to

the inner product 〈·, ·〉e(t). Let θ := ∠e(t)(x(e(t)), v), the angle between x(e(t)) and v

with respect to 〈·, ·〉e(t).

We first consider the case when sin2 θ < 1, which means that 〈x(e(t)), v〉e(t) , 0.

By Proposition 4.8, we can write such a vector v in the form v = x(e(t)) + w

(possibly after some scaling), for some w where 〈x(e(t)),w〉e(t) = 〈e(t),w〉e(t) = 0.

Writing v = x(e(t)) + w, we obtain the following equalities:

〈x(e(t)), v〉e(t) = ||x(e(t))||2e(t), (5.18)

〈v, e(t) − x(e(t))〉e(t) = 〈x(e(t)), e(t) − x(e(t))〉e(t) (5.19)

= ||x(e(t))||e(t)
(
r − ||x(e(t))||e(t)

)
, (5.20)
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and

| cos θ| =

∣∣∣∣∣∣ 〈x(e(t)), v〉e(t)

||x(e(t))||e(t) ||v||e(t)

∣∣∣∣∣∣ =

∣∣∣∣∣∣ ||x(e(t))||e(t)

||v||e(t)

∣∣∣∣∣∣ (5.21)

Suppose that p denotes the projection of x(e(t)) onto L⊥e(t) and q denotes the

projection of x(e(t)) onto L, with respect to the inner product 〈·, ·〉e(t).

Recall from Section 4.5 that T is a subspace of codimension 1 in L. There-

fore, we can write q as a linear combination of v and another vector in L that is

orthogonal to v. In particular, note that

u :=
||v||2e(t)

〈v, e(t) − x(e(t))〉e(t)
(e(t) − x(e(t))) − v (5.22)

lies in L and satisfies 〈v, u〉e(t) = 0:

Au =
||v||2e(t)

〈v, e(t) − x(e(t))〉e(t)
A(e(t) − x(e(t))) − Av = 0,

〈v, u〉e(t) =
||v||2e(t)

〈v, e(t) − x(e(t))〉e(t)
〈v, e(t) − x(e(t))〉e(t) − 〈v, v〉e(t)

= ||v||2e(t) − ||v||
2
e(t) = 0.

Then, the projection of x(e(t)) onto v is

〈x(e(t)), v〉e(t)

||v||2e(t)

v =
||x(e(t))||2e(t)

||v||2e(t)

v = (cos2 θ)v,

where the first equality is due to (5.18) and the second is due to (5.21). The

projection of x(e(t)) onto u is
〈x(e(t)), u〉e(t)

〈u, u〉e(t)
u.

Therefore, in terms of u and v, the projection of x(e(t)) onto L is

q =
||x(e(t))||2e(t)

||v||2e(t)

v +
〈x(e(t)), u〉e(t)

〈u, u〉e(t)
u,

whose squared norm is

||q||2e(t) = ||x(e(t))||2e(t) cos2 θ +
〈x(e(t)), u〉2e(t)

〈u, u〉e(t)
.
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Using the expression for u given in (5.22), the equalities (5.18)-(5.21) about

the tangent vector v, and the fact that ||e(t)||e(t) =
√

n, we note that

〈x(e(t)), u〉e(t) =
||v||2e(t)

〈v, e(t) − x(e(t))〉e(t)
〈x(e(t)), e(t) − x(e(t))〉e(t) − 〈x(e(t)), v〉e(t)

= ||v||2e(t) − ||x(e(t))||2e(t) = ||v||2e(t) sin2 θ

and that

〈u, u〉e(t) =

 ||v||2e(t)

〈v, e(t) − x(e(t))〉e(t)

2

||e(t) − x(e(t))||2

− 2
||v||2e(t)

〈v, e(t) − x(e(t))〉e(t)
〈v, e(t) − x(e(t))〉e(t) + ||v||2e(t)

=

 ||v||2e(t)

〈v, e(t) − x(e(t))〉e(t)

2

||e(t) − x(e(t))||2e(t) − ||v||
2
e(t)

= ||v||4e(t)

 ||e(t) − x(e(t))||2e(t)

〈v, e(t) − x(e(t))〉2e(t)

−
1
||v||2e(t)


=

||v||4e(t)

||x(e(t))||2e(t)

 ||e(t) − x(e(t))||2e(t)

(r − ||x(e(t))||e(t))2 − cos2 θ

 .
These imply that

〈x(e(t)), u〉2e(t)

〈u, u〉e(t)
=

||x(e(t))||2e(t) sin4 θ

||e(t)−x(e(t))||2e(t)

(r−||x(e(t))||e(t))2 − cos2 θ
.
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Hence,

||q||2e(t) = ||x(e(t))||2e(t)

cos2 θ +
sin4 θ

||e(t)−x(e(t))||2e(t)

(r−||x(e(t))||e(t))2 − cos2 θ

 .
So, the (squared) length of the projection of x(e(t)) onto L⊥e(t) is

||p||2e(t) = ||x(e(t))||2e(t) − ||q||
2
e(t)

= ||x(e(t))||2e(t)

1 − cos2 θ −
sin4 θ

||e(t)−x(e(t))||2e(t)

(r−||x(e(t))||e(t))2 − cos2 θ


= ||x(e(t))||2e(t) sin2 θ

1 − sin2 θ
||e(t)−x(e(t))||2e(t)

(r−||x(e(t))||e(t))2 − cos2 θ

 .
Since ||e(t) − x(e(t))||2e(t) = n − 2r||x(e(t))||e(t) + ||x(e(t))||2e(t), then

1 −
sin2 θ

||e(t)−x(e(t))||2e(t)

(r−||x(e(t))||e(t))2 − cos2 θ
=

1 +
sin2 θ

||e(t)−x(e(t))||2e(t)

(r−||x(e(t))||e(t))2 − 1


−1

=

1 +
sin2 θ

n−2r||x(e(t))||e(t)+||x(e(t))||2e(t)

r2−2r||x(e(t))||e(t)+||x(e(t))||2e(t)
− 1


−1

=

(
1 +

(r − ||x(e(t))||e(t))2

n − r2 sin2 θ

)−1

.

Thus,

||p||2e(t) =
||x(e(t))||2e(t) sin2 θ

1 +
(r−||x(e(t))||e(t))2

n−r2 sin2 θ
, (5.23)

when sin2 θ < 1.

In the case that sin2 θ = 1, then 〈x(e(t)), v〉e(t) = 0 for all v ∈ T . That is, x(e(t))

is orthogonal to all vectors in T . Since the T together with e(t) − x(e(t)) spans

L, then it must be the case that the projection of x(e(t)) onto L is a multiple of

e(t) − x(e(t)), namely:

q =
〈x(e(t)), e(t) − x(e(t))〉
||e(t) − x(e(t))||2e(t)

(e(t) − x(e(t))).
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Hence,

||q||2e(t) =
〈x(e(t)), e(t) − x(e(t))〉2

||e(t) − x(e(t))||2e(t)

=
||x(e(t))||2e(t)(r − ||x(e(t))||e(t))2

||e(t) − x(e(t))||2e(t)

.

Since ||e(t) − x(e(t))||2e(t) = n − 2r||x(e(t))||e(t) + ||x(e(t))||2e(t), then

||p||2e(t) = ||x(e(t))||2e(t) − ||q||
2
e(t)

= ||x(e(t))||2e(t)

1 − (r − ||x(e(t))||e(t))2

||e(t) − x(e(t))||2e(t)


= ||x(e(t))||2e(t)

1 +
1

||e(t)−x(e(t))||2e(t)

(r−||x(e(t))||e(t))2 − 1


−1

=
||x(e(t))||2e(t)

1 +
(r−||x(e(t))||e(t))2

n−r2

.

Thus, (5.23) in fact also holds when sin2 θ = 1, proving our claim. �

When we take a step of length t = r
2||x./e|| , we can obtain an explicit bound on

the angle between x(e(t)) and vectors in T .

Lemma 5.10. Let β = r
√

1+r
2 . Let e ∈ Swath(r) and let x be the optimal solution for

(QPe,r). Choose t = r
2||x./e|| and let e(t) = 1

1+t (e + tx), with x(e(t)) the optimal solution for

(QPe(t),r).

Then, for any v ∈ T ,

cos2(∠e(t)(x(e(t)), v)) ≤
β2

r2 .

Proof. Note that by Lemma 5.8, with t = r
2||x./e|| , we know that e(t) ∈ Swath(β) ⊆

Swath(r) for β = r
√

1+r
2 . Thus, we can talk about x(e(t)), the optimal solution to

(QPe(t),r) and also of the optimal solution to (QPe(t),β) which we will call x′.
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Hence, restricting ourselves to tangent vectors that are also in L, the set of

tangent vectors to Ke(t),r at x(e(t)) is the same as the set of tangent vectors to Ke(t),β

at x′ (again, see discussion in Section 4.5), namely:

T = {v ∈ Rn | Av = 0, 〈c, v〉 = 0}.

Consider an arbitrary vector v from T . Since x′ , 0 is a point in the boundary

of Ke(t),β and v is tangent to the cone Ke(t),β, then the line {x′ + tv | t ∈ R} does not

intersect the interior of Ke(t),β, neither v or −v is contained in the interior, and thus

θ′ := ∠e(t)(e(t), v), the angle between v and e(t), satisfies

cos2(θ′) ≤
β2

n
,

because Ke(t),β consists of the vectors whose angle with e(t) does not exceed

arccos(β/
√

n).

Also recall from (4.23) that v satisfies

〈e(t), x(e(t))〉e(t) 〈e(t), v〉e(t) = r2〈x(e(t)), v〉e(t).

Furthermore, since 〈e(t), x(t)〉e(t) = r||x(e(t))||e(t), then

〈x(e(t)), v〉e(t)

||x(e(t))||e(t)
=
〈e(t), v〉e(t)

r
.

Let θ := ∠e(t)(x(e(t)), v), the angle between x(e(t)) and v. Since v ∈ T , then θ

satisfies

cos2(θ) =
〈x(e(t)), v〉2e(t)

||x(e(t))||2e(t) ||v||
2
e(t)

=
〈e(t), v〉2e(t)

r2||v||2e(t)

=
||e(t)||2e(t)

r2 cos2(θ′) ≤
β2

r2 ,

where the inequality is due to cos2(θ′) ≤ β2

n and ||e(t)||e(t) =
√

n. �

Combining the results of the above two lemmas, we obtain the following

easy corollary.
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Corollary 5.11. Suppose that e ∈ Swath(r), x is optimal for (QPe,r), and (s, y) is optimal

for (QPe,r)∗. As usual, we let e(t) = 1
1+t (e + tx) and x(e(t)) the optimal solution for

(QPe(t),r). Then, for t = r
2||x./e|| ,

||Proj
L
⊥e(t) x(e(t))||2e(t) ≥

||x(e(t))||2e(t)(1 − (β/r)2)

1 +
(||x(e(t))||e(t)−r)2

n−r2 (1 − (β/r)2)
,

where β = r
√

1+r
2 .

Proof. By Lemma 5.8, the choice t = r
2||x./e|| guarantees that e(t) ∈ Swath(β). This

means that (QPe(t),β) has an optimal solution.

Lemma 5.10 implies that for each v ∈ T , sin2(∠e(t)(x(e(t)), v)) ≥ 1 − β2

r2 . Thus,

combining this bound with the result of Lemma (5.9), we see that

||Proj
L
⊥e(t) x(e(t))||2e(t) ≥

||x(e(t))||2e(t)(1 −
β2

r2 )

1 +
(r−||x(e(t))||e(t))2

n−r2 (1 − β2

r2 )
,

proving our claim. �

We are now ready to prove Proposition 5.5, which is reproduced below.

Proposition (Proposition 5.5). Suppose that e ∈ Swath(r), x is optimal for (QPe,r),

and s is optimal for (QPe,r)∗. As usual, we let e(t) = 1
1+t (e + tx). Assume that n ≥ 4.

Choose t = r
2||x./e|| and let x(e(t)) denote the optimal solution for (QPe(t),r)∗. If

||x(t)./e(t)|| >
√

n, then

〈c, e(t) − x(e(t))〉 ≤ 〈c, e − x〉

1 −
r
(
1 −

√
1+r

2

)
4
√

3n

 .
Proof. Choose t = r

2||x./e|| . From (5.13) and Proposition 5.4 we have that

〈c, e(t) − x(e(t))〉 ≤
1

1 + t
〈c, e − x〉 − R ||Proj

L
⊥e(t) x(e(t))||e(t),
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where R := ||s.e(t)||
n

(
r
√

n − β2 − β
√

n − r2
)

and β := r
√

1+r
2 .

Applying the lower bound for ||Proj
L
⊥e(t) (x(e(t)))||e(t) that we obtain in Corol-

lary 5.11,

〈c, e(t) − x(e(t))〉 ≤
1

1 + t
〈c, e − x〉 − R

 ||x(e(t))./e(t)||2(1 − (β/r)2)

1 +
(||x(e(t))./e(t)||−r)2

n−r2 (1 − (β/r)2)


1/2

=
1

1 + t
〈c, e − x〉 − ||s.e(t)|| C1C2,

where

C1 :=
1
n

(
r
√

n − β2 − β
√

n − r2
)

and

C2 :=

 ||x(e(t))||2e(t)(1 − (β/r)2)

1 +
(||x(e(t))||e(t)−r)2

n−r2 (1 − (β/r)2)


1/2

.

Since β ≤ r < 1, then

C1 ≥
1
n

(r − β)
√

n − r2 ≥

√
n − 1
n

(r − β).

Also, since 0 < r < 1 and using β = r
√

1+r
2 ,

C2 ≥

 (n − 1)||x(e(t))||2e(t)(1 − (β/r)2)

(n − 1) + (||x(e(t))||e(t) − r)2(1 − (β/r)2)

1/2

≥
√

n − 1

 ||x(e(t))||2e(t)(1 − (β/r)2)

n + ||x(e(t))||2e(t)(1 − (β/r)2)

1/2

=
√

n − 1

 ||x(e(t))||2e(t)
1+r

2

n + ||x(e(t))||2e(t)
1+r

2

1/2

,

where the second inequality is due to ||x(e(t))|| ≥
√

n ≥ r. Hence,

C1C2 ≥
n − 1

n
r

1 −
√

1 + r
2

  ||x(e(t))||2e(t)
1+r

2

n + ||x(e(t))||2e(t)
1+r

2

1/2

.
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We assumed that ||x(e(t))./e(t)|| = ||x(e(t))||e(t) >
√

n, so

C1C2 ≥
n − 1

n
r

1 −
√

1 + r
2

  n1+r
2

n + n1+r
2

1/2

=
n − 1

n
r

1 −
√

1 + r
2

  1+r
2

1 + 1+r
2

1/2

.

