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Three derivative-free global optimization methods are developed based on radial basis func-

tions (RBFs) for computationally expensive blackbox simulation models. First, we develop a

multistart global optimization method, called SOMS (SurrOgate MultiStart). SOMS uses an

RBF surrogate model to approximate the objective function in order to reduce the number

of function evaluations necessary to identify the most promising points from which each non-

linear programming local search is started. We show that SOMS detects any local minimum

within a finite number of iterations almost surely. The numerical results show that SOMS

performs favorably in comparison to alternative methods and that the surrogate approach

saves a significant number of computationally expensive function evaluations.

In the second part of this work, we introduce PADS (PArallel Dynamic coordinate

search with Surrogates), which is a surrogate-based global optimization framework for high-

dimensional expensive blackbox functions. In each parallel iteration of PADS, multiple points

are selected from a large set of candidate points that are generated by perturbing only a

subset of the coordinates of the current best solution. The selected points are then eval-

uated in parallel with up to 16 parallel processors. We show that PADS converges to the

global optimum with probability 1. We develop two versions, PADS1 and PADS2, which use

different underlying distributions to generate candidate points. We show that PADS1 and

PADS2 are able to find better solutions more efficiently compared to alternative methods,

with PADS1 performing even better than PADS2 in problems up to 200 dimensions.

In the final part of this dissertation, we develop an effective new parallel surrogate global

optimization method called SOP (Surrogate Optimization with Pareto center selection). The



search mechanism of SOP incorporates bi-objective optimization, tabu search, and surrogate

assisted local search, which exploits the information from the already evaluated points, for

selecting a large number of new evaluation points. The newly selected points are evaluated

in parallel, and hence a significant reduction in wall-clock time can be achieved. We give

sufficient conditions for almost sure convergence of SOP. The results of our numerical exper-

iments show that SOP performs very well compared to alternative parallel surrogate model

algorithms with 8 and 32 processors obtaining superlinear speedup on some test problems.
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Chapter 1

Introduction

In this dissertation, we consider a real-valued global optimization problem of the form:

min
x∈D

f(x) (1.1)

where D = {lb ≤ x ≤ ub} ⊂ Rd. Here, lb and ub are the lower and upper variable bounds,

respectively, and f(x) is a continuous objective function with the following characteristics:

1. blackbox;

2. computationally expensive;

3. non-differentiable or its gradient is computationally intractable;

4. multimodal.

While these three properties are very common in real-world engineering design problems,

conventional optimization methods such as SQP [79], for example, are often not applica-

ble because of the following reasons. For complex simulation models, obtaining accurate

derivatives can be infeasible or computationally very expensive. Due to this lack of gradient

information, gradient-based optimization algorithms such as the steepest descent method

or the conjugate gradient method [11, 23] cannot be used. In addition, heuristic methods

1



[52, 82] such as simulated annealing, genetic algorithms or tabu search generally require too

many expensive function evaluations to converge and are therefore not efficient.

As a result, in recent years, an increasing number of algorithms that incorporate surrogate

models (also known as response surfaces or metamodels) have been proposed to efficiently

solve the class of optimization problems that have objective functions with the characteristics

described above. In surrogate model based optimization, the computationally expensive

objective function is approximated with an inexpensive surface. An auxiliary optimization

problem on this surrogate surface is solved in each iteration to determine the next point

at which the true objective function is evaluated. The new data is used to update the

surrogate surface, and thus it is iteratively refined. Several popular response surface models

such as radial basis functions (RBFs), kriging, polynomials, support vector regression, and

multivariate adaptive regression splines (MARS) have been used in optimization [25, 40, 41,

42, 56, 57, 61, 68, 78, 109, 122]. A detailed review of surrogates used in engineering design

optimization can be found in [122]. In this dissertation we use RBFs because these models

have been shown to generally perform better than the alternative models [77].

An example of an RBF surrogate is given in Figure 1.1. Five points at which we know

the objective function value (marked by ◦) are used to fit the surrogate. The dotted line

is the constructed RBF surrogate. The solid line is the true objective function, which is in

practice unknown.

Most surrogate-based global optimization algorithms follow the framework given in Figure

1.2. The algorithm starts by creating an initial experimental design at which the costly

objective function is evaluated. In each iteration of the algorithm the surrogate model is

fit to the data. The surrogate is then used (within the algorithm’s specific optimization

strategy) to select xk for the next expensive function evaluation, and if the stopping criteria

are not met, the algorithm starts the next iteration by updating the surrogate.

2



−1 −0.5 0 0.5 1 1.5 2 2.5 3
−24

−22

−20

−18

−16

−14

−12

−10

x

f(x)

 

 
sample data
objective function
surrogate
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Figure 1.2: Surrogate-based global optimization framework
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The aims of this dissertation are to design and implement RBF based global optimization

algorithms that are able to achieve a fast decrease in function value with respect to the

number of function evaluations (for serial algorithms) or the wall-clock time (for parallel

algorithms). The questions investigated and the contributions of this dissertation can be

summarized as follows.

1. We investigate the use of RBFs within a multistart local search optimization framework.

2. We investigate the performance of different surrogate-based (both serial and parallel)

global optimization algorithms for high dimensional problems (up to 200 dimensions).

