
  

 

PLANNING CITY GREEN SPACE LOCATIONS FOR PUBLIC ACCESS: 

A CAPACITATED LOCATION-ALLOCATION MODELING APPROACH 

 

 

 

 

 

 

 

A Dissertation 

Presented to the Faculty of the Graduate School 

of Cornell University 

In Partial Fulfillment of the Requirements for the Degree of 

Doctor of Philosophy 

 

 

 

 

 

 

by 

Xiaoling Li 

August 2014



 

 

 

 

 

 

 

 

 

 

 

 

 

© 2014 Xiaoling Li



 

 

PLANNING CITY GREEN SPACE LOCATIONS FOR PUBLIC ACCESS: 

A CAPACITATED LOCATION-ALLOCATION MODELING APPROACH 

 

Xiaoling Li, Ph. D.  

Cornell University 2014 

 

Green spaces help build healthy communities and bring various social benefits for 

the public. In order to ensure the wellness of greening of cities, some space standards 

such as green space coverage and the average area of green space per person are 

widely adopted in green space location planning, and they were also widely accepted 

as indices for cross-city comparisons. However, using these standards alone ignores 

the fact that both green spaces and population are unevenly distributed in cities. And 

many cities do not have enough green spaces at adequate locations for public access. 

Using a real city as an example, this study presents a capacitated location-allocation 

modeling approach for planners and policy-makers to incorporate existing green space 

planning standards into location models to evaluate existing green spaces and select 

potential green space locations to meet public recreation needs. This approach is to 

find the locations of green spaces among all candidate sites which minimize the cost 

of green space construction, or in other words, to build the minimum amount of new 

green space area and make the best use of existing green spaces, such that the 

proportion of the population that can each share a certain amount of green space 

within standard catchment distance can meet green space service percent coverage 

standard. The author addresses the problem of applying some space standards directly 

into the models and points out that these standards have to be adjusted for feasible 

solutions. Taking the study case for example, the average green space area per person 



 

is much higher than 15m2, but when uneven distributions of population were 

considered, the average accessible green space area per person is less than 5m2. Given 

the uncertainty of such planning standards as part of the model inputs, multiple model 

results with the various parameter inputs were generated. Finally an integration 

approach of these model results was proposed for the purpose of green space plan 

implementation: the green spaces in the solutions were classified into different groups 

according to their relative contributions to serve the demands, and different 

implementation strategies were suggested for each green space group. 
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CHAPTER 1   

INTRODUCTION 

 

1.1 Motivation 

City green space provides various environmental and social services towards the 

overall goal of urban sustainability. The contribution of city green space for improving 

the climate, air, hydrology and quality of life in cities is well realized and documented. 

First, green space is the main component of urban ecosystems. It plays a vital role in 

supporting biodiversity and providing important ecosystem services in cities (Wang 

2007; Li et al. 2005; Kong et al. 2010; Gyllin & Grahn 2005). Environmental services 

offered by green spaces include sequestering CO2 and producing O2 (Johnson & 

Gerhold 2003; Balakina et al. 2005); improving microclimates and reducing the urban 

heat island effect (Hamada & Ohta 2010; Hilton 1984); protecting drinking water 

resources and purifying water, protecting soil, reducing air pollution (Warren, 1973; 

Yang, McBride, Zhou, & Sun, 2005; Jim & Chen, 2008; Escobedo & Nowak, 2009) 

and noise pollution (Gidlofgunnarsson & Ohrstrom, 2007). Green space also provides 

outdoor recreational services to the public (Chen & Jim, 2008; Cho et al., 2008; 

Konijnendijk et al., 2007; Wong, 2009) and is good for physical and psychological 

health (Nielsen, 2007; Gathright et al., 2006; Hansmann et al., 2007; Maas et al., 2006; 

Nilsson et al., 2010). What’s more, research shows green space can affect housing 

prices (Jim & Chen, 2007; Kong et al., 2007; Mansfield et al., 2005; Yin et al., 2009). 

Green areas also have important aesthetic, cultural–historical values (Chen et al., 2009; 

Meyer, 2002) and have a positive impact on social safety (Maas et al., 2009). 

However, an increasing population and a high rate of land consumption in the 

world is putting pressure on green spaces. Especially in recent decades, many places in 
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fast developing areas are rapidly converting to urban and suburban landscapes, and 

many green spaces are decreasing rapidly in favor of exploitation and urban 

development. Because of heavy economic development pressure, green spaces in and 

around many cities in developing countries are being encroached upon or at least 

threatened by construction activities. Cities in fast developing areas are now 

experiencing fast growth by sprawling to surrounding areas which were once green 

lands, or wiping out green spaces within the urban areas for the higher economic 

benefit. 

Fortunately, with growing awareness of nature and the improvement of quality of 

life by natural areas, more and more interest is placed on city green spaces and the 

importance of maintaining existing green space or creating new green space is well 

realized (Bengston et al., 2004; Breuste, 2004; Konijnendijk et al., 2007; McGuirl, 

2004; Stewart et al., 2004; Zhu & Zhang, 2008). And under proper city policies, the 

pressures on green spaces can still be managed and green spaces can be conserved. 

In order to conserve existing green spaces and maximize the utility of new green 

spaces, it is imperative to study the spatial distribution of green spaces. Among city 

policies of conserving green spaces, determining the spatial distribution of green 

spaces and identifying proper locations of green spaces that should be protected or 

newly built, as a main component in city green space planning, should be the first 

important step . Afterwards and under this condition, design, management and 

maintenance of individual green space can be more effective and efficient. Hereby, 

this study focuses on the locations of green spaces in cities. And in addition to 

ecological functions that any green space may have, what makes city green spaces 

unique from natural green spaces in rural areas is its social function served to a city’s 

dense population. These social functions come from city green spaces’ characteristic 

of location closeness to urban neighborhoods so that urban dwellers can frequently 
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visit city green spaces for various benefits, recreationally, physically or mentally. 

Hence, this study concentrates on the locations of city green spaces from the 

perspective of public access.  

A fundamental assumption of this study is that location-allocation models, which 

investigate where to locate certain facilities in terms of satisfying a set of demands and 

meeting certain objectives subjecting to certain constraints, with a combination of GIS 

spatial analysis, can be a useful tool to identify locations of city green spaces. This 

will be further discussed in Chapter 2. 

 

1.2 Research Objectives 

This study integrates location-allocation models and related planning standards of 

city green space location research to determine whether current green spaces are 

sufficient to meet public need and if not, where new green spaces or parks should be 

constructed. There are two major objectives in this study. 

1) Incorporate green space planning standards into location-allocation models so 

that the location-allocation models can facilitate the location selection of green 

spaces in the planning process so that the numeric planning standards can be 

carried out in physical space. 

2) Examine the current green space locations and coverage, and recommend the 

locations and corresponding strategies for future green space construction so 

that the geographic accessibility to green spaces can be improved. 

In order to apply location-allocation models in green space location studies, the 

following are the major tasks in this study: 
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1) Address the green space specific problems that planners or decision makers 

may encounter with location-allocation models, and find reasonable solutions 

thereto. 

2) Define proper planning standards and related values which are suitable for 

location-allocation models. 

3) Structure location-allocation model(s) so that the selected planning standards 

can be properly incorporated in the model(s). 

4) Integrate multiple models that can help achieve a better understanding of the 

green space location problems and handle uncertainty in planning standards 

related parameters. 

5) Evaluate and access the current locations and their coverage of green spaces in 

the Luohu District of Shenzhen. 

6) Compare location-allocation model results and determine how they would be 

impacted by changes in model parameters, which vary in planning (whether 

the various location-allocation models are sensitive to these parameters). 

7) Determine where to locate new green spaces for the goal of improving public 

access and to provide implementation suggestions. 
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Figure 1-1 Location of Shenzhen 

 

 

1.3 Study Area 

Shenzhen is a coastal city in the Southeastern part of China, located in 

Guangdong Province, to the north of Hong Kong (Figure 1-1). The city has a total area 

of 2020 km2 (780 square miles), with longitude between 113.46 and 114.37 degrees 

east and latitude between 22.27 and 22.52 degrees north.  

         
1979          1991 

         
2002       2013 

Figure 1-2 Fast development of Shenzhen in 35 years 
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Figure 1-3 Location of Luohu District in Shenzhen 

The area has a history over 6700 years, though the city was only founded in 1979, 

by then it was a small border town with major residents farming or fishing for a living. 

Since its foundation 35 years ago, as the country’s first Special Economic Zone, the 

city has experienced fast urbanization (Figure 1-2). It became the fourth most 

developed city in China mainland, and its population has increased from 30,000 to 

over 10 million. The city is considered as one of the fastest-growing cities in the world. 

While experiencing fast development, the city government understands the importance 

of green spaces and has devoted much effort to protect its green spaces. Green space 

covers 46.7% of the total area of the city, and the green space coverage in the urban 

area is as high as 39.2%, with the average public green space per person up to 16.7 

square meters (Shenzhen Urban Management Bureau of the Municipality, 2014), and 

over 35 square meters of greenery area for each person on average1. 

Administratively, the city is divided into 6 districts: Luohu, Futian, Nanshan, 

Yantian, Baoan, Longgang. The former four districts constitute the city core. Each 

district is further divided into sub-districts. Then each sub-district contains several 

neighborhoods or residential communities. 

                                                 
1 Source: http://203.91.45.57:8080/intro/details01.aspx?tid=201332528&cid=1384 

http://203.91.45.57:8080/intro/details01.aspx?tid=201332528&cid=1384
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The study area of this dissertation is Luohu district, located at the city center and 

is the oldest downtown (Figure 1-3). The area is 79 square km2, with population 0.923 

million. It is the second densest district in the city, with density of 11,726 people per 

km2. There are 10 sub-districts and 115 neighborhoods in the district. By 2010, there 

were 87 parks in the district, including 7 city parks, 1 district park and 79 

neighborhood parks. Total park area is 1067 ha, about 11.5 square meters per person. 

Though this district is a downtown district of the city, it contains a large amount of 

semi-natural and natural green spaces in its jurisdiction. Besides parks, a large number 

of open green spaces are not managed as parks. Taking all green spaces into account, 

the average green space per person is about 37 square meters.  
 

1.4 Research Framework 

This dissertation consists of five chapters. Chapter One introduces the research 

problem with motivation and the background of the study area. The next chapter 

overviews green space location related study and practices, and location-allocation 

models and applications. Chapter Three discusses the methodology. It forms the 

location-allocation models for the study area with green space planning standards 

concerns. Some general issues in regular location-allocation modeling problems are 

discussed, such as various distance measures, demand estimation, data aggregation for 

model efficiency, and types and related costs of supply facilities (in this study, green 

space). In this chapter, green space planning standards are explored and four of them 

are incorporated in the formulated location-allocation models: percent of population 

coverage by the green space service area, minimum size of a green space, average 

green space demand per person, and maximum distance threshold for walking to a 

green space. This chapter also discusses the specialties of applying location-allocation 

models to green space walking accessibility studies and corresponding adjustment  
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Research Topic Planning 
field

Green space 
locations

Location-allocation 
modeling

Literature in 
various disciplines

Green space 
planning models:
space standards

Model aapplications in green 
space location studies

Location-allocation 
models

Conceptual LA Models

Model 1: Maximal coverage model for existing GS

Model 2: Max coverage model for all green 
space candidates sites

Model 3: Capacitated LA model: minisum cost

Meet planning 
standards?

Result analysis 
Yes

No

Meet planning 
standards? No

Yes

Methodology

Model Analysis

Literature 
Review

Supply: green spaces

Demand: residential sites

Distance

How much a GS contribute for serving 
demand in the model solution

Urgent need

Large

Build later / Low priority Not necessary

No

Basic Model Components

% population coverage (C)

Minimum size of GS (S)

Average demand /person (A)

Max distance threshold (D)

Space Standards
GS types (tj) and cost (ftj)

Point aggregation (fishnet)

Pop Estimate(pi)

Distance measures

Regular Issues in LA Models
GS: polygons not points

Supply:slope corrected area (bj)

Distance between point-polygon

GS Specific Problem

Conclusion

Select appropriate parameter inputs for further 
model implementation analysis

low

 
Figure 1-4 Flow diagram of the research procedure 
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solutions. Unlike facilities in many other location-allocation models, green spaces 

cannot be represented as points given their large spatial dimensions comparing with 

walkable distance. Therefore, the distances between residences to green spaces cannot 

be simply calculated as for point-point distances, point to polygon distance calculation 

has to be used instead. The third special issue is using correction factors to adjust 

appropriate areas of green spaces as supply inputs in the models. Each of the discussed 

issues is related to one of the three fundamental components of location-allocation 

models: supply, demand, and distance. Chapter Four presents the model results in a 

sequence of maximal covering location models for existing green spaces, the same 

model but for all green space candidates, including existing green spaces and potential 

ones, and the capacitated location-allocation model with the objective of minisum cost. 

Further analysis is also included to assess the impact of green space planning 

standards on the model results. The differences and commonalities of various distance 

measures as model inputs are explored in this chapter. Chapter Five summarizes the 

findings and contributions of this study. 
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CHAPTER 2   

LITERATURE REVIEW 

 

2.1 City Green Space Location Related Studies 

2.1.1 City Green Space Location Analysis in Various Disciplines 

Because green space has many different functions in cities, many disciplines 

study green space from different perspectives. Environmental scientists are concerned 

with biodiversity and environmental protection, and how green space provides 

people’s ecological needs; sociologists might study people’s behavior and attitudes on 

green spaces, such as how people use green spaces, for recreation, or people’s social 

needs on green spaces; political scientists might focus on the rules or landownership of 

green space, they might also be concerned with subgroup differentiations such as 

gender and poverty issues; public health experts concentrate on the health benefit 

people gained from green spaces; economists look at the economic benefit from green 

spaces, either directly by production or indirectly by increase surrounding land price. 

From an environmental perspective, for example, McGuckin and Brown (1995) 

developed a spatial distribution model to predict the pattern of stormwater catchment 

facilities in developing urban areas.  Because of the need to act quickly with 

incomplete information, Hess, King and Rubino (Hess & King, 2002; Rubino & Hess, 

2003) developed a process of selecting key species and of the rapid identification and 

verification of potential habitat for the focal species. Carles (1999) suggested that 

there is a need to identify places or settings where the conservation of the sound 

environment is essential, because of its salient informational content or because of the 

drastic impact of the loss of sound quality on observer appreciation, for example, in 
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urban green spaces, natural spaces and cultural landscapes. From a study of noise and 

green spaces, Gidlöf-Gunnarsson and Öhrström (2007) drew the conclusion that in the 

process of planning health-promoting urban environments, it is essential to provide 

easy access to nearby green areas that can offer relief from environmental stress and 

opportunities for rest and relaxation, to strive for lower sound levels from road traffic, 

as well as to design “noise-free” sections indoors and outdoors. Chang et al. (2007) 

devised a method to detect and compare the local cool-island intensities of various 

urban parks and verified that it differs among parks, then determined that it was 

related to park characteristics such as park size or land cover types. An interesting 

finding by Sandström (2006) in Sweden directly relating biodiversity and planners was 

that planners were interested in the maintenance of biodiversity, but were limited by 

knowledge and by personnel lacking suitable qualifications. Only a minority of the 

respondents thought that local governments should have resources for biodiversity 

conservation planning. This finding was discovered by surveying planners in six large 

Swedish cities. 

From a social perspective, a survey conducted by Balram and Dragićević (2005) 

in the West Island, Montreal, Canada showed that households are characterized by a 

two-factor attitude structure towards urban green spaces: behavior and usefulness. The 

attitude toward urban green spaces is a multidimensional construct which will 

influence people’s behavior towards urban green spaces. A research by Pretty et al. 

(2007) measured the effects of ten green exercise cases (including walking, cycling, 

fishing, boating) in the UK on 263 participants. The author found that green exercise, 

no matter which type, led to a significant improvement in self-esteem and total mood 

disturbance. This study pointed out that green exercise has important implications for 

public and environmental health, and for a wide range of policy sectors. Takano et al. 

(2002) claimed living in areas with walkable green spaces positively influenced the 
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longevity of urban senior citizens independent of their age, sex, marital status, baseline 

functional status, and socioeconomic status. Greenery filled public areas that are 

nearby and easy to walk in should be further emphasized in urban planning for the 

development and re-development of densely populated areas in a megacity. Tyrväinen 

(1997; 1998) studied amenity value and other social values of green spaces. 

Tyrväinen’s research on over 1000 apartments in North Carelia, Finland indicated that 

urban forests are an appreciated environmental characteristic and that their benefits are 

reflected in property prices. Proximity of watercourses and wooded recreation areas as 

well as increasing proportion of total forested area in the housing district had a 

positive influence on apartment price (Tyrväinen, 1997). Further, in this case, most 

visitors were willing to pay for the use of wooded recreation areas and about half were 

willing to pay to prevent the conversion of forested parks to another land-use 

(Tyrväinen & Väänänen, 1998). Tyrväinen also developed a method to describe the 

experienced qualities of green areas for strategic green area planning purposes 

(Tyrväinen, Mäkinen, & Schipperijn, 2007). In her postal survey study in Helsinki, 

Finland, local residents were asked to identify areas that had particular positive 

qualities to them, by collecting individual residents’ opinions, the most valued sites as 

well as problem areas within the study area were found. 

From an economic perspective, Kumagai (2008) studied downtown Tokyo on the 

relationship between biodiversity and the residential housing value. By using a “green 

coverage ratio” to represent biodiversity and standardized data on land and rent prices 

to represent housing value, the study confirmed that the two factors: green coverage 

ratio and housing value were correlated. Mansfield (2005) claimed that though trees 

on a parcel of land may add value for house owners, the ecological value of these trees 

as habitat was far less than large, unbroken parcels of forest. In a North Carolina case 
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study the author tested the hypothesis that trees on a parcel or in the neighborhood 

around that parcel were substitutes for living near large blocks of forest.  

From a political perspective, Heynen et al. (2006) investigated the role of urban 

political economy, private-public property relations, and race and ethnicity in the 

social production of Milwaukee's urban forest, and found the distribution of urban 

trees is spatially inequitable in relation to race and ethnicity. This is an instance of 

urban environmental inequality that deserves greater consideration in light of 

contemporary and dynamic property relations within capitalist societies. On the other 

hand, Browne and Kubasek (1999) studied a communitarian green space between 

market and political issues. The authors claimed that changes in environmental law 

develop in a cultural context that embraces particular linguistic patterns. Those who 

wish to effectuate change in American environmental law, for example, must make 

their peace with the pervasive embrace of individualism in the culture with the 

consequent devotion to market solutions. Communitarian rhetoric here did not offer 

panacea to the U.S. 

 

2.1.2 City Green Space Location and Distribution in Planning Field 

Green spaces have been an integral part of modern physical planning system for 

over a hundred years, and various methods and concepts that related to green spaces 

have emerged over the years. Maruani and Amit-Cohen (2007) reviewed various types 

of open space planning models that were commonly used, with their merits and 

limitations as planning tools. Generally, planning approaches for urban green spaces 

can be categorized at least as following general types. 

(1) Comprehensive green space system planning models 

Modern citywide green space planning and location ideas appeared after the 

western industrial revolution, when urban environmental problems became serious. 
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The famed landscape architect Frederick Law Olmsted was a pioneer who founded the 

basis of modern urban green space system. In 1903 He noted that “No single park, no 

matter how large and how well designed, would provide the citizens with the 

beneficial influences of nature… A connected system of parks and parkways is 

manifestly far more complete and useful” (M. A. Benedict & McMahon, 2002). In 

1887 he designed the world famous Boston’s Emerald Necklace and it is one of the 

oldest systems of linked public parks in the U.S. (M. A. Benedict & McMahon, 2006; 

Zhou, 1999). In Europe, British Ebenezer Howard cited in his 1898 book Garden 

Cities of To-morrow that married town and countryside could retain the benefit of 

nature. Though never fully realized, garden city ideas had a profound influence and 

inspiration in later planning practices and are considered to be a cornerstone in 

planning (M. A. Benedict & McMahon, 2006; Howard, 1902; Zhou, 1999).  

 

(2) Shape-related models 

Since the green space system idea was put into practice, more and more shape-

related green space concepts were created, such as greenbelt, green heart, green 

fingers or green wedges, and greenways (Maruani & Amit-Cohen, 2007), see 

illustration in Figure 2-1. 

Greenbelt was a response to uncontrolled growth of cities at the end of the 19th 

century, conserving green spaces between urban and rural areas to prevent cities’ 

expansion. It was first developed in London and then adopted in Europe, America and 

Asia. But practices have shown that greenbelts did not prevent urban growth 

effectively, yet can only be conserved as green space. Green heart, on the other hand, 

describes an open space – usually in large scale – encircled by built-up areas. However, 

again, it was found the urban development was sprawling into green heart areas. Green 

fingers / wedges are radial strips of green space that penetrate the built-up area, and 
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are expected to improve accessibility to green spaces from inner cities. Greenways, 

referring to green spaces of a linear nature, are based mostly on existing linear surface 

elements such as streams or railways. 

Generally, these shape-related models are all conceptual models which are usually 

based on existing landscape components and may serve certain city functions, but do 

not ensure a satisfactory response to either ecological or population needs. However, 

for the same reason that understanding of social or ecological processes is not 

necessarily required and the models are simple to apply, these models are extensively 

used by planners around the world (Maruani & Amit-Cohen, 2007). 

 

(3) Landscape ecology related models 

From the 1960s, ecological principles have been widely applied in the planning 

field and the landscape ecological planning approach became mature. Ian McHarg 

advocated an ecosystem-based planning approach in his landmark 1969 book, Design 

with Nature (McHarg, 1969). In the book, he claimed that “natural processes should 

be the basis for determining development (or non-development) priorities” (M. A. 

 

Figure 2-1 Greenbelts and green wedges in Beijing 

Source: http://www.chla.com.cn/html/c47/2009-11/45566.html 

 

http://www.chla.com.cn/html/c47/2009-11/45566.html
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Benedict & McMahon, 2006). Today, the landscape ecological planning approach is 

still a main subfield of planning for urban green spaces. Besides, more landscape 

ecology related planning concepts, such as green infrastructure and ecological 

infrastructure have been created in recent decades. 