Recall that

(1 + t)2||s.e(t)||2 =
〈c, e − x〉2

n − r2 + 2t〈s.e, s.x〉 + t2〈s.x, s.x〉,

where (from (5.7) and (5.8)),

〈s.e, s.x〉 = −
〈c, e − x〉2

(n − r2)2 r||x./e||
(
1 −

r〈x./e, (x./e)2〉

||x./e||3

)
,

〈s.x, s.x〉 =
〈c, e − x〉2

(n − r2)2 ||x./e||
2
(
1 −

2r〈x./e, (x./e)2〉

||x./e||3
+

r2〈(x./e)2, (x./e)2〉

||x./e||4

)
.

Using t = r
2||x./e|| , then (1 + t)2||s.e(t)||2 = 〈c,e−x〉2

(n−r2)2 κ, where

κ := (n− r2)− r2
(
1 −

r〈x./e, (x./e)2〉

||x./e||3

)
+

r2

4

(
1 −

2r〈x./e, (x./e)2〉

||x./e||3
+

r2〈(x./e)2, (x./e)2〉

||x./e||4

)
.

Simplifying, we see that

κ ≥ (n − r2) − r2
(
1 −

r〈x./e, (x./e)2〉

2||x./e||3

)
≥ n − 3r2 ≥ n − 3.

Thus,

||s.e(t)|| ≥
〈c, e − x〉

(n − r2)(1 + t)

√
n − 3 ≥

√
n − 3
n
〈c, e − x〉

1 + t
.

Therefore,

C1C2||s.e(t)|| ≥
〈c, e − x〉

1 + t
r(n − 1)

√
n − 3

n2

1 −
√

1 + r
2

  1+r
2

1 + 1+r
2

1/2
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and

〈c, e(t) − x(e(t))〉 ≤
〈c, e − x〉

1 + t

1 − r(n − 1)
√

n − 3
n2

1 −
√

1 + r
2

  1+r
2

1 + 1+r
2

1/2
≤
〈c, e − x〉

1 + t

1 −
r
(
1 −

√
1+r

2

)
4
√

3n


≤ 〈c, e − x〉

1 −
r
(
1 −

√
1+r

2

)
4
√

3n

 ,
where the second to the last inequality is due to the following bounds. For all

n ≥ 4,
√

n − 3 ≥
√

n/4 and n−1
n2 ≥

1
2n . So,

(n − 1)
√

n − 3
n2 ≥

√
n
4

1
2n

=
1

4
√

n
.

Since r ≥ 0, then

1+r
2

1 + 1+r
2

=
1

1 + 2
1+r

≥
1
3
.

�

5.8 Related work

5.8.1 Interpretation as an affine-scaling algorithm

We can view our algorithm as an affine-scaling algorithm. As we described in

Chapter 3, in Dikin’s affine-scaling algorithm, the feasible region of the linear

program to be solved is replaced by an ellipsoid centered at the current iterate.

If x ∈ Int denotes the current iterate, the ellipsoid is

Ex := {w ∈ Rn | ||X−1(w − x)|| ≤ 1},
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where X = diag x. We note that this ellipsoid is in fact the unit ball centered at x

with respect to the norm induced by the local inner product at x:

Ex = {w ∈ Rn | ||w − x||x ≤ 1}.

That is, the current iterate x provides not just the center of the ellipsoid, but also

the affine scaling that determines the shape of the ellipsoid.

For each x ∈ Rn
++, Ex is guaranteed to be contained in the positive orthant

(see [27]). That is, the scaling by X ensures that the shape of Ex “conforms” to

the boundary of the feasible region near x, from the inside. The algorithm then

finds the optimal solution on the intersection of this ellipsoid with the affine

linear constraint of the linear program, which provides the next iterate.

Our algorithm uses the cone Ke,r which is centered at the current iterate e,

and whose shape is determined by the affine scaling given by the inverse of

E = diag e. That is, similar to Dikin’s algorithm, each of our iterates determines

the center and the shape of the space that determines the feasible region of the

optimization problems that determines the search directions.

However, our cones Ke,r circumscribe the linear programming feasible re-

gion, while Dikin’s ellipsoids are inscribed within it. Still, the scaling by E−1

ensures that the shape of the cone in a sense conforms to the boundary of the

linear programming feasible region near e, but from the outside.

While Dikin’s feasible region is the intersection of an ellipsoid with an affine

subset of Rn, our feasible region is a conic section: the intersection of a cone with

the affine subset. Among the primal-dual affine-scaling algorithms which we

discussed in Chapter 3, the cone affine-scaling algorithm of Sturm and Zhang

[30] generalizes Dikin’s approach by considering an inscribed conic section in-
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stead of an ellipsoid.

5.8.2 Chua’s primal-dual quadratic-cone based algorithm for

symmetric cones

Our use of the quadratic cone relaxations in this algorithm is inspired by Chua’s

algorithm in [4]. In this work, he describes an algorithm which at each iteration

starts with a primal and dual pair of solutions x(k) and (s(k), y(k)) that are strictly

feasible for the linear program (that is, they lie in Rn
++), with s(k) assumed to

lie in the cone K∗x(k),r. We obtain the next iterate, call it (x(k+1), s(k+1), y(k+1)), in the

following way: (s(k+1), y(k+1)) is chosen to be the optimal solution to the problem

(D(k)), the “dual-form” problem in the following pair:

min 〈c, x〉

s.t. Ax = b (P(k))

x ∈ Kx(k),r,

max bT y

s.t. AT y + s = c (D(k))

s ∈ K∗x(k),r.

We know that an optimal solution (s(k+1), y(k+1)) exists because (P(k)) is strictly

feasible (for instance, x(k) is a strictly feasible solution) and (D(k)) is feasible since

we assume that s(k) lies in the cone K∗x(k),r (see Theorem 2.4, [27, Theorem 3.2.8]).

Then, x(k+1) is chosen to be the optimal solution to the problem (P̃(k+1)), the
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“primal-form” problem in the following pair:

min 〈c, x〉

s.t. Ax = b (P̃(k+1))

x ∈ K∗s(k+1),r,

max bT y

s.t. AT y + s = c (D̃(k+1))

s ∈ Ks(k+1),r.

Note that (D̃(k+1)) is strictly feasible because we know that s(k) lies in K∗x(k),r and

K∗x(k),r ⊆ R
n
+ ⊆ int Ks(k+1),r. The primal-form problem (P̃(k+1)) is feasible: since s(k+1) ∈

K∗x(k),r, then

〈1, s(k+1).x(k)〉2 ≥
√

n − r2||s(k+1).x(k)||,

which means that x(k) ∈ K∗s(k+1),r. Since (P̃(k+1)) is feasible and (D̃(k+1)) is strictly

feasible, then we know that an optimal solution x(k+1) for (P̃(k+1)) exists.

Therefore, the new iterate, (x(k+1), s(k+1), y(k+1)), satisfies: x(k+1) is strictly feasible

for the primal linear program, (s(k+1), y(k+1)) strictly feasible for the dual linear

program, and s(k+1) ∈ K∗x(k+1),r. We can then repeat the process to obtain the next

iterate until we achieve a sufficiently small duality gap.

Thus, the algorithm alternately solves a quadratic-cone restriction of the pri-

mal and the dual linear program, stopping when the duality gap of the current

pair of iterates has been reduced to a chosen factor of the initial duality gap.

We note that although we describe Chua’s algorithm specifically for solving

linear programs, it was presented and analyzed in the context of semidefinite
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programming, then extended to the more general setting of cone optimization

problems over symmetric cones.

5.8.3 Litvinchev’s quadratic-cone relaxation based algorithm

We recently found that in [18], Litvinchev has formulated a primal interior-point

algorithm for linear programming that is based on solving quadratic-cone re-

laxations of the linear program. This algorithm is similar to the algorithm we

describe in this chapter, in that the same quadratic-cone relaxations are used, re-

sulting in the same search direction when certain conditions are satisfied. There

are, however, a number of nontrivial differences in the algorithm, analysis, and

in the resulting complexity bound.

• The most fundamental difference is the fact that Litvinchev’s algorithm

does not constrain the iterates e(k) to stay within Swath(r), for the chosen

cone-width parameter r, nor does he define such a region as Swath(r).

Thus, it is possible that during some iteration k, the problem (QPe(k),r) is

unbounded. To get around this issue, it is assumed at the start of the al-

gorithm that an initial lower bound z(0) of the optimal value of the linear

program is known. This lower bound is to be updated at each iteration.

Then, in the case when (QPe(k),r) is unbounded, the search direction is given

by x(k) − e(k) where x(k) is any feasible solution for (QPe(k),r) whose objective

value is less than the current lower bound z(k). In this case, the lower bound

stays the same for the next iteration: z(k+1) = z(k).

In the case when (QPe(k),r) has an optimal solution, then the search direction

is the same as our algorithm’s, namely x(k) − e(k) where x(k) is the optimal
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solution to (QPe(k),r). In this case, the lower bound for the next iteration is

z(k+1) = max{z(k), 〈c, x(k)〉}.

• The step size used by Litvinchev is t(k) = r
2〈1,x(k)./e(k)〉

. If x(k) lies on the bound-

ary of the cone, then this step size is t(k) = 1
2||x(k)./e(k) ||

, which is a little larger

than our step size of t(k) = r
2||x(k)./e(k) ||

.

• The cone-width parameter r could be adjusted at each iteration. Under

a particular condition, r = 1 is chosen, while when this condition is not

satisfied, r can be freely chosen from the interval (0.5, 1). In contrast, we

fix r ∈ (0, 1) at the start and leave it unchanged, although we could extend

our results to allow varying r.

• The stopping criterion is the gap between the current objective value and

the current lower bound: 〈c, e(k)〉 − z(k). Note that if the current iterate e(k) is

in Swath(r), then this stopping criterion is upper bounded by the duality

gap 〈c, e(k) − x(k)〉.

Furthermore, the convergence proof uses a very different route. The ap-

proach used by Litvinchev is based on Karmakar’s potential function and is

strictly primal in nature, in contrast to the dual-based approach that we take in

our analysis. That is, he shows that at each iteration, the following potential

function is reduced by a positive constant

φ(e(k), z(k)) =

n∑
i=1

ln
〈c, e(k)〉 − z(k)

(e(k))i
.

The resulting iteration complexity is of order O(n ln(1/ε)) for obtaining a gap

〈c(k), e(k)〉 − z(k) of size at most ε > 0. The constant hidden in this bound also de-

pends on the particular linear program instance, as in [32, Corollary 3.1]. Note

that our complexity bound, which grows as
√

n, is better than the bound ob-

tained in Litvinchev’s paper. On the other hand, this iteration complexity is
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also proven for when a conceptualized version of the algorithm applied to op-

timization problems of the form

min f (x)

s.t. x ∈ Ω

x ∈ Rn
+

where f is a convex function that is not necessarily linear and Ω is a convex

subset of Rn.

5.9 Concluding remarks

In this chapter, we describe a novel algorithm for linear programming. The

algorithm considers a sequence of relaxations that are based on quadratic cones

that circumscribe the nonnegative orthant. This algorithm is shown to have an

iteration complexity of O(
√

n ln(γ0/ε)) for reducing the duality gap from γ0 to ε,

for some chosen value of ε > 0, matching the best bounds among interior-point

methods for linear programming.

Although it is a primal algorithm, the analysis is almost exclusively based on

analyzing the corresponding dual quadratic cone optimization problems. This

approach provides concrete geometric insights into the convergence proof.

This algorithm can be seen as an affine-scaling algorithm, with each iterate

providing an affine scaling that transforms each quadratic cone into a circular

cone that is centered at the vector of all ones. We compare our algorithm to other

affine-scaling algorithms in literature, in particular, the cone affine-scaling algo-

rithm of Sturm and Zhang. We also compare our work to Chua’s primal-dual
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algorithm and Litvinchev’s algorithm, which use the same family of quadratic

cones.

Litvinchev’s algorithm is remarkably similar to ours in the way in which the

quadratic cones are used to derive search directions. However, we highlight the

nontrivial differences in the algorithm, analysis, and the final complexity result,

which is weaker than what we obtain.

The cone affine-scaling linear programming algorithm by Sturm and Zhang

was extended to apply to semidefinite programming in [3]. Chua’s algorithm,

which was described in the context of semidefinite programming, was extended

in the same paper, [4], to apply to cone optimization problems over symmetric

cones.

In the next chapter, we extend our linear programming algorithm to apply

to semidefinite programming.

120



CHAPTER 6

EXTENSION TO SEMIDEFINITE PROGRAMMING

In Chapter 5, we described and analyzed an algorithm for linear program-

ming that is based on relaxations given by a particular family of quadratic cones.

The quadratic cones can be described in terms of affine scalings, or equivalently,

in terms of the local inner products given by the iterates, which are both based

on the Hessian of the barrier functional for the nonnegative orthant. These no-

tions can be naturally extended to the space of symmetric matrices by consider-

ing the barrier functional for the cone of positive semidefinite matrices.

In this chapter, we describe the natural analog of these quadratic cone relax-

ations for the cone of positive semidefinite matrices. Then, using this family of

quadratic cones, we extend the linear programming algorithm from the previ-

ous chapter to semidefinite programming. The complexity analysis in the previ-

ous chapter was also done in terms of the scalings and the local inner products,

through which the complexity analysis from the previous chapter extends to the

semidefinite programming setting.

6.1 Setting and notation

We consider the semidefinite programming problem in standard form

min 〈C, X〉

s.t. AX = b (S DP)

X ∈ Sn
+,
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together with its dual

max bT y

s.t. A∗y + S = C (S DP)∗

S ∈ Sn
+.

We use Sn to denote the set of n × n symmetric matrices, Sn
+ to denote the set of

n × n symmetric positive semidefinite matrices, and Sn
++ to denote the positive

definite matrices. Here, C ∈ Sn and b ∈ Rm. The operator A : Sn → Rm is given

by

AX := (〈A1, X〉, . . . , 〈Am, X〉)T ,

where Ai ∈ S
n for each i = 1, . . . ,m, and we assume that the Ai’s form a linearly

independent set. In this chapter, we choose the inner product 〈·, ·〉 to be the

trace inner product. For y ∈ Rm, we let A∗ : Rm → Sn denote the adjoint of A

with respect to this inner product, given by

A∗y =

m∑
i=1

Aiyi.