3. We investigate the performance of different RBF based algorithms in a parallel opti-

mization framework when a large number of function evaluations are done simultane-

ously.

To address the first aspect, in Chapter 2, we propose SOMS: SurrOgate MultiStart algo-

rithm for global optimization. SOMS is an efficient surrogate-based multistart algorithm,

which is used in combination with a nonlinear local optimization routine to find the global

minimum of the computationally expensive multimodal objective function. In practice, lo-

cal optimization methods are often applied to complex nonlinear optimization problems.

However, local optimization algorithms generally stop at a local minimum, and hence the

global minimum may be missed. While methods based on multistart can also be helpful

for computationally expensive functions when identifying other good local minima (besides

the global minimum) is useful, existing multistart algorithms are inefficient because a large

number of sample points have to be evaluated on the expensive function before a starting

point for a local search can be located. This motivates the investigation of the use of re-

sponse surface models within the multistart framework to help reduce the number of function

evaluations necessary to identify the most promising points from which to start each non-

linear local solver. SOMS’s numerical results are compared with four well-known methods,

namely, Multi Level Single Linkage (MLSL) [59, 60], MATLAB’s MultiStart, MATLAB’s

4



GlobalSearch [119], and GLOBAL [30]. The numerical results indicate that SOMS performs

favorably in comparison to alternative methods. Theoretical properties of SOMS similar to

those possessed by MLSL are also verified.

Because searching in high-dimensional spaces (with several hundred dimensions) unavoid-

ably requires a large number of function evaluations (“curse of dimensionality”), solving a

class of HEB (High-dimensional, Expensive, and Blackbox) [106] problem with a serial al-

gorithm can be extremely time-consuming (due to both the computational expense of a

single function evaluation and the optimization algorithm’s own computational overhead).

In Chapter 3, we therefore develop and implement PADS (PArallel Dynamic coordinate

search with Surrogates), which is a surrogate-based global optimization framework for high-

dimensional expensive blackbox functions. PADS selects the next evaluation point from a

set of candidate points that are obtained by perturbing only a subset of the coordinates of

the current best solution, which is the key idea proposed in DDS [115] and was recently

empirically proven to be very effective especially when the problem dimension is very high

(200 variables) [97]. In PADS, multiple expensive function evaluation points are evaluated

in each iteration, i.e. the output xk in the framework shown in Figure 1.2 is replaced by
{

x(k)
1 , ..., x(k)

J

}

, a set of J selected points for simultaneously evaluating the objective func-

tion.

In addition, different underlying distributions to generate candidate points for next func-

tion evaluation points within Step 2 of Figure 1.2 will also be investigated. A practical

implementation that follows the PADS framework is described and several numerical re-

sults are illustrated and compared to alternative methods including DYCORS [97], MADS

[1, 2, 9, 65, 67], Differential Evolution [113], ParESGRBF [91, 107], ParLMSRBF [95, 96],

as well as TOMLAB’s rbfSolve [15, 50]. The results demonstrate that PADS makes fast

progress towards the best possible solution given a limited computational budget and is well

suited for very high-dimensional problem. Finally, we also provide convergence conditions

and show that PADS converges to the global optimum with probability 1.
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When simulations are computationally expensive, one needs to terminate the algorithm

after a certain amount of wall-clock time, e.g. 100 hours. Therefore, for serial algorithms

(one function evaluation is done in each iteration), the algorithm might be able to do only

few hundred evaluations before termination. This inevitably affects the quality of the final

solution. Parallel computing technologies make it possible to solve computationally expensive

global optimization problems that cannot be solved otherwise by a serial algorithm. With

more points simulated per iteration, one would expect that the algorithm converges within

fewer iterations. This is, however, not always the case. The challenge, therefore, becomes

how to effectively select many points for simultaneous evaluations.

In Chapter 4, we propose a new method, SOP (Surrogate Optimization Pareto center

selection). The search mechanism of the algorithm incorporates bi-objective search, tabu

search, and surrogate assisted local search. SOP evaluates multiple points and uses the

data from all of these evaluations to update the surrogate model in each iteration. Thus, the

number of iterations, and hence the wall-clock time, is reduced as opposed to the total number

of simulations. SOP differs from the previous method of Regis and Shoemaker [95, 96, 97]

in that the search center used to generate candidate points for the next function evaluation

points is not always the best point. This contrasts also with the approach used in PADS.

To manage the trade-off between exploration and exploitation, bi-objective optimization

over a finite set of already evaluated points is used to select the search centers, where one

objective is the function value, and the other objective is the minimum distance from all

other evaluated points.