Green infrastructure is “the interconnected system of green spaces that conserves 

natural ecosystem values and functions, sustains clear air and water, and provides a 

wide array of benefits to people and wildlife” (M. A. Benedict & McMahon, 2002, 

2006). Benedict and McMahon (2002) claimed that green infrastructure planning 

should be the first step in the land-use planning process. They stated that green 

infrastructure should be designed holistically, planned comprehensively, laid out 

strategically, planned and implemented publicly, grounded in the principles and 

practices of diverse professions, and founded up-front. Green infrastructure programs 

have been implemented on the city, regional, and state levels. At the city or 

comparative level, examples may include: Chicago Wilderness Biodiversity 

Conservation Plan, Twin Cities Minnesota Metro Greenways, Portland, Oregon Metro 

Greenspace Program, Legacy Open Space in Montgomery County, Maryland, Linked 

Open Space Network in Palm Beach County, Florida, Green Infrastructure Plan in 

Kinston/Lenoir County, North Carolina (APA, n.d.; M. A. Benedict & McMahon, 

2002).  

Ecological infrastructure is a similar concept with emphasis on ecology and 

network. Yu (1996, 2001) raised the concept of a security pattern, which was 

composed of strategic positions of the landscape that are critically significant in 

controlling certain ecological processes. He claimed that a security pattern is a way of 

identifying ecological infrastructure. Four components of buffer zones, intersource 

linkages, radiating routes and strategic points compose the ecological security patterns, 

which can be identified according to their various properties on a GIS surface. He has 
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applied this approach in a few Chinese cities (Yu, Li, & Han, 2005; D. Li, Liu, & 

Kong, 2008; S. Wang, Chen, & Yang, 2008). 

The University of Georgia developed a toolkit to evaluate land parcels for green 

space planning (Kramer & Dorfman, n.d.). The toolkit was designed for communities 

and tended to establish a detailed inventory for each subject parcel of on green space 

characteristics, and by weighting the various goals of a green space plan and ranking 

parcels based on the weighting. 

As mentioned before, landscape ecological principles are widely used in city 

green space planning. For example, C.Y. Jim (Jim & Chen, 2003) directly applied the 

principles and developed a comprehensive green space plan for Nanjing, China. The 

plan consisted of green wedges, greenways and green extensions at three scales: 

metropolis, city and neighborhood scales. 

 

(4) Space standards models 

Space standards first appeared in London at the end of the 19th century. A number 

of studies on public facilities have been conducted on their spacing standards. 

McAllister (1976) pointed out that existence of a large number of small public 

facilities spread out for public access is of great importance in public service system 

design. Lucy (1981) stated that in practice a threshold of adequacy should be 

established for equality. He used neighborhood parks as an example, he pointed out 

that “a maximum distance standard and an acreage and density standard are suited to 

determining which parts of the jurisdiction are below the threshold of adequacy of 

access”.  

Among space standards, one is the percentage of green space coverage in certain 

area. Another standard is quantitative matching between open space and respective 

user population, claiming that certain minimal area size of green space should be 
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allocated to a given population, in terms of area per person. These standards are 

widely used in green space planning and all other public facility planning because of 

their simplicity. However, they can hardly instruct any spatial locations practically and 

sufficiently on their own because they only provide non-spatial related numbers on the 

amount of green spaces. 

Given that using simple quantitative measures cannot guide green space locations 

based on existing demands, more elaborate studies on social needs have been carried 

out, incorporating criteria related to additional aspects of users’ needs. The criteria 

may include green space service range, minimal size, residential densities (Maruani & 

Amit-Cohen, 2007). Among related research, most studies focus on the accessibility of 

green spaces by service range, claiming that residents would prefer having green space 

within certain distances (B. Li, Song, & Yu, 2008; Neuvonen, Sievänen, Tönnes, & 

Koskela, 2007; Van Herzele & Wiedemann, 2003). 

The following are some examples of numerical standards that have been 

established or proposed. 

The National Recreation and Park Association in the U.S. established park and 

recreation standards as follows (NRPA, 1983): 
Table 2-1 The space standards for parks in the U.S. 

Type Service Area 
Desirable Size 

(acres) 

Acres/1000 

Residents 

Mini-Park < ¼ mile radius ≤ 1 0.25 to 0.5 

Neighborhood Parks ¼ to ½ mile 15+ 1 to 2 

Community Parks 1-2 mile 25+ 5 to 8 

Regional Parks 
Several communities 

1 hour driving time 
200+ 5 to 10 
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The Korea Urban Park Law suggested such thresholds of size and service distance 

as these (Oh & Jeong, 2007): 
Table 2-2 The space standards for parks in Korea 

Type Service area (radius in meters) Size (m2) 

Children’s parks < 250 > 1500 

Neighborhood parks < 500 > 10,000 

Walkable area parks < 1000 > 30,000 

 

The Planning Department of Hong Kong set the regulation of the minimum 

standards of 1m2 per person (10 ha per 100,000 persons) for district and local open 

spaces respectively (Hong Kong Planning Department, 2014). 

Besides being used as space standards, these figures can also be used for cross 

city comparison. Following are two space indices on green space coverage ratio and 

average area per person of large cities (Oh & Jeong, 2007). 
Table 2-3 Comparison of green space related standards in large cities 

Cities Park area ratio (%) Park area per capita (m2) 

New York 13.56 14.12 

London 10.89 24.1 

Paris 36.05 17.88 

Seoul 26.02 15.45 

Tokyo 2.79 5.14 
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2.1.3 Summary 

The comprehensive green space system planning models first reveal the need of 

citywide green space planning and management and emphasize the interrelations 

among green spaces. These models, together with space standard models, focus on the 

social utility of green spaces, i.e., social demand. Shape-related models focus on the 

spatial structure of green spaces within a city; the utility or nature is always the second 

concern after deciding to form a certain structure. Landscape ecology-related models, 

on the other hand, focus on conservation from an environmental perspective, and 

discuss the green space base and supply for cities. 

Considering the complexity of the planning process, space standards are easier to 

apply since they are just calculations of numbers; landscape ecology related models 

are always more complicated, take a long time and require higher skills for planners 

because these later models require a good understanding of ecological and natural 

principles. 

Typically in the planning field, urban planners study the relationship between 

natural systems and land use systems, and landscape architects focus more on the 

interaction between socio-economic systems and land use systems (Zonneveld et al., 

1989). For urban planners who pay more attention to social issues, the demand 

approach of the comprehensive green space system planning models, space standards 

models, and shape related models provides a response to human demands for 

recreation and quality of life. In these models, planners’ concerns are more about 

population, residential distribution and density. Landscape architects or 

conservationists, by contrast, focus more on green space conservation for protecting 

natural values, and landscape ecology. In these models, ecological and spatial 

attributes of the existing natural environment play a key role. 
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This study focuses on city green space locations from the perspective of public 

access, using a quantitative optimization modeling approach, which is not generally 

adopted in the planning field because of limited data availability and the limitation of 

planning practitioners’ knowledge of programming and mathematical modeling. 

However, with this location-allocation modeling approach, the widely applied space 

standards, which specify the area requirement and are extensively used as indices for 

measuring and comparing greenness across cities, can now be of practical help in 

identifying spatial locations of green spaces, as well as of other public facilities. 

Specifically, the modeling results can further be incorporated as an input in a 

multidisciplinary comprehensive city green space system plan, along with studies of 

green space functionalities. In such a way, location-allocation models can contribute to 

overall green space planning, not only help planning standards being met spatially, but 

also distributing green spaces reasonably to meet the majority’s needs. 

 

2.2 Public Facility Related Location-Allocation Models 

2.2.1 Minisum Location-Allocation Models 

Location-allocation models have been under development for almost more than a 

century since Weber’s problem in 1909 where a single facility is to be placed to 

minimize the weighted sum of distances (Weber, 1909). Curry and Skeith (Curry & 

Skeith, 1969) formulated a location allocation problem to locate multiple(k) facilities 

in m candidate locations (k ≤ m) and assign n demands so that the objective cost 

function is minimized. Cooper (1963), Goodchild (1978), Hodgson (1978), Juel (1981) 

and Tapiero (1971) were also among those who investigated the location-allocation 

problem in early decades. 
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Location-allocation models are a type of model in which the location problem 

(where to locate a certain number of facilities) and the allocation problem (the process 

of determining who at demand points is served by which facility) are treated 

simultaneously. In the most general form, location-allocation models are utilized to 

find locations for k facilities from m candidate sites as well as achieve an allocation of 

each demand point (DP), or fraction of a demand point, to some facility so as to 

optimize an objective function (Scott, 1970). In other words, it can be interpreted as 

procedure to locate a number of facilities and allocate the demand to be served by 

these facilities, so that the entire service system is efficient (Church & Murray, 2008). 

A fundamental location-allocation problem can be formed in a discrete problem 

domain where facilities are to be located within a subset of predefined candidate sites 

(Church & Murray, 2008):  

Mathematical notation for parameters: 

𝑖 ∈ (1,2, … ,𝑛 ): index of demand areas 

𝑗 ∈ (1,2, … ,𝑚 ): index of candidate facility sites 

𝑑𝑖𝑗: the distance between demand areas i to candidate facility site j 

𝑎𝑖: demand in demand area i 

𝑝: number of facilities to be located 

𝑌𝑗: 1 if facility at site j is located; 0 otherwise 

𝑋𝑖𝑗: 1 if demand i is served by facility j; 0 otherwise. 
 

Objective: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒  ��𝑎𝑖𝑑𝑖𝑗𝑋𝑖𝑗

𝑚

𝑗=1

𝑛

𝑖=1
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Subject to: 

∑ 𝑋𝑖𝑗 =  1𝑚
𝑗=1  for i = 1, 2, …, n 

𝑋𝑖𝑗 ≤ 𝑌𝑗  for i = 1, 2, …, n and j = 1, 2, …, m 

∑ 𝑌𝑗 =  𝑝𝑚
𝑗=1   

𝑌𝑗 =  {0, 1} for j = 1, 2, …, m 

𝑋𝑖𝑗 =  {0, 1} for i = 1, 2, …, n and j = 1, 2, …, m 
 

In this basic location-allocation problem, the objective is to minimize the total 

demand weighted distance. Constraints include: 1) each demand area i should be 

served by one facility; 2) corresponding demand at demand area i has to be allocated 

to the facility candidate site j that is chosen as a facility location; 3) p facilities are to 

be allocated; 4) binary requirements of either site j is chosen as a facility or not, and 

either i is served by facility j or not. This particular model is widely known as the p-

median problem, and was first studied in 1960s by Hakimi (1964, 1965), Revelle and 

Swain (1970). 

This p-median model does not address the issues of capacity and the cost of 

building a facility. It assumes that each facility can have enough capacity to handle all 

the demand that is assigned to it; it also assumes that the costs to build each facility are 

the same – so the total cost for p facilities is a fixed number, no matter where these 

facilities are located. However, these assumptions are not always true in real location 

problems. It is possible that a facility has limited capacity that may not be able to meet 

all the demand that is assigned. It is also possible that the construction costs of 

building a facility at various candidate sites are significantly different. To address 

these issues, a different location-allocation model is developed (Church & Murray, 

2008): 
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Additional mathematical notation: 

𝑐𝑖𝑗: cost of shipping one unit of demand between i and facility j 

𝑓𝑗: fixed cost to build a facility at site j 

𝑏𝑗: capacity of facility j 

𝑍𝑖𝑗: the amount of demand at i served by facility j 

 

Model objective: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒  ��𝑐𝑖𝑗𝑍𝑖𝑗

𝑚

𝑗=1

𝑛

𝑖=1

+  �𝑓𝑗𝑌𝑗

𝑚

𝑗=1

 

Subject to: 

∑ 𝑍𝑖𝑗 =  𝑎𝑖𝑚
𝑗=1  for i = 1, 2, …, n 

∑ 𝑍𝑖𝑗𝑛
𝑖=1 ≤ 𝑏𝑗𝑌𝑗 for i = 1, 2, …, n and j = 1, 2, …, m 

𝑌𝑗 =  {0, 1} for j = 1, 2, …, m 

𝑍𝑖𝑗 ≥ 0  for i = 1, 2, …, n and j = 1, 2, …, m 

 

This fixed-charge capacitated location-allocation model (Church & Murray, 2008) 

minimizes the total cost, including both shipping and fixed costs of facility 

construction. Constraints have been set to ensure 1) all the demands are satisfied; 2) 

total demand served by facility j does not exceed its capacity; 3) basic variable 

restrictions that site j is either chosen as a facility or not, and allocated demand should 

not be a negative number. 

Basic location-allocation models can be enriched in various ways by 

incorporating additional constraints or variables in certain given contexts, and it is 

always possible to change the specification of a problem to accommodate the 

particular case (Scott, 1970). Besides above capacity and the fixed cost extension from 
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the basic location-allocation model, there are several other extensions that have been 

studied to accommodate a variety of complications in real world problems. For 

example, models with specified upper-bounds on inflows and corresponding outflows 

of each facility (Scott, 1970), models dealing with multiple commodities in each 

facility, and models with given pre-existence of some facilities (R. Chen & Handler, 

1993; Reuven Chen, 1988; Drezner, 1995). These extensions have been widely used 

for not only public sectors, but also private sectors since their major objective is to 

minimize costs and maximize the system efficiency. For example, commercial and 

industry site selections, such as locations of factories in a fixed-resources – factories – 

fixed-customers system, or warehouses delivering multiple products. 
 

2.2.2 Covering Problems 

For public sector services, such as fire stations, police stations, ambulances, there 

are other spatial standards that have to be met while locating the facilities. A typical 

example of these spatial standards is maximal response time for a call on emergency 

services such as a fire or crime. These spatial standards indicate the notion of range – a 

facility provides its service within a distance-based range beyond which it is too far to 

serve or less desirable to serve demand (Church & Murray, 2008). In these situations, 

demands located outside of the range will be considered as uncovered. To solve these 

spatial standards based problems, two location models have been developed: the 

location set-covering problem and the maximal covering location problem. 

The location set-covering problem, can be generally stated as: locate a minimum 

number of facilities so that all demand areas are covered within a maximal distance or 

travel time standard. For example, a possible problem is to locate fire stations in a city 

so that all the neighborhoods can be reached by firemen from a fire station within 5 

minutes after an emergency call. The key point for this problem is that complete 
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coverage is required. The location set-covering problem was first formulated by 

Toregas et al. (1971). Early researchers on algorithms and methods of the set covering 

problem also include Minieka (1970), Garfinkel et al. (1977), Moore and Revelle 

(1982), Beasley (1990), Lorena and Lopes (1994), Al-Sultan et al. (1996), and Caprara 

et al. (2000) (reviewed by Hale and Moberg (2003)). 

Using the notation from the last section, the basic mathematical formulation for 

the location set-covering problem is (taken from Church and Murray (2008), notation 

revised to be consistent with previous formulation): 

Objective: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒  �𝑌𝑗

𝑚

𝑗=1

 

Subject to: 

∑ 𝑋𝑖𝑗𝑌𝑗𝑚
𝑗=1 ≥ 1  for i = 1, 2, …, n 

𝑌𝑗 =  {0, 1}  for j = 1, 2, …, m 
 

The objective is to minimize the number of located facilities. The first set of 

constraints specifies that each demand area i must be covered by at least one facility. 

The second set of constraints regulates the binary restrictions on the decision variables 

𝑌𝑗, 1 for where a facility is located, 0 for the candidate sites that are not in the solution. 

One the other hand, the maximal covering location problem deals with the 

problem of locating a pre-specified number of facilities so that demand coverage 

within a maximal service distance (or time) from the facilities is maximized. An 

example can be, given a limited budget, a city government wants to locate 20 fire 

stations such that the neighborhoods that are within 5-minute distance from a fire 

station are as many as possible. The maximal covering location problem was first 

formulated by Church and Revelle (1974). A few earlier studies further refined the 
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maximal covering location problem for certain possible situations, for example, 

models with a secondary objective. These studies include, but are not limited to, 

Benedict (1983), Hogan and Revelle (1986), and Daskin (1983). 

For the maximal coverage problem, an additional decision variable notation is 

included: 

𝑋𝑖: 1 if demand area i is served/covered by at least one facility; 0 otherwise 

With this variable and employing notation from the previous sections, the basic 

maximal covering location problem can be formulated as follows (taken from Church 

and Murray (2008), notation revised to be consistent with previous formulation): 

Objective: 

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒  �𝑎𝑖𝑋𝑖

𝑛

𝑖=1

 

Subject to: 

∑ 𝑋𝑖𝑗𝑌𝑖𝑚
𝑗=1 ≥ 𝑋𝑖 for i = 1, 2, …, n 

∑ 𝑌𝑗 =  𝑝𝑚
𝑗=1   

𝑌𝑗 =  {0, 1}  for j = 1, 2, …, m 

𝑋𝑖 =  {0, 1}  for i = 1, 2, …, n 

 

The objective of the above maximal covering location problem is to maximize the 

total demand that is covered. Constraints are defined as: 1) whether demand area i is 

covered is based on the location decisions – if it is covered (𝑋𝑖 = 1), then it is at least 

covered by one facility (∑ 𝑋𝑖𝑗𝑌𝑖𝑚
𝑗=1 ≥ 1); if  ∑ 𝑋𝑖𝑗𝑌𝑖𝑚

𝑗=1 = 0, then the demand area i is 

not covered by any located facility, then the decision variable 𝑋𝑖 is constrained to be 

zero; 2) p facilities are to be located; 3) integer restrictions on the decision variables. 

Similar to p-median model, these basic models may not be able to deal with 

complex real world problems, but they can be enriched by including additional 
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constraints or variables, such as capacity constraints, or partial allocation variable, to 

accommodate the specific case. 
 

2.2.3 Applications of Location-Allocation Models 

Location-allocation models are used in a wide variety of applications to locate 

public services (resources) to serve the public. These services include, but are not 

limited to, fire stations, libraries, post offices, hospitals, schools, recycle facilities. 

Location-allocation models have come to play an important role in health care 

facility location analysis, including evaluating the efficiency of existing facility 

locations and locating new health facilities (Abernathy & Hershey, 1972; Buzai G, 

2013; Mohan J, 1983; Møller-Jensen, 2001; Musdal et al., 2014; Oppong, 1997; 

Rahman & Smith, 2000; Ross, ROSENBERG, & PROSS, 1994; Shariff, Moin, & 

Omar, 2012; Syam & Cote, 2010; Tim Ensor, 2012; Watts, Shiner, & Musdal, 2013). 

Tewari and Jena (1987), Norrel (1990),Møller-Jensen (1998), and  Ndiaye (2012), 

use location-allocation models to improve physical accessibility to schools. The 

models have also been brought to other regular public service location studies such as 

banking (Min & Melachrinoudis, 2001), traffic and transportation facilities (Garcia-

Palomares, Gutierrez, & Latorre, 2012; Ohsawa, 1989), refueling stations (MirHassani 

& Ebrazi, 2013). 

Researchers employed location-allocation models in emergency service locations, 

such as fire stations (Daniel Serra, 2005), ambulances (Branas, MacKenzie, & ReVelle, 

2000), emergency services for disasters such as flood (Mirzapour, 2013), and forest 

fires (M. J Hodgson & Newstead, 1978; M. John, Newstead, Robert G Hodgson, 

1983). General rescue centers (D., Zhang, Guo-xiang Wang, 2006) have also been 

studied with location-allocation models. 



 

29 

Location-allocation models were utilized for locating recycling and waste 

facilities, Valeo et al. (1998) applied the models to locate depots for material recycling 

programs in a town in Canada, Louwers and Peters (1999) used the models for 

facilities of reusing carpet materials, and Eiselt and Marianov (2014) analyzed the 

location of landfills for solid waste. 

There are some other interesting applications of location-allocation models to real 

world problems that had rarely been considered to use modeling approach. For 

example, Church and Bell (1988) analyzed the ancient Egyptian settlement pattern 

using location-allocation models. Gerrard et al.(1997) adapt the location-allocation 

model to optimize conservation sites for maximum biodiversity protection within a 

limited budget for land acquisition.  

All these model applications, with many others, have illustrated the potential 

benefits of applying location-allocation models in public facility location planning and 

decision making, and the models can provide planners and decision makers with 

quantitative support for choosing the proper locations for public services. 
 

2.2.4 Location-Allocation Models’ Application in Green Space Planning 

Despite the large number of studies on facility location, there are not many studies 

that have applied location-allocation models to urban park or open space planning. 

Yeh and Chow (1996) are among the first who introduced location-allocation model 

into open space planning. With their case study of Hong Kong, the authors integrated 

GIS and a location-allocation model to identify optimal sites for open space and 

evaluate existing open space. Using block level demand data, they calculated the 

number of open spaces needed for each region with the standards of 9 ha for 100,000 

people and 6 ha for the average size of open space. They used a continuous space p-

median model to identify the optimal locations of open spaces, and then drew buffers 
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at a radius of 0.4km around these sites to specify areas that are considered to be 

acceptable solution spaces for locations.  

Similarly, Neema and Ohgai (2010; 2013) proposed a multi-objective model in a 

continuous surface for the best location of urban parks. However, within the context of 

a continuous space domain, the optimal locations may not be a practical solution since 

they may contain unsuitable areas. While it seems a discrete problem domain could 

handle the problem better, large effort has to be made for selection of candidate sites 

before running the model. Sefair et. Al (2012) constructed a multi-objective model for 

new neighborhood park selections. The criteria included coverage, sidewalk and road 

accessibility, connectivity with other facilities, the externalities of nearby facilities and 

cost. An ε-constraints approach is used to solve the problem with “a lexicographic 

order of evaluation criteria and maximum deterioration of the objectives with higher 

priority”. Parameters included 417 meters as the maximum walking distance, and 

2.24m2 as of park per inhabitant. Similar models have been constructed by Yuan (2011) 

with objectives of minimizing various kind of weighted distance such as air quality 

weighted, heat island weighted distance. Then the weighted sum of each objective was 

used to composite the multi-objective function. 

