
NUMERICAL METHODS FOR SIMULATING

MULTIPHASE FLOWS

WITH A FOCUS ON ATOMIZATION

A Dissertation

Presented to the Faculty of the Graduate School

of Cornell University

in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

by

Mark Francis Owkes

August 2014

c© 2014 Mark Francis Owkes

ALL RIGHTS RESERVED

NUMERICAL METHODS FOR SIMULATING MULTIPHASE FLOWS

WITH A FOCUS ON ATOMIZATION

Mark Francis Owkes, Ph.D.

Cornell University 2014

In this dissertation, numerical methods useful for the simulation of gas-liquid mul-

tiphase flows are presented. Multiphase flows are commonly found throughout

nature, human life, and engineering devices. As a result, accurate and predictive

simulations of such flows will improve our understanding of these complex sys-

tems and aid in the development of more efficient engineering devices that exploit

multiphase dynamics.

The majority of multiphase flows dynamics occur at the gas-liquid interface.

For example, many quantities (e.g., density and species concentrations) are dis-

continuous at the interface and surface tension is a singular force that acts at

the interface. Therefore, accurately tracking the location of the interface, sharply

handling discontinuities, and computing accurate interface curvature are critical

components for predictive simulations of multiphase flows.

In this work, two novel interface tracking strategies are proposed and tested.

The methods extend the capabilities of both level set and volume-of-fluid (VOF)

methods, which are commonly used interface capturing methodologies. A dis-

cretely consistent methodology is presented to transport VOF and additional quan-

tities that may be discontinuous at the phase interface. By using the same trans-

port scheme for the phase interface and the quantities, discrete conservation and

second-order solution of the conservation laws is achieved. An improvement is

proposed to the height function method, which is often used to compute the cur-

vature in VOF simulations. Additionally, the height function method is extended

to compute the curvature in the context of a conservative level set.

These methods are used to simulate atomization, an important process in the

combustion of liquid fuels. Namely, a liquid jet in cross-flow, an air-blast atomizer,

and an electrically charged spray, are simulated and the results are compared to

available experimental data. Qualitative comparisons of the spray appearance as

well as quantitative measures of the spray penetration, drop size distributions, and

droplet velocity distributions show that the simulations are capable of predicting

the spray characteristics and are a viable tool in the engineering design process.

Furthermore, the simulations provide a wealth of data that is useful for improving

our understanding of multiphase flow systems.

BIOGRAPHICAL SKETCH

Mark Owkes grew up in Munnsville, a small town in central New York. Mark

went to Clarkson University in Potsdam, NY to study Mechanical Engineering at

the Bachelor level. While there he participated in an Honor’s Program research

project looking at the feasibility of contra-rotating vertical axis wind turbine under

the direction of Dr. Kenneth Visser. After earning his Bachelor of Science from

Clarkson in 2008, Mark headed west and joined the Department of Mechanical

Engineering at the University of Colorado at Boulder. While there he worked under

Dr. Olivier Desjardins on developing numerical methods to simulate multiphase

flows. Mark earned his Master of Science degree from CU Boulder in 2011. At that

point, he followed his advisor back east to Cornell University in Ithaca, NY to finish

his doctoral program. In 2014, Mark will earn his Ph.D. from the Sibley School

of Mechanical and Aerospace Engineering. Mark plans to continue his academic

career as an assistant professor at Montana State University in Bozeman, MT.

Mark’s research interests include the development of numerical methods for

capturing gas-liquid interfaces in multiphase flow simulations. He is interested in

simulations of primary atomization to gain insight into the physical phenomena

important in the break-up of a liquid jet into droplets. Notably, he has developed

both a level set and a volume-of-fluid interface capturing scheme that improve the

accuracy and conservation properties of such methods.

iii

This dissertation is dedicated to Denali and all other young scientists.

May your curiosity never wane.

iv

ACKNOWLEDGEMENTS

This dissertation would not have been possible without the support, commitment,

and effort of a number of important people in my life. I would like to thank

everyone who has contributed in so many ways. In particular I would like to thank

my committee members Dr. Olivier Desjardins, Dr. Philip Liu, and Dr. Jane Wang.

Additionally this work would not be possible without the financial support of the

National Science Foundation CBET 1034506, Office of Naval Research SBIR Ph.1

N68335-10-C-0263, and General Electric Company.

I have had the opportunity to be the first Ph.D. student of Dr. Olivier Des-

jardins. Even though Olivier was an assistant professor working toward tenure

while I was under his tutelage, he never pressured me to work harder just for the

sake of producing results. Additionally, Olivier continually strives to develop the

best numerical methods to study multiphase flows. This created an atmosphere

that pushed me to the state-of-the-art of numerical methods, allowed me to de-

velop as an independent researcher, and investigate tangent ideas in my research.

I have really enjoyed working under Olivier and thank him for all his help and

guidance over the past six years.

My Ph.D. work was made significantly easier due to the support of a great

research group. I want to thank Jeremy for always being there when I needed

someone to chat with and work though a problem. Jesse for bringing so much en-

thusiasm to the group. Bret for pushing all of us to do our best and to get involved

with the graduate program. Peter for so many fruitful discussions about tetrahe-

dra. Sunil, John, Houssem, Stephanie, Sheng, and Neola, thanks for bringing new

ideas and interest into the research group.

During my Ph.D. I got married and had a daughter. This has been such a

wonderful part of my life. I couldn’t ask for anything more from my wife Kathleen.

v

She has been so supportive and allowed me to do the work that had to get done

while always encouraging us to enjoy the outdoors and other parts of life. The

last year, when we became parents has been particularly amazing. Thank you

Kathleen for being at my side and I look forward to the next step of our lives.

I would like to thank my family for their support. Even though going to

graduate school took me across the country, my parents were always encouraging

and supportive that I was pursuing higher education. Luckily for them, my adviser

brought me to Cornell and close to my family and we have had a lot of fun during

the past two years.

Throughout my graduate work I have had a terrific network of friends. When

I moved to Colorado to go to graduate school I had never played Catan or gone

backpacking. Now I can say I have done a lot of both of those things and many

others. And it is all because I had a group of friends that wanted to get up and

go and invited me along for the ride. I would particularly like to thank Tim and

Kathleen who invited me to play volleyball when I first moved to Colorado and

then became very close friends. I also want to thank Russel for being interested

and excited about everything, Rebecca for enjoying life, Scott for diving for every

volleyball, Shanon for amazing dinners, and Lauren and Kirk for being the best

dog sitters. I also want to thank Brad, Paul, and Pearl for many great board

games. To all of you and to the countless others that are my friends: “Thank

you”.

vi

TABLE OF CONTENTS

Biographical Sketch . iii
Dedication . iv
Acknowledgements . v
Table of Contents . vii
List of Tables . x
List of Figures . xi

1 Introduction 1
1.1 Motivation . 1
1.2 Overview of previous experimental work 3
1.3 Overview of previous numerical work 5
1.4 Contributions . 9
1.5 Organization of this document . 10

2 Discontinuous Galerkin Conservative Level 12
2.1 Introduction . 12
2.2 Mathematical formulation . 16

2.2.1 Classical level set . 16
2.2.2 Conservative level set . 17

2.3 Discontinuous Galerkin implementation 20
2.3.1 DG formulation . 20
2.3.2 DG level set transport . 23
2.3.3 DG level set reinitialization 25
2.3.4 Numerical stability . 29
2.3.5 Minimum/maximum preserving limiter 30

2.4 Level set time advancement . 34
2.5 Interface normal and curvature . 36

2.5.1 Spurious velocities . 42
2.6 Validation . 43

2.6.1 Zalesak’s disk . 43
2.6.2 Two-dimensional deformation 46
2.6.3 Standing wave . 51
2.6.4 Kelvin-Helmholtz instability 54

2.7 Conclusions . 62

3 Conservative Second-Order Geometric Volume-of-Fluid Method 64
3.1 Introduction . 64
3.2 Mathematical formulation . 69

3.2.1 Problem setup and notations 70
3.2.2 Flux velocity . 75
3.2.3 Liquid volume fraction transport 75

3.3 Computational geometry toolbox 76

vii

3.3.1 Interface reconstruction . 76
3.3.2 Discrete representation of the flux volume 78
3.3.3 Construction of conservative fluxes 89
3.3.4 Parallelization . 94
3.3.5 Extension to unstructured meshes 95
3.3.6 Implementation . 96

3.4 Verification tests . 99
3.4.1 Zalesak’s disk . 99
3.4.2 Two-dimensional deformation 103
3.4.3 Three-dimensional deformation 106
3.4.4 Droplet in homogeneous isotropic turbulence 109

3.5 Conclusions . 111
3.6 Additional algorithms . 111

4 Transport of Quantities With Discontinuities 114
4.1 Mathematical formulation . 114
4.2 Numerical methods . 115

4.2.1 Convective fluxes . 116
4.2.2 Additional fluxes . 120
4.2.3 Source term . 121
4.2.4 Implicit formulation . 122

4.3 Verification tests . 122
4.3.1 Discontinuous scalar transport test 122
4.3.2 Discontinuous scalar diffusion test 124

4.4 Conclusions . 126
4.A Analytic solution to diffusion in a cylinder 127

5 Height Function Interface Curvature Calculation 130
5.1 Introduction . 130
5.2 Methodology . 135
5.3 Verification tests . 139

5.3.1 Circle test case . 139
5.3.2 Sphere test case . 148

5.4 Validation tests . 150
5.4.1 Solution of the Navier-Stokes equations 151
5.4.2 Spurious-currents test case 152
5.4.3 Standing-wave test case . 155

5.5 Conclusions . 157

6 Simulations of primary atomization 158
6.1 Liquid jet in cross-flow . 159

6.1.1 Introduction . 159
6.1.2 Simulation setup . 159
6.1.3 Simulation results . 162

viii

6.2 Air-blast n-dodecane atomization 170
6.2.1 Geometry and Numerical setup 170
6.2.2 Shear instability results . 172
6.2.3 Drop characteristics . 174

6.3 Electrohydrodynamic assisted atomization 176
6.3.1 Mathematical Formulation 178
6.3.2 Numerical methods . 181
6.3.3 Simulation results . 183

6.4 Conclusions . 189

7 Conclusions 190
7.1 Future work . 192

Bibliography 195

ix

LIST OF TABLES

1.1 Percentage of energy supply by fuel type in United States [1]. . . . 2

2.1 Capillary numbers for different Laplace numbers in spurious veloc-
ities test . 43

2.2 Effect of mesh on capillary number in spurious velocities test . . . 43
2.3 Non-dimensional numbers used to setup the four cases used in the

study of the Kelvin-Helmholtz instability. 60

3.1 Error norms for the transport of Zalesak’s disk simulations. 103
3.2 Error norms for the two-dimensional deformation test. 106
3.3 Comparison of proposed scheme and EMFPA of López et al. [2] . . 106
3.4 Comparison of proposed scheme and Hernández et al. [3] 108
3.5 Error norms for the droplet in homogeneous isotropic turbulence

test case. 111

5.1 Capillary number and time per time-step for various Laplace numbers.154
5.2 Capillary number for Laplace number of 12,000 on various meshes

using the combined method. 154

6.1 Non-dimensional properties for liquid jet in cross-flow 162
6.2 Properties of n-dodecane and nitrogen. 171
6.3 Flow parameters for the test case. 172
6.4 Non-dimensional numbers used in the charged kerosene jet simula-

tions. 184
6.5 Physical parameters in charged kerosene jet simulations. 185

x

LIST OF FIGURES

2.1 Comparison of conservative and classical level set with liquid vol-
ume fraction . 18

2.2 Stencils used to compute curvature 38
2.3 Convergence of interface normal and curvature 41
2.4 Zalesak’s disk on various meshes 44
2.5 Zalesak’s disk using different DG orders 45
2.6 Zalesak’s disk with different amounts of reinitialization 45
2.7 Zalesak’s disk after 50 rotations . 46
2.8 Time series of deformation test case 47
2.9 Deformation test case with different amounts of reinitialization . . 47
2.10 Deformation test case on various meshes 48
2.11 Deformation test case with different DG orders 49
2.12 Deformation test case, mass versus time 50
2.13 Standing wave with unity density ratio 53
2.14 Standing wave with density ratio of 1000 53
2.15 Geometry used for Kelvin-Helmholtz test case 55
2.16 Growth-rates for Kelvin-Helmholtz 61
2.17 Convergence of Kelvin-Helmholtz test case with mesh refinement . 62

3.1 Methods used to compute geometric fluxes 67
3.2 Example geometry used to construct flux volumes 71
3.3 Flux volume associated with cell face 74
3.4 Volume-of-Fluid (VOF) representation of interface 77
3.5 Picewise linear interface calculation (PLIC) reconstruction of inter-

face . 77
3.6 Partition of two-dimensional fluxes into simplices 79
3.7 Partition of three-dimensional fluxes into simplices 80
3.8 Example of signed simplices representing fluxes 83
3.9 Ordering of vertices used to construct simplices 85
3.10 Shared faces of flux volumes between neighboring cells 86
3.11 Steps used to calculate the liquid volume fraction within a simplex

that crosses multiple planes. 88
3.13 Correction for two-dimensional solenoidal flux 94
3.14 Correction for three-dimensional solenoidal flux 94
3.15 Simplex cut by plane . 99
3.16 Zalesak’s disk on various meshes 102
3.17 Convergence of Eshape for Zalesak’s disk 103
3.18 Two-dimensional deformation test on various meshes 104
3.19 Shape error for the two-dimensional deformation test 105
3.20 Three-dimensional deformation test on various meshes 107
3.21 Eshape for the three-dimensional deformation test 108
3.22 Droplet in homogeneous isotropic turbulence on various meshes . . 110

xi

3.23 Eshape for droplet in homogeneous isotropic turbulence 110

4.1 Initial electric charge density used in discontinuous scalar transport
test. 124

4.2 Transported electric charge density within liquid phase for discon-
tinuous scalar transport test case 124

4.3 L2 error for discontinuous scalar transport test case 125
4.4 Solution for diffusion test case with time 126
4.5 L2 error for diffusion test case . 126

5.1 Example of heights used to compute interface curvature. 133
5.2 Example of mesh-decoupled columns and heights. 135
5.3 Partitioning of a two-dimensional column 137
5.4 Partitioning of a three-dimensional column 137
5.5 The nine columns used to compute curvature in three-dimensions. . 138
5.6 Convergence of curvature error for circle test case. 141
5.7 Convergence of curvature errors for circle test case with analytic

heights. 142
5.8 Dependency of curvature error on angular position. 143
5.9 Convergence of curvature error for circle test case using mesh-

decoupled and standard methods. 144
5.10 Convergence of curvature error for circle test case with combined

method and method of Popinet. 146
5.11 Example of a droplet where heights and widths are not well defined. 147
5.12 Example of how curvature within the shaded cell is computed using

the proposed scheme. 147
5.13 Percentage of cells without well-defined heights using the standard

method. 147
5.14 Convergence of curvature errors for sphere test case. 149
5.15 Percentage of cells in sphere test case without well-defined heights. 149
5.16 Convergence of curvature error for sphere test case with smaller

stencils. 150
5.17 Curvature error on surface of sphere using different methods. . . . 150
5.18 Convergence of capillary number for spurious currents test case. . . 154
5.19 Time evolution of capillary number for spurious currents test case. 154
5.20 Standing wave test case with ρl/ρg = 1. 156
5.21 Standing wave test case with ρl/ρg = 1000 156
5.22 Convergence of amplitude error for standing wave test case. 156

6.1 Injector geometries used in liquid jet in cross-flow simulations. Liq-
uid flows from bottom to top. 160

6.2 Velocity field at the exit plane (left) and on a cut-plane through
(right) the round-edged and sharp-edged injectors. 161

xii

6.3 Rendering of liquid jet in cross-flow produced by the sharp-edged
injector . 163

6.4 Velocity field within liquid jet in cross-flow produced by the sharp-
edged injector . 164

6.5 Snapshot of the gas-liquid interface for the liquid jet in cross-flow
from the two injector geometries. 165

6.6 Liquid jet in cross-flow penetration. Red line shows experimental
correlation for outermost edge from Gopala [4]. 166

6.7 AMD . 168
6.8 SMD . 168
6.9 Vertical velocity . 168
6.10 Spanwise velocity . 169
6.11 Streamwise velocity . 169
6.12 Scatter plot of eccentricity of droplets versus droplet size. 169
6.13 Geometry of air-blast atomizer. 170
6.14 Air-blast injector dimensions. 171
6.15 Comparison of jet from (a) experiment and (b) simulation. 173
6.16 Example of nozzle wetting and the effect on break-up process. . . . 173
6.17 Measurement of shear instability using photos at two different times

during the experiment (a,b) and a rendering of simulation data (c). 175
6.18 Probability density function of (a) drop size and (b) drop velocity

using experimental and simulation results. 176
6.19 EHD enhanced atomization . 177
6.20 Geometry for simulations of EHD enhanced kerosene atomization. . 184
6.21 Snapshots of the uncharged kerosene jet (top) and the EHD en-

hanced atomizing jet (bottom) computed using the small compu-
tational domain. 185

6.22 Snapshots of EHD enhanced kerosene atomization simulation. . . . 187
6.23 Snapshot of the charged EHD enhanced jet computed on the large

domain. 188
6.24 Electric charge density for EHD enhanced kerosene atomization

simulation. 188

xiii

CHAPTER 1

INTRODUCTION

1.1 Motivation

In a recent report, the International Panel on Climate Change (IPCC) states [1]:

“Warming of the climate system is unequivocal, and since the 1950s,

many of the observed changes are unprecedented over decades to mil-

lennia. The atmosphere and ocean have warmed, the amounts of snow

and ice have diminished, sea level has risen, and the concentrations of

greenhouse gases have increased.”

This unprecedented warming and these changes to Earth’s climate have clearly

been linked with human influences through greenhouse gas emissions [1]. There-

fore, society needs to act quickly to curb greenhouse gas emissions or face the

consequences of global warming.

Projections show that energy use in the United States will increase from 96 quad

Btu to 108 quad Btu in 2040 [5]. The increase is expected in all end-use sectors

(industrial, commercial, residential, and transportation) and will be fulfilled using

a variety of energy sources. Table 1.1 shows the distribution of energy use by fuel

in 2011 and projections in 2040 [5]. The largest fuel type for the foreseeable future

is petroleum. Petroleum is a liquid fuel that is converted into mechanical energy

through chemical conversion in a combustion chamber. In addition to petroleum,

biofuels are also liquid fuels utilized in similar combustion systems. Therefore,

improving the efficiency of liquid fuel combustion systems is of utmost importance

1

if society is going to reduce greenhouse gas emissions while meeting our growing

demand for energy [1].

Table 1.1: Percentage of energy supply by fuel type in United States [1].

2011 2040
Natural gas 26 26
Renewables 8 11
Nuclear 8 9
Coal 20 19
Petroleum 36 32
Biofuels 1 2

The conversion of liquid fuels to mechanical or thermal energy is performed

through combustion. Fuel is injected into the combustion chamber and undergoes

atomization, which is the process that breaks the coherent fuel jet into droplets.

Small droplets evaporate and the fuel vapor undergoes combustion. The atomiza-

tion process is of great importance since it controls the size and spatial distribution

of fuel droplets, consequently their evaporation rate, and therefore the efficiency of

the entire combustion process. As a result, improvements to fuel atomization has

the potential to significantly reduce the production of greenhouse gases and other

harmful pollutants from liquid fuel combustion systems.

Atomization systems have been studied experimentally and with simulations,

however the physical processes that control the atomization dynamics are cur-

rently not adequately understood. This understanding is needed to make a priori

estimates of spray dynamics for a new fuel injector. The work in this dissertation

aims at advancing numerical techniques such that realistic atomization systems can

be studied and probed at a level of detail not attainable with currently available

experimental techniques.

2

In addition to atomization systems, gas-liquid multiphase flows are ubiquitous

in many aspects of our lives and throughout nature. Our everyday interaction

with liquids almost always involves a gas-liquid interface. Drinking, washing, and

swimming are a few common activities that involve multiphase flows. Additionally,

many engineering applications depend on multiphase flows such as heat transfer by

boiling or condensing. Therefore, while the focus of this dissertation is on atomizing

jets, the numerical methodologies are applicable to a wide range of applications.

1.2 Overview of previous experimental work

Atomization is inherently difficult to investigate experimentally. By definition,

atomizing systems produce a large number of optically opaque droplets that hinder

optical access to the break-up phenomena. As a result, experiments often focus on

measuring global spray characteristic such as penetration length and spray angle.

Droplets are often spatially separated downstream and far from the injector. In

this region, a variety of droplet imaging techniques have been employed to measure

the droplet size and velocities. The techniques include particle image velocimetry

(PIV) [6] which measures droplet size and velocity through successive images of an

region of the spray illuminated with a laser, laser Doppler velocimetry (LDV) [7]

is a technique for measuring droplet velocity using the Doppler effect [8]. phase

Doppler particle analyzers (PDPA) measure both size and velocity simultaneously

and are based on LDV systems. All these spray diagnostic systems are limited

when measuring dense sprays where droplets are highly concentrated and cause

multiple light scattering events and are likely to have non-spherical shapes [9].

Recent advancements in experimental techniques using ultra high speed X-rays

3

have allowed research to probe inside the dense region of an atomizing jet [10,11].

This technique uses X-rays combined with, for example, phase contrast imaging,

which exploits differences in the refractive index of different fluids [12] for vi-

sualization or small angle X-ray scattering (SAXS) to measure droplet size and

velocity [10]. These experiment are performed at facilities like the Advanced Pho-

ton Source at Argonne National Laboratory [13]. This facility was funded by the

U.S. Department of Energy and cost $497 million [13]. Using this state-of-the-art

facility, experiments of atomizing liquid fuels are still challenging. For example,

there are logistical challenges to studying atomization under realistic pressurized

conditions within expensive government owned facilities.

Experiments of simplified systems have also been studied. For example, Mar-

mottant and Villermaux [14] captured beautiful images of atomizing jets that have

significantly lower Reynolds and Weber numbers compared to jets used in fuel injec-

tion systems. As a result, the jets have coherent structures that have been related

to a progression of instabilities computed using linear stability analysis. Shear

between the liquid jet and the surrounding air causes the formation of a Kelvin-

Helmholtz type instability. As this instability grows, waves are produced that push

against the air causing a Rayleigh-Taylor type instability to form. As this insta-

bility grows, ligaments are formed that ultimately break under a Rayleigh-Plateau

instability. Measurements of the instability length scales have been compared with

predictions from linear stability analysis and reasonable agreement was found. For

realistic atomizing flows found in fuel injection systems, turbulence is an important

and present flow feature. As a result, linear stability analysis will likely not be able

to predict the general features of the flow. Faeth et al. [15] provides a review of the

multiphase flow phenomena relevant to spray combustion. In particular they focus

on the structure of the dense region near the injector and properties of primary

4

and secondary breakup. They found the density ratio has a significant effect on

the onset of breakup through and the role of aerodynamic phenomena that can

enhance breakup.

1.3 Overview of previous numerical work

With continually increasing computational resources and advancements to compu-

tational methods, computational fluid dynamics (CFD) is a promising alternative

to experiments for studying multiphase flow systems. However, performing mul-

tiphase simulations of atomizing liquid jets is challenging for many reasons. A

wide range of length scales are present, extending from the large coherent motions

down to the smallest droplets. The large scales dictate the spray angle, penetra-

tion length, and the initial interface perturbation that can initiate the atomization

process. The small scales are important in combustion applications since the small

droplets will evaporate quickly and have a significant effect on the combustion

dynamics. Simulating these flows requires sufficient resolution to capture small

scale features and large enough domains to capture the large scales. The resulting

simulations tend to be very large with billions of computational cells.

Other challenges in multiphase simulations arise at the phase interface. Discon-

tinuities in material properties and a discontinuity in pressure due to the surface

tension force require special treatment. Many numerical methods have been de-

veloped to handle these discontinuities. For example, discontinuities are handled

in the continuum surface force (CSF) [16] by smearing them over multiple compu-

tational cells. The ghost fluid method (GFM) [17] is an alternative that sharply

accounts for discontinuities.

5

These methods all share the common thread that they require knowledge of

where the interface is located. During an atomization process, the phase interface

undergoes many topology changes such as deformation, breakup, and merging.

Despite these complexities, they can be described by

Dρ

Dt
=
∂ρ

∂t
+ u · ∇ρ = 0, (1.1)

where ρ is the density, u is the velocity field, and t is time1. This simple advection

equation is challenging to solve because the density is discontinuous at the phase

interface.

A variety of numerical techniques have been developed to locate the phase in-

terface. These methods can be broadly classified as interface tracking or interface

capturing. The former uses either a mesh that deforms with the interface known as

arbitrary Lagrangian-Eulerian (ALE) methods [18–21] or marker and cell (MAC)

methods that track the interface with Lagrangian particles [22]. Both of these ap-

proaches, while highly accurate, require significant re-meshing or re-seeding when

the interface deforms substantially, which is a common occurrence in simulations

of atomizing jets. Alternatively, interface capturing methods can be used, such as

level-set [23, 24] and volume-of-fluid (VOF) [25–27] schemes that implicitly repre-

sent the interface and have been used to simulate atomizing flows.

Level set methods represent the interface as an iso-surface of the level set func-

tion [23, 24]. In its basic formulation the level set is defined as a signed distance

function. Changing the representation of the interface from the discontinuous den-

sity in Eq. 1.1 to the smooth level set function is advantageous. The level set func-

1 Note that interface topology changes can occur on the molecular scale where the continuum
assumption that used to derive the continuity equation is not valid. Furthermore, some interface
dynamics, such contact line motion, are not described by the continuity equation. Nonetheless,
the continuity equation describe most interface motions very well since it captures all but the
very smallest interface processes.

6

tion can easily be transported using standard discretization methodologies such

as finite difference schemes. However, because the level set function is arbitrary

and has no physical significance, the method has no inherent mass conservation

properties. The introduction of the conservative level set [28–30] greatly improved

the conservation properties of level set schemes. The conservative level set is built

by choosing the level set function to more closely approximate the discontinuous

density, thus recovering physical significance and the associated conservation prop-

erties. By using a smoothed step function, the level set function can be smooth

enough to be transported easily while sharp enough to approximate the density

field. Chapter 2 describes an advancement to the conservative level set method

wherein a discontinuous Galerkin discretization is used. The method improves

the accuracy of the level set function representation thereby further improving its

conservation properties.

Even with the introduction of the conservative level set and the discontinu-

ous Galerkin discretization, exact conservation is unattainable with the level set

method. Contrarily, the volume-of-fluid method [31–33] can achieve discrete con-

servation. VOF methods store the fraction of each computational cell that is

within the liquid phase. Using this information a sharp representation of the

gas-liquid interface is constructed that can be transported using geometric opera-

tions [31, 34, 35]. This framework allows conservative schemes to be constructed.

However, for three-dimensional problems the geometric transport operations can

become complex. To alleviate this, the three-dimensional transport step is often

split into a series of one-dimensional steps [25], but this introduces a splitting er-

ror. Un-split schemes deal with complex geometry and were first introduced for

two-dimensional simulations [2, 35]. The extension to three-dimensions is more

complicated and, to the best of our knowledge, three-dimensional un-split geomet-

7

ric schemes have only recently been proposed [3,36]. Chapter 3 describes the first

conservative, second-order, un-split VOF scheme. The complex geometry is dealt

with by reducing the problem to a series of systematic geometric operations that

greatly simplifies the implementation.

In many multiphase flow systems additional quantities that are discontinuous at

the phase interface are present. In Chapter 4, a conservative second-order method-

ology is proposed to solve conservation laws for these quantities. The method is

built such that discrete consistency is maintained with the interface transport. This

is critical in order to avoid spurious over/undershoots and conservation errors at

the phase interface.

One of the ongoing challenges of interface tracking schemes is computing an

accurate and convergent interface curvature [37]. The curvature is related to the

pressure jump at the interface due to the surface tension force and needs to be

computed accurately to avoid spurious velocities near the phase interface. Brackbill

et al. [16] developed the continuum surface force (CSF) method, which is one of

the first methodologies to compute the curvature and handle the surface tension

force in a VOF scheme. In the CSF method, the interface curvature is computed

from a mollified (smoothed) approximation of the liquid volume fraction. More

recently, the height function method [38–40] has been developed that provides a

sharp calculation of the curvature. Chapter 2 provides a novel application of the

height function methodology to the conservative level set. Chapter 5 describes an

improvement to the height function method that allows for accurate and robust

curvature calculations on an under-resolved interface where the standard height

function method often fails.

8

1.4 Contributions

The contributions in this dissertation provide advancements to numerical meth-

ods to study gas-liquid multiphase flows and the application of those methods to

relevant engineering applications. These contributions are the following:

• The mass conservation properties of the level set method is improved by in-

troducing a discontinuous Galerkin discretization. This discretization allows

for an arbitrarily high-order representation of the level set function with-

out the need of a large computational stencil. The small stencil ensures the

method is highly parallelizable.

• The curvature calculation of the conservative level set method is improved by

applying the height function methodology to the conservative level set. The

height function method is commonly used in the context of VOF methods

but this work shows it can also be used to compute converging, second-order

curvatures in the context of the conservative level set.

• A three-dimensional, un-split, geometric VOF method has been developed.

This method leverages two key ideas that makes it straightforward to im-

plement. The first is the use of simplices (e.g., triangles or tetrahedra) to

greatly simplify the representation of complex shapes. The second is a simple

sign convention that identifies the direction of fluxes. The scheme achieves

discrete conservation and boundedness of the VOF field and is second-order

accurate.

• A discretization for conservation laws of quantities that are discontinuous at

the phase interface is proposed and tested. The method is constructed to

be discretely consistent with the VOF interface transport scheme ensuring

9

transport even near the discontinuities is robust, second-order accurate, and

conservative.

• A mesh-decoupled interface curvature method has been developed that im-

proves calculations for small interface structures where the standard height

function method fails. The method leverages the geometric operations used

in the VOF transport and can potentially be implemented easily in a geo-

metric VOF codes that uses computational geometry routines.

1.5 Organization of this document

Chapters 2, 3, and 5 are pre-print copies of journal papers. Each chapter is self-

contained and can be read separately. The chapters describe the discontinuous

Galerkin discretization of the level set, the three-dimensional conservative second-

order VOF method, and the mesh-decoupled height function method, respectively.

Presently, the work in Chapters 2 and 3 has been accepted for publication in the

Journal of Computational Physics (see [41] and [42]). The work in Chapter 5 has

been submitted for publication to the Journal of Computational Physics.

Chapter 4 describes a solution strategy for solving conservation laws for scalars

that are discontinuous at the phase interface. The chapter builds on the ideas

presented in Chapter 3 but can be read as a standalone document. A journal

article describing this work is currently under preparation.

Chapter 6 presents a series of numerical simulations that were performed using

the numerical methods described in Chapters 2 – 5. The simulation results have

been disseminated through a paper published in Atomization and Sprays [43] and

a series of conference papers. The conferences include the International Confer-

10

ence on Liquid Atomization and Spray Systems (ILASS), the American Institute

of Aeronautics and Astronautics (AIAA), and the American Physical Society’s

Division of Fluid Dynamics (APS-DFD).

11

CHAPTER 2

DISCONTINUOUS GALERKIN CONSERVATIVE LEVEL

2.1 Introduction

In simulations of multiphase flows, discontinuities at the interface arise from dif-

ferent fluid properties and a jump in pressure due to surface tension. The discon-

tinuities make discretizing the Navier-Stokes equations challenging, consequently

numerical methods have been developed to handle these singularities including

the continuum surface force (CSF) approach [16] and the ghost fluid method

(GFM) [17]. Both the CSF method and the GFM are based on the assump-

tion that the interface location is known accurately. The discontinuous Galerkin

conservative level set (DG-CLS) method, presented herein, provides an accurate

interface location needed for the CSF method, the GFM, or other chosen method.

Commonly, two approaches are used to locate the interface: interface tracking

and interface capturing. Interface tracking schemes typically use either arbitrary

Lagrangian-Eulerian (ALE) methods based on a mesh that deforms with the inter-

face [18–21] or marker and cell (MAC) methods that advect Lagrangian particles

that define a given fluid by their locations [22]. The main problem with inter-

face tracking schemes occurs when the interface deforms substantially or when

the interface disconnects and reconnects. Significant re-meshing or re-seeding of

particles is needed to account for the large interface changes.

Interface capturing methods include volume of fluid (VOF) and level set meth-

ods. VOF methods capture the interface using the volume fraction of fluid within

each grid cell [25–27]. While VOF schemes have excellent mass conservation prop-

12

erties, they suffer from the challenge of reconstructing the interface location using

only the cell integral volume fraction. Level set methods advect a function defined

such that the interface is represented by an iso-surface of a scalar field called the

level set [23,24]. Level set methods alleviate the problem found with VOF methods

of having to reconstruct an interface since the interface is explicitly defined by the

function. Although mass conservation is problematic with the classical level set

method, the accurate conservative level set (ACLS) [28] offers good mass conserva-

tion and a well-defined interface location. Details of the classical and conservative

level set methods are given in Section 2.2.

Spatial discretization of the conservative level set, used in the ACLS method,

can be achieved with finite difference operators [28]; however, the discontinuous

Galerkin (DG) method was chosen in this work for its high accuracy and compact

stencil [44, 45]. High accuracy is obtained by projecting the solution onto high-

order discontinuous polynomials, similar to finite element methods. Compactness

is a result of the local nature of the polynomials. Since the polynomials are de-

fined on each grid cell, updates do not need global information but rather only

information from nearest grid cell neighbors. This small stencil results in minimal

communication requirements and a highly parallelizable code.

The conservative level set method includes a transport equation that describes

the convection of the level set due to the velocity field and a reinitialization equation

that maintains the shape of the level set. Cockburn and Shu [46] provide a DG

discretization of the transport equation with an accurate temporal integration

method and appropriate definition of fluxes. The DG discretization was applied to

the classical level set by Marchandise et al. [47]. A quadrature-free implementation

was used wherein all the integrals that appear in the weak form of the equations

13

were precomputed to improve computational efficiency. Marchandise et al. [48]

reinitialized the classical level set using a recursive contouring algorithm with a

fast search tree method to find the smallest distance to the interface which for the

classical level set method is also the value of the level set. However, when the

conservative level set is used the level set is not a signed distance function and a

different reinitialization method is used. Following the steps of the ACLS method

a convective-diffusion equation is solved to reinitialize the level set and maintain

the level set profile. We propose to discretize the convective-diffusion equation

using DG in order to maintain the high order accuracy of the level set for both the

transport and reinitialization steps. Details of the DG implementation are given

in Section 2.3 which includes background information on our DG formulation in

Section 2.3.1 and the particulars of the spatial discretization of the transport and

reinitialization equations in Sections 2.3.2 and 2.3.3, respectively.

The most straightforward method to integrate the transport and reinitialization

equations in time is an explicit scheme such as a Runge-Kutta (RK) method.

An explicit scheme does not require global communications thereby maintaining

the highly parallelizable nature of the DG spatial discretization. Cockburn and

Shu [46] provide a description of the RK methods and show many are stable when

high order polynomials are used to approximate the solution. The total variation

diminishing third order RK (TVD-RK3) method is used in this work; details are

provided in Section 2.4.

As described previously, the interface curvature and normal have direct effects

on the solution; therefore, the methods used to calculate these interface properties

should be accurate and converge under mesh refinement. Obtaining convergence

is difficult with the conservative level set because the level set profile is a relatively

14

sharp approximation of a step function. The sharp profile is used because the

smallest mass losses are achieved when the level set profile is the sharpest. There-

fore, the sharpest resolvable profile is used resulting in a fixed number of grid cells

across the profile. When the mesh is refined, the number of cells across the profile

does not change but rather the profile is sharpened. The fixed number of points

across the profile makes it difficult to obtain convergence of level set gradients

used in the calculation of interface normal and curvature. To acquire a converging

normal and curvature, Marchandise et al. [48] proposed a least squares method for

the classical level set. The method was latter applied by Desjardins et al [28] to

the ACLS method that uses the conservative level set. The least squares method

showed second and first order convergence for the normal and curvature, respec-

tively [28]. To improve the convergence of the interface curvature from first to

second order, we applied the height function method commonly used in volume of

fluid (VOF) methods [49] to the DG-CLS formulation as described in Section 2.5.

In Section 2.6, we provide details of numerical experiments conducted using the

DG-CLS method. The tests include normal and curvature convergence, simulations

that examine transport of the level set, tests of the level set method coupled with

the Navier-Stokes solver, and a realistic application.

15

2.2 Mathematical formulation

2.2.1 Classical level set

The classical level set, G, represents the interface as the zero iso-surface of a signed

distance function, i.e.

|G| = |x− xI |, (2.1)

where xI is the location on the interface that is closest to the coordinate x. The

level set is defined to be positive on one side of the interface and negative on the

other side. By defining the level set using a signed distance function, the interface

is naturally represented by the zero iso-surface, G(x, t) = 0.

Motion of the interface is achieved by solving the transport equation

∂G

∂t
+U · ∇G = 0, (2.2)

where t is time and U is the velocity field. In addition to providing the interface

location, the level set is also used to calculate the interface normal vector, n, and

curvature, κ, using

n =
∇G
|∇G|

(2.3)

and

κ = −∇ · n, (2.4)

respectively. Equations 2.3 and 2.4 provide an accurate result when the level set is

smooth such as the signed distance function. However, transporting the interface

using Eq. 2.2 will alter the smoothness of the level set when the velocity field is

not uniform; therefore, a reinitialization step is added to restore the level set to

a signed distance function. A variety of methods can be used to reinitialize the

16

level set to a signed distance function. Fast marching methods involve solving the

Eikonal equation |∇G| = 1 from the interface outwards [24, 50]. Closest point

algorithms that use a tree-based structure to determine the closest point that lies

on the interface. Another common reinitialization method solves the Hamilton-

Jacobi equation [51],

∂G

∂τ
+ S(G)(|∇G| − 1) = 0, (2.5)

in pseudo-time, τ , until steady state is achieved. In the previous equation, S is a

modified sign function such as the function described by Sussman et al. [52].