There are no existing surrogate global optimization algorithms that select a large number

of evaluation points in each iteration. For example, the maximum number of points used

in [14], [96], and [120] were 5, 8, and 10 points, respectively. We have tested SOP with

up to 64 simulated points per iteration. SOP can do many expensive objective function

evaluations simultaneously which greatly reduces wall-clock time. We compare SOP with

two other RBF methods, namely, Parallel Stochastic RBF [96] and ESGRBF [91, 107] on the
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Table 1.1: Key features of algorithms developed in this thesis

Algorithm Key Features
SOMS - multistart framework

- finds multiple local minima
- handles expensive functions
- high accuracy potentially

PADS - very high dimensional problems
- not too many number of processors
- handles expensive functions

SOP - not too high dimensional problems
- many number of processors
- handles very expensive functions

Real-Parameter Black-Box Optimization Benchmarking (BBOB) problems [47]. In addition

to the BBOB testbed, the algorithms are also compared on an application problem that

deals with groundwater bioremediation where the goal is to minimize the cost of the cleanup

of contaminated groundwater subject to a contamination constraint. Sufficient conditions

for the convergence of SOP will also be discussed.

In summary, this dissertation presents novel algorithms that can quickly identify near

optimal solutions of computationally expensive blackbox functions when a relatively small

number of function evaluations or a relatively short wall-clock time is allowable. The key

features of each of the three algorithms are summarized in Table 1.1. Our algorithms are

empirically validated on a broad set of benchmark problems. Finally, under some conditions,

almost sure convergence for algorithms that follow the SOMS, PADS and SOP frameworks

is proved.
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Chapter 2

Surrogate MultiStart Algorithm for

Nonlinear Programming Problems

2.1 Introduction

Several stochastic methods have been developed in the past to solve the problem in Eq. (1.1)

for blackbox functions. When the objective function is in addition expensive, methods that

use surrogate models in place of the objective function were shown to be the most successful

[45, 56, 57, 95, 97, 98]. A surrogate-based optimization approach is designed to approximate

the computationally expensive objective function. During the optimization search process,

the surrogate is updated each time the exact objective function is evaluated, while the search

is moving towards the global optima.

While all these methods are developed as stand-alone global optimization algorithms,

in this work we are adopting the method based on a multistart framework (see Algorithm

2.1). Here, the term “multistart” will refer to a procedure that (in each iteration) selects a

new variable vector which is used as starting a guess for a local optimization algorithm, for

example, Sequential Quadratic Programming. Local optimization algorithms generally stop

at local optima and may thus not be able to detect the global optimum. The multistart
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Algorithm 2.1 Multistart Procedure

1. Set j = 0

2. While (Stopping condition is not satisfied)

(a) j = j + 1

(b) (Global Phase) Select a new decision variable xj based on some scheme.

(c) (Local Phase) Apply a local optimization algorithm A to improve xj . Let x′
j be

the solution obtained.

(d) Update the best local minimum found so far.

End
Output: All the local minima found

approach allows to continue the search globally, and therefore it is possible to escape from

local optima.

The starting points for the local optimizations in the multistart algorithm have to be

chosen carefully in order to avoid repeated convergence to the same local minimum. Different

multistart techniques based on clustering were therefore proposed in order to avoid this

inefficiency [10, 20, 58, 59, 114, 116, 117, 118].

This multistart approach is very useful since there are numerous applications of local

optimization methods to complex nonlinear simulations for which there is no guarantee that

there is only a single local minimum. This includes PDE constrained optimization where

the simulation is solving a system of partial differential equations (e.g. [13]). However, in

some cases, years have gone into setting up the interface between the local optimizer and

the complex simulation model. Interfacing a multistart method with the existing pairing

of a local optimizer and a complex simulation model can be much easier than it would

be to build a new interface between a stand-alone global optimization method and the

complex simulation model. Moreover, methods based on multistart can also be helpful

for computationally expensive functions when identifying other good local minima besides

the global minimum is of benefit, for example, when the practical implementation of the
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globally optimal solution is much more difficult or time consuming than the implementation

of a suboptimal solution.

Multi Level Single Linkage (MLSL) [59, 60] developed by Rinnooy Kan and Timmer in

1987 is one of the most classical and widely used linkage methods. Some other methods

based on linkage methods are, for example, Topographical Multilevel Single Linkage [6] and

Random Linkage [70]. See also [19, 103] for a brief summary of other linkage methods.

In MLSL, the local optimization algorithm starts from selected sample points for which

no other sample points with better objective function values are located within a critical

distance. See Algorithm 2.3 in Section 2.4 for a brief review of MLSL. In 1988, Csendes [29]

introduced a clustering method called GLOBAL based on Boender’s algorithm [20]. In 2008,

Csendes et al. modified the previous GLOBAL in some places to achieve higher efficiency

and reliability [30]. A brief description of this algorithm is presented in Algorithm 2.6,

Section 2.4. Another recent well-known multistart method that is based on scatter search

is OptQuest/NLP multistart method [119]. The starting points are generated by a scatter-

search algorithm and non-promising starting points (derived from the objective function

value) are deleted. The method is available in MATLAB’s Optimization Toolbox under the

name GlobalSearch solver (Algorithm 2.5, Section 2.4). MATLAB’s Optimization Toolbox

also offers another multistart method, called MultiStart. MATLAB’s MultiStart (Algorithm

2.4, Section 2.4) is simply a multistart algorithm that starts a local solver from every point

(either uniformly generated or user-supplied) without estimating whether the point is likely

to lead to a new and improved solution. All these methods follow the multistart framework

given in Algorithm 2.1.