In these multi-objective studies, various factor-weighted distances were involved 

as single objectives and they were summed to form the multi-objective model. These 

objectives include but are not limited to population, noise, land use, air quality. These 

models are more about multi-objective problem formulation; public access and unique 

characteristics of green spaces are not their main focus. 

Learning from these modeling studies, rather than working on continuous space 

problem, this study adopted the discrete version of the location-allocation problem, 

which fits green space locations better than the continuous space problem. This is 

because green spaces cannot be anywhere; there are a lot of structures (physical 
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constraints) in city environment that prevent green spaces from being located 

anywhere freely. Predefining some potential green space locations for the model is 

more realistic and practical. 
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CHAPTER 3   

METHODOLOGY 

 

This study employs location-allocation models and GIS spatial analysis, in 

conjunction with the widely used space planning standards approach, to identify 

locations of city green spaces that will satisfy public access needs. 

First, GIS was used to analyze the existing green space distribution in the study 

area, the analysis results were compared with the planning standards to evaluate how 

well the study area meets these standards in terms of its green space amount and 

distribution. 

Then a set of location-allocation models for green space locations was formed and 

solved. With the input variables prepared in ArcGIS (ESRI, Inc. of Redlands, 

California), the location-allocation models were solved in the Gurobi optimizer 

(Gurobi Optimization, Inc. of Houston, TX), which is a professional optimization 

solver for mathematical programming. Gurobi supports a variety of programming and 

modeling languages such as C++, Java, .NET, python, MATLAB, R. etc. The models 

in this study were built in Python. ArcGIS offers six location-allocation models in its 

Network Analyst tools for convenient use with user-friendly interfaces for non-

programming users. However, these built-in models are for general location-allocation 

problems and users do not have much flexibility in setting specific objectives or 

constraints for complex models. For instance, demand points and facilities must be 

point features. By contrast, lines or polygons are not supported in the model. The 

demand points in the solution are considered either covered or not covered, but not 

partially covered. Demands at one point cannot be split into multiple facilities for 
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allocation, and the built-in models force the demand points to the nearest facility. 

These settings may not be appropriate in some real projects, and using these built-in 

models improperly for these projects would lead to non-optimal facility location 

solutions. In this study, for example, there may be more than one green space near a 

residential site. So while people at the residential site are free to visit any of these 

nearby green spaces, it does not make sense to force people to visit the nearest one 

only. Besides, not everyone at the residential site would visit the same green space. 

According to their own choice, some of them may visit green space A, some may go to 

green space B, and the rest may prefer green space C. These problems cannot be 

solved in built-in location-allocation models in ArcGIS. So Gurobi, as a professional 

modeling package with more flexibility of building complex models, is used instead. 

After the location-allocation models with existing population distribution and 

candidate green spaces are solved using various parameter inputs, the model results 

were brought back to ArcGIS to generate different scenarios and compared. With the 

model results, this study compares the green space solutions from the models with 

different inputs, to see which green spaces are robustly in high demand, which are not. 

Furthermore, this study classifies green space locations into different categories 

according to their current status, their contribution to serve demand and their 

robustness in solution.  In such a way, recommendation for existing green space 

conservation and new green space locations can be made, both for short-term and 

long-term planning.  

Figure 3-1 shows how the sections in this chapter are organized. The models were 

formulated in Section 3.1, then three model components, supply, demand and 

distances were discussed in detail with various issues on related data preparation. 
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Figure 3-1 Methodology diagram 

 

3.1 Model Formulation 

 

3.1.1 Typical Criteria in Public Service Location Models 

For public services, decision makers and planners are responsible for locating 

facilities to provide the best services possible to the public within budget restrictions. 

In other words, people attempt to locate facilities to be as accessible as possible while 

controlling the service construction costs. As measures of “accessible”, one or more of 

the following criteria have to be specified in location-allocation models (Rushton, 

1979), and the choice of the criteria will vary according to the preferences of the 

decision makers and the real application contexts: 

• Minimum average distance or aggregated total distance for all people 
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• Minimax distance: minimize the farthest distance between people and their 

closest facility 

• Equal assignment: the number of people in each facility service area is 

approximately equal 

• Threshold constraint: the number of people in each facility service area is 

always greater than a specified number 

• Capacity constraint: the number of people in each facility service area is never 

greater than a specified number 

Besides these criteria, as in many similar studies in the literature, some other 

typical objectives in location-allocation models include: 

• Minimum overall cost: to control the cost of the entire service system, such as 

facility construction cost and shipping or travel cost between facilities and 

people 

• Maximum coverage 

• Minimum number of facilities 

 

3.1.2 Particular Issues that need to be Addressed for Green Space Location 

Models 

For this particular problem of locating green space for pedestrian access, the 

location-allocation models have to be adjusted from a prototypical model to meet the 

following expectations: 

(1) The models should be designed to meet the specific characteristics of the 

green space. 

Area and capacity 

In a traditional location-allocation model, facilities provide certain products or 

services and serve as “supply” in the system. In this study, green space, as a public 
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service, provides space for public usage. So the amount of space, or the area of the 

green spaces, now becomes their “supply”. The size of green spaces varies, but is 

obviously not infinite, which can be observed clearly from a map, and usually 

surrounded by construction. So the size of green spaces, or the supply in the model, is 

limited. This leads to capacity constraints.  

Further, given that the area and spatial shape of green spaces matters in this study, 

green spaces should be viewed as polygons rather than points – which is a common 

fact of any regular location-allocation models for facilities such as fire stations or 

hospitals. 

 

(2) The models have to adapt to the characteristics of pedestrians. 

Demand 

For this study, demand refers to people’s need of green spaces. An over-crowded 

green space would reduce recreation experience quality and benefits to the visitors. So 

the model has to ensure people can share a certain amount of green spaces. The 

amount of shared green space becomes the “demand” at the demand points. 

Distance threshold 

Further, this study focuses on pedestrians’ access to green spaces. Access to green 

spaces in the environment is associated with mental health and a lower level of 

physiological stress. Living in areas with better access to green spaces is associated 

with lower stress (Roe et al., 2013). It assumed that people visit green spaces within 

certain distances; if a green space is too far away from a demand point, the “visit 

frequency” from the demand point to this green space reduces considerably. So 

determining how far people would walk to a green space for frequent visits has to be 

included in the model. A typical approach is to set the maximum distance that people 

would travel as a threshold. People would only visit green spaces within this distance, 
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or, green space can only serve people within this distance as its service area. 

Otherwise, it is assumed that it is too far for people outside of this service area to visit.  

Allocation is needed 

This leads to another issue regarding a demand point: there might be more than 

one green space within this distance threshold. So people from this demand point can 

visit any of these green spaces. In such a case, the demands from a demand point 

should not be forced to be assigned to its nearest green space – any green space within 

the distance threshold is possible to serve the demand point.  

Partial allocation 

From another point of view, people are independent individuals who can make 

their own decision on which green space to visit and when. So people at a demand 

point may visit different green spaces as long as these green spaces are close enough. 

Consequently, partial allocation is possible, which means demands at a demand point 

may be partially served by different green spaces in the model solutions. 

One point has to be made here: that the concept of allocation in this model is not 

as mandatory as in regular location-allocation model solutions. In a typical location-

allocation model, allocation is the process of determining who is served by which 

facility (R. L. Church & Murray, 2008). For example, in a factory location model 

solution, if certain demand at a demand point is allocated to a factory, the factory has 

to produce that amount of products and deliver them to the demand point. The 

allocation values are certain numbers that have to be applied if the model solutions are 

implemented. However, in this study, the allocation values assigned in the model 

solutions are not essential in themselves, since it is not necessary or realistic to force 

people to follow the model solution and visit the specific green space that is assigned 

to them in the model. It is not difficult to understand it because people can make their 

own choice in real life. People can adjust their visit activity according to green space 
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occupancy condition. For instance, in the model 500 people’s demand has been 

allocated to a green space given the capacity limitation. While the model results are 

implemented, it is possible that one day there are 800 people who come to this green 

space since modelers cannot control these people’s activities, then the capacity is 

exceeded and the “allocation” does not exactly follow the model solutions. But this 

would be adjusted automatically through visitors’ activities: when the green space gets 

too crowded, some visitors will leave right away for other green spaces that are not so 

crowed or change their destination for their next visit. So the entire system is adjusted 

automatically until everyone can have a certain comfortable place in green space. In 

short, the allocation variable here is used only to ensure that the demands are met and 

capacity of green spaces is not exceeded, and the allocation results are not key in the 

solution analysis. 

 

(3) The models can incorporate typical planning standards. 

These planning standards may include green space coverage requirement, average 

green space per person, or maximum catchment distance criteria. 

 

3.1.3 The Overall Factors to be Considered in the Models 

Given the typical criteria for regular public service location-allocation models and 

the specialty of the particular contexts of allocating green space for public access 

discussed above, in this study, the following factors may be worthy of consideration in 

the location-allocation model formulation: 

• Number of facilities: in this study, it refers to the amount of green spaces rather 

than the number of green spaces. It is area that matters for green space service 

rather than number of green spaces, since area of green spaces varies 

dramatically. City policy makers may want the efficient use of green spaces, so 
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that when the city has a limited amount of green space, it can still serve as 

many people as possible. 

• Cost: there is no shipping cost in this study. Cost in green space planning 

mainly refers to green space construction. The cost would be much less for 

existing green spaces than new ones. 

• Capacity: area of a green space is limited, so the amount of people that can be 

served is limited. 

• Average distance: average distance that people have to travel to a green space.  

• Minimax distance: here can be understood as the farthest distance that people 

would walk to a green space, which is called distance threshold in this study. 

Green spaces further than this threshold from a demand point would be treated 

as unreachable, demand points further than this threshold from a green space 

would be treated as not being able to be served by the green space. This 

distance threshold, or maximum catchment distance, is an index in planning 

standards system. 

• Coverage: the amount of demand that facilities can serve. Here, green space 

coverage. In planning standards system, green space coverage refers to the area 

proportion of green space over the total city area. Given some green spaces or 

part of green spaces are too far from public access, the green space coverage 

has been derived to another standard in planning, the percent coverage within 

public green spaces service radius, that is, the proportion of land within a 

distance threshold over total land area. This coverage concept is widely used in 

GIS with buffer tool, which draws buffers for a certain distance around 

facilities. 

However, in this study, this coverage concept is further adjusted. 

Population distributes unevenly over space, some land that is within green 
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space buffer zones may be vacant; a large population may be in a small area 

that is not in green space buffer zones, for example, 30% of people are in the 

10% of land that is not with green space service radius, hence, the land 

coverage is 90% but population coverage of only 70%. And the percent 

coverage of population within the green space distance threshold, which may 

not be exactly same as the percent coverage of residential sites with green 

space service, would be more meaningful for any policy-making. In such a 

case, the demands at demand points, or residential sites, vary according to the 

population distribution at these residential sites. So the population distribution 

is involved in this study. 

• Population at demand points. As explained. 

• Average amount of green space per person. In combination with population 

information, the demand at demand points can be estimated. It is also an index 

in planning standards system. 

 

3.1.4 Objective Formulation 

To formulate the models, the above factors were then investigated for use as 

possible objectives and constraints. 

There are four potential objectives that may be involved in the models: 

• Minimum cost 

• Minimum amount of green spaces 

• Maximum coverage 

• Minimum average distance 

When more than one of the above objectives are included in a model, the model is 

called a multi-objective model. There are various methods for multi-objective 

problems to model a decision-maker’s preferences, even in the face of multiple 
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objectives. Generally, decision-makers can either indicate the relative importance of 

the objective functions before running the algorithm, or can select a single solution 

that is the most appealing from a set of solutions with a consistent variation in 

parameter inputs. There are some well-known methods to set the relative importance 

of the multiple goals. Weighted sum method is among the most popular ones. It 

combines multiple objective functions to form a single function via a weighted sum of 

these objective functions. The pre-defined weights of various objective functions 

indicate the decision-makers’ preference on the objectives. The second method is 

called the constraint method, which keep one objective as the objective function, and 

then sets the rest of the objectives as constraints in the model. Goal programming is a 

third typical method, which seeks to minimize the total deviation of each objective 

from its corresponding goal (Hillier & Lieberman, 1967; Marler & Arora, 2004). 

The above objectives for green space location-allocation models are examined 

below in order to choose a proper method to formulate the models. 

Cost and amount of green spaces are closely related. Existing parks cost nothing; 

constructing new green space can be expensive. The objective of green space service 

efficiency which seeks to minimize the amount of green spaces is embedded in the 

minimum cost objective. When minimizing cost to meet green space demand, the 

existing green spaces are expected to be used to the utmost, after that additional new 

green spaces will be added in the green space system to fill the demand gap.  

The potential coverage objective. A maximal covering location model can be 

structured, so that with the pre-defined amount of green spaces, how much green space 

coverage can be achieved. In a traditional maximal covering location model, the 

number of facilities is predefined. But in this study, it is not appropriate to predefine 

the total area or the number of green spaces. Instead, the maximal coverage by certain 

types of green spaces can be modeled, for example, how much coverage is provided 
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by current green spaces. It is unsure that complete coverage solution can be found with 

given demand requirements. However, since coverage is a popular planning standard 

that requires coverage be no less than a certain percentage, this standard criterion can 

be used as a coverage constraint in the model. 

The average distance. Since people are assumed to be able to visit green space 

within a certain distance, the average distance has been partially handled by this 

distance threshold. As long as it is within the distance threshold, the minimization of 

average distance is less important than other objectives. For example, a small 

improvement of average distance from 200 meters to 190 meters might not make too 

much difference since people probably will not mind or even realize they have to walk 

10 more meters to visit a green space. So this objective is less important and was 

eliminated from the model. 

Therefore, this study attempts to find out solutions to meet certain planning 

standards with less expenditure. Theoretically, the fewer new green spaces with less 

cost that provides enough coverage and meets typical green space planning standards, 

the better the model is. The major problem is defined as: to find the locations of green 

spaces which minimize expenditure on green space construction, or in other words, to 

construct the minimum amount of new green spaces and make best use of existing 

green spaces, such that the proportion of the population that can each share a certain 

amount of green space within standard catchment distance can meet green space 

service percent coverage standard. 

 

3.1.5 Mathematical Representation of the Models 

Notation: 

𝑖 ∈ 𝐼: index of demand points (residential sites); 𝐼: the set of demand points 

𝑗 ∈ 𝐽: index of candidate green space sites; J: the set of green space sites 
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𝑝𝑖: population at demand point i 

𝑏𝑗: capacity of green space site j (maximum area supply of j) 

𝑡𝑗: type of candidate green space site j. 

𝑓𝑡𝑗: fixed unit cost (￥/m2) for green space of type 𝑡 

𝐴: average green space per person 

𝐷: distance threshold 

𝑑𝑖𝑗: the distance between demand point i to candidate green space site j 

𝑀𝑗 = �𝑖 ∈ 𝐼|𝑑𝑖𝑗 ≤ 𝐷� : the set of demand point within D distance to j 

Ｎ𝑖 = �𝑗 ∈ 𝐽|𝑑𝑖𝑗 ≤ 𝐷� : the set of green spaces candidates within D distance to i 

𝐶: percent coverage criterion 

𝑆: Minimum size of a green space 
 

Decision variables: 

𝑋𝑖𝑗: the amount of demand at demand i being allocated to green space j  

(allocation variable) 

𝑌𝑗: 1 if green space at site j is located; 0 otherwise 

 

With this notation, we can define the notation of demand at demand point i as: 

𝐴𝑝𝑖 

 

(1) Maximal covering location model 

First, a maximal covering location model was constructed to examine the 

coverage with certain types of green spaces (current green spaces, or all green space 

candidates), with given parameters. With the allocation variable involved, the model 

derives from classical maximal covering location model which ignores the capacity 

constraints.  
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The maximal covering location model is structured as follows: 
  

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 
∑ ∑ 𝑋𝑖𝑗𝑗∈𝑁𝑖𝑖∈𝐼

∑ 𝐴𝑝𝑖𝑖∈𝐼
 

(1) 
 
Subject to: 
 

 
∑ 𝑋𝑖𝑗𝑖∈𝐼 ≤ 𝑏𝑗 ∗ 𝑌𝑗   for all 𝑗 ∈ 𝐽   (2) 

 
∑ 𝑋𝑖𝑗𝑗∈𝑁𝑖 ≤ 𝐴𝑝𝑖  for all 𝑖 ∈ 𝐼    (3) 

 
∑ 𝑋𝑖𝑗𝑖∈𝐼 ≥ 𝑆    for all 𝑗 ∈ 𝐽   (4) 
 

𝑌𝑗 = �
1, if 𝑡𝑗 ∈ current green spaces
0, otherwise                               

 for all 𝑗 ∈ 𝐽    (5) 

 
𝑋𝑖𝑗 ≥ 0   for all 𝑖 ∈ 𝐼 and 𝑗 ∈ 𝑁𝑖  (6) 

 

The objective function (1) is to maximize the percentage of demand that can be 

met by certain green space types such as existing green spaces, which is equivalent to 

the percentage of the population that can be served by these green spaces. The 

numerator is the total allocated demand. Constraints (2) are green space capacity 

constraints which specify that the demands that allocated to green space j should not 

exceed its capacity. Constraints (3) are demand constraints, stipulating that at demand 

point i, the demand that is allocated to certain green spaces within distance D should 

not exceed its total demand. They indicate the possibility that the demand at a demand 

point may be partially met in the model solution, that is, some people can reach a 

nearby green space within a given distance threshold and enjoy a certain amount of 

green space but other people from the same demand point are not allocated at all, since 

the nearby green spaces are already too occupied. Constraints (4) restrict the minimum 

size of green spaces, which is required in green space planning to ensure necessary 
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variety of recreation functions. Constraints (5) bound the supply point to be current 

green spaces only, and all the current green spaces will be involved in maximum 

coverage calculation. Potential green spaces are excluded from the model. Given this 

setting, 𝑌𝑗 is a predefined parameter input in the model rather than a decision variable. 

Finally, constraints (6) impose non-negative restrictions on the decision variable X for 

the demand point and green space pairs within distance threshold D. 

If the maximal coverage for existing green spaces in solution is equal to or higher 

than the coverage objective stated in the related planning standard, it indicates that 

existing green spaces are sufficient to meet or may be even more than the public need. 

Therefore, there is no urgent need to build new green spaces for the study area. Further 

investigation can be explored if the maximal coverage in solution is higher than the 

coverage standard: how many existing green spaces and their locations are sufficient 

enough to meet the coverage standard? So another location-allocation model can be 

developed for existing green spaces, to minimize the amount of green spaces with 

capacity and demand coverage standard constraints. 

Otherwise, if the solution in the maximal covering location model for current 

green spaces is less than the expected coverage standards, new green spaces have to be 

built in the study area to fill the demand gap. Then, a minisum capacitated location-

allocation model has to be structured to involve all candidate green spaces. Since new 

green spaces are introduced to the model, their construction cost becomes a big 

concern. 

 

(2) Capacitated location-allocation model 

The cost of green space is related to its unit cost and supply that it has to offer. 

However, this supply does not mean green space capacity, or in other words, the 

maximum amount of supply that a green space can provide. For example, the capacity 
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of potential green space sites is the maximum area of available land, however, if the 

site is selected to establish a park, the cost is related to the size of the park which can 

meet the allocated demand, this size may be much smaller than the land area of the 

entire candidate site. So the cost of green space j is not (𝑓𝑡𝑗 ∗ 𝑏𝑗 ∗ 𝑌𝑗), instead,  

The cost of green space site j =  𝑓𝑡𝑗 � 𝑋𝑖𝑗
𝑖∈𝑀𝑗

 

Summing this value across all candidate green space sites, this is the total cost: 

��𝑓𝑡𝑗 � 𝑋𝑖𝑗
𝑖∈𝑀𝑗

�
𝑗∈𝐽

 

So, the minisum capacitated location-allocation model can be structured as 

follows: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ��𝑓𝑡𝑗 � 𝑋𝑖𝑗
𝑖∈𝑀𝑗

�
𝑗∈𝐽

 

(
7) 

Subject to: 
∑ 𝑋𝑖𝑗𝑖∈𝐼 ≤ 𝑏𝑗 ∗ 𝑌𝑗   for all 𝑗 ∈ 𝐽   (8) 

 
∑ 𝑋𝑖𝑗𝑗∈𝑁𝑖 ≤ 𝐴𝑝𝑖  for all 𝑖 ∈ 𝐼    (9) 
 
∑ ∑ 𝑋𝑖𝑗𝑗∈𝑁𝑖𝑖∈𝐼 ≥ 𝐶 ∑ 𝐴𝑝𝑖𝑖∈𝐼  for all 𝑖 ∈ 𝐼 and 𝑗 ∈ 𝑁𝑖 (10) 

 
∑ 𝑋𝑖𝑗𝑖∈𝐼 ≥ 𝑆    for all 𝑗 ∈ 𝐽   (11) 
 
𝑋𝑖𝑗 ≥ 0 for all 𝑖 ∈ 𝐼 and corresponding 𝑗 ∈ 𝑁𝑖  (12) 
 
𝑌𝑗 =  {0, 1}   for all 𝑗 ∈ 𝐽   (13) 

 

The objective function (7) is to minimize the total cost of green space 

construction. The 𝑖 ∈ 𝑀𝑗 bounds to consider only green space and demand point pairs 

that are within the maximum service distance threshold. As explained before, this 

objective indicates the embedded goal of efficient usage of green space: meet demand 
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requirements with minimum amount of green space, and use existing green spaces as 

much as possible since they cost least, then establish necessary new ones for demand 

gap.  

Constraints (8) are green space capacity constraints which specify that the 

demands that allocated to green space j should not exceed its capacity.  

Constraints (9) are demand constraints, stipulating that the demands that are 

allocated to certain green spaces at demand point i should not exceed its total demand. 