The classical level set does not represent any physical quantity; therefore, con-

servation of the signed distance function will not provide conservation of mass

or other useful result. When the classical level set is used, the mass of the fluid

can change leading to significant errors especially for applications with complex

velocity fields and frequent interface topology changes.

2.2.2 Conservative level set

In an effort to add conservation properties to the classical level set scheme, the

signed distance function is replaced with a modified hyperbolic tangent func-

tion [28–30],

Ψ(x, t) =
1

2

Ç
tanh

Ç
G

2 ε

å
+ 1

å
, (2.6)

where ε sets the thickness of the profile and G is the signed distance function. Note

that the conservative level set function represents the interface using the Ψ = 0.5

iso-surface.

The conservative level set function mimics the liquid volume fraction which is

a Heaviside function as shown in Fig. 2.1. In the limit that ε goes to zero, the

17

volume under the level set function is equal to the liquid volume fraction as shown

by

lim
ε→0

∫
V

Ψ(x, t) dv =
∫
V
H(Ψ(x, t)− 0.5) dv (2.7)

where H is the Heaviside function. The left hand side of the previous equation is

the volume under the level set and the right hand side represents the volume within

the Ψ = 0.5 iso-surface which is the liquid volume fraction due to the definition

of the level set function. A useful consequence of Eq. 2.7 is conservation of the

conservative level set, Ψ, results in conservation of liquid volume fraction when ε

goes to zero. Therefore, ε is chosen to be as small as possible while maintaining

reasonable resolution of the level set function resulting in a balance between mass

conservation errors and inaccuracies in representing an under-resolved function.

0

0.2

0.4

0.6

0.8

1

-0.4 -0.2 0 0.2 0.4

f(
x
)

x

Figure 2.1: Functions showing liquid volume fraction, conservative level set, and
classical level set represented by solid, dashed, and dotted lines, respectively.

The conservative level set can be transported using Eq. 2.2 by replacing G with

Ψ. Furthermore, in the context of a solenoidal velocity field, i.e. ∇ · U = 0, the

equation can be written in conservative form

∂Ψ

∂t
+∇ · (UΨ) = 0, (2.8)

18

which ensures that Ψ is discretely conserved.

Reinitialization is performed by solving

∂Ψ

∂τ
+∇ · (Ψ(1−Ψ)n) = ∇ · (ε(∇Ψ · n)n). (2.9)

This equation is developed by recognizing that we want our level set function given

by Eq. 2.6 as a steady state solution of an equation. In one-dimension we want

the steady-state solution to be [29]

∂Ψ

∂n
=

Ψ(1−Ψ)

ε
. (2.10)

One way to extend the previous equation to three-dimensions is to write Eq. 2.9,

which has the property that both the compressive term, shown on the left, and the

diffusive term, shown on the right, only act in the direction normal to the interface

restricting motion in the direction tangential to the interface. Reinitialization in

the tangential direction results in non-physical motions that smooth the interface.

Note that the normal, n, that appears in Eq. 2.10 is calculated before it is solved

and remains constant throughout the reinitialization step. Similarly to solving the

Hamilton-Jacobi equation which can be used to reinitialize the classical level set,

Eq. 2.9 is advanced in pseudo-time, τ . The steady-state solution is the hyperbolic

tangent function described by Eq. 2.6 and occurs when the compressive term is

equated by the diffusive term. Both Eqs. 2.8 and 2.9 are written in conservative

form making the conservative level set, Ψ, a conserved quantity and minimizing

mass conservation errors.

19

2.3 Discontinuous Galerkin implementation

DG schemes offer a variety of desirable properties when applied to the conservative

level set method. DG methods allow for arbitrarily high orders of accuracy without

the necessity of a large stencil, which results in a robust, accurate, and highly

scalable scheme. The method presented here is separated into a background section

on DG followed by two sections that describe the spatial discretization of the level

set transport and reinitialization equations, respectively.

2.3.1 DG formulation

The physical domain is represented by Ω with closed boundary Γ. This domain

is represented using a computational grid consisting of a collection of Q non-

overlapping grid cells referred to as ωq where q = 1, . . . , Q. The union of all cells

is equal to the physical domain, i.e.

Ω = ω1 ∪ ω2 ∪ · · · ∪ ωQ. (2.11)

Each grid cell ωq has an associated closed boundary γq such that the set of all cell

boundary parts that are a member of exactly one cell boundary is equal to the

closed physical domain boundary, i.e.

Γ = (γ1 ∪ γ2 ∪ · · · ∪ γQ) \ (γ1 ∩ γ2 ∩ · · · ∩ γQ). (2.12)

DG is used to spatially discretize a function onto the computational grid. The

main idea is to representing the function using a finite linear combination of basis

functions within each grid cell creating a piecewise continuous representation of the

function. The basis functions, φ = {φ0, φ1, . . . , φP}, can be almost any set of basis

20

functions; however, orthogonal polynomials such as the Legendre polynomials, used

in this work, are preferred. An example of a DG approximation of a function is

shown below wherein the level set is approximated within the qth grid cell using

Ψ(x|x ∈ ωq, t) ≈ Ψh,q(x, t) =
P∑

m=1

ψm,q(t)φm(χq(x)) = ψm,qφm, (2.13)

where Ψh,q is the DG approximation of Ψ within the qth grid cell, P is the number of

degrees of freedom (defined below), ψm,q is the weight associated with the mth basis

function and qth grid cell, and χq is a coordinate system local to ωq and defined,

for a basis formed using Legendre polynomials, such that χq = [−1, 1]3 within

ωq. By defining χq this way, the orthogonality relations between the Legendre

polynomials are maintained, i.e.

∫
ωq

φiφj dv =
∫
ωq

φ2
i dv δij (2.14)

where δij is the Kronecker delta.

When the weights, ψ, need to be calculated, such as during initialization of

simulation, the following equation can be solved:

ψi,q =
∫
ωq

Ψφi dv

Ç∫
ωq

φ2
i dv

å−1

(2.15)

for i = 1, . . . , P and q = 1, . . . , Q. The previous equation is derived by first writing

the weak form of Eq. 2.13, which involves multiplying by the test function, φs, and

integrating over the domain. Next, the weight, ψi,q(t) is removed from the spatial

integral and the orthogonality property shown by Eq. 2.14 is employed to simplify

the integral containing the product of two basis functions. Finally, the equation is

rearranged to get Eq. 2.15.

Because the basis functions and weights are local to each grid cell, discontinu-

ities of the DG representation of the level set at grid cell boundaries can occur. In

21

other words, the approximated function can have different values at a boundary

between cells depending on if the function is evaluated using data from the cell on

one side of the cell boundary or the other. This is why the method is known as

discontinuous Galerkin.

The following equation can be used to compute one-dimensional Legendre poly-

nomials used in this work for the DG basis functions,

φi =
i!

(2i)!

di[(x2 − 1)
i
]

dxi
(2.16)

for i = 0, 1, . . . ,∞. Multi-dimensional basis sets can be created by combining the

functions from one-dimensional sets. Typically, the set is constrained such that

the total order is less than a threshold called the total polynomial order, O. Given

a total polynomial order of O provides a O + 1 order accurate representation of

the function being approximated. The number of Legendre basis functions and

associated weights for a given O is referred to as the number of degrees of freedom,

P , and can be calculated using,

P =
1

d!

d∏
k=1

(O + k) =
(O + d)!

O!d!
(2.17)

For reference, the ten Legendre basis functions within the qth grid cell used in a

second order (O = 2), three-dimensional (d = 3) implementation are

φ = [1, χq,1, χq,2, χq,3, χ
2
q,1−1/3, χq,1 χq,2, χq,1 χq,3, χ

2
q,2−1/3, χq,2 χq,3, χ

2
q,3−1/3],

where χq = (χq,1, χq,2, χq,3)t.

To solve an equation using DG the following steps are used. First, a weak form

of the equation is constructed by multiplying by a test function and integrating

over the domain. In the DG formulation the test function is taken from the set of

basis functions, φ. Integration by parts is used leading to a collection of integrals

22

over cell volumes and surfaces. Next, the weak form of the equation is spatially

discretized onto the grid by substituting the DG approximation, shown in Eq. 2.13

for the level set, into the equation. Because discontinuities can exist at the faces

between the cell of interest and neighboring cells, a method that systematically

provides one value that respects the physics of the problem must be developed.

The result of this method is used in the surface integrals to construct the fluxes.

Finally, if the basis functions are orthogonal, the P equations that result from the

previous steps can be decoupled using the property shown in Eq. 2.14.

2.3.2 DG level set transport

Transport of the conservative level set is done by solving Eq. 2.8 using the

quadrature-free DG method following the work of Marchandise et al. [47]. The

first step to obtain the DG discretization of Eq. 2.8 is to write the weak form by

multiplying by a test function φs, integrating over the domain Ω with boundary

Γ, and performing a formal integration by parts. The result is

∫
Ω

∂Ψ

∂t
φs dv −

∫
Ω

ΨUj
∂φs
∂xj

dv +
∮

Γ
ΨφsUjNj ds = 0 (2.18)

for s = 1, . . . , P , where Nj is the jth component of the domain boundary normal

vectorN and dv and ds represent volume and surface integrals, respectively. Note,

Einstein’s summation notation is used throughout this paper for any indices that

appear twice in a term unless the index is explicitly defined.

Spatial discretization introduces the DG approximation of the level set within

each grid cell described using Eq. 2.13 and results in

∫
ωq

∂ψm,qφm
∂t

φs dv −
∫
ωq

ψi,qφiUj
∂φs
∂xj

dv +
∮
γq

Ÿ�ψi,qφiUjN
c
jφs ds = 0, (2.19)

23

for s = 1, . . . , P and q = 1, . . . , Q, where N c is the normal to the cell boundary

with jth component N c
j . This equation is not fully defined since the approximate

solution is discontinuous at the cell boundaries and a unique function does not

exist when evaluating the surface integral. Therefore, an appropriate method to

evaluate the flux, Ÿ�ψi,qφiUjN
c
j , must be chosen. For the transport equation, the flux

can be up-winded based on the sign of (U ·N c)γq , which is the velocity at the cell

boundary projected onto the cell boundary normal vector (interpolation may be

necessary if the velocity or normal are not located at the center of the cell face).

The flux can be written asŸ�Ujψi,qφiN
c
j =

Ä
UjN

c
j

ä
γq

(ψi,qφi)up =


Ä
UjN

c
j

ä
γq

(ψi,qφi)
in if

Ä
UjN

c
j

ä
γq
> 0Ä

UjN
c
j

ä
γq

(ψi,qφi)
out if

Ä
UjN

c
j

ä
γq
< 0,

(2.20)

where (∗)in is (∗) evaluated at the face using information from the cell of interest;

analogously, (∗)out is (∗) calculated at the face but using information from the

neighboring cell. This flux is known as a Roe flux, but as described by Cockburn

and Shu [53], any two-point Lipschitz continuous monotone flux is appropriate.

Adding the properties ψ = ψ(t), φ = φ(χq), and U = U (t) within the qth cell,

results in

∂ψm,q
∂t

∫
ωq

φmφs dv − ψi,quj
∫
ωq

φi
∂φs
∂xj

dv +
Ä
ujN

c
j

ä
γq

(ψi,q)up

∮
γq

(φi)upφs ds = 0

(2.21)

for s = 1, . . . , P and q = 1, . . . , Q. The assumption ofU being constant within each

cell allows for it to be removed from the integral. This assumption is reasonable

since a second order accurate Navier-Stokes solver is used in our code. In addition,

the surface normal, N c, is a constant on regular grids wherein cell boundaries are

composed of a collection of flat faces, and the surface integral is split into multiple

integrals on each flat face.

24

Since our DG formulation is based on orthogonal basis functions as shown by

Eq. 2.14, the P coupled equations in Eq. 2.21 can be decoupled and written as

∂ψm,q
∂t

∫
ωq

φ2
m dv − ψi,qUj

∫
ωq

φi
∂φm
∂xj

dv +
Ä
UjN

c
j

ä
γq

(ψi,q)up

∮
γq

(φi)upφm ds = 0

(2.22)

for m = 1, . . . , P and q = 1, . . . , Q. If the basis is not orthogonal, the system of P

coupled equations described by Eq. 2.21 must be solved.

All the integrals in Eq. 2.22 are now a function of only the basis functions that

are defined at the start of a simulation and can be computed once in an initial-

ization routine. In practice on Cartesian meshes, one can compute the integrals

over an arbitrary cell size, e.g. [−1, 1]3, and then use a scaling factor to adjust

the pre-computed integrals to the size of the cell being updated. Equation 2.22

is the quadrature-free discontinuous Galerkin form of the transport equation that

can easily and efficiency be updated once a time integration scheme is chosen as

described in Section 2.4.

2.3.3 DG level set reinitialization

Reinitialization is used to maintain the shape of the hyperbolic tangent profile and

limit mass loss. Equation 2.9 is solved using a DG discretization applied in a similar

fashion as described in the transport section. The steps include construction of a

weak form of the reinitialization equation, discretization on the grid that supports

the approximate solution, definition of proper fluxes that provide a unique value

at faces where discontinuities exist, and finally, decoupling of the equations if an

orthogonal set of basis functions is used.

The weak form of Eq. 2.9 is found by multiplying by a test function φs, inte-

25

grating over the domain, and performing a formal integration by parts, resulting

in ∫
Ω

∂Ψ

∂τ
φs dv −

∫
Ω

Ä
Ψ −Ψ2

ä
nj
∂φs
∂xj

dv +
∮

Γ

Ä
Ψ −Ψ2

ä
njNjφs ds

=−
∫

Ω
εnjnk

∂Ψ

∂xj

∂φs
∂xk

dv +
∮

Γ
ε
∂Ψ

∂xj
njnkNkφs ds

(2.23)

for s = 1, . . . , P , where n is the interface normal vector, and N is the domain

boundary normal vector. n and N have d dimensional components, and the jth

components are represented by nj and Nj, respectively.

Discretization onto a grid involves integrating over cells and substituting in the

DG approximation of the level set shown by Eq. 2.13. The spatially discretized

form of Eq. 2.23 in the qth cell is∫
ωq

∂ψm,qφm
∂τ

φs dv −
∫
ωq

ψi,qφinj
∂φs
∂xj

dv +
∮
γq

Ÿ�ψi,qφinjN
c
jφs ds

+
∫
ωq

ψi,qφiψk,qφknj
∂φs
∂xj

dv −
∮
γq

¤�ψi,qφiψk,qφknjN
c
jφs ds

=−
∫
ωq

εnjnk
∂ψi,qφi
∂xj

∂φs
∂xk

dv +
∮
γq

¤�
ε
∂ψi,qφi
∂xj

njnkN
c
kφs ds

(2.24)

for s = 1, . . . , P and q = 1, . . . , Q, where the cell boundary normal is N c with jth

component N c
j . The fluxes, shown with hats, i.e. (̂∗), are not fully defined because

the solution is discontinuous at the cell boundaries and must be constructed appro-

priately. The convective fluxes are dealt with similarly to the flux in the transport

26

equation and are up-winded using the Roe formulationŸ�ψi,qφinjN
c
j = (ψi,qφi)up(njN

c
j)γq

=


(ψi,qφi)

in(njN
c
j)γq if (1− 2ψi,qφi)(njN

c
j)γq > 0,

(ψi,qφi)
out(njN

c
j)γq if (1− 2ψi,qφi)(njN

c
j)γq < 0,

(2.25a)¤�ψi,qψk,qφiφknjN
c
j = (ψi,qψk,qφiφk)up(njN

c
j)γq

=


(ψi,qψk,qφiφk)

in(njN
c
j)γq if (1− 2ψi,qφi)(njN

c
j)γq > 0,

(ψi,qψk,qφiφk)
out(njN

c
j)γq if (1− 2ψi,qφi)(njN

c
j)γq < 0,

(2.25b)

where (njN
c
j)γq is the interface normal n projected onto the cell face normal N c.

The diffusive flux,
¤�
εψi,q

∂φi
∂xj
njnkN

c
k , is also required at a face where a discontinuity

exists. However, unlike the convective fluxes, an up-wind approach is not appro-

priate. A logical and simple implementation is to take the arithmetic mean of

diffusive fluxes calculated on the left and right sides of the face, but this method

does not take into consideration the discontinuity at the face and, therefore, is in-

consistent [54]. As a result, the reconstructed DG method of Luo et al. [54] is used

to define a unique flux value at the face that is consistent with the DG solution.

To do this, a reconstructed function, R(χ, t) = r(t) ·φ̃(χ), is introduced in the dis-

continuous Galerkin space that spans the two cells containing the face of interest.

The modified basis functions, φ̃, are members of the same set of functions as the

previously described basis functions, φ, but are scaled such that they extend over

the two cells. Furthermore, the set of modified basis functions φ̃ contain higher

order functions as described below. To find the weights, r, the following set of 2P

27

constraints are applied in a least squares sense:

∫
ωq−

ψi,q−φiφ̃s dv =
∫
ωq−

riφ̃iφ̃s dv (2.26a)

∫
ωq+

ψi,q+φiφ̃s dv =
∫
ωq+

riφ̃iφ̃s dv (2.26b)

for s = 1, . . . , P , where ωq− and ωq+ are the volumes of the cells to the left and

right of the face, respectively. Luo et al. [54] suggested the properties of the

reconstruction function can be improved by adding an extra term of order O +

1 in the direction approximately normal to the interface. We add the term in

the direction that has the largest component of the interface normal vector. For

example, if the normal vector at the face of interest is in the x-direction, φq,11 =

χ3
q,1 − 3χq,1/5 would be added to the 10 basis shown in Eq. 2.18. This is possible

because 2P (P ≥ 1) constraints are available to find P + 1 unknowns, r, when

the extra term is added. Using the reconstructed function, R, the diffusive flux is

written as ¤�
εψi,q

∂φi
∂xj

njnkN
c
k = εri

∂φ̃i
∂xj

(njnkN
c
k)γq . (2.27)

Combining Eq. 2.24 with fluxes from Eqs. 2.25a, 2.25b, and 2.27, using the

properties ψ = ψ(t), φ = φ(χ), r = r(t), and φ̃ = φ̃(χ), and applying the

property shown in Eq. 2.14 for orthogonal basis functions leads to

∂ψm
∂τ

∫
ωq

φ2
m dv − ψi,qnj

∫
ωq

φi
∂φm
∂xj

dv + (ψi,q)up

Ä
njN

c
j

ä
γq

∮
γq

(φi)upφm ds

+ ψi,qψk,qnj

∫
ωq

φiφk
∂φm
∂xj

dv − (ψi,qψk,q)up

Ä
njN

c
j

ä
γq

∮
γq

(φiφk)upφm ds

=− εψi,qnjnk
∫
ωq

∂φi
∂xj

∂φm
∂xk

dv + εri(njnkN
c
k)γq

∮
γq

∂φ̃i
∂xj

φm ds

(2.28)

for m = 1, . . . , P and q = 1, . . . , Q. Similar to the transport equation, the dis-

cretized reinitialization equation shown above can be easily updated after a time

28

integration scheme is chosen. Also, all the integrals in the equaion only depend

on the basis functions and can be pre-computed suggesting that a quadrature-free

approach should work. However, numerical experiments have shown that using a

quadrature-free implementation of the convective term is unstable. Details of the

instability and our solution are described in Section 2.3.4.

2.3.4 Numerical stability

Numerical tests have identified two necessary adjustments to the DG implemen-

tation described heretofore. The adjustments include a restriction on when the

reinitialization compressive term is applied and careful evaluation of the integrals

in the reinitialization equation. The problem arises when oscillations develop on

level set profile from numerical errors. In some situations the convective term will

amplify the oscillation leading to new artificial interfaces that hinder robustness.

To circumvent this issue, the convective term is only used when the level set is

bounded such that −ζ ≤ Ψh ≤ 1+ζ for some small ζ (≈ 1×10−5). The restriction

is applied to the volume and surface terms that come from the convective term.

The diffusion term is always used and keeps oscillations from growing.

Equation 2.28 shows the equation that is solved to reinitialize the level set.

In this equation, all of the integrals only depend on the basis functions that are

chosen a priori and the integrals can be evaluated and stored in an initialization

routine resulting in a quadrature-free approach. However, we have found that

the quadrature-free approach is unstable because of the way the restriction on

the convective term is applied. The DG representation of the level set allows for

variations within the cell that can lead to some regions that exceed one or zero.

If convective term is used, because the cell (or face) centered value is within the

29

threshold given above, the convective term can increase the value of the function

in the region where the function is greater that one or less than zero and lead to

an unstable situation. Therefore, a quadrature scheme is used and consists of the

following steps for each face within the surface integrals and the volume integrals:

1) determine quadrature points needed to exactly evaluate the integral, 2) at each

quadrature point, if −ζ ≤ Ψh ≤ 1 + ζ is true then this point should be included

in the integration of the convective and diffusive fluxes (If evaluating a surface

integral, up-winding should be based on the value of Ψh at this point.); else, only

the diffusive flux is included in the quadrature integration at this point. This

approach has been shown to be stable for all of the test cases studied.

2.3.5 Minimum/maximum preserving limiter

The modifications described in the numerical stability section make the DG scheme

stable and robust. However, numerical experiments showed significant overshoot

and undershoot of the level set outside the interval [0, 1] on which it is defined. The

overshoot and undershoots result from the amplification of oscillations found in the

high order terms used to represent the level set. To reduce this phenomenon we

added the minimum/maximum preserving (MMP) limiter of Zhang and Shu [55].

The limiter was designed to maintain the order of the DG scheme while modifying

the formulation such that the function stays within the interval [m,M] = [0, 1].

Implementation of the limiter is straight forward for the transport and requires

replacing the DG representation of the level set within cell q, Ψh,q, with a modified

function ‹Ψh,q given by, ‹Ψh,q = Θq

Ä
Ψh,q −Ψh,q

ä
+ Ψh,q, (2.29)

30

where Ψh,q is the mean value of the DG representation of the level set in the qth

cell. Θ is a measure for how close the cell is to the interval bounds and is defined

to be,

Θq = min

{∣∣∣∣∣ m−Ψh,q

mq −Ψh,q

∣∣∣∣∣,
∣∣∣∣∣M −Ψh,q

Mq −Ψh,q

∣∣∣∣∣, 1
}
, (2.30)

where mq and Mq are in the minimum and maximum of the DG representation

of the level set within the qth cell, respectively. To avoid finding the minimum

and maximum of a high order polynomial, mq and Mq can be by approximated by

finding the minimum and maximum of the level set at quadrature points. We use

an N -point Gauss-Lobatto quadrature rule in each direction within the grid cell

of interest. N is chosen to be the smallest integer satisfying 2O < 2N − 3 which

is the quadrature needed to exactly integrate a polynomial of order 2O.

Substituting the modified conservative level set, given in Eq. 2.29, into the DG

discretized level set transport equation, Eq. 2.22, results in,

∂ψm,q
∂t

∫
ωq

φ2
m dv −Θqψi,qUj

∫
ωq

φi
∂φm
∂xj

dv + (Θq − 1)ΨqUj

∫
ωq

∂φm
∂xj

dv

+ (Θq)up

Ä
UjN

c
j

ä
γq

(ψi,q)up

∮
γq

(φi)upφm ds

−
Ä
(Θq)up − 1

ä
(UjNj)γq

Ä
Ψq

ä
up

∮
γq
φm ds = 0

(2.31)

for m = 1, . . . , P and q = 1, . . . , Q, where (Θq)up and
Ä
Ψq

ä
up

are up-winded using

the same criteria used for the other terms in the transport equation defined in

Eq. 2.20.

The modification of the transport equation consists of the following. When

Θ = 1 which occurs when the minimum and maximum of the grid cell are con-

tained within the interval [m,M], the scheme reverts back to the original DG

scheme. However, when Θ = 0 then the flux is based on only the mean of the DG

representation instead of the entire DG polynomial. A value of Θ between 0 and 1

31

results in a weighted combination of the fluxes based on the mean and on the full

DG representation.

Applying the MMP limiter to the reinitialization equation is more difficult

because of the non-linear convective term. Furthermore, we do not apply the

MMP limiter to the diffusion term because this term is designed to smooth the

level set function and should not create an unbounded function. Our approach to

implement the MMP limiter for the non-linear convective is to apply the MMP

limiter to the entire portion of the non-linear term that depends on Ψh resulting

in the following modified function,Â�Ψh,q −Ψ2
h,q = Θ′q

(Ä
Ψh,q −Ψ2

h,q

ä
−
(
Ψh,q −Ψ

2
h,q

))
+
(
Ψh,q −Ψ

2
h,q

)
(2.32)

with

Θ′q = min


∣∣∣∣∣∣∣

(m−m2)−
(
Ψh,q −Ψ

2

h,q

)Ä
mq −m2

q

ä
−
(
Ψh,q −Ψ

2

h,q

)
∣∣∣∣∣∣∣,
∣∣∣∣∣∣∣
M −M2 −

(
Ψh,q −Ψ

2

h,q

)Ä
Mq −M2

q

ä
−
(
Ψh,q −Ψ

2

h,q

)
∣∣∣∣∣∣∣, 1
,
(2.33)

where m and M are the bounds on the interval and mq and Mq are the minimum

and maximum value of the DG representation of the level set with the qth grid cell.

Substituting Eq. 2.32 into the DG discretized reinitialization equation Eq. 2.28 for

32

Ψh,q −Ψ2
h,q results in,

∂ψm
∂τ

∫
ωq

φ2
m dv −Θ′qψi,qnj

∫
ωq

φi
∂φm
∂xj

dv + Θ′q(ψi,q)up

Ä
njN

c
j

ä
γq

∮
γq

(φi)upφm ds

+ Θ′qψi,qψk,qnj

∫
ωq

φiφk
∂φm
∂xj

dv

−Θ′q(ψi,qψk,q)up

Ä
njN

c
j

ä
γq

∮
γq

(φiφk)upφm ds

−
Ä
Θ′q − 1

ä(
Ψq −Ψ

2

q

) ∫
ωq

∂φm
∂xj

dv

+
(Ä

Θ′q
ä

up
− 1

)(Ä
Ψq

ä
up
−
Ä
Ψq

ä2
up

) ∮
γq
φm ds

=− εψi,qnjnk
∫
ωq

∂φi
∂xj

∂φm
∂xk

dv + εri(njnkN
c
k)γq

∮
γq

∂φ̃i
∂xj

φm ds

(2.34)

for m = 1, . . . , P and q = 1, . . . , Q. The MMP limiter parameters appearing in the

flux terms, (Θq)up and
Ä
Ψq

ä
up

, are up-winded using the same criteria as the rest

of the convective term which was defined in Eqs. 2.25a and 2.25b.

Numerical tests of the DG scheme with the MMP limiter have shown a re-

duction in overshoots and undershoot from more than 50% to less than 1%. The

limiter is supposed to be a strict minimum/maximum preserving scheme for linear

problems. The small overshoots and undershoots we observed came solely from the

non-linear convective term found in the reinitialization equation. The reduction

significantly improves the scheme because regions with overshoots are analogous

with a region with increased density since more of the level set is in the region

than should be. Furthermore, an increase in density is not physical in the context

of an incompressible flow and any reduction in overshoots and undershoots should

improve the physical accuracy of the results. All of the results shown in this paper

used the aforementioned implementation of the MMP limiter.

33

2.4 Level set time advancement

As described previously, the level set is transported with the velocity field and

then reinitialized using Eqs. 2.22 and 2.28, respectively. Temporal discretization

is performed using a total variation diminishing third order Runge-Kutta (TVD-

RK3) scheme. This scheme has been shown by Cockburn and Shu [53] to be stable

with up to eighth order polynomial basis functions. Using the explicit TVD-RK3

method allows for the cells to be decoupled from each other and does not hinder

the highly scalable properties of DG. The CFL constraint is approximately [46]

CFL ≤ 1

2O + 1
, (2.35)

where O is the highest order of the polynomials used as the basis functions.

The CFL constraint, Eq. 2.35 must be respected by the transport and reini-

tialization equation. The transport equation includes a convective term with cor-

responding CFL number

CFLtrans. =
max |U |∆ttrans.

h
, (2.36)

where max|U | is the maximum of the velocity magnitude within the domain and

h is the smallest characteristic mesh size taken to be min(∆x) for our Cartesian

mesh. Plugging Eq. 2.36 into Eq. 2.35 provides an upper bound for the time-step

size, ∆ttrans..

The reinitialization equation contains a convective and a diffusive term resulting

in a CFL conditions that includes two terms,

CFLreinit. = max

Ç
max |Ureinit.|∆τreinit.

h
,
4ε∆τreinit.

h2

å
. (2.37)

Where the first term is the convective CFL that has a maximum convective velocity,

max |Ureinit.| = 1. The second term is the diffusive CFL and contains ε which was

34

define previously and sets the thickness of the hyperbolic tangent profile. Equa-

tion 2.37 is combined with Eq. 2.35 to find an upper bound on the reinitialization

time-step size in pseudo-time, ∆τreinit..

Reinitialization maintains the shape of the profile but also introduces errors

into the solution. The errors can be limited by choosing to reinitialize enough

steps in pseudo-time to maintain the proper profile shape while avoiding unneeded

reinitialization steps. To control the amount of reinitialization, we introduce the

parameter F , known as the reinitialization factor. F typically varies between

F = 0 and F = 1 which correspond to no reinitialization and an amount of

reinitialization that can moves the level set the same distance as was done by the

transport step, respectively. Choosing an appropriate value for F is dependent on

the nature of the test case. In some flows, the transport step does not change the

level set profile and very little or no reinitialization is needed; this type of flow

includes uniform flow and Zalesak’s disk test case that uses solid body rotation.

Other flows, such as stagnation points and the vortex used in the deformation test

case, have complex flow fields that deform the level set profile. This set of flows

require more reinitialization in order to maintain high accuracy and low mass loss.

Zalesak’s disk and the deformation test case are provided in Section 2.6 where we

analyzed the effect of F on the solution.

For completeness we include the procedure used to update the level set in time:

1. Velocity field is updated using the Navier-Stokes momentum equations over

a time ∆t.

2. The level set is transported using Eq. 2.31 for a total time of ∆t. Sub-

steps may be appropriate if ∆ttrans. given by the CFL constraint, Eq. 2.35,

is smaller that ∆t used for the flow solver.

35

3. Interface normal vectors and curvature are calculated using the procedure

outlined in Section 2.5.

4. The level set is reinitialized using Eq. 2.34 by a total amount of pseudo-time

equal to

∆τ̃reinit. = F max |U |/max |Ureinit.|. (2.38)

Using this definition for ∆τ̃reinit. allows the reinitialization step to move the

level set a distance equivalent to a fraction, F , of the maximum distance the

level set moved during the transport step. If ∆τ̃ is larger than the maximum

reinitialization time-step, ∆τ , calculated using the CFL constraint in Eq. 2.37

then multiple sub-steps will be required.

5. Go to step 1.

2.5 Interface normal and curvature

The normal to the interface is used for the reinitialization of the level set and must

be calculated accurately. The curvature is used to determine the pressure jump

that results from surface tension in the solution of the Navier-Stokes equations

and has a direct effect on the solution. Therefore, having the normal vector and

curvature converge under mesh refinement is necessary for mesh independence

studies and predictive simulations. Convergence is difficult to obtain because as

the mesh is refined, the thickness of the conservative level set function is also

reduced so that the number of grid cells across the hyperbolic tangent profile is

fixed. This problem is not unique to the normal and curvature. Whenever the

calculation of a quantity does not become more accurate as the mesh is refined the

same situation arises. Desjardins et al. [28] was confronted with this problem when

36

developing the ACLS method and applied a least squared approach proposed by

Marchandise et al. [48] for the classical level set. The scheme calculates the normal

and curvature from a least squares polynomial fit of a reconstructed distance level

set over the cell of interest and its 26 nearest neighbors. The least squares method

has been shown to converge with a second order normal and first order curvature

when applied to the conservative level set [28]. Second order convergence of the

normal vector is acceptable, but a first order curvature is sub-optimal. Therefore,

we use the least squares approach to calculate the interface normal but not the

interface curvature.

The proposed method to calculate interface curvature is to use a height function

technique popular in volume of fluid (VOF) methods [49]. The scheme has been

shown within VOF schemes to calculate a curvature that converges with second

order accuracy. The idea is to integrate the volume fraction in a pseudo-normal

direction forming a height in the cell of interest and the neighboring cells. The

curvature is then calculated using finite difference operators on the heights. The

pseudo-normal direction is defined as the direction (x, y, or z) with the largest

component of the interface normal vector. In three dimensions, a stencil of 3×3×7

cells is used with seven cells in the pseudo-normal direction and three cells in each of

the tangential directions [49]. Seven cells is chosen for accuracy when the interface

is at an angle as shown in Fig. 2.2(a). The nine heights are calculated over the

3×3 stencil and finite difference operators are used to calculate the curvature [49].

To demonstrate how the approach works, the curvature is calculated assuming

the pseudo-normal direction has been determined to be the x-direction at the cell

with coordinates i, j, k. The first step is to calculate nine heights over a 3×3 mesh

37

(a) Volume fraction and stencil used in
VOF height function formulation

(b) First DG degree of freedom and
stencil used in DG height function for-
mulation

Figure 2.2: Stencils used to compute curvature at cell indicated with white circle.
Stencil for VOF is shown by the white dotted lines in (a) and is a total of 3 × 7
(3 × 3 × 7 in 3D). Correspondingly, the stencil used for DG is shown in (b) and
has a 3× 11 stencil (3× 3× 11 in 3D).

by integrating in the x-direction at each location using

Hj′k′ =
i+3∑

i′=i−3

fi′j′k′∆x for


j′ = j − 1, j, j + 1

k′ = k − 1, k, k + 1
, (2.39)

where fi′j′k′ is the volume fraction in cell i′, j′, k′ and ∆x is the width of the cell in

the pseudo-normal direction. Using the heights, the curvature is calculated using

second order finite difference operators that can be written as

κ =
Hyy +Hzz +HyyH

2
z +HzzH

2
y − 2HyzHyHzÄ

1 +H2
y +H2

z

ä3/2 Ç
∂fijk/∂x

|∂fijk/∂x|

å
(2.40)

38

with

Hy =
Hj+1,k −Hj−1,k

2∆y
(2.41a)

Hz =
Hj,k+1 −Hj,k−1

2∆z
(2.41b)

Hyy =
Hj+1,k − 2Hjk +Hj−1,k

∆y2
(2.41c)

Hzz =
Hj,k+1 − 2Hjk +Hj,k−1

∆z2
(2.41d)

Hyz =
Hj+1,k+1 −Hj+1,k−1 −Hj−1,k+1 +Hj−1,k−1

2∆x 2∆y
. (2.41e)

To extend this method to the conservative level set, we modified the way the

heights, H, are calculated. Instead of integrating volume fraction, the conservative

level set, Ψh, is integrated. For example, if the pseudo-normal direction is still

assumed to be in the x-direction, then

Hj′k′ =

i+S−1
2∑

i′=i−S−1
2

fDG
i′j′k′∆x for


j′ = j − 1, j, j + 1

k′ = k − 1, k, k + 1
, (2.42)

with

fDG
i′j′k′ =

∫
ωq′

Ψh,q′ dv = ψi,q′
∫
ωq′
φi dv (2.43)

where q′ is the index for the i′, j′, k′ cell. For Legendre polynomials, Eq. 2.43

reduces only the first degree of freedom or fDG
i′j′k′ = ψ0,q′ .

The stencil size has also been changed from 3 × 3 × 7 to 3 × 3 × S where S

is chosen to achieve high accuracy by capturing the width of the interface within

the stencil and should be based on the thickness of the interface. For example, an

interface thickness corresponding to ε = 0.5∆x is captured on roughly four cells

and results in S = 11 or a 3×3×11 stencil as shown by Fig. 2.2(b). For other values

of ε, the stencil can be determined by noting the profile thickness is approximately

8ε/∆x cells, which was determined using numerical tests. Therefore, the stencil

should be seven cells plus the thickness of the profile or S ≈ 7 + 8ε/∆x.

39

The large stencil leads to numerical difficulties in two circumstances that must

be dealt with if accuracy and robustness are to be maintained. The first scenario

manifests when two interfaces approach each other. This can occur when two

liquid structures come close together or when a liquid entity becomes thin. To

avoid mixing information from the two interfaces, the stencil size should be reduced

in the pseudo-normal direction such that influences from the other interface are

not used when calculating the heights. The second circumstance occurs when the

structure has a large curvature, and the interface is at an angle with respect to the

coordinate system. Defining a stencil that is aligned with one of the coordinate

axis and captures the entire profile can be impossible to construct. Our solution

to this problem is to give up on the height function approach because it is ill-posed

and revert back to the least squares approach of Marchandise et al. [48] mentioned

previously.

Convergence of the level set height function approach was studied by calculat-

ing the curvature of a circle. The problem was initialized with an exact DG level

set field and then the curvature was calculated on various meshes ranging from

162 to 1282 cells using different hyperbolic tangent thickness from ε = 0.2∆x to

0.5∆x. As the profile thickness is decreased, the level set approaches a step func-

tion representing the liquid volume fraction and the curvature calculation should

be improved but the calculation of the interface normal is more prone to errors.

Conversely, when the profile thickness is increased the level set becomes smoother

and errors are reduced in the calculation of the normal vector but the curvature

calculation deteriorates. Therefore, a balance must be obtained where good con-

vergence of both the normal and curvature is achieved.

Figure 2.3 contains L∞ convergence plots of the normal and curvature using

40

different profile thicknesses. Based on the results, we concluded that a profile

thickness defined by ε = 0.4∆x achieves second order convergence for the curva-

ture and between first and second order convergence for the normal. When the

profile thickness is thicker, ε = 0.5∆x, the function is smoother and a more accu-

rate normal can be calculated using the least squares method but a less accurate

curvature is found. Likewise, when ε = 0.2∆x or ε = 0.3∆x the profile is sharper

and the curvature is calculated accurately; however, the normal is less accurate.

As a result, ε = 0.4∆x was used in all of the test cases shown in this paper.