Due to highly nonlinear and multimodal characteristics of the likelihood function, uncer-

tainty quantification for computationally expensive models can be very difficult to handle.

Espinet [37] uses MLSL based global solver (coupled with ORBIT [124, 125]) to accurately

define the high posterior density region of SOARS. SOARS [16, 17, 18] is a recently de-

veloped method that can produce a sample of the posterior distributions of selected input
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parameters in a computationally efficient way for given monitoring data. Unlike traditional

MCMC, SOARS uses a surrogate to approximate the likelihood. Espinet [37] reports that

using MLSL coupled with the local optimizer ORBIT is more efficient than alternative mul-

tistart methods for the examined carbon sequestration application. He was able to decrease

the necessary number of evaluations by a factor of twenty while obtaining accurate estimates

of the posterior densities (i.e. they were very close to the posterior densities computed with

MCMC analysis of the computationally expensive likelihood function without surrogates or

optimization). This result is significant because many objective functions/likelihood func-

tions are expensive to evaluate at each possible parameter value so it is not feasible to do the

tens of thousands of function evaluations typically required in traditional MCMC. Hence, ef-

ficient multistart methods are applicable to uncertainty quantification problems in parameter

calibration.

For complex simulation models, getting accurate derivatives can be infeasible or compu-

tationally very expensive. For commercial software, source code is in general not available,

and thus automatic differentiation cannot be used. In practice, none of these multistart

methods require derivatives, and therefore if coupled with derivative-free local search meth-

ods such as NEWUOA [88], DFO [27, 28] and ORBIT [124, 125], they can be considered as

derivative-free global optimization methods.

We focus on the analysis of a scheme used in Global Phase (Step 2b of Algorithm 2.1) for

selecting starting points for the local optimization algorithm. And thus, in the experimental

sections, both the local optimization method A (Step 2c, Algorithm 2.1) and the stopping

criterion for a local optimization A will be fixed across all compared multistart methods. This

contrasts with [131] where a method called Dynamic Multistart Sequential Search (DMSS)

is developed to identify the length of a single run of an algorithm. Once a decision to restart

has been made, the algorithm is restarted with a different starting point which was drawn

randomly without a rigorous scheme. In addition, the algorithm they consider is a stochastic

global optimization algorithms such as Simulated Annealing (SA) or a simple elitist random
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walk, not an actual local optimization algorithm in Step 2c, Algorithm 2.1. While in practice

a stochastic global optimization could be restarted when the algorithm seems to get trapped

in the local minimum, we do not consider here.

Although sharing some features with other multistart methods, SurrOgate MultiStart

method (SOMS) differs in multiple aspects. While multistart algorithms have been used for

solving global optimization problems, none of the available multistart methods are applicable

to optimization problems with computationally expensive objective functions for which the

number of allowable function evaluations is very limited.

The goals of this chapter are therefore the following.

1. We develop a surrogate model based multistart method, SOMS, which can efficiently

locate the global minimum when used in conjunction with a local optimization solver.

2. We compare through empirical studies our method with a variety of alternative mul-

tistart methods including MLSL, MATLAB’s MultiStart, MATLAB’s GlobalSearch,

and GLOBAL when the number of allowable function evaluations is limited. This con-

trasts with some earlier results including those reported in [83], in which the number

of function evaluations was set to as high as 2× 104 × d.

3. In Section 2.7, we present a generic approach that allows us to create a test function

that mimics the multimodal nature of objective functions arising in many blackbox

simulations (e.g. parameter calibration in simulation model [107]). We compare the

various multistart methods on our multimodal test functions.

The remainder of this chapter is organized as follows: The new algorithm SOMS is presented

in Section 2.2. Theoretical properties of SOMS are discussed in Section 2.3. In Section 2.4,

we review alternative multistart methods that are used in the numerical comparison. Section

2.5 gives an overview of the experimental setup followed by computational experiments on

standard test functions in Section 2.6. In Section 2.7, we introduce a class of synthetic wavy

function which is used to test the performance of multistart methods. The efficiency of each
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multistart method is investigated and compared on on these functions in Section 2.8. We

conclude with a summary in Section 2.9.

2.2 SOMS: SurrOgate MultiStart

A local optimization algorithm can be used for global optimization problems by combining

it with a multistart method which starts the local solver from multiple selected starting

points. In each iteration, methods based on multistart usually require a large number of

objective function evaluations to ensure a thorough local search and to ideally explore all

valleys of the objective function landscape. For problems with computationally expensive

objective functions, only a very limited number of function evaluations can be done. Thus,

doing many function evaluations in order to select the most promising starting points for

the local search is not feasible. In this section, we propose the use of surrogates within

the multistart to reduce the number of function evaluations required in the global search

phase of multistart methods. As in any multistart method, we will assume that a local

optimization algorithm A is available and that it is able to converge to a local minimum

from a given starting point. Although the theorems presented in Section 2.3 require that f

has a continuous second derivative, we assume that all derivatives of f are either unavailable

or computationally intractable. The SOMS framework is outlined in Algorithm 2.2. The

inputs are given below:

• A continuous real-valued function f defined on a compact hyperrectangle D

• A particular response surface model (e.g. radial basis function introduced in Section

2.2.2)

• A local optimization method A that converges to a local minimum

• A critical distance rk with the property rk → 0 as k →∞ (e.g. see Eq. (2.1))

• The maximum number of function evaluations allowed, denoted by MAXFE
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Algorithm 2.2 SurrOgate MultiStart (SOMS).
Parameters:

• N > 0 the number of new random sample points generated in each iteration

• γ ∈ (0, 1] the fraction of the total sample points to be selected in each iteration

1. Initialize k = 0. C0 = Cunif
0 = ∅. Build an initial surrogate s0(x) with the initial data

set {(w0, f(w0)), ..., (wn0 , f(wn0))}.