We redefine Int and Int∗ to denote the relative interiors of the feasible regions

of (S DP) and (S DP)∗, respectively:

Int := {X ∈ Sn
++ | AX = b},

Int∗ := {(S , y) ∈ Sn
++ × R

m | A∗y + S = C}.

Recall from (2.24) - (2.25) that in the case of positive semidefinite cones, the

barrier functional is

f (E) := − log(det E),

whose Hessian is

H(E)[ · ] := E−1( · )E−1.
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Then, given Sn with the trace inner product 〈·, ·〉 and E ∈ Sn
++, the local inner

product at E was defined in (2.26) as follows: for each U,V ∈ Sn,

〈U,V〉E = 〈U,H(E)V〉 = 〈U, E−1VE−1〉

= 〈E−1/2UE−1/2, E−1/2VE−1/2〉.

That is, 〈U,V〉E can be thought of as the trace inner product between the images

of U and of V under the linear scaling E−1 given by

E−1[ · ] := E−1/2( · )E−1/2. (6.1)

More generally, for any E ∈ Sn
++, we can let E denote the operator

E[ · ] := E1/2( · )E1/2, (6.2)

and let E2 and E−2 denote the operators E( · )E and E−1( · )E−1, respectively. It is

easy to see that E and E−1 are inverses of one another and that applying E2 is the

same as applying E twice.

With this notation, then H(E) = E−2, which notationally resembles the Hes-

sian for the barrier functional for LP at e ∈ Rn
++, namely H(e) = E−2 where

E = diag e.

As we will observe, virtually all proofs in Chapter 5 can be extended word-

by-word to proofs for the SDP case, by replacing all “scalings given by compo-

nentwise division by e” with “scalings given by E−1” and by replacing the local

inner products accordingly.
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6.2 Quadratic cones and quadratic cone relaxations of SDP

Recall the family of quadratic cones Ke,r which are introduced in Chapter 4. For

each e ∈ Rn
++ and each r ∈ [0, 1], the cone Ke,r was defined as follows

Ke,r := {x ∈ Rn | 〈1, x./e〉 ≥ r||x./e||}

= {x ∈ Rn | 〈e, x〉e ≥ r||x||e},

where 〈·, ·〉e denotes the local inner product at e and || · ||e the induced norm. The

second description for Ke,r above, in terms of the local inner products, empha-

sizes that Ke,r is the set of all points x ∈ Rn whose angles with the center direction

e are at most arccos r
√

n , with respect to 〈·, ·〉e.

Since the notion of local inner product extends naturally to Sn, we can extend

the quadratic cones to Sn as well: For a fixed choice of E ∈ Sn
++ and r ∈ [0, 1], let

KE,r denote the set of points X ∈ Sn whose angles with E are at most arccos r
√

n ,

where the angles are with respect to the local inner product at E. That is,

KE,r := {X ∈ Sn | 〈I,E−1X〉 ≥ r||E−1X||} (6.3)

= {X ∈ Sn | 〈E, X〉E ≥ r||X||E}. (6.4)

Note that (6.3) highlights the interpretation of KE,r as the set of points X ∈ Sn

whose image under the scaling E−1 forms an angle of at most arccos r
√

n with

the identity matrix. This parallels the interpretation of Ke,r as the set of points

x ∈ Rn whose image under the scaling E−1 (where E = diag e) forms an angle

of at most arccos r
√

n with the vector of all ones, with respect to the trace inner

product. Hence, it is not surprising that the cones KE,r as defined in (6.3)-(6.4)

above inherit virtually all of the properties of the cones Ke,r which we described

in Chapter 4.
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Our goal in this section is to summarize the important properties of KE,r

which we use when extending the complexity bound of the algorithm to the

semidefinite programming case. That is, we present the semidefinite program-

ming analog of Chapter 4. As we prove these properties, we highlight the simi-

larities of these proofs to the proofs of the linear programming version.

From here onwards, E ∈ Sn
++ and r ∈ [0, 1] unless explicitly specified other-

wise.

6.2.1 Basic properties of KE,r

Following the definition of E in (6.2), for any n × n symmetric positive definite

matrix D, we can consider an affine scalingD : Sn → Sn, given by

D[ · ] := D1/2( · )D1/2.

Then, we claim that for all such matricesD,

DKE,r = KDE,r, (6.5)

where the notationDKE,r means the set {DX | X ∈ KE,r}.

To see why (6.5) is true, let F := (DE)−1 = D−1/2E−1D−1/2 (which is positive

definite since E−1 ∈ Sn
++ and D fixes Sn

++), and let F1/2 denote its square root

matrix. Define F [ · ] := F1/2( · )F1/2. Then, note that

〈I,E−1(D−1X)〉 = tr(I(E−1/2D−1/2XD−1/2E−1/2))

= tr((D−1/2E−1D−1/2)X)

= tr((F1/2F1/2)X)

= tr(I(F1/2XF1/2)) = 〈I,F X〉
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and

||E−1(D−1X)||2 = 〈E−1(D−1X),E−1(D−1X)〉

= tr((E−1/2D−1/2XD1/2E−1/2)(E−1/2D−1/2XD1/2E−1/2))

= tr((D−1/2E−1D−1/2)X(D−1/2E−1D−1/2)X)

= tr((F1/2F1/2)X(F1/2F1/2)X)

= tr((F1/2XF1/2)(F1/2XF1/2))

= 〈F X,F X〉 = ||F X||2.

Therefore,

DKE,r = {DX ∈ Sn | 〈I,E−1X〉 ≥ r||E−1X||}

= {X̃ ∈ Sn | 〈I,E−1(D−1X̃)〉 ≥ r||E−1(D−1X̃)||}

= {X̃ ∈ Sn | 〈I,F X̃〉 ≥ r||F X̃||}

= KF−1,r = KDE,r.

In particular, whenD = E−1, then (6.5) implies that

E−1KE,r = KI,r or equivalently, KE,r = EKI,r. (6.6)

Proposition 6.1. For each E ∈ Sn
++ and r ∈ [0, 1],

1. KE,r ⊇ S
n
+.

2. The dual of KE,r with respect to the inner product 〈·, ·〉 is

K∗E,r = KE−1,
√

n−r2 = {S ∈ Sn | 〈I,ES 〉 ≥
√

n − r2||ES ||}.

3. K∗E,r ⊆ S
n
+.
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Proof. We begin by proving the first two assertions for when E = I, the n × n

identity matrix.

Suppose that X ∈ Sn
+, then

〈I, X〉 = trX =

n∑
i=1

x̂i ≥ 0,

where x̂ = (x̂1, . . . , x̂n) denotes the vector of the eigenvalues of X, which are all

nonnegative. Furthermore,

〈I, X〉2 = (trX)2 =

 n∑
i=1

x̂i

2

≥

n∑
i=1

x̂2
i = tr(X2) = ||X||2.

Thus, for all r ∈ [0, 1], 〈I, X〉 ≥ r||X||, proving that Sn
+ ⊆ KI,r, for all r ∈ [0, 1].

The proof that KI,
√

n−r2 is the dual of KI,r is the same as the proof that K
1,
√

n−r2

is the dual of K1,r (Proposition 4.2), after replacing 1 with I and the dot product

with the trace inner product.

We are now ready to prove the three assertions of this proposition for general

E ∈ Sn
++. By (6.6), KE,r = EKI,r. Note that E fixes Sn

+ and is invertible. Thus, X ∈ Sn
+

if and only if EX ∈ Sn
+. This shows that Sn

+ = ESn
+ ⊆ EKI,r = KE,r, which proves

the first assertion.

By the definition of the dual cone, S ∈ K∗E,r if and only if for each X ∈ KE,r,

0 ≤ 〈X, S 〉.

Equivalently, using (6.6), S ∈ K∗E,r if and only if for each X̃ ∈ KI,r,

0 ≤ 〈EX, S 〉 = 〈X,ES 〉.

That is, S ∈ K∗E,r if and only if ES ∈ K∗I,r. Therefore, EK∗E,r = K∗I,r, or equivalently,

K∗E,r = E−1K∗I,r = E−1KI,
√

n−r2 = KE−1,
√

n−r2 ,
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where the last equality is due to (6.6).

Finally, the third assertion is an easy consequence of the fact that KE,r ⊇ S
n
+

and the fact that Sn
+ is self-dual:

K∗E,r ⊆ (Sn
+)∗ = Sn

+.

�

6.2.2 The quadratic cone relaxations

Consider E ∈ Sn
++ and r ∈ [0, 1]. Since KE,r ⊇ S

n
+, then by replacing the constraint

X ∈ Sn
+ in (S DP) with X ∈ KE,r, we have a relaxed problem:

min 〈C, X〉

s.t. AX = b (QPE,r)

X ∈ KE,r.

The dual problem is

max bT y

s.t. A∗y + S = C (QPE,r)∗

S ∈ K∗E,r,

whose feasible region is contained in the feasible region of (S DP)∗.

We define the set Swath(r) similarly to that in the setting of linear program-

ming: For each r ∈ [0, 1],

Swath(r) := {E ∈ Int | (QPE,r) has an optimal solution}.
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Proposition 6.2. Assume that (S DP) and (S DP)∗ are strictly feasible, with

C, A1, . . . , An linearly independent. Then,

1. Swath(0) = the central path for (S DP)

2. For 0 ≤ r1 ≤ r2 ≤ 1, Swath(r1) ⊆ Swath(r2).

In particular, this implies that if (S DP) and (S DP)∗ are strictly feasible, then for each

r ∈ [0, 1], Swath(r) is nonempty.

Proof. A point E ∈ Int lies on the central path if it is the optimal solution to a

barrier problem (BPµ) for some µ > 0:

min 〈C, X〉 − µ ln det X

s.t. AX = b.

That is, if and only if there exist some µ > 0 and y ∈ Rm such that the following

KKT conditions are satisfied by (E, y, µ):

C − µE−1 −A∗y = 0 (6.7)

AE = b (6.8)

E ∈ Sn
++. (6.9)

On the other hand, a point E ∈ Int lies in Swath(0) if the optimization prob-

lem (QPE,0) below has an optimal solution

min 〈C, X〉

s.t. AX = b

〈I,E−1X〉 ≥ 0.
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Therefore, E ∈ Swath(0) if and only if there exist some X ∈ Sn
+, µ ≥ 0, and

y ∈ Rm such that the following KKT conditions are satisfied

C − µE−1 −A∗y = 0 (6.10)

AX = b (6.11)

〈I,E−1X〉 ≥ 0 (6.12)

µ〈I,E−1X〉 = 0. (6.13)

Since we assume that C, A1, . . . , An are linearly independent, then C does not lie

in the range ofA∗. This implies that E−1 also must not lie in the range ofA∗ and

that µ must be strictly positive. Furthermore, since µ > 0, then 〈I,E−1X〉 = 0, or

equivalently, X lies on the boundary of KE,0.

Thus, the second set of KKT conditions, (6.10) - (6.13), can be summarized as

follows:

1. There exists some µ > 0, y ∈ Rm such that C − µE−1 −AT y = 0, and

2. There exists some X that satisfies: AX = b and 〈I,E−1X〉 = 0.

We claim that the existence of such an X is guaranteed whenever the first re-

quirement above is satisfied:

The point E satisfies AX = b and 〈1,E−1E〉 > 0. Thus, there exists a solution

X that meets the above condition if and only if there exists a direction V ∈ kerA

such that 〈I,E−1V〉 , 0. Such a direction V exists as long as E−1 is not orthogonal

to kerA. That is, as long as there exists some µ > 0, y ∈ Rm such that C − µE−1 −

AT y = 0.

Therefore, the KKT conditions (6.10) - (6.13) for E ∈ Int are exactly the same
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as the KKT conditions (6.7) - (6.9): E ∈ Int and there exist some µ > 0 and y ∈ Rm,

C − µ(E−1) −A∗y = 0.

To prove the second assertion, we begin by noting that for each E ∈ Int and

cone-width parameters r1, r2 ∈ [0, 1] with r1 ≤ r2, KE,r1 ⊇ KE,r2 . Suppose that

E ∈ Swath(r1), which means that (QPE,r1) has an optimal solution. This means

that (QPE,r2) also has an optimal solution, since it is feasible and since (QPE,r1)

which is its relaxation has an optimal solution. This shows that E is also in

Swath(r2), proving the second assertion.

If (S DP) and (S DP)∗ are strictly feasible, then the central path is nonempty.

This, together with the previous two assertions, implies that for all r ∈ [0, 1], the

set Swath(r) is nonempty. �

Proposition 6.3. Suppose that C, A1, . . . , Am form a linearly independent set, and b ,

0. Fix r ∈ (0, 1]. If E ∈ Swath(r), then (QPE,r) has a unique optimal solution.

Intuitively, this proposition asserts that when the set of optimal solutions of

the problem (QPE,r) is nonempty and is not the entire feasible region, then the

optimal solution is in fact unique because the feasible region of (QPE,r) is strictly

convex.

The detailed proof is exactly the same as that of Proposition 4.7, with the

following replacements:

• the dot product on Rn is replaced by the trace inner product on Sn, and

• componentwise division by e (or, the affine scaling by the matrix E−1) is

replaced by the affine scaling by E−1.
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Furthermore, we also replace the following linear programming objects with the

semidefinite programming version:

• the m×n matrix A (as a linear map fromRn toRm) is replaced by the operator

A : Sn → Rm,

• vectors in Rn are replaced by matrices in Sn (for example, c ∈ Rn is replaced

by C ∈ Sn and v ∈ Rn is replaced by V ∈ Sn),

• vectors in Rn
++ are replaced by matrices in Sn

++, and

• the cone Ke,r ⊆ R
n is replaced by KE,r ⊆ S

n.

In fact, these “replacements” (some of which could seem purely notational

on the surface) are essentially the basis of the extension of our results from linear

programming to semidefinite programming. There are indeed a few nontrivial

details that must be shown in the semidefinite programming version that were

not done in the linear programming version, which we will fully present. How-

ever, the key ideas and insights that are essential for proving the results in this

chapter have all been introduced in the linear programming context.

6.2.3 Solving (QPE,r)

We consider E ∈ Int and r ∈ (0, 1). As we did in Section 4.3, the problem (QPE,r)

can be solved by considering its Fritz John optimality conditions.