0.0001

0.001

0.01

0.1

1

10

10 100

E
rr

or

Mesh Points

(a) ε = 0.2∆x

0.0001

0.001

0.01

0.1

1

10

10 100

E
rr

or

Mesh Points

(b) ε = 0.3∆x

0.0001

0.001

0.01

0.1

1

10

10 100

E
rr

or

Mesh Points

(c) ε = 0.4∆x

0.0001

0.001

0.01

0.1

1

10

10 100

E
rr

or

Mesh Points

(d) ε = 0.5∆x

Figure 2.3: Convergence of normal and curvature for different level set thicknesses
set by ε. The thick solid line and the thick dashed line show L∞ errors for the
interface normal and curvature, respectively. First and second order convergence
is shown with the dot-dashed and the dot-dot-dashed lines for reference.

41

2.5.1 Spurious velocities

Even though the curvature has been shown to have second order convergence, the

errors could be large. Therefore, the following test gauges whether the curvature

errors will lead to significant spurious velocities. The parasitic velocities result

from errors in the curvature calculation propagating through the calculation of

the surface tension force in the Navier-Stokes momentum equations. The test

consists of simulating a two-dimensional drop of diameter, D = 0.4, inside of a

unit box. The physical properties used in the simulation are density ratio set to

unity or ρ1 = ρ2 = ρ, surface tension of σ = 1, and unity viscosity ratio with

µ1 = µ2 = 0.1. The free parameter is the density of both fluids and is used to

set the Laplace number, La = 1/(Oh)2 = σρD/µ2. After a non-dimensional time

of tσ/(µD) = 250, the capillary number, Ca = |u|maxµ/σ, is computed. The

capillary number is a non-dimensional estimate of spurious velocities.

This test case uses the DG discretization of the conservative level set method

described herein in conjunction with our multiphase CFD code. The numerical

code, NGA [56], has developed for accurate simulations of turbulent reactive flows.

Table 2.1 shows the capillary number for varying Laplace numbers on 322 and

642 meshes. For all Laplace numbers and both meshes, the capillary number

remains small. To investigate the mesh convergence properties of the spurious

currents, a test was conducted with the Laplace number fixed at 12,000 and the

mesh varied from 162 through 1282. The results in Table 2.2 show convergence is

obtained up to a 642 mesh and low capillary numbers are found for all meshes. The

results indicate the curvature errors do not lead to excessive spurious velocities.

42

Capillary Number
Laplace number 322 mesh 642 mesh

12 1.10925E-03 7.30265E-06
120 6.46696E-04 7.82316E-06

1,200 1.05564E-04 7.79871E-06
12,000 9.36451E-05 6.45236E-06

120,000 5.41598E-05 9.55614E-06
1,200,000 1.66377E-06 2.46310E-06

Table 2.1: Capillary number observed at 10 time units for various Laplace numbers
on a 322 mesh and a 642 mesh.

Capillary Number
Laplace number 162 mesh 322 mesh 642 mesh 1282 mesh

12,000 2.11102E-04 9.36451E-05 6.45236E-06 7.48101E-06

Table 2.2: Capillary number observed at 10 time units for a Laplace numbers of
12,000 on various meshes.

2.6 Validation

2.6.1 Zalesak’s disk

The first validation test case is known as Zalesak’s disk [57] and tests the ability

of the DG-CLS scheme to transport a complex geometry with sharp corners. The

test consists of solid body rotation of a notched disk with radius 0.15, notch width

of 0.05, and center at (x, y) = (0, 0.25) within a square domain of size 1× 1. The

notched disk is subjected to rotations using the two-dimensional velocity field:

U = −2πy, (2.44a)

V = +2πx. (2.44b)

For this test, the disk’s shape should remain unchanged. Figure 2.4 shows how

mesh refinement affected the final shape of the notched disk. Meshes consisting

of 502, 1002, and 2002 were tested. For reference, the 502 mesh has only two grid

43

cells across the notch and even with this very coarse mesh the notch in the circle

is maintained after the disk is rotated one full time. When the mesh is refined

more to the 1002 and 2002 cases we find very good results after the disk has been

rotated.

(a) Mesh: 502 (b) Mesh: 1002 (c) Mesh: 2002

Figure 2.4: The calculated solutions of Zalesak’s disk after one full rotation using
various meshes. Second order polynomials and reinitialization factor of F = 0.5
were used for all three cases. Solution is shown with the thick line and the exact
solution (projected onto the mesh) is given with the thin line.

Next, the effect of the order of the polynomials used in the DG scheme to

represent the level set was studied. Figure 2.5 shows results for polynomials with

orders: O = 1, O = 2, and O = 3. Convergence towards the exact solution was

shown when the polynomial basis order was increased. However, the difference

between the solutions obtained using second and third order polynomials was rela-

tively small suggesting other errors, such as errors from mesh resolution, are more

dominate. Furthermore, the differences indicate that running a simulation with

second order basis functions may be a good compromise between accuracy and

cost.

Figure 2.6 shows results for different amounts of reinitialization. The amount of

reinitialization is characterized by the reinitialization factor described in Section 2.4

which was varied from 0 to 1. For this problem the velocity field is prescribed to

produce solid body rotation of the notch circle and the DG level set scheme is

44

(a) DG order: 1 (b) DG order: 2 (c) DG order: 3

Figure 2.5: The calculated solutions of Zalesak’s disk after one full rotation using
various orders of polynomials in the DG representation of the level set. A mesh of
1002 and reinitialization factor of F = 0.5 were used for all three cases. Solution
is shown with the thick line and the exact solution (projected onto the mesh) is
given with the thin line.

capable of transporting the notch circle without the need for reinitialization. As a

result, the best results are obtained when the reinitialization factor is set to zero,

F = 0. As more reinitialization is performed, additional errors are introduced and

the final shape of the notched circle does not match the initial shape as well. The

case with no reinitialization, F = 0, was tested further by increasing the number

of rotations of the notch circle from 1 to 50 and reducing the mesh from 1002 to

502. Results are shown in Fig. 2.7 which shown that even after 50 rotations and a

very coarse mesh the DG scheme is able to maintain the notched circle very well.

(a) F = 0 (b) F = 0.5 (c) F = 1.0

Figure 2.6: The calculated solutions of Zalesak’s disk after one full rotation dif-
ferent amounts of reinitialization. A mesh of 1002 and second order polynomials
were used for all three cases. Solution is shown with the thick line and the exact
solution (projected onto the mesh) is given with the thin line.

45

Figure 2.7: Zalesak’s disk after 50 rotations. Parameters for simulation include
reinitialization factor, F = 0, a 502 mesh, and second order polynomials.

2.6.2 Two-dimensional deformation

The two-dimensional deformation test case consists of the stretching and un-

stretching of a drop in a vortex. The simulation was initialized with a two-

dimensional drop of diameter 0.3 with center at (x, y) = (0, 0.25) within a unit

square domain. The drop is stretched by the velocity field until time is equal to

four, t = 4; then, the velocity field reverses for another four time units and the

liquid should return to its initial state. The velocity field used to achieve the

stretching and un-stretching is

U = −2 sin(πx)2 sin(πy) cos(πy) cos(πt/8), (2.45a)

V = +2 sin(πy)2 sin(πx) cos(πx) cos(πt/8). (2.45b)

Figure 2.8 shows snapshots of the progression from initial state (t = 0), to the

fully stretched state (t = 4), and back to the final state (t = 8). The exact solution

for the final state is to perfectly match the initial state. However, when the liquid

is in the fully stretched state, the tail will drop below the mesh resolution leading

to a loss of mass. Because the conservative level set is designed to limit mass loss,

the liquid is moved from the unresolvable tail into droplets resolvable on the mesh.

This phenomenon is clearly visible in Fig. 2.8 at t = 3, 4, and 5 where the tail has

been replaced by droplets. A result of the mass-conserving scheme is that the tail

46

t = 0 t = 1 t = 2 t = 3

t = 8 t = 7 t = 6 t = 5

t = 4

- - -
@
@@R

�
��	���

Figure 2.8: Snapshots of the two-dimensional deformation test case at various
times. Results as a function of time using a 1282 mesh and second order polynomial
basis functions.

(a) F = 0 (b) F = 0.5 (c) F = 1

(d) F = 0 (e) F = 0.5 (f) F = 1

Figure 2.9: Interface location of deformation test case with various amounts of
reinitialization. The reinitialization factor, F , was varied from 0 to 1. Fig-
ures (a), (b), and (c) show results obtained at maximum deformation, t = 4.
Figures (d), (e), and (f) show results obtained at the end of the simulation, t = 8.
The exact solution is shown with a thin line for reference. For all cases a 1282

mesh and second order polynomials in the DG discretization were used.

47

(a) Mesh: 642 (b) Mesh: 1282 (c) Mesh: 2562

(d) Mesh: 642 (e) Mesh: 1282 (f) Mesh: 2562

Figure 2.10: Interface location of deformation test case on different meshes, namely:
642, 1282, and 2562. Figures (a), (b), and (c) show results obtained at maximum
deformation, t = 4. Figures (d), (e), and (f) show results obtained at the end of
the simulation, t = 8. The exact solution is shown with a thin line for reference.
For all cases second order polynomials were used in the DG discretization and the
reinitialization factor was set to F = 0.5.

should be deformed and the final interface location may not match the expected

exact solution.

To find a good balance of no reinitialization to excessive reinitialization, simu-

lations were conducted of the two-dimensional deformation test case with varying

amounts of reinitialization. The test used a mesh with 1282 cells and second order

polynomial basis functions. The amount of reinitialization is characterized by the

reinitialization factor, F , which adjusts the amount of reinitialization from none

(F = 0) to an amount wherein reinitialization can move the level set the same

distance as the transport step (F = 1). Results are provided in Fig. 2.9 and show

that as more reinitialization is performed the tail was broken into more droplets

which resulted in a change in the final shape of the interface. For the case with no

48

(a) DG Order: 1 (b) DG Order: 2 (c) DG Order: 3

(d) DG Order: 1 (e) DG Order: 2 (f) DG Order: 3

Figure 2.11: Interface location of deformation test case using different polynomials
orders in the DG discretization of the level set. Figures (a), (b), and (c) show
results obtained at maximum deformation, t = 4. Figures (d), (e), and (f) show
results obtained at the end of the simulation, t = 8. The exact solution is shown
with a thin line for reference. For all cases a mesh with 1282 points was used and
the reinitialization factor was set to F = 0.5.

reinitialization the tail became under-resolved and the liquid within this portion

of the tail was lost.

To study the convergence properties of the scheme, the mesh was refined and

the order of the polynomial basis was varied. Figure 2.10 shows how the solution

changes as the mesh was refined from 642 to 2562 mesh points. When a finer

mesh was used, the tail was almost totally captured; however, with the coarse

mesh, the tail became under-resolved and broke into droplets. Because the liquid

in the tail was moved into droplets the final solution does not match the expected

exact solution. Similar results are shown in Fig. 2.11 wherein the effect of the DG

order was analyzed. At the fully stretched state, the higher order polynomial had

the ability to capture more of the tail region and less of the tail was broken into

49

0.8

0.84

0.88

0.92

0.96

1

1.04

0 1 2 3 4 5 6 7 8

M
/M

0

t

(a) Reinitialization factor: F = 0 (solid), F =
0.5 (dashed), and F = 1 (dotted), Mesh=642,
DG order=2

0.8

0.84

0.88

0.92

0.96

1

1.04

0 1 2 3 4 5 6 7 8

M
/M

0

t

(b) Mesh: 642(solid), 1282 (dashed), and 2562

(dotted), F = 0.5, DG order=2

0.92

0.96

1

1.04

0 1 2 3 4 5 6 7 8

M
/M

0

t

(c) DG Order: O = 1 (solid), O = 2 (dashed),
and O = 3 (dotted), F = 0.5, Mesh=1282

Figure 2.12: Mass of liquid normalized by initial mass plotted versus time for
two-dimensional deformation test. Figure (a) shows results when the amount of
reinitialization is varied. The effect of different meshes was plotted in Figure (b).
The DG order was changed and the results are shown in Figure (c).

droplets. Also the difference between the higher order cases (2 and 3) is less than

the difference between the lower order cases (1 and 2) indicating that 2nd order

polynomials may be a good compromise between cost and accuracy.

Conservation of mass was also studied. Figure 2.12(a) shows non-dimension-

alized mass as a function of time for various amounts of reinitialization. Data

from the case without reinitialization, F = 0, clearly shows that at the end of

the simulation more than 4% of the mass was lost. When reinitialization was

50

used, F = 0.5 or F = 1.0, the amount of mass loss is significantly less. In the

middle of the simulation the results indicate that there is significant mass loss

for the cases that use reinitialization, this is not due to the mass being lost but

rather arises due to the difference between the physical liquid volume fraction and

our approximation of the quantity using the conservative level set. The difference

between the two quantities results in an apparent loss of mass when the curvature

of the interface changes dramatically like when the tail in the deformation test

case is broken into droplets.

The effect of mesh refinement on the mass conservation properties of the scheme

was studied and the results plotted in Fig. 2.12(b). As expected, even on the

coarsest grid the amount of mass that was lost throughout the simulation was

very small. On the finest grid the amount of the tail region that fell below mesh

resolution and was transferred into resolvable droplets was the least and therefore

the dip in the middle of the figure is the smallest. For the coarser meshes, more

of the tail falls below mesh resolution and therefore more of the liquid is moved

into droplets resulting in large curvature changes and the significant apparent loss

of mass in the middle of the simulation.

Figure 2.12(c) shows the results from simulations with different DG orders. The

differences in the results are very small indicating the order of the DG polynomials

does not have a large effect on the solution for this test case.

2.6.3 Standing wave

The standing wave test case consists of the viscous damping of a surface wave

and provides insight into problems that include significant interaction between

51

surface tension and viscous forces. The Navier-Stokes equations are solved using

our CFD code known as NGA [56]. The test is two-dimensional with a domain

of [0, 2π] × [0, 2π]. Periodic boundary conditions are used in the x-direction and

slip conditions on the top and bottom walls. Two fluids are placed in the domain

separated by a flat interface perturbed by a sinusoidal wave. The initial interface

location is given using the conservative level set, Ψ, by,

Ψ(x, y, t = 0) =
1

2

Ç
tanh

Ç
π − y + A0 cos(2πx/λ)

2ε

å
+ 1

å
, (2.46)

where λ is the perturbation wavelength which is set to 2π and A0 is the initial

amplitude of the wave chosen to be A0 = 0.01λ. Prosperetti [58] derived an

analytical solution to the evolution of the wave amplitude with time, provided the

kinematic viscosity, ν, of both fluids are equal. For details of the analytical results

the reader is referred to the paper by Prosperetti [58]. Here we only recall non-

dimensionalization of time is performed using the inviscid oscillation frequency,

ω0 =

σ

ρl + ρg
. (2.47)

For our investigations the density ratio is set to either 1 or 1000 and three

different meshes are tested, namely an 82 mesh, a 162 mesh, and a 322 mesh.

Simulations were performed up to a non-dimensional time of ω0t = 20 which

captures approximately three interface oscillation periods. This parameter space

was chosen to follow work done by Herrmann [59] and Desjardins et al. [28].

For the test cases with a density ratio of unity both fluid densities are set

to 1. In the case with a density ratio of 1000, the liquid and gas densities were

set to ρl = 1000 and ρg = 1, respectively. The non-dimensional surface tension

coefficient was set to σ = 2 and the non-dimensional kinematic viscosity was set

to ν = 0.064720863 in both fluids. The time step was set to ∆t = 0.01 for all of

52

the mesh sizes considered. The DG parameters were fixed with the reinitialization

factor F = 0.5 and second order DG polynomials.

-0.01

-0.005

0

0.005

0.01

0 5 10 15 20

A
/λ

ω0t

(a) Non-dimensional wave amplitude versus
non-dimensional time

-0.8
-0.6
-0.4
-0.2

0
0.2
0.4
0.6
0.8

0 5 10 15 20

A
m

p
li

tu
d

e
er

ro
r/
A

0

ω0t

(b) Non-dimensional wave amplitude error ver-
sus non-dimensional time

Figure 2.13: Standing wave test case with unity density ratio. 8 × 8 mesh shown
with dotted line, 16 × 16 mesh given with dashed line, and thick solid line shows
32× 32 mesh. Solid line in (a) provides the theoretical solution.

-0.01

-0.005

0

0.005

0.01

0 5 10 15 20

A
/λ

ω0t

(a) Non-dimensional wave amplitude versus
non-dimensional time

-0.5
-0.4
-0.3
-0.2
-0.1

0
0.1
0.2
0.3

0 5 10 15 20

A
m

p
li

tu
d

e
er

ro
r/
A

0

ω0t

(b) Non-dimensional wave amplitude error ver-
sus non-dimensional time

Figure 2.14: Standing wave test case with density ratio of 1000. 8× 8 mesh shown
with dotted line, 16 × 16 mesh given with dashed line, and thick solid line shows
32× 32 mesh. Solid line in (a) provides the theoretical solution.

Results are shown in Figs. 2.13 and 2.14 for a density ratio of 1 and 1000,

respectively. The results include the wave amplitude versus time and the error

between the computational and theoretical solutions as a function of time, shown

in (a) and (b), respectively. Convergence to the theoretical solution with mesh

53

refinement is shown for both tests. The results are comparable to previous stud-

ies [28,59,60] and suggest that less than 16 cells are needed to accurately capture

the wave physics.

2.6.4 Kelvin-Helmholtz instability

The Kelvin-Helmholtz (KH) instability can arise when velocity shear occurs in

either a continuous fluid or at the interface of two fluids. The instability is im-

portant to a variety applications including atomization of liquid jets. In this test

case we access the abilities of the DG scheme and the rest of our CFD code [56] to

capture the KH instability and correctly predict the growth-rate of the instability

with time. The problem we focused on is two-dimensional and multiphase with

the gas on the top of the domain and the liquid on the bottom.

The frame of reference is defined so that the base flow velocity at the interface

is zero leading to the following definitions of base flow velocity in the gas and liquid

phases,

Ug(y) = Ug,∞erf

Ç
y

δg

å
for y > 0, (2.48a)

Ul(y) = Ul,∞erf

Ç
y

δl

å
for y < 0. (2.48b)

Note that gas and liquid are denoted by the subscripts g and l, respectively. Ug,∞

and Ul,∞ represent the asymptotic velocities away from the interface. The bound-

ary layer thicknesses are represented by δg and δl. For reference, Fig. 2.15 shows a

graphical representation of the parameters.

Equations 2.48a and 2.48b are not independent but are coupled by the conti-

nuity of shear stress at the interface. The four parameters Ug,∞, Ul,∞, δg, and δl

54

x

y

δl

δg

Ll

LgUg(y)

Ul(y)

ρl, µl

ρg, µg

x

y

δl

δg

Ll

LgUg(y)

Ul(y)

ρl, µl

ρg, µg

x

y

δl

δg

Ll

LgUg(y)

Ul(y)

ρl, µl

ρg, µg

Figure 2.15: Geometry used for Kelvin-Helmholtz test case. Gas is in the top
half of the domain and liquid in the bottom. The liquid and gas boundary layer
thicknesses, δl and δg, are shown along with the distance from the interface to the
top and bottom of the domain shown by Lg and Ll, respectively. The parallel base
flow profile is depicted and labeled Ug(y) in the gas and Ul(y) in the liquid.

appearing in Eqs. 2.48a and 2.48b are related by,

µgUg,∞
δg

=
µlUl,∞
δl

. (2.49)

Therefore, only three of the four parameters can be chosen and the forth must be

calculated using Eq. 2.49.

To analyze the growth-rate of a given disturbance to the base flow we utilize

linear stability analysis, namely the Orr-Sommerfeld equations. As in the work of

Bagué et al. [61], we write the disturbance to the base flow, u and v, in terms of

the stream functions ψl and ψg using,

ug =
∂ψg
∂y

, vg =
∂ψg
∂x

, (2.50a)

ul =
∂ψl
∂y

, vl =
∂ψl
∂x

. (2.50b)

55

Note that there is no connection to ψ used in the DG representation of the conser-

vative level set and ψ is used here to represent the stream functions for historical

consistency. Since the domain is periodic in x and the base flow does not depend

on time we may write the stream functions as

ψg = φg(y) exp(iα(x− ct)) for y > 0, (2.51a)

ψl = φl(y) exp(iα(x− ct)) for y < 0, (2.51b)

where φg and φl are the eigenfunctions within the gas and liquid, α is the real wave

number, and the complex eigenvalue c = cr + ici provides the wave speed, cr, and

the growth-rate of the wave, αci. Throughout this section, the subscripts r and i

refer to the real and imaginary parts of the variable, respectively.

The Orr-Sommerfeld equation describes the evolution of the linearized momen-

tum equations due to the perturbation and are written in each phase,

Ugφ
′′
g − α2Ugφg − cφ′′g + cα2φg − U ′′g φg =

m

r

1

iαRel

Ä
φ(4)
g − 2α2φ′′g + α4φg

ä
for y > 0,

(2.52a)

Ulφ
′′
l − α2Ulφl − cφ′′l + cα2φl − U ′′l φl =

1

iαRel

(
φ

(4)
l − 2α2φ′′l + α4φl

)
for y < 0,

(2.52b)

where m = µg/µl is the viscosity ratio and r = ρg/ρl is the density ratio. Rel is

the liquid Reynolds number and is defined, along with the other non-dimensional

Reynolds and Weber numbers, as,

Rel =
ρlUg,∞δg

µl
, Reg =

ρgUg,∞δg
µg

, Wel =
ρlU

2
g,∞δg

σ
, Weg =

ρgU
2
g,∞δg

σ
.

(2.53)

There are four boundary conditions for each forth order generalized eigenvalue

problem. The four conditions (two for each equations) that are located at the

56

domain boundaries are,

φg = φ′g = 0 for y = Lg, (2.54a)

φl = φ′l = 0 for y = −Ll, (2.54b)

and provide a no slip conditions for the perturbations. The height of the domain

is controlled by Lg and Ll which should be large enough to not impact the results.

At the interface are the remaining four boundary conditions that ensure continuity

of the normal and tangential components of the velocity as well as the normal and

shear stresses. The boundary conditions can be written as,

φg = φl for y = 0, (2.55a)

φ′g +
U ′g
c
φg = φ′l +

U ′l
c
φl for y = 0, (2.55b)

− α2

rcWel
=

1

r
(cφ′l + U ′lφl) +

1

iαrRel

(
φ

(3)
l − 3α2φ′l

)
(2.55c)

−
Ä
cφ′g + U ′gφg

ä
+

m

iαrRel

Ä
φ(3)
g − 3α2φ′g

ä
for y = 0,Ç

φ′′l + α2φl +
U ′′l
c
φl

å
= m

Ç
φ′′g + α2φg +

U ′′g
c
φg

å
for y = 0. (2.55d)

All of the boundary conditions except for the one given by Eq. 2.55c are linear

with respect to the eigenvalue c. Because of the nonlinear condition, an iterative

procedure needs to be performed to solve for the solution unless the boundary

condition can be linearized. Boomkamp et al. [62], linearized Eq. 2.55c using

Eqs. 2.55a and 2.55b resulting in,

− α2

rWel

φ′l − φ′g
U ′l − U ′g

=
1

r
(cφ′l + U ′lφl) +

1

iαrRel

(
φ

(3)
l − 3α2φ′l

)
−
Ä
cφ′g + U ′gφg

ä
+

m

iαrRel

Ä
φ(3)
g − 3α2φ′g

ä
for y = 0.

(2.56)

The linearized form is appropriate when U ′l 6= U ′g. Our base flow meets this criteria

and the linearized form of the boundary condition is used in this study to avoid

the iterative procedure.

57

The Orr-Sommerfeld equation is solved numerically be approximating the

eigenfunctions using a series of Chebyshev polynomials. The functions are orthog-

onal on an interval [−1, 1]. Therefore, we must transform the intervals y = [0, Lg]

and y = [−Ll, 0] to z = [−1, 1] using linear transforms. Using the transformed

coordinate system the eigenfunctions can be approximated with the Chebyshev

collocation method, namely φg(z) =
∑N
n=0 anTn(z) and φl(z) =

∑N
n=0 bnTn(z),

where Tn is the nth Chebyshev polynomial of the first kind, and N is the number

of polynomials used to approximate the eigenfunction. As described by Bagué et

al. [61], N is an important parameter that is chosen so that a balance is achieved

between errors that arise from a poor approximation of the eigenfunction and

round off errors. A poor fit arises when a small number of Chebyshev polynomi-

als are used and the series is not able to conform to the eigenfunctions. Round

off errors dominate when a large number of polynomials are used. Therefore, the

number of polynomials must be somewhere between the small number that causes

a poor fit and the large number that cause round off errors. The approach we

used to find a good value for N followed the method outlined by Bagué et al. [61]

and consisted of increasing N until a range is found where the eigenvalue remains

relatively constant. Then N is taken to be the beginning of this range.

Solution of the Orr-Sommerfeld equation results in the calculation of the eigen-

value, c, and the eigenvectors, φg and φl, which provide the theoretical growth-rate

and the perturbed velocity field needed to initialize the simulation. The theoretical

growth-rate is calculated from the imaginary part of the eigenvalue using, αci. The

growth-rate is non-dimensionalized using the gas boundary layer thickness and the

free stream gas velocity and can be written as αciδg/Ug,∞. The initial perturbed

velocity field used in simulations of the Kelvin-Helmholtz instability is the sum

of the base flow and a perturbation that can be calculated from the eigenvectors

58

using,

U(x, y, t = 0) = Ug(y) + λ
Ä
φ′g,r cos(αx)− φg,i sin(αx)

ä
for y > 0, (2.57a)

U(x, y, t = 0) = Ul(y) + λ
Ä
φ′l,r cos(αx)− φl,i sin(αx)

ä
for y < 0, (2.57b)

V (x, y, t = 0) = λα(φg,r sin(αx) + φg,i cos(αx)) for y > 0, (2.57c)

V (x, y, t = 0) = λα(φl,r sin(αx) + φl,i cos(αx)) for y < 0, (2.57d)

where α is the amplitude of the perturbation which was set to α = 10−3Ug,∞ for

all of the test cases. The interface is also initially perturbed and the displacement

of the level set is given using the classical level set,

G(x, y, t = 0) = y +
λα2

α2|c|2
[ci(φg,i(y = 0) cos(αx) + φg,r(y = 0) sin(αx))

+cr(φg,r(y = 0) cos(αx)− φg,i(y = 0) sin(αx))],

(2.58)

where φg,r(y = 0) and φg,i(y = 0) are the real and imaginary parts of the gas

eigenfunction evaluated at the interface where y = 0. The conservative level set

can be calculated from the classical level set using Eq. 2.6.

The growth-rate from the simulations was calculated from the temporal evo-

lution of the perturbation. Initially, the disturbance is sinusoidal and during the

linear growth period remains a sinusoidal function. Therefore, we found the am-

plitude of the perturbation by fitting y = β sin(2πx/Lx + ξ) through the interface,

where β is the amplitude and ξ is the phase of the sinusoidal function. β and ξ are

varied to fit the function to the interface. The growth-rate is calculated from the

slope of log(β) plotted versus time. It is important to only calculate the growth-

rate from the linear stability regime since non-linear growth of the stability is not

described by the Orr-Sommerfeld equation. In order to define a systematic method

to find the end of the linear stability regime we plot log(β) versus time at each

time-step and calculate the coefficient of determination, R2. If the value of R2,

59

found using all previous values of β and the one from the current time step, is less

than the previous value or R2 then the new data point is an outlier and therefore is

the beginning of the non-linear stability region. We should remark that the actual

distinction between the linear and non-linear stability regimes is difficult to define

and we use the aforementioned method as a systematics way to find the transition

and not a strict mathematical definition of the transition.

Case r = ρg/ρl m = µg/µl Reg Rel Weg Wel
A 0.1 1 2000 200 ∞ ∞
B 0.1 1 2000 200 10 10
C 0.99 0.1 2000 19800 ∞ ∞
D 0.99 0.1 2000 19800 10 10

Table 2.3: Non-dimensional numbers used to setup the four cases used in the study
of the Kelvin-Helmholtz instability.

Four different cases were considered following a previously investigation by

Bagué et al. [61]. For all of the cases the vertical domain size was set by Lg = 6δg

and Ll = 6δl and the boundary layer thicknesses were set to δg = δl = 2.5× 10−3 m.

The free stream velocity in the gas phase was a constant for all of the cases

with a value of Ug,∞ = 10 m s−1. The gas properties, ρg = 1 kg m−3 and

µg = 1.25× 10−5 kg m−1 s−1, were also fixed throughout the study. Liquid prop-

erties were varied by changing the density ratio and viscosity ratio. Cases A and

B have a density ratio of unity, r = 1, and a viscosity ratio of m = 0.1. The

density and viscosity ratios are changed to r = 0.1 and m = 0.99 for case C and

D. The surface tension coefficient is also varied and is set to zero in cases A and

C and to σ = 2.5× 10−3 J2 m−1 in cases B and D. Table 2.3 shows the important

non-dimensional numbers for the four test cases. The width of the domain, Lx, is

set to the same size of the wavelength, α, so that one period of the disturbance

fits within the computational space.

For the four test cases, numerous simulations were run with varying perturba-

60

0

0.05

0.1

0.15

0.2

0.25

0 0.5 1 1.5 2

α
c i
δ g
/U

g
,∞

αδg

(a) Case A

0

0.05

0.1

0.15

0.2

0.25

0 0.5 1 1.5 2

α
c i
δ g
/U

g
,∞

αδg

(b) Case B

0

0.05

0.1

0.15

0.2

0.25

0 0.5 1 1.5 2 2.5 3 3.5 4

α
c i
δ g
/U

g
,∞

αδg

(c) Case C

0

0.05

0.1

0.15

0.2

0.25

0 0.5 1 1.5 2 2.5 3 3.5 4

α
c i
δ g
/U

g
,∞

αδg

(d) Case D

Figure 2.16: Numerical and theoretical results for the four Kelvin-Helmholtz cases.
Numerical results are shown on three different meshes namely 82 (thick solid), 322

(dashed), and 1282 (dotted). The thin solid line shows the theoretical solution.

tion wavelengths. For each simulation a growth-rate was calculated. Figure 2.16

shows plots of the growth-rate versus the wavenumber. The process was repeated

using different meshes and the results from 82, 322, and 1282 are shown on the

plots. The theoretical growth-rate was also calculated for each wavelength and

plotted for reference. As the mesh is refined the numerical growth-rates approach

the theoretical growth-rates for all of the test cases. The coarsest mesh, 82, is

capable of predicting the general trend of the growth-rate as a function of wave-

length. The simulations on the 322 mesh predict the growth-rates very well and

could provide sufficient resolution for simulations that include Kelvin-Helmholtz

type instabilities. Additional meshes were also tested, namely 162 and 642. Using

61

1e-05

0.0001

10 100

L
2

E
rr

or

Mesh Points

Figure 2.17: Mesh refinement convergence for the four test cases used in the Kelvin-
Helmholtz test case. Figure shows L2 error versus the number of mesh points for
Case A (thick solid), Case B (dashed), Case C (dotted), and Case D (dot-dashed).
The thin solid line shows first order convergence.

the results from all of the simulations a convergence plot, Fig. 2.17, was produced

wherein the L2 error between the numerical and theoretical growth-rates for all

wavelengths is plotted. For all four test cases first order convergence was demon-

strated suggesting the DG formulation and our CFD code are capable of capturing

the Kelvin-Helmholtz instability and the quality of the results should improve with

mesh refinement.

2.7 Conclusions

A discontinuous Galerkin discretization of the conservative level set has been de-

veloped. The conservative level set provides good mass conservation and DG offers

an arbitrarily high order representation of the level set while only requiring com-

munication with neighbors that share a face. This novel combination of the ac-

curate conservative level set with a DG discretization leads to an accurate, highly

62

parallelizable scheme, with good mass conservation properties. The scheme was

enhanced by the addition of a maximum/minimum preserving (MMP) limiter that

works to maintain the boundedness of the level set. Calculation of the curvature

was improved by using the height function approach commonly used on VOF for-

mulations. The method results in a curvature that converges with second order

accuracy and has low errors. The DG discretization and curvature calculation

were applied to a variety of test cases including Zalesak’s disk, a two-dimensional

deformation test case, the viscous damping of a surface wave, and an investigation

of the Kelvin-Helmholtz instability. The test cases highlighted the accuracy and

mass conserving properties of the scheme under a wide range of parameters.

63

CHAPTER 3

CONSERVATIVE SECOND-ORDER GEOMETRIC

VOLUME-OF-FLUID METHOD

3.1 Introduction

In simulations of multiphase flows, an accurate representation of interface motion

is important for many interesting engineering applications with significant interface

topology changes. Large discontinuities can exist at the interface, including large

jumps in pressure, density, and viscosity. Therefore, various numerical schemes

have been developed to track the interface location. These schemes can be broadly

classified as interface tracking and interface capturing. Interface tracking schemes

represent the interface explicitly using, for example, a mesh that deforms with

the interface [18] or marker particles on the interface [22]. When the interface

undergoes significant deformation and breaking or merging events, interface track-

ing schemes suffer from the need to frequently perform re-meshing or re-seeding

of marker particles. Interface capturing schemes implicitly represent the interface

and include level set methods [23] and volume-of-fluid (VOF) schemes [25]. Level

set methods can be very accurate but suffer from the lack of discrete mass con-

servation. The conservation properties were improved through the development of

the conservative level set [28, 29, 41, 63], but the method still lacks discrete con-

servation. VOF methods have the potential to provide discrete mass conservation

and second-order accuracy, and are the basis for this work.

VOF methods track the interface by storing the ratio of liquid volume to cell

volume for each computational cell, known as the liquid volume fraction. VOF

methods were introduced in the early 1970’s when DeBar [31], Nichols and Hirt [32],

64

and Noh and Woodward [33] all developed variants of VOF within a short period

of time. Many advancements have improved VOF schemes since their inception

through improved representations of the liquid within the domain and improved

advection schemes. Tryggvason et al. [37] provide a detailed history of VOF meth-

ods with descriptions of many of the significant contributions. In piecewise linear

interface calculation (PLIC) methods, the interface is approximated within each

cell using a straight line (2D) or plane (3D) [31, 34, 35]. PLIC methods mainly

differ in the algorithm used to orient the linear function through the calculation of

the interface normal vector. In this work we use the PLIC interface representation

with an interface normal computed using the ELVIRA method [26], although the

methodology can readily be used with other interface normal calculation strategies.

VOF schemes also differ in how the liquid volume fraction is transported. Early

VOF schemes used flux splitting, wherein the multidimensional transport step is re-

placed by successive one-dimensional transport steps [25]. This approach, which is

straightforward to implement, suffers from errors due to the flux splitting step. Al-

ternatively, un-split schemes that avoid this source of error have been constructed.

Pilliod and Puckett [26] developed a second-order un-split transport algorithm by

computing fluxes by integrating over volumes formed by characteristics in space-

time. The method is shown to produce superior results to split methods, however

the extension to three dimensions is not provided.

Geometric un-split transport schemes provide a framework for constructing

fluxes that are consistent with the characteristics of the problem and are used in

this work. Rider and Kothe [35] proposed an un-split geometric advection scheme

that uses trapezoidal flux regions constructed using cell face velocities as shown

in Fig. 3.1(a). In general, neighboring faces will have different velocities, which

65

results in regions that overlap and are fluxed twice. López et al. [2] developed

EMFPA as an improvement to Rider and Kothe’s method. EMFPA uses cell vertex

velocities to create the flux region and avoids any overlapping regions as shown in

Fig. 3.1(b). The present work is an extension of EMFPA to three dimensions and

the two schemes produce very similar results in two dimensions. Note that EMFPA

is more straightforward to implement than the proposed scheme if the reader is

strictly interested in two dimensional problems. Hernández et al. [3] developed a

three-dimensional flux calculation method known as FMFPA-3D that is based on

the velocity on each edge of the cell face as shown in Fig. 3.1(c). The resulting

fluxes can have overlapping regions that hinder the conservation properties of the

scheme. The proposed method constructs three-dimensional flux regions using cell

corner velocities as shown in Fig. 3.1(d). The resulting flux volumes do not overlap

and provide a framework for un-split, conservative, bounded, three-dimensional

transport. The approach is complicated due to the presence of non-flat faces on

the flux region that are produced when the corner vertex velocity vectors do not

lie in the same plane. Furthermore, the flux volumes can become crossed [64].

However, a straightforward, systematic approach is presented in this work to deal

with the complex geometry.

The proposed VOF scheme shares similarities with other geometric VOF meth-

ods. The HyLEM method of Le Chenadec and Pitsch [36] is a semi-Lagrangian

transport scheme that updates the liquid volume fraction by projecting the cell

forward and backward in time. HyLEM is not flux-based and is not discretely

conservative. The proposed scheme can be seen as a flux based version of HyLEM,

wherein the fluxes have been modified to ensure discrete conservation. If the

fluxes are not modified, the two schemes are equivalent [65]. The voFoam method

of Marić et al. [66] is a three-dimensional, un-split, conservative flux based VOF

66

Overlapping
region

(a) 2D fluxes based on face velocities, Rider
and Kothe [35]

(b) 2D fluxes based on vertex ve-
locities, López et al. [2]

Overlapping
region

(c) 3D fluxes formed using planes based on edge veloc-
ities, Hernández et al. [3]

(d) 3D fluxes based on
vertex velocities, pro-
posed scheme

Figure 3.1: Example of methods used to compute geometric fluxes. Velocity vectors
used to construct fluxes are shown with arrows. Fluxes are shaded.

67

scheme that is similar to the proposed method. voFoam is shown to work well,

however it is unclear how crossed fluxes, wherein the flux moves liquid into and

out of a cell through the same face, are dealt with. In three dimensions it is not

obvious how to deal with the complex geometries that arise in such cases. Fur-

thermore, it is unclear how the flux volumes are rescaled to construct conservative

fluxes without introducing overlapping regions between neighboring flux volumes.

The EMFPA-3D of Ivey and Moin [67] is similar to voFoam. Details are not pro-

vided on how crossed flux volumes are handled. Unfortunately, their approach to

form conservative flux volumes introduces overlapping regions. Furthermore, their

study fails to provide verification or validation test cases for the method.