2. [Optional] Improve the initial surrogate using any surrogate model based global op-
timization method. In this step, n1 additional points will be generated and evalu-
ated with the expensive function f. The data set of points evaluated in this step is
{(wn0+1, f(wn0+1)), ..., (wn0+n1, f(wn0+n1))}.

3. Set k = k + 1

(a) Generate N uniform sample points distributed over the variable domain D,
x(k−1)N+1, ..., xkN and add them to the cumulative sample set Ck = Ck−1 ∪
{x(k−1)N+1, ..., xkN}.

(b) Use the surrogate model sk−1(x) to predict the objective function values of the
points in Ck.

(c) Sort the whole sample Ck such that sk−1(x1) ≤ ... ≤ sk−1(xkN).

(d) Reduce the sample set by choosing γ percent of the lowest value of points based
on the sorted sample in Step 3c. Call this reduced sample set Cs

k.

(e) Do the expensive objective function evaluation for every point in Cs
k.

(f) Generate and evaluate a uniform sample point uk and add this to a uniform sample
set, Cunif

k = Cunif
k−1 ∪ {uk}.

(g) Combine the two sets Ccombine
k = Cs

k ∪C
unif
k . Sort points in Ccombine

k based on the
objective function value: f(xi) ≤ f(xj) if xi, xj ∈ Ccombine

k and i ≤ j. Denote the
order set by Corder

k .

(h) Eliminate points form the set Corder
k that are within a distance rk of other points

in Corder
k that have a lower objective function value. Also delete points from Corder

k

that have already been used as starting points for the local search.

(i) Sequentially start a local search from the remaining points in Corder
k .

4. If the stopping criterion is not satisfied, update the surrogate and go to Step 3. Oth-
erwise, stop and return the point with the lowest objective function value as the ap-
proximate global minimum.
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In Step 1 of Algorithm 2.2, the initial response surface is built. The refinement of the

surrogate model by selecting additional sample points in Step 2 is optional. Step 3 is the

iterative steps. In Step 3a, the algorithm generates N uniform random points and uses the

surrogate model to predict their objective function values. Based on the surrogate model

predictions, in Steps 3d and 3e, the algorithm selects a fraction γ of the best points and

evaluates the true objective function at these points. In Step 3f, a uniform random point is

generated and added to the set of points selected in Step 3d. This combined set of points is

then sorted based on their objective function values in Step 3g. In Step 3h, the radius rule

is applied in order to eliminate some of the points that are too close to any points with a

lower objective function value. As in MLSL [59, 60], the critical distance rk in Eq. (2.1) is

used:

rk = π− 1
2

(

Γ(1 +
d

2
)m(D)

σ log kN

kN

)1/d

, (2.1)

where Γ denotes the gamma function, m the lebesgue measure, and σ > 0 is a parameter.

In Step 3i, a local optimization search is started from each of the points that passes the

radius rule from Step 3h. Finally, in Step 4, the algorithm checks if the stopping condition

is satisfied. If not, the algorithm updates the response surface model and continues with

Step 3. Otherwise the best solution found as well as all the local minima are returned by

the algorithm. While other stopping criteria may be used, we stop the algorithm after the

maximum number of allowable computationally expensive function evaluations (MAXFE)

has been reached.

2.2.1 Improving the Accuracy of the Initial Response Surface

After building the initial surrogate in Step 1, we allocate some (small) number of function

evaluations to refine the initial response surface in Step 2 by using a surrogate model based

global optimization routine. In the numerical experiments, we use the Metric Stochastic

15



Radial Basis Function (MSRBF) method by Regis and Shoemaker [95]. This method has

been shown to work very efficiently in achieving decreases in the objective function value on

multimodal surfaces given only a limited number of function evaluations. In each iteration,

the algorithm builds the surrogate model to approximate the expensive objective function

and then selects the most promising point for function evaluation. The point is selected

from a set of random candidate points based on two criteria, namely the estimated objective

function value based on surrogate model and the minimum distance from the set of previously

evaluated points. Our numerical experiments showed that the addition of MSRBF in Step

2 of SOMS results in a more reliable initial response surface and speeds up the convergence

in many cases.

2.2.2 A Cubic Radial Basis Function Model

In practice, users can freely choose surrogate models to use in SOMS, e.g. polynomial

regression models, RBF models, kriging, support vector regression. An extensive review of

these models can be found in [40, 41]. We use a cubic RBF model with a linear polynomial

tail as a response surface in this work. For a cubic RBF model with linear polynomial tail,

the initial experimental design must contain at least d+1 points in order to uniquely compute

the surrogate model parameters [89].