They indicate the possibility that the demand at a demand point may be partially met 

in the model solution, that is, some people can reach a nearby green space within the 

distance threshold and enjoy a certain amount of green spaces but other people from 

the same demand point are not allocated, since the nearby green spaces are too 

occupied. Constraints (10) are demand coverage constraints, stipulating that the total 

demand that can be served by green spaces should be no less than the percent coverage 

standard. Constraints (11) restrict the minimum size of green spaces, which is required 

in green space planning to ensure necessary variety of recreation functions. Finally, 

constraints (12) and (13) impose non-negative and binary restrictions on the decision 

variables X and Y, respectively. 

In this study, there are three main components in the models, residential sites as 

demand points, green spaces with corresponding supply, and distance between 

demand points and green spaces which build the link network between demand and 

supply. The following sections will explore characteristics and challenges of these 

components, with their associated model inputs and data preparation. Then space 

standards related parameters are discussed. 
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3.2 Supply Sites: Green Spaces 

3.2.1 Supply Polygons Rather Than Supply Points 

A challenge in this study is that green spaces, as the supply facilities in the model, 

are area and spatial shape sensitive and cannot be treated as supply points as in 

traditional location models.  Different from typical location problems with supply 

facilities such as hospitals, fire stations or factories which are treated as supply points, 

green spaces should not be viewed as supply points in the circumstances of modeling 

pedestrian accessibility. This is because the dimensions of many green spaces are 

usually as large as or even much larger than a couple of hundred meters – a walkable 

distance. If these large green spaces are treated as points and their centroids were 

chosen to represent the locations of these green spaces, the estimation error of the 

distances from demand points to a green space can be severely exaggerated. Taking 

Central Park in New York City for example (Figure 3-2), assume there is a demand 

point at the south edge of the park, on 59th Street and 7th Avenue. People at this 

demand point only need to cross the street to enter the park. However, if the centroid 

of the park is used to represent the location of the park, the measured distance from the 

same demand point to the park now is over 2100 meters (1.33 miles), which may be 

too far for most pedestrians’ frequent visits. Apparently, this overestimation is too 

large to be ignored and will underestimate the visit frequency of people living nearby 

– because the park is considered “too far” to walk. And no one would trust any model 

results with such distance measurement error. 
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Figure 3-2 Overestimation from south edge to the Central Park 

The same problem exists throughout the study area. The size of green spaces 

ranges from a few hundred square meters to over 30 square kilometers (12 square 

miles). Given a few hundred meters’ scale of walking distance that this study mainly 

focuses on, to achieve convincible model results, centroids or any other points inside 

the green spaces should not be used to represent the entire green space(s).  

Then how to measure the walking distance to the green space? The points at green 

space boundaries where people can reach and then enter the green spaces are more 

appropriate than the inside ones. 

For green spaces that have limited entrances (Figure 3-4(a)), these entrances can 

be used as representative points of the green spaces for the purpose of travel distance 

calculations. If a green space has n entrances, distances from a certain demand point 

(residence) to each of the green space’s entrance points are calculated and compared. 

The shortest one will be selected to be the distance from the demand point to the green 

space, assuming pedestrians will travel to the nearest entrance point. 
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Figure 3-3 An open green space facing both a street and a neighborhood in the 

study area 

For open green spaces, the situation is more complicated because people may 

enter the green space anywhere along the boundaries (Figure 3-3). However, it is 

impossible to include innumerous points on the boundaries for later distance 

calculations. To choose proper points to stand for a green space for later distance 

calculation is a big concern. 

For the frontages of open green spaces facing streets (Figure 3-4(b)), we can 

expect people would reach the green space at those points where they can cross the 

street. If the street network is dense and blocks are small, these points are always at 

the street intersections; if the blocks’ frontages are long, there may be pedestrian 

crosswalks, flyovers, or tunnels between intersections. So with such information, the 

entrance points on green space boundaries can be defined. If there is no such 

information available, equally spaced points with reasonable distance along green 

space boundaries can be viewed as possible locations of pedestrian crosses. In the 

study case, besides boundary vertices at street intersections, points of every 100 meter 

distance at open green space frontages can be chosen as possible green space entrances 

for distance calculation. 
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Figure 3-4 Illustrations of representative point selection  
for different green space situation 

 

For the boundaries not facing streets (Figure 3-4(c)), the selection of possible 

access points of the open green spaces can be more flexible, so denser points along 

boundaries can be identified, for example, every 10 meters or 20 meters. 

In general, for green spaces with limited entrances, the entrances were used for 

distance calculations; for open green spaces or green spaces without entrance 

information, green space boundary vertices and points on the boundaries with certain 

distance were used as approximating green space entrance points for distance 

estimation.  

 

(a) A green space with only one entrance, the 

entrance was used as a representative point for 

travel distance calculation. 

 

(b) An open green space. The frontages facing 

streets: points on the boundary where people 

can cross street were selected as representative 

points for distance calculation. 

 

(c) An open green space. For the boundary 

directly facing residence, denser points along 

the boundary were identified for distance 

calculation. 
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Figure 3-5 Slope varies in the study area 

After these points on the boundary of a green space were located, the distances 

from a demand point to each of these points were calculated, and the shortest distance 

was used as the final distance estimation from the demand point to the green space. 

 

3.2.2 Supply Measurement: Feasible Area for Recreation with Slope Correction 

Area of the green space was the key measurement of green space supply in the 

model. However, is it appropriate to use total area of a certain green space as its 

supply? The answer is no. The study focuses on public access and usage of green 

space, so this “supply” variable of green spaces should be the areas that can be used 

and enjoyed by the public, which means, for the modeling purpose the area measured 

as supply variable should be feasible for public recreation, so that this area 

measurement can be used as green space capacity constraints.  

By examining the topography of the study area (Figure 3-5), we can see some of 

green space lands are steep and may not be adequate for the public to visit frequently. 

These steep areas are usually less feasible for public daily visits. These places 
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with steep slopes may be good places for weekly or monthly hiking, but are not good 

for the general public’s regular visit. Steep areas usually have fewer infrastructures 

and it costs much more for new infrastructure construction such as paths and trails in 

steep areas. This steepness makes these areas harder to access. Besides, in a steep 

slope area, the places that can be reached and enjoyed by the general public are fewer 

than those in a flat area. People have to walk along paths and trails, and large areas far 

from the trails are not safe enough, especially for children and elders. 

Compared to climbing up and down a steep hill, after a day or two of hard 

working and studying, generally people are more willing to visit a flat green space 

with lawns, small landscapes and better infrastructures for relaxation. In flat areas, 

people can engage in more activities that cannot be done in steep areas, such as sports 

and playground exercises, having a picnic, or visiting gardens and landscapes. Besides, 

when the areas that can be enjoyed and accessed are much larger, people don’t have to 

walk along the trails. They may step on the lawns or under trees without safety 

concerns. 

So, steep and flat areas play different roles in people’s recreation. People visit flat 

green spaces more often, and the feasible places of flat areas for public visit are much 

more than those of steep areas. Apparently, the capacity of 500m2 of a flat green space 

and the same area on a steep hill is different. The area of a green space needs to be 

adjusted by its feasible area to visit before being used as a green space supply.  

An example is in Hong Kong, the planning department recognizes that the steep 

parts of a site may not be useful for recreation. So a set of slope correction factors is 

employed to modify the feasible area to the space standard (Hong Kong Planning 

Department, 2014): 
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Table 3-1 Slope correction factors in Hong Kong Planning Standards and Guidelines 

Slope Gradient Flat 
Slope < 1:5 

(11 degrees) 

Slope between 1:5 – 1:3 

(11 to 18 degrees) 
Slope > 1:3 

% to count as standard 100% 60% 30% 0% 

 

In this study, the green space areas are categorized into three groups according to 

slope gradient: flat areas (0-15 degrees), median slope areas (15-30 degrees), and steep 

areas (slope greater than 30 degrees). The flat areas with slope less than 15 degrees are 

completely counted into adjusted areas of the green spaces. Half of the median slope 

areas with slope from 15 to 30 degrees are also counted. The other half of the median 

slope area and steep areas of slope greater than 30 degrees are excluded from the 

adjusted areas of the green spaces as supply in the models. 

When a piece of green space is flat, its supply is exactly the same as the total area 

of this green space. Most small green spaces in the city center are such cases. When 

the topography of a green space varies, from flat lawns and forests to steep hills, its 

supply used in the models may be much less than its total area. This is especially 

significant for rural green spaces in the study area. 

 

3.2.3 Other Issues Related to Green Space 

(1) Green space types 

There are many types of green spaces: Parks, gardens, green corridors along rivers 

and canals, natural green spaces, outdoor playgrounds, roadside green spaces, 

cemeteries, productive plantation areas, green space for environmental protection, and 

roof gardens. Given that this study focuses on the public access of green space to 

obtain recreational benefits, the urban green spaces are generalized into the following 

categories, according to their current status: 
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Existing green spaces:  

1) Existing city parks, district parks and neighborhood parks that are in the park 

management list by the Urban Management Bureau of the municipality2. The 

government is responsible for regular park maintenance.  

2) Neighborhood parks that are not in the city park management list. These parks 

are maintained by neighborhood property managers.  

3) Existing non-park green spaces that are not in the city park management list, 

such as riverside or street side green spaces. According to the Green Space 

System Plan of Shenzhen, these green spaces can be served as public parks for 

public recreation use if they are wider than 8 meters. These green spaces are 

maintained by the government. They may not have the full recreation functions 

as parks, and may take a certain amount of government budget for necessary 

recreation facility construction. 

Besides these existing green spaces, there are some non-green places that may be 

turned into green space. These potential green spaces are also included in the models, 

to determine the locations of possible future new green spaces if existing green spaces 

cannot meet the public need. 

Several plans have been developed by the Urban Planning and Land Resources 

Commission of Shenzhen Municipality, Green Space System Planning of Shenzhen 

(2004-2020) and the contents on green space plan in Shenzhen Master Plan (2010-

2020) and Shenzhen District Planning (2005-2020)3. The green space lands were 

extracted from these plans’ layouts, after removing the existing green spaces 

                                                 
2 Park list for Luohu District, Shenzhen can be found on 

http://www.szum.gov.cn/html/FWXX/2011728/582011728152045648.htm 
  Park list for Futian District, Shenzhen can be found on 

http://www.szum.gov.cn/html/ZWGK/TJSJ/YWTJSJ/2011728/582011728151714239.htm 
3 The plans were issued by Urban Planning and Land Resources Commission of Shenzhen 

Municipality, The Master Plan was approved by the State Council, other two plans were 
approved by the municipality government. 

http://www.szum.gov.cn/html/FWXX/2011728/582011728152045648.htm
http://www.szum.gov.cn/html/ZWGK/TJSJ/YWTJSJ/2011728/582011728151714239.htm
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mentioned above, the rest was planned green spaces. Among these planned green 

spaces, there are two types according to their current status: 

4) Planned green spaces which are now vacant lands. According to the city’s 

plans, these vacant lands will be converted to green space in the future. 

5) Planned green spaces which are now occupied by other land usage. Follow the 

plans, these occupied lands will be renewed, structures on the lands will be 

removed, and be replaced by green spaces. 

There is a sixth type of potential green spaces. 

6) Vacant lands that can be potentially converted to green spaces. Though they 

are not planned as green space, it is possible and affordable to convert them to 

green spaces if there is really a need. It is much more economical and 

implementable to convert vacant land to green spaces than to convert 

construction land. 

All of the above types of green spaces were involved as green space candidates in 

the location models. In such a way, not only the effectiveness of existing green spaces 

can be evaluated – how they can be reached by public – but also the locations of 

potential green spaces that make up the existing green space deficiency can be 

identified. 

 

 

(2) Green space related cost 

Location models always have to take cost into account, such as the cost of service 

facilities or cost of transportation. In this study, the main cost is the green space 

construction cost, including greening/planting, recreational facilities, small landscapes, 

trails and paths, other necessary infrastructures, and roads for connection to the green 

space. In this study, the unit cost (CNY per square meter) for each of the six green 
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space categories is generally estimated for modeling purposes by referencing the 

budget estimations in a few Chinese green space projects. Roughly the unit cost of 

green space construction is between 150-500 CNY per square meter, although some 

may cost more4.  

1) There is no cost for the first two categories. These two types of green 

spaces are existing parks, no matter on the city management list or not, so 

the construction cost is zero. 

2) 50 CNY per m2 for existing non-park green spaces. Though they are green 

spaces, additional facilities may have to be built to meet public recreation 

demand. 

3) 300 CNY per m2 for vacant lands which are either planned or not planned 

for green space. Greening and facilities are necessary expenditures. 

4) 1000 CNY per m2 for renewal sites. The cost of renewal is hard to 

estimate, it varies from case to case. Given these lands are planned to be 

renewed and converted to green spaces, it is possible to assume the 

government can allocate a certain amount of budget; on the other hand, 

renewal indeed cost a lot. So 1000 is assigned arbitrarily, maybe much less 

than real cost, but much higher than construction for vacant lands. 

 

                                                 
4 Cost refers to green space construction projects on the following webpages: 

http://www.xiangyang.gov.cn/public/msfw/ggsy_2403/yllhfw_2412/cslh/201212/t20121213_363
570.shtml 

http://wenku.baidu.com/view/44895969011ca300a6c390b9.html 
http://doc.mbalib.com/view/c5407a57a324eb3a3dfcbd163f9a677f.html 

http://www.xiangyang.gov.cn/public/msfw/ggsy_2403/yllhfw_2412/cslh/201212/t20121213_363570.shtml
http://www.xiangyang.gov.cn/public/msfw/ggsy_2403/yllhfw_2412/cslh/201212/t20121213_363570.shtml
http://wenku.baidu.com/view/44895969011ca300a6c390b9.html
http://doc.mbalib.com/view/c5407a57a324eb3a3dfcbd163f9a677f.html
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3.3 Demand Points: Residential Sites 

The data collected to be the demand points in this project are building footprints5 

in the entire study area in GIS. To represent the location, the centroids of all the 

residential buildings are selected as demand points.  

 

3.3.1 Population Estimate 

In order to collect demand information at each demand point, population data in 

each residential building are needed. However, such detailed population data are not 

available for collection, so they had to be estimated instead. 

To estimate population in each residential building, the most detailed population 

information at the smallest available geographical units was collected. The total 

population in Luohu District was 0.92 million, and population data within each of 10 

sub-districts were also collected6, which ranged from 63,000 to 115,000 people.  

In the collected building footprints data set, characteristics of the buildings, such 

as building type and usage, floor, as well as gross floor area were also included. With 

gross floor area and building type, the population information was roughly estimated, 

with additional information on a citywide average of GFA per person for different 

building type: 100m2 single and multiple family buildings, 40m2 for apartments, 15m2 

for group quarters, 12m2 for self-use buildings in urban villages, adjusted from similar 

indices from various Shenzhen demographic studies. These values were slightly 

adapted for each sub-district, according to their total population.  Finally, the 

estimated population in a residential building was calculated by dividing GFA of the 

building by the estimated average GFA per person for the type that the building 

                                                 
5 Data from Urban Planning, Land and Resources Commission of Shenzhen Minicipality 
6 Data from 2010 Population Census of China.  
   Population of Luohu District and its sub-districts: 

http://www.szlh.gov.cn/tjj/a/2011/h02/a176392_572158.html 

http://www.szlh.gov.cn/tjj/a/2011/h02/a176392_572158.html
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belongs to. Figure 3-6 shows the population density in the study area using the 

population estimation results. A strong uneven distribution of population can be 

observed from the map, large population is clustered in the center of the study area, 

where there are only a few small green spaces. On the contrary, much less people live 

in suburb areas where large green spaces are available. 

It is worthwhile to note that the data from decomposing these highly aggregated 

sub-district level population data to each building will not be very accurate, and there 

will be large estimation errors for certain buildings. The model results, in turn, will 

likely be impacted by the inaccurate residential population estimates for buildings in 

the sub-districts. But this is the best estimation that can be done with available data. 

Moreover, given that the purpose of this study is to form a location-allocation 

approach with proper models and analysis for a certain type of location problems, the 

implementation of the model results for this exact case is not the main focus. Hence 

 
Figure 3-6 Population density in the study area 
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the potential population estimate errors are acceptable in this study. If in the future 

more detailed population data are available, the estimation results can be closer to real 

population distribution, and model outputs may be more realistic. 

 

3.3.2 Demand Points Aggregation 

A big challenge with applying a location-allocation model to this real-world 

problem is proper aggregation of data to achieve a balance between model efficiency 

and data accuracy after aggregation. This is a common difficulty in modeling location 

problems, when the number of demand points may be very large. It may be too time-

consuming, impossible, or unnecessary to include every single demand point in later 

calculations and models (Francis et al., 2009). Then how many demand points are 

efficient enough and to what extent can the raw data be aggregated? There is no 

general agreement, and it is a tradeoff between data accuracy concerns and budget and 

time cost in data collection and modeling. 

In this study, the raw demand points are all residential buildings in the study area, 

of which more than 15,000 exist. The large amount of the demand points caused 

problems even in early steps of preparing data for the models. For example, the time 

spent on calculating network distances from each demand point (residential buildings) 

to nearby green spaces took over 500 hours, which is not practical for planning 

practitioners. Reasonably, the number of demand points need to be reduced and data 

aggregation is expected. 

However, on the other hand, the accurate estimation of distance is crucial in 

location models. A study by Hillsman and Rhoda (1978) revealed that using a single 

point to represent the population of a spatial unit can lead to distance measurement 

errors, especially in real spatial problems. And the aggregation error arises from the 

number of demand points that are aggregated. In the study case, for example, when 
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aggregating the demand points (here, buildings) in a certain area to one point, A, this 

point represents the locations and characteristics of all demand points in the area, no 

matter from which part of the area these buildings are located. When a lot of demand 

points are aggregated to Point A, some of them may be far away from Point A but will 

be represented by Point A. Using only Point A to measure the distance from these 

demand points to a certain feature, the distance measurement errors can be 

tremendously large. 

Though “the ideal way to aggregate DP (demand point) data is not to aggregate 

it”(Francis et al., 2009), to solve a lot of real problems, demand point data have to be 

aggregated. Then a proper aggregation approach has to be applied to improve model 

efficiency and ensure measure accuracy at an acceptable level. 

 

(1) Aggregation approaches 

The purpose of aggregation from n demand points to m approximating demand 

points (ADP) is to reduce the value of m so that m < n, and at the same time ensure 

that the aggregation will not lead to much estimation error in future distance 

calculations and modeling. To achieve this purpose, each demand point (building site) 

would be replaced by a closest approximating demand point, and in turn, each 

approximating demand point would replace one or more demand points. Obviously, 

when the number of approximating demand points m = n, which is the number of the 

demand points, there is no aggregation at all, so there is no aggregation error either. 

When there is more aggregation, which means m decreases and each approximating 

demand point may represent more demand points, the error caused by aggregation 

may increase. A very small m can lead to large error (Francis et al., 2009). The 

extreme case is m = 1, when all demand points are aggregated to one approximating 

demand point, the error is too large to make the aggregation meaningful. 
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The aggregation of spatially distributed points to fewer points is an instance of the 

general spatial aggregation procedures for combining spatial data to a coarser level 

from the level of finer collected raw data. Besides aggregation of various points to 

fewer points in this study, by necessity, other common aggregation possibilities may 

include aggregation of small polygons to large polygons, points to polygons, polygons 

to points, lines to lines, point to lines, lines to polygons (point). Aggregation from or 

to lines is less common, and transportation and road networks can demonstrate these 

situations well. 

The following are examples for different aggregation situations. 

• Aggregation from polygon to polygon: data are collected at small geographical 

unit level such as blocks, but need data at larger geographical units, such as 

neighborhoods, for later study.  

• Aggregation from polygons to points: interest may be in the amount of population 

that can be served by fire stations, and block level population data near each fire 

station have to be added up. 

• Aggregation from points to polygons: with known convenient stores’ data of a 

city, and want to know the overall store services in each neighborhood in the city. 

• Lines to lines: join street segments to the entire street to estimate street length.  

• Points to lines: count number of houses along a street.  

• Lines to polygons: to calculate road density (total length of roads per unit, e.g. sq. 

km, of land area), the length of all road segments in an area of interest is added 

then divided by the land area. 
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Aggregation Approach One: aggregating to existing geographical units 

In this study, in order to aggregate residential buildings (points) to fewer points, 

one approach is to aggregate the building points to existing geographical units, such as 

blocks, which are bounded by surrounding streets. Then the population information on 

all the buildings in the same block would be summarized as the population 

information of the block. Finally, if point rather than polygon is needed for later study 

– in this case, yes, the block centroid can represent the entire block and contain the 

block population information. 

However, among most existing geographical units which are commonly available, 

city blocks, as the smallest unit, may not be a proper unit for green space accessibility 

studies.  

As we know, city blocks differ in size, from city to city. Some can be smaller than 

10,000m2 (100 meter in width), others can be much larger than 20,000m2. Siksna 

(1997) collected typical block size and dimensions of some western cities for 

comparison. For example, Portland, US: 85*79m; Seattle, US: 93~130*98m; Chicago, 

US: 122*140m; Indianapolis, US: 158*158m; Toronto, Canada: 201*140m; Sydney, 

Australia: 51~127*151~360m. Given its grid structure, it is not too hard to estimate 

the dimensions of a typical Manhattan block, which is about 80*150~275m, the 

average block length in the east - west direction (distance between avenues) is 225 

meters, or 750 feet. Generally, a size of 80-100 meter, which is about 15 to 20 blocks 

per mile, as a dimension for city blocks is used by city planners and engineers for 

calculation estimates. 

Then how much would the distance error be if we aggregate all the buildings in a 

block to the centroid of the block? Taking a small block with size 80*100m as an 

example, if we assume a building’s centroid is 10 meters from the block frontage, the 

largest of error that could be made through aggregation is 50m, which is relatively 
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Figure 3-8 Non-recorded streets  in the block, observed in the satellite image 

 
Figure 3-7 Street structure in urban center of Luohu District, Shenzhen 

(Building centroids are marked as dark dots) 

large comparing with only a few hundred meters of tolerable travel distance by 

pedestrian to a green space. Assuming the travel distance from the building to a green 

space 500 meters, the aggregated distance error of 50m would lead to up to 10% error 

in distance measure. And when the block size is larger, the distance between buildings 

(demand point) and centroids of the block (approximating demand point) would be 

larger, and aggregation will cause considerable more errors.  