In the proposed scheme, purely geometrical operations are used to calculate

the fluxes. The flux geometry is systematically partitioned into a collection of sim-

plices (triangles or tetrahedra in two or three dimensions, respectively). Simplices

are easier to work with computationally and, when coupled with an appropriate

sign convention, lead to a straightforward scheme that relies on a small num-

ber of geometric routines. The approach naturally handles crossed flux volumes.

The method uses a correction to the flux volumes to ensure discrete conservation

that does not introduce overlapping regions between neighboring flux volumes.

The correction is performed using an analytic expression that avoids the need

for an iterative procedure. With this framework, conservative un-split transport

can be performed. In this paper, we apply this transport methodology to the

VOF interface capturing strategy. The proposed method could be used to trans-

port other quantities. For example, both momentum and the gas-liquid interface

could be transported, forming a method similar to the scheme of Le Chenadec and

Pitsch [65] but with the addition of discrete conservation of mass and momentum.

This scheme will be considered in a future publication.

68

This paper begins with a detailed mathematical derivation of the method in

Section 3.2. Section 3.3 provides a description of the computational building blocks

that are used in the method. The section includes details on the reconstruction

of the interface from the liquid volume fraction, the construction and discrete

representation of the flux volumes, and the calculation of the fluxes. Canonical

test cases including Zalesak’s disk, two- and three-dimensional deformation tests,

and the time evolution of a drop in synthetic homogeneous isotropic turbulence

are presented in Section 3.4. Finally, conclusions are drawn in Section 3.5.

3.2 Mathematical formulation

In this section a detailed derivation of the conservation laws applied to a fixed

control volume is presented. The derivation recasts a scalar advection partial

differential equation (PDE) into a relation for the evolution of a scalar in a fixed

control volume due to geometric fluxes. While the resulting equations, Eq. 3.13 for

a general advected function and Eq. 3.18 for the liquid volume fraction, are similar

to previously published un-split geometric transport advection equations, see for

example [2,3,35,66,68,69], this derivation is useful in that it shows these are exact

relations. The derivation highlights that exact fluxes to advect a function from

time tn to time tn+1 can be computed by constructing streak-tubes emitted from

each face of the control volume and evaluating the advected function within the

streak-tube at time tn.

69

3.2.1 Problem setup and notations

The material evolution of a conserved scalar f(x, t) in a solenoidal velocity field is

described by

∂f

∂t
+∇ · (uf) = 0, (3.1)

where x is the spatial coordinate, t is time, and u is the velocity field that is

assumed to be known. Integrating this equation over a discrete time-step ∆t =

tn+1 − tn and fixed control volume CV (e.g., a computational cell) with bounding

surface CS and using Gauss’ theorem on the second term allows us to write

∫
CV

Ä
f
Ä
x, tn+1

ä
− f(x, tn)

ä
dV +

∫ tn+1

tn

∮
CS
fu · nCV dS dt = 0. (3.2)

The term on the right is the flux through the surface of the control volume and

depends on f(x, t) throughout the time-step, which is not usually known. Typ-

ically, a discrete representation of f(x, tn) is known and an update equation is

used to calculate f(x, tn+1). Therefore, we recast the flux so it depends solely on

f(x, tn). To do this we start by partitioning the surface of the control volume CS

into sub-surfaces ∂CSi (e.g., the faces of our computational cell) such that

CS =
NS⋃
i=1

∂CSi and

∂CSi ∩ ∂CSj = ∅ for i and j ∈ {1, . . . , NS} and i 6= j.

(3.3)

To each sub-surface ∂CSi we associate the flux volume Ωi(t) with bounding surface

ωi(t). Ωi(t) is the signed volume that flows through the sub-surface ∂CSi between

time t and tn+1. Hence, Ωi(t
n+1) is zero by definition and Ωi(t

n) is the volume that

flows through ∂CSi during ∆t. Figure 3.2 shows an example control volume with

surface CS that has been partitioned with four sub-surfaces ∂CSi for i = 1, . . . , 4.

The flux volume associated with each sub-surface is shown. The sign of the volume

is defined to be negative if the volume moves through the sub-surface and into the

70

CV during the step and positive if the volume moves through the sub-surface and

out of the CV . Formal definitions of the flux volumes and signs are provided in

the derivation below.

CV

∂CS1
∂CS3

∂CS2

∂CS4

Ω−1

Ω−2

Ω+
2

Ω+
3

Ω−4

Figure 3.2: Example geometry used to construct the flux volumes. The control
volume CV is shown as the shaded region. The bounding surface of CV has been
partitioned into four sub-surfaces ∂CSi with i = 1, . . . , 4. Associated with each
sub-surface is the flux volume Ωi. Each flux volume is indicated with a different
pattern of lines.

Integrating Eq. 3.1 over the flux volume Ωi and using Gauss’ theorem on the

second term allows us to write

∫
Ωi(t)

∂f

∂t
dV +

∮
ωi(t)

fu · nΩi
dS = 0. (3.4)

In this equation, nΩi
is the outward-pointing normal to Ωi(t). We define ωi such

that part of it coincides with ∂CSi, which is fixed in time. The rest of ωi is

defined to have a zero flux of f and thus must be a material surface that moves

with the flow. Therefore, ωi can be partitioned into two sub-regions, namely

ωi,F = ωi ∩ ∂CSi = ∂CSi that is fixed and ωi,M = ωi \ ∂CSi that is a material

surface. Integrating the previous equation over ∆t and using this partition, we can

71

write

∫ tn+1

tn

∫
Ωi(t)

∂f

∂t
dV dt+

∫ tn+1

tn

∫
ωi,M (t)

fu · nΩi
dS dt+

∫ tn+1

tn

∫
∂CSi

fu · nΩi
dS dt = 0.

(3.5)

The last term is very similar to the flux term in Eq. 3.2 and will provide the con-

nection between the two equations. However, the first two terms in this equation

are difficult to deal with in their current form but can be elucidated using Leibniz’s

rule which states

d

dt

∫
Ωi(t)

f dV =
∫

Ωi(t)

∂f

∂t
dV +

∫
ωi,M (t)

fu · nΩi
dS, (3.6)

where we have used ωi = ωi,M ∪ ωi,F , the property us = 0 on ωi,F , and defined

us = u on ωi,M , which makes ωi,M a material surface. At this point, it should

be clear that Ωi(t) is a streak-tube emitted backward in time from the surface

∂CSi during the time period t to tn+1. Integrating the previous equation over the

time-step results in

∫
Ωi(tn+1)

f
Ä
x, tn+1

ä
dV −

∫
Ωi(tn)

f(x, tn) dV (3.7)

=
∫ tn+1

tn

∫
Ωi(t)

∂f

∂t
dV dt+

∫ tn+1

tn

∫
ωi,M (t)

fu · nΩi
dS dt.

By definition, Ωi(t
n+1) has a zero volume and the first term in the previous equation

is zero. Henceforth, we will call Ωi(t
n) the flux volume and adopt the notation

Ωi = Ωi(t
n). Subtracting Eq. 3.7 from Eq. 3.5 and using this notation leads to

∫ tn+1

tn

∫
∂CSi

fu · nΩi
dS dt =

∫
Ωi

f(x, tn) dV, (3.8)

which provides a simple relationship between the flux through the sub-surface ∂CSi

and the volume integral over Ωi. The previous equation states that the flux of f

through ∂CSi during the time-step is equivalent to the integral of f in the flux

volume at the beginning of the time-step.

72

The previous equation can almost be combined with Eq. 3.2, leading to a

useful time advancement equation. However, the flux term in Eq. 3.8 contains

nΩi
, the outward-pointing normal to Ωi, while the normal in Eq. 3.2 is nCV , which

is outward-pointing with respect to CV . Because the normal vectors are defined

using the same surface ∂CSi, they are either identical (i.e., nCV · nΩi
= +1) or

point in opposite directions (i.e., nCV · nΩi
= −1). As a result, we partition the

sub-surfaces ∂CSi into two regions ∂CS+
i and ∂CS−i such that

∂CSi = ∂CS+
i ∪ ∂CS−i and

∂CS+
i ∩ ∂CS−i = ∅.

(3.9)

The sub-surfaces are defined using

∂CS+
i = {x ∈ ∂CSi | nCV (x) · nΩi

(x) = +1} (3.10)

and

∂CS−i = {x ∈ ∂CSi | nCV (x) · nΩi
(x) = −1}. (3.11)

Furthermore, we associate to the sub-surfaces ∂CS+
i and ∂CS−i the flux volumes

Ω+
i and Ω−i , respectively. The flux volumes are defined using the same methodology

as described previously, and can therefore be thought of as streak-tubes. Figure 3.3

shows three example fluxes with positive, negative, and positive and negative flux

volumes, respectively.

With these definitions, Eq. 3.8 can be written as

∫ tn+1

tn

∫
∂CSi

fu · nCV dS dt =
∫

Ω+
i

f(x, tn) dV −
∫

Ω−i
f(x, tn) dV. (3.12)

Finally, combining Eq. 3.2 with Eq. 3.12 leads to

∫
CV

Ä
f
Ä
x, tn+1

ä
− f(x, tn)

ä
dV +

NS∑
i=1

ñ∫
Ω+

i

f(x, tn) dV −
∫

Ω−i
f(x, tn) dV

ô
= 0.

(3.13)

73

Ω+
i

nCV
nΩi

a

bc

d

(a) Simple example with positive
flux volume, Ω−

i = ∅.

Ω−i

nCV
nΩi

a

bc

d

(b) Simple example with nega-
tive flux volume, Ω+

i = ∅.

Ω+
i

Ω−i
nCV

nΩi

nCV
nΩi

a

b c

d

(c) Example with crossed flux volume
with both positive and negative regions.

Figure 3.3: Example of the geometry used to define the flux volume Ωi (shaded
region) with outward-facing normal nΩi

. The flux volume is associated with the
sub-surface ∂CSi shown with the thick line with vertices a and b. nCV the outward-
facing normal to CV is also shown.

The term on the left of this equation describes the change in f within the control

volume CV during the time-step. The change is due to fluxes into or out of the

control volume, as described by the term on the right. The flux term has been

recast into a volume integral over the flux volumes, Ω+
i and Ω−i , that move out of

and into the control volume, respectively.

74

3.2.2 Flux velocity

Until now, we have only considered one control volume. However, the control

volumes represent the computational cells used in a simulation, so it is necessary

to extend the notation to describe a collection of control volumes. Let the number

of control volumes used in the simulation be NCV and the pth control volume be

denoted CVp with bounding surface CSp, which has been partitioned into sub-

surfaces ∂CSp,i for i = 1, . . . , NS. Similarly, the flux volume associated with the

sub-surface ∂CSp,i is indicated as Ωp,i.

We introduce useful quantities associated with ∂CSp,i and Ωp,i. We define the

area Ap,i =
∫
∂CSp,i

dS and the signed volume Vp,i =
∫

Ω+
p,i

dV −
∫

Ω−p,i
dV . From the

area, volume, and the time interval ∆t, a mean normal fluxing velocity Up,i can be

defined as

Up,i =
Vp,i

∆tAp,i
. (3.14)

To ensure discrete conservation, the flux velocities must respect the solenoidal

condition
∑Ns
i=1 Up,iAp,i = 0.

3.2.3 Liquid volume fraction transport

To examine liquid volume fraction transport, we choose

f(x, t) =


1, if x is in the liquid at time t,

0, if x is in the gas at time t,

(3.15)

and introduce the shorthand notations

αp(t) =
1

Vp

∫
CVp

f(x, t) dV (3.16)

75

where Vp =
∫
CVp

dV and

αp,i =
1

Vp,i

(∫
Ω+

p,i

f(x, tn) dV −
∫

Ω−p,i
f(x, tn) dV

)
, (3.17)

which are the liquid volume fraction within the pth control volume CVp and signed

flux volume Ωp,i, respectively.

With these notations, Eq. 3.13 can be written as

αp(t
n+1)− αp(tn)

∆t
+

1

Vp

NS∑
i=1

(αp,iUp,iAp,i) = 0, (3.18)

which describes the change in liquid volume fraction within the pth computational

cell due to fluxes, defined using streak-tubes, through the cell faces. No discretiza-

tion choices have been made in the derivation of the previous equation and it is the

equivalent of Eq. 3.1, where f is chosen to be the liquid volume fraction, written

for an arbitrary control volume.

3.3 Computational geometry toolbox

The framework presented heretofore requires calculating the volume and liquid vol-

ume fraction associated with the flux volumes Ωp,i using a scheme that is accurate,

efficient, and implementable in three dimensions. In this section, we present the

computational tools needed to make the necessary calculations.

3.3.1 Interface reconstruction

The interface reconstruction step corresponds to the process of calculating an ap-

proximation to the interface location from the liquid volume fraction. The interface

76

1 1 1 1 1

1 1 1 1 0.6

1 1 1 0.8 0.3

1 1 0.7 0.3 0

0.4 0.5 0.2 0 0

Figure 3.4: Representation of inter-
face (solid line) using a VOF scheme.
Liquid volume fraction α shown with
numbers.

1 1 1 1 1

1 1 1 1 0.6

1 1 1 0.8 0.3

1 1 0.7 0.3 0

0.4 0.5 0.2 0 0

Figure 3.5: Example of PLIC recon-
struction of interface from liquid vol-
ume fraction.

location is needed to determine αp,i, the liquid volume fraction within the flux vol-

ume Ωp,i. A variety of methods have been developed in order to perform that

reconstruction step [25, 31, 33, 34]. We are using a three-dimensional extension

of the piecewise linear interface calculation (PLIC) method [31, 34], wherein the

interface is represented using a piecewise planar reconstruction within each com-

putational cell. Figure 3.5 shows an example of how the reconstructed interface

may look in two dimensions.

Within each computational cell, the plane is uniquely defined with the interface

normal vector and the liquid volume fraction. The normal vector provides the

direction of the plane and the liquid volume fraction constrains the location of the

plane such that the cell volume on the liquid side of the plane equals αpVp. In this

work, the second-order interface normal calculation method known as ELVIRA [26]

is used. Scardovelli and Zaleski [70] developed analytical relationships that permit

the calculation of the PLIC reconstruction plane from the normal and liquid volume

fraction directly. The combination of the analytical relations, the interface normal,

and the liquid volume fraction provides a unique piecewise planar representation

77

of the interface. Alternatively, an iterative approach such as Brent’s method [71]

could be used to form the PLIC reconstruction.

3.3.2 Discrete representation of the flux volume

Tessellation

The flux volumes Ωp,i are streak-tubes that generally do not have flat faces (even

in two dimensions) and are non-convex with both positive and negative regions. In

order to deal with these objects, we propose approximating the flux volumes with a

collection of simplices (triangles in two dimensions and tetrahedra in three dimen-

sions), denoted ∆p,i,j for j = 1, . . . , Nsims where Nsims is the number of simplices

such that

Ωp,i ≈ ‹Ωp,i =
Nsims⋃
j=1

∆p,i,j. (3.19)

In the previous equation, ‹Ωp,i is the discrete representation of Ωp,i, which is simpler

to manipulate computationally. Similarly, the discrete approximations of αp,i and

Vp,i are denoted with α̃p,i and ‹Vp,i, respectively.

The number of simplices used in the tessellation depends on a balance between

computational cost and accuracy, both of which increase with increasing number

of simplices. In a second-order implementation, edges of the flux volume can

be approximated with straight lines. In two dimensions, the resulting shape can

therefore be represented using two simplices. This is shown in Fig. 3.6, wherein

each of the flux volumes associated with a two-dimensional computational cell

are represented using two simplices. A three-dimensional flux hexahedral volume

with straight edges can be represented with five simplices. However, faces on

78

opposite sides of the flux volumes will be cut along different diagonals, which can

result in overlaps between the tessellated faces of neighboring flux volumes. Using

six simplices avoids this source of error since the diagonals on opposite sides of

the flux volume go in the same direction. Figure 3.7 shows an example of the

discretization of a three-dimensional flux volume using six simplices. Notice in

the figure how the front face with vertices anan+1bn+1bn is cut along the diagonal

an+1bn, which is in the same direction as the diagonal dn+1cn that cuts the opposite

face. In a five-simplex representation, the front face would still be cut by the an+1bn

diagonal, but the opposite face would be cut along the cn+1dn diagonal. Again,

using more simplices improves the discrete representation of the flux volume but

the computational cost also increases.

(a) Example of real geometry. (b) Discrete representation of ge-
ometry.

Figure 3.6: Example geometry of the two-dimensional flux volume associated with
a computational cell (shaded). (a) shows an example of a realistic geometry where
the four flux volumes (indicated with lines) do not have straight edges. (b) shows
how the real geometry can be approximated using two simplices per flux volume.

The simplices are created using a systematic approach that makes the imple-

mentation straightforward. Vertices that exist on the corners of the computational

cell face are identified. Since the flux volume is a streak-tube, each vertex is trans-

79

an+1

bn+1

cn+1

dn+1

an

bn

cn

dn

(a) Example of a flux volume in three dimen-
sions.

an+1

bn+1

cn+1

dn+1

an

bn

cn

dn

(b) Discrete representation of a flux volume
using six simplices.

an+1

bn+1

bn

dn+1

cn+1

bn+1

bn

dn+1

an+1 an

bn

dn+1

cn

bn

cn+1

dn+1

cn

dn+1

bn

dn

an

dn

bn

dn+1

(c) Exploded view of discrete representation of a flux volume using six simplices.

Figure 3.7: Example of a three-dimensional flux volume associated with the com-
putational cell face with vertices (abcd)n+1. (a) shows the real shape of the flux
volume. (b) and (c) show how the flux volume is discretized using simplices.

80

ported back in time along its streak-line. For example, in Fig. 3.7 the vertices

with superscript n+ 1 are on the corners of ∂CSp,i. These vertices are transported

back in time to their locations with superscript n. The simplices can then be

constructed from the location of the original and transported vertices.

Vertex transport along a streak-line can be described using

dxv(t)

dt
= u(xv(t), t) and

xv(t0) = xv,0,

(3.20)

where xv(t) is the position of the vertex at time t and xv,0 is the starting location

of the vertex on the computational cell face at time t0. This equation is integrated

backwards in time to find xv(t
n). To simplify the process, we assume the velocity

field is time-invariant. This is a reasonable (second-order) approximation since the

velocity and interface transport steps are staggered in time in our implementation.

Many time integration strategies can be used to solve Eq. 3.20, however higher-

order methods will result in a vertex more closely following its streak-line. We

have tested a range of Runge-Kutta schemes from first to sixth order and found

little difference in the computed solutions. A second-order Runge-Kutta method is

consistent with the rest of the scheme and was chosen due to the low cost compared

with higher-order methods.

Simplex construction and sign convention

In two dimensions, it is possible to list all of the different shapes the flux volume

can take and to systematically break the shapes into two simplices with associated

signs that indicate whether the flux is into or out of CVp. However, this approach is

tedious due to the large number of different flux volume shapes that exist. In three

dimensions, a similar approach is even more difficult to implement. Therefore, we

81

propose a straightforward and systematic way of constructing the simplices and

determining their sign.

We start by associating a sign to each of the simplices in the partition of ‹Ωp,i

based on the location and ordering of the simplices’ vertices. The sign can easily

be determined using

sign(∆) ≡ sign
Å

(b− a)× (c− a)
ã

(3.21)

for the two-dimensional simplex with vertices abc and

sign(∆) ≡ sign

ñÅ
(b− a)× (c− a)

ã
·
Ç
d− 1

3
(a+ b+ c)

åô
(3.22)

in three dimensions for the simplex with vertices abcd. Clearly, the ordering of

the vertices determines the sign and therefore it has to be chosen such that, when

a simplex contributes a positive flux, it has a positive sign, and when the simplex

contributes a negative flux, it has negative sign. The sign of the simplex determines

whether it is part of ‹Ω+
p,i or ‹Ω−p,i (the discretized counterparts to Ω+

p,i and Ω−p,i), i.e.,‹Ω+
p,i =

Nsims⋃
j=1

sign(∆p,i,j)=+1

∆p,i,j and ‹Ω−p,i =
Nsims⋃
j=1

sign(∆p,i,j)=−1

∆p,i,j. (3.23)

Simplices created from the same ordering of vertices are used to represent all

of the different flux volume shapes, which greatly simplifies the implementation.

For example, Fig. 3.8 shows three two-dimensional flux volumes that represent the

three main categories of shapes that are possible in two dimensions. In the figure,

the cell face is the line ab, d is the location of a at tn found by solving Eq. 3.20,

and c is the location of b at tn. In all of the cases the flux volumes are represented

using the simplices ∆abc and ∆acd. The sign of each simplex can be calculated

using Eq. 3.21, and with these definitions it is found to be consistent with the sign

of the flux that the simplex is representing.

82

Note that simplices may extend outside of ‹Ωp,i, i.e.,¶‹Ωp,i ∪∆i,j

©
\
¶‹Ωp,i ∩∆i,j

©
6= ∅, (3.24)

as shown by case C in Fig. 3.8. However, whenever a simplex extends outside of‹Ωp,i, another simplex of opposite sign also extends outside and the net contribution

is zero.

a

b
c

d

+
nCV

a

b
c

d

+

nCV

a

b
c

d

+

−

nCV

a

b
c

d

+

4abc

+

4acd

Case A

a

b
c

d

+

4abc

+

4acd

Case B

a

b
c

d

+

4acd

−
4abc

Case C

Figure 3.8: Example of the discrete representation of two-dimensional flux volumes
using signed simplices.

This systematic approach to constructing the simplices is readily extendable to

three dimensions. Similarly to the two-dimensional implementation, the vertices of

a computational cell face are transported back in time using Eq. 3.20, the simplices

are created using a predefined ordering of the vertices, and the sign of the simplex

determines the direction of the flux. Figure 3.9 provides details on the predefined

ordering of the vertices used to make the simplices. Details of discretizations that

use 6 and 20 simplices per flux volume are included.

83

The ordering of the vertices in three dimensions is important to ensure that the

faces that are shared between neighboring flux volumes are discretized in a con-

sistent way and that no gaps or overlaps are formed in the geometry. Figure 3.10

illustrates two ways in which the face of a flux volume can be shared with a neigh-

boring flux volume. In the figure, the shaded faces are shared between neighboring

flux volumes and should be discretized using the same representation by all flux

volumes that share the face. The ordering of the vertices provided in Fig. 3.9 has

been constructed such that flux volume faces are consistently discretized by neigh-

boring flux volumes. This is trivial for the 20 simplex discretization because all

faces are discretized the same way using the four corners and the face barycenter.

Contrarily, the 6 simplex discretization approximates each face with two triangles

that depend on which diagonal is used. Therefore, an equivalent to the 20 simplex

discretization that uses face barycenters could be used to discretize flux volumes

that are produced in the context of an unstructured code.

Using this framework, the calculation of the volume and liquid volume within

the flux volume becomes systematic and straightforward. First, the cell face ver-

tices are transported back in time to the beginning of the time-step, tn. Then, the

flux volume is approximated with a collection of predefined simplices, provided in

Fig. 3.9 for a Cartesian mesh. These simplices are defined to be non-overlapping

and their sign is consistent with the definitions from Section 3.2. Finally, the

volume and the amount of liquid within a simplex remain to be calculated.

Flux calculation

In order to solve Eq. 3.18, the quantities αp,i and Up,i defined using Eqs. 3.17

and 3.14 need to be calculated. The problem is simplified thanks to the discrete

84

a

b

c

d

e

f

g

h

i

j

k

l

mn
nCV

x face

ab

c d

ef

g h

i

j

k

l

mn nCV

y face

ab

c d

ef

g h

i

jk

l
m

n

nCV

z face

x

y
z

6 Simplices
1 g d c f
2 f c b d
3 f b a d
4 g h d f
5 f e h d
6 f e d a

20 Simplices
1 a e j i
2 e f j i
3 f b j i
4 b a j i
5 b f k i
6 f g k i
7 g c k i
8 c b k i
9 c g l i
10 g h l i
11 h d l i
12 d c l i
13 d h m i
14 h e m i
15 e a m i
16 a d m i
17 e h n i
18 h g n i
19 g f n i
20 f e n i

Figure 3.9: Ordering of vertices used in the construction of simplices. The figures
on the left show the ordering of the vertices and the tables on the right provide a
list of the four vertices used to construct each simplex. The vertices a, b, c, and
d are located on the corners of the cell face. The vertices e, f , g, and h are the
locations of the vertices a, b, c, and d at time tn, respectively, found by solving
Eq. 3.20. Vertex i is located at the barycenter of the cell face abcd. Vertex n is
the location of vertex i at time tn, found by solving Eq. 3.20. Vertices j, k, l, and
m are found by solving Eq. 3.20 for 1

2
∆t from points 1

2
(a+ b), 1

2
(b+ c), 1

2
(c+ d),

and 1
2
(d+ a), respectively.

85

(a) Face shared between flux volumes associated
with neighboring computational cells.

(b) Face shared between flux volumes
associated with the same computational
cell.

Figure 3.10: Illustration of flux volume faces that are shared by neighboring flux
volumes. The shaded faces are shared between the two flux volumes shown in
each figure. The discrete representation of the non-flat face needs to be consistent
between all flux volumes that share the face.

representation of the flux volume as a collection of signed simplices, thus we only

need to calculate the liquid volume fraction and volume of a simplex, denoted

α̃∆p,i,j
and ‹V∆p,i,j

, respectively. The discrete quantities α̃p,i and ‹Up,i can then be

86

generated using

α̃p,i =

∑Nsims
j=1 α̃∆p,i,j

‹V∆p,i,j∑Nsims
j=1

‹V∆p,i,j

and (3.25)‹Vp,i =
Nsims∑
j=1

‹V∆p,i,j
, (3.26)

along with the discrete equivalent of Eq. 3.14.

The signed volume of a simplex can be calculated easily by combining the

sign convention, Eq. 3.22, and the Cayley-Menger determinant [72], which in three

dimensions can be written as‹V∆p,i,j
= −(a− d) · ((b− d)× (c− d))

6
(3.27)

where ∆p,i,j has vertices a, b, c, and d.

The liquid volume fraction in a simplex is more complicated to compute and

depends on the location of the gas-liquid interface. In our method, the gas-liquid

interface is represented using the PLIC scheme described in Section 3.3.1, which

uses a piecewise planar representation of the interface that is local to each com-

putational cell. To calculate α̃p,i, a given simplex is cut by cell faces and divided

into regions that are local to each computational cell, and then cut by the gas-

liquid interface, resulting in regions that are exclusively within the liquid phase

or exclusively within the gas phase. Then, the liquid volume is easily calculated

as the sum of volumes within the liquid phase. To make the algorithm tractable,

the shapes that are created from cutting a simplex by a plane are partitioned into

a new collection of simplices that can easily be cut again. The process continues

until each simplex lies within only one phase.

For example, Fig. 3.11 shows the process used to cut a simplex by two planes

that are coincident with the computational grid, followed by a cut by the PLIC

87

Ii,j

i− 1
2

i+ 1
2

j − 1
2

j + 1
2

(a) Original simplex and PLIC recon-
struction of interface indicated with Ii,j
in cell i, j.

i− 1
2

i+ 1
2

j − 1
2

j + 1
2

(b) Simplex is cut by plane at j− 1
2 (thick

solid line). Resulting shapes are parti-
tioned into simplices (dotted line).

i− 1
2

i+ 1
2

j − 1
2

j + 1
2

(c) Simplices in (b) are cut by plane at
j + 1

2 (thick solid line). Resulting shapes
are partitioned into simplices (dotted line)
that are unique to one computational cell.

i− 1
2

i+ 1
2

j − 1
2

j + 1
2

(d) Simplices from (c) are cut by liquid-
gas interface reconstruction I (thick solid
line). Resulting shapes are partitioned
into simplices (dotted lines) that are
within one computational cell and one
phase.

Figure 3.11: Steps used to calculate the liquid volume fraction within a simplex
that crosses multiple planes.

88

representation of the interface. The simplex shown in Fig. 3.11(a) is first cut by

the plane indicated by the j − 1
2

face of the cell considered, which results in two

shapes. The bottom shape is a triangle and the top shape is a quadrilateral. The

triangle is already a simplex, but the quadrilateral needs to be partitioned into

two simplices as shown by Fig. 3.11(b). Next, the three simplices are cut by the

plane at the j + 1
2

index, which again leads to the partition of a simplex into

a triangle and a quadrilateral. The quadrilateral is divided into two simplices as

shown by Fig. 3.11(c). Finally, the simplices are cut by the reconstructed gas-liquid

interface and partitioned into more simplices as shown by Fig. 3.11(d). Now it is

straightforward to compute the liquid volume within the original simplex from the

volumes of the new simplices that contain liquid. For example, the liquid volume

within the simplex in Fig. 3.11(a) is equal to the sum of the volumes of the shaded

simplices in Fig. 3.11(d).

The number of planes by which the simplex is cut depends on the location of

the simplex vertices. In our implementation, we identify which planes the simplex

needs to be cut by using a initialization routine that is based on the location of

the vertices.

3.3.3 Construction of conservative fluxes

As described in Section 3.2.2, the flux velocity must be solenoidal to ensure discrete

conservation. In our implementation a staggered velocity field is used, meaning

that the face-normal component of the velocity is available at the center of each

computational cell face. There is no guarantee that interpolating this velocity to

cell face vertices and projecting the vertices back in time to create a flux volume

will produce a flux velocity Up,i that is also solenoidal. Therefore, the flux volume

89

is modified to ensure discrete conservation. The modification is typically small and

does not alter the second-order accuracy of the scheme as shown in the verification

tests.

Several approaches have been used previously to modify the fluxes to improve

conservation. Liovic et al. [73] scaled the multi-dimensional fluxes with conserva-

tive one-dimensional fluxes. Mencinger and Žun [74] used a parametric correction

approach to modify the time-step used to project each vertex in the construction

of the flux volume, but the extension to three-dimensions is unclear. López et

al. [2] and Hernández et al. [3] used analytical relations to modify the size of the

flux volume so that a conservative flux is constructed. In their approaches, the

flux volume is constrained by the volume of a one-dimensional conservative flux

built using a solenoidal face velocity, e.g., “Up,i = (u · nCV)p,i, where “Up,i is the

modified flux velocity and (u · nCV)p,i is the normal component of the solenoidal

velocity on the ith face of the pth computational cell. The resulting modification is

equivalent to adjusting the time-step used in Eq. 3.20 to project the vertices along

streak-lines. A similar approach is used in the proposed scheme. However, modify-

ing the time-step can create overlapping regions between neighboring flux volumes

when the faces are non-planar as shown in Fig. 3.12. Therefore, the modification

is performed in a way that avoids creating overlapping regions that would result

in a conservation error.

The proposed method consists of adding additional simplices to the flux vol-

ume such that “Up,i = (u · nCV)p,i. The additional simplices must not modify the

discretization of faces of the flux volume that are shared with neighboring flux

volumes in order to ensure that no overlapping regions are created. Therefore,

the simplices are added onto the projected face, e.g., the face of the flux volume

90

a

b

c

d

e2

f2

g

h

i

j

k

l

e1

f1

Figure 3.12: [
Overlapping region between rescaled fluxes]Overlapping region formed between
neighboring flux volumes abcde2f2gh and baijf1e1kl when simple rescaling
(i.e., time-step adjustment) is used to create conservative fluxes. The face with
vertices abf1e1 is triangulated with diagonal af1. Rescaling the bottom flux
volume moves the projected vertices creating the shaded overlapping region.

opposite from the cell face CSp,i. The number of additional simplices is equal

to the number of simplices used to discretize the projected face. The volume of

the additional simplices Vcor can be calculated from the difference between the

pre-modified flux velocity, the solenoidal flux velocity, and Eq. 3.14, leading to

Vcor =
Ä
(u · nCV)p,i − Up,i

ä
∆tAp,i. (3.28)

Figure 3.13 shows a two-dimensional example for the flux through an x-face ab

with flux volume abcd. The flux volume is modified by adding the simplex dco.

A closed form analytic expression for the coordinates of vertex o can be formed by

enforcing two constraints. We choose to constrain the y coordinate of vertex o by

the y coordinate of n, which is the barycenter of the face cd. The x coordinate is

constrained by the volume Vcor. Similarly, the additional simplex on a y-face flux

volume is constrained by the x component of the barycenter and the correction

91

volume.

This approach to modify the flux volume is easily extended to three dimensions,

as shown for example in Figure 3.14. The flux volume abcdefgh, associated with

the x-face abcd is modified by adding the two simplices efho and fgho. The

location of vertex o is determined by enforcing three constraints. Two constraints

come from enforcing that the y and z coordinates of vertex o are equal to the y and

z coordinates of n, the barycenter of face efgh. The x coordinate is constrained

by the correction volume, i.e.,

Vcor = V∆(efho) + V∆(fgho) (3.29)

= −(e− o) · ((f − o)× (h− o))

6
− (f − o) · ((g − o)× (h− o))

6
.

Similar constraints are enforced for flux volumes associated with y and z compu-

tational cell faces. The three constraints provide an analytic relation that relates

the location of vertices e, f , g, and h and the volume Vcor to the location of vertex

o, which can be evaluated to quickly compute the modification to the flux volume.

The analytic relations for computing o are provided in Algorithm 1 for all the faces

of a computational cell.

If the flux volume abcdefgh in the three-dimensional example is discretized

with 20 simplices, four additional simplices are added because the projected face is

discretized with four simplices. The additional simplices are heno, efno, fgno,

and ghno. The y and z coordinates of o are constrained by the barycenter n and

the x coordinate is constrained by the volume Vcor. An analytical relation can be

found to solve for the x coordinate that is similar to the relation in Eq. 3.29.

92

Algorithm 1 SolenoidalFlux: routine to compute two additional simplices to
construct conservative flux. Algorithm assumes the original flux is discretized with
six simplices as shown in Fig. 3.9.

1: function SolenoidalFlux(D,V ,Vcor)
2: input D . Direction of face
3: input V . Vertices on flux volume as shown in Fig. 3.14
4: input Vcor . Volume of additional simplices
5: e← V 5

6: f ← V 6

7: g ← V 7

8: h← V 8

9: n← 1
4
(e+ f + g + h)

10: switch D do
11: case 1
12: o1 ← (6Vcor +e1f2h3−e1f3h2−e2f1h3 +e2f3h1 +e3f1h2−e3f2h1−e1f2e3

+e1f3e2 + e2f1e3 + e3h1e2 − e3f1e2 + f1g2h3 − f1g3h2 − f2g1h3

+f2g3h1 + f3g1h2 − f3g2h1 + e1h2e3 − e1h3e2 − e2h1e3 − f1g2e3

+f1g3e2 + f2g1e3 − f3g1e2 − g1h2e3 + g1h3e2 + g2h1e3 − g3h1e2)
/(e2f3 − e3f2 − e2h3 + e3h2 + f2g3 − f3g2 + g2h3 − g3h2)

13: o2 ← n2

14: o3 ← n3

15: case 2
16: o1 ← n1

17: o2 ← −(6Vcor+e1f2h3−e1f3h2−e2f1h3+e2f3h1+e3f1h2−e3f2h1−e1f2e3

+e2f1e3 − e2f3e1 + e3f2e1 + f1g2h3 − f1g3h2 − f2g1h3 + f2g3h1

+f3g1h2 − f3g2h1 + e1h2e3 − e2h1e3 + e2h3e1 − e3h2e1 − f1g2e3

+f2g1e3 − f2g3e1 + f3g2e1 − g1h2e3 + g2h1e3 − g2h3e1 + g3h2e1)
/(e1f3 − e3f1 − e1h3 + e3h1 + f1g3 − f3g1 + g1h3 − g3h1)

18: o3 ← n3

19: case 3
20: o1 ← n1

21: o2 ← n2

22: o3 ← (6Vcor +e1f2h3−e1f3h2−e2f1h3 +e2f3h1 +e3f1h2−e3f2h1 +e1f3e2

−e2f3e1 − e3f1e2 + e3f2e1 + f1g2h3 − f1g3h2 − f2g1h3 + f2g3h1

+f3g1h2 − f3g2h1 − e1h3e2 + e2h3e1 + e3h1e2 − e3h2e1 + f1g3e2

−f2g3e1 − f3g1e2 + f3g2e1 + g1h3e2 − g2h3e1 − g3h1e2 + g3h2e1)

/(e1f2 − e2f1 − e1h2 + e2h1 + f1g2 − f2g1 + g1h2 − g2h1)

23: return NAdd ← 2 . Number of additional simplices
24: return S1 = [e,f ,h,o]T . First additional simplex
25: return S2 = [f , g,h,o]T . Second additional simplex
26: end function

93

a

b

c

d

o
n x

y

Figure 3.13: Modification of two-dimensional flux volume to create solenoidal flux.
Original flux volume associated with face ab has vertices abcd. The additional
simplex with vertices cdo is added.

a

b

c

d

e

f

g

h

no x

z

y

Figure 3.14: Modification of three-dimensional flux volume to create solenoidal
flux. Original flux volume associated with face abcd has vertices abcdefgh.
Two additional simplices with vertices efho and fgho are added if six simplices
are used to discretize the original volume.

3.3.4 Parallelization

The proposed scheme has been implemented using a domain decomposition par-

allelization strategy within the NGA computational platform [56]. The geometric

transport routines require the geometry of neighboring cells and the PLIC recon-

struction in those cells. Using standard operations within NGA to update ghost

cells on domain boundaries, the interface normal vector and the liquid volume

fraction are communicated. With the communicated information, the PLIC re-

construction is computed on each processor and the geometric algorithm is used

94

to advect the liquid volume fraction. The resulting scheme has minimal commu-

nication requirements and is expected to have excellent scale-up properties.

3.3.5 Extension to unstructured meshes

The proposed algorithm can be implemented within the context of an unstructured

mesh with only minor modifications. The discretization of the flux volumes should

be consistent with the cell face geometry, and faces of the flux volumes that are

shared with neighboring flux volumes should be discretized such that there are

no overlaps or gaps. The sign of the simplices should be constructed so that

positive fluxes are represented by positively orientated simplices and negative fluxes

are represented by negative simplices. The modification of the flux volume to

make conservative fluxes can be performed using the proposed method. Once

the flux volume is formed as a collection of simplices, the simplices are cut into

regions that are unique to one computational cell using, for example, a polyhedron

clipping and capping algorithm [64,66]. Finally, the simplices are cut by the PLIC

reconstruction within each cell and the fluxes are computed. In summary, the

main ideas of the proposed method can all be extended to unstructured grids,

namely partitioning the flux volume into a collection of simplices, assigning a sign

to each simplex to determine the flux contribution, and correcting the flux volume

with additional simplices. Furthermore, Algorithm 5 and the look-up tables that

provide an efficient method to cut a simplex by a plane are not mesh dependent

and could be used in an unstructured code. Additional details will depend on the

detailed topology of the mesh and are beyond the scope of this paper.