In Step 4, at the end of the multistart iteration k, assume that n distinct points,

x1, ..., xn ∈ Rd, whose function values are known, are used for building the RBF interpolant

which is defined as follows:

s(x) =
n

∑

i=1

λiφ(‖x− xi‖) + p(x), x ∈ Rd, (2.2)

where ‖·‖ is the Euclidean norm, λi ∈ R for i = 1, ..., n, φ : R+ → R is a univariate function,

and p(x) is a polynomial tail. The order of the polynomial tail depends on the chosen RBF

type. The polynomial is usually added in order to improve the stability.
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For a cubic RBF φ(r) = r3 with a linear polynomial p(x) = aTx + a0, where a =

(a1, ..., ad)T ∈ Rd, Eq. (2.2) can be simplified to the following form:

s(x) =
n

∑

i=1

λi ‖x− xi‖3 + a
Tx+ a0, x ∈ Rd. (2.3)

In order to compute the parameters (λi and aj) of the RBF interpolant we have to solve

a system of linear equations
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ã




 =






F

0




 , (2.4)

where

P =









x(1)
1 · · · x(d)

1 1

... . . . ...
...

x(1)
n · · · x(d)

n 1









(2.5)

and where x = (x(1), ..., x(d))T , Φ ∈ Rn×n with Φij = φ(‖xi − xj‖) = ‖xi − xj‖3 , i, j =

1, ..., n, and where F = (f(x1), ..., f(xn))T , λ = (λ1, ..., λn)T ∈ Rn, and ã =






a

a0




 ∈ Rd+1.

Powell [89] showed that the coefficient matrix in Eq. (2.4) is invertible if and only if

rank(P ) = d + 1 for a cubic RBF model. See [89] for other types of RBF models as well as

more theoretical details.

If the basis centers are too close to each other, it can lead to numerical ill-conditioning.

Therefore, in Step 4 of SOMS, before the surrogate is being updated, points that are too

close (within distance τ) to other previously added basis centers are excluded and not used

as centers xj ∈ Dk in the surrogate model. A tolerance τ = 10−3 ×min(ub− lb)
√
d is used

in this work.

Although using RBF response surfaces for global optimization (e.g. [15, 45, 95, 97, 98])

and local optimization (e.g. [124, 125]) is not a new idea, none of these earlier methods

employ the surrogate in the global phase of a multistart procedure (as in Algorithm 2.1).
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2.2.3 Addition of Uniformly Selected Points

Adding a uniform random point in Step 3f as a sample point improves the performance

of the algorithm on many multimodal test cases by adding diversity. Without this step,

the response surface sk−1(x) is updated in each iteration based on the data from the initial

experimental design and the data obtained from the local searches.

Then, in Step 3d of the next iteration, the best γ percent of the sample points are selected

based on this response surface, which may predict better objective function values in the

vicinity of already explored local minima. Hence, the uniformly selected point may add

knowledge of the objective function in rather unexplored regions of the variable domain, and

thus the global fit of the response surface can be improved. Therefore, it is likely that a

better starting point for local optimization search is obtained, and the overall performance

of the algorithm is improved. Numerical evidence to support this can be found in Section

2.6.3 where we compare the performance of a few selected test functions with and without

a uniform point added.

2.3 Theoretical Properties of SOMS

In this section, we show that SOMS shares the theoretical properties of MLSL. The proofs of

the following theorems follow similar arguments as those used by Rinnooy Kan and Timmer

[59, 60]. All lemmas and theorems for MLSL also hold for SOMS with some modifications.

For reasons of completeness, we present the proofs here. Note also that all the proofs in this

section do not depend on the accuracy of the surrogate. Of course, in practice we would

expect a more accurate surrogate to help speed up the convergence, but the proofs do not

address the speed of convergence.

Rinnooy Kan and Timmer showed that in MLSL, two possible failures will not occur

after a sufficiently large number of iterations:

1. (Type I error) Local optimization search is repeated in the region of attraction and
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results in a local minimum which was already known.

2. (Type II error) Local optimization search will never start in the region of attraction

(for which the local minimum has not yet been found) even if at least one sample point

has been located in that region of attraction.

Definition 2.1. If x∗ is a local optimum, the subset of points R(x∗) characterized by the

property that the local optimization search, when started from any point in R(x∗) will lead

to the local optimum x∗, is called the region of attraction of x∗. The region of attraction of

the global optima is assumed to have non-null Lebesgue measure.

We will use the following notation:

Yν is the set of elements in D that are within distance ν of a stationary point of f, i.e.

Yν := {x ∈ D : ‖x− ā‖ < ν for any ā ∈ Λ} where Λ is the set of stationary points in

D.

Qτ is the set of elements in D that are within distance τ of a point on the boundary ∂D

of D, i.e. Qτ := {x ∈ D : dist(x, ∂D) < τ} where dist(x, C) := infx1∈C ‖x− x1‖ , for

any set C.