In the research area of this study, since the city street network is not condensed, 



 

65 

 
Figure 3-9 Grid cells (blue) in the sample block 

most frontages of blocks are much larger than 100m, (Figure 3-7). For example, the 

four frontages of the block on the call out map of the Figure 3-7 are 220, 350, 440, 

420m, and there are 90 buildings (dark dots on the map) in the block. However, from a 

satellite image of the same block (Figure 3-8), clearly there are a few neighborhood 

streets that are not on the record of the city street network data set shown in Figure 3-7. 

However, this data set was the best among the available data. Besides, even with the 

missing neighborhood streets, most dimensions of the sub-blocks are still larger than 

100m. So, the city street network data set was used in this study for calculation. 

Following the approach stated above, these 90 buildings will be aggregated to the 

centroid of the block as the approximating demand point. Even though the amount of 

demand points significantly dropped, the distance errors are huge, for some points, the 

errors will be larger than 200m.  

In fact, besides blocks, the city has another small geographical unit, grids, in its 

city grid management system. This system splits the entire city into irregular grid cells 

for city management purposes. Large blocks are separated into several small cells, and 

several small blocks may be combined into one cell. So, grid cells are not consistently 

the smallest units and quite often they are still as large as over 200m in one dimension 

(Figure 3-9). 
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Figure 3-10 Illustration of fishnet 

 

Apparently, using this aggregation approach will result in inaccuracy in later steps 

of calculating distances to nearby green spaces, which are usually within a few 

hundreds of meters. 

Since the physical block is too large a unit for aggregating building points for 

research purposes, an alternative aggregation approach has to be used. Given that 

existing geographical units are not suitable for aggregation, a set of intuitive units can 

be generated, and points that are located in one unit will be collapsed. Among the 

approaches of generating units, the fishnet polygon approach is commonly used. 

 

Aggregation Approach Two: aggregating to fishnet cells 

In the GIS world, fishnet (Figure 3-10) refers to a net of rectangular cells created 

by a user. It is widely used in data sampling and resampling, index creation, or 

anywhere that needs regular grids. With fishnet grids, the aggregation of points can 

follow these steps: 

• First, construct a fishnet polygon mesh using predefined cell size or cell 

numbers, and overlay the mesh with the points to make sure every demand 

point is covered by the mesh. 
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• Then, count the demand points or combine the expected characteristics of all 

the points in each polygon cell. 

• Finally, select one point, typically the cell’s centroid, to represent a polygon 

cell’s location, and this point will be the approximating demand point for all 

the demand points in the cell. 

Thus, a large number of demand points will be reduced to fewer approximating 

points, and usually the number of approximating points is equal to or less than the 

number of cells -- these two numbers are the same when all cells contain at least one 

demand point; the former is less than the latter one when some cells do not contain 

any demand point. 

However, some additional details need to be discussed before applying this 

approach. 

• Choose proper fishnet cell size: 50*50m 

In step 1 of constructing a fishnet polygon mesh, the first issue is how large the 

fishnet cell size should be. Again, it is a tradeoff between accuracy and cost in 

aggregation. For the same demand point data set that needs to be aggregated, a larger 

cell size usually means fewer polygon cells to be used to cover all demand points, 

which also means fewer approximating demand points and more aggregation of the 

data. On the other hand, if the cell size is too small, more approximating points are 

needed. Though the aggregation error is small, it may not meet the need of 

aggregation, such as significant reduction of computing time and cost. In this case, 

50*50m was defined as the cell size, so that all the demand points in 50*50m cell will 

be aggregated, and be represented by a point.  
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Figure 3-11 Accumulated probability of aggregation distance 

(From demand points to approximating demand points) 

Mathematically, if this approximating demand point is at the center of the cell, 

there is a 78.5% chance that the distance from an actual demand point to the 

approximating demand point is less than 25m, and the largest aggregation error is 

35.4m (Figure 3-11). 

Assuming the travel distance by a pedestrian from a building to a green space is 

500 meters, it is very unlikely (4.1% of chance) that the distance between 

approximating demand point and a green space is less than 475m or over 525m 

(measurement error > 5%).  

Moreover, real data from the study case are examined for aggregation effects on 

distance measure. Here, the average distance to nearest green space per person was 

used as a measure to compare the difference before and after the aggregation. 

In order to calculate the average distance to the nearest green space per person 

before aggregation, the distance from each building (𝑖 ∈ 𝐼) to its nearest green space, 

di, has to be calculated. Then the following equation was used to calculate the average 

distance: 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑡𝑜 𝑁𝑒𝑎𝑟𝑒𝑠𝑡 𝐺𝑟𝑒𝑒𝑛 𝑆𝑝𝑎𝑐𝑒 =  
∑ (𝑑𝑖 ∗ 𝑃𝑖)𝑖

∑ 𝑃𝑖𝑖
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 i = index of building where 𝑖 ∈ 𝐼 

 𝑑𝑖 = distance from building site i to its nearest green space 

 𝑃𝑖 = Population at building i 

 

The same process was repeated to calculate the same distance measure after 

aggregation, using population at each approximating demand point and distance from 

each approximating demand point to its nearest green space to replace the 

corresponding variables in the above calculation. 

Here are the calculated results: before aggregation, the average distance to nearest 

green space is 97.2 meters for people, it changes to 96.4 meters after aggregation with 

fishnet approach. The aggregation error for this measure is only 0.8%. 

• Use proper points as approximating demand points: population weighted 

centroids 

After aggregating demand point information to their respective fishnet cells, in 

Step 3, a point has to be created as the approximating demand point to represent each 

cell’s location. A regular approach is to use the geographic centroid of the square cell. 

This centroid works well if a researcher only cares about the location representation 

itself, or if the interested features and their attributes such as points or individuals are 

evenly distributed in the cell. 

However, since this study is heavily population related, and as it is likely the 

numbers of people at demand points (buildings) are not evenly distributed across the 

cell, the geographic centroid is not the best solution. So instead, the population 

weighted centroid was used in this study. The population weighted centroid is a 

reference point in the center of the population in a cell. It is less likely to be right at 
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the center of the cell. The location of this point is based on the distribution of 

population in the same cell. 

To calculate the population weighted centroid of a cell, assume: 

There are m demand points in the cell, the coordinates of the demand point i in 

the cell are (xi,yi), and the population at the demand point i is Pi. 𝑖 ∈ 𝐼 is the set of 

demand points in the cell. Then the coordinates of the weighted population centroid is: 

 

�
∑ 𝑥𝑖 ∗ 𝑃𝑖𝑖∈𝐼

∑ 𝑃𝑖𝑖∈𝐼
,
∑ 𝑦𝑖 ∗ 𝑃𝑖𝑖∈𝐼

∑ 𝑃𝑖𝑖∈𝐼
� 

Figure 3-12 shows four fishnet cells from the study area. For the cell 2, there is 

only one demand point, so population weighted centroid sits right at the location of the 

demand point which is far from the cell’s geographic center. In this case, using the 

population weighted centroid does not lead to any distance measure error. 

For the cells of 1, 3, 4, there are 4, 3, 2 points to be aggregated, respectively. 

Observe the locations of the population weighted centroids, they are much closer to 

demand points with large populations, see cell 3, 4. In cell 1, since the numbers of 

people at four demand points are close, the population weighted centroid is roughly in 

the middle of the four demand points. 

 
Figure 3-12 Sample cells for aggregation illustration 

 

1 2 

3 4 
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Figure 3-13 Scatter plots comparison: 𝑑𝑖 vs.  𝑑𝑖𝑐𝑡 and 𝑑𝑖 vs.  𝑑𝑖

𝑝𝑤   

 

 

From Figure 3-12, it can also be observed that for each of these four cells, none of 

the population weighted centroid is at the exact location of the geographic center of 

the cell. Apparently, using these two sets of points as approximating demand points 

will lead to different distance measure results. In order to compare which set of points 

can return smaller distance measure errors, three distance measures were calculated 

for each demand point: 1) distance from the demand point to its nearest green space, 

𝑑𝑖; 2) distance from the geographic center of the cell to which the demand point 

belongs to its nearest green space, 𝑑𝑖𝑐𝑡; 3) distance from the population weighted 

centroid of the cell to which the demand point belongs to its nearest green space, 𝑑𝑖
𝑝𝑤. 

With these three sets of distance measures, two scatter plots are created and 

overlapped: 𝑑𝑖 vs. 𝑑𝑖𝑐𝑡, and 𝑑𝑖 vs. 𝑑𝑖
𝑝𝑤, see Figure 3-13. By visually comparing the 

scatter plots and fitted lines in the figure, one can see  𝑑𝑖𝑐𝑡 and  𝑑𝑖
𝑝𝑤 distributions are 

quite close. Generally, the majority of  𝑑𝑖
𝑝𝑤 are closer to 𝑑𝑖 than  𝑑𝑖𝑐𝑡  (Generally, red 
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points that are tighter along the diagonal), except that a few  𝑑𝑖
𝑝𝑤 are further, which 

can be seen from the red points that are far from majority along the diagonal. The 

theoretical explanation of these exception points could be: the maximum distance error 

using cell geographic center is half of the diagonal length of the cell (35.35m), when 

the demand point is located at a corner of the cell. The maximum distance error using 

population weighted centroid is the diagonal length of the cell (70.7m), when the 

demand point with few people is located a corner of the cell, and another heavily 

weighted demand point with large population is at the opposite corner of the cell, then 

the population weighted centroid will be extremely close to the demand point at the 

opposite corner, and the distance from population weighted centroid to the first point 

can be up to 70.7m, which is much larger than the distance from the point to the cell 

center. So the chances of having  𝑑𝑖
𝑝𝑤 >  𝑑𝑖𝑐𝑡 do exist. And in these rare cases, 

distances from population weighted centroids can lead to larger errors than distances 

from cell centroids. 

For further comparison of 𝑑𝑖𝑐𝑡 and 𝑑𝑖
𝑝𝑤, two simple linear regressions on distance 

pairs were run: one regression on the variables of 1) 𝑑𝑖𝑐𝑡 (ct_dist in regression results) 

and 2) 𝑑𝑖 (true_dist), the other regression on the variables of 1) 𝑑𝑖
𝑝𝑤 (pw_dist) and 2) 

𝑑𝑖 (true_dist). The regression results in the Table 3-2 and Table 3-3 reveal that 𝑑𝑖
𝑝𝑤 

performs better than 𝑑𝑖𝑐𝑡, given that the R2 coefficient in the second regression is 

larger, the t statistic for 𝑑𝑖
𝑝𝑤 is larger, and the coefficient of 𝑑𝑖

𝑝𝑤 is closer to 1 than that 

of 𝑑𝑖𝑐𝑡. 
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Given all above analysis, population weighted centroids are finally chosen as 

approximating demand points for later models. However, there is one more question 

about point aggregation that needs to be addressed in practice: are the arbitrary fishnet 

cells adequate for aggregating demand points? 

• Adjustment of fishnet 

A 50*50m fishnet mesh has been generated and overlaid on top of demand points. 

However, there may be some other constraints in a real project that indicate the 

inadequateness of aggregating all demand points in one cell. While overlaying a 

rectangular grid to an area of interest in the real world, it is very likely that there is a 

boundary mismatch between the grid and the existing geographical units. In such a 

situation, if the aggregation of demand points has to take the geographical units into 

Table 3-2 Regression between true distances from DPs (di) and distances from 
cell centroids (di(ct)) 

 
Table 3-3 Regression between true distance from DPs (di) and distance from 

population weighted centroids (di(pw)) 

 
 

                                                                              
       _cons     3.538879   .1938307    18.26   0.000     3.158946    3.918812
     ct_dist      .967212    .001774   545.21   0.000     .9637347    .9706893
                                                                              
   true_dist        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
                                                                              

       Total    56332338.8 14530  3876.96757           Root MSE      =  13.442
                                                       Adj R-squared =  0.9534
    Residual    2625043.67 14529  180.676142           R-squared     =  0.9534
       Model    53707295.2     1  53707295.2           Prob > F      =  0.0000
                                                       F(  1, 14529) =       .
      Source         SS       df       MS              Number of obs =   14531

                                                                              
       _cons     .9255743   .1814104     5.10   0.000     .5699869    1.281162
     pw_dist     .9847849   .0016548   595.09   0.000     .9815412    .9880286
                                                                              
   true_dist        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
                                                                              

       Total    56332338.8 14530  3876.96757           Root MSE      =  12.361
                                                       Adj R-squared =  0.9606
    Residual    2220037.76 14529  152.800451           R-squared     =  0.9606
       Model    54112301.1     1  54112301.1           Prob > F      =  0.0000
                                                       F(  1, 14529) =       .
      Source         SS       df       MS              Number of obs =   14531
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account, using a rectangular grid for aggregation cannot meet this need. A fishnet cell 

may cross more than one geographical unit, and demand points from different 

geographical units with different characteristics are now placed in one cell. If they are 

aggregated improperly into one approximating demand point, the geographical unit to 

which the approximating demand point belongs may not be properly defined, and the 

associated characteristics of the approximating demand point are unclear or can be 

mistakenly assigned. Furthermore, the overall characteristics of all approximating 

demand points that form a geographical unit may not be able to match the 

characteristics of the geographical unit, and some statistics may differ before and after 

aggregation. For example, for a Block A with population 1000, a few cells are 

completely in the block, but there is another cell that crosses the block boundary and it 

contains two demand points, M and N, one in Block A and the other in Block B, a 

block next to Block A. If this cell is treated as in in Block A, the demand point N in 

Block B is aggregated to the cell, so the population in Block A will be larger than 

1000, vice versa. 

Therefore, adjustment of the fishnet cells is a necessary step to avoid a spatial 

mismatch of the cells and existing geographical units that a researcher is interested in. 

In this case study, the following geographical units have to be taken into account in 

adjusting fishnet cells: 

• Blocks. As explained in the above example, the aggregation is expected to be 

in the same block, and cells should not cross streets. 

• City Grids. As the standard unit in city grid management systems, it would be 

preferred to not aggregate across multiple grids, so that potential 

implementation of the research results may be more positively effective. 

• Different land use types. The residential land is classified into four types: R1, 

single- to multi-family land; R2: apartment land, R3: group quarter land; R4: 
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residential land for self-use in urban villages. Some blocks may contain 

multiple residential land types. These land use types regulate the residential 

buildings built on the land. It is reasonable to not aggregate buildings of 

different types, so more interesting findings may be found in later analysis. 

 

(2) Summary: aggregation of raw demand point data 

The aggregation process becomes more complicated when the issues noted above 

are taken into account. Fishnet mesh approach was adopted and adjusted for the 

project need. The following steps were finally carried out to reduce the amount of 

demand points in the raw building data. 

Firstly, a fishnet polygon mesh with cell size 50*50m was created, and was laid 

over the raw demand points to ensure it covers all the points. Then the cells that did 

not contain any demand point were removed. There were 4583 effective cells with 

demand points. 

Secondly, these fishnet cells were adjusted. The fishnet cells that intersected any 

of streets, city grids, or residential land use classes were split according to the miss-

match boundaries. Then the sliced cells (polygons) that contained no demand points 

were removed. After this step, there were 4870 cells in total. Comparing to the result 

from last step, the number of cells only increased by 287. With this slight increase of 

approximating demand points, however, the aggregation was more informative and 

meaningful with these additional factors being involved.  

Finally, population weighted centroid coordinates were calculated for the 4870 

adjusted cells, and then 4870 points were created using the coordinates. These points 

became the approximating demand points for later modeling.  

The block example used in the previous section can illustrate this adjustment 

process. Thirty three fishnet cells were generated (Figure 3-14), and then using the 
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adjusted factors including streets, city grids and land use types (Figure 3-15), these 

cells were adjusted to 37 cells (Figure 3-16). 90 buildings were finally aggregated to 

37 approximating demand points (Figure 3-17). Figure 3-18 compared the aggregation 

result of the 37 points to the 90 building sites before aggregation. It can be observed 

that more buildings are aggregated in compacted areas, and less or no aggregation 

happens for the dispersed areas where buildings have few neighbors. 

 

 
Figure 3-14 33 Fishnet cells that contain 

demand points in the sample block 

 
Figure 3-15 Three factors used for cell 

adjustment 

 
Figure 3-16 37 Cells after adjustment 

 
Figure 3-17 37 Population weighted 

centroids of the cells 
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Figure 3-18 Aggregation results: locations of 37 approximating demand points 

and 90 demand points in the sampling block 
 
 

With this aggregation approach, over 15,000 demand points have been reduced to 

less than 5000 approximating demand points. This aggregation, with some other time-

saving techniques, has significantly reduced later calculation time for network 

distances from demand points to green space sites, from over 500 hours to a tolerable 

number of less than 100 hours. Besides, from previous analysis, with a relatively small 

cell size and population weighted centroid technique, later estimation on travel 

distance to green spaces is very unlikely to have large error of over 5%, especially for 

green spaces that are a few hundred meters away – a distance threshold that residents 

are willing to walk into a green space frequently. For a nearby green space, though the 

relative estimation error caused by aggregation will increase, it will not make much 

difference in people’s willingness of visiting a green space. 
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3.4 Distance Measures 

This section focuses on distance measures of the distances between demand 

points (residential sites) and their nearby facility sites (green spaces in the study case). 

Distance measure between facilities and demand points is a cornerstone and crucial 

input for location models. 

 

3.4.1 Euclidean Distance, Manhattan Distance and Network Distance 

Generally, there are three distance measures: Euclidean distance (straight-line 

shortest distance), Manhattan distance (distance measured along axes at right angles 

named after the grid layout of Manhattan streets), and network distance (the shortest 

distance along a public transport network) (see Figure 3-19 for illustration). Besides 

these direct distance measures, travel time or travel cost along the existing street 

network is infrequently used. 

Assuming the coordinates of two points P and Q are (x1,y1) and (x2,y2), then: 

The Euclidean distance between P and Q is the length of the line segment that 

connects these two points: 

𝑑𝑒𝑢 = �(𝑥1 − 𝑥2)2 + (𝑦1 − 𝑦2)2 

  
Figure 3-19 Euclidean, Manhattan and Network distance measures 
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The Manhattan distance between P and Q is the sum of absolute difference 

between the x- and y-coordinates of these two points: 

𝑑𝑚 = |𝑥1 − 𝑥2| + |𝑦1 − 𝑦2| 

The network distance between P and Q is based on the network, a street network 

for example, that P and Q are in. Hence a general formula cannot be expressed but 

how this distance is calculated will be discussed. 

 

Euclidean distance is the most widely used distance measure by planners and 

location modelers, given its simplicity of calculation. Manhattan distance would work 

well to measure distances along grid like streets in urban areas. When there is a 

network, network distance may be presumably a good measure. In a survey by Francis 

et al. (2009), among 38 published articles between 1978 and 2005, half of which are 

on real data, Euclidean distance was the predominant measure. Only 7 articles use 

Manhattan distance besides Euclidean, and 4 use network distances. However, do all 

these measures return similar results? Is Euclidean always an appropriate measure? 

Bach (1981) conducted an investigation on distance measures and found the 

correlation was close to one for network and Euclidean distances for his two case 

studies in Germany, which indicate that it does not matter which distance, network or 

Euclidean, is used in location models (Carling, Han, Håkansson, & Rebreyend, 2012). 

The same finding can be found in Love et al. (1988) for large scale studies. 

In another study, Carling et al. (2012) compared the Euclidean distance and a road 

network distance in a rural environment in Sweden. The outcome of their p-median 

model for up to 8 facilities with different distance measures was compared, and the 

authors found out that, however, their study case was quite sensitive to distance 

measures, and Euclidean distance did not work well in non-homogeneous rural areas 

and led to sub-optimal location solutions. To further test their conclusion, Carling et al. 
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(2012) did an experiment with more facilities and a refined network. The same 

conclusion was obtained that Euclidean measure was potentially problematic since it 

may lead to model solutions with excessive travel distances for the population. 

Different from literature discussed above, this study focuses on urban rather than 

rural areas, and at the pedestrian walking distance scales rather than the geographic 

scale involved in long driving distances between cities. So the conclusions from the 

above reviewed literature may not be appropriate for this study. In order to explore 

how different distance measures perform in a small scale urban environment, all 

Euclidean, Manhattan and network distances are calculated for the distances of each 

demand point to its nearby green spaces. 

 

3.4.2 Mathematical Differences Among Distances Measures for Points 

Mathematically, the Manhattan distance between two points P and Q should 

always be greater than or equal to the Euclidean distance of these two points, and 

should be no more than 1.414 times of the Euclidean distance. The relative difference 

of the two measures depends on the locations of the two points. If they are 

horizontally or vertically located, the Euclidean and Manhattan distances would be 

exactly the same; if one point is located at a diagonal direction to the other point, the 

Manhattan distance would be √2 (≈1.414) times the Euclidean distance.  

However, the relationship of the network distance and the Euclidean distance is 

not as simple as that of the Manhattan distance – which is always 1 to 1.414 times of 

the Euclidean distance. The network distance, somehow, can be smaller than the 

Euclidean distance. It may sound impossible as we all know the Euclidean distance is 

the shortest distance between two points. The problem of having smaller network 

distance is caused by how the network distance is being calculated. 
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The network distance is the shortest distance along a network, but situations vary. 

If two points, P and Q, are on a street network, the shortest path between these two 

points is recorded as their network distance correctly in GIS. However, if one or both 

of the points do not intersect with any street (network component), but rather are offset 

from the streets instead, the network distance calculation will be different. First, the 

points P and Q that are not on the network have to be snapped to their nearest streets 

at the corresponding nearest points 𝑃′ and 𝑄′ on the streets, this ensures that the new 

inputs, 𝑃′ and 𝑄′, are located on the street network which is required for any network 

calculations. Then the shortest path between 𝑃′ and 𝑄′ are calculated, and finally 

recorded as the network distance between P and Q. So though P, Q and 𝑃′, 𝑄′ are 

different points, the network distances for these two pairs are exactly the same, and the 

offset distances of P and Q to their nearest streets are ignored in the network distance 

calculation. For example, in the circumstance of Figure 3-20, the network distance 

between P and Q is much smaller than their Euclidean distance.  