95

3.3.6 Implementation

In this section, the process used to calculate the liquid and volume fluxes is detailed

using pseudo-code. Algorithm 2 shows the general framework for updating the

liquid volume fraction. First, the interface normal and PLIC reconstruction are

computed using the methodology described in Section 3.3.1. Next, the fluxes are

calculated, then the liquid volume fraction is updated.

Algorithm 3 provides the methodology to compute the fluxes. In the algorithm,

the flux volume is created on every face on the computational mesh. Then, the flux

volume is divided into simplices using PartitionFlux, which, due to the order

of the vertices used to create the simplices, have the same sign as the flux volume

they represent. Next, the flux volume is modified by adding additional simplices

constructed using SolenoidalFlux (Algorithm 1). Finally, the signed volume

and signed liquid volume within each simplex are calculated and added to running

sums. The sign follows from the orientation of the simplex that is evaluated using

SimplexSign, which should be based on Eq. 3.22. Note that the computational

cost can be reduced by computing each flux once and using the value to update

both computational cells that share the face. Care must be taken to ensure the

sign of the flux is correct when updating each cell.

The liquid volume within a simplex is calculated with SimplexLiquidVol-

ume (Algorithm 4). The algorithm takes a simplex, cuts the simplex by a plane

and divides the resulting shapes into new simplices using CutSimplex. The new

simplices are cut by another plane and divided into more new simplices. The pro-

cess continues until each of the simplices is contained within a single computational

cell and on one side of the reconstructed gas-liquid interface.

96

The operation to cut a simplex by a plane is performed by CutSimplex (Al-

gorithm 5). This algorithm computes the distance between each vertex of the

simplex and the plane that the simplex is being cut with. Based on the sign of

the four distances, the number of intersections between the plane and the simplex

edges is calculated and the intersection points are saved. Finally, the simplex is

partitioned into a collection of new simplices using the original vertices and the

intersection points. Note that the orientation of the simplices used in the parti-

tion of the original simplex is not important, only the orientation of the original

simplex is used to determine the sign of the flux contribution, i.e., SimplexSign

only appears in Algorithm 3 and depends on the original simplex.

To improve the efficiency of the CutSimplex algorithm we have introduced

look-up tables. A case number, Case ∈ {1, . . . , 16}, is created that classifies the

simplex based on the sign of the distances between the simplex vertices and the

cut-plane. The case, in conjunction with the look-up tables, provides

• NumberIntersect(Case): the number of intersections between the edges

of the simplex and the cut-plane,

• IndexEndPoint(v, n,Case): the index of the vth end point on the end of

the edge involved in the nth intersection between the simplex and the cut-

plane,

• NumberSimsPart(Case): the number of simplices in the partition of the

original simplex,

• IndexSimVert(v, n,Case): the index of the vth vertex on the nth simplex

used to partition the original simplex.

For example, Case = 2 corresponds to a simplex with the 1st vertex on the pos-

97

itive side of the plane and the 2nd, 3rd, and 4th vertices on the negative side, as

shown in Fig. 3.15. This simplex has three edges that intersect the plane and

therefore NumberIntersect(2) = 3. The first intersection is between the plane

and the edge with vertices 1 and 2, thus IndexEndPoint(:, 1, 2) = [1, 2]. The

second intersection is with the edge with vertices 1 and 3, and the third intersec-

tion is with the edge with vertices 1 and 4, thus IndexEndPoint(:, 2, 2) = [1, 3]

and IndexEndPoint(:, 3, 2) = [1, 4]. The number of simplices used to parti-

tion the cut simplex is four, which is provided by NumberSimsPart(2) = 4.

Finally, the indices of the vertices used to construct the new simplices are pro-

vided by IndexSimVert(v, n,Case), where v is the vertex number and n is the

simplex number. For our example, [IndexSimVert(:, :, 2) =
î
[1, 5, 6, 7], [4, 2, 3, 6],

[4, 2, 5, 6], [4, 5, 6, 7], [0, 0, 0, 0], [0, 0, 0, 0]
ó
, which provides the information needed to

create the four simplices in our partition. The first simplex has vertices that corre-

spond to the points with the index 1, 5, 6, and 7. The second simplex has vertices

4, 2, 3, and 6. The third and fourth simplices have vertices 4, 2, 5, 6 and 4, 5,

6 , 7, respectively. Note that the zeros in IndexEndPoint and IndexSimVert

indicate null values and are used to pad the arrays.

Algorithm 2 UpdateVOF: framework to update the liquid volume fraction

1: function UpdateVOF(αnp ,∆t)
2: input αnp . Liquid volume fraction at tn

3: input ∆t . Time-step
4: [n]← InterfaceNormal . Compute interface normal vectors
5: [I]← InterfaceReconstruction(n,αnp) . (Section 3.3.1)
6: [αp,i,Up,i]← CalcFlux(I,∆t) . Compute fluxes (Algorithm 3)
7: for p = 1→ NCV do . Loop over control volumes in mesh

8: αn+1
p ← αnp −

∆t

Vp

NS∑
i=1

(αp,iUp,iAp,i) . Update using Eq. 3.18

9: end for
10: return αn+1

p

11: end function

98

1

2 3

4

5 6

7

n

Figure 3.15: Example simplex and cut-plane classified as Case = 2. Vertices
indicated with their index number.

3.4 Verification tests

The proposed scheme is studied using a variety of test cases. All of the tests use

a second-order Runge-Kutta method to solve Eq. 3.20. The flux volumes are dis-

cretized using eight simplices, six from the initial discretization plus two additional

simplices to construct conservative fluxes. All tests use a specified velocity field

and do not require the velocity field to be obtained from a Navier-Stokes solver.

3.4.1 Zalesak’s disk

The first verification test case is known as Zalesak’s disk [57] and tests the ability

of the proposed VOF scheme to transport a two-dimensional shape with sharp

corners. The velocity field is specified to produce solid body rotation using

u = −2πy,

v = +2πx.

(3.30)

99

Algorithm 3 CalcFlux : returns αp,i and Up,i, i.e., arrays of the liquid volume
fraction fluxes and the mean flux velocity associated with the flux volume Ωp,i

1: function CalcFlux(I,∆t)
2: input I . Interface reconstruction
3: input ∆t . Time-step
4: Lp ← 0 . Zero arrays
5: Vp ← 0
6: for p = 1→ NCV do . Loop over control volumes in mesh
7: for i = 1→ NS do . Loop over faces of pth control volume
8: [Nplanes,P]← CutPlanes(p, i) . Construct cut-planes
9: V ← FaceVertices(p, i) . Create vertices on face (Fig. 3.9)

10: V ← ProjectVertices(V ,∆t) . Project vertices using Eq. 3.20
11: [NSim,S]← PartitionFlux(V)

. Partition flux volume into simplices according to Fig. 3.9
12: Vcor ← CorrecttionVolume(Di, NSim,S)

. Additional volume needed to correct flux, Eq. 3.28
13: [NAdd,S]← SolenoidalFlux(Di,V ,Vcor)

. Create additional simplices to construct conservative flux
14: for n = 1→ NSim +NAdd do

. Loop over simplices and update volume and liquid volume
15: Vp,i ← Vp,i + SimplexVolume(S(n)) · SimplexSign(S(n))
16: Lp,i ← Lp,i + SimplexLiquidVolume(S(n),P , Nplanes, I)

·SimplexSign(S(n))
17: end for
18: αp,i ← Lp,i/Vp,i . Compute liquid volume fraction flux

19: Up,i ←
Vp,i

∆tAp,i
20: end for
21: end for
22: return αp,i
23: return Up,i

24: end function

The shape is a notched disk with diameter 0.3, notch width of 0.05, initially cen-

tered at (x, y) = (0, 0.25) within a square domain [−0.5, 0.5]2. The disk shape

should not change given the specified velocity field and should simply rotate about

the origin. The disk is rotated for one revolution using various meshes. Fig-

ure 3.16 shows the shape of Zalesak’s disk after it has been rotated. The images in

the figure, and subsequent figures, show the PLIC representation of the gas-liquid

100

Algorithm 4 SimplexLiquidVolume : returns the amount of liquid within the
simplex S

1: function SimplexLiquidVolume(S,P , Nplanes, I)
2: input S . Array of simplex vertices
3: input P . Array of cut-planes
4: input Nplanes . Number of planes in the array P
5: input I . Array of planes that represent the gas-liquid interface
6: Lvol ← 0
7: [N1,S1]← CutSimplex(S(:),P (1)) . Cut by first plane
8: for i = 1→ N1 do
9: [N2,S2]← CutSimplex(S1(i, :),P (2)) . Cut by second plane

...
10: for j = 1→ NNplanes−2 do

11: [NNplanes−1,SNplanes−1]← CutSimplex
Ä
SNplanes−2(j, :),P (Nplanes − 1)

ä
12: for k = 1→ NNplanes−1 do

13: [NNplanes
,SNplanes

]← CutSimplex
Ä
SNplanes−1(k, :),P (Nplanes)

ä
14: for m = 1→ NNplanes

do

15: p← SimplexIndex
Ä
SNplanes

(m, :)
ä

. Get index of cell in which this simplex is
16: [NI ,SI]← CutSimplex

Ä
SNplanes

(m, :), Ip
ä

. Cut by gas-liquid interface within this cell
17: for n = 1→ NI do
18: if Distance

Ä
1
4

∑4
v=1 SI(n, v), Ip

ä
< 0 then

. Simplex is on liquid side
19: L ← L+ SimplexVolume(SI(n, :))

. Add to liquid volume
20: end if
21: end for
22: end for
23: end for

...
24: end for
25: end for
26: return L . Volume of liquid within S
27: end function

101

interface. Even on the coarsest 502 mesh, the method is able to maintain the notch

and the shape of the rotation disk closely resembles the reference solution.

(a) 502 mesh (b) 1002 mesh (c) 2002 mesh

Figure 3.16: Zalesak’s disk after one rotation of various meshes. The thick line
is the computed solution and the thin line indicates the initial condition on each
mesh.

To test the proposed VOF scheme quantitatively we use the error norms

Emass(t) =
NCV∑
p=1

Vpαp(t)−
NCV∑
p=1

Vpαep(t), (3.31)

Ebound(t) = max
Å
− min

p=1...NCV

Vpαp(t), max
p=1...,NCV

Vp(αp(t)− 1)
ã

(3.32)

and

Eshape(t) =
NCV∑
p=1

Vp
∣∣∣αp(t)− αep(t)∣∣∣, (3.33)

where αp(t) and αep(t) are the computed and exact liquid volume fraction within

the pth computational cell at time t, respectively. Emass provides a measure of how

the amount of liquid mass within the domain compares to the reference solution.

Ebound is an error norm that measures overshoots or undershoots of α. Eshape(t)

depends on the distribution of the liquid within the domain and provides an error

for the liquid shape at time t [2,3]. The errors are expected to increase throughout

the simulation, hence the errors are computed at the end of the simulation and are

indicated with the shorthand notation Emass, Ebound, and Eshape, respectively.

102

101 102 103

Nx

10−6

10−5

10−4

10−3

10−2

10−1

L
1

Figure 3.17: Convergence of the Eshape error at the end of the simulation for the
transport of Zalesak’s disk. Solid and dashed lines shows first- and second-order
convergence, respectively.

Figure 3.17 shows how the Eshape error converges under mesh refinement. A

convergence rate between first- and second-order is observed. It is likely that the

sharp corners in the solution reduce the convergence rate from the expected second-

order, which is the rate observed in all other verification tests below. Additionally,

the mass and boundedness errors, shown in Table 3.1, remain at machine precision

for all of the meshes.

Nx Eshape Emass Ebound

25 1.526e-02 4.629e-18 3.526e-17
50 4.066e-03 3.011e-17 6.389e-18
100 1.257e-03 4.409e-18 9.588e-18
200 5.684e-04 3.705e-18 1.082e-17
400 2.348e-04 2.317e-18 1.227e-17
800 9.221e-05 1.937e-17 1.407e-17

Table 3.1: Error norms for the transport of Zalesak’s disk simulations.

3.4.2 Two-dimensional deformation

This test case, proposed by Leveque [75], consists of stretching and un-stretching

a disk in a vortex. The simulation is initialized with a two-dimensional disk of

103

(a) 642 mesh, t = 4 (b) 1282 mesh, t = 4 (c) 2562 mesh, t = 4

(d) 642 mesh, t = 8 (e) 1282 mesh, t = 8 (f) 2562 mesh, t = 8

Figure 3.18: Effect of mesh size on two-dimensional deformation test case. The
top images show the disk at maximum deformation. The bottom images show the
result at the end of the simulation with the thick line and the thin line indicates
the initial condition.

diameter 0.3 centered at (x, y) = (0, 0.25) within a unit square domain [−0.5, 0.5]2.

The disk is stretched using

u = −2 sin2(πx) sin(πy) cos(πy) cos(πt/8),

v = +2 sin2(πy) sin(πx) cos(πx) cos(πt/8).

(3.34)

The velocity field stretches the disk until time is t = 4; then, the velocity field is

reversed for another four time units and the disk returns to its initial state.

Figure 3.18 shows snapshots of the disk in the fully stretched state (t = 4) and

at the end of the simulation (t = 8) on various meshes. On the coarsest mesh, the

liquid in the tail region reaches the resolution limit of the mesh and the tail breaks

into a series of droplets. This causes the liquid to move away from the reference

solution, and the final shape does not match the expected solution. Note that this

104

behavior is expected for methods with good mass conservation properties [28]. On

the finest mesh, very little of the liquid in the tail is moved into droplets and the

final shape matches the exact solution very well.

Figure 3.19 provides quantitative results and shows the Eshape error. Second-

order convergence and small values are obtained for the shape error at the end of

the simulation. Table 3.2 provides the mass and boundedness errors which remain

at machine precision for all of the meshes.

Table 3.3 provides a comparison with results reported by López et al. [2] ob-

tained using EMFPA. EMFPA is very similar to the proposed method, but is

limited to two dimensions. Table 3.3 shows similar shape errors at times t = 0.5

and t = 2 for both approaches. Note that the reference solution used for computing

the shape errors is obtained on a Nx = 1024 mesh.

102 103

Nx

10−5

10−4

10−3

10−2

10−1

L
1

Figure 3.19: Convergence of the Eshape error at the end of the two-dimensional
deformation test. Dashed line shows second-order convergence.

105

Nx Eshape Emass Ebound

64 7.576e-03 9.755e-15 6.517e-17
128 1.876e-03 1.290e-14 6.328e-17
256 4.045e-04 1.392e-14 8.741e-17
512 8.320e-05 1.736e-14 9.325e-17
1024 2.356e-05 1.678e-14 1.043e-16

Table 3.2: Error norms for the two-dimensional deformation test.

Eshape(t = 0.5) Eshape(t = 2)
Nx EMFPA [2] Proposed EMFPA [2] Proposed
32 2.93e-03 1.58e-03 1.22e-02 2.00e-02
64 7.58e-04 4.43e-04 3.35e-03 3.33e-03
128 1.75e-04 1.19e-04 7.95e-04 8.90e-04

Table 3.3: Shape error of proposed scheme compared with EMFPA of López et
al. [2] for the two-dimensional deformation test. The error norm is evaluated at
t = 0.5 and t = 2.

3.4.3 Three-dimensional deformation

This test case is similar to the two-dimensional deformation test case and was also

proposed by Leveque [75]. It focuses on the behavior of the VOF scheme when a

liquid sheet becomes under-resolved. The simulation is initialized with a droplet of

diameter 0.3 centered at (x, y, z) = (0.35, 0.35, 0.35) within a cube domain [0, 1]3.

The droplet is stretched until t = 1.5, then the velocity field is reversed and the

liquid is un-stretched until t = 3. The velocity field used to stretch and un-stretch

the droplet is

u = 2 sin2(πx) sin(2πy) sin(2πz) cos(πt/3),

v = − sin(2πx) sin2(πy) sin(2πz) cos(πt/3),

w = − sin(2πx) sin(2πy) sin2(πz) cos(πt/3).

(3.35)

Figure 3.20 shows snapshots of the gas-liquid interface at maximum stretching

(t = 1.5) and at the end of the simulation (t = 3), when the droplet shape should

match the initial condition. At maximum stretching, a thin sheet is formed that

106

(a) 643 mesh, t = 1.5 (b) 1283 mesh, t = 1.5 (c) 2563 mesh, t = 1.5

(d) 643 mesh, t = 3.0 (e) 1283 mesh, t = 3.0 (f) 2563 mesh, t = 3.0

Figure 3.20: PLIC interface for the droplet in three-dimensional deformation flow
on various meshes. Snapshots on the top show the droplet at maximum deforma-
tion (t = 1.5). The droplets at the end of the simulation (t = 3) are shown on the
bottom.

falls below the resolution of the mesh when a 643 mesh is used. The method moves

the under-resolved liquid from the sheet into resolvable structures. As the mesh is

refined, less of the sheet becomes under-resolved, and on the 2563 mesh, the liquid

sheet is maintained. Hence, discrepancies in the final shape are reduced with mesh

refinement.

As shown in Fig. 3.21, second-order convergence is obtained for the Eshape er-

ror. In Table 3.4 the Eshape error is compared with results provided by Hernández

et al. [3] using the FMFPA-3D scheme. The proposed method and FMFPA-3D

produce very similar results with slightly lower errors using the proposed method.

This is expected since both methods are un-split geometric formulations. However,

in addition to the lower errors, the proposed scheme provides discrete conservation,

107

as indicated by Emass in Table 3.4. The table also provides timing data for the sim-

ulations performed using the proposed method. The simulations were performed

using a hyperthreaded dual 6-core X5670 3 GHz CPU with 48 GB of RAM. The

result shows the average time per time-step throughout the simulation. Finally,

Ebound is found to remain at machine zero on all meshes.

32 64 128 256

Nx

10−1

10−3

10−5

L
1

Figure 3.21: Convergence of the Eshape error for the three-dimensional deformation
simulations. The dashed line shows second-order convergence.

Eshape

Nx FMFPA-3D [3] Proposed Emass Ebound Time/time-step (s)
32 7.440e-03 6.978e-03 1.194e-15 1.202e-17 0.78
64 2.790e-03 2.096e-03 2.479e-15 2.341e-17 2.85
128 7.140e-04 5.625e-04 1.675e-14 2.752e-17 12.2
256 - 1.010e-04 3.870e-14 4.690e-17 45.5

Table 3.4: Comparison of Eshape errors at end of three-dimensional deformation
test using proposed method and those reported in Hernández et al. [3]. A Eshape

error on the 2563 mesh was not provided by Hernández et al. The table also
provides the average time per time-step for the simulations performed using the
proposed code. Mass and boundedness errors are also provided.

108

3.4.4 Droplet in homogeneous isotropic turbulence

This numerical experiment was designed to test the performance of the proposed

scheme in a more realistic flow situation. The test consists of the deformation of a

three-dimensional droplet in a complex velocity field. The velocity field was created

from an instantaneous snapshot of synthetic homogeneous isotropic turbulence,

denoted by u0. This solenoidal velocity field was created in spectral space from

a Passot-Pouquet model spectrum. The same velocity field is used for all of the

test cases presented below. Using that velocity field, the droplet is deformed for

1.5 time units; then, the velocity is reversed for another 1.5 time units. This is

achieved using a temporally varying cosine function, i.e.,

u = u0 cos
Åπt

3

ã
. (3.36)

The domain used for the simulation is [0, 2π]3, and the droplet of diameter π is

initialized at (x, y, z) = (π, π, π).

Figure 3.22 shows the shape of the droplet after it has been deformed by the

turbulence (t = 1.5), and at the end of the simulation, when the initial shape

of the droplet should be recovered. The results are presented on three different

meshes, namely 643, 1283, and 2563. The overall qualitative shape agrees very well

between the various cases at the middle and end of the simulations. Figure 3.23

shows the convergence of the Eshape error under mesh refinement, showing second-

order accuracy. The mass and boundedness errors, shown in Table 3.5, remain at

machine precision for all mesh levels.

109

(a) 643 mesh, t = 1.5 (b) 1283 mesh, t = 1.5 (c) 2563 mesh, t = 1.5

(d) 643 mesh, t = 3.0 (e) 1283 mesh, t = 3.0 (f) 2563 mesh, t = 3.0

Figure 3.22: Gas-liquid interface for the droplet in homogeneous isotropic turbu-
lence test on various meshes. Snapshots on the top show the droplet at maximum
deformation (t = 1.5). The droplets at the end of the simulation (t = 3) are shown
on the bottom.

64 128 256

Nx

10−2

10−1

100

L
1

Figure 3.23: Convergence of the Eshape error (triangles) for the simulation of the
droplet in homogeneous isotropic turbulence. Dashed line shows second-order con-
vergence.

110

Nx Eshape Emass Ebound

64 5.281e-01 5.472e-16 1.124e-17
128 9.357e-02 1.198e-15 1.198e-17
256 2.300e-02 1.290e-14 7.598e-17

Table 3.5: Error norms for the droplet in homogeneous isotropic turbulence test
case.

3.5 Conclusions

In this paper, we have developed and tested a bounded, conservative, un-split,

three-dimensional geometric transport scheme that was applied to the piecewise

linear interface calculation (PLIC) volume-of-fluid (VOF) method. The scheme

leverages two key ideas that make it straightforward to implement. The first is the

use of simplices to represent semi-Lagrangian flux volumes. The simplices are cre-

ated using the same vertices for all flux volume geometries, which greatly simplifies

the process of discretizing the complex shapes. The second idea is a simple sign

convention for identifying if a simplex contributes positively or negatively to the

flux. The scheme was verified using a collection of canonical test cases including

Zalesak’s disk, two- and three-dimensional deformation tests, and the deformation

of a droplet in three-dimensional homogeneous isotropic turbulence. In all of the

test cases, the method produced excellent results even on coarse meshes. Second-

order convergence, discrete conservation, and boundedness were demonstrated.

3.6 Additional algorithms

111

Algorithm 5 CutSimplex : cuts a simplex by a plane and partitions resulting
shapes into new simplices using look-up tables

1: function CutSimplex(S,P)
2: input S . Array of simplex vertices, i.e. S = [v1, v2, v3, v4]
3: input P . Plane equation coefficients,

i.e. P = {[a, b, c, d] | ax+ by + cz = d}
4: Pt(1 : 4, :)← S . Copy simplex vertices into point array
5: for i = 1→ 4 do
6: d(i)← Distance(Pt(i),P) . Calculate distance between point and

plane
7: end for
8: Case ← 1 + 1

Ä
1
2

+ 1
2

sign(d(1))
ä

. Create case number (1-16)

+ 2
Ä

1
2

+ 1
2

sign(d(2))
ä

+ 4
Ä

1
2

+ 1
2

sign(d(3))
ä

+ 8
Ä

1
2

+ 1
2

sign(d(4))
ä

9: for n = 1→ NumberIntersect(Case) do
. Loop over intersections between simplex edges and plane

10: I1 ← IndexEndPoint(1, n,Case) . Get index of points on edge
11: I2 ← IndexEndPoint(2, n,Case)

12: Pt(4 + n, :)← Pt(I1, :)− d(I1)
d(I2)−d(I1)

(Pt(I2, :)−Pt(I1, :))
. Calculate intersection and append to points array

13: end for
14: NOut ← NumberSimsPart(Case) . Number of simplices in partition
15: for n = 1→ NOut do
16: for v = 1→ 4 do
17: SOut(n, :)← Pt(IndexSimVert(v, n,Case), :)

. Create simplices in partition
18: end for
19: end for
20: return NOut . Number of simplices returned
21: return SOut . Vertices of simplices returned
22: end function

112

Algorithm 6 Look-up Tables : provide useful quantities based on the case number
of the simplex

. Number of intersections between simplex and plane
1: NumberIntersect← [0, 3, 3, 4, 3, 4, 4, 3, 3, 4, 4, 3, 4, 3, 3, 0]

. Indices of endpoints on line that intersects plane
2: IndexEndPoint(:, :, 1)←

î
[0, 0], [0, 0], [0, 0], [0, 0]

ó
3: IndexEndPoint(:, :, 2)←

î
[1, 2], [1, 3], [1, 4], [0, 0]

ó
4: IndexEndPoint(:, :, 3)←

î
[2, 3], [2, 4], [2, 1], [0, 0]

ó
5: IndexEndPoint(:, :, 4)←

î
[1, 4], [2, 4], [1, 3], [2, 3]

ó
6: IndexEndPoint(:, :, 5)←

î
[3, 4], [3, 1], [3, 2], [0, 0]

ó
7: IndexEndPoint(:, :, 6)←

î
[1, 4], [3, 4], [1, 2], [3, 2]

ó
8: IndexEndPoint(:, :, 7)←

î
[2, 4], [3, 4], [2, 1], [3, 1]

ó
9: IndexEndPoint(:, :, 8)←

î
[4, 1], [4, 2], [4, 3], [0, 0]

ó
10: IndexEndPoint(:, :, 9)←

î
[4, 1], [4, 2], [4, 3], [0, 0]

ó
11: IndexEndPoint(:, :, 10)←

î
[1, 3], [4, 3], [1, 2], [4, 2]

ó
12: IndexEndPoint(:, :, 11)←

î
[2, 3], [4, 3], [2, 1], [4, 1]

ó
13: IndexEndPoint(:, :, 12)←

î
[3, 4], [3, 1], [3, 2], [0, 0]

ó
14: IndexEndPoint(:, :, 13)←

î
[3, 2], [4, 2], [3, 1], [4, 1]

ó
15: IndexEndPoint(:, :, 14)←

î
[2, 3], [2, 4], [2, 1], [0, 0]

ó
16: IndexEndPoint(:, :, 15)←

î
[1, 2], [1, 3], [1, 4], [0, 0]

ó
17: IndexEndPoint(:, :, 16)←

î
[0, 0], [0, 0], [0, 0], [0, 0]

ó
. Number of simplices in partition of original simplex

18: NumberSimsPart ←
î
1, 4, 4, 6, 4, 6, 6, 4, 4, 6, 6, 4, 6, 4, 4, 1

ó
. Indices of vertices used to partition simplex

19: IndexSimVert(:, :, 1)←
[
[1, 2, 3, 4], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]

]
20: IndexSimVert(:, :, 2)←

[
[1, 5, 6, 7], [4, 2, 3, 6], [4, 2, 5, 6], [4, 5, 6, 7], [0, 0, 0, 0], [0, 0, 0, 0]

]
21: IndexSimVert(:, :, 3)←

[
[2, 5, 6, 7], [1, 3, 4, 6], [1, 3, 5, 6], [1, 5, 6, 7], [0, 0, 0, 0], [0, 0, 0, 0]

]
22: IndexSimVert(:, :, 4)←

[
[5, 6, 8, 2], [5, 7, 8, 1], [5, 8, 1, 2], [5, 6, 8, 4], [5, 7, 8, 3], [5, 8, 4, 3]

]
23: IndexSimVert(:, :, 5)←

[
[3, 5, 6, 7], [2, 4, 1, 6], [2, 4, 5, 6], [2, 5, 6, 7], [0, 0, 0, 0], [0, 0, 0, 0]

]
24: IndexSimVert(:, :, 6)←

[
[5, 6, 8, 3], [5, 7, 8, 1], [5, 8, 1, 3], [5, 6, 8, 4], [5, 7, 8, 2], [5, 8, 4, 2]

]
25: IndexSimVert(:, :, 7)←

[
[5, 6, 8, 3], [5, 7, 8, 2], [5, 8, 2, 3], [5, 6, 8, 4], [5, 7, 8, 1], [5, 8, 4, 1]

]
26: IndexSimVert(:, :, 8)←

[
[1, 2, 3, 7], [1, 2, 6, 7], [1, 5, 6, 7], [4, 5, 6, 7], [0, 0, 0, 0], [0, 0, 0, 0]

]
27: IndexSimVert(:, :, 9)←

[
[4, 5, 6, 7], [3, 1, 2, 6], [3, 1, 5, 6], [3, 5, 6, 7], [0, 0, 0, 0], [0, 0, 0, 0]

]
28: IndexSimVert(:, :, 10)←

[
[5, 6, 8, 4], [5, 7, 8, 1], [5, 8, 1, 4], [5, 6, 8, 3], [5, 7, 8, 2], [5, 8, 3, 2]

]
29: IndexSimVert(:, :, 11)←

[
[5, 6, 8, 4], [5, 7, 8, 2], [5, 8, 2, 4], [5, 6, 8, 3], [5, 7, 8, 1], [5, 8, 3, 1]

]
30: IndexSimVert(:, :, 12)←

[
[4, 1, 2, 7], [4, 1, 6, 7], [4, 5, 6, 7], [3, 5, 6, 7], [0, 0, 0, 0], [0, 0, 0, 0]

]
31: IndexSimVert(:, :, 13)←

[
[5, 6, 8, 4], [5, 7, 8, 3], [5, 8, 3, 4], [5, 6, 8, 2], [5, 7, 8, 1], [5, 8, 2, 1]

]
32: IndexSimVert(:, :, 14)←

[
[3, 4, 1, 7], [3, 4, 6, 7], [3, 5, 6, 7], [2, 5, 6, 7], [0, 0, 0, 0], [0, 0, 0, 0]

]
33: IndexSimVert(:, :, 15)←

[
[2, 3, 4, 7], [2, 3, 6, 7], [2, 5, 6, 7], [1, 5, 6, 7], [0, 0, 0, 0], [0, 0, 0, 0]

]
34: IndexSimVert(:, :, 16)←

[
[1, 2, 3, 4], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]

]

113

CHAPTER 4

TRANSPORT OF QUANTITIES WITH DISCONTINUITIES

Transporting scalar or vector quantities with discontinuities is a situation often

found in multiphase flow simulations. For example, species concentrations are

likely to be defined within a single phase. Another example is electric charges in

electrohydrodynamic (EHD) systems wherein the electric charges are only present

within the liquid phase. In this chapter, we present a conservative and consistent

discretization that describes the motion of such quantities. This work is a direct

extension of the methodology presented in Chapter 3, where similar ideas are used

to transport the phase interface. Using the same methodology to transport the

phase interface and these quantities ensures discrete consistency which is needed

to avoid spurious over/undershoots and to achieve discrete conservation.

4.1 Mathematical formulation

In this section the conservation law for a quantity is recast into a form that is

discretizable in the presence of a phase interface with the associated discontinuities.

The formulation closely follows the derivation in Chapter 3, but is extended with

additional source and flux terms.

The evolution of a scalar ψ(x, t) in a solenoidal velocity field is described by

∂ψ

∂t
+∇ · (uψ) = S +∇ · F , (4.1)

where x is the spatial coordinate, t is time, u is the velocity field that is assumed

to be known, S is a source term, and F is an additional conservative flux (e.g.,

diffusion). Integrating this equation over a discrete time-step ∆t = tn+1 − tn and

114

fixed control volume CV (e.g., a computational cell) with bounding surface CS

and using Gauss’ theorem allows us to write

∫
CV

Ä
ψn+1 − ψn

ä
dV +

∫ tn+1

tn

∮
CS

(ψu− F) · nCV dS dt =
∫ tn+1

tn

∫
CV
S dV dt. (4.2)

Where we have introduced the shorthand notation ψn = ψ(x, tn) and nCV is the

outward pointing normal to the control volume CV .

Following the procedure in Chapter 3 the convective flux is reformulated to

depend on quantities at tn which are typically known leading to

∫
CV

(ψn+1 − ψn) dV =
NS∑
i=1

Ç∫
Ωn

i
+
ψn dV −

∫
Ωn

i
−
ψn dV

å
+

NS∑
i=1

(∫ tn+1

tn

∫
ω+
i,M (t)

F · nΩi
dSdt−

∫ tn+1

tn

∫
ω−i,M (t)

F · nΩi
dSdt

)

+
NS∑
i=1

Ç∫ tn+1

tn

∫
Ω+

i (t)
S dV dt−

∫ tn+1

tn

∫
Ω−i (t)

S dV dt

å
,

(4.3)

which is an exact relation. The previous equation depends on evaluating integrals

of ψn over Ωn
i , which are the flux volumes at t = tn. These integrals are well

defined since ψn is typically known and Eq. 4.3 is solved to find ψn+1. The terms

that describe the flux due to F and source S depend on quantities throughout

the time-step and need to be computed on the moving and deforming flux volume

Ωi(t) and flux volume surface ωi,M(t), respectively.

4.2 Numerical methods

Equation 4.3 describes the transport of ψ within a control volume by convective

fluxes, the source S, and the generic flux F . In this section, the equation is dis-

cretized. To simplify the discussion we will focus on the specific example where ψ is

the electric charge density in electrohydrodynamic atomization systems. However,

115

the numerical approach can be generalized to other quantities that only exist in a

single phase or are discontinuous at the phase interface.

Electrohydrodynamic (EHD) enhanced atomization is a process where liquid

fuel is charged within a grounded combustion chamber. The EHD effects can

significantly improve the atomization process [76]. In these flows, the motion of

the conserved electric charges is described by [77]

∂q

∂t
+∇ · J = Sq, (4.4)

where J is the current density and Sq is a source.

J = qu+ qκE −D∇q, (4.5)

where κi is the ionic mobility coefficient and D is the molecular diffusion coeffi-

cient. The three terms that contribute to the current density can be described as

convection due to the velocity field, convection due to the electrical velocity κE,

and diffusion. The electric charges only exist in the liquid phase and a no-flux

condition exists at the phase interface. This equation can be described in the

framework of the proposed method with ψ = q, S = Sq, and F = D∇q − qκiE.

Details of the discretization for the convective fluxes, the flux of F , and the source

term are provided in the following sections.

4.2.1 Convective fluxes

The convective fluxes, ∫
Ωn

i
+
ψn dV −

∫
Ωn

i
−
ψn dV, (4.6)

are evaluated such that consistency is maintained with the VOF interface trans-

port. Evaluating the convective fluxes involves integrating f over the flux volumes

116

Ωn
i . In realistic velocity fields these streak-tubes can have complicated geometries.

In order to evaluate the convective flux integrals, the streak-tube is approximated

as a collection of simplices (triangles in two dimensions or tetrahedra in three

dimensions). The difference between the discrete and physical streak-tube will

introduce a conservation error, however a correction can be added to the discrete

streak-tube to ensure discrete conservation [42]. With the simplices, the convective

flux integrals are reduce to an integral over a simplex.

Evaluating the integral of ψ over a simplex is performed using the following

systematic approach:

1. Ωi is partitioned into a collection of simplices S.

2. The discrete representation of Ωn
i is corrected by appending simplices to S.

3. Each simplex s ∈ S is cut by the computational mesh and partitioned into

new simplices Ms local to one computational cell.

4. Each simplex m ∈ Ms is cut by the gas-liquid interface and partition into

new simplices Ps,m local to one computational cell and phase.

5. The integral over each simplex p ∈ Ps,m, i.e.,
∫
p ψ

ndV , is evaluated using

data local to the phase and computational cell that p is within.

6. The integral over Ωn
i is computed using

∫
Ωn

i
+
ψn dV −

∫
Ωn

i
−
ψn dV =

∑
s∈S

sign(s)
∑
m∈Ms

∑
p∈Ps,m

∫
p
ψn dV, (4.7)

where sign(s) is the sign of the orientation of the simplex s as described in

Chapter 3.

Step 3 requires cutting a simplex by the planes that comprise the computa-

tional mesh which can be performed using a computational geometry toolbox as

117

described in Chapter 3. Step 4 requires cutting a simplex by the gas-liquid in-

terface. To simplify this step, while maintaining the second-order accuracy of the

method, the interface is approximated using the piecewise linear interface calcu-

lation (PLIC) [31]. PLIC approximates the interface using a linear function, e.g.,

a line in two dimensions or a plane in three dimensions. This approximation fa-

cilitates using the same computational geometry routines to perform Steps 3 and

4. Additional details of the methodology including algorithms are provided in

Chapter 3.

In step 5 the integral of ψ is computed over the simplex p that is local to one

computational cell. For VOF transport ψ = f where f is the liquid distribution

function, i.e.,

f(x, t) =


1, if x is in the liquid at time t,

0, if x is in the gas at time t.

(4.8)

The integral
∫
p f

ndV reduces to

∫
p
f dV =


Vp, if p is in the liquid phase,

0 if p is in the gas phase,

(4.9)

where Vp is the volume of the simplex p.

Transport of the electric charge density q is more complicated due to spatial

variations away from the phase interface. These variations must be accounted for in

order to construct a second-order accurate transport scheme. Within each control

volume (e.g., computational cell) the electric charge density is approximated using

a local second-order Taylor series expansion q̂, i.e.,

q̂(x, tn) = q(B, tn) +∇q(B, tn) · (x−B), (4.10)

118

where B is the barycenter of computational cell weighted by f , i.e.,

B =
∫
CV

fx dV. (4.11)

Using this definition for the barycenter B ensures that the Taylor series is con-

servative and qCV = q(B, t) =
∫
CV q(x, t) dV =

∫
CV q̂(x, t) dV , where we have

introduced the cell average value qCV in the control volume which is the value

stored in the numerical code.

The gradient operator in Eq. 4.10 needs to be constructed carefully since q is

only defined in the liquid phase. The gradient is computed using a least squares

fit of q(B, t) in the control volume and the nearest neighbors that contain liquid.

With this definition of q̂, the integral in Step 5 is computed with the second-order

approximation

∫
p
q(x, tn) dV ≈


∫
p q̂(x, t

n) dV = Vpq̂(Bp, t
n), if p is in the liquid phase,

0 if p is in the gas phase,

(4.12)

where Bp is the barycenter of the simplex p.

Away from the gas-liquid interface q varies spatially but does not contain dis-

continuities. Therefore, the convective fluxes in Eq. 4.1 can be discretized using

many different methods. In this work, we use third-order WENO fluxes [78, 79]

away from the interface and the geometric fluxes near the phase interface.