Mτ, ν consists of the elements in D that do not belong to Yν or Qτ , so that {Yν, Qτ , Mτ, ν} is

a partition of D. Note that since Yν and Qτ are defined as open sets and D is bounded,

Mτ, ν is closed and therefore compact.

Dτ is the complement of Qτ , i.e. Dτ = D \ Qτ . So Dτ is the set of elements that are at

least distance τ away from the boundary of D.

X∗ ∈ Λ is the set of stationary points already detected in previous iterations of SOMS.

X∗
ν is the set of elements in D that are within distance ν of a stationary point that are

already detected, i.e. X∗
ν := {x ∈ D : ‖x− a∗‖ < ν, for any a∗ ∈ X∗}. Note that

X∗
ν ⊆ Yν .
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As in [60], in order to ensure that the two types of errors will not occur in SOMS, we

have to require additional smoothness conditions of f . The following are assumptions (P0

to P5) necessary for the analysis of this algorithm:

(P0) f ∈ C2.

(P1) A positive constant ν exists such that the distance between any two stationary points

exceeds 2ν.

(P2) A positive constant τ exists such that all local minima of f occur in the interior of

Dτ .

(P3) A local optimization method A is never started in an element of Qτ or X∗
ν .

(P4) If a local optimization method A is applied to a point that is within distance ν of a

stationary point ā, then local optimizer A will detect ā and add it to X∗.

(P5) The number of stationary points is finite.

Lemma 2.2. For any τ > 0 and ν > 0, let a be an element of Mτ, ν , let Ba, r = {x ∈ D :

‖x− a‖ ≤ r}, and let Aa, r = {x ∈ D : ‖x− a‖ ≤ r and f(x) < f(a)}. Then (uniformly

across a ∈Mτ, ν), limr→0
m(Aa, r)
m(Ba, r)

≥ 1
2 , where m(·) is the Lebesgue measure.

Proof. See Rinnooy Kan and Timmer [59].

We will now consider the probability that a local optimization method A is started

incorrectly (type I error). The following theorem indicates that if you continue the algorithm

indefinitely, there is a finite number K such that no additional local optimization search will

be started after iteration K although the sampling in the global phase will continue. Theorem

2.3 is adopted from Rinnoy Kan and Timmer [60].

Theorem 2.3. If the critical distance rk is determined by

rk = π− 1
2

(

Γ(1 +
d

2
)m(D)

σ log kN

kN

)1/d
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then with σ > 2, the probability that a local optimization search is applied by SOMS in

iteration k tends to 0 with increasing k. If σ > 4, then even if the sampling continues forever,

the total number of local optimization searches started by SOMS is finite with probability 1.

Proof. Recall Cunif
k and Ccombine

k are defined in Algorithm 2.2 Step 3f and Step 3g, respec-

tively. Let x be a sample point in Ccombine
k . By Assumption (P3) that no local optimization

search A will ever be started in Qτ ∪Xν∗ , we can only start A at a point x if x ∈ Yν \X∗
ν or

if x ∈ Mτ, ν and there is no other point xj ∈ Ccombine
k with f(xj) < f(x) within distance rk

of x. First we start with the latter case when x ∈Mτ, ν .

Fix x ∈ Ccombine
k ∩Mτ, ν . Denote Ccombine, x

k := Ccombine
k \ {x} and Cunif, x

k := Cunif
k \ {x}.

Since Cunif, x
k ⊆ Ccombine, x

k ,

Pr
(

Ccombine, x
k ∩Ax, rk = ∅

)

≤ Pr
(

Cunif, x
k ∩Ax, rk = ∅

)

. (2.3.6)

Since the points in Cunif, x
k are uniform distributed over D,

Pr
(

Cunif, x
k ∩Ax, rk = ∅

)

≤ (1−m(Aa, rk)/m(D))|C
unif
k |−1 . (2.3.7)

Note that the exponent,
∣
∣
∣Cunif

k

∣
∣
∣ − 1, on the right side of the inequality (2.3.7) accounts

for the case x ∈ Cunif
k . If, on the other hand, x ∈ Ccombine

k \ Cunif
k , then this exponent

will simply be
∣
∣
∣Cunif

k

∣
∣
∣ . In either case, the upper bound, (1−m(Ax, rk)/m(D))|C

unif
k |−1 =

(1−m(Ax, rk)/m(D))k−1 , is accurate. The radius

rk = π− 1
2

(

Γ(1 +
d

2
)m(D)

σ log kN

kN

)1/d

is chosen such that the final bound is decreasing with iteration k. More precisely, since

x ∈Mτ, ν , from Lemma 2.2, for any 0 < β < 1
2 ,

m(Ax, rk
)

m(Bx, rk)
≥ β for sufficiently large k. Since

m(Bx, rk) =
π

d
2

Γ(d2 + 1)
rdk = σ log kN m(D)/kN,
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it follows that

m(Ax, rk) ≥ βσ log kN m(D)/kN.

Ignoring N in all terms in O(·) (since it is constant), we obtain, for sufficiently large k,

(1−m(Ax, rk)/m(D))k−1 ≤ (1− βσ log kN/kN)k−1 ∼ O(k−βσ).