The analogous condition of the Fritz John conditions in Section 4.3 for (QPE,r)

is as follows. A solution X is optimal for (QPE,r) if and only if 〈I,E−1X〉 ≥ 0, and
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there exist y ∈ Rm and µ ≥ 0 such that

−
(
〈I,E−1X〉E−1 − r2E−2X

)
−A∗y − µC = 0, (a)

AX = b, (b)

〈I,E−1X〉2 − r2|||E−1X||2 = 0. (c)

However, this system is a bit more tricky, because in (a) and (c), X is multiplied

from the left and the right by E−1/2. We can transform (a) - (c) to an equivalent

system where the variable “X” to be solved is only multiplied from the left. Let

X̃ := E−1X = E−1/2XE−1/2,

C̃ := EC = E1/2CE1/2,

Ãi := EAi = E1/2AiE1/2,

and let Ã : Sn → Rm be defined by

Ã(·) := (〈Ã1, ·〉, . . . , 〈Ãm, ·〉)T .

Then, (a) - (c) is equivalent to

−
(
〈I, X̃〉I − r2X̃

)
− Ã∗y − µC̃ = 0, (ã)

ÃX̃ = b, (b̃)

〈I, X̃〉2 − r2〈X̃, X̃〉 = 0. (c̃)

Since X̃ is an n×n symmetric matrix, y is an m-vector, and µ is a scalar, then the

number of variables in this system of equations is n(n+1)/2+m+1. Considering

just the equations given by (ã) - (b̃), we have a system of linear equations in

X̃ involving n(n + 1)/2 + m equations. Since we assume that C, A1, . . . , Am are

linearly independent, then the solution space for just (ã) - (b̃) is one-dimensional:

{Z̃(0) + λṼ | λ ∈ R} for some Z̃(0) = (X̃(0), ỹ(0), µ̃(0)) that satisfies (ã) - (b̃) and Ṽ =

(ṼX, Ṽy, Ṽµ) that lies in the null space of the linear operator on the left-hand side
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of (ã) - (b̃). To find X̃ that also satisfies (c̃) in addition to (ã) - (b̃), we solve the

following quadratic equation in λ:

〈I, (X̃(0) + λṼX)〉2 − r2〈(X̃(0) + λṼX), (X̃(0) + λṼX)〉 = 0. (6.14)

The quadratic equation above has two roots, call them λ(1) and λ(2). If the roots

are not real-valued, we can conclude that E is not in Swath(r). Otherwise, we

have two candidate solutions for the original system (a) - (c), namely

X(i) = E
(
X̃(0) + λ(i)ṼX

)
,

for i = 1, 2, whose corresponding Lagrangian multipliers “y” and “µ” are

y(i) = ỹ0 + λ(i)Vy

and

µ(i) = µ̃0 + λ(i)Vµ.

We first need to check if X(i) is feasible for (QPE,r)) by checking if 〈I,EX(i)〉 ≥ 0.

If both X(i) are feasible, then the minimizer is the one with µ(i) ≥ 0 (by Proposition

6.3, it cannot be the case that both are minimizers). If only one X(i) is feasible,

then it is the minimizer if µ(i) ≥ 0. Otherwise, then there is no optimal solution;

that is, E must not have been in Swath(r).

To actually solve for Z̃(0) and Ṽ , we can translate the system (ã) - (b̃) into an

equation in the form Mz = d where M is an (n(n + 1)/2 + m) × (n(n + 1)/2 + m + 1)

matrix and z is a vector in Rn(n+1)/2 which corresponds to solutions Z to the system

(ã) - (b̃). We do this by mapping matrices in Sn to vectors in Rn(n+1)/2 using the

mapping which in Section 2.2 we call svec: for X ∈ Sn,

svec(X)i+ j( j−1)/2 :=


√

2Xi j, if i , j,

Xi j, if i = j,
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for each i, j = 1, . . . , n with i ≤ j.

Thus, letting

Ã :=



svec(Ã1)T

svec(Ã2)T

...

svec(Ãm)T


and

M :=

 −(svec(I)svec(I)T − r2In(n+1)/2) −ÃT −C

Ã 0 0

 ,
with

d =

 0

b

 , z =


x

y

µ

 ,
we can proceed to solve for z = (x, y, µ) in Mz = d. Then, Z̃(0) = (svec(x), y, µ) and

X̃(0) = svec(x). Similarly, if v = (vx, vy, vµ) is a vector in the nullspace of M, then

Ṽ = (svec(vx), vy, vµ) and ṼX = svec(vx).

6.2.4 Dual cones and dual problems with respect to the local

inner product

In Proposition 6.1, we computed the dual of the cone KE,r with respect to the

trace inner product 〈·, ·〉:

K∗E,r = KE−1,
√

n−r2 .

Recall that the notion of the dual cone depends on the inner product being

used. We will now investigate what the dual cones with respect to the local
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inner products look like.

Fix two matrices E, Ê ∈ Sn
++ and let us consider the dual cone of KE,r with

respect to the local inner product 〈·, ·〉Ê, which we will denote K∗Ê
E,r:

K∗Ê
E,r = {S̃ | 〈X, S̃ 〉Ê ≥ 0,∀X ∈ KE,r}

= {S̃ | 〈X, Ê−2S̃ 〉 ≥ 0,∀X ∈ KE,r}

= {Ê2S | 〈X, S 〉 ≥ 0,∀X ∈ KE,r}

= Ê2K∗E,r.

Since K∗E,r = KE−1,
√

n−r2 (by Proposition 6.1), then

K∗Ê
E,r = Ê2KE−1,

√
n−r2

= K
Ê2E−1,

√
n−r2 ,

where the last equality follows from (6.5).

In particular, the dual of KE,r with respect to the local inner product at E is

K∗E
E,r = KE,

√
n−r2 . (6.15)

We can also talk about dual problems when the dual is taken with respect

to 〈·, ·〉E. In particular, writing the primal objective using 〈·, ·〉E, the local inner

product at E,

min 〈E2C, X〉E

s.t. AX = b (QPE,r)

X ∈ KE,r,
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the dual problem with respect to 〈·, ·〉E is

min bT ỹ

s.t. E2(A∗ỹ) + S̃ = E2C (QPE,r)∗E

S̃ ∈ K∗E
E,r,

where, E2(A∗ỹ) =
∑m

i=1(E2Ai)ỹi. We note that E2A∗ : Rm → Sn is the adjoint of

A : Sn → Rm with respect to 〈·, ·〉E: for each ỹ ∈ Rm and each W ∈ Sn,

yT (AW) = 〈A∗y,W〉

= 〈E2(A∗y),E−2W〉

= 〈E2(A∗y),W〉E.

Consider the linear constraint E2(A∗ỹ)+S̃ = E2C in the description of (QPE,r)∗E

above. That (S̃ , ỹ) satisfies this constraint can be equivalently written as follows

S̃ ∈ E2C +L⊥E , (6.16)

where L := ker A, the nullspace of A, and L⊥E is its orthogonal complement with

respect to the local inner product at E. Indeed, since L⊥ = {A∗y | y ∈ Rm}, it

suffices to show that E2L⊥ = L⊥E .

However, note that V ∈ L⊥E if and only if

〈V, X〉E = 0

for all X ∈ L. That is, if and only if

0 = 〈V, X〉E = 〈V,E−2X〉 = 〈E−2V, X〉

for all X ∈ L. So, V ∈ L⊥E if and only if E−2V ∈ L⊥. Thus, L⊥E = E2L⊥, proving

(6.16).
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6.2.5 The tangent space

Fix E ∈ Int and r ∈ (0, 1). Suppose that X̄ , 0 lies on the boundary of the cone

KE,r, then pE,r(X̄) = 0 where pE,r : Sn → R is given by

pE,r(U) := 〈I,E−1U〉2 − r2〈E−1U,E−1U〉,

for each U ∈ Sn.

Thus, the tangent space at X̄ to the set

{U ∈ Sn | pE,r(U) = 0, 〈I,E−1U〉 ≥ 0} = ∂KE,r

consists of vectors V such that 〈∇pE,r(X̄),V〉 = 0.

Denote this tangent space TE,r,X̄. Since

∇pE,r(X̄) = 〈I,E−1X̄〉(E−1) − r2E−2X̄,

then the tangent space TE,r,X̄ consists of vectors V such that

〈I,E−1X̄〉〈I,E−1V〉 − r2〈E−1X̄,E−1V〉 = 0. (6.17)

If X is the optimal solution for (QPE,r) then X lies in ∂KE,r, and furthermore, it

satisfies the Fritz John conditions which we state in Section 6.2.3. In particular,

there exist y ∈ Rm and µ > 0 such that

〈I,E−1X〉E−1 − r2E−2X = A∗y − µC.

Therefore, if X is optimal for (QPE,r), thenTE,r,X consists of all vectors V which

satisfy:

0 = 〈(A∗y − µC),V〉 = yT (AV) − µ〈C,V〉. (6.18)
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We are mainly interested in tangent directions V that are also inL (recall that

L = kerA) because we are interested in examining points X + λV which remain

feasible for (QPE,r) for infinitesimal λ.

Thus, following (6.18), the space TE,r,X ∩ L consists of matrices V where the

inner product between C and V must be zero (since µ > 0):

TE,r,X ∩ L = {V ∈ Sn | AV = 0, 〈C,V〉 = 0}.

In particular, we note that the description of the matrices V that belong to

TE,r,X∩L above is independent of E, r, or X. This means that for any Ê ∈ Swath(r)

and X̂ that is optimal for (QPÊ,r), the set

{V ∈ Sn | AV = 0, 〈C,V〉 = 0}

is tangent to KÊ,r at X̂.

Thus, from here onwards, we eliminate the subscripts from “TE,r,X ∩ L” and

let

T := TE,r,X ∩ L = {V ∈ Sn | AV = 0, 〈C,V〉 = 0}. (6.19)

We remark that T is a subspace of L of codimension 1. In particular, C (alterna-

tively, E − X) and the vectors in T together span L.

We close this section with the following fact about vectors in T . This propo-

sition will be used in proving Lemma 6.13, a result about the projection of an

optimal solution of a quadratic cone relaxation to the space orthogonal toLwith

respect to the local inner product at the current iterate.

Proposition 6.4. Let E ∈ Sn
++ and r ∈ [0, 1]. Suppose X is optimal for (QPE,r), and T

is as given in (6.19). For each V ∈ T where 〈V, X〉E , 0, there exist W ∈ Sn and λ > 0
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such that

λV = X + W

and

〈X,W〉E = 〈E,W〉E = 0.

Proof. Let W(λ) := λV − X. Then,

〈W(λ), X〉E = λ〈V, X〉E − ||X||2E.

Choose λ̄ := ||X||2E
〈V,X〉E

so that 〈W(λ̄), X〉E = 0. Then, using (6.17) and the fact that

〈E, X〉E = r||X||E, we note that

λ̄ =
||X||2E
〈V, X〉E

=
r2||X||2E

〈E, X〉E 〈E,V〉E
=

r||X||E
〈E,V〉E

,

Hence, using the fact that 〈E, X〉E = r||X||E (since X lies on the boundary of KE,r),

〈E,W(λ̄)〉E = λ̄〈E,V〉E − 〈E, X〉E

=
r||X||E
〈E,V〉E

〈E,V〉E − 〈E, X〉E

= r||X||E − 〈E, X〉E = 0.

�

6.3 The algorithm and the main result

We assume that the following conditions are satisfied by (S DP) and (S DP)∗:

• b , 0, which implies that X = 0 is not a feasible solution

• C, A1, . . . , Am are linearly independent, which means that the optimal solu-

tions lie on the boundary of the feasible region
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• (S DP) and (S DP)∗ are both strictly feasible

Furthermore, these assumptions imply that

• For each r ∈ (0, 1), the set Swath(r) is not empty (see Proposition 6.2).

Therefore, there exists an initial iterate E(0) ∈ Swath(r) as assumed by the

theorem.

• If E ∈ Swath(r), then (QPE,r) has a unique optimal solution (see Proposition

6.3). This means that each iterate of our algorithm is well-defined.

Under these assumptions on the pair of problems (S DP) and (S DP)∗, we

extend the algorithm to semidefinite programming.

Algorithm 6.1. Fix ε > 0, r ∈ (0, 1).

Initialization: Find an initial direction E(0) ∈ Swath(r).

Iteration k: As long as 〈C, E(k) − X(k)〉 > ε,

Find an optimal solution, X(k), of (QPE(k),r).

Let E(k+1) = 1
1+t(k) (E(k) + t(k)X(k)), with t(k) = r

2||(E(k))−1X(k) ||

As we can see, Algorithm 6.1 is essentially the same as the linear program-

ming version, including in the choice of step size of t(k) = r
2||(E(k))−1X(k) ||

.

Our main goal in this chapter is to prove the polynomial-time convergence

of this algorithm with the above choice of step size. In particular, we prove the

following analog of Theorem 5.6 under the above assumptions.

Theorem 6.5. Fix r ∈ (0, 1) and assume that n ≥ 4. Suppose that E(0) ∈ Swath(r). For
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each k = 0, 1, 2, . . ., let X(k) denote the optimal solution for (QPE(k),r), where

E(k+1) :=
1

1 + t(k)

(
E(k) + t(k)X(k)

)
,

with t(k) = r
2||(E(k))−1X(k) ||

.

Then, for each k, at least one of the following holds:

〈C, E(k+1) − X(k+1)〉 ≤

1 −
r
(
1 −

√
1+r

2

)
4
√

3n

 〈C, E(k) − X(k)〉, (6.20)

〈C, E(k+2) − X(k+2)〉 ≤

(
1 −

r
4
√

n

)
〈C, E(k+1) − X(k+1)〉. (6.21)

Therefore, in O(
√

n log(γ0/ε)) iterations, we obtain a duality gap of at most ε, assuming

that the initial duality gap is no more than γ0.

Main ideas

As we saw in Section 6.2, the proofs of the semidefinite programming version

of the results closely resemble the proofs for the corresponding linear program-

ming version. The main ideas, and most of the detail, involved in proving The-

orem 6.5 are the same as those involved in proving the linear programming

version. We list the main ideas and steps as follows, with the more detailed

explanation postponed to latter sections.

1. Dual solution

Given E ∈ Swath(r) with X being the optimal solution to (QPE,r), the opti-

mal dual solution is (S , y) where S is given by

S =
〈C, E − X〉

n − r2

(
E−1 − r

E−2X
||E−1X||

)
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and y is uniquely determined by S (since A1, . . . , An are linearly indepen-

dent). We can easily check that the duality gap between X and (S , y) is

zero.

2. Duality gap

We let E, X denote the current iterate and the corresponding quadratic

cone problem optimal solution.

The duality gap between E and (S , y) satisfies

bT y − 〈C, E〉 = 〈C, E − X〉.