119

4.2.2 Additional fluxes

In Eq. 4.3, the generic F fluxes have been recast into integrals over ωi,M , the

material surface of the flux volume Ωi, i.e.

∫ tn+1

tn

∫
ω+
i,M (t)

F · nΩi
dSdt−

∫ tn+1

tn

∫
ω−i,M (t)

F · nΩi
dSdt. (4.13)

Exactly evaluating this integral would require computing the flux F over this time-

dependent, deforming surface. As a result, the choice is made to approximate this

integral. Two approximations are natural and are

∫ tn+1

tn

∫
ω±i,M (t)

F · nΩi
dSdt ≈ ∆t

∫
ω±i,M (tn)

F n · nΩi
dS or (4.14)

∫ tn+1

tn

∫
ω±i,M (t)

F · nΩi
dSdt ≈ ∆t

∫
ω±i,M (tn+1)

F n+1 · nΩi
dS, (4.15)

which are the fluxes evaluated at tn and tn+1.

Note that when evaluating the integral that describes the flux of F across

ωi,M(t), part of ωi,M(t) is shared between neighboring flux volumes. This part will

be positive for one flux volume and negative for the other since either the sign of

the flux volume or the normal vectors nΩi
are opposite. Therefore, the integral

only needs to be evaluated on the portion of ωi,M(t) that is not shared with another

flux volume.

As will be described in Section 4.2.4, an implicit formulation is needed due

to the small liquid cells that are present. Writing Eq. 4.14 in an implicit form is

challenging since the surface ωi,M(tn) is complex, but could be formed using a least

squares operator that depends on neighboring cells. However, writing Eq. 4.15 is

significantly more straightforward since ωi,M(tn+1) = ∂CSi is aligned with the

computational mesh.

120

Therefore, we choose to construct the flux using Eq. 4.15. For the example of

electric charge density, q is only defined in the liquid phase and the integral can

be discretely approximated by

∫ tn+1

tn

∫
ω+
i,M (t)

F · nΩi
dSdt−

∫ tn+1

tn

∫
ω−i,M (t)

F · nΩi
dSdt ≈ −∆tAw∂CSi

F |∂CSi
· nCV ,

(4.16)

where Aw∂CSi
is the wetted area of the surface ∂CSi evaluated at t = tn+1.

The additional fluxes for electric charge density are F = D∇q − qκiE. In this

work the diffusive flux, D∇q, is computed using central differences. The electric

convective flux, qκiE, needs to be upwinded for stability reasons. We use a third-

order QUICK scheme [80] when all the points in the stencil are in the liquid phase

and the upwind scheme for any cells near the interface where the QUICK stencil

is not well defined.

4.2.3 Source term

The source terms in Eq. 4.3 is written as

NS∑
i=1

Ç∫ tn+1

tn

∫
Ω+

i (t)
S dV dt−

∫ tn+1

tn

∫
Ω−i (t)

S dV dt

å
. (4.17)

Similarly to the flux of F terms, exactly computing this integral is difficult since Ωi

is a time-varying complex shape. Therefore, the integral is approximated. There

are a variety of approximations, but an approximation that can easily be written

implicitly is

NS∑
i=1

Ç∫ tn+1

tn

∫
Ω+

i (t)
S dV dt−

∫ tn+1

tn

∫
Ω−i (t)

S dV dt

å
≈ ∆tVwCV S|CV , (4.18)

where VwCV is the wetted volume of CV evaluated at t = tn+1.

121

4.2.4 Implicit formulation

In many situations ψ is only defined in one phase, like it is for the electric charge

density example. Therefore the computational cells on which ψ is computed can

be arbitrarily small and require an unrealistically small time-step to respect the

Courant-Friedrichs-Lewy (CFL) condition. As a result, an implicit formulation is

necessary. The convective fluxes are built using semi-Lagrangian ideas and are

unconditionally stable. The additional fluxes F and the source term S need to be

written implicitly. In this work we use a modified approximate factorization tech-

nique known as the diagonally dominate alternating direction implicit (DDADI)

procedure [81]. This approach has successfully been used in other cut-cell formu-

lations [82].

4.3 Verification tests

4.3.1 Discontinuous scalar transport test

This test case assesses the ability of the methodology to transport a complex elec-

tric charge density. The test consists of transporting a two-dimensional liquid

cylinder of diameter R within a unit-square domain with periodic boundary condi-

tions. The electric charge density is initialized with a Gaussian distribution within

the liquid phase, i.e.,

ql(r, t = 0) =
1

ξ
√

2π
e−r

2/(2ξ2), (4.19)

where r is the radial coordinate and ξ is the standard deviation. In the gas phase,

qg = 0, creating a discontinuity at the gas-liquid interface. The parameters for

this test are R = 0.25 and ξ = 0.2, which produces the electric charge density

122

distribution shown in Fig. 4.1. The charge density is transported with a uniform

velocity u = [1, 0]T.

Figure 4.2 shows a profile of the liquid electric charge density ql after the

cylinder has been transported for one flow-through time on a 502 mesh. The

two results were computed using a first-order approximation of q and the second-

order Taylor series approximations of q shown with Eq. 4.10. When the first-

order approximation is used, errors appear near r = 0.25 where q is discontinuous

and the geometric routines are used. The second-order reconstruction provides a

significantly more accurate transported electric charge density.

Figure 4.3 shows an L2 error for the electric charge density. This error is defined

in general for a variable Θ as

L2(Θ) =

√∑N
j=1

Ä
Θj −Θe

j

ä2√∑N
j=1

Ä
Θe
j

ä2 , (4.20)

where Θe
j is the exact value of Θ within the jth computational cell and N is the

number of cells in the domain. The error for the transport test shows first-order

and second-order convergence when first- or second-order Taylor series approxima-

tion of q are used, respectively. These results highlight the importance of using a

second-order reconstruction of q. Furthermore, the test demonstrates the ability of

the proposed methodology to transport a discontinuous scalar with second-order

accuracy. By construction, the method is expected to be conservative. Conserva-

tion of q was computed for this test case and found to be at machine precision,

i.e., O(10−16).

123

Figure 4.1: Initial electric charge density used in discontinuous scalar transport
test.

0.00 0.05 0.10 0.15 0.20 0.25

r

0.8

1.0

1.2

1.4

1.6

1.8

2.0

q

Figure 4.2: Transported electric charge density within liquid phase for discontinu-
ous scalar transport test case using a 502 mesh. The reconstruction of q in Eq. 4.10
is varied from first order (◦) to second order (4). The exact solution is shown with
the solid line.

4.3.2 Discontinuous scalar diffusion test

This test case assesses the implementation of the diffusion term in the electric

charge conservation equation. The test problem consists of diffusing electric charge

density within an liquid cylinder with a no-flux boundary condition at the phase

interface. The two-dimensional test uses a unit-square domain. A liquid cylinder

of radius R is placed at the center of the domain with an initial electric charge

density given by a Gaussian distribution, i.e., Eq. 4.19.

124

102

N

10−5

10−4

10−3

10−2

10−1

L
2
(q
l)

Figure 4.3: L2(ql) error for discontinuous scalar transport test case. The recon-
struction of q in Eq. 4.10 is varied from first order (◦) to second order (4). First-
and second-order convergence shown with dash-dotted and dashed lines, respec-
tively.

The transient problem in the liquid is described by Eq. 4.4 with ul = 0, El = 0,

and S = 0 leading to

∂ql
∂t

= ∇ · (Dl∇ql). (4.21)

The previous equation, with the no-flux boundary condition at r = R and a

boundedness condition at r = 0, has solution (see Section 4.A)

ql(r, t) =
2

R2

∞∑
n=1

Ñ
J0(λnr)

J2
0 (λnR)

e−Dlλ
2
nt
∫ R

0
r′J0(λnr

′)ql(r
′, t = 0)dr′

é
, (4.22)

where Jη is the Bessel function of the first kind of order η and λn is the nth root of

J1. Note that this equation is evaluated numerically using 200 terms of the infinite

series and the integral is evaluated using the midpoint rule with 2000 intervals.

These numbers where chosen to be large enough to not affect the results.

The parameters for this test are ξ = 0.05, R = 0.25, and Dl = 0.01. Figure 4.4

shows the temporal evolution of the electric charge density computed on a 502

mesh. Excellent agreement with the analytic solution is observed even at late

times. Figure 4.5 shows the convergence of the L2 error, which shows the expected

125

second-order rate. The conservation of q was verified and remained at machine

precision for all the simulations.

0.00 0.05 0.10 0.15 0.20 0.25

r

0

1

2

3

4

5

6

7

8

q

Time

Figure 4.4: Solution for diffusion test case at t = [0, 0.125, 0.25, 0.5]. Analytic
solution shown with solid line. Computed electric charge density with a 502 mesh
shown with circles.

102

N

10−5

10−4

10−3

10−2

10−1

L
2
(q
l)

Figure 4.5: L2(ql) error for diffusion test case. First- and second-order convergence
shown with dash-dotted and dashed lines, respectively.

4.4 Conclusions

In this chapter a numerical framework is provided to solve conservation laws for

discontinuous quantities. Convective transport is performed using the same frame-

126

work that is used to transport the VOF representation of the phase interface. This

ensures discrete consistency between the two transport steps and avoids spurious

over/undershoots and conservation errors. The method is tested using canoni-

cal test cases and demonstrates the expected second-order accuracy and discrete

conservation.

4.A Analytic solution to diffusion in a cylinder

The solution to the diffusion of electric charge density within a liquid cylinder of

diameter R is described by

∂ql(r, t)

∂t
= ∇ · (Dl∇ql(r, t)), (4.23)

with boundary conditions

∂ql
∂r

∣∣∣∣∣
r=0

= 0 and
∂ql
∂r

∣∣∣∣∣
r=R

= 0, (4.24)

and initial condition ql(r, t = 0) = Q(r).

Assuming Dl is a constant parameter, this equation can be solved using sepa-

ration of variables by assuming the solution has the form ql = ψ(r)Γ(t). Plugging

this ansatz into Eq. 4.23 and writing the equation in cylindrical coordinates leads

to

1

r

∂

∂r

Ç
r
∂ψ(r)

∂r

å
=

1

Dl

∂Γ(t)

∂t
. (4.25)

Since the left side of this equation only depends on r and the right side only

depends on t, both sides are equal to a constant −λ2. The temporal part is

∂Γ

∂t
+Dlλ

2Γ = 0 (4.26)

127

with solution

Γ(t) = A1e
−Dlλ

2t, (4.27)

where A1 is a constant.

The spatial part is

r2∂
2ψ

∂r2
+ r

∂ψ

∂r
+ r2λ2ψ = 0, (4.28)

which has solution

ψ(r) = A2J0(λr), (4.29)

where A2 is a constant and Jn is the Bessel function of the first kind of order n.

Therefore we can write

ql = AJ0(λr)e−Dlλ
2t, (4.30)

where A = A1A2. Applying the no-flux boundary condition at r = R is equivalent

to enforcing

∂J0(λr)

∂r

∣∣∣∣∣
r=R

= J1(λR) = 0. (4.31)

Which is satisfied if λnR for n = 1, . . . ,∞ are the roots of J1. Therefore, Eq. 4.30

becomes

ql =
∞∑
n=1

AnJ0(λnr)e
−Dlλ

2
nt. (4.32)

The initial condition is used to find the An constants. To begin we write

ql(r, t = 0) = Q(r) =
∞∑
n=1

AnJ0(λnr). (4.33)

Next, the previous equation is multiplied by rJ0(λmr) and integrated leading to∫ R

0
r′J0(λmr

′)Q(r′)dr′ (4.34)

=
∞∑
n=1

An

∫ b

0
r′J0(λmr

′)J0(λnr
′)dr′

=
∞∑
n=1

An

∫ b

0
r′J2

0 (λnr
′)dr′

=
b2An

2

Ä
J2

0 (λnR)− J2
1 (λnR)

ä
,

128

where the orthogonality of the Bessel functions was employed. Noting that

J1(λnR) = 0 due to the no-flux boundary condition the constants are

An =
2

b2J2
0 (λnR)

∫ R

0
r′J0(λnr

′)Q(r′)dr′. (4.35)

This leads to the analytic solution

ql(r, t) =
2

b2

∞∑
n=1

J0(λnr)

J2
0 (λnR)

e−Dlλ
2
nt
∫ R

0
r′J0(λnr

′)Q(r′)dr′. (4.36)

129

CHAPTER 5

HEIGHT FUNCTION INTERFACE CURVATURE CALCULATION

5.1 Introduction

Simulations of gas-liquid flows are often significantly influenced by the dynamics

at the phase interface. For predictive simulations of relevant engineering flows,

an accurate surface tension force is needed to avoid spurious curvature induced

flows near the interface. The surface tension force is directly proportional to the

interface curvature, and therefore the problem is reduced to computing an accurate

interface curvature.

The height function method [38–40] is an approach for computing the inter-

face curvature from an approximate representation of the phase interface and is

commonly used in the context of volume-of-fluid (VOF) schemes. It has also been

used successfully in the context of the accurate conservative level set (ACLS) [41],

although this paper will assume that a VOF representation of the interface is

available.

The VOF method is a popular technique to capture the location of the phase

interface and has been used since the early 1970’s when variants of the approach

were introduced by DeBar [31], Hirt and Nichols [25], and Noh and Woodward [33].

VOF schemes store the ratio of liquid volume to cell volume, known as the liquid

volume fraction α, within each computational cell, i.e.,

α =
1

VCV

∫
CV
f(x, t) dV, (5.1)

where CV is a control volume (i.e., a computational cell) with volume VCV and f

130

is the indicator function, defined as

f(x, t) =


1, if x is in the liquid at time t,

0, if x is in the gas at time t.

(5.2)

VOF schemes differ in how the liquid volume fraction is transported. Early

methods used flux splitting wherein one-dimensional transport steps are used suc-

cessively [25]. Since then un-split schemes have been developed, such as the two-

dimensional schemes of Pilliod and Puckett [26] and López et al. [2]. The extension

of such methods to three-dimensions is not straight forward and the development

of three-dimensional un-split schemes has only occurred recently by Hernández et

al. [3], Le Chenadec and Pitsch [36], and the fully conservative formulation by

Owkes and Desjardins [42].

All VOF methods require calculation of the interface curvature from the liquid

volume fraction field. The interface curvature can be computed directly from the

α-field by calculating the interface normal as n = −∇α/|∇α| and the interface

curvature as κ = −∇·n. Because the α-field is based on the discontinuous indica-

tor function f , the calculation can be improved by using a smoothed α-field [16].

Note that both approaches often do not converge with mesh refinement [83]. Al-

ternatively, the height function approach has been shown to provide a converging

interface curvature.

In its simplest form, the height function method consists of integrating the

liquid volume fraction in the pseudo-normal direction in the cell of interest and

neighboring cells, creating a collection of heights. The curvature is then calculated

using finite difference operators on those heights. The pseudo-normal direction

is the Cartesian direction x, y, or z with the largest component of the interface

normal vector. Assuming the pseudo-normal direction is x for a computational cell

131

with Cartesian index i, j, k, the heights h are computed using

hj′k′ =
i+(NH−1)/2∑

i′=i−(NH−1)/2

αi′j′k′∆x for


j′ = j − (NN − 1)/2, . . . , j + (NN − 1)/2

k′ = k − (NN − 1)/2, . . . , k + (NN − 1)/2
,

(5.3)

where αi′j′k′ is the liquid volume fraction within the i′, j′, k′ cell. NH controls

the number of the cells in each height and values of NH = 3, 5, and 7 have

been considered in the literature [84–87]. NN sets the number of neighboring

heights that are computed. For second- and fourth-order methods, NN = 1 and 2,

respectively [87]. The curvature is calculated from the heights using finite difference

operators such as the second order operator in two dimensions

κ = 2
HyyÄ

1 +H2
y

ä3/2Ç ∂αijk/∂x

|∂αijk/∂x|

å
(5.4)

and three dimensions

κ = 2
Hyy +Hzz +HyyH

2
z +HzzH

2
y − 2HyzHyHzÄ

1 +H2
y +H2

z

ä3/2 Ç
∂αijk/∂x

|∂αijk/∂x|

å
, (5.5)

with

Hy =
hj+1,k − hj−1,k

2∆y
, (5.6a)

Hz =
hj,k+1 − hj,k−1

2∆z
, (5.6b)

Hyy =
hj+1,k − 2hj,k + hj−1,k

∆y2
, (5.6c)

Hzz =
hj,k+1 − 2hj,k + hj,k−1

∆z2
, and (5.6d)

Hyz =
hj+1,k+1 − hj+1,k−1 − hj−1,k+1 + hj−1,k−1

2∆y 2∆z
. (5.6e)

Figure 5.1 shows a two-dimensional example of the application of the height

function method to compute κ1 with NH = 5. The three heights used to compute

κ1 are shown with solid lines. All of the heights are well defined since each height

132

Γ

Liquid Gas

κ1

κ2

x

y

Figure 5.1: Example of heights (solid arrows) used to compute the interface cur-
vature κ1 and heights and widths (dotted arrows) used to compute κ2.

is computed in a column that contains in a cell that is entirely liquid (i.e., α = 1)

and cell that is entirely gas (i.e., α = 0). With the three heights, Eq. (5.4) can be

used to compute the curvature.

When large interface curvature and under-resolved interface features exist, the

number of well-defined heights are available to compute the curvature can be in-

sufficient. For example, only two well-defined heights are available in the pseudo-

normal direction to compute the curvature κ2 in Fig. 5.1. A generalization of

the height function method was introduced by Popinet [88] and combines heights

computed in multiple directions to compute the curvature. For example, κ2 in

Fig. 5.1 can be computed by combining the two horizontal heights (“widths”) and

one vertical height. Using the heights from multiple directions, a parabola

p(t1) = a1t
2
1 + a2t1 + a3 (5.7)

in two dimensions or a paraboloid

p(t1, t2) = a1t
2
1 + a2t

2
2 + a3t1t2 + a4t1 + a5t2 + a6 (5.8)

in three dimensions can be fit through the heights. In the previous equation t1

and t2 are the tangential components of an orthonormal coordinate system with

133

origin located at the interface barycenter of the cell where the curvature is being

computed. In Popinet’s formulation [88], the mean curvature is computed from

the the parabola or paraboloid using

κ = 2
a1

(1 + a2
2)

3/2
(5.9)

or

κ = 2
a1(1 + a2

5)− a3a4a5 + a2(1 + a2
4)

(1 + a2
4 + a2

5)
3/2

, (5.10)

for two and three dimensions, respectively. For a highly under-resolved interface

an adequate number of well-defined heights and widths may not be available.

In such situations, Popinet [88] proposed fitting the parabola or paraboloid with

interface barycenter within a cell and its nearest neighbors. Popinet’s approach

is hierarchical and uses the standard height function method if it is well defined.

If not, then a paraboloid is fit through heights and widths. Finally a paraboloid

fit through interface barycenters is used if an inadequate number of heights and

widths are available.

The proposed method provides an alternative approach by constructing heights

in an orthonormal coordinate system and using standard finite difference operators

to compute the curvature. The scheme can be viewed as the standard height

function method applied in a mesh-decoupled direction instead of the pseudo-

normal, mesh-aligned direction. The approach remains robust for under-resolved

interfaces and avoids the need for an additional method to compute the curvature

for such interfaces. Furthermore, the proposed method could be used in the context

of an unstructured mesh, although this application is not considered in this work.

This paper is organized as follows: Section 5.2 describes the details of the

proposed scheme, Sections 5.3 and 5.4 provides verification and validation results

obtained with the approach, and finally conclusions are drawn in Section 5.5.

134

5.2 Methodology

The proposed method computes heights within columns not aligned with the com-

putational mesh but rather aligned with the interface normal vector, which is

assumed known as a prerequisite. Since the columns are not tied to the mesh,

as in the traditional height function method, there is flexibility in the column’s

definition. We parameterize the column geometry using column length L, width

W , and spacing SW as shown in Fig. 5.2. In three dimensions, the column is also

parameterized using the column depth D and spacing SD. The number of columns

could be varied, but in this work three and nine columns are used in two and three

dimensions, respectively. This is the minimum number of columns for a second

order method.

Γ

Liquid Gas

κ1

n

L

W
Sw

l + 1
l

l − 1

κ2

n

l + 1

l

l − 1

x

y

Figure 5.2: Example of mesh-decoupled columns and heights used to compute the
interface curvatures κ1 and κ2.

Within the nth column associated to the ith computational cell, Ci,n, the height

is calculated using

hi,n =
1

WD

∫
Ci,n
f(x, t) dV. (5.11)

The integral in the previous equation depends on the distribution of liquid within

each computational cell. Therefore, the interface location must be reconstructed

135

from the liquid volume fraction field, forming an explicit definition of the gas and

liquid phases. In the proposed method, we use the piecewise linear interface calcu-

lation (PLIC) [31,34,35] representation of the interface within each computational

cell. PLIC approximates the interface using a line in two dimensions and a plane

in three dimensions. This linear reconstruction is constrained such that it is per-

pendicular to the interface normal vector and the amount of liquid under the line

(plane) is consistent with the liquid volume fraction α [70].

The main difficulty in evaluating the integrals in Eq. (5.11) lies in the mismatch

between the geometry of the columns and the geometry of the mesh. We use a

computational geometry toolbox to evaluate the integrals. The geometry toolbox

performs the following steps:

1. Each column is partitioned into a collection of simplices (triangles in two

dimensions and tetrahedra in three dimensions). The minimum number of

simplices needed to represent a column is two in two dimensions and five in

three dimensions, as shown in Figs. 5.3 and 5.4, respectively.

2. Each simplex is then cut by the mesh and the remaining piece are partitioned

into new simplices.

3. The simplices from the previous step are cut by the PLIC representation of

the interface within each cell and the volume of liquid is computed.

4. The integral in Eq. (5.11) is evaluated by combining the liquid volumes from

all the simplices.

The computational toolbox used to cut the simplices by the mesh and the PLIC

interface consists of identifying how a plane cuts a simplex and partitioning the

simplex into new simplices localized to one side of the plane. Recursive cutting

136

results in simplices that are within a single phase. Additional details of the cutting

routine is provided by Owkes and Desjardins [42], where the cutting routines are

used to transport the liquid volume fraction α in a VOF scheme. Similar routines

may be available in a other geometric VOF methods allowing for a straightforward

implementation of the mesh-decoupled height function method.

a b

cd

a

Figure 5.3: Partitioning of a two-dimensional column abcd using simplices abc
and acd.

a b

cd

e f

gh

Figure 5.4: Partitioning of a three-dimensional column abcdefgh using five sim-
plices befg, abde, bcdg, degh, and bdeg.

Once the integrals in Eq. (5.11) are evaluated, the finite difference operators

137

Eq. (5.4) and (5.5) are used to compute the curvature with

Hy =
hl+1,m − hl−1,m

2SW
, (5.12a)

Hz =
hl,m+1 − hl,m−1

2SD
, (5.12b)

Hyy =
hl+1,m − 2hl,m + hl−1,m

S2
W

, (5.12c)

Hzz =
hl,m+1 − 2hl,m + hl,m−1

S2
D

, and (5.12d)

Hyz =
hl+1,m+1 − hl+1,m−1 − hl−1,m+1 + hl−1,m−1

4SWSD
. (5.12e)

Figure 5.5 shows how the nine columns that are used to computed the curvature

in three dimensions are defined.

l − 1 l l + 1
m− 1

m

m+ 1 w

w

w

w w w

s

s

ss

h
n

t1
t2

Figure 5.5: The nine columns used to compute curvature in three-dimensions.
Column width, height, and spacing are described by w, h, and s, respectively. The
columns are defined in a ortho-normal coordinate system based on the interface
normal vector n and two tangential vectors t1 and t2.

138

5.3 Verification tests

In this section, results obtained with the proposed method are provided and dis-

cussed. Two different geometries are considered, namely a two-dimensional circle

test case and a three-dimensional sphere test case.

5.3.1 Circle test case

This test consists of computing the curvature of a circle and comparing to the

expected analytical value. The simple geometry of the circle allows for an exact

α-field and normal vectors to be specified, therefore eliminating these sources of

error from the analysis. Note that care is required when defining the interface

normal vector, which is defined within the ith computational cell using

ni =

∫
I∈CVi

n(x, t) dS∣∣∣∫I∈CVi
n(x, t) dS

∣∣∣ , (5.13)

where I ∈ CVi is the interface within the ith computational cell and n is the

interface normal vector. Simulations are performed with a circle of radius 0.2

within a unit square domain centered on the origin and discretized with a uniform

Cartesian mesh with cell size ∆x. The circle is positioned randomly near the center

of the domain to avoid alignment with the mesh, thereby more closely mimicking

realistic situations. Each random position is created by computing the center of

the circle Co using

Co = [R1∆x,R2∆y]T, (5.14)

where R1 and R2 are uniform random variables on the interval [−1, 1]. For each

mesh level, 50 simulations are performed with different random circle positions.

139

Two errors are computed, namely the L2 and L∞ errors defined using

L2 =

»∑Ncells
i=1 (κi − κE,i)2√∑Ncells

i=1 κ2
E,i

, and (5.15)

L∞ = max
i=1...Ncells

|κi − κE,i|, (5.16)

where κi and κE,i are the computed and exact curvatures within the ith compu-

tational cell. Note that only cells that contain an interface are included in the

summation and maximum operators in Eqs. (5.15) and (5.16).

Two variants of the proposed scheme are tested and results are presented below.

The first uses the mesh-decoupled height functions to compute the curvature in

all computational cells that contain the interface. The second uses only the mesh-

decoupled height functions in cells where the standard height function method is

ill-posed.

Mesh-decoupled height function method

The proposed scheme is tested by computing the curvature in all computational

cells that contain the interface and comparing to the exact circle curvature. Fig-

ure 5.6 provides the L2 and L∞ errors on different meshes and allows the conver-

gence properties to be analyzed. The errors are plotted as a function of N/D, the

number of grid points across the diameter of the circle. In the figure, three differ-

ent stencil sizes are studied including a small stencil W = SW = ∆x, a medium

stencil W = SW = 2∆x, and a large stencil W = SW = 3∆x. A column length

of L = 2.5∆x is used in all of the variants and is found to be large enough to not

affect the results. When the small stencil is used, little convergence is observed.

However, for both the medium and large stencils, second-order convergence is ob-

served in the L2 error and convergence between first- and second-order is observed

140

for L∞. However, both errors eventually plateau and fail to converge on the finest

meshes.

101 102

N/D

10−5

10−4

10−3

10−2

10−1

100

101

L
2

101 102

N/D

10−4

10−3

10−2

10−1

100

101

102

L
∞

Figure 5.6: Convergence of L2 and L∞ curvature error with mesh refinement
for the circle test case. Squares, triangles, and diamonds indicate stencils with
W = SW = ∆x, 2∆x, and 3∆x, respectively. The dash dotted and dashed lines
show first- and second-order convergence for comparison.

Instead of using the computational geometry toolbox described earlier to evalu-

ate the integrals in Eq. (5.11), analytic relations can be used for a circular interface.

This approach provides an opportunity to analyze the effect of the PLIC recon-

struction on the results. Figure 5.7 shows the convergence of the L2 and L∞ errors

when analytic expressions are used instead of the geometric routines that rely on

the PLIC reconstruction of the interface. Both errors show second order conver-

gence for all of the stencils. The small stencil produces the smallest error. This

result is not surprising since the error is most likely dominated by the second-order

finite difference operator which has an error that scales with O((SW)2).

The significant dependence of the curvature errors on the PLIC reconstruction

is likely due to the discontinuous nature of the gas-liquid interface at cell faces.

These results indicate that there is significant potential to generalize the proposed

scheme beyond a PLIC reconstruction and use a higher order reconstruction of the

interface [89], although this is beyond the scope of this paper.

141

101 102

N/D

10−5

10−4

10−3

10−2

10−1

100

L
2

101 102

N/D

10−5

10−4

10−3

10−2

10−1

100

101

L
∞

Figure 5.7: Convergence of L2 and L∞ curvature errors with mesh refinement for
the circle test case with analytic evaluation of the integrals in Eq. (5.11). Squares,
triangles, and diamonds indicate stencils with W = SW = ∆x, 2∆x, and 3∆x,
respectively. The dashed line shows second order convergence for comparison.

The angular error distribution is provided in Fig. 5.8, which shows the curva-

ture errors using 162, 242, and 322 meshes leading to resolutions of N/D = 6.4,

9.6, and 12.8 respectively. To produce the data for each curve, 50 simulations

are again conducted with random circle positions. The curvature in each com-

putational cell that contain an interface is added to one of 40 bins based on the

associated angle θ with respect to the horizontal axis. In each bin, an L2(θ) error

is computed using Eq. (5.15). The mesh-decoupled simulations are performed with

W = SW = ∆x and L = 2.5∆x. For the poorly-resolved circle withN/D = 6.4, the

mesh-decoupled height function method produces lower errors than the standard

height function approach. For the moderately-resolved droplet with N/D = 9.6,

the mesh-decoupled method and the standard height function method compute

curvatures with similar errors. On the fine mesh with N/D = 12.8, the standard

height function method performs better than the mesh-decoupled height function

method. The maximum errors occur at 45◦ from the horizontal and vertical axes

as this is the location where the standard mesh-aligned height function method

is unable to find well-defined heights and where the PLIC reconstruction exhibits

the largest cell-to-cell discontinuities.

142

0 π/4 π/2

θ

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

L
2
(θ

)

(a) N/D = 6.4

0 π/4 π/2

θ

0.015

0.020

0.025

0.030

0.035

0.040

0.045

0.050

L
2
(θ

)

(b) N/D = 9.6

0 π/4 π/2

θ

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

0.045

L
2
(θ

)

(c) N/D = 12.8

Figure 5.8: Dependency of the L2 curvature error on angular position. Results
computed with mesh-decoupled heights (dashed), standard mesh-aligned heights
(dash dotted), and analytical expressions (solid).

143

Combined mesh-decoupled and mesh-aligned method

The mesh-decoupled height function method only converges when large stencils

(W = SW = 2∆x or 3∆x) are used and even fails to converge on fine meshes for

these stencils (see Fig. 5.6). Such large stencils make the method computationally

expensive. Interestingly, for under-resolved interface features the curvature has

a relatively low error, especially when a small stencil (W = SW = ∆x) is used.

Furthermore, under-resolved features are often problematic for the standard height

function method that uses heights aligned with one of the coordinate axis. This is

shown in Fig. 5.9 where the mesh-decoupled and standard height function methods

are used to compute to compute the curvature of a circle. Therefore, there is po-

tential to combine the two methods by using the standard height function method

when all the heights are well defined and the mesh-decoupled method where the

interface is under resolved.

100 101 102

N/D

10−4

10−3

10−2

10−1

100

101

L
2

100 101 102

N/D

10−3

10−2

10−1

100

101

102

L
∞

Figure 5.9: Convergence of L2 and L∞ curvature errors with mesh refinement
for the circle test case. Squares and triangles indicate the mesh-decoupled and
standard height function methods, respectively. The dashed line shows second
order convergence for comparison.

The proposed combined method is based on the following procedure:

1. compute the pseudo-normal direction x, y, or z,

144

2. determine if the heights are well defined by checking if the maximum and

minimum values of α within each column is 1 and 0, respectively, e.g., if

max
i+(NH−1)/2
i′=i−(NH−1)/2(αi′j′k′) = 1 and min

i+(NH−1)/2
i′=i−(NH−1)/2(αi′j′k′) = 0 then Hj′k′ is

well defined,

3. if all the heights are well defined then the standard height function approach

is used, if not the mesh-decoupled height function method is used with W =

SW = ∆x and L = 2.5∆x.

Note that the formulas in step 2 are simple and more detailed methods to deter-

mine if a column is well defined exist, see for example [87,88]. These methods use a

search algorithm that progresses outward from the cell of interest until an interface

is found or the maximum column length is reached. However, the simple formulas

allow for the column to be efficiently classified as well defined or not. If the col-

umn is not well defined, then the curvature is computed with the mesh-decoupled

method.

This methodology is used to compute the curvature of the circle test case with

NH = 7. Figure 5.10 shows the L2 and L∞ errors for both the standard mesh-

aligned height function method and the combined method. On the coarsest meshes

the combined method produces a more accurate curvature. On finer meshes, the

number of cell without well-defined heights decreases and the two approaches be-

come indistinguishable with the expected second order convergence. This results

highlights the usefulness of the proposed combined method for computing curva-

tures of under-resolved and well-resolved interfaces.

Figure 5.10 also compares the proposed scheme to our implementation of the

method proposed by Popinet [88] wherein heights from multiple directions are

combined to compute the curvature of under-resolved interfaces. We find that our

145

100 101 102

N/D

10−4

10−3

10−2

10−1

100

101

L
2

100 101 102

N/D

10−3

10−2

10−1

100

101

102

L
∞

Figure 5.10: Convergence of L2 and L∞ curvature error with mesh refinement for
the circle test case. Triangles, squares, and circles correspond to the standard
height function method, the combined method, and our implementation of the
method of Popinet [88], respectively. The dashed line shows second order conver-
gence for comparison.

proposed scheme computes curvatures with similar errors except for interfaces that

are significantly under resolved. In these situations, the proposed scheme seems to

provide curvatures with lower errors than the method proposed by Popinet [88].

For under-resolved interfaces, combining heights and widths does not guarantee

an accurate curvature calculation. This is because when heights and widths are

combined, the physical location of interface represented by the heights or widths is

important since they must exist in the same coordinate system. Therefore a phys-

ically relevant origin must be found to define the heights and widths. Popinet [88]

suggests finding a cell that is completely full of liquid to use as the physical origin

of each column. In the proposed method, only the difference in heights is used

to compute the curvature and the physical location is irrelevant. Therefore, the

method does not require well-defined heights to compute a curvature, although an

error is introduced if well-defined heights are not available. For example, Fig. 5.11

shows an under-resolved droplet where no well-defined heights or widths can be

defined since none of the computational cells are completely full. For these under-

resolved interfaces, Popinet [88] suggests using the barycenter of interface within

146

the cell of interest and neighboring cells instead of ill-defined heights. The pro-

posed scheme is able to compute the curvature of these under-resolved interfaces as

shown in Fig. 5.12. In the calculation on the mesh-decoupled columns, the center

height is well defined. The other two heights are not well defined but provide a

good estimate for the interface location within each column. Note that the size

of the columns will affect the curvature calculation when well-defined heights are

not available, but we found that the curvature remains accurate and robust with

W = SW = ∆x and L = 2.5∆x.

Figure 5.11: Example of a
droplet where heights and widths
are not well defined.

Figure 5.12: Example of how
curvature within the shaded cell
is computed using the proposed
scheme.

0 5 10 15 20 25 30 35 40

N/D

0

20

40

60

80

100

%
ce

lls

Figure 5.13: Percentage of cells in simulations of circle test case in which the
standard height function method fails to have well-defined heights.

For a resolved interface, all the methods collapse onto one another since all ap-

147

proaches use the standard height function method in this situation. This is evident

in Fig. 5.10 where the errors collapse when N/D is greater than approximately 10.

Figure 5.13 shows the percentage of cells where the standard height function fails

to have well-defined heights and either the mesh-decoupled method or the method

proposed by Popinet [88] is used. When N/D is greater than 10, all of the cells

have well-defined heights.

5.3.2 Sphere test case

This test case provides information on how the proposed scheme performs in three

dimensions. The test consists of a sphere of radius 0.2 within a unit cubic domain

centered on the origin and discretized using a uniform Cartesian mesh. The sphere

is randomly positioned near the center of the domain with the same method we

use for the randomly positioned circle with C0 = [R1x,R2y,R3z]T. Ten random

sphere positions are used on each mesh level.

Figure 5.14 shows the L2 and L∞ errors for the sphere test. Results are calcu-

lated using the standard height function method, the combined method, and our

implementation of Popinet’s method [88]. Both the L2 and L∞ errors are signifi-

cantly reduced when the combined method is used compared to the standard height

function method. The proposed method also computes more accurate curvatures

than the method of Popinet [88] on the coarsest meshes. Figure 5.15 shows the

percentage of cells without well-defined heights, which are therefore treated with

either the mesh-decoupled method or the method of Popinet [88]. On the finest

mesh with 50 cells across the sphere diameter, the standard height function method

is well defined and all the methods collapse onto one another.

148

The results shown in Fig. 5.14 was computed with NH = 9. This larger stencil

was needed to ensure the standard height function method is well defined for all

computational cells with interface on the finer meshes. WhenNH = 7, the standard

height function method remains ill-posed for a few cells even on the finest meshes

and the L∞ error fails to converge as shown in Fig. 5.16.

100 101 102

N/D

10−4

10−3

10−2

10−1

100

101

L
2

100 101 102

N/D

10−3

10−2

10−1

100

101

102

L
∞

Figure 5.14: Convergence of L2 and L∞ curvature error with mesh refinement for
the sphere test case with NH = 9. Triangle, squares, and circles indicate results
obtained with the standard height function method, the combined method, and
our implementation of the method proposed by Popinet [88]. The dashed line
shows second order convergence for comparison.

0 10 20 30 40 50 60 70 80

N/D

0

20

40

60

80

100

%
ce

lls

Figure 5.15: Percentage of cells in simulations of sphere test case in which the
standard height function method fails to have well-defined heights.

Figure 5.17 shows the relative curvature error, |κi−κE,i|/κE,i, on the surface of

a sphere represented with N/D = 6.4. The standard height function method has

largest errors in cells where the interface is not aligned with one of the Cartesian

149

100 101 102

N/D

10−4

10−3

10−2

10−1

100

101

L
2

100 101 102

N/D

10−3

10−2

10−1

100

101

102

L
∞

Figure 5.16: Convergence of L2 and L∞ curvature error with mesh refinement for
the sphere test case with NH = 7. Triangle, squares, and circles indicate results
obtained with the standard height function method, the combined method, and
our implementation of the method proposed by Popinet [88]. The dashed line
shows second order convergence for comparison.

directions. The errors in these cells is reduced when either the combined method

or the scheme of Popinet [88] is used.