The offset distances of points to streets should not be ignored at such a scale of 

this study, because it wouldn’t make sense that the actual walk distance between two 

points are less than the shortest-line distance (Figure 3-20). Even if the calculated 

 
Figure 3-20 A scenario that the network distance is less than the Euclidean distance 
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network distance is still longer than Euclidean distance, ignoring the offset distances 

from points to their nearest streets may still lead to large distance measure errors 

because these offset distances may be comparatively large at such small scales.  

No discussion has been found on this offset distance problem in rural and regional 

studies. The reason is that, compared with the long travel distance on the road network, 

the offset distances from the points of interest to their nearest roads are relatively 

small and will not lead to too much error in model results.  

In brief, at a relatively small scale with a relatively sparse network, such as in this 

study, the offset distances have to be taken into account if the network distance 

measure is to be used. An adjusted network distance (Figure 3-21), as a fourth distance 

measure, can be calculated by adding the value of network distance and the offset 

distances of the two points P and Q to their nearest streets. 

 

 

 
Figure 3-21 The adjusted network distance  

The adjusted-network distance PQ =  
network distance of P’Q’ + offset distance PP’ + offset distance QQ’ 
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3.4.3 Distance Calculation for a Point and a Polygon 

As discussed in previous sections, in this study, a green space cannot be simply 

viewed as a point; its area in the physical space has to be calculated. Rather than using 

a centroid point as the location of a green space for distance calculation, a set of points 

at its boundaries as “entrance points” to the green space, have to be used instead.  

 

Assuming Q1, Q2, … Qn are n entrance points on the boundary of a Green Space G: 

For the Euclidean distance between Demand Point P to Green Space G, the 

Euclidean distances of Point P to each of the entry Point Q1, Q2, … Qn need to be 

calculated and compared, then the shortest one will be the Euclidean distance between 

Demand Point P to the Green Space G. The entrance point with the shortest Euclidean 

distance is denoted as Point Qh. This process was illustrated in Figure 3-22, and in this 

example, the distance between P and the Green Space G was defined as the distance 

between points P and Q2. 

𝑑𝑒𝑢𝑃𝐺 = min(𝑑𝑒𝑢𝑃𝑄1 ,𝑑𝑒𝑢𝑃𝑄2 , … ,𝑑𝑒𝑢𝑃𝑄𝑛) 

𝑑𝑒𝑢𝑃𝐺 = 𝑑𝑒𝑢𝑃𝑄2 

 
Figure 3-22 Euclidean distance of a point P to a green space polygon G 
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Then the Manhattan distance between Point P and Green Space G, is not 

computed simply by taking the coordinates of Point Qh with that of Point P for 

calculation. The Manhattan distances of Point P to each of Point Q1, Q2, … Qn have to 

be calculated and compared, the shortest one is recorded as the Manhattan distance 

between Point P and the green space. Note entrance point Qi for shortest Manhattan 

distance may be different from the one for Euclidean distance. 

𝑑𝑚𝑃𝐺 = min(𝑑𝑚𝑃𝑄1 ,𝑑𝑚𝑃𝑄2 , … ,𝑑𝑚𝑃𝑄𝑛) 

Similarly, the network distances of Point P to each of green space entrance points 

Q1, Q2, … Qn have to be calculated in GIS and choose the shortest one as the network 

distance of P and the green space. And the entrance point chosen, Qj, may not be Qh or 

Qi. 

𝑑𝑛𝑃𝐺 = min(𝑑𝑛𝑃𝑄1 ,𝑑𝑛𝑃𝑄2 , … ,𝑑𝑛𝑃𝑄𝑛) 

In the same way, the adjusted network distance between Point P and Green Space 

G is not simply taken to be the network distance between Point P and Entrance Point 

Qj, 𝑑𝑛𝑃𝑄𝑗, then add the offset distance of P to its nearest street, plus the offset distance 

of Qj to its nearest street (the offset distance from a point to a street is the Euclidean 

distance between them). Instead, the network distances from all the entrance points 

and the offset distance of these entrance points to their nearest streets should all be 

considered, and the entrance point Qk may not be the same entrance point of Qj from 

the previous network distance calculation. 

𝑑𝑎𝑑𝑗_𝑛
𝑃𝐺 = min(𝑑𝑛𝑃𝑄1 + 𝑑𝑄1

𝑜 + 𝑑𝑃𝑜 ,𝑑𝑛𝑃𝑄2 + 𝑑𝑄2
𝑜 + 𝑑𝑃𝑜 , … ,𝑑𝑛𝑃𝑄𝑛 + 𝑑𝑄𝑛

𝑜 + 𝑑𝑃𝑜) 

 -- 𝑑𝑜: the offset distance of a point to its nearest street/network segment. 
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Figure 3-23 The nearest green space changes while using different measures 

66.8%

3.0%

11.7%

18.5%

Euclidean nearest is the nearest

Euclidean nearest verified by
other two measures

Euclidean nearest verified by
another measure

Euclidean nearest is not the
nearest for other measures

3.4.4 Empirical Measure Differences Among the Four Distances Measures 

The four distance measures, the Euclidean, Manhattan, network and adjusted 

network distances, were calculated from each demand point to its nearby green spaces 

within a certain distance. In this section, to determine if these measures lead to 

significantly different distances results and if it is necessary for further study of their 

impacts on later models, the values of these four distance measures are compared for 

4870 approximating demand points to their nearest green spaces, and for 4870 

approximating demand points to their nearby green spaces with 1500m. 

(1) Nearest green spaces found by different distance measures 

For each approximating demand point, its nearest green space can be found by 

comparing its distance to all nearby green spaces and choosing the shortest one. Since 

it depends on distance, with different distance measures, the nearest green space found 

for an approximating point by one distance measure may not be the same green space 

found by a different measure. Or more generally, the nearest neighbor of a point found 

with different distance measures may not be the same one. So distances were 

calculated, using four above mentioned measures, from each approximating demand 

point to green spaces within a reasonable distance (i.e. 1500m or less). 

Figure 3-23showed that among the 4870 approximating demand points for which 
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distances were calculated, 3251(66.8%) of them identified the same specific “nearest 

green space”, no matter which distance measure was used. Secondly, 570 (11.7%) of 

the approximating demand points have a nearest green space which was identified by 

three of the four distance measures including the Euclidean distance measure. That is, 

only one distance measure pointed to a different green space as the nearest one. Third, 

for 901 approximating points (18.5%) the nearest green space identified by Euclidean 

distance was also the nearest one measured by one of other three distance measures, 

but not identified as the nearest green space using the other two measures. Lastly, for 

148 approximating demand points (3%), the nearest green space identified by 

Euclidean distance measure is absolutely not the nearest one identified by any other 

distance measures. 

 

(2) Distances from points to their nearest and all nearby green spaces 

Whereas the previous section concerned only with the distance from demand 

points to their nearest green spaces, this section analyzes the consequences of 

measuring distances to nearby green spaces as well as nearest. As indicated above, 

four types of distances from a demand point to its nearest green space are investigated. 

For each of 4870 approximating demand points, among all nearby green spaces, the 

nearest one to the point with Euclidean distance measure was found. The furthest 

distance of the 4870 pairs of each point to its nearest green space is less than 400m. 

Then the corresponding Manhattan, network and adjusted network distances from the 

point to its nearest green space defined by the Euclidean distance measure were 

calculated. To examine the effects of using different measures, an analysis was 

conducted on the relationship of these distances for 4870 pairs of points and their 

nearest green space, having straight-line distances of up to 400m. 
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Furthermore, to increase the number of pairs for a more powerful analysis of the 

relationship between four distance measures, in addition to these 4870 pairs of points 

and their Euclidean-nearest green spaces, more pairs of points and their nearby green 

spaces were added to the analysis. It is quite likely that there are multiple green spaces 

within a certain distance from a demand point. All the pairs of points and their nearby 

green spaces with 1500m straight-line distance are involved in further analysis. This 

results in over 200,000 pairs with straight-line distances of up to 1500m. 

 

Manhattan distance vs. Euclidean distance 

From the scatter plots for both the distances from 4870 approximating demand 

points to their nearest green spaces and the distances from these points to their nearby 

green spaces within 1500m, Figure 3-24 and Figure 3-25 respectively, it can be 

observed that all the points were located between two lines: y=x as the bottom line and 

y=√2*x as the top line, which supports previous mathematical analysis. 

 
Figure 3-24 Manhattan distance vs. 

Euclidean distance between 4870 pairs of 
each point to its nearest green space 

 
Figure 3-25 Manhattan distance vs. Euclidean 
distance between over 200,000 pairs of each 

point to its nearby green spaces 
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While these two distances are apparently associated positively, the megaphone 

shape of the scatter plot clearly reveals that when distance increases, the absolute 

difference between these two measures may also increase. 

 

Network distance vs. adjusted network distance vs. Euclidean distance 

First, the scatter plots of the network distance and the adjusted network distance 

(Figure 3-26 for 4870 pairs of points to their nearest green space, and Figure 3-27 for 

over 200,000 pairs of points to all nearby green spaces within 1500m) show a clear 

association between network distance and adjusted network distance. A simple linear 

regression between these two distances for over 200,000 pairs supports this by high R2 

and a significant slope around 1: 

Adjusted Network Distance = 83.84 + 1.0038*Network Distance,  

R2 = 0.9951; P-value of the slope = 0.000 

 
Figure 3-26 Network distance vs. 

adjusted network distance between 4870 
pairs of each point to its nearest green 

space 

 
Figure 3-27 Network distance vs. adjusted 

network distance between over 200,000 
pairs of each point to its nearby green 

spaces 

𝑦 = 𝑥 

𝑦 = √2𝑥 

𝑦 = 𝑥 

𝑦 = √2𝑥 
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 However, we can also see that these two distances are quite close for large 

distance measurements; the relative differences between these two measures are large 

on short distance measurements. For those whose adjusted network distance is much 

larger than network distance, the reason is either the demand point, or the green space, 

or both are far from existing streets in the street network. If the measured network 

distance for two points is 2000m, and the total offset distances of the points to their 

nearest streets are 300m, then the adjusted network distance is 2300m, which is not a 

big increase. However, if the measured network distance of these two points is 400m, 

a 300m adjustment to 400m is relatively large: while 400m is a walkable distance, 

700m, may seem too far to walk for some people. 

 

Network distance and adjusted network distance vs. Euclidean distance 

The relationship between (adjusted) network distance and Euclidean distance may 

be the most complicated but important one. Which is closer to real distances? Are they 

consistently in a linear relationship so Euclidean distance can replace the network 

distance for easier calculation?  

As we discussed before, some researchers found high correlations between 

Euclidean distances and network distances and claim Euclidean distances might be 

used for analyses of accessibility (Bach, 1981), others found distance measures can 

lead to different results in rural environments (Carling, Han, Håkansson, et al., 2012; 

Carling, Han, & Håkansson, 2012). Then how these measures perform for a small 

scale study in an urban context? 
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Generally, network distance and adjusted network distance increase while the 

straight-line distances between points increase, however, the overall goodness of fit is 

not strong if simple linear regressions are run between the network distance or 

adjusted network distance and Euclidean distance, and R2s are low (Table 3-4). The 

low correlation between Euclidean distances and (adjusted) network distances 

indicates that these distances are significantly different. Then using different types of 

distance measures may significantly impact the results of the location models, in 

which distance variable plays a key role. 

 

Further, some interesting phenomena can be observed from the scatter plots of the 

network distance - Euclidean distance points overlaying with the adjusted network 

distance - Euclidean distance points, see Figure 3-28 and Figure 3-29 with different 

numbers of residence-green space pairs.  

Table 3-4 Regression results between different types of distance measures (for nearest 
green space sample and extend sample of nearby green space with 1500m) 

sample n Variable Y Variable X R2 slope p-value intercept 

Points to 

nearest 

GS 

4870 

Network Dist. 
Euclidean 

Dist. 
0.1544 2.47 0.000 -61.01 

Adj. Network 

Dist. 

Euclidean 

Dist. 
0.1390 2.37 0.000 45.94 

Points to 

nearby 

GSs 

209334 

Network Dist. 
Euclidean 

Dist. 
0.3020 1.29 0.000 226.27 

Adj. Network 

Dist. 

Euclidean 

Dist. 
0.2975 1.29 0.000 316.96 
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Figure 3-30 Short Euclidean distance (<200m) with large 

network distance(>5000m): points to green space 

1) Points at the top of the scatter plots (Figure 3-28 and Figure 3-29): short 

Euclidean distance and large network distance 

Even though a demand point is quite close to a green space if measured by 

Euclidean distance, they may be very far from each other using network distance or 

adjusted network distance measures. For example, a green space which is just a few 

hundred meters away in Euclidean distance becomes 5000 meters away as measured 

 
Figure 3-28 Network distance and 

adjusted network distance vs. Euclidean 
distance between 4870 pairs of each point 

to its nearest green space 

 
Figure 3-29 Network distance and 

adjusted network distance vs. Euclidean 
distance between over 200,000 Pairs of 

each point to its nearby green spaces 
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by network distance and is too far to be utilized by walking if the network distance 

measure is used. In Figure 3-30, three approximating demand points (cyan colored) 

are quite close to the green space in southwest (lower left of the map), the distances 

are 55, 90, 150 meters. However, in network analysis, the green space is snapped to its 

nearest road at the bottom, and the three demand points are snapped to the dead-end 

street on the right, which is not directly connected to the road at the bottom. And 

unfortunately, this road is poorly connected to the city streets, so the network distances 

measured for these three points to the green space are huge, 5167, 5098, 5066 meters, 

respectively, and the adjusted network distances are 5224, 5176, 5120 meters. 

In fact, pedestrians are much smarter than network analysis. They are not 

restricted to walk along the streets. They can walk along sidewalks and pedestrian 

paths that are not on the street network. They can walk between the buildings, or even 

through buildings. They have more flexibility of choosing a much shorter path. In such 

cases, using Euclidean distance or Manhattan distance would make much more sense, 

and Manhattan distance may work best. 

For a small scale study of pedestrians in an urban environment, this exaggeration 

of network distance measurements can only be reduced when the following steps are 

applied when preparing the street network: 

• Refine the network by adding detailed streets in neighborhoods, and all 

possible walkable paths such as sidewalks, pedestrian and bike trails. The more 

detailed, the better. – However, these data may not be available to practitioners 

at all. 

• For one-way streets, remove direction restriction when builds the street 

network, because pedestrians can walk either way. 

• Remove non-walkable roads from the network, such as overhead roads. 
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Figure 3-31 Large Euclidean distance and zero network distance 

2) Points at the bottom of the scatter plots (Figure 3-28 and Figure 3-29): network 

distance is smaller than Euclidean distance 

Though Euclidean distance should be the shortest distance between two features, 

the network distances sometimes are smaller than Euclidean distance because only the 

distances on the street network are counted – and that’s why the adjusted network 

distance measure is created. See the points below the y=x line on the scatter plots. 

Here’s an example. Among 4870 pairs of demand points to their nearest green spaces, 

3026 pairs (62.1%) have smaller network distances than Euclidean distances. There 

are 774 pairs with non-zero Euclidean distance but zero network distances. In Figure 

3-31, from the cyan demand point to the open green space at the bottom, the Euclidean 

distance is 131 meters, Manhattan distance is 161 meters, network distance is 0, and 

the adjusted network distance is 131 meters, the same as the Euclidean distance. 

These examples are in accordance with the argument in an earlier section that the 

technical network distance is not an appropriate measure in such a case, and it is 

necessary to adjust the network distance. 

 

Euclidean Distance= 
Adj-Network Distance= 

131m 

Network Distance = 0m 

P 

Manhattan  
Distance = 161m 

streets 

Green Space 
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From all above analysis, none of the four distance measures is the best, or the 

most accurate one for such a small scale pedestrian study in an urban area. How would 

these different measures impact the location model results? Will the results be 

completely different? These four sets of distances will be used in the location models 

for further study of their impacts. 

 

3.5 Space Standards Related Parameters 

To evaluate wellness of greening of a Chinese city, multiple indices are used as 

standards in these national regulations in China: Evaluation Standards for Urban 

Landscaping and Greening (Ministry of Housing and Urban-Rural Construction of the 

People’s Republic of China, 2010a), State Standard for Garden City of China(Ministry 

of Housing and Urban-Rural Construction of the People’s Republic of China, 2010c), 

and Standards for China habitat Environment Award (Ministry of Housing and Urban-

Rural Construction of the People’s Republic of China, 2010b). 

3.5.1 National Standards 

National standards on green space include amount of green spaces and location 

requirements (Table 3-5): 

• Greenery coverage in urbanized area. In 2008, the average coverage for 660 

Chinese cities is 35.3%; and 39.7% for designated National Garden Cities. 

• Green space ratio in urbanized area, the main difference from above index is 

roof gardens are excluded. In 2008, the average green space ratio for 660 

Chinese cities is 31.3%, and 36.8% for National Garden Cities. 

• Urban park green space per person. Only the green spaces in the built area are 

counted. Again, in 2008, the average value of this index for 660 Chinese cities 

is 8.98m2, and 11.12m2 for National Garden Cities. 
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• Park Service Radius Coverage (%), or the coverage within the public green 

space service radius. And this radius is specified as 500 meters. The Evaluation 

Standards also clarified that “given the possible population with 500 meter 

service radius”, the minimum size of the parks refers to 5000m2. For parks less 

than 1000m2, the service radius can be as small as 300m.  

• The green space area per person for downtown area should be at least 

5m2/person. 
 

Table 3-5 National standards on green spaces in China 

index 

Standard 

National 

Garden City 

National Eco-

garden City 

China Habitat En-

vironment Award 

greenery coverage in urbanized 

area 
≥36% ≥40% ≥40% 

Green space ratio in urbanized 

area 
≥31% ≥35% ≥40% 

park 

green 

space 

per 

person 

Cities of built 

area/person < 80m2 
≥7.5m2/person ≥9.5m2/person 

≥12 
Cities of built 

area/person 80~100m2 
≥8m2/person ≥10m2/person 

Cities of built 

area/person >100m2 
≥9m2/person ≥11m2/person 

Min green space area per person 

in city downtown area 
≥ 5m2/person --  

Park Service Radius Coverage ≥70% ≥90% ≥80% 
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In Opinions of the State Council on Strengthening Urban Infrastructure 

Construction (the State Council of the People’s Republic of China, 2013), the State 

Council further reinforced construction of green space in cities. It required that by 

2015, for all cities, the green space service radius of coverage should be no less than 

60%, and for downtown area the minimum green space area per person should be no 

less than 5m2/person. 

 

3.5.2 Local Standards 

From the city’s Green Space System Planning (2004-2020), the planning 

standards of green spaces are:  

• The general goal at 2020 is 18m2 public green space per person (in 2013, this 

figure is 16.7m2 published by Shenzhen Urban Management Bureau of the 

Municipality (2014)); 

• Green space ratio of over 50%; 

• Service radius of neighborhood parks should be between 500 to 1000 meters; 

• The minimum size of a green space should be no less than 500 square meters. 

 

3.5.3 Space Standards Defined for the Models 

Consider both national and local standards, the model parameters were set as 

follows: 

• Green space minimum size:  𝑆 = 500𝑚2 

• Distance threshold: 𝐷 = 500𝑚 

• Percent population coverage criterion 𝐶 = 80%, 90% 

The national standards of park service radius of coverage are the 

percentage of residential land area that is within park service areas (radius = 
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500m), and 60%, 70%, 80%, and 90% have been used in related standards. The 

parameter 𝐶 defined in the model, however, is the percentage of population 

within the park service areas which taken population uneven distribution into 

account with the national standards. Given the slight difference in the coverage 

definition and high expectation from local government, 80% and 90% were 

possible inputs for C, and possibility of 100% coverage was also explored. 

• Average green space per person 𝐴 = (1,2,3,… 5,… 18m2) 

The city’s Green Space System Planning set the goal of 18m2, but this 

figure includes all urban and rural spaces, as long as in the city’s jurisdiction. 

And from the above analysis of the city green spaces, apparently some rural 

hills are not feasible for public access purpose. If these infeasible green space 

areas are removed from the calculation, the average green space area per 

person should be much less than 18m2, especially for city centers.  

The State Council requires a green space area per person for the city 

downtown areas to be no less than 5m2 by 2015 which make much more sense 

for public access studies. Though, it is still a general average across the entire 

area of both dense and sparse neighborhoods. So, even if a city meets the 

average 5m2 goal, the per capita green space area may be much larger than 5m2 

for some neighborhoods in downtown, and much lower than 5m2 for other 

neighborhoods. 

This parameter will be used in this study for demand allocation rather than 

as a simple average value. With 5m2 the coverage of dense neighborhoods may 

be very poor, which will in turn reduce the overall percent population coverage. 

So this parameter is not a static number in the models, a set of numbers will be 

used to find the tradeoff of it with coverage. 
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3.6 Summary 

Existing park and green space distribution in the study area was first analyzed in 

GIS and location-allocation models, then potential green spaces sites were included in 

the second set of location-allocation models to examine the proper green space 

distribution with related costs. In order to formulate appropriate location-allocation 

models, the complexity of green space location related specific problems has been 

explored in this chapter. Beside model formulation, the following related issues were 

discussed, and different parameters with various values would be used in the models. 

 
Table 3-6 The model-formulation related issues that were discussed in this chapter 

Model 

Major 

Components 

Regular Topics 

in LA Problem 
GS Specific Topics Space Standards 

Green Space 

(j) 

 

As polygons, not 

points 

% population coverage 

(C) 

 

Supply: slope 

corrected area (bj) 

Minimum size of GS 

(S) 

Types (tj) of gs and related cost (ftj) 
 

Residential 

Sites(i) 

Population 

estimate (pi)  

Average demand per 

person (A) 

Point Aggregation (fishnet) 
 

Distance(dij) 
Distance 

measures 

Distance between a 

point and polygon 

Maximum distance 

threshold (D) 
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CHAPTER 4   

RESULTS AND DISCUSSION 

 

The main components of this chapter are shown in Figure 4-1. Firstly, the existing 

green spaces in the study area were analyzed. Two popular green space standards, 

which are also widely used for cross city comparisons, were also calculated. These 

two standards are average green space per person, and percent green space coverage. 