3. Keeping the iterates in Swath(r)

Letting E, X denote the current iterate and the corresponding quadratic

cone problem optimal solution as before, let the next iterate be given by

E(t) :=
1

1 + t
(E + tX),

where t > 0 is the step size. We obtain a bound on t that guarantees that

E(t) stays in Swath(r).

Proposition 6.6. Given E ∈ Swath(r) and X optimal for (QPE,r), let E(t) =

1
1+t (E + tX). As long as 0 < t < r

||E−1X|| , then E(t) ∈ Swath(r).

4. Primal and dual monotonicity

We can show that

〈C, E(t)〉 ≤ 〈C, E〉 primal monotonicity,

〈C, X(E(t))〉 ≥ 〈C, X〉 dual monotonicity.

The first inequality shows that the primal iterates have monotonically de-

creasing objective values. The second inequality shows that the corre-
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sponding optimal solutions to the quadratic relaxation have monotoni-

cally increasing objective values. We will explain later why we call the

second inequality“dual monotonicity”.

5. A simple duality gap reduction guarantee

We obtain a straightforward duality gap reduction guarantee for the case

when ||E−1X|| ≤
√

n.

Proposition 6.7. Suppose that E ∈ Swath(r), X is optimal for (QPE,r), with

||E−1X|| ≤
√

n. Let E(t) = 1
1+t (E + tX). Then, taking a step of size t = η r

||E−1X|| for

some η ∈ (0, 1) reduces the duality gap by a factor of
(
1 − ηr

2
√

n

)
.

6. Further duality gap reduction guarantee

First, we obtain a lower bound for 〈C, X(E(t)) − X〉 in terms of a positive

multiple of ||Proj
L
⊥E(t) X(E(t))||E(t).

Proposition 6.8. Suppose that E ∈ Swath(r), X optimal for (QPE,r) and (S , y) is

optimal for (QPE,r)∗. Let E(t) = 1
1+t (E + tX).

Then, taking t = r
2||E−1X|| and letting X(E(t)) denote the optimal solution for

(QPE(t),r), we have that

〈C, X(E(t)) − X〉 ≥ R||Proj
L
⊥E(t) X(E(t))||E(t),

where R := ||E(t)S ||
n

(
r
√

n − β2 − β
√

n − r2
)

and β = r
√

1+r
2 .

Then, we use Proposition 6.8 to obtain a duality gap reduction guarantee

for the case when ||E−1X|| >
√

n and ||E(t)−1X(E(t))|| >
√

n.

Proposition 6.9. Suppose that E ∈ Swath(r), X is optimal for (QPE,r), and (S , y)

is optimal for (QPE,r)∗. Let E(t) = 1
1+t (E + tX). Assume that n ≥ 4.
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Choose t = r
2||E−1X|| and let X(E(t)) denote the optimal solution for (QPE(t),r). If

||E−1X|| >
√

n and ||E(t)−1X(E(t))|| >
√

n, then

〈C, E(t) − X(E(t))〉 ≤

1 −
r
(
1 −

√
1+r

2

)
4
√

3n

 〈C, E − X〉.

7. The main result

The main result, Theorem 6.5, is a straightforward consequence of Propo-

sition 6.7 and Proposition (6.9). It guarantees a bound on the duality gap

reduction at least every other iteration.

We emphasize that the proofs of the propositions that lead to the main the-

orem rely heavily on examining the dual problems. In particular, we rely on

the following fact: The problem (QPE(t),r) has an optimal solution if (QPE(t),r)∗ is

strictly feasible. The strict feasibility of (QPE(t),r)∗ is shown by proving that the

S -component of the old dual solution (S , y) lies in the interior of the new dual

cone K∗E(t),r. Furthermore, we prove that the duality gap is reduced significantly

by deriving a strong lower bound on the distance of S to the boundary of this

new dual cone and then making use of Proposition 6.8.

In the next sections, we provide complete proofs of the above results. How-

ever, these proofs are essentially the same as the proofs for the corresponding

results in Chapter 5. The main differences come from the barrier functional and

its Hessian, which means that we use different scalings.
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6.4 The dual solution and the duality gap

Given a point E ∈ Swath(r) and X that is optimal for (QPE,r), we can find an

optimal solution to the dual quadratic programming problem, (QPE,r)∗, from

the KKT conditions that must be satisfied by X. That is, for some y ∈ Rm and

λ ≥ 0, the following conditions are satisfied by X:

C −A∗y − λ
(
〈I,E−1X〉E−1 − r2E−2X

)
= 0, (6.22)

〈I,E−1X〉2 − r2||E−1X||2 = 0, (6.23)

AX − b = 0. (6.24)

Letting S := λ
(
〈I,E−1X〉E−1 − r2E−2X

)
, it is not hard to see that (S , y) satisfies

the linear equality constraint of (QPE,r)∗. We can solve for λ in terms of E and

X by taking the inner product of (6.22) with E − X, which we know to lie in the

null space ofA:

0 = 〈C, E − X〉 − 〈A∗y, E − X〉

−λ
(
〈I,E−1X〉〈E−1, E − X〉 − r2〈E−2X, E − X〉

)
= 〈C, E − X〉 − λ(n − r2)〈I,E−1X〉.

Solving for λ,

λ =
〈C, E − X〉

(n − r2)〈I,E−1X〉
=

〈C, E − X〉
(n − r2)r||E−1X||

since 〈I,E−1X〉2 − r2||E−1X||2 = 0. Therefore,

S =
〈C, E − X〉

(n − r2)r||E−1X||

(
〈I,E−1X〉E−1 − r2E−2X

)
,

that is,

S =
〈C, E − X〉

n − r2

(
E−1 − r

E−2X
||E−1X||

)
. (6.25)
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Using (6.25),

〈I,ES 〉 = 〈E, S 〉 = 〈C, E − X〉 ≥ 0, (6.26)

〈ES ,ES 〉 =
〈C, E − X〉2

n − r2 , (6.27)

which implies that S satisfies the inequality that defines the quadratic cone K∗E,r

tightly,

〈I,ES 〉2 − (n − r2)||ES ||2 = 0,

showing that S lies on the boundary of the dual cone K∗E,r. Thus, (S , y) is feasible

for (QPE,r)∗.

To see that in fact (S , y) is optimal for (QPE,r)∗, we need only show that the

duality gap between X and (S , y) is zero. Taking the inner product of X and S

gives this duality gap (see (2.1))

〈X, S 〉 =
〈C, E − X〉

n − r2

(
〈X, E−1〉 − r

〈X,E−2X〉
||E−1X||

)
=
〈C, E − X〉

n − r2

(
r||E−1X|| − r

||E−1X||2

||E−1X||

)
= 0,

which concludes our proof that (S , y) is optimal for (QPE,r)∗.

The duality gap between X and (S , y), where S is given by (6.25), is always

zero, which tells us that this choice of S always gives an optimal solution for the

dual quadratic cone optimization problem.

(In particular, note that whenever E ∈ Swath(r), both (QPE,r) and (QPE,r)∗

have an optimal solution, and strong duality holds between them.)

We see that (S , y) is always a feasible solution to the dual semidefinite pro-

gramming problem because the dual quadratic cone, K∗E,r, is always contained

in the positive semidefinite cone (Proposition 6.1). Thus, E and (S , y) is a pair of
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feasible solutions to the primal-dual semidefinite programming problem pair,

with a duality gap of 〈E, S 〉.

Computing this quantity using the choice of S from (6.25),

〈E, S 〉 = 〈I,ES 〉 = 〈C, E − X〉,

showing that we can compute this duality gap just from “primal information”—

the center direction E together with X, the optimal solution to (QPE,r)—and us-

ing the dual solutions explicitly only for the analysis.

6.5 Keeping the iterates in Swath(r)

Next, we prove a simple upper bound on the step size t which guarantees that

the new iterate, E(t), stays in Swath(r). The following results are analogs of the

linear programming version (Lemma 5.1 and Proposition 5.2).

Lemma 6.10. Suppose that E ∈ Swath(r), X optimal for (QPE,r), and (S , y) is optimal

for (QPE,r)∗. Let E(t) = 1
1+t (E + tX). As long as 0 < t < r

||E−1X|| , then E(t) ∈ Sn
++ and S

lies in the interior of K∗E(t),r.

Proof. We first show that for this choice of step size t, E(t) is a positive definite

matrix. Since E(t) is just a scalar multiple of E + tX, it is sufficient to show that

the eigenvalues of E + tX are strictly positive.

We know that E is positive definite and that the mapping E−1 = E−1/2(·)E−1/2

fixes the cone of positive definite matrices. Thus, E + tX is positive definite if

and only if

I + tE−1X = I + tE−1/2XE−1/2
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is positive definite. Suppose that E−1X = E−1/2XE−1/2 = QX̂QT is the eigenvalue

decomposition of the matrix E−1X. That is, Q is an orthogonal matrix and X̂ is a

diagonal matrix whose diagonal entries are the eigenvalues of E−1X:

X̂ = diag x̂,

where x̂ := (x̂1, . . . , x̂n)T is the vector of eigenvalues of E−1X.

The eigenvalues of I + tE−1X are the same as the eigenvalues of

QT (I + tE−1X)Q = I + tX̂.

Therefore, we only need to show that for all t < r
||E−1X|| , the eigenvalues of I + tX̂

are strictly positive.

Note that the trace norm of the matrix E−1X is the same as the 2-norm of the

vector of its eigenvalues. Since || · ||2 ≥ || · ||∞, then:

||E−1X|| = ||x̂||2 ≥ ||x̂||∞ = max
i
|x̂i|.

Hence,

t <
r

||E−1X||
≤

1
maxi |x̂i|

.

In particular, for each index i where the eigenvalue x̂i is negative, the ith eigen-

value of I + tX̂ is

1 + tx̂i > 1 +
1
|x̂i|

x̂i > 0.

This shows that all eigenvalues of I + tX̂ are strictly positive. Hence, the matrix

E(t) = 1
1+t (E + tX) is positive definite.

Next, we show that S ∈ K∗E(t),r. That is, we wish to show that the following

conditions are satisfied:

〈I,E(t)S 〉 ≥ 0, and
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〈I,E(t)S 〉2 − (n − r2)||E(t)S ||2 > 0. (6.28)

We first note that

(1 + t)〈I,E(t)S 〉 = tr((E + tX)S )

= tr(ES ) + t tr(XS )

= 〈I,ES 〉 + t〈I, XS 〉

= 〈I,ES 〉 (since 〈I, XS 〉 = 0)

= 〈E, S 〉

= 〈C, E − X〉 ≥ 0

and

(1 + t)2||E(t)S ||2 = ||(E + tX)S ||2

= tr(ES ES ) + 2t tr(ES XS ) + t2 tr(XS XS )

= ||ES ||2 + 2t〈ES , XS 〉 + t2〈S X, XS 〉

=
〈I,ES 〉2

n − r2 + 2t〈ES , XS 〉 + t2〈S X, XS 〉.

Note that the matrix product XS which appears above is in general not a

symmetric matrix. We could write

• 〈I, S 1/2XS 1/2〉 instead of 〈I, XS 〉,

• 〈S 1/2ES 1/2, S 1/2XS 1/2〉 instead of 〈ES , XS 〉, and

• ||S 1/2XS 1/2||2 instead of 〈S X, XS 〉

in order to obtain expressions that are in terms of symmetric matrices only.

However, we will keep our current expression of terms involving “XS ” in their
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nonsymmetric forms for notational simplicity. We also do this because it is eas-

ier to manipulate expressions involving S in which we must use the explicit

expression for S as given in (6.25). (We only need to keep in mind that for non-

symmetric matrices U,V ∈ Rn×n, the trace product is 〈U,V〉 = tr UT V , tr UV .)

Therefore, (6.28) is satisfied if and only if

2t〈ES , XS 〉 + t2〈S X, XS 〉 < 0.

Using S as specified in (6.25) and the fact that 〈I,E−1X〉 = r||E−1X|| for the

solution X that is optimal for (QPE,r), we have that

〈ES , XS 〉 = −
〈C, E − X〉2

(n − r2)2 r||E−1X||(
1 −

r〈E−1X, (E−1X)2〉

||E−1X||3

)
(6.29)

〈S X, XS 〉 =
〈C, E − X〉2

(n − r2)2 ||E
−1X||2(

1 −
2r〈E−1X, (E−1X)2〉

||E−1X||3
+

r2||(E−1X)2||2

||E−1X||4

)
. (6.30)

Since t must be nonnegative, we need only to choose t that satisfies

t < −2
〈ES , XS 〉
||XS ||2

= 2γ
r

||E−1X||
,

where

γ :=
1 − r〈E−1X,(E−1X)2〉

||E−1X||3

1 − 2r〈E−1X,(E−1X)2〉

||E−1X||3 +
r2 ||(E−1X)2 ||2

||E−1X||4

.

It is easy to see that γ is nonnegative, because the denominator is a positive

multiple of ||XS ||2 where XS , 0, while the numerator is nonnegative because

〈E−1X, (E−1X)2〉 ≤ ||E−1X||3. (6.31)
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To see why this is the case, let x̂ ∈ Rn denote the vector of the eigenvalues of X

and and note that

〈E−1X, (E−1X)2〉 = tr((E−1X)3) =

n∑
i=1

x̂3
i = ||x̂||33

and that

||E−1X||3 =

 n∑
i=1

x̂2
i

3/2

= ||x̂||32.

Since

||x̂||3 ≤ ||x̂||2,

then (6.31) must hold. In a similar manner, we can also show that

〈(E−1X)2, (E−1X)2〉 ≤ ||E−1X||4. (6.32)

Since,
r2||(E−1X)2||2

||E−1X||4
≤ 1,

then

1 −
2r〈E−1X, (E−1X)2〉

||E−1X||3
+

r2||(E−1X)2||2

||E−1X||4
≤ 2

(
1 −

r〈E−1X, (E−1X)2〉

||E−1X||3

)
.

Since the left hand side is the denominator of γ and the right hand side twice its

numerator, we see that γ ≥ 1
2 .

This implies that letting 0 < t < r
||E−1X|| is sufficient to guarantee that S lies in

the interior of K∗E(t),r. �

Proposition (Proposition 6.6). Given E ∈ Swath(r) and X optimal for (QPE,r), let

E(t) = 1
1+t (E + tX). As long as 0 < t < r

||E−1X|| , then E(t) ∈ Swath(r).

In the proof of this proposition and subsequent results, we will use scalings

defined using E(t) which we will denote with E(t):

E(t)U := E(t)1/2UE(t)1/2.
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Furthermore, E(t)−1,E(t)−2,E(t)2 are defined analogously as E−1,E−2, and E2.