(b) Standard (c) Combined (d) Popinet [88]

Figure 5.17: Curvature error on surface of sphere test case for different methods.
Simulations are performed with N/D = 6.4.

5.4 Validation tests

Even though the curvature computed with the combined method has been shown

to have a small error, the curvature errors could induce large spurious velocities.

Therefore, spurious-currents [90] and standing-wave [58] test cases are used to

assess curvatures in surface tension dominated flows. The test cases use the NGA

150

flow solver [28] with a conservative, un-split, geometric volume-of-fluid (VOF)

method [42]. This section contains an overview of the numerical methods used to

solve the Navier-Stokes equations followed by details of the test cases.

5.4.1 Solution of the Navier-Stokes equations

The incompressible form of the Navier-Stokes equations is used to describe the

gas-liquid flow, which can be written as

∂ρu

∂t
+∇ · (ρu⊗ u) = −∇p+∇ ·

Ä
µ
î
∇u+∇uT

óä
+ ρg, (5.17)

where u is the velocity, t is time, ρ is the density, p is the pressure, µ is the dynamic

viscosity, and g is the gravitational acceleration. The continuity equation can be

written as

∂ρ

∂t
+∇ · (ρu) =

∂ρ

∂t
+ u · ∇ρ = 0, (5.18)

where the incompressibility constraint ∇ · u = 0 is used.

The gas and liquid phases, indicated with the subscripts g and l, are separated

by the interface denoted I. Discontinuities at the interface are written using the

jump, i.e., [ρ]I = ρl − ρg and [µ]I = µl − µg for the density and dynamic viscosity,

respectively. The pressure is discontinuous and can be written as

[p]I = σκ+ 2[µ]In
T · ∇u · n, (5.19)

where σ is the surface tension coefficient. In the absence of phase change, the

velocity is continuous across the interface, i.e., [u]I = 0.

NGA [28] is used to solve the variable density, low Mach number Navier-Stokes

equations. NGA is formulated using high-order conservative finite difference meth-

ods staggered in both space and time, which have been shown to be well suited

151

for simulations of turbulent flows [56], a common occurrence in multiphase sim-

ulations. Note that second-order finite difference operators are used in this work

since they greatly simplify the multiphase implementation.

The large discontinuity in density and the pressure jump due to surface tension

that occur at the interface are handled using the ghost fluid method (GFM) [17].

The discontinuous viscosity is approximated using the height fraction method [85].

The interface is transported using an un-split, conservative, geometric volume-

of-fluid scheme [42]. The approach leverages the computational geometry toolbox

to systematically compute conservative liquid volume fraction fluxes. The resulting

method is second order, discretely bounded, and conservative.

Consistency between interface and momentum transport has been shown to be

important for simulations with large density ratios [91]. Therefore, we employ the

un-split, conservative, geometric routines [42] to consistently convect the liquid

volume fraction and momentum near the interface. The approach is similar to the

semi-Lagrangian method of Le Chenadec and Pitsch [36], but uses fluxes that have

been corrected to respect the solenoidal condition, forming a scheme that conserves

both mass and momentum to machine precision.

5.4.2 Spurious-currents test case

This test consists of simulating a two-dimensional drop of diameter D = 0.4 cen-

tered within a computational domain with width and height equal to unity [90].

The surface tension coefficient σ = 1 and the viscosity ratio is unity with

µl = µg = 0.1. The density ratio is set to unity implying ρl = ρg = ρ, where ρ is a

free parameter that is used to set the Laplace number La = 1/(Oh)2 = ρσD/µ2,

152

where Oh is the Ohnesorge number. The spurious velocities due to errors in the cur-

vature calculation that propagate through the surface tension force are measured

with the capillary number Ca = |u|maxµ/σ. The capillary number is evaluated

after a non-dimensional time of tσ/(µD) = 250.

Simulation with varying Laplace numbers are conducted on 322 and 642 meshes.

Table 5.1 shows the capillary number, which remains small for all Laplace numbers

and both meshes. The effect of the mesh on the spurious currents is also investi-

gated by fixing the Laplace number at 12,000 and varying the mesh from 162 to

1282. Table 5.2 and Fig. 5.18 provide the results, which show second-order conver-

gence is obtained under mesh refinement and low capillary numbers are found for

all meshes. Variability in the results in Tables 5.1 and 5.2 is likely due to the oscil-

lations in the capillary number with time. Figure 5.19 shows the capillary number

as a function of time for the simulation with Laplace number of 12,000 and a 322

mesh. Near a non-dimensional time of 250, the capillary number varies by roughly

an order of magnitude due to temporal oscillations. Even with this variability all

the capillary numbers are small indicating that curvature errors produce minimal

spurious velocities.

Table 5.1 also provides a comparison of the combined method and the method

proposed by Popinet [88]. The capillary numbers have similar magnitudes although

the combined method has on average smaller capillary numbers. The combined

method is roughly 10% more expensive. This is because evaluating the integrals in

Eq. (5.11) using the computational geometry toolbox is computationally expensive.

Since most cells in realistic simulations will likely have well-defined heights and the

standard height function method will be used, the additional cost is not expected

to impact simulation times significantly.

153

Table 5.1: Capillary number and time per time-step for various Laplace numbers.
Simulations use 322 and 642 meshes and are performed with the combined method
and our implementation of Popinet’s method [88].

Laplace
number

Capillary number Time/step (s)

322 mesh 642 mesh 642 mesh

Combined Popinet Combined Popinet Combined Popinet

12 1.65e-07 1.61e-05 9.27e-08 4.20e-05 0.159 0.131

120 4.59e-07 4.18e-05 2.34e-07 6.15e-05 0.148 0.126

1200 7.80e-07 3.57e-08 7.39e-08 2.14e-09 0.152 0.125

12000 2.18e-06 3.32e-06 1.52e-06 2.20e-06 0.162 0.137

120000 3.00e-06 2.03e-05 6.62e-06 1.09e-05 0.193 0.173

1200000 9.17e-07 9.93e-06 7.76e-06 3.13e-05 0.224 0.204

Table 5.2: Capillary number for Laplace number of 12,000 on various meshes using
the combined method.

Laplace
number

Capillary number

162 Mesh 322 Mesh 642 Mesh 1282 Mesh

12,000 2.877e-06 2.898e-06 2.325e-07 5.905e-08

101 102

Nx

10−8

10−7

10−6

10−5

C
ap

ila
ry

N
um

be
r

Figure 5.18: Convergence of capillary
number for simulations with Laplace
number of 12,000. Dashed line shows
second-order convergence.

0 50 100 150 200 250

tσ/(µD)

10−7

10−6

10−5

10−4

10−3

C
ap

ila
ry

N
um

be
r

Figure 5.19: Time evolution of cap-
illary number for simulation with
Laplace number of 12,000 and 322

mesh.

154

5.4.3 Standing-wave test case

This test case consists of the viscous damping of a surface wave and depends

on a significant interaction between surface tension and viscous forces. A two-

dimensional domain of [0, 2π]2 is used with periodic boundary conditions in the

x-direction and slip conditions on the top and bottom. Two fluids are sepa-

rated by a flat interface initially perturbed by a sinusoidal wave specified us-

ing y = A0 cos(2πx/λ) + π, where λ = 2π is the perturbation wavelength and

A0 = 0.01λ is the initial wave amplitude. Time is non-dimensionalized with the

inviscid oscillation frequency ω0 =
»
σ/(ρl + ρg).

Simulations are performed until a non-dimensional time of ω0t = 20 following

previous studies [28, 41, 59, 92]. Three meshes are considered, namely 162, 322,

and 642 meshes, and the density ratio is set to either 1 with ρl = ρg = 1 or 1000

with ρl = 1000 and ρg = 1. The non-dimensional surface tension coefficient is

σ = 2. The non-dimensional kinematic viscosity is set to ν = 0.064720863 when

the density ratio ρl/ρg = 1 and ν = 0.0064720863 when ρl/ρg = 1000.

Results are shown in Figs. 5.20 and 5.21 for the two density ratios. The wave

amplitude A normalized by the wavelength as a function of time and the error

between the computation and theoretical solution AT derived by Prosperetti [58]

is plotted. For both density ratios the computed wave amplitude agrees well with

the theoretical prediction. Furthermore, the amplitude error converges under mesh

refinement, shown by Fig. 5.22, suggesting the wave physics are properly captured.

155

0 5 10 15 20

ω0t

−0.005

0.000

0.005

0.010

A
/λ

0 5 10 15 20

ω0t

−0.08

−0.06

−0.04

−0.02

0.00

0.02

0.04

0.06

0.08

(A
−
A
T

)/
A

0

Figure 5.20: Standing wave test case with ρl/ρg = 1. Solution and error using
mesh with 162, 322, and 642 cells shown with dotted, dash dotted, and dashed
lines, respectively. Theoretical solution [58] shown with solid line.

0 5 10 15 20

ω0t

−0.005

0.000

0.005

0.010

A
/λ

0 5 10 15 20

ω0t

−0.06

−0.04

−0.02

0.00

0.02

0.04

0.06

(A
−
A
T

)/
A

0

Figure 5.21: Standing wave test case with ρl/ρg = 1000. Solution and error using
mesh with 162, 322, and 642 cells shown with dotted, dash dotted, and dashed
lines, respectively. Theoretical solution [58] shown with solid line.

101 102

Nx

10−3

10−2

10−1

100

L
2

Figure 5.22: Convergence of L2 amplitude error for standing wave test case. Circles
and squares indicate density ratios of 1 and 1000, respectively. First- and second-
order convergence shown with dash dotted and dashed lines.

156

5.5 Conclusions

In this paper, we propose and evaluate a mesh-decoupled height function method.

The scheme leverages a computational geometry toolbox to evaluate height func-

tions within columns that are not aligned with the computational mesh. The

method is used to compute the curvature of a randomly positioned circle and

sphere. An L2 error shows second order convergence which eventually leveled off

on the finest meshes due to effects of the discontinuous interface reconstruction.

The proposed scheme is found to produce superior results to the standard height

function method for under-resolved interface features. A combined method is pre-

sented that uses the standard height function method where it is well defined and

the proposed mesh-decoupled height function method in under-resolved regions.

The combined method is found to compute accurate curvatures even on very coarse

meshes, and second order convergence is observed on fine meshes. The spurious-

currents and standing-wave test cases are used to investigate the feasibility of

using the combined method in realistic simulations. In the former, small capil-

lary numbers (or spurious velocities) are found for all the mesh levels and Laplace

numbers. In the latter, small errors in the wave amplitude that converge under

mesh refinement are obtained. In summary, the proposed combined method is an

improvement to the standard height function approach and an alternative to the

scheme proposed by Popinet [88]. In geometric VOF schemes with computational

geometry routines, the implementation may be trivial and forms a straightforward

methodology to compute robust curvatures of under-resolved interfaces where the

standard height function method often fails.

157

CHAPTER 6

SIMULATIONS OF PRIMARY ATOMIZATION

In this chapter the numerical methods described previously are applied to three

engineering relevant atomizing flows. The flows are a liquid jet in cross-flow, an

air-blast atomizer, and an electrically charged spray.

The first two cases are performed with the accurate conservative level set

method described in Chapter 2 combined with a density-correction scheme that

provides robustness at large density ratios [93]. This methods have been shown

to be well suited for simulating turbulent gas-liquid flows [28]. The methods do

exhibit a small but non-zero mass and momentum conservation error and tend to

be overly diffusive at the interface due to first-order transport. Nonetheless, the

methods are able to produce results that compare well with experiments.

The third test case uses the volume-of-fluid interface tracking scheme described

in Chapter 3 combined with consistent transport of momentum and electric charges

introduced in Chapter 4. This methodology alleviates the limitations of the level

set scheme and conserves mass, momentum, and electric charge to machine pre-

cision and is second-order accurate. With this approach, excellent results for the

simulations of the electrically charged jet are produced even on relatively coarse

meshes.

158

6.1 Liquid jet in cross-flow

6.1.1 Introduction

In this section, large-eddy simulation of the atomization of a liquid jet in cross-flow

is performed. Two different injector geometries are investigated that result in sig-

nificantly different liquid jets. One of the injectors, referred to as the round-edged

injector, produces a laminar flow at the exit plane. The other injector, known as

the sharp-edged injector, produces a turbulent flow that enhances the atomization

of the liquid jet. The jet penetration, mean droplet size spatial distribution, and

mean droplet velocity spatial distribution are compared to experimental results by

Gopala [4], and good agreement is observed.

To perform the simulations, we employ a computational methodology that is

accurate and robust even when large density ratios and turbulent flows are present.

The accurate conservative level set is used to transport the gas-liquid interface. A

density correction formulation is used to ensure consistency between the interface

transport and momentum transport steps, making a robust scheme for simulating

high density ratio flows. A conservative immersed boundary method is used to

simulate the injector geometries, which avoids the complexity of generating a body-

fitted mesh.

6.1.2 Simulation setup

A computational study of a liquid jet in cross-flow is presented. The study focuses

on the comparison of the jets produced using two different injector geometries

159

shown in Fig. 6.1 and referred to as round-edged and sharp-edged injectors. The

round-edged injector features a smooth transition from the plenum to the injector

exit plane, producing a laminar flow at the exit plane. The sharp-edged injector

has sharp corners at the edge of the plenum followed by a long pipe that produces

a turbulent flow at the exit of the injector. The flow through the injectors was

computed in a preliminary simulation. The velocity field at the exit plane of the

injector was saved for many flow through times and used as boundary conditions

for the liquid jet in cross-flow simulations. Figure 6.2 shows snapshots of the flow

in the round-edged and sharp-edged injectors.

(a) Round-edged injector (b) Sharp-edged injector

Figure 6.1: Injector geometries used in liquid jet in cross-flow simulations. Liquid
flows from bottom to top.

The simulations of the liquid jet in cross-flow were performed using a domain of

21D×21D×16D, where D = 0.00047 m is the diameter of the liquid jet at the exit

160

(a) Round-edged injector

(b) Sharp-edged injector

Figure 6.2: Velocity field at the exit plane (left) and on a cut-plane through (right)
the round-edged and sharp-edged injectors.

161

of the injector. The mesh is Cartesian with uniform computational cells arranged in

a 1366×1366×1024 mesh. The physical size of a computational cell is 7.3 µm3. The

simulations were performed using 12,240 cores on Lawrence Livermore National

Laboratory’s (LLNL) Sierra cluster. Non-dimensional properties of the flow are

shown in Table 6.1. The large Reynolds and Weber numbers suggest this jet will

undergo significant atomization.

6.1.3 Simulation results

Figure 6.3 shows an example snapshot of the gas-liquid interface for the simulation

with the sharp-edged injector. Clearly, the jet undergoes dramatic atomization and

many small droplets are produced. The velocity field on the exit plane and a plane

through the center of the jet is shown in Fig. 6.4. Behind the liquid core a region

of significantly smaller streamwise velocity is present. The vertical and spanwise

velocities show there is turbulent flow in and around the liquid core, ligaments,

droplets and other liquid structures within the flow.

Table 6.1: Non-dimensional properties for liquid jet in cross-flow

Property Value

ρl/ρg 137

Rel =
ρlUjetD

µl
5430

Wel =
ρlU

2
jetD

σ
5000

Reg =
ρlUjetD

µg
9490

Weg =
ρlU

2
jetD

σ
500

q =
ρlU

2
jet

ρgU2
g

10

162

Figure 6.3: Rendering of liquid jet in cross-flow produced by the sharp-edged
injector

Snapshots of the gas-liquid interface are shown in Fig. 6.5 for the two injectors.

Qualitatively, it is evident that the sharp-edged injector and associated turbulence

inflow significantly enhance the atomization process through the formation of lig-

aments and other structures. The round-edged injector forms a coherent liquid

sheet that eventually breaks into droplets through the effect of shear.

The penetration of the liquid jet is compared to experimental correlations and

the result is shown in Fig. 6.6. In the figure, the gas-liquid interface from the sim-

ulations is shown along with a red line that indicates the experimental correlation

for the outermost edge of the jet. The correlations are from Gopala [4] and are

x

D
= 1.187q0.437log

Å
1 + 1.123

z

D

ã
, and (6.1)

x

D
= 1.914q0.415log

Å
1 + 2.238

z

D

ã
, (6.2)

for the round-edged and sharp-edged injectors, respectively. In these relations, q

163

(a) Velocity magnitude (b) Streamwise velocity

(c) Vertical velocity (d) Spanwise velocity

Figure 6.4: Velocity field within liquid jet in cross-flow produced by the sharp-
edged injector

164

(a) Round-edged injector (b) Sharp-edged injector

Figure 6.5: Snapshot of the gas-liquid interface for the liquid jet in cross-flow from
the two injector geometries.

is the momentum flux ratio, x is the vertical direction and z is the streamwise di-

rection that is parallel with the bulk gas flow. For completeness, y is the spanwise

direction. Very good agreement is observed in the penetration of the simulated

atomizing jets with experimental results. The small difference between the re-

sults for the round-edged injector is likely due to the turbulence intensity within

the high-speed gaseous cross-flow. In the simulations, a constant bulk velocity

profile was used for a boundary condition for the cross-flow, whereas turbulent

flow was present in the experiments. This difference is not expected to affect the

sharp-edged injector as significantly since the liquid jet is turbulent and provides

fluctuations that destabilizes the atomizing jet. In the jet produced by the round-

edged injector, both the liquid jet and cross-flow boundary conditions do not have

turbulent fluctuations and the flow takes longer to destabilize.

165

(a) Round-edged injector (b) Sharp-edged injector

Figure 6.6: Liquid jet in cross-flow penetration. Red line shows experimental
correlation for outermost edge from Gopala [4].

A comparison of drop size between the simulation of the sharp-edged injec-

tor and the experiments is provided in Figs. 6.7 and 6.8. The figures compare

the arithmetic and Sauter mean diameters denoted AMD and SMD, respectively.

The comparison is performed at 15 diameters downstream of the injector. Droplet

statistics were collected from the simulations for 15T , where T = D/Ujet is the

characteristic flow time. The simulations produce results that are consistent with

experimental measurements. The simulation is constrained in the spanwise direc-

tion (y) which is evident by the sharp edges on the sides of the simulation results.

Larger structures are typically located near the top of the spray. Figure 6.3 shows

that the larger structures are the remains of the liquid core that has broken into

ligaments and other large structures. The smaller droplets near the bottom of the

spray are formed as the liquid core breaks and from being stripped away from the

sides of the liquid core.

166

The velocity of the liquid structures was also calculated and compared with

experimental results of Gopala [4]. Figures 6.9, 6.10, and 6.11 show the average

vertical, spanwise, and streamwise components of droplet velocity at a streamwise

position of z/D = 15. The vertical velocity shows that the large liquid structures

near the top of the spray are continually moving upwards. This is consistent with

the increasing penetration of the jet. The smaller droplets in the lower part of the

spray are not moving significantly in the vertical direction. The spanwise velocity

shows the spray is expanding in the spanwise direction. In the simulation results,

the effect of the domain size is evident in the results and indicate the spray is

constrained in the spanwise direction. The streamwise velocity shows the droplets

are moving the fastest around the edges of the spray where the high-speed cross-

flow has accelerated the liquid. A region of slower moving droplets exists in the

center of the spray behind the central core of the jet.

While the simulation results generally match the experimental results, some

differences are present. One possible cause of the discrepancy is the inability of

the experimental diagnostic equipment to detect non-spherical droplets. A Phase

Doppler Particle Analyzer (PDPA) was used in the experiments to measure droplet

diameters and velocities [4]. PDPA devices have been shown to not correctly

detect non-spherical particles [94]. Figure 6.12 shows a scatter plot of droplet

eccentricity defined as the ratio of largest to smallest characteristic lengths of

the droplet indicated with L1 and L2, respectively. Clearly, many non-spherical

droplets with large eccentricities are present in the simulation results which may

have been undetected in the experiments.

167

AMD at z/D = 15

Y(mm)

X
(m

m
)

−5 0 5
0

2

4

6

8

10

S
M
D

(µ
m
)

0

5

10

15

20

25

30

(a) Simulation result

AMD at z/D = 15

Y(mm)

X
(m

m
)

−5 0 5
0

2

4

6

8

10

S
M
D

(µ
m
)

0

5

10

15

20

25

30

(b) Experimental result [4]

Figure 6.7: AMD

SMD at z/D = 15

Y(mm)

X
(m

m
)

−5 0 5
0

2

4

6

8

10
S
M
D

(µ
m
)

0

5

10

15

20

25

30

35

(a) Simulation result

SMD at z/D = 15

Y(mm)

X
(m

m
)

−5 0 5
0

2

4

6

8

10

S
M
D

(µ
m
)

0

5

10

15

20

25

30

35

(b) Experimental result [4]

Figure 6.8: SMD

Mean Droplet X Velocity at z/D = 15

Y(mm)

X
(m

m
)

−5 0 5
0

2

4

6

8

10

m
/
s

0

5

10

15

(a) Simulation result

Mean Droplet X Velocity at z/D = 15

Y(mm)

X
(m

m
)

−5 0 5
0

2

4

6

8

10

m
/
s

0

5

10

15

(b) Experimental result [4]

Figure 6.9: Vertical velocity

168

Mean Droplet Y Velocity at z/D = 15

Y(mm)

X
(m

m
)

−5 0 5
0

2

4

6

8

10

m
/
s

−15

−10

−5

0

5

10

15

(a) Simulation result

Mean Droplet Y Velocity at z/D = 15

Y(mm)

X
(m

m
)

−5 0 5
0

2

4

6

8

10

m
/
s

−15

−10

−5

0

5

10

15

(b) Experimental result [4]

Figure 6.10: Spanwise velocity

Mean Droplet Z Velocity at z/D = 15

Y(mm)

X
(m

m
)

−5 0 5
0

2

4

6

8

10

V
z
/
V
a
ir

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(a) Simulation result

Mean Droplet Z Velocity at z/D = 15

Y(mm)

X
(m

m
)

−5 0 5
0

2

4

6

8

10

V
z
/
V
a
ir

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(b) Experimental result [4]

Figure 6.11: Streamwise velocity

0 50 100 150 200

2

4

6

8

10

12

14

16

18

20

Diameter (µm)

L
1
/
L

2

Figure 6.12: Scatter plot of eccentricity of droplets versus droplet size.

169

6.2 Air-blast n-dodecane atomization

Air-blast atomization of hydrocarbon fuels is of critical importance to the trans-

portation sector, in particular for aircraft gas turbine engines. In this section, a

co-annular air-blast n-dodecane injector is studied and compared with experimen-

tal data collected by TDA Research a collaborator on this project. The simula-

tions utilize a discontinuous Galerkin discretization of the ACLS procedure [41].

Computational results are compared to experimental measurements, showing the

satisfactory behavior of the simulation technique. In particular, the onset of break-

up, most unstable wavelength, and drop size and velocity distributions are in good

agreement, suggesting that the fundamental physics of air-blast atomization are

well captured by the simulations.

6.2.1 Geometry and Numerical setup

The external mixing air-blast atomizer shown in Fig. 6.13 was designed after the

one described by Marmottant and Villermaux [14]. The simple, externally mixed

geometry is well-suited for numerical modeling and code validation. Since transi-

tional or developing flows are much more difficult to simulate with accuracy, the

tube lengths were chosen to ensure fully developed flows at the exit.

Figure 6.13: Geometry of air-blast atomizer.

170

A variety of quantities were gathered from both experiments [43] and simula-

tions to facilitate a validation of numerical methods. Images of the experimental

jet and renderings of the simulated jet were created and examined qualitatively.

Probability density functions of drop size and drop velocity were calculated to

show the probability of a droplet being created of a given diameter and with a

certain velocity, respectively. n-Dodecane was injected with a co-flow of nitrogen,

their respective properties are shown in Table 6.2 with the subscript l for liquid

n-dodecane and g for nitrogen gas. The high density ratio of 597 is feasible due to

the density-based flux correction scheme that ensures discrete consistency between

fluxes of density and momentum.

Table 6.2: Properties of n-dodecane and nitrogen.

Density
ρl 746 kg/m3

ρg 1.25 kg/m3

Surface Tension σ 2.535× 10−2 N/m

Dynamic Viscosity
µl 1.34× 10−3 kg/m · s
µg 1.718× 10−5 kg/m · s

The injector geometry is detailed in Fig. 6.14 and consists of a straight jet of

diameter d1 surrounded by a co-flow of inner diameter d2 and thickness h. The

length of the injector is not shown in the sketch but is visible in Fig. 6.13 and has

been designed so that the flow leaving the nozzle is fully developed.

Figure 6.14: Air-blast injector dimensions.

The phase Reynolds and Weber numbers are based on the liquid velocity Ul

171

and gas velocity Ug, and are provided in Table 6.3. Reynolds numbers for the test

case indicate that the flow of n-dodecane and the co-flow of N2 is laminar. The

laminar nature of the co-flow was confirmed by numerically simulating a periodic

annular pipe under these conditions.

Table 6.3: Flow parameters for the test case.

Ul [m/s] Ug [m/s] Rel Reg Wel Weg
1.8 69.89 1336 1453 127 321

The atomization simulation was performed on 1,024 processors using a mesh of

512× 256× 256 grid cells. A CFL number below 0.9 was maintained throughout

the simulation. Roughly 1.5 flow through times were used to allow the jet to reach

a statistically steady state.

6.2.2 Shear instability results

Primary atomization under the flow parameters described above results in an ini-

tially smooth jet that rapidly breaks up into droplets. Figure 6.15 shows a side-

by-side comparison of snapshots from the experiment and the simulation. Quali-

tatively, there is excellent agreement in the shape of the jet, the length-scales of

instabilities, the onset of liquid break-up, and the distribution of large droplets.

There appears to be smaller droplets in the experiment that are not found in the

simulation result. It is postulated that such small droplets are formed when liquid

accumulates on the outside of the nozzle and the jet interacts with this liquid.

Figure 6.16 shows an instance of the n-dodecane jet interacting with the wetted

nozzle.

172

(a) Photo of experiment. (b) Rendering of simulation re-
sult.

Figure 6.15: Comparison of jet from (a) experiment and (b) simulation.

Figure 6.16: Example of nozzle wetting and the effect on break-up process.

At the exit plane of the nozzle there exists a shear layer between the fast-moving

co-flow of gas and the slower moving liquid jet. Marmottant and Villermaux [14]

showed that this flow destabilizes by means of a Kelvin-Helmholtz type of insta-

173

bility, and the most amplified wavenumber is given by

km ≈ 1.5

Ç
ρg
ρl

å1/2 1

δ
, (6.3)

where δ is the vorticity thickness of the gas jet. An a priori estimate of δ is

challenging to obtain due to the presence of the gap between the jet and co-flow.

However, to build an estimate of δ, the boundary layer thickness is defined as

the location where the velocity is 50% of its maximum. Using a Poiseuille ve-

locity profile, consistent with the laminar inflow, this approximation results in

δ = 2.3 × 10−5 m and km = 2600 m−1. Converting from wavenumber to wave-

length λaxi leads to λaxi = 2.4 × 10−3 m or 1.8 jet diameters (1.8D). Looking at

Fig. 6.17(a) and 6.17(b), four different waves were identified and measured using a

photo analysis program. The average wavelength was found to be 2.25D. A similar

analysis was performed for results obtained from the simulation and Fig. 6.17(c)

shows that the average wavelength in the simulations is about 1.9D.

In summary, the theoretical calculation predicts the wavelength to be near

1.8D, the experiment showed 2.25D, and 1.9D was found using the simulation. All

of the values are of the same order of magnitude and agree reasonably well, indi-

cating the leading break-up mechanism is an instability akin to Kelvin-Helmholtz.

Furthermore, this analysis shows that the simulations are capable of capturing the

shear layer and the effects it has on the flow.

6.2.3 Drop characteristics

Drops were identified and characterized in experiments and simulations since

the size of droplets produced by primary atomization is an important result for

combustion-related applications. For experiments, a TSI PIV system with the

174

(a) Experiment: Time 1 (b) Experiment: Time 2 (c) Simulation

Figure 6.17: Measurement of shear instability using photos at two different times
during the experiment (a,b) and a rendering of simulation data (c).

GSV option was used to measure droplet size and velocity. Simulations used a

band-growth algorithm [95] to identify droplets and compute their size and ve-

locity. Using the two methods, probability density functions of drop size were

calculated. The results shown in Fig. 6.18(a) illustrate the excellent agreement

in the size of droplets found in our simulations and experiments. The agreement

between the probability density functions show that the simulations are capable

of accurately predicting the break-up dynamics and could be used to predict drop

sizes for design applications.

In addition to drop size distributions, droplet velocity distributions were also

calculated. Figure 6.18(b) shows probability density functions of droplet axial ve-

locity. Again, excellent agreement is found between the experiment and simulation,

indicating that the droplets are forming with the correct velocity, which suggests

in turn that the break-up mechanism is captured in the simulation.

175

(a) Drop sizes. (b) Drop axial velocities.

Figure 6.18: Probability density function of (a) drop size and (b) drop velocity
using experimental and simulation results.

6.3 Electrohydrodynamic assisted atomization

Electrohydrodynamics (EHD) is the field of science that describes systems with

a significant interaction of fluid mechanics and electrostatics. EHD has success-

fully been used in a variety of engineering applications to control or produce fluid

motion. Some examples include inkjet printing [96], mass spectrometry analysis

of biomolecules [97], Taylor cones [98–103], microfluidic devices [104–109], agricul-

tural sprays [110], and fuel atomization [76, 77, 98, 111–121], which is the focus of

this work. EHD has the potential to enhance atomization and the corresponding

increase in surface area improves the evaporation rate of fuels [114], as shown in

Fig. 6.19. Additionally, EHD has been found to be a viable and useful method to

control the droplet distribution within a combustion chamber under realistic direct

injection spark ignition conditions [76].

Numerical studies related to EHD atomization have been conducted. Shrimp-

ton and Kourmatzis explored the flow within the injector [113]. Many researchers

have proposed methods to study EHD and applied the methods to simplified

problems like droplet deformation [122, 123]. Van Poppel et al. [77] proposed a

176

Figure 6.19: Effect of EHD on atomization. Uncharged (left) and charged (right)
liquid jets. (used with permission [118])

methodology and successfully performed direct numerical simulations (DNS) of a

charged atomizing jet. However, the electric charges were assumed to be uniformly

distributed within the liquid. This assumption was shown, through a time-scale

analysis, to be the better than the alternative commonly used assumption wherein

charges instantly relax to the surface of the liquid. In this work, a conservation of

charge equation is solved avoiding the necessity of making an assumption on the

177

charge distribution.

6.3.1 Mathematical Formulation

EHD atomizing flows are described by hydrodynamics and electrostatics. Assum-

ing electrostatics instead of electrodynamics is equivalent to assuming magnetic

effects can be ignored. This is appropriate since the EHD timescale is several or-

ders of magnitude larger than the magnetic timescale as shown by Saville [124].

Therefore, the electric field is assumed to be continuously in equilibrium with the

distribution of electric charges within the system. Maxwell’s equations for elec-

trostatics and conservation laws for mass and momentum describe electrostatic-

hydrodynamic flows and are summarized in this section.

Conservation of mass and momentum for a low Mach number, variable density

flow are given in both phases as

∂ρi
∂t

+∇ · (ρiui) = 0, (6.4)

and

∂ρiui
∂t

+∇ · (ρiui ⊗ ui) = −∇pi +∇ ·
Ä
σfi + σei

ä
+ ρig, (6.5)

where ρi is the density, ui is the velocity field vector, t is time, pi is the hydrody-

namic pressure, and g is the gravitational acceleration. The subscript i = g or l

and indicates variables in the gas or liquid phase, respectively. σfi is the viscous

stress tensor given by

σfi = µi
Ä
∇ui +∇uT

i

ä
− 2

3
µi(∇ · ui)I, (6.6)

where µi is the dynamic viscosity and I is the identity tensor. σei is Maxwell’s

178

stress tensor

σei = εiEi ⊗Ei −
εi
2
Ei ·Ei

Ç
1− ρi

εi

∂εi
∂ρi

å
I, (6.7)

where εi is the electric permittivity and Ei is the electric field vector. Maxwell’s

stress tensor induces an electric body force that can be written as

f ei = ∇ · σei = qEi −
1

2
E2
i∇εi +∇

Ç
1

2
ρi
∂εi
∂ρi
E2
i

å
, (6.8)

where qi is the volumetric electric charge density. The three terms in the electric

body force are, from left to right, the Coulomb (or Lorentz) force, the dielectric

force, and the electrostrictive force. The latter two are only important if a transient

electric field exists or if the permittivity is spatially varying [125].

The electric field vector is irrotational due to the electrostatic assumption and

can be expressed as the gradient of the scalar electric potential φi using

Ei = −∇φi. (6.9)

The electric potential is related to the volumetric charge density by

−∇ · (εi∇φi) = qi, (6.10)

which is referred to as the electric potential Poisson equation.

The dynamics of the electric charge density is described by the conservation

equation

∂qi
∂t

+∇ · J i = 0, (6.11)

where J i is the current density, which can be written as

J i = qiui + qiκiEi −Di∇qi, (6.12)

where κi is the ionic mobility coefficient and Di is the molecular diffusion coeffi-

cient. The three terms that contribute to the current density can be described as

179

convection due to the velocity field, convection due to the electrical velocity κiEi,

and diffusion.

The equations above have been written in both the gas and liquid phases. They

are connected through jump conditions at the phase interface. For example, the

jumps in density, viscosity, and permittivity at the interface Γ are written as

[ρ]Γ = ρl − ρg, (6.13)

[µ]Γ = µl − µg, (6.14)

[ε]Γ = εl − εg. (6.15)

In the absence of phase change the velocity field is continuous in the normal di-

rection, i.e., [u · n]Γ = 0, where n is the interface normal vector. Analogously to

the no-slip assumption, the tangential velocity at the interface is assumed to be

continuous and can be written as [u · td]Γ = 0, for d = 1, 2. Combining the two

jump conditions for the velocity field, it is clear that the velocity is continuous,

i.e.,

[u]Γ = 0. (6.16)

The pressure is discontinuous due to contributions from surface tension, viscous,

and electric forces and can be written as

[p]Γ = γκ+
î
nT ·

Ä
σf + σe

ä
· n
ó
Γ
, (6.17)

where γ is the surface tension coefficient and κ is the interface curvature. The

previous equation can be simplified to [77]

[p]Γ − 2[µ]Γn
T · ∇u · n− γκ (6.18)

=
1

2

î
ε(E · n)2 − ε(E · t1)2 − ε(E · t2)2

ó
Γ
.

180

The electric field is discontinuous if surface charges are present at the phase inter-

face and can be written as

n · [εE]Γ = qs, (6.19)

where qs is the surface electric charge density. Due to the electrostatic assumption

the electric field remains irrotational and n × [E]Γ = 0. A consequence of this

relation is the tangential component of the electric field and the electric potential

are continuous, i.e.,

[E · td]Γ = 0 for d = 1, 2, (6.20)

[φ]Γ = 0. (6.21)

The balance of shear stress at the interface leads to

[nT · (σf + σe) · td]Γ = 0 for d = 1, 2. (6.22)

Conservation of charge at the phase interface is described by

[J · n]Γ +∇sJ s = (n · u)[q]Γ (6.23)

− ∂qs
∂t
− us · ∇qs + qsn · (n · ∇)u,

where ∇s is the surface gradient operator, J s is the surface charge current density,

and us is the interface surface velocity.

6.3.2 Numerical methods

The equations described in the previous section are solved using the NGA com-

putational platform [28, 56] using the VOF interface tracking methodology. The

EHD governing equations are solved based on the work of Van Poppel et al. [77]

which is modified in this work with the inclusion of the electric charge conservation

181

equation, Eq. 6.11. Additional details of the electric charge density transport are

described below.

Electric charge density transport

For the application of EHD assisted atomization, electric charges are typically

introduced into the liquid phase using a large potential within the injector [126].

The charged fuel is then injected into the combustion chamber. The electric charges

remain in the liquid phase and are not present in the gas, i.e., qg = 0. The electric

charge density can vary spatially within the liquid and charges can accumulate

near the phase interface due to charge repulsion. The charges form an electric

boundary layer at the interface that can be represented as a surface charge density

qs or as a localized concentration of volumetric electric charge density q. In this

work, the latter choice is made, which is valid provided there is sufficient resolution

to capture the electric charge boundary layer. With qs = 0, Eq. 6.23 simplifies to

[J · n]Γ = (n · u)[q]Γ, (6.24)

which is equivalent to zero flux of electric charge density through the phase inter-

face.

Within the liquid phase, the temporal change in electric charge density is de-

scribed by Eq. 6.11. The convection term in this equation is solved by computing

third-order WENO-type fluxes [78, 79] away from the phase interface where it is

smooth and using geometrically computed fluxes near discontinuities at the inter-

face [127]. Diffusion fluxes are computed using second-order centered finite differ-

ence operators. At the interface the zero-flux constraint is enforced by scaling the

diffusion and electric convection fluxes with the wetted area of each computational

cell face.

182

6.3.3 Simulation results

Simulations of kerosene atomization are performed based on the experimental work

by Yule and Shrimpton [116]. Figure 6.20 shows the geometry for the simulations.

In the figure, d is the jet diameter and U is the mean jet velocity. The electric

potential is set to zero on the four sides of the computational domain (x-y and

x-z faces). Table 6.4 summaries the non-dimensional numbers for the simulations.

Table 6.5 provides the physical parameters for the test case.

The simulations of the kerosene jet are performed by first computing an inflow

velocity field. This velocity field is stored and used as a boundary condition for the

jet simulations. The inflow was computed using a periodic pipe with a Reynolds

number of 5000. Note that this does not match Reynolds number of the liquid jet.

However, using Re = 4000 in a numerical simulation produces a laminar profile.

It is likely the turbulent profile more closely matches the flow from the physical

injector [116]. Ideally the flow through the injector should be simulated, however

this flow will significantly depend on the motion of electric charges from the high

potential needle to the liquid. Simulating this flow is beyond the scope of this

paper and the simplified turbulent inflow is used.

Two computational domains are used to study the jet, namely a small and large

domain of sizes 16d×8d×8d and 32d×16d×16d, respectively. The same number

of grid points is used to discretize both domains and consists of 512 × 256 × 256

computational cells in the x, y, and z directions.