Secondly, the maximal covering location model was run for existing green spaces, 

followed by the same model applied to all green space candidates including potential 

ones. Then, with the analysis results from these models, the capacitated location-

allocation model was run with the objective of minimum green space construction 

costs. Various parameter inputs were used, and the most appropriate ones were 

selected from the cost-effectiveness curves. Finally, the models outputs with these 

selected parameter inputs were further analyzed: for each green space candidate site, 

the amount of demand it can serve in the model solutions were compared, site by site. 

Therefore, the relative importance of each green space sites was able to be achieved, 

so that all green space candidate sites can be classified into various groups according 

to their performance in the selected model outputs, and implementation strategies can 

be proposed for each class of green space sites. In addition, the impact of applying 

different distance measures to the models is also discussed in this chapter. 
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4.1 Existing green 
space analysis

4.1.1 average GS/person and uneven 
distribution (space standard)

4.1.2 Green space coverage 
(space standard)

Section 4.1

Section 4.3

Section 4.2
4.2 Model 1: Maximal coverage model for existing GS

4.3.1 Model 2: Max coverage model for all green 
space candidates sites

4.3.2 Model 3: capacitated LA model: minisum 
cost

Meet planning 
standards?

Result analysis 
Yes

No

Meet planning 
standards?

No

Yes

4.3.2 (3) How much a GS contribute for 
serving demand in the model solution

Urgent need

Large

Build later / Low priority Not necessary

No

4.3.2 (2) Select appropriate parameter inputs for 
further model implementation analysis

low

Discussion 
on impact 
of using 
different 
distance 
measures

 
 

Figure 4-1 Diagram of result analysis 
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Figure 4-3 500m buffers around residential buildings: most green spaces can 

hardly be reached 

 
Figure 4-2 500m buffers around large green spaces 

 

4.1 Existing Green Space Distribution in Study Area and Related Indices 

4.1.1 Average Green Space per Person Value 

Green spaces are unevenly distributed in the study area. The following figures 

have been calculated for Luohu District: the average green space per person is about 

37m2/person, which is a very enjoyable amount from a health viewpoint. However, 

from the green space distribution, the majority of green spaces in the district are too 

far to visit (Figure 4-3). Taking only the green spaces that are within 500m to 
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Figure 4-4 DEM in Luohu, slope range 0-54 degrees 

residential sites into account, the average “accessible” green space for each person is 

15m2. 

Another set of buffers is created for large city parks, neighborhood parks and 

open green space with area greater than 10,000m2, see Figure 4-2. These three types of 

green space account for about 99% of the total area of green spaces in the district, but 

only serve 62% of population if 500m Euclidean Distance is used as service radius.  

The two largest green spaces, one to the west and the other to the east, only cover 26% 

of the population, but the area is 92% of the total green space area. 

Feasible area modified by slope correction factors 

Topography of the study area shows that many green spaces are too steep for 

public recreation access (see Figure 3-5, or DEM model in Figure 4-4). The slope 

ranges from 0-54 degrees. 40.5% are between 0-15 degrees, 48.3% of green spaces are 

between 15-30 degrees, and 11.2% of green spaces are too steep with slope over 30 

degrees (Figure 3-5). 

Using the slope correction factors discussed before, the total green space area was 

modified to reflect that area where land is flat or low slope. For the corrected green 
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Figure 4-5 Average green space area per person (m2) 

space area, the average adjusted area of green space that can be reached from 

residential buildings in 500 meters reduced to 11m2 per person. 

Green spaces in the city center 

By removing the two largest suburban green spaces and their nearby 

neighborhoods within 500 meter service distance, it was determined that the rest of 

population, 74%, who live in urbanized areas, the average green space per person is 

only 3.8m2, and 2.97m2 after slope correction. 

In short, the following table and figure (Figure 4-5) reveal that the average green 

space per person decreases dramatically from 37m2/person to only 3m2/ person after 

corrections for additional factors, including locations in center city or suburban, slope 

correction, and within 500 meters of the residences. 
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Figure 4-6 500m green space coverage in the study area 
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4.1.2 Green Space Service Coverage 

The basic percent coverage of green spaces in service radius refers to the 

percentage of residential land that is within green space service radius.  Using count of 

residential sites can improve this figure by changing the meaning to percent of 

residential sites that are within green space service radius; and population can make 

even better sense, by which it means how many people in total population are in green 

space service areas. 

The percentage of residential sites and the percentage of the population that are 

within a 500m service area of existing green spaces, including parks and non-park 

green spaces, were calculated. In calculating the percentage of residences and of 

population within a 500m area, not only Euclidean distance was used as a classical 

service radius measure, but the other three distance measures discussed in Chapter 3 

(Manhattan distance, network distance and adjusted network distance) were also 

applied in calculating the 500m distance measurement. The calculation results in 
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Figure 4-6 shows that the residential sites coverage is higher than population coverage 

with existing green spaces’ 500m service distance. That indicates the population 

proportion in residential sites that cannot access a green space with 500m is larger 

than the proportion of those residential sites, which mean some residential sites with 

high population are not covered by existing green space 500m service area. 

All residential sites, and all people living in those residential sites, can access at 

least one green space within 500m Euclidean distance. However, if the 500m service 

area is measured by other distance measures, the both percent coverage for residential 

sites and population drops. Percent coverage measured by Manhattan distance is less 

than one percent lower than that by Euclidean distance measure (100% coverage). 

Percentage coverage drops by about 2 percent is use network distance measure. 

Adjusted network distance lead to larger decrease of coverage, 94.87% of residential 

sites and 94.06% of the population can access green space within 500m adjusted 

network distance. 

Then, how would these four distance measures perform if a different distance 

threshold was used? Alternatively, distance thresholds of 300, 400, 500, and 600m 

were calculated separately. The results in Figure 4-7 reveal that as the distance 

threshold increases, the differences among the coverage figures calculated by the four 

distance measures are not large, since the coverage figures are all approaching 100% 

when the distance threshold increases, no matter which distance measure is used.  On 

the other hand, when the distances from residences to green spaces are relatively small, 

different distance measures can lead to significantly different results. For example, 

when using 300m as service area threshold, the residential site and population 

coverage are 96.5%, 96.0% with Euclidean distance measure, 93.1% and 91.9% with 

Manhattan distance measure, 98.9% and 88.1% with network distance measure, and 

only 77.5% and 73.3% with adjusted network distance measures. There is a large 
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Figure 4-7 Coverage with different distance thresholds 
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difference between the results from network distance and adjusted network distance, 

especially when small distance thresholds are used, this is because that the offset 

distance to the streets, the values used to adjust the network distance, weigh heavily in 

short distance calculations. 

In short, using different distance measures can return different coverage results. 

Since Euclidean distance measures the nearest distance between two features, the 

calculated coverage is always higher than, if not equal to, other distance measures. 

This is especially observable when using small distance thresholds. 

 

4.2 Current Green Space Maximum Coverage 

In this section, the solutions to the capacitated maximal covering location model 

for current green spaces are presented. The maximum coverage of existing parks and 

green spaces are compared, with different distance measures and expected average 

green space per person.  
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Figure 4-8 shows the cost-effectiveness acceptability curves for the capacitated 

maximal covering location model defined for current green spaces with the maximal 

distance threshold fixed at 𝐷 = 500𝑚. The four curves are the model results with 

different distance measure inputs, Euclidean, Manhattan, network and adjusted 

network distances, respectively. The curves represent optimal solutions of the 

capacitated maximal covering location model with dynamic input parameter of 

average green space per person standard. Generally, no matter what distance measure 

is used, the population coverage of green space service area decreases significantly 

when each person shares more green spaces.  

With Euclidean distance measures, the decrease in the number of people covered 

by increasing one square meter of average green space per person standard increases 

as the standard increases between 0 and 8m2/person, and for the standard over 

9m2/person, the number of the population covered decrease gradually. With 

Manhattan distance, the number of people decreases evenly less than and greater than 

9m2/person of the standard, though the decrease when less than 9m2/person is larger 

 
Figure 4-8 Comparison of coverage with different average GS/person input for 

current green spaces: D = 500m 
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than when the standard increases to be larger than 9m2/person. With network and 

adjusted network distances, the decrease in number people covered by increasing 1m2 

of the standard decreases as the average green space per person input increases to 

7m2/person, then a consistent decrease of the population covered by unit increase of 

the standard input when it is greater than 7m2/person. Generally, if the average green 

space per person standard input is between 1m2/person and 10m2/person, the maximal 

population coverage within green space service area decreases significantly while the 

standard increases. Using Euclidean and Manhattan distance measures can return 

higher maximal coverage results; the maximal coverage will be much lower when 

using network and adjusted network distance measures. 

 

The city’s goal is to have average public green space per person of 18m2 by 2020. 

If 18m2 is used in the model as input, which means the average green space within 

500m distance for each person is 18m2, the maximal coverage is below 50% (45.1% 

with Euclidean distance measure, and only 36.5% with adjusted network distance 

measure). That is, only less than half of the population can be ensured to 18m2 of 

green spaces with 500m, and the majority of the population, though can reach green 

space within 500m, the amount of green spaces are not guaranteed, and some green 

spaces can be too occupied with large amount of people.  

The slope corrected green space per person within 500m calculated in Chapter 3 

is 11m2. However, this average doesn’t ensure that each person has green space of 

11m2. The maximal covering location model results shows that when 11m2 is used for 

demand allocation and capacity restriction, the maximal coverage is less than 60%: 

57.1% with Euclidean distance measure, 46.5% only with adjusted network distance 

measure. This means that less than 60% are allocated with 11m2. Over 40% of people 
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are not assured for the amount of green spaces, and again, some existing green spaces 

may be too occupied to meet public need. 

Five square meters of green space area per person in the downtown area are an 

index of the national standards, which is also a minimum requirement to 60% of green 

space coverage by the State Council. When 5m2/person is used in the model for 

demand allocation, the maximal coverage is 82.8% with Euclidean distance measure, 

and 59.6% with adjusted network distance calculation. Using Euclidean distance, 82.8% 

of the population’s demands of 5m2/person are satisfied. It may be surprising that the 

calculated average green space per person is 11m2 which is much higher than 

5m2/person, still there are large amount of population (17.2% if use Euclidean distance, 

and more if other distance measures are used) cannot be ensured for than 5m2/person. 

The reason is the uneven distribution of population and green spaces. Apparently, 

there is a supply gap of green space in dense neighborhoods, on the contrary, people in 

sparse neighborhoods can enjoy more than 11m2 Green space on average. So 

apparently there is a need to increase the amount of green space areas in dense areas. 

Alternatively, the relationship between values of average green space per person 

standard and coverage can be interpreted as below: 

 
Table 4-1 Maximal values of green space/person for coverage percentage benchmarks 

(Unit: m2/person) – existing green spaces only 

 90% Coverage 80% Coverage 70% Coverage 60% Coverage 

Euclidean 3.5 5.6 7.5 10 

Manhattan 2.3 4.4 6.8 9.2 

Network 1 2.5 4.3 7.5 

Adjusted-Network 0.4 1.4 2.8 4.9 
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With Euclidean distance measure: as much as 90% of the population can access a 

green space within 500m with 3.5m2 demand of green space for each person. If the 

standard increase to 5.6m2 Green space for each person, only 80% of population’s 

demands can be met. If we want the standard to be as high as 7.5m2, only 70% of 

demand can be met, and when the average green space per person increase to 10, only 

60% of demand can be achieved by existing green spaces. Similar interpretation for 

another three sets of values for Manhattan, network and adjusted network distance 

measures. 

Apparently, Euclidean results seem much more inspiring, for example, 90% of 

residents can access green space within 500m with at least 3.5m2 of green space for 

each person, compared with the statement that 90% of residents access green space 

within 500m along streets with less than 1m2 green space each. 

4.3 Location-Allocation Model Results for All Candidate Green Spaces 

Besides existing parks and non-park green spaces, additional potential green 

space sites are involved in the following models, including additional planned green 

space (on vacant land or on renewal sites) and vacant land. With all candidate green 

spaces, the average green space within 500m increases from 11.1m2 to 11.9m2. 

4.3.1 Maximum Coverage of All Candidate Green Spaces 

Maximum covering location models were solved for all green space candidate 

sites, including both existing ones and potential ones. Figure 4-9 shows cost-

effectiveness acceptability curves for the capacitated maximal covering location model 

defined for all green spaces (including current ones and potential ones) with the 

maximal distance threshold fixed at 𝐷 = 500𝑚, overlaid with the cost-effectiveness 

curves for existing green spaces from the previous section. The curves in dark colors 

represent optimal solutions of the models for all candidate green spaces with a 
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Figure 4-9 Comparison coverage with different average GS/person input for green 

spaces candidate sites: D = 500m 
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dynamic parameter A up to 18m2/person. The curves in light colors are the 

corresponding results in the last section for models on only current green spaces. 

Clearly, the patterns of the curves for green candidate green spaces are very similar to 

that for current green spaces. When more area of green space is assigned to each 

person, the population coverage of green space service area decreases. And there is no 

doubt that the population coverage level is overall improved when potential green 

spaces are involved in the models. 

Table 4-2 is a summary table on percent coverage benchmarks and corresponding 

maximal the green space per person. It can be interpreted in the similar way to the 

table in the last section. As much as 90% of the population can access a green space 

within 500m with 4.5m2 demand of green space for each person, or alternatively, in 

order to achieve 90% of the population coverage goal, the average green space for 

each person can be no higher than 4.5m2; if more than 4.5m2 green space for each 
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Figure 4-10 Green space max coverage with all green space candidates:  

A = 3m2/person 
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person is expected, 90% of the population coverage cannot be reached with all 

candidate green spaces input. If 4.5m2 and 90% coverage is mandatory, extra places 

have to be found as potential green space sites and added to the candidate green space 

pool. 

 

 

Table 4-2 Maximal values of green space/person for coverage percentage benchmarks 
(unit: m2/person) – all candidates 

 90% Coverage 80% Coverage 70% Coverage 60% Coverage 

Euclidean 4.5 6.6 8.4 11.2 

Manhattan 3.4 5.7 7.9 10.4 

Network 1.8 3.3 5.4 8.7 

Adjusted-Network 0.9 2.2 3.9 6.1 
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Next, take a closer look with fixed A = 3m2/person. With A = 3m2/person as 

average green space per person as input, the maximal coverage is calculated for 

different distance measures and distance thresholds of 300, 400, 500 and 600m (see 

Figure 4-10). The results show significant differences between different distance 

measures, and while distance threshold change, the maximal coverage is also much 

higher, similar to the findings in the last section. 

Then the model results are compared with those of a maximal covering location 

model for existing green spaces with a fixed average green space per person at A = 

3m2/person and distance threshold D = 500m (Table 4-3). With additional potential 

green spaces, the maximal coverage of the population that can visit a green space 

within 500m with 3m2 green space per person allocated is 96.58%, the distance 

measured by the Euclidean distance measure. While with network distance measures, 

90% population coverage at A = 3m2/person and D = 500m can never be achieved, 

and with the adjusted-network distance, the maximal coverage cannot even reach 80%.  

 
Table 4-3 Maximal Coverage Improvement with Additional Potential Green Spaces:  

A = 3m2/person 

 
Euclidean Manhattan Network 

Adjusted-

Network 

Max Coverage  for 

Existing Green Spaces (%) 
91.98 86.11 77.00 69.14 

Max Coverage for all 

Green Space Candidates (%) 
96.58 92.02 81.74 74.03 
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Figure 4-11 Cost-effectiveness curves:  

 A = 2m2/person, C > 80% for the four distance measures 

4.3.2 Minisum Capacitated Location-Allocation Model Results 

(1) Impact of the four distance measures on model results 

The maximal covering location model returns the maximal coverage with all 

green space candidates without any preference or priority given to any green spaces 

being chosen. While in practice, efficient use of existing green spaces and sufficient 

new green spaces for demand gap is always expected, so the second model was 

introduced to reduce green space construction cost so that new green spaces will not 

cost much while certain service area coverage can be achieved. 

In order to further explore the potential impacts of distance measures on model 

results, feasible model solutions have to be obtained. From last section and also 

observed from Figure 4-11, it can be observed that with A = 3m2/person and D = 500m, 

both network and adjusted-network measures would not lead to feasible solution if the 

population coverage constraint is set as greater than or equal to 90%; even if the 
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Figure 4-12 Cost estimate with the four distance measures: 

 D=500m, C=80%, and A=2 sq m/person 
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coverage constraint is set to be no less than 80%, it is still impossible to get a solution 

when adjusted-network distance is used. The highest parameters with which a feasible 

solution can be found for adjusted-network distance at D = 500m and C = 80% 

(population percent coverage of green space service areas) is A = 2m2/person (average 

green space per person is 2m2/person), or in other words, with adjusted-network 

distance, 80% of population can reach a green space within 500m distance measured 

by adjusted-network distance with demand of 2m2 green space for each person. So the 

minisum capacitated location-allocation model is performed at A = 2m2/person, C = 

80%, D = 500m, for the four distance measures separately. 

Results in Figure 4-12 shows that in order to achieve 80% of population with 

access to a green space within 500m for 2m2 each, cost for the model with the adjusted 

network distance measure is tremendously large, more than 20 times of the cost with 

Euclidean distance measure, 8 times of that with Manhattan distance measure, and 5 
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times of the cost with network distance measure – though it is just a slight adjustment 

of network distance by adding the offset distances of demand points and green space 

sites to street network. The large cost difference between the network distance 

measure model and the adjusted-network distance measure model is also because the 

network distance is underestimated given the fact that a large amount of demand 

point-green space pairs have a shorter network distance estimate than the straight-line 

distance. If this problem is fixed, the cost with same parameter inputs for the network 

distance model should be much higher than the presented result and close to the cost in 

the adjusted-network distance model, given that the adjusted-network distance in fact 

fixed the problem though generating some overestimates in short distance 

measurements, as discussed in Chapter 3. 

Though the cost solutions with these distance measures differ so much, some 

common conclusion can be drawn if the model results on green space selection are 

examined in depth. For example, Table 4-4 shows a part of model solutions for 

existing non-park green spaces with their percent contribution to meet overall demand. 

For each of four models with different distance measures, non-park green spaces are 

ranked according to their corresponding demand contribution. Top 10 of each model 

are listed below.  

There are some non-park green spaces with high ranks in all four models, such as 

green spaces with ID 179, 134, 268, 309 and 82, marked in red color. These green 

spaces served a large amount of demand, especially in network and adjusted-network 

measure models, though some of them may not serve much in Euclidean model, they 

still have high ranks, that means if there is a need to convert existing green spaces into 

parks with more recreation facilities and infrastructures, these green spaces should 

have priority. 
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Another group was marked in yellow, including green spaces with ID 216, 11, 90, 

181 and 22. These green spaces in some of the models can serve more than 0.5% of 

demand, though their contribution in Euclidean and Manhattan models are poor, that’s 

because most demand in these models can be met by existing parks. 

The rest of green spaces with ID 81, 211, 23, 341, 117, 77 and 103 are marked in 

light blue. No matter what its rank is, none of them in any model serve more than 0.5% 

of demand. Since they will not contribute much, they are not in urgent need of more 

investment in facilities and changing to well-managed parks. 

 
Table 4-4 Model results of non-park green space ranked by served demand: 

 A=m2/person, C=80%, D=500m 

GS ID 
Euclidean Manhattan Network Adjusted Network 

assigned 
demand rank assigned 

demand rank assigned 
demand rank assigned 

demand rank 

179 0.46 2 0.67 5 2.78 2 2.78 1 
134 1.13 1 3.31 1 3.17 1 2.49 2 
268 0.36 4 0.87 2 1.29 3 1.73 3 
309 0.23 6 0.77 3 0.77 5 0.77 4 
216 0.00 - 0.23 10 0.41 10 0.75 5 
11 0.00 - 0.21 13 0.69 6 0.69 6 
82 0.27 5 0.69 4 0.69 7 0.69 7 
90 0.00 - 0.00 - 0.77 4 0.61 8 
181 0.02 22 0.06 36 0.60 8 0.60 9 
81 0.00 - 0.00 - 0.04 57 0.60 10 
22 0.01 31 0.02 44 0.54 9 0.54 11 
211 0.00 - 0.33 7 0.33 13 0.49 12 
23 0.19 8 0.36 6 0.35 11 0.36 17 
341 0.23 7 0.23 11 0.08 39 0.23 26 
117 0.15 10 0.14 18 0.11 29 0.16 31 
77 0.17 9 0.29 8 0.17 21 0.10 44 
103 0.41 3 0.29 9 0.27 14 0.04 67 
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Figure 4-13 Green space costs derived for C=80% and 90% 

(Cost at maximal coverage is also placed aside for comparison) 
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(2) Green space cost and service improvement 

Last section compared cost with different distance measures, with same parameter 

inputs of A=2m2/person, C=80%. This section investigated the relationship between 

cost and green space service improvement, including an increase in both percent 

population coverage and the average area of green space per person. Parameter A 

changes from 2m2/person to 6m2/person; C changes from 80% to 90%. Euclidean 

distance measures are applied in this section. The cost results were shown in Figure 

4-13. 

Costs increase smoothly for 80% coverage (blue bars in the figure), until when 

average green space per person increase to 6m2/person, the cost jumped to about two 



 

119 

times of the cost at A=5.5m2/person. The cost at A=5.5m2/person for 80% coverage is 

between the costs at 3.5m2/person and 4m2/person for 90% coverage. If 90% coverage 

is expected (red bars in the figure), costs increase smoothly, then have a slightly large 

increase when A increase to 4, and from A=4 to A=4.5m2/person, the cost to meet 90% 

coverage goal increase excessively with more than twice of the cost at A=4m2/person. 