Proof. Since E ∈ Swath(r), we know that it is feasible for (S DP). In particular,

both X and E satisfies the linear equality constraint: AX = b andAE = b. Then,

it is easy to see that AE(t) = b as well, for all t ∈ R. Furthermore, Lemma 6.10

shows that for 0 < t < r
||E−1X|| , E(t) ∈ Sn

++.

To show that E(t) ∈ Swath(r), it remains to show that (QPE(t),r) has an optimal

solution. By Theorem 2.4, we only need to assert that the dual solution (S , y)

where S is given in (6.25) is strictly feasible for (QPE,r)∗. We already know that

(S , y) satisfies the affine linear constraintA∗y + S = C. Furthermore, Lemma 6.10

shows that for each t < r
||E−1X|| , S lies in the interior of the dual cone K∗E(t),r. Thus,

(S , y) is a strictly feasible solution for (QPE(t),r), which conclude the proof of this

proposition. �

We remark that the proof of Lemma 6.10 is the same as that of the linear

programming version, after replacing the inner products and the scalings ap-

propriately. The proof of Proposition 6.6 includes showing that E(t) lies in the

positive definite cone, which is similar but a tad more involved than showing

that E(t) lies in the positive orthant in Proposition 5.2, for the chosen range of

step size t.

6.6 Primal and dual monotonicity

Let E ∈ Swath(r), X be the optimal solution of (QPE,r), and E(t) = 1
1+t (E + tX) the

next iterate. Assuming that 0 < t < r
||E−1X|| such that E(t) ∈ Swath(r), let X(E(t))
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denote the optimal solution to (QPE(t),r) and (S (E(t)), y(E(t))) the optimal solution

to (QPE(t),r)∗.

It may not be immediately evident why the duality gap is reduced at each

iteration:

〈C, X〉 = bT y ≤ bT y(E(t)) = 〈C, X(E(t))〉. (6.33)

Note that for the duality gap to be monotonically decreasing, it is sufficient to

have the objective value of the primal iterates be monotonically decreasing:

〈C, E(t)〉 ≤ 〈C, E〉 (6.34)

and to have the objective value of the corresponding quadratic cone relaxation

optimal solutions be monotonically increasing:

〈C, X(E(t))〉 ≥ 〈C, X〉. (6.35)

While it is easy to see why (6.34) must hold (that is, because E(t) is a convex

combination of E and X, where the objective value of X is smaller than that of

E), it may not be as immediately obvious why (6.35) holds.

To see why (6.35) must hold, we again appeal to the dual problem. From

Lemma 6.10, we see that for all t < r
||E−1X|| , the optimal dual solution (S , y) of

(QPE,r)∗ is a strictly feasible solution to (QPE(t),r)∗. This means that the optimal

value of (S (E(t)), y(E(t))) is at least as large as the optimal value of (S , y). Since

strong duality holds for both pairs of quadratic-cone optimization problems,

then

〈C, E(t) − X(E(t))〉 ≤ 〈C, E − X〉,

as desired.
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Hence, it makes sense to think of the property (6.34) as “primal mono-

tonicity” and to (6.35) as “dual monotonicity”, noting that the sequence {E(k)}

of strictly feasible primal solutions has monotonic decreasing objective values

while the sequence {(S (k), y(k))} of strictly feasible dual solutions has monotonic

increasing objective values.

This concludes our proof that for all t < r
||E−1X|| ,

〈C, E(t) − X(E(t))〉 ≤ 〈C, E − X〉. (6.36)

In the following sections, we will show that the duality gap can be reduced

by a significant multiplicative factor at least at every other iteration. In one

case (Proposition 6.7), the large reduction in duality gap is due to a significant

decrease of primal objective value while in another case (Proposition 6.9), it is

due to a significant increase of dual objective value.

6.7 Proof of Proposition 6.7

Proposition (Proposition 6.7). Suppose that E ∈ Swath(r), X is optimal for (QPE,r),

with ||E−1X|| ≤
√

n. Let E(t) = 1
1+t (E + tX). Then, taking a step of size t = η r

||E−1X|| for

some η ∈ (0, 1) reduces the duality gap by a factor of
(
1 − ηr

2
√

n

)
.
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Proof. Since we choose t = η r
||E−1X|| ,

〈C, E(t) − X(E(t))〉 =
1

1 + t
〈C, E〉 +

t
1 + t

〈C, X〉 − 〈C, X(E(t))〉

≤
1

1 + t
〈C, E〉 +

t
1 + t

〈C, X〉 − 〈C, X〉

=

(
1 −

t
1 + t

)
〈C, E − X〉

≤

(
1 −

ηr
2
√

n

)
〈C, E − X〉,

where the first inequality is due to dual monotonicity, (6.35), and the second

inequality is due to ||E−1X|| ≤
√

n. �

6.8 Proof of Proposition 6.8

In the next two sections, we consider a fixed step size of t = r
2||E−1X|| .

In the proof of Proposition 6.7 above, the significant bound on the duality

gap reduction relies on the relatively large distance between E and E(t) com-

pared to the distance between E and X, which is controlled by the step size t.

Naturally, when ||E−1X|| is small, t is large, and we achieve a large duality gap

reduction.

However, when ||E−1X|| is large, the step size t is small, and the distance

between E and E(t) is only a small fraction of the distance between E and X.

Thus, in order to obtain a better bound on the duality gap reduction, we need

to show that not only is 〈C, X(E(t))〉 greater than 〈C, X〉, but also that it is quite

significantly greater. That is, we desire a good lower bound for the quantity

〈C, X(E(t)) − X〉.

Letting (S , y) be the optimal solution for (QPE,r)∗ and (S (E(t)), y(E(t))) the op-
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timal solution for (QPE(t),r)∗, we can rewrite 〈C, X(E(t)) − x〉 in terms of the dual

solutions as follows

〈C, X(E(t)) − X〉 = bT (y(E(t)) − y)

= (AX(E(t)))∗(y(E(t)) − y)

= 〈X(E(t)),A∗(y(E(t)) − y)〉

= 〈X(E(t)), S − S (E(t))〉. (6.37)

That is, the inner product between X(E(t)) and S − S (E(t)) provides the

amount of change of objective value. We will not be solving for S (E(t)), but we

can come up with a different feasible solution (but not necessarily an optimal

solution) for (QPE(t),r)∗ relatively easily.

Of course, (S , y) is feasible for (QPE(t),r)∗ due to our choice of t (see proof of

Proposition 6.6). However, we would like to produce another solution, call it

(S ′, y′), that better approximates (S (E(t)), y(E(t))) in the sense that the objective

value of (S ′, y′) is quite significantly larger than that of (S , y).

Supposing that such a solution (S ′, y′) could be found, then

〈C, X(E(t)) − X〉 ≥ 〈X(E(t)), S − S ′〉.

Using this idea, we find the following lower bound for 〈C, X(e(t)) − X〉 for a

particular choice of step size t.

We can rewrite 〈X(E(t)), S − S ′〉 in terms of the local inner product at E(t) as

follows

〈X(E(t)), S − S ′〉 = 〈X(E(t)),E(t)2(S − S ′)〉E(t).

As in the previous chapter, we switch inner products because it is most natural
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to carry out our analysis using the local inner product at E(t), since the cones

KE(t),r, K∗E(t),r, and K∗E(t)

E(t),r are more naturally expressed in terms of 〈·, ·〉E(t).

We remark that any (S ′, y′) is a feasible solution for (QPE(t),r)∗ if and only if

(E(t)2S ′, y′) is a feasible solution for

max bT y

s.t. E(t)2(A∗ỹ) + S̃ = E(t)2C

S ∈ E(t)2K∗E(t),r = K∗E(t)

E(t),r.

This problem is just (QPE(t),r)∗ scaled by E(t)2, or equivalently, the dual of

(QPE(t),r) with respect to the local inner product at E(t), which we discussed in

greater length in Section 6.2.4. We denote this problem as (QPE(t),r)∗E(t) .

Therefore, we will instead focus on finding a point (S̄ ′, ȳ′) that is feasible for

(QPE(t),r)∗E(t) and whose objective value is significantly better than that of

(S̄ , ȳ) := (E(t)2S , y),

providing the lower bound

〈C, X(E(t)) − X〉 ≥ 〈X(E(t)), S̄ − S̄ ′〉E(t).

The problem of finding such an S̄ ′ can be rephrased as the problem of finding

a unit vector V̄ and a positive scalar R which satisfy:

1. 〈X(E(t)), V̄〉E(t) > 0,

2. V̄ ∈ L⊥E(t) (where L is the nullspace ofA), and

3. The || · ||E(t)-ball centered at S̄ of radius R is contained in K∗E(t)

E(t),r.
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With R and V̄ that satisfy the above conditions, choose

S̄ ′ := S̄ − RV̄ .

The second of the above conditions ensures the existence an ȳ′ ∈ Rm such that

E(t)2(A∗ȳ′) + S̄ ′ = C (note that ȳ′ is uniquely determined by the choice of S̄ ′

since A1, . . . , Am are linearly independent) while the third condition ensures that

S̄ ′ ∈ K∗E(t)

E(t),r. Thus, (S̄ ′, ȳ′) is feasible for (QPE(t),r)∗E(t) .

Furthermore, the first condition ensures that

〈C, X(E(t)) − X〉 ≥ 〈X(E(t)), S̄ − S̄ ′〉E(t) = R〈X(E(t)), V̄〉E(t) > 0.

Therefore, we will first compute a sufficiently large radius R that still guar-

antees that

BE(t)(S̄ ,R) ⊆ K∗E(t)

E(t),r,

where BE(t)(S̄ ,R) denotes the ball of radius R centered at S̄ , with respect to || · ||E(t).

Lemma 6.11. Let β ∈ (0, r]. Suppose that E(t) = 1
1+t (E + tX) ∈ Swath(β). If Ŝ ∈ K∗E(t)

E(t),β,

then K∗E(t)

E(t),r contains the ball BE(t)(Ŝ ,R) where

R =
||Ŝ ||E(t)

n

(
r
√

n − β2 − β
√

n − r2
)
.

Proof. By (6.15),

K∗E(t)

E(t),r = KE(t),
√

n−r2

and

K∗E(t)

E(t),β = K
E(t),
√

n−β2 .

A nonzero vector Ŝ is in K
E(t),
√

n−β2 if and only if its angle with E(t) does not

exceed arccos
√

(n − β2)/n, or equivalently, if and only if

cos ∠E(t)(Ŝ , E(t)) ≥
√

(n − β2)/n. (6.38)
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(Note that in this proof, we consider angles with respect to the local inner prod-

uct at E(t).) Moreover, for Ŝ ∈ K
E(t),
√

n−β2 ⊆ KE(t),
√

n−r2 , the point in the boundary

of the cone KE(t),
√

n−r2 closest to Ŝ is the projection of Ŝ onto the ray whose an-

gle with Ŝ is smallest among all rays whose angle with E(t) is arccos
√

(n − r2)/n.

Call the projection of Ŝ to this ray P̂. Clearly, the angle between Ŝ and P̂ is

∠E(t)(Ŝ , P̂) = arccos
√

(n − r2)/n − ∠E(t)(Ŝ , E(t)).

Therefore, the distance from Ŝ to the boundary of KE(t),γ is given by

||Ŝ − P̂||E(t) = ||Ŝ ||E(t) sin ∠E(t)(Ŝ , P̂)

= ||Ŝ ||E(t) sin
(
arccos

√
(n − r2)/n − ∠E(t)(Ŝ , E(t))

)
= ||Ŝ ||E(t)

(
sin arccos

√
(n − r2)/n cos ∠E(t)(Ŝ , E(t))

− sin ∠E(t)(Ŝ , E(t)) cos(arccos
√

(n − r2)/n)
)
.

Using (6.38),

||Ŝ − P̂||E(t) ≥ ||Ŝ ||E(t)

( √
1 − (n − r2)/n

√
(n − β2)/n

−
√

1 − (n − β2)/n
√

(n − r2)/n
)

=
||Ŝ ||E(t)

n

(
r
√

n − β2 − β
√

n − r2
)
,

as desired. �
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Lemma 6.11 provides the desired lower bound R of the distance from S̄ , the

scaled version of the optimal solution for (QPE,r)∗, to the boundary of the cone

K∗E(t)

E(t),r, under the assumption that E(t) is in Swath(β) (in addition to being in

Swath(r)) for a cone-width parameter β ≤ r. This is a nontrivial assumption,

because Swath(β) ⊆ Swath(r), for β ≤ r.

In the lemma below, we will choose a particular value for β, namely β =

r
√

1+r
2 , and show that for a step of length t = r

2||E−1X|| , it is guaranteed that E(t) ∈

Swath(β).

Lemma 6.12. Let β = r
√

1+r
2 . Suppose that E ∈ Swath(r), X is the optimal solution

for (QPE,r) and (S , y) is the optimal solution for (QPE,r)∗. Let E(t) = 1
1+t (E + tX). Then,

taking t = r
2||E−1X|| implies that S ∈ int K∗E(t),β and E(t) ∈ Swath(β).

Proof. We wish to show that for t = r
2||E−1X|| , the dual solution S lies in the interior

of K∗E(t),β, or equivalently, that the following inequality is satisfied,

〈I,E(t)S 〉2 − (n − β2)〈E(t)S ,E(t)S 〉 > 0 (6.39)

and 〈I,E(t)S 〉 ≥ 0. Recall that

(1 + t)〈I,E(t)S 〉 = 〈I,ES 〉 + t〈I, XS 〉 = 〈I,ES 〉 ≥ 0,

and

(1 + t)2〈E(t)S ,E(t)S 〉 =
〈I,ES 〉2

n − r2 + 2t〈ES , XS 〉 + t2〈S X, XS 〉.

Therefore, S ∈ K∗E(t),β if and only if

−
r2(1 − (β/r)2)

n − r2 〈C, E − X〉2 − (n − β2)
(
2t〈ES , XS 〉 + t2〈S X, XS 〉

)
> 0.