Figure 6.21 shows images of the gas-liquid interface computed in simulations of

an uncharged and a charged kerosene jet on the smaller domain. Both jets have the

same parameters except for the electric charge density. The presence of electrical

183

d

U

L

W

H

x

y

z

Figure 6.20: Geometry for simulations of EHD enhanced kerosene atomization.
Note all four sides (xy-planes and xz-planes) are grounded, i.e., φi = 0.

Table 6.4: Non-dimensional numbers used in the charged kerosene jet simulations.

Non-dimensional number Value

Reynolds number ρlUd/µl 4000

Weber number ρlU
2d/γ 1700

Electro-inertial num. q2
l d

2/(εlρlU
2) 0.04

Electric Reynolds num. εlU/(dκlql) 780

Electric Peclet number qlκld
2/(Dε) 640

Density ratio ρl/ρg 664

Viscosity ratio µl/µg 51

Permittivity ratio εl/εg 2.2

Relative length L/d 16

Relative width W/d 8

Relative height H/d 8

charges clearly enhances the atomization process. The temporal evolution of the

electrically charged jet is shown in Fig. 6.22. The deformation of the interface is

caused by the Coulomb force that results in the creation of ligaments and droplets

that are pushed away from the central core due to electric charge repulsion. This

EHD effect creates unique features such as a relatively coherent central core and

ligaments orientated in the radial direction. These features are consistent with

those observed experimentally and shown in Fig. 6.19. Figure 6.23 shows the

184

Table 6.5: Physical parameters in charged kerosene jet simulations.

Parameter Symbol Units Value

Mean velocity U m/s 10

Injector diameter d µm 500

Liq. density ρl kg/m3 800

Gas density ρg kg/m3 1.2

Liq. viscosity µl kg/m·s 1.0e-3

Gas viscosity µg kg/m·s 1.98e-5

Surface tension coef. γ N/m 0.0235

Liq. rel. permittivity εl/εo - 2.2

Gas rel. permittivity εg/εo - 1.0

Liq. ionic mobility κl m2/V·s 1e-9

Liq. molecular diff. Dl m2/s 1e-8

Figure 6.21: Snapshots of the uncharged kerosene jet (top) and the EHD enhanced
atomizing jet (bottom) computed using the small computational domain.

electrically charged jet computed on the larger domain. The presence of the electric

charges clearly continues to enhance the atomization process as the jet evolves

further into the computational domain.

An interesting feature of the flow is highlighted in Fig. 6.24 where the electric

charge density on the surface of the jet is shown. Clearly the electric charge density

185

is highest is droplets that are farthest from the center of the jet. This is because

when the liquid is injected the mutual repulsion of electric charges creates electric

charge boundary layers on the gas-liquid interface. This high concentration of

electric charges is maintained when the contiguous liquid jet breaks into droplets.

Furthermore, the highly charged droplets will experience an larger Coulomb force

and the atomization process is enhanced due to the spatial variations in electric

charge density. Note however that the variability in electric charge density is less

than 5% of the injected charge density, so while the spatial variability exists it

is small. Therefore, a reasonable approximation is to assume the electric charge

density is constant within the liquid phase as was done by Van Poppel et al. [77].

186

Figure 6.22: Snapshots of EHD enhanced kerosene atomization simulation. Time
varies from t = 0.0 s (top) to t = 0.0005 s (bottom). side view (left), front view
(right).

187

Figure 6.23: Snapshot of the charged EHD enhanced jet computed on the large
domain.

Figure 6.24: Electric charge density for EHD enhanced kerosene atomization sim-
ulation.

188

6.4 Conclusions

In this chapter, the numerical methods described throughout this dissertation have

been used to simulate three realistic atomizing flows. The simulations highlight the

usefulness in using numerical simulations to predict atomizing flows. Comparison

of the simulation results to experiments demonstrates the numerical methods are

capable of accurately predicting the multiphase dynamics. The numerical simu-

lations provide a three-dimensional, time varying description of the flow field and

interface dynamics. This wealth of data has the potential to advance our under-

standing of these flows.

189

CHAPTER 7

CONCLUSIONS

This dissertation describes numerical methods that allow for robust and accu-

rate simulations of gas-liquid flows. The capability to accurately perform predictive

simulations of these flows has the potential to significantly improve our under-

standing of the complex systems and aide in the engineering design of devices that

exploit multiphase flows. However, the complexities of a deforming phase inter-

face and the associated discontinuities have limited the availability of predictive

simulations. The work in this dissertation serves to advance the state-of-the-art

of numerical methods and allow for robust and accurate simulations of relevant

engineering devices.

Two novel interface tracking schemes are proposed to improve the accuracy

and conservation properties of such methods. The first is a discontinuous Galerkin

discretization of the conservative level set. This discretization allows for a more

accurate representation of the level set function without the need of a large compu-

tational stencil. The scheme is shown to have excellent scalability while improving

the mass conservation properties of the conservative level set method. The second

interface tracking scheme is based on the volume-of-fluid methodology and provides

discrete conservation of mass. The scheme constructs un-split, three-dimensional,

conservative fluxes using two key ideas that makes it straightforward to imple-

ment. The first is to represent the complex flux geometry using simplices, which

are easier to manipulate computationally. The second is a novel sign convention

that greatly simplifies how crossed fluxes are dealt with. Both interface tracking

methods are verified using a variety of canonical test cases.

190

A numerical discretization for conservation laws with discontinuities at the

phase interface is presented. The method is constructed such that discrete consis-

tency with the volume-of-fluid interface transport is enforced. Consistency ensures

the discontinuities are handled sharply and conservatively. The resulting scheme

is tested and found to have discrete conservation and second-order accuracy.

In this work, the height function method, which is commonly used in the con-

text of volume-of-fluid schemes to compute the interface curvature, is extended and

applied to the conservative level set. Additionally, an advancement to the height

function method is proposed that reduces curvature errors for under-resolved inter-

faces. Such interfaces are commonly found in simulations of atomizing flows where

non-trivial topology changes occur on the same length-scale as the computational

mesh.

These numerical methods have been used to simulate relevant atomizing flows.

Namely, a liquid jet in cross-flow, an air-blast atomizing jet, and an electrically

charged jet. The simulated results are compared to available experimental data

and show excellent agreement suggesting the numerical methods are capable of

predictive simulations of atomization.

Using simulations to study atomization has the potential to greatly improve

our understanding of these strikingly dynamic and complex flows. Simulations will

allow researchers to visualize and measure these flows in ways unattainable with

current experimental techniques. With more knowledge of the important physical

processes that govern multiphase flows, hopefully researchers can develop reduced

order models that design engineers can use to improve the efficiency of engineering

devices. Ultimately, this work may allow fuel injection systems to become more

191

efficient and mitigate the harmful effects of burning liquid fuels.

7.1 Future work

The numerical methods described in this dissertation provide a framework that is

capable of simulating gas-liquid flows with second-order accuracy and discrete con-

servation while remaining robust in the presence of large density ratios. However,

some aspects of the simulation methodology could benefit from improvements or

extensions and are described below.

Phase change

Atomizing liquid jets typically create many small droplets. These droplets have

a large surface area to volume ratio and evaporation will be important for their

temporal evolution. Additionally, evaporation or condensation is important for

many other application and developing a methodology for phase change will be

an important aspect for predictive simulations of many flows. Phase change has

been modeled previously, see for example [128], however, developing a conservative

methodology that is consistent with the interface tracking scheme would be ben-

eficial for predictive simulations of realistic turbulent atomizing flows with large

density ratios, significant interface deformation, and phase change. This is a real-

istic combination that to the best of our knowledge has not been simulated.

High-order volume-of-fluid method

The volume-of-fluid scheme described in Chapter 3 is second order accurate. This

method is constructed by transporting the liquid-volume fraction. There is po-

tential to develop a scheme that transports higher-order moments. The moments

could be used to construct higher-order volume-of-fluid schemes or to transport

additional interface quantities such as the interface normal vector. A class of

192

schemes known as moment-of-fluid methods [129] have been developed but there

are unanswered questions about what are the best moments to transport, how to

transport the moments, how to use those moments to build an interface recon-

struction. Viable candidates for moments include the barycenter of the liquid and

the barycenter of the interface. Reconstructions can be a single linear function,

multiple linear functions, or a higher order function.

Mesh-independent solutions

In simulations of gas-liquid flows, the interface dynamics are often dictated by the

computational mesh. For example, when a ligament breaks into droplets the mo-

ment the ligament breaks is controlled by molecular dynamics and not described by

the continuum equations we are solving. In a simulation, the breaking event is typ-

ically modeled using the limits of the computational mesh making the solution at

some level dependent on the mesh. The development of a mesh-independent frame-

work for interface topology changes would alleviate this constraint or a detailed

study of the impacts the mesh dependency on the solution would be beneficial.

Large-eddy simulations of multiphase flows

Simulations of multiphase flows tend to be computational expensive due to the

wide range of length and time scales. Therefore, the use of large-eddy simulations

(LES) wherein only the large scales are resolved has the potential to reduce the

cost and time needed to perform multiphase simulations. However, sub-grid phase

interface dynamics must be modeled. Herrmann [130] provided a methodology

wherein the phase interface is resolved on an auxiliary fine grid and the effects

are filtered onto a coarser flow-solver LES mesh. However, the cost of solving

the interface dynamics on a fine mesh will be substantial and may hinder the

advantages of performing an LES. Alternatively, sub-grid interface scales could be

193

modeled using a more detailed understanding of interface dynamics on the smallest

scales.

Uncertainty quantification

Quantifying uncertainty in computational fluid dynamics problems is an impor-

tant and often neglected component of simulations. Effort is typically focused on

determining the convergence order of numerical schemes used to discretize the gov-

erning equations; however, the fluid properties, boundary conditions, and initial

conditions are usually taken to be exact even when large uncertainties are present

in their definitions. Uncertainty quantification (UQ) is a rigorous methodology

used to compute uncertainties in numerical models. While many UQ approaches

are prohibitively expensive, a generalized polynomial chaos method has a reason-

able computational cost [131]. Polynomial chaos has been used to study relevant

canonical flows such as flow past a cylinder [132]. The extension of the methodol-

ogy to multiphase flows has not been performed but has the potential to improve

the credence of multiphase flow simulations by providing valuable information on

the uncertainty in the simulation results.

194

BIBLIOGRAPHY

[1] Summary for policymakers. in: Climate change 2013: The physical science
basis. contribution of working group I to the fifth assessment report of the
Intergovernmental Panel on Climate Change, Tech. rep., IPCC, Cambridge
University Press, Cambridge, United Kingdom and New York, NY, USA
(2013).

[2] J. López, J. Hernández, P. Gómez, F. Faura, A volume of fluid method based
on multidimensional advection and spline interface reconstruction, Journal
of Computational Physics 195 (2) (2004) 718–742.

[3] J. Hernández, J. López, P. Gómez, C. Zanzi, F. Faura, A new volume of fluid
method in three dimensions—Part i: Multidimensional advection method
with face-matched flux polyhedra, International Journal of Numerical Meth-
ods in Fluids 58 (8) (2008) 897–921.

[4] Y. Gopala, Breakup characteristics of a liquid jet in subsonic crossflow, Ph.D.
thesis, Georgia Institute of Technology (2012).

[5] Annual energy outlook 2013 with projections to 2040, Tech. Rep. DOE/EIA-
0383, U.S. Energy Information Administration (2013).

[6] I. Grant, Particle image velocimetry: A review, Proceedings of the Institution
of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science
211 (1) (1997) 55–76.

[7] Y. Yeh, H. Z. Cummins, Localized fluid flow measurements with an HeNe
laser spectrometer, Applied Physics Letters 4 (10) (1964) 176–178.

[8] D. N. White, Johann christian doppler and his effectA brief history, Ultra-
sound in Medicine & Biology 8 (6) (1982) 583–591.

[9] J. B. Blaisot, J. Yon, Droplet size and morphology characterization for dense
sprays by image processing: application to the diesel spray, Experiments in
Fluids 39 (6) (2005) 977–994.

[10] K.-C. Lin, M. Ryan, A. Sandy, S. Narayanan, J. Ilavsky, J. Wang, Investi-
gation of droplet properties of supercritical ethylene jets using small angle
X-ray scattering (SAXS) technique, Orlando, FL, 2008.

195

[11] S. Moon, Z. Liu, J. Gao, E. Dufresne, K. Fezzaa, J. Wang, X. Xie, M. C.
Lai, Ultrafast X-ray phase-contrast imaging of high-speed fuel sprays from
a two-hole diesel nozzle, in: ILASS Americas, 22nd annual conference on
liquid atomization and spray systems, 2010.

[12] K.-C. Lin, C. Carter, K. Fezzaa, J. Wang, Z. Liu, X-ray study of pure- and
aerated-liquid jets in a quiescent environment, in: 47th AIAA Aerospace
Sciences Meeting including The New Horizons Forum and Aerospace Expo-
sition, American Institute of Aeronautics and Astronautics, 2009.

[13] D. Moncton, The Advanced Photon Source a national sychrotrn radiation re-
search facility, Argonne National Laboratory ANL/APS/TB-25-Rev. (1997).

[14] P. Marmottant, E. Villermaux, On spray formation, Journal of Fluid Me-
chanics 498 (2004) 73–111.

[15] G. M. Faeth, L. P. Hsiang, P. K. Wu, Structure and breakup properties of
sprays, International Journal of Multiphase Flow 21 (Supplement 1) (1995)
99–127.

[16] J. U. Brackbill, D. B. Kothe, C. Zemach, A continuum method for modeling
surface tension, Journal of Computational Physics 100 (2) (1992) 335–354.

[17] R. P. Fedkiw, T. Aslam, B. Merriman, S. Osher, A non-oscillatory Eule-
rian approach to interfaces in multimaterial flows (the ghost fluid method),
Journal of Computational Physics 152 (2) (1999) 457–492.

[18] W. Dettmer, P. H. Saksono, D. Perić, On a finite element formulation for
incompressible Newtonian fluid flows on moving domains in the presence
of surface tension, Communications in Numerical Methods in Engineering
19 (9) (2003) 659–668.

[19] C. W. Hirt, A. A. Amsden, J. L. Cook, An arbitrary Lagrangian-Eulerian
computing method for all flow speeds, Journal of Computational Physics
135 (2) (1997) 203–216.

[20] T. J. R. Hughes, W. K. Liu, T. K. Zimmermann, Lagrangian-Eulerian finite
element formulation for incompressible viscous flows, Computer Methods in
Applied Mechanics and Engineering 29 (3) (1981) 329–349.

[21] J. Sarrate, A. Huerta, J. Donea, Arbitrary Lagrangian-Eulerian formulation

196

for fluid-rigid body interaction, Computer Methods in Applied Mechanics
and Engineering 190 (24-25) (2001) 3171–3188.

[22] M. Rudman, Volume-tracking methods for interfacial flow calculations, In-
ternational Journal for Numerical Methods in Fluids 24 (7) (1997) 671–691.

[23] S. Osher, J. A. Sethian, Fronts propagating with curvature-dependent speed:
Algorithms based on Hamilton-Jacobi formulations, Journal of Computa-
tional Physics 79 (1) (1988) 12–49.

[24] J. Sethian, Level Set Methods and Fast Marching Methods: Evolving Inter-
faces in Computational Geometry, Cambridge University Press, 1999.

[25] C. Hirt, B. Nichols, Volume of fluid (VOF) method for the dynamics of free
boundaries, Journal of Computational Physics 39 (1) (1981) 201–225.

[26] J. E. Pilliod, E. G. Puckett, Second-order accurate volume-of-fluid algorithms
for tracking material interfaces, Journal of Computational Physics 199 (2)
(2004) 465–502.

[27] R. Scardovelli, S. Zaleski, Direct numerical simulation of free-surface and
interfacial flow, Annual Review of Fluid Mechanics 31 (1) (1999) 567–603.

[28] O. Desjardins, V. Moureau, H. Pitsch, An accurate conservative level
set/ghost fluid method for simulating turbulent atomization, Journal of Com-
putational Physics 227 (18) (2008) 8395–8416.

[29] E. Olsson, G. Kreiss, A conservative level set method for two phase flow,
Journal of Computational Physics 210 (1) (2005) 225–246.

[30] E. Olsson, G. Kreiss, S. Zahedi, A conservative level set method for two
phase flow II, Journal of Computational Physics 225 (1) (2007) 785–807.

[31] R. DeBar, Fundamentals of the KRAKEN code, Tech. Rep. UCIR-760, LLNL
(1974).

[32] B. Nichols, C. Hirt, Methods for calculating multi-dimensional, transient free
surface flows past bodies, Tech. Rep. LA-UR-75-1932, Los Alamos National
Laboratory (1975).

[33] W. F. Noh, P. Woodward, SLIC (simple line interface calculation), in: Pro-
ceedings of the Fifth International Conference on Numerical Methods in

197

Fluid Dynamics, no. 59 in Lect. Notes Phys., Springer Berlin Heidelberg,
1976, pp. 330–340.

[34] D. Youngs, Time-dependent multi-material flow with large fluid distortion,
Numerical Methods for Fluid Dynamics (1982) 273–285.

[35] W. J. Rider, D. B. Kothe, Reconstructing volume tracking, Journal of Com-
putational Physics 141 (2) (1998) 112–152.

[36] V. Le Chenadec, H. Pitsch, A 3D unsplit Forward/Backward volume-of-fluid
approach and coupling to the level set method, Journal of Computational
Physics 233 (0) (2013) 10–33.

[37] G. Tryggvason, R. Scardovelli, S. Zaleski, Direct Numerical Simulations of
Gas-Liquid Multiphase Flows, Cambridge University Press, 2011.

[38] M. D. Torrey, L. D. Cloutman, R. C. Mjolsness, C. W. Hirt, NASA-VOF2D:
a computer program for incompressible flows with free surfaces, NASA
STI/Recon Technical Report N 86 (1985) 30116.

[39] B. D. Nichols, C. W. Hirt, R. S. Hotchkiss, SOLA-VOF: a solution algorithm
for transient fluid flow with multiple free boundaries, NASA STI/Recon
Technical Report N 81 (1980) 14281.

[40] J. Helmsen, P. Colella, E. G. Puckett, Non-convex profile evolution in two di-
mensions using volume of fluids, Tech. Rep. LBNL–40693, Lawrence Berkeley
Lab., CA (United States) (Jun. 1997).

[41] M. Owkes, O. Desjardins, A discontinuous Galerkin conservative level set
scheme for interface capturing in multiphase flows, Journal of Computational
Physics 249 (15) (2013) 275–302.

[42] M. Owkes, O. Desjardins, A computational framework for conservative,
three-dimensional, unsplit, geometric transport with application to the
volume-of-fluid (VOF) method, Journal of Computational Physics 270 (1)
(2014) 587–612.

[43] O. Desjardins, J. McCaslin, M. Owkes, P. Brady, Direct numerical and large-
eddy simulation of primary atomization in complex geometries, Atomization
and Sprays 23 (11) (2013) 1001–1048.

198

[44] P. Rasetarinera, M. Y. Hussaini, An efficient implicit discontinuous spectral
Galerkin method, Journal of Computational Physics 172 (2) (2001) 718–738.

[45] J. Remacle, N. Chevaugeon, E. Marchandise, C. Geuzaine, Efficient visu-
alization of high-order finite elements, International Journal for Numerical
Methods in Engineering 69 (4) (2007) 750–771.

[46] B. Cockburn, C. Shu, Runge-Kutta discontinuous Galerkin methods for
convection-dominated problems, Journal of Scientific Computing 16 (3)
(2001) 173–261.

[47] E. Marchandise, J. Remacle, N. Chevaugeon, A quadrature-free discontin-
uous Galerkin method for the level set equation, Journal of Computational
Physics 212 (1) (2006) 338–357.

[48] E. Marchandise, P. Geuzaine, N. Chevaugeon, J. Remacle, A stabilized finite
element method using a discontinuous level set approach for the computation
of bubble dynamics, Journal of Computational Physics 225 (1) (2007) 949 –
974.

[49] M. M. Francois, S. J. Cummins, E. D. Dendy, D. B. Kothe, J. M. Sicilian,
M. W. Williams, A balanced-force algorithm for continuous and sharp inter-
facial surface tension models within a volume tracking framework, Journal
of Computational Physics 213 (1) (2006) 141–173.

[50] D. L. Chopp, Some improvements of the fast marching method, SIAM Jour-
nal of Scientific Computing 23 (1) (2001) 230–244.

[51] D. L. Chopp, Computing minimal surfaces via level set curvature flow, Jour-
nal of Computational Physics 106 (1) (1993) 77–91.

[52] M. Sussman, P. Smereka, S. Osher, A level set approach for computing solu-
tions to incompressible Two-Phase flow, Journal of Computational Physics
114 (1) (1994) 146–159.

[53] B. Cockburn, C. Shu, TVB Runge-Kutta local projection discontinuous
Galerkin finite element method for conservation laws II. general framework,
Mathematics of Computation 52 (186) (1989) 411–35.

[54] H. Luo, L. Luo, R. Nourgaliev, V. A. Mousseau, N. Dinh, A reconstructed
discontinuous Galerkin method for the compressible Navier-Stokes equations

199

on arbitrary grids, Journal of Computational Physics 229 (19) (2010) 6961–
6978.

[55] X. Zhang, C. Shu, Maximum-principle-satisfying and positivity-preserving
high-order schemes for conservation laws: survey and new developments,
Proceedings of the Royal Society of London. Series A: Mathematical and
physical sciences 467 (2011) 2752–2776.

[56] O. Desjardins, G. Blanquart, G. Balarac, H. Pitsch, High order conservative
finite difference scheme for variable density low mach number turbulent flows,
Journal of Computational Physics 227 (15) (2008) 7125–7159.

[57] S. T. Zalesak, Fully multidimensional flux-corrected transport algorithms for
fluids, Journal of Computational Physics 31 (3) (1979) 335–362.

[58] A. Prosperetti, Motion of two superposed viscous fluids, Physics of Fluids
24 (7) (1981) 1217–1223.

[59] M. Herrmann, A balanced force refined level set grid method for two-phase
flows on unstructured flow solver grids, Journal of Computational Physics
227 (4) (2008) 2674–2706.

[60] S. Popinet, S. Zaleski, A front-tracking algorithm for accurate representation
of surface tension, International Journal for Numerical Methods in Fluids
30 (6) (1999) 775–793.

[61] A. Bagué, D. Fuster, S. Popinet, R. Scardovelli, S. Zaleski, Instability growth
rate of two-phase mixing layers from a linear eigenvalue problem and an
initial-value problem, Physics of Fluids 22 (9) (2010) 92–104.

[62] P. A. M. Boomkamp, B. J. Boersma, R. H. M. Miesen, G. V. Beijnon, A
Chebyshev collocation method for solving two-phase flow stability problems,
Journal of Computational Physics 132 (2) (1997) 191–200.

[63] J. McCaslin, O. Desjardins, A localized re-initialization equation for the
conservative level set method, Journal of Computational Physics 262 (2)
(2014) 408–426.

[64] H. T. Ahn, M. Shashkov, Multi-material interface reconstruction on gener-
alized polyhedral meshes, Journal of Computational Physics 226 (2) (2007)
2096–2132.

200

[65] V. Le Chenadec, H. Pitsch, A monotonicity preserving conservative sharp
interface flow solver for high density ratio two-phase flows, Journal of Com-
putational Physics 249 (2013) 185–203.

[66] T. Maric, H. Marschall, D. Bothe, voFoam - a geometrical volume of fluid
algorithm on arbitrary unstructured meshes with local dynamic adaptive
mesh refinement using OpenFOAM, arXiv e-print 1305.3417 (May 2013).

[67] C. B. Ivey, P. Moin, Conservative volume of fluid advection method on un-
structured grids in three dimensions, Center for Turbulence Research Annual
Research Briefs (2012) 179–192.

[68] J. López, J. Hernández, Analytical and geometrical tools for 3D volume of
fluid methods in general grids, Journal of Computational Physics 227 (12)
(2008) 5939–5948.

[69] D. B. Kothe, W. J. Rider, S. J. Mosso, J. S. Brock, J. I. Hochstein, Volume
tracking of interfaces having surface tension in two and three dimensions, in:
AIAA 34th Aerospace Sciences Meeting and Exhibit, 1996.

[70] R. Scardovelli, S. Zaleski, Analytical relations connecting linear interfaces
and volume fractions in rectangular grids, Journal of Computational Physics
164 (1) (2000) 228–237.

[71] W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical
Recipes 3rd Edition: The Art of Scientific Computing, Cambridge University
Press, 2007.

[72] D. M. Y. Sommerville, An introduction to the geometry of n dimensions,
Dover Publications, 1958.

[73] P. Liovic, M. Rudman, J.-L. Liow, D. Lakehal, D. Kothe, A 3D unsplit-
advection volume tracking algorithm with planarity-preserving interface re-
construction, Computers & Fluids 35 (10) (2006) 1011–1032.

[74] J. Mencinger, I. Žun, A PLIC–VOF method suited for adaptive moving grids,
Journal of Computational Physics 230 (3) (2011) 644–663.

[75] R. J. Leveque, High-resolution conservative algorithms for advection in in-
compressible flow, SIAM Journal on Numerical Analysis 33 (2) (1996) 627–
665.

201

[76] J. Shrimpton, Pulsed charged sprays: application to DISI engines during
early injection, International Journal for Numerical Methods in Engineering
58 (3).

[77] B. Van Poppel, O. Desjardins, J. Daily, A ghost fluid, level set methodol-
ogy for simulating multiphase electrohydrodynamic flows with application
to liquid fuel injection, Journal of Computational Physics 229 (20) (2010)
7977–7996.

[78] X.-D. Liu, S. Osher, T. Chan, Weighted essentially non-oscillatory schemes,
Journal of Computational Physics 115 (1) (1994) 200–212.

[79] G.-S. Jiang, C.-W. Shu, Efficient implementation of weighted ENO schemes,
Journal of Computational Physics 126 (1) (1996) 202–228.

[80] B. P. Leonard, A stable and accurate convective modelling procedure based
on quadratic upstream interpolation, Computer Methods in Applied Me-
chanics and Engineering 19 (1) (1979) 59–98.

[81] R. W. MacCormack, Iterative modified approximate factorization, Comput-
ers & Fluids 30 (78) (2001) 917–925.

[82] P. Brady, O. Desjardins, A sharp, robust, discretely conservative cut-cell im-
mersed boundary technique for complex three dimensional geometries, Jour-
nal of Computational Physics, under review.

[83] S. J. Cummins, M. M. Francois, D. B. Kothe, Estimating curvature from
volume fractions, Computers & Structures 83 (6–7) (2005) 425–434.

[84] S. Afkhami, M. Bussmann, Height functions for applying contact angles to
2D VOF simulations, International Journal for Numerical Methods in Fluids
57 (4) (2008) 453–472.

[85] M. Sussman, K. Smith, M. Hussaini, M. Ohta, R. Zhi-Wei, A sharp inter-
face method for incompressible two-phase flows, Journal of Computational
Physics 221 (2) (2007) 469–505.

[86] M. Sussman, A second order coupled level set and volume-of-fluid method for
computing growth and collapse of vapor bubbles, Journal of Computational
Physics 187 (1) (2003) 110–136.

[87] G. Bornia, A. Cervone, S. Manservisi, R. Scardovelli, S. Zaleski, On the

202

properties and limitations of the height function method in two-dimensional
cartesian geometry, Journal of Computational Physics 230 (4) (2011) 851–
862.

[88] S. Popinet, An accurate adaptive solver for surface-tension-driven interfacial
flows, Journal of Computational Physics 228 (16) (2009) 5838–5866.

[89] Y. Renardy, M. Renardy, PROST: a parabolic reconstruction of surface
tension for the volume-of-fluid method, Journal of Computational Physics
183 (2) (2002) 400–421.

[90] B. Lafaurie, C. Nardone, R. Scardovelli, S. Zaleski, G. Zanetti, Modelling
merging and fragmentation in multiphase flows with SURFER, Journal of
Computational Physics 113 (1) (1994) 134–147.

[91] M. Rudman, A volume-tracking method for incompressible multifluid flows
with large density variations, International Journal for Numerical Methods
in Fluids 28 (2) (1998) 357–378.

[92] J. O. McCaslin, O. Desjardins, A localized re-initialization equation for the
conservative level set method, Journal of Computational Physics 262 (2014)
408–426.

[93] O. Desjardins, V. Moureau, Methods for multiphase flows with high density
ratio, Center for Turbulence Research Proceedings of the Summer Program
(2010) 313.

[94] M. F. Smith, T. J. O‘Hern, J. E. Brockmann, A comparison of two laser-
based diagnostics for analysis of particles in thermal spray streams, Tech.
Rep. SAND–95-1442C; CONF-9509182–3, Sandia National Labs., Albu-
querque, NM (United States) (Jul. 1995).

[95] M. Herrmann, A parallel Eulerian interface tracking/Lagrangian point parti-
cle multi-scale coupling procedure, Journal of Computational Physics 229 (3)
(2010) 745–759.

[96] H. Yudistira, V. D. Nguyen, P. Dutta, D. Byun, Flight behavior of charged
droplets in electrohydrodynamic inkjet printing, Applied Physics Letters
96 (2) (2010) 023503–023503–3.

[97] J. B. Fenn, M. Mann, C. K. Meng, S. F. Wong, C. M. Whitehouse, Elec-

203

trospray ionization for mass spectrometry of large biomolecules, Science
246 (4926) (1989) 64–71, PMID: 2675315.

[98] K. Kim, R. J. Turnbull, Generation of charged drops of insulating liquids by
electrostatic spraying, Journal of Applied Physics 47 (1964).

[99] I. Hayati, A. I. Bailey, T. F. Tadros, Mechanism of stable jet formation in
electrohydrodynamic atomization, Nature 319 (6048) (1986) 41–43.

[100] D. P. H. Smith, The electrohydrodynamic atomization of liquids, IEEE
Transactions on Industry Applications IA-22 (3) (1986) 527–535.

[101] M. Cloupeau, B. Prunet-Foch, Electrohydrodynamic spraying functioning
modes: a critical review, Journal of Aerosol Science 25 (6) (1994) 1021–1036.

[102] A. M. Gan-Calvo, J. Dvila, A. Barrero, Current and droplet size in the
electrospraying of liquids. scaling laws, Journal of Aerosol Science 28 (2)
(1997) 249–275.

[103] J. M. Lpez-Herrera, A. Barrero, A. Lpez, I. G. Loscertales, M. Mrquez,
Coaxial jets generated from electrified taylor cones. scaling laws, Journal of
Aerosol Science 34 (5) (2003) 535–552.

[104] S. K. Cho, H. Moon, C.-J. Kim, Creating, transporting, cutting, and merg-
ing liquid droplets by electrowetting-based actuation for digital microfluidic
circuits, Journal of Microelectromechanical Systems 12 (1) (2003) 70–80.

[105] M. Felten, W. Staroske, M. S. Jaeger, P. Schwille, C. Duschl, Accumulation
and filtering of nanoparticles in microchannels using electrohydrodynami-
cally induced vortical flows, Electrophoresis 29 (14) (2008) 29872996.

[106] P. Kazemi, P. Selvaganapathy, C. Ching, Electrohydrodynamic micropumps
with asymmetric electrode geometries for microscale electronics cooling,
IEEE Transactions on Dielectrics and Electrical Insulation 16 (2) (2009)
483–488.

[107] D. J. Laser, J. G. Santiago, A review of micropumps, Journal of Microme-
chanics and Microengineering 14 (6) (2004) R35.

[108] O. D. Velev, B. G. Prevo, K. H. Bhatt, On-chip manipulation of free droplets,
Nature 426 (6966) (2003) 515–516.

204

[109] J. Zeng, T. Korsmeyer, Principles of droplet electrohydrodynamics for lab-
on-a-chip, Lab on a Chip 4 (4) (2004) 265–277.

[110] S. Edward Law, Agricultural electrostatic spray application: a review of
significant research and development during the 20th century, Journal of
Electrostatics 5152 (2001) 25–42.

[111] W. Lehr, W. Hiller, Electrostatic atomization of liquid hydrocarbons, Journal
of Electrostatics 30 (1993) 433–440.

[112] H. Romat, A. Badri, Internal electrification of diesel oil injectors, Journal of
Electrostatics 5152 (2001) 481–487.

[113] J. Shrimpton, A. Kourmatzis, Direct numerical simulation of forced flow
dielectric EHD within charge injection atomizers, IEEE Transactions on Di-
electrics and Electrical Insulation (2010) 18.

[114] J. S. Shrimpton, Y. Laoonual, Dynamics of electrically charged transient
evaporating sprays, International Journal for Numerical Methods in Engi-
neering 67 (8) (2006) 1063–1081.

[115] J. Shrimpton, A. Yule, Characterisation of charged hydrocarbon sprays for
application in combustion systems, Experiments in Fluids 26 (5) (1999)
460469.

[116] J. Shrimpton, A. Yule, Atomization, combustion, and control of charged
hydrocarbon sprays, Journal of Atomization and Sprays 11 (2001) 365396.

[117] J. Shrimpton, A. Yule, Electrohydrodynamics of charge injection atomiza-
tion: Regimes and fundamental limits, Journal of Atomization and Sprays
13 (2003) 173190.

[118] J. Shrimpton, A. Yule, Design issues concerning charge injection atomizers,
Journal of Atomization and Sprays 14 (2004) 127142.

[119] J. Shrimpton, Charge Injection Systems: Physical Principles, Experimental
and Theoretical Work, Springer-Verlag, 2009.

[120] J. Shrimpton, Y. Laoonual, Dynamics of electrically charged transient evap-
orating sprays, International Journal for Numerical Methods in Engineering
67 (8).

205

[121] A. Yule, J. Shrimpton, A. Watkins, W. Balachandran, D. Hu, Electrostati-
cally atomized hydrocarbon sprays, Fuel 74 (7) (1995) 1094–1103.

[122] J. Lpez-Herrera, S. Popinet, M. Herrada, A charge-conservative approach
for simulating electrohydrodynamic two-phase flows using volume-of-fluid,
Journal of Computational Physics 230 (5) (2011) 1939–1955.

[123] G. Tomar, D. Gerlach, G. Biswas, N. Alleborn, A. Sharma, F. Durst, S. W. J.
Welch, A. Delgado, Two-phase electrohydrodynamic simulations using a
volume-of-fluid approach, Journal of Computational Physics 227 (2) (2007)
1267–1285.

[124] D. A. Saville, Electrohydrodynamics: The Taylor-Melcher leaky dielectric
model, Annual Review of Fluid Mechanics 29 (1) (1997) 27–64.

[125] A. Kourmatzis, J. S. Shrimpton, Electrohydrodynamics and charge injection
atomizers: A review of the governing equations and turbulence, Journal of
Atomization and Sprays 19 (2009) 10451063.

[126] A. J. Kelly, Electrostatic atomizing device, US patent 4255777 a (Mar. 1981).

[127] M. Owkes, O. Desjardins, Consistent and conservative computational frame-
work for simulations of electrohydrodynamic atomization, in: ILASS Amer-
icas, 26nd annual conference on liquid atomization and spray systems, 2014.

[128] Y. Sato, B. Nieno, A sharp-interface phase change model for a mass-
conservative interface tracking method, Journal of Computational Physics
249 (2013) 127–161.

[129] V. Dyadechko, M. Shashkov, Moment-of-fluid interface reconstruction, Tech.
Rep. LA-UR-05-7571, Los Alamos National Laboratory.

[130] M. Herrmann, A surface tension sub-grid model for phase interface dynamics,
Center for Turbulence Research Proceedings of the Summer Program (2010)
333.

[131] O. Knio, O. Le Matre, Uncertainty propagation in CFD using polynomial
chaos decomposition, Fluid Dynamics Research 38 (9) (2006) 616–640.

[132] D. Venturi, X. Wan, G. E. Karniadakis, Stochastic low-dimensional mod-
elling of a random laminar wake past a circular cylinder, Journal of Fluid
Mechanics 606 (2008) 339–367.

206

	Biographical Sketch
	Dedication
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Motivation
	Overview of previous experimental work
	Overview of previous numerical work
	Contributions
	Organization of this document

	Discontinuous Galerkin Conservative Level
	Introduction
	Mathematical formulation
	Classical level set
	Conservative level set

	Discontinuous Galerkin implementation
	DG formulation
	DG level set transport
	DG level set reinitialization
	Numerical stability
	Minimum/maximum preserving limiter

	Level set time advancement
	Interface normal and curvature
	Spurious velocities

	Validation
	Zalesak's disk
	Two-dimensional deformation
	Standing wave
	Kelvin-Helmholtz instability

	Conclusions

	Conservative Second-Order Geometric Volume-of-Fluid Method
	Introduction
	Mathematical formulation
	Problem setup and notations
	Flux velocity
	Liquid volume fraction transport

	Computational geometry toolbox
	Interface reconstruction
	Discrete representation of the flux volume
	Construction of conservative fluxes
	Parallelization
	Extension to unstructured meshes
	Implementation

	Verification tests
	Zalesak's disk
	Two-dimensional deformation
	Three-dimensional deformation
	Droplet in homogeneous isotropic turbulence

	Conclusions
	Additional algorithms

	Transport of Quantities With Discontinuities
	Mathematical formulation
	Numerical methods
	Convective fluxes
	Additional fluxes
	Source term
	Implicit formulation

	Verification tests
	Discontinuous scalar transport test
	Discontinuous scalar diffusion test

	Conclusions
	Analytic solution to diffusion in a cylinder

	Height Function Interface Curvature Calculation
	Introduction
	Methodology
	Verification tests
	Circle test case
	Sphere test case

	Validation tests
	Solution of the Navier-Stokes equations
	Spurious-currents test case
	Standing-wave test case

	Conclusions

	Simulations of primary atomization
	Liquid jet in cross-flow
	Introduction
	Simulation setup
	Simulation results

	Air-blast n-dodecane atomization
	Geometry and Numerical setup
	Shear instability results
	Drop characteristics

	Electrohydrodynamic assisted atomization
	Mathematical Formulation
	Numerical methods
	Simulation results

	Conclusions

	Conclusions
	Future work

	Bibliography