For A equal to or greater than 5m2/person and coverage = 90%, no feasible can be 

found which means with all green space candidates, the goal of 90% of the population 

being able to enjoy 5m2 or more green spaces cannot be reached at all, no matter how 

much would be spent. So from the perspective of cost’s marginal utility, A=3.5 can be 

the most recent goal, that is, 90% of the population can access 3.5m2/person on 

average within 500m, then increase to 4. The long-term goal is to increase the average 

green space per person to 4.5. Of course, if there is enough budget, or new potential 

green spaces are found in the future, the goal of A = 4.5 become a medium-term goal 

and long-term goal can be reset to coverage higher than 90% or average green space 

per person higher than 4.5m2/person or both. Though the costs for some solutions are 

quite close, for example, 80% coverage at A=5 and 90% at 3.5, the model with 90% 

coverage at 3.5m2/person is preferred than a 80 % solution, from public equity 

perspective. It is expected that more people can visit certain amount of green spaces, 

rather than a smaller group of people visit large green spaces but demand for the rest 

cannot be met. 

The auxiliary bars of cost for maximal coverage at corresponding A value show 

that these costs are much higher than the cost of meeting 80% or even 90% coverage. 

For example, at A=4, the cost related to 80% coverage is 27 million CNY, 81 million 

for 90%, and 270 million for the maximal coverage of 92.6%. From 80% to 90%, an 

expenditure of 54 million can improve green space coverage by 10 percentage points, 

however, from 90% to 92.6%, 189 million CNY has to be spent for 2.6 percentage 
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point improvement. So it will not be monetarily efficient to attain the maximal 

coverage objective, at least it is not proper to be a short-term goal. 

 

4.4 Green Space Site Selection Strategies 

In the last section, A=3.5, 4 and 4.5m2/person were selected as proper standards 

with 90% of the population visit a green space in 500m distance. The basic goal is to 

let 90% of population visit green spaces within 500m distance, and 3m2 for each 

person is confirmed. The related minimum cost was 42.4 million CNY. An 

improvement is that 4m2 can be enjoyed by each of 90% population, and related cost 

was 80.7million. Increasing green space per person to 4.5m2 is a further improvement, 

though it will cost much more than the using lower standards, which is 196 million 

CNY.  

To analyze the green space locations with these parameters, the results of three 

models with D=500m, C=90%, Euclidean distance measure, and A=3.5, 4 and 

4.5m2/person were investigated here (see Figure 4-14, Figure 4-15 and Figure 4-16, 

respectively). Similar findings in the previous section, the model results of whether a 

green space is selected or not, and the demand being allocated to each green space is 

gathered, such that the demand contribution in the entire model solution for each green 

space can be calculated and ranked. And the following are model results on green 

space selection, maps colored by the percent of demand being allocated to a green 

space over overall allocated demand, or it can be called, the green space’s contribution 

to demand. 
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Figure 4-14 Minimal cost - capacitated location-allocation model results:  

D = 500m, C = 90% with Euclidean distance: A = 3.5 

 
 

 
Figure 4-15 Minimal cost - capacitated location-allocation model results: 

 D = 500m, C = 90% with Euclidean distance: A = 4 
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Given that green spaces have different current status which is associated with the 

cost and potential difficulty in implementation, green spaces were examined and 

ranked by different types: parks, existing non-park green spaces, vacant land that can 

potentially be green spaces, potential green spaces but need renewal. 

For existing non-park green spaces, top 20 in the results of the three models were 

examined in Table 4-5, non-park green spaces ranked after 20 were not in the analysis 

since their demand contribution in all models are very small,  usually less than 0.1%. 

These top 20 non-park green spaces can be categorized into three groups: (1)  Green 

spaces in urgent need. Marked as red in the table, most of these green spaces have 

high ranks in all three models, and their contribution of serving the public demand is 

relatively large. The one with ID= 115, though its ranks in A=4 and A=4.5 models are 

low, it contributes to 0.6% of population demand, and will remain in solutions of later 

two models, so it is categorized in the first group. (2) Green spaces with lower priority, 

 
Figure 4-16 Minimal cost - capacitated location-allocation model results: 

  D = 500m, C = 90% with Euclidean distance: A = 4.5 
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marked in yellow in the table. Their contribution is roughly consistent with the three 

models, not too high, but also not too low to be ignored. So construction of these 

green spaces can follow those in the first group. (3) Green spaces that can be built later, 

blue records in the table. They did not contribute much or no contribution at all in A = 

3.5 model, but their contribution increases when A increases. These green spaces will 

not help much in meeting current needs, but will be helpful for higher public access 

objectives of higher demand for each person or higher percent coverage. 
Table 4-5 Non-park green spaces in solutions of the three models:  

D=500m, C=90% and A=3.5,4,4.5 

 A=3.5m2/person A=4m2/person A=4.5m2/person 

GS ID Assigned 
demand(%) 

Rank in 
type 

Assigned 
demand(%) 

Rank in 
type 

Assigned 
demand(%) 

Rank 
in type 

134 5.8 1 5.9 1 5.6 1 
77 1.6 2 1.7 2 1.7 2 
179 1.4 3 1.2 4 1.1 4 
211 1.2 4 1.4 3 1.4 3 
268 0.9 5 0.8 5 0.7 5 
103 0.8 6 0.7 6 0.6 6 
115 0.6 7 0.2 22 0.3 16 
74 0.4 8 0.4 8 0.3 9 
209 0.4 9 0.4 9 0.3 11 
309 0.4 10 0.3 12 0.3 14 
147 0.4 11 0.4 10 0.3 10 
11 0.4 12 0.3 14 0.3 15 
82 0.4 13 0.3 15 0.3 17 
72 0.3 14 0.3 13 0.3 12 
81 0.3 15 0.3 16 0.1 46 
181 0.3 16 0.3 17 0.2 19 
22 0.3 17 0.2 19 0.2 21 
43 0.3 18 0.2 20 0.2 22 
188 0.2 19 0.2 21 0.2 24 
16 0.2 20 0.2 23 0.2 25 
120 0.1 37 0.0 52 0.5 8 
90 0.1 39 0.5 7 0.5 7 
216 0.0 -- 0.3 11 0.3 13 
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For potential green spaces on vacant land, all the green spaces that are in the 

solutions of any models are listed below in Table 4-6. All of them do not contribute 

much when A=3.5m2/person, but their contribution becomes larger when A increases. 

So most of them can have low priority, as the second group mentioned above. 

There are two exceptions, ID=303 and ID = 276 show a clear pattern of increase 

in the contribution of meeting demand, especially ID=303 green space can serve 1.7% 

of total demand when higher green space access (A=4.5m2/person) is to achieve. It is 

similar to the third group in the previous section. 

 

Potential green spaces that need urban renewal. Since urban renewal cost is 

considerably high, the model results in Table 4-7 show that non of these candidate 

sites are chosen for the first two models, when green space service expectation is 

higher as A=4.5, these green spaces will be in use. As shown in the last model, they 

were used as least as possible so the their contribution to serve demand is low. These 

green spaces have low priority for construction. 

 

Table 4-6 Vacant lands in solutions of the three models:  
D=500m, C=90% and A=3.5,4,4.5 

 A=3.5m2/person A=4m2/person A=4.5m2/person 

GS ID Assigned 
demand(%) 

Rank in 
type 

Assigned 
demand(%) 

Rank in 
type 

Assigned 
demand(%) 

Rank 
in type 

79 0.1 1 0.2 2 0.2 2 
276 0.0 0 0.2 3 0.5 3 
280 0.0 0 0.1 5 0.1 5 
296 0.0 0 0.0 6 0.1 6 
303 0.0 2 1.3 1 1.7 1 
310 0.0 0 0.1 4 0.1 4 
79 0.1 1 0.2 2 0.2 2 
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Table 4-7 Renewal land for green spaces in solutions of the three models:  
D=500m, C=90% and A=3.5, 4, 4.5 

 A=3.5m2/person A=4m2/person A=4.5m2/person 

GS ID Assigned 
demand(%) 

Rank in 
type 

Assigned 
demand(%) 

Rank in 
type 

Assigned 
demand(%) 

Rank 
in type 

102 0.0 0 0.0 0.0 0.1 6 
104 0.0 0 0.0 0.0 0.3 2 
106 0.0 0 0.0 0.0 0.2 3 
127 0.0 0 0.0 0.0 0.2 4 
135 0.0 0 0.0 0.0 0.1 7 
149 0.0 0 0.0 0.0 0.1 5 
222 0.0 0 0.0 0.0 0.3 1 

 

Existing parks are different from the other three types of green space candidates. 

Since these parks already existing, rather than checking those with high rank and more 

contribution, it is more interesting to existing parks with low contribution. There are 

18 small neighborhood parks not in any of these three models, indicating these small 

parks are an extra supply for local residents, and residents living in the places near 

these 18 parks benefit from having more than average amount of green space. For the 

rest of the parks, since they serve a certain amount of demand, good maintenance is 

recommended. 

Finally, the recommended green space site selections are classified as follows: 

For existing parks, most of them have to be kept and well maintained to serve 

public demand.  

For existing non-park green spaces, some are in urgent need to fill the demand 

gap for large population; some existing green spaces may not be in the lower standard 

model at A=3.5, but they play important roles in the higher standard model at A = 4 or 

A = 4.5 to meet higher demand.  



 

126 

For the vacant and renewal land as the candidate sites, similar to existing non-

park green spaces, they may serve a lot of people in higher demand models but 

recently is not in urgent need.   

Some of existing green spaces and vacant lands were in the model results, but 

they would not serve too much demand, both for low and high standard models. 

According to the model results, they should be built sooner or later but is less 

important than those serving large demand. 

Besides, there are still some candidate sites that have never been chosen in any of 

the model’ solution, even including a small amount of existing parks. For these 

existing parks and green spaces, they offer extra benefit for nearby residents. For those 

non-green space candidate sites, the planners or decision-makers do not have to weight 

them too much in recent green space location plans from the public access 

improvement perspective.  

Figure 4-17 shows the recommended allocation of green spaces, which are 

classified by their current status and their status in the model solutions, and  Table 4-8 

reveals the relationship of these classes with implementation strategies. 

1) Existing parks that need maintenance 

2) Extra existing parks: not in the solutions 

3) Extra existing green spaces: not in the solutions 

4) Existing green spaces in urgent need 

5) Existing green spaces need to be built later 

6) Existing green spaces with low priority (low demand) 

7) Vacant lands that need to be built later 

8) Vacant and renewal lands that have low priority 

9) Extra vacant and renewal lands: not in the solutions 

10) For the rest: low priority 
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Table 4-8 Green space classification according to existing status and model results 

 

Existing 

parks 

Existing non-

park GSs 

Vacant 

candidates 

Renewal 

candidates 

Strategies 

Urgent need 

1) 

4) 
  

Build later 5) 7) 
 

Low priority 6) 8) 8) 

No need 2) 3) 9) 9) 

 

 
Figure 4-17 Green space location solutions and classification for future implementation 
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In total, there are 7 existing green spaces that need necessary facilities to open for 

public recreation use. The adjusted area is about 67 ha. 66 ha of green spaces has to be 

built sooner or later, class (2) has priority over (4) since it can supply more demand in 

high standard models, and 39 ha of additional green space are needed, from either 

vacant land or renewal sites. Since solutions from three models are all involved, from 

low to high standards, the overall cost of proposed green space location solution will 

be more than the previous model solution at A = 3.5. The proposed solution, however, 

takes into account both the low standard that can be achieved in the short term and 

higher standard that may need longer time to accomplish. The advantage of 

comprehensively analyzing multiple model results and propose a new solution is that 

in this new solution, it is possible to distinguish the importance and robustness of the 

candidates (here, green spaces) across models, so appropriate implementary 

suggestions can be made for different green spaces. 
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CHAPTER 5   

SUMMARY AND CONCLUSION 

 

The existing and potential green spaces and their service coverage in Luohu 

District, Shenzhen were evaluated by a combination of location-allocation models 

with green space planning standards.  It was found that though with classical planning 

standards in an average form to numerically measure the green space coverage, the 

city has standout results. However, when uneven distribution of population and green 

spaces are concerned, the figures in some planning standards seem to be too high to 

achieve. Some areas such as city centers with dense population and limited green 

spaces always experience a green space shortage, either nearby green spaces are over 

occupied, or residents have to travel a long distance to visit a green space. In other 

areas, especially suburban areas, low population is exposed to large amounts of green 

spaces. Besides, it is not unusual that there are large natural or semi-natural green 

spaces in suburban or rural areas of a city’s jurisdiction. So a city wide average figure 

does not reflect the shortage of green space in populated areas. On the other hand, 

most planning standards such as coverage or average area per person can hardly guide 

a plan actively. The most popular use of these planning standards is to adjust the plan 

afterward in order to meet certain standard criteria. For example, it is not unusual in 

planning that, in order to meet an average green space per person standard, the current 

average green space per person figure is computed for the planning area, then it is 

compared to the corresponding planning standard, and the gap is calculated, so as the 

extra amount of green space that is needed. Then planners will find that amount of 

area for new green spaces so that the planning standard can be met. A contribution of 
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this study is that, for planners and decision-makers a possible approach with location-

allocation models was explored in more actively involve such planning standards in 

location selection process while the uneven distribution pattern of population and 

green spaces was also taken into account. In such a way, locating new green spaces is 

not only just for meeting planning standards, but also to promote respect for the equity 

of public access across the entire interest area.  

This study demonstrated that most popular planning standards on green spaces 

can be incorporated into location-allocation models, such as the demand standard on 

average green space per person, the green space coverage standard, the distance 

standard for maximal distance that a green space can serve, and the minimum size of 

parks in definition. This study also pointed out to planners who may use a similar 

modeling approach that the figures from these standards may not fit the models well. 

Since these standards are average or overall counts which ignore the uneven spatial 

distribution of people and green spaces, as just discussed, when these standards were 

adopted to location-allocation models for public accessing equity, the meanings 

change slightly. And since the meanings of these “standards” change, the figures may 

need adjustment to achieve feasible solutions. For example, when the average green 

space of 5m2 per person is used in a location-allocation model, 5m2 does not mean the 

average, instead, it refers to a person’s suitable demand for green space. Apparently, if 

a study area’s average green space meets the standard of 5m2 per person, with this 5m2 

as unit demand in a location-allocation model, a feasible solution for full coverage can 

hardly be found unless a large amount of new green space is involved. It is surprising 

that for a city with average green space of 5m2 per person, if a location set-covering 

model is performed for full coverage, the demand for each person as a parameter in 

the model is much less than 5m2. 
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To apply location-allocation models to green space location study, a few unique 

problems that relate directly to green space were addressed. First, unlike a typical 

location-allocation problem of locating facilities such as hospitals, schools, or fire 

stations, the dimension of a green space cannot be ignored at the scale of pedestrian 

access study, and since it is relatively large, green space cannot be treated as point as 

other facilities do in such models. So distance calculation between green space and 

residential sites is not as simple as the distance between two points, and in this study, 

an approach for calculating various distances between green space and residential sites 

as demand points was discussed. Another problem is, as supply features, the service of 

green spaces is much related to the size of the green spaces, there is a supply limit 

related to each green space candidate site because of the space. Unlike most of 

facilities in location-allocation models whose supply are not sensitive to space, models 

on green space have to involve capacity constraints, as long as people have certain 

demands for green spaces. Thirdly, this study also argues that the area of a green space 

has to be corrected before being used as the green space’s supply. The correction has 

to be based on understanding of research subject and related planning regulations. This 

study focused on public access to green space, so the areas that are not feasible for 

public use are excluded in area correction. The correction can follow existing planning 

regulation or approaches. This study simply used slope gradient as a correction factor, 

other factors may also be applied for correction if applicable. 

This study created two models in a sequence as a complete approach for the green 

space location problem. A maximal covering location model was solved for existing 

green spaces to examine the green space coverage in the study area. Then the model 

was applied to all green space candidates, including existing ones and potential ones, 

to determine how much the coverage would be improved after potential green spaces 

were added to the model. Of course, potential green spaces are related to green space 
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construction cost. This study revealed that the cost for achieving maximal coverage 

objective can be huge, so a second model of minimum cost capacitated location-

allocation model was structured for the objective of reaching an acceptable coverage 

with minimum cost. This “acceptable” coverage was selected carefully from first 

model results, with reference to related planning standards. Since there are various 

standards on average green space per person with different figures, and also because 

this concept changes slightly to green space demand for each person in the model, this 

parameter (A) is unknown unless it is predefined by decision-maker and a specific 

number is expected. For this unknown parameter, a smaller number than the standard 

value may make better sense for the model, as discussed. In order to choose proper 

parameter, the model was run multiple times with different parameter input. Inflection 

points on a cost-effectiveness curve with cost and corresponding A input helped find 

the proper green space per person parameters. Three inputs for A were chosen as low 

demand (or part of short-term goal), mid demand (midterm goal) and high demand 

(long-term goal). These inputs can be used in related city policy making. 

The study provided a solution to gather useful information from multiple model 

results. To solve a traditional location problem, the basic steps are to establish a model, 

run the model and implement the model results. But since this green space location 

problem contained uncertain parameters, different parameter input led to different 

results, it is not a simple question of which model result should be used and where 

green spaces should be located based on the specific model result. This study explored 

an approach of combining results from various models and from them collecting 

helpful information for possible implementation. With the selected low demand, mid 

demand and high demand per person input of parameter A, three different solutions 

for the second model were compared. Each green space, or facility in other studies, 

was assigned a different amount of demand in each model. The green space’s relative 
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contribution to meet demand is calculated, in percentage. Then the contribution in 

three models for each green space is compared, both by number and contribution rank. 

Contribution indicated the importance of a green space for certain service goal, and 

with comparison of contribution across models, implementation suggestions can be 

made. For example, a green space candidate site with a large and steady contribution 

to serve the public demand in the solution of all three models, a green space must be 

located at this site (or if it is an existing park, a suggestion can be made for its 

maintenance and protection). 

This study also made an argument on various distance measures in an urban 

context and discovered some interesting findings on distance measures in location-

allocation model results. The distance measurement results showed these distance 

measures returned quite different distances estimate between features. When these 

distances were used in the same model with other parameters fixed, it was not 

surprising that the model results were significantly different, both for the coverage 

model and the cost model. However, interestingly, if the approach stated above is used, 

by examining and comparing green space contributions in the results of a set of 

models with different parameter inputs one finds, quite a number of green spaces have 

a similar contribution across the various models. This may suggest that, though these 

distance measures are very different as are location-allocation model results on 

objectives, many facility sites (green spaces here) in these model results with different 

distance measures may have similar relative contribution or relative “allocation” 

importance. 

In summary, this research has applied location-allocation models in green space 

planning, in combination with related planning standards. In this process, the greens 

space specific problems have been accommodated for this modeling approach. And 

the cross analysis of modeling results shows with the combination of multiple models, 
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it is reasonable to make policy suggestions on proper planning indicator (standards) 

setting and model results implementation. 
 

This study has some limitations. A factor that affects any study, especially data 

driven modeling, is data limitations of availability and quality. In the study case, 

though luckily the demand points and green space sites were collected, it took a long 

time to distinguish residential buildings from all constructions since the types of the 

buildings are not neatly categorized, the existing green space locations are collected, 

however, they are not classified or named, so it took much effort to categorize green 

spaces for cost estimation. The largest data shortage is population estimation. Unlike 

detailed publicly-available population information in the U.S., such as U.S. Census as 

detailed as at the block level or ACS population at the block group level, it is 

extremely difficult for most scholars to collect such detailed population data in China 

since they are not released for public access. The most detailed data that can be found 

are 2010 Census population in the sub-districts, and a few of them reported the 

population count of each neighborhood under their jurisdiction. As analyzed before, 

the neighborhood is still too large to be the basic unit in such a small-scale study. So 

population estimate for each demand site has to be roughly estimated, and the 

precision and accuracy of the model results might be affected by estimation error. 

In the future, if more detailed population information is available, the green space 

location model results can be improved. And further, the results may be more accurate 

using the more disaggregated data such as building locations as demand points, or 

using more points along open green space boundaries for distance calculation. But it is 

a tradeoff which requires either high-performance computers, calculation algorithm 

improvement, dropping any time-consuming calculations, or more tolerance for time. 
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Another limitation is that none of distance measures are exactly the real distance. 

Poor estimate of network distance has been found in analysis. Some of network 

distances are less than Euclidean distances for the same pair of inputs. This is the 

network distance calculation mechanism and has been adjusted by the adjusted-

network distance approach. The network distance calculation for some other inputs is 

exaggerated. This overestimation can hardly be fixed unless more detailed street 

network data are obtained. Both measure and the model results would be much 

improved if the street network is further refined, which will make the network distance 

estimate much closer to real travel distance. On the other hand, Euclidean distance is 

much shorter than the real travel distance in most cases. There is an exception that in 

the same block, the real travel distance between two points may be much closer to 

Euclidean distance rather than network distance, since the network distance approach 

snaps points to the streets and travel is only allowed along streets. So, for best travel 

distance estimate in an urban circumstance, it would be ideal to calculate adjusted 

network distance with a refined street network for most input pairs, and for the pairs 

very close to each other, especially in a block, Euclidean or Manhattan distance can be 

used. So the best solution to estimate travel distance is a combination of multiple 

distance measures. 

This study used uniform unit construction cost for each type of green space. The 

construction cost is usually location specific and highly related to park design. It 

varies in a large range. So the cost solution in the second set of models may be far 

from real cost. Different cost input may impact model results on green space location 

selection. The estimated cost used in the models served well for the purpose of the 

best use of existing green spaces since they cost the least and met the model need. But 

the estimated cost itself should not be used as the real cost estimation in model 
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implementation, nor it is close to the real cost estimate, unless site sensitive cost is 

refined for the models. 

In the future, if the above problems are addressed, the model results can be more 

implementable. Given what are available for modeling, the current model results may 

not work well in the implementation, but this research does what is expected, establish 

a complex modeling approach in combination with popular planning methods, to 

identify proper locations of green spaces and provide comment on a green space 

construction sequence according to their relative importance in the models. 
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