In (6.29) and (6.30), we computed 〈ES , XS 〉 and 〈XS , XS 〉, reproduced below:

〈ES , XS 〉 = −
〈C, E − X〉2

(n − r2)2 r||E−1X||
(
1 −

r〈E−1X, (E−1X)2〉

||E−1X||3

)
,

〈S X, XS 〉 =
〈C, E − X〉2

(n − r2)2 ||E
−1X||2

(
1 −

2r〈E−1X, (E−1X)2〉

||E−1X||3
+

r2〈(E−1X)2, (E−1X)2〉

||E−1X||4

)
.
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Letting η := t||E−1X||
r , to simplify the notation, and using the values of 〈ES , XS 〉

and 〈S X, XS 〉 above, the inequality (6.39) is equivalent to

〈C, E − X〉2r2

n − r2

(
−(1 − (β/r)2 +

n − β2

n − r2

(
1 −

r〈E−1X, (E−1X)2〉

||E−1X||3

) (
2η − η2 1

γ

))
> 0,

where

γ :=
1 − r〈E−1X,(E−1X)2〉

||E−1X||3

1 − 2r〈E−1X,(E−1X)2〉

||E−1X||3 +
r2〈(E−1X)2,(E−1X)2〉

||E−1X||4

.

From the proof of Lemma 6.10, we know that γ ≥ 1
2 . Using this, and since

〈C,E−X〉2r2

n−r2 > 0 and 〈E−1X,(E−1X)2〉

||E−1X||3 ≤ 1, we see that in order to satisfy (6.39), it is suffi-

cient to choose η such that we satisfy:

−
(
1 − (β/r)2

)
+ 2

n − β2

n − r2 (1 − r)η (1 − η) > 0

or equivalently,

(1 − r)η (1 − η) >
1 − (β/r)2

2
n − r2

n − β2 .

Substituting for β = r
√

1+r
2 , then 1 − (β/r)2 = 1−r

2 . Furthermore, using

n − r2

n − β2 < 1,

it is then sufficient to satisfy

η(1 − η) ≥
1 − r

2
1

2(1 − r)
=

1
4
.

Hence, choosing η = 1
2 , or equivalently, choosing t = r

2||E−1X|| , guarantees that

S ∈ int K∗E(t),β. Furthermore, since (QPE(t),β)∗ has a strictly feasible solution, then

for this choice of t, we know that E(t) ∈ Swath(β). �

We conclude this section with the proof of Proposition 6.8, whose statement

we reproduce below.
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Proposition (Proposition 6.8). Suppose that E ∈ Swath(r), X optimal for (QPE,r) and

(S , y) is optimal for (QPE,r)∗. Let E(t) = 1
1+t (E + tX).

Then, taking t = r
2||E−1X|| and letting X(E(t)) denote the optimal solution for (QPE(t),r),

we have that

〈C, X(E(t)) − X〉 ≥ R||Proj
L
⊥E(t) X(E(t))||E(t),

where R := ||E(t)S ||
n

(
r
√

n − β2 − β
√

n − r2
)

and β = r
√

1+r
2 .

Proof. Recall that we would like to obtain a solution (S ′, y′) that is feasible for

(QPE,r)∗, whose objective value is significantly better than (S , y). Such a solution

(S ′, y′) provides the following lower bound

〈C, X(E(t)) − X〉 ≥ 〈X(E(t)), S − S ′〉 = 〈X(E(t)), S̄ − S̄ ′〉E(t),

where 〈U,V〉E(t) = 〈E−1U,E−1V〉 and S̄ := E2S and S̄ ′ := E2S ′.

Since S lies in the interior of the cone K∗E(t),r, then S̄ lies in the interior of the

cone E(t)2K∗E(t),r = K∗E(t)

E(t),r. Consider the ball centered at S̄ of radius R > 0 with

respect to the norm induced by the inner product 〈·, ·〉E(t), call it BE(t)(S̄ ,R).

If we can show that BE(t)(S̄ ,R) ⊆ K∗E(t)

E(t),r, then for any vector V ∈ E(t)2L⊥ = L⊥E(t)

with unit norm, the point

S̄ ′ = S̄ − RV

is feasible for the scaled version of (QPE(t),r)∗ (scaled by E(t)2).

In particular, if we take V to be the direction of the projection of X(E(t)) onto

L⊥E(t) , namely

V :=
Proj

L
⊥E(t) X(E(t))

||Proj
L
⊥E(t) X(E(t))||E(t)

,
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then

〈C, X(E(t)) − X〉 ≥ 〈X(E(t)), S̄ − S̄ ′〉E(t)

= R
〈
X(E(t)),

Proj
L
⊥E(t) X(E(t))

||Proj
L
⊥E(t) X(E(t))||E(t)

〉
= R||Proj

L
⊥E(t) X(E(t))||E(t).

By Lemma 6.12, taking t = r
2||E−1X|| , we have that E(t) ∈ Swath(β) for β = r

√
1+r

2 .

Hence, we can apply Lemma 6.11 and obtain that

R =
||S̄ ||E(t)

n

(
r
√

n − β2 − β
√

n − r2
)

works. Recall that S̄ = E(t)2S . Thus, ||S̄ ||E(t) = ||E(t)S ||. �

6.9 Proving Proposition 6.9

Proposition 6.8 provides an expression for a good lower bound for 〈C, X(E(t)) −

X〉 in terms of a multiple of ||Proj
L
⊥E(t) X(E(t)||E(t). However, we still need to com-

pute an expression for the length of this projection.

Throughout this section, we rely on observations about the tangent spaces

to the quadratic cones, which we discussed more thoroughly in Section 6.2.5.

In particular, we will consider the set T , which is defined in (6.19) as the inter-

section between L and the space that is tangent to the cone KE(t),r at the optimal

solution X(E(t)) of (QPE(t),r).

Lemma 6.13. Suppose that E ∈ Swath(r), X is optimal for (QPE,r), and (S , y) is optimal

for (QPE,r)∗. As usual, we let E(t) = 1
1+t (E + tX) and X(E(t)) the optimal solution for

(QPE(t),r). Then, for all t < r
||E−1X|| ,

||Proj
L
⊥E(t) X(E(t))||2E(t) =

||X(E(t))||2E(t) sin2 θ

1 +
(||X(E(t))||E(t)−r)2

n−r2 sin2 θ
,
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where θ denotes the angle between X(E(t)) and its projection onto T .

Proof. Choose V ∈ T which minimizes sin2 ∠E(t)(X(E(t)),V) among all vectors in

T . That is, V is a scalar multiple of the projection of X(E(t)) onto T , with respect

to the inner product 〈·, ·〉E(t). Let θ := ∠E(t)(X(E(t)),V), the angle between X(E(t))

and V with respect to 〈·, ·〉E(t).

If sin2 θ < 1, then we know that 〈X,V〉E , 0. By Proposition 6.4, we can write

any such a vector V in the form V = X(E(t)) + W (possibly after some scaling),

where 〈X(E(t)),W〉E(t) = 〈E(t),W〉E(t) = 0.

Thus, from (6.17),

〈X(E(t)),V〉E(t) = ||X(E(t))||2E(t), (6.40)

〈X(E(t)), E(t) − X(E(t))〉E(t) = 〈V, E(t) − X(E(t))〉E(t) (6.41)

= ||X(E(t))||E(t)
(
r − ||X(E(t))||E(t)

)
, (6.42)

and

| cos θ| =

∣∣∣∣∣∣ 〈X(E(t)),V〉E(t)

||X(E(t))||E(t) ||V ||E(t)

∣∣∣∣∣∣ =

∣∣∣∣∣∣ ||X(E(t))||E(t)

||V ||E(t)

∣∣∣∣∣∣ . (6.43)

Let P denote the projection of X(E(t)) onto L⊥E(t) and Q denote the projection

of X(E(t)) onto L, with respect to the inner product 〈·, ·〉E(t). Then, we can write

Q as a linear combination of V and another vector U ∈ L that is orthogonal to V

since T is a subspace of L of codimension 1. In particular, note that

U :=
||V ||2E(t)

〈V, E(t) − X(E(t))〉E(t)
(E(t) − X(E(t))) − V (6.44)
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lies in L and satisfies 〈V,U〉E(t) = 0:

AU =
||V ||2E(t)

〈V, E(t) − X(E(t))〉E(t)
A(E(t) − X(E(t))) −AV = 0,

〈V,U〉E(t) =
||V ||2E(t)

〈V, E(t) − X(E(t))〉E(t)
〈V, E(t) − X(E(t))〉E(t) − 〈V,V〉E(t)

= ||V ||2E(t) − ||V ||
2
E(t) = 0.

Then, the projection of X(E(t)) onto V is

〈X(E(t)),V〉E(t)

||V ||2E(t)

V =
||X(E(t))||2E(t)

||V ||2E(t)

V =
(
cos2

E(t) θ
)

V,

where the first equality is due to (6.40) and the second is due to (6.43). The

projection of X(E(t)) onto U is

〈X(E(t)),U〉E(t)

〈U,U〉E(t)
U.

Therefore, the projection of X(E(t)) onto L is

Q =
||X(E(t))||2E(t)

||V ||2E(t)

V +
〈X,U〉E(t)

〈U,U〉E(t)
U,

whose squared norm is

||Q||2E(t) = ||X(E(t))||2E(t) cos2 θ +
〈X(E(t)),U〉2E(t)

〈U,U〉E(t)
.
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Using the expression for U given in (6.44), the equalities (6.40)-(6.43) about

the tangent vector V , and ||E(t)||E(t) =
√

n, we note that

〈X(E(t)),U〉E(t) =
||V ||2E(t)

〈V, E(t) − X(E(t))〉E(t)
〈X(E(t)), E(t) − X(E(t))〉E(t)

− 〈X(E(t)),V〉E(t)

= ||V ||2E(t) − ||X(E(t))||2E(t) = ||V ||2 sin2 θ,

and that

〈U,U〉E(t) =

 ||V ||2E(t)

〈V, E(t) − X(E(t))〉E(t)

2

||E(t) − X(E(t))||2

− 2
||V ||2E(t)

〈V, E(t) − X(E(t))〉E(t)
〈V, E(t) − X(E(t))〉E(t) + ||V ||2E(t)

=

 ||V ||2E(t)

〈V, E(t) − X(E(t))〉E(t)

2

||E(t) − X(E(t))||2E(t) − ||V ||
2
E(t)

= ||V ||4E(t)

 ||E(t) − X(E(t))||2E(t)

〈V, E(t) − X(E(t))〉2E(t)

−
1

||V ||2E(t)


=

||V ||4E(t)

||X(E(t))||2E(t)

 ||E(t) − X(E(t))||2E(t)

(r − ||X(E(t))||E(t))2 − cos2 θ

 .
These imply that

〈X(E(t)),U〉2E(t)

〈U,U〉E(t)
=

||X(E(t))||2E(t) sin4 θ

||E(t)−X(E(t))||2E(t)

(r−||X(E(t))||E(t))2 − cos2 θ
.

Hence,

||Q||2E(t) = ||X(E(t))||2E(t)

cos2 θ +
sin4 θ

||E(t)−X(E(t))||2E(t)

(r−||X(E(t))||E(t))2 − cos2 θ

 .
So, the squared length of the projection of X(E(t)) onto L⊥E(t) is

||P||2E(t) = ||X(E(t))||2E(t) − ||Q||
2
E(t)

= ||X(E(t))||2E(t)

1 − cos2 θ −
sin4 θ

||E(t)−X(E(t))||2E(t)

(r−||X(E(t))||E(t))2 − cos2 θ


= ||X(E(t))||2E(t) sin2 θ

1 − sin2
E(t) θ

||E(t)−X(E(t))||2E(t)

(r−||X(E(t))||E(t))2 − cos2 θ

 .
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Since ||E(t) − X(E(t))||2E(t) = n − 2r||X(E(t))||E(t) + ||X(E(t))||2E(t), then

||P||2E(t) =
||X(E(t))||2E(t) sin2 θ

1 +
(r−||X(E(t))||E(t))2

n−r2 sin2 θ
(6.45)

when sin2 θ < 1.

In the case that sin2 θ = 1, then 〈X(E(t)),V〉E(t) = 0 for all V ∈ T . That is, X(E(t))

is orthogonal to all vectors in T . Since the T together with E(t) − X(E(t)) spans

L, then it must be the case that the projection of X(E(t)) onto L is a multiple of

E(t) − X(E(t)), namely:

Q =
〈X(E(t)), E(t) − X(E(t))〉
||E(t) − X(E(t))||2E(t)

(E(t) − X(E(t))).

Hence,

||Q||2E(t) =
〈X(E(t)), E(t) − X(E(t))〉2

||E(t) − X(E(t))||2E(t)

.

and

||P||2E(t) = ||X(E(t))||2E(t) − ||Q||
2
E(t)

= ||X(E(t))||2E(t)

1 − (r − ||X(E(t))||E(t))2

||E(t) − X(E(t))||2E(t)


=

||X(E(t))||2E(t)

1 +

(
||E(t)−X(E(t))||2E(t)

(r−||X(E(t))||E(t))2 − 1
)−1

=
||X(E(t))||2E(t)

1 +
(r−||X(E(t))||E(t))2

n−r2

.

Thus, (6.45) in fact also holds for when sin2 θ = 1, proving our claim. �

When we take a step of size t = r
2||E−1X|| , we obtain an explicit bound on the

angle between X(E(t)) and vectors in T .
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Lemma 6.14. Let β = r
√

1+r
2 . Let E ∈ Swath(r) and let X be the optimal solution for

(QPE,r). Choose t = r
2||E−1X|| and let E(t) = 1

1+t (E + tX), with X(E(t)) the optimal solution

for (QPE(t),r).

Then, for any V ∈ T ,

cos2(∠E(t)(X(E(t)),V)) ≤
β2

r2 .

Proof. In this lemma, angles are with respect to the inner product 〈·, ·〉E(t).

Note that by Lemma 6.12, with t = r
2||E−1X|| , we know that E(t) ∈ Swath(β) ⊆

Swath(r) for β = r
√

1+r
2 . Thus, we can talk about X(E(t)), the optimal solution to

(QPE(t),r) and also of the optimal solution to (QPE(t),β) which we will call X′.

Hence, restricting ourselves to tangent vectors that also lie in L, the set of

tangent vectors to KE(t),r at X(E(t)) is the same as the set of tangent vectors to

KE(t),β at X′ (see Section 6.2.5), namely:

T = {V ∈ Sn | AV = 0, 〈C,V〉 = 0}.

Consider an arbitrary vector V from T . Since X′ , 0 is a point in the bound-

ary of KE(t),β and V is tangent to the cone KE(t),β at X′, then the line {X′ + tV | t ∈ R}

does not intersect the interior of KE(t),β, hence neither V or −V is contained in the

interior, and thus θ′ := ∠E(t)(E(t),V), the angle between V and E(t), satisfies

cos2(θ′) ≤
β2

n
,

because KE(t),β consists of the vectors whose angle with E(t) does not exceed

arccos(β/
√

n).

Recall from (6.2.5) that

〈E(t), X(E(t))〉E(t) 〈E(t),V〉E(t) = r2〈X(E(t)),V〉E(t).
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Furthermore, since 〈E(t), X(E(t))〉E(t) = r||X(E(t))||E(t), then

〈X(E(t)),V〉E(t)

||X(E(t))||E(t)
=
〈E(t),V〉E(t)

r
.

Let θ := ∠E(t)(X(E(t)),V), the angle between X(E(t)) and V . Then, θ satisfies

cos2(θ) =
〈X(E(t)),V〉2E(t)

||X(E(t))||2E(t) ||V ||
2
E(t)

=
〈E(t),V〉2E(t)

r2||V ||2E(t)

=
||E(t)||2E(t)

r2 cos2(θ′) ≤
β2

r2 ,

where the inequality is due to cos2(θ′) ≤ β2

n and ||E(t)||E(t) =
√

n. �

Combining the results of the above two lemmas, we obtain the following

easy corollary.

Corollary 6.15. Suppose that E ∈ Swath(r), X is optimal for (QPE,r), and (S , y) is

optimal for (QPE,r)∗. As usual, we let E(t) = 1
1+t (E + tX) and X(E(t)) the optimal

solution for (QPE(t),r). Then, taking t = r
2||E−1X|| ,

||Proj
L
⊥E(t) X(E(t))||2E(t) ≥

||X(E(t))||2E(t)(1 − (β/r)2)

1 +
(||X(E(t))||E(t)−r)2

n−r2 (1 − (β/r)2)
,

where β = r
√

1+r
2 .

Proof. The choice t = r
2||E−1X|| guarantees that E(t) ∈ Swath(β). This means that

(QPE(t),β) has an optimal solution. Moreover, the vector V is also tangent to the

cone KE(t),β at the optimal solution of (QPE(t),β) (see Section 6.2.5), and we can

apply Lemma 6.14.

Lemma 6.14 implies that cos2 θ ≤ β2

r2 . So, sin2 θ ≥ 1 − β2

r2 , and

||P||2E(t) ≥
||X(E(t))||2E(t)(1 −

β2

r2 )

1 +
(r−||X(E(t))||E(t))2

n−r2 (1 − β2

r2 )
,

proving our claim. �
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We are now ready to prove Proposition 6.9, which is reproduced below

Proposition (Proposition 6.9). Suppose that E ∈ Swath(r), X is optimal for (QPE,r),

and (S , y) is optimal for (QPE,r)∗. Let E(t) = 1
1+t (E + tX). Assume that n ≥ 4.

Choose t = r
2||E−1X|| and let X(E(t)) denote the optimal solution for (QPE(t),r). If

||E−1X|| >
√

n and ||E(t)−1X(E(t))|| >
√

n, then

〈C, E(t) − X(E(t))〉 ≤

1 −
r
(
1 −

√
1+r

2

)
4
√

3n

 〈C, E − X〉.

Proof. Choose t = r
2||E−1X|| . From Proposition 6.8 we have that

〈C, E(t) − X(E(t))〉 ≤
1

1 + t
〈C, E − X〉 − R ||Proj

L
⊥E(t) (X(E(t)))||E(t),

where R := ||E(t)S ||
n

(
r
√

n − β2 − β
√

n − r2
)

and β := r
√

1+r
2 .

Applying the lower bound for ||Proj
L
⊥E(t) X(E(t))||E(t) from Lemma 6.13 for β =

r
√

1+r
2 ,

〈C, E(t) − X(E(t))〉 ≤
1

1 + t
〈C, E − X〉 − R

 ||E(t)−1X(E(t))||2(1 − (β/r)2)

1 +
(||E(t)−1X(E(t))||−r)2

n−r2 (1 − (β/r)2)


1/2

=
1

1 + t
〈C, E − X〉 − ||E(t)S || C1C2,

where

C1 :=
1
n

(
r
√

n − β2 − β
√

n − r2
)

and

C2 :=

 ||X(E(t))||2E(t)(1 − (β/r)2)

1 +
(||X(E(t))||E(t)−r)2

n−r2 (1 − (β/r)2)


1/2

.

Since β ≤ r < 1, then

C1 ≥
1
n

(r − β)
√

n − r2 ≥

√
n − 1
n

(r − β)

=

√
n − 1
n

r

1 −
√

1 + r
2

 .
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Also, since 0 < r < 1 and using β = r
√

1+r
2 ,

C2 ≥

 (n − 1)||X(E(t))||2E(t)(1 − (β/r)2)

(n − 1) + (||X(E(t))||E(t) − r)2(1 − (β/r)2)

1/2

≥
√

n − 1

 ||X(E(t))||2E(t)(1 − (β/r)2)

n + ||X(E(t))||2E(t)(1 − (β/r)2)

1/2

=
√

n − 1

 ||X(E(t))||2E(t)
1+r

2

n + ||X(E(t))||2E(t)
1+r

2

1/2

.

so that

C1C2 ≥
n − 1

n
r

1 −
√

1 + r
2

  ||X(E(t))||2E(t)
1+r

2

n + ||X(E(t))||2E(t)
1+r

2

1/2

.

We assumed that ||E(t)−1X(E(t))|| = ||X(E(t))||E(t) >
√

n, so

C1C2 ≥
n − 1

n
r

1 −
√

1 + r
2

  n1+r
2

n + n1+r
2

1/2

=
n − 1

n
r

1 −
√

1 + r
2

  1+r
2

1 + 1+r
2

1/2

.

Recall that

(1 + t)2||E(t)S ||2 =
〈C, E − X〉2

n − r2 + 2t〈ES , XS 〉 + t2〈S X, XS 〉,

where (from (6.29) and (6.30)),

〈ES , XS 〉 = −
〈C, E − X〉2

(n − r2)2 r||E−1X||
(
1 −

r〈E−1X, (E−1X)2〉

||E−1X||3

)
,

〈S X, XS 〉 =
〈C, E − X〉2

(n − r2)2 ||E
−1X||2

(
1 −

2r〈E−1X, (E−1X)2〉

||E−1X||3
+

r2〈(E−1X)2, (E−1X)2〉

||E−1X||4

)
.

Using t = r
2||E−1X|| , then (1 + t)2||E(t)S ||2 = 〈C,E−X〉

(n−r2)2 κ, where

κ := (n−r2)−r2
(
1 −

r〈E−1X, (E−1X)2〉

||E−1X||3

)
+

r2

4

(
1 −

2r〈E−1X, (E−1X)2〉

||E−1X||3
+

r2〈(E−1X)2, (E−1X)2〉

||E−1X||4

)
.

Simplifying, we see that

κ ≥ (n − r2) − r2
(
1 −

r〈E−1X, (E−1X)2〉

2||E−1X||3

)
≥ n − 3r2 ≥ n − 3.
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Thus,

||E(t)S || ≥
〈C, E − X〉

(n − r2)(1 + t)

√
n − 3 ≥

√
n − 3
n
〈C, E − X〉

1 + t
.

Therefore,

C1C2||E(t)S || ≥
〈C, E − X〉

1 + t
(n − 1)

√
n − 3

n2 r

1 −
√

1 + r
2

  1+r
2

1 + 1+r
2

1/2

and

〈C, E(t) − X(E(t))〉 ≤
〈C, E − X〉

1 + t

1 − r(n − 1)
√

n − 3
n2

1 −
√

1 + r
2

  1+r
2

1 + 1+r
2

1/2
≤
〈C, E − X〉

1 + t

1 −
r
(
1 −

√
1+r

2

)
4
√

3n


≤ 〈C, E − X〉

1 −
r
(
1 −

√
1+r

2

)
4
√

3n

 ,
where the second to the last inequality is due to the following bounds: for all

n ≥ 4,
√

n − 3 is greater than
√

n/4 and n−1
n2 ≥

1
2n . So,

(n − 1)
√

n − 3
n2 ≥

√
n
4

1
2n

=
1

4
√

n
.

Since r ≥ 0, then

1+r
2

1 + 1+r
2

=
1

1 + 2
1+r

≥
1
3
.

�

6.10 Proof of Theorem 6.5

Proof. We do this by induction on k. Starting at E(0), we know from Proposition

6.6 that with t(0) = r
2||(E(0))−1X(0) ||

, then E(1) ∈ Swath(r).
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Assuming that that E(k) ∈ Swath(r), we consider four cases:

1. If ||(E(k))−1X(k)|| ≤
√

n and ||(E(k+))−1X(k+)|| ≤
√

n, then we can apply Proposi-

tion 6.7 with η = 1
2 to conclude that

〈C, E(k+1) − X(k+1)〉 ≤

(
1 −

r
4
√

n

)
〈C, E(k) − X(k)〉

≤

1 −
r
(
1 −

√
1+r

2

)
4
√

3n

 〈C, E(k) − X(k)〉,

since for all r ∈ (0, 1), r
4
√

n ≥
r
(
1−
√

1+r
2

)
4
√

3n
.

2. If ||(E(k))−1X(k)|| ≤
√

n and ||(E(k+))−1X(k+)|| >
√

n, then

〈C, E(k+1) − X(k+1)〉 =

(
1 −

t
1 + t

)
〈C, E(k) − X(k)〉 − 〈C, X(k+1) − X(k)〉

≤

(
1 −

r
4
√

n

)
〈C, E(k) − X(k)〉 − 〈C, X(k+1) − X(k)〉

≤

1 − r
4
√

n
−

r
(
1 −

√
1+r

2

)
4
√

3n

 〈C, E(k) − X(k)〉

≤

1 −
r
(
1 −

√
1+r

2

)
4
√

3n

 〈C, E(k) − X(k)〉,

where the first and second inequalities are due to Proposition 6.7 and

Proposition 6.9.

3. On the other hand, if ||(E(k))−1X(k)|| >
√

n but ||(E(k))−1X(k+1)|| ≤
√

n, then

Proposition 6.7 again implies that

〈C, E(k+2) − X(k+2)〉 ≤

(
1 −

r
4
√

n

)
〈C, E(k+1) − X(k+1)〉.

4. The remaining case is when ||(E(k))−1X(k)|| >
√

n and ||(E(k+1))−1X(k+1)|| >
√

n.

In this case, Proposition 6.9 implies that

〈C, E(k+1) − X(k+1)〉 ≤

1 −
r
(
1 −

√
1+r

2

)
4
√

3n

 〈C, E(k) − X(k)〉.
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Recall that r
4 ≥

r
(
1−
√

1+r
2

)
4
√

3n
for all r ∈ (0, 1). So, taking the worse case that

the duality gap is reduced significantly only every other iteration, by the larger

factor 1 −
r
(
1−
√

1+r
2

)
4
√

3n
,

〈C, E(k+2) − X(k+2)〉 ≤

1 −
r
(
1 −

√
1+r

2

)
4
√

3n

 〈c, E(k) − X(k)〉,

which means that after k̄ iterations,

〈C, E(k̄) − X(k̄)〉 ≤ γ0

1 −
r
(
1 −

√
1+r

2

)
4
√

3n


k̄/2

,

where γ0 := 〈c, E(0) − X(0)〉.

In order to achieve a final duality gap of ε, for some ε > 0, it is then sufficient

to satisfy

γ0

1 −
r
(
1 −

√
1+r

2

)
4
√

3n


k̄/2

≤ ε,

or equivalently

log γ0 +
k̄
2

log

1 −
r
(
1 −

√
1+r

2

)
4
√

3n

 ≤ log ε.

Since log(1 + δ) ≤ δ for all δ > −1, then we want k̄ such that

log γ0 +
k̄
2

−
r
(
1 −

√
1+r

2

)
4
√

3n

 ≤ log ε,

or equivalently,

k̄ ≥
8
√

3n

r
(
1 −

√
1+r

2

) log(γ0/ε).

175



Thus, k̄ = O
( √

n
r(1−

√
(1+r)/2)

log(γ0/ε)
)
.

Note that, treating r as a fixed parameter, the iteration complexity is

O(
√

n log(γ0/ε)). As a function of r, however, we see that the choice of r which

give the best bound is when r is bounded away from both 0 and 1.

At the end of Section 5.5, we showed that the significant duality gap reduc-

tion for the linear programming case is in fact guaranteed to take place more

than just at every other iterations. The same is also true in the semidefinite

programming case. That is, after k̄ iterations,

〈C, E(k̄) − X(k̄)〉 ≤

1 −
r
(
1 −

√
1+r

2

)
4
√

3n


k̄−1

〈c, E(0) − X(0)〉.

This fact can be shown using the same arguments as those for the linear pro-

gramming case, in Section 5.5.

6.11 Future Directions

In this thesis, we have presented an algorithm for linear programming, whose

iteration complexity matches the best bounds among interior-point algorithms

in the literature. In this chapter, we extend our results to semidefinite program-

ming.

We outline several remaining questions which we would like to investigate

in the future.

1. Varying the parameter r.
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In the present algorithm, the cone-width parameter r takes a value in the

interval (0, 1) and this value is chosen and fixed at the start of the algo-

rithm. It will be interesting to study whether the algorithm can be im-

proved by letting r vary. Furthermore, we might consider larger values of

r, allowing the cones Ke,r to be smaller.

2. Larger step sizes.

We prove the iteration complexity of O(
√

n log(γ0/ε)) for reducing the du-

ality gap from γ0 to ε, using the step size of t(k) = r
2||x(k)./e(k) ||

. In practice,

however, taking longer step sizes might improve the overall performance

of the algorithm, even if we might not be able to prove the same iteration-

complexity bound. We are interested in exploring whether taking a longer

step (for instance, a fixed fraction towards the boundary of the linear pro-

gramming feasible region) would improve the algorithm in practice.

3. Hyperbolic programming relaxation of large-scale semidefinite program-

ming problems.

In [28], the algorithm presented in this thesis is extended to general hy-

perbolic programming problems. For a hyperbolic programming problem

whose hyperbolicity cone arises from a degree-d polynomial, the itera-

tion complexity of the algorithm is O(
√

d log(γ0/ε)) for reducing the dual-

ity gap from γ0 to ε. One interesting question is to explore whether for

large-scale semidefinite programming problems (that is, semidefinite pro-

gramming problems on Sn
+ where n is large) that arise from specific appli-

cations, there is a low-degree hyperbolic programming relaxation whose

optimal solution provides a good approximation to the optimal solution

of the original problem. If that is the case, then applying this algorithm (or

another interior-point algorithm with similar complexity) could help solve
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large-scale semidefinite programming problems, for which interior-point

algorithms are not computationally good in practice.
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