Thus, we have shown that for a fixed point x ∈ Ccombine
k ∩Mτ, ν ,

Pr
(

Ccombine, x
k ∩ Ax, rk = ∅

)

∼ O(k−βσ). (2.3.8)

Eq. (2.3.8) indicates that for any point x ∈ Ccombine
k ∩Mτ, ν , the probability that no other

point in Ccombine
k within distance rk with smaller function value is O(k−βσ).

Since the number of points in Ccombine
k is 2γkN3+k, we can conclude that the probability

that there exists a sample point in Ccombine
k ∩Mτ, ν which has no other point in Ccombine

k within

distance rk with smaller function value is

(2γkN3 + k)O(k−βσ) ∼ O(k1−βσ). (2.3.9)

Hence, for any β < 1/2, the probability that a local optimization search is started from any

element of Mτ, ν is O(k1−βσ). Obviously, if σ > 2, then we can choose 1
σ < β < 1

2 , so that the

probability that a local optimization search is started from any element of Mτ, ν in iteration

k tends to 0 with increasing k. Moreover, if we let ξk be the number of local optimization

searches started from points in Mτ, ν in iteration k, and if we choose σ > 4, then it is easy to

show that
∞
∑

k=1

Pr[ξk > 0] <∞. The Borel-Cantelli Lemma tells us that even if the sampling

continues forever, ξk = 0 for all but finitely many k’s almost surely. That is, the total number

of local optimization searches started from points in Mτ, ν is finite with probability 1.

Now, we consider the other case when x ∈ Ccombine
k ∩ (Yν \X∗

ν ) . By Assumption (P4),

the local optimization method A will detect a stationary point and add it to X∗. Since the
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number of stationary points is finite, we conclude that the probability that A is applied

to a point in Yν \ X∗
ν tends to 0 with increasing k. Moreover, the total number of local

optimization searches started from points in Yν \X∗
ν is also finite almost surely.

Lemma 2.4. For any set A ⊆ D, if m(A) > 0, P r(Ccombine
k ∩ A 4= ∅) tends to 1 with

increasing in k.

Proof. Recall that in each iteration k, a uniform sample point is generated and added to the

set Cunif
k and Ccombine

k := Cs
k ∪ Cunif

k . Moreover, the probability that a uniform sample of

size n contains at least one point in a subset A ⊆ D is equal to 1− (1− m(A)
m(D))

n (Brooks [24]).

Since for any k, Cunif
k ∩A ⊆ Ccombine

k ∩A, and Pr(Cunif
k ∩A 4= ∅) = 1− (1− m(A)

m(D))
k → 1

as k →∞, the result is now immediate.

For a local minimum x∗, let y1 ∈ R be the smallest y for which Lx∗(y) contains a

stationary point other than x∗. If there is no such y, then y1 is the maximum of f over D.

Clearly, f(x∗) < y1. Lastly, we define the Basin Bx∗ of x∗ and Lemma 2.6 as follows.

Definition 2.5. The Basin Bx∗ of x∗ is a subset of points {x ∈ D : f(x) < y1} that contains

x∗ as its only stationary point.

Lemma 2.6. There exists a ȳ with f(x∗) < ȳ ≤ y1 such that the set E = {x ∈ Bx∗ : f(x) <

ȳ} has positive measure and has an empty intersection with Qτ or Y x∗

ν where Y x∗

ν := Yν\{x ∈

D : ‖x− x∗‖ < ν}.

Proof. Assumptions (P1) and (P2) were used to prove this lemma. See Rinnooy Kan and

Timmer [60].

Theorem 2.7. If rk tends to 0 with increasing k, then the probability that SOMS detects

any local minimum x∗ within a finite number of iterations is equal to one.

Proof. For any δ > 0, let Eδ be the set {x ∈ Bx∗ : f(x) < yδ}, where yδ is the infimum of f

over points in Bx∗ that are within distance δ of a point outside E = {x ∈ Bx∗ : f(x) < ȳ},
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where E is defined in Lemma 2.6. Since ȳ > f(x∗), it follows from the continuity of f that

there exists a δ0 > 0 such that Eδ0 has positive measure.

Since rk → 0, there exists a K > 0 such that rk < δ0 whenever k > K. Let ζ be

the index of the iteration in which a local minimum x∗ is found. We claim that ∀k >

K
(

{Ccombine
k ∩ Eδ0 4= ∅}⇒ {ζ ≤ k}

)

.

To prove the claim, we let k > K and suppose that Ccombine
k ∩ Eδ0 4= ∅. Let xj =

argminx∈Ccombine
k ∩Eδ0

f(x).

It follows that either x∗ has been discovered previously or (by the definition of Eδ0) a

local optimization search A will be started at xj to find x∗. In either case, ζ ≤ k, and the

claim is now verified.

The claim implies that Pr(Ccombine
k ∩ Eδ 4= ∅) ≤ Pr(ζ ≤ k) for all k > K. Since

Pr(Ccombine
k ∩ Eδ0 4= ∅)→ 1 (by Lemma 2.4), so does Pr(ζ ≤ k).

It then follows that Pr(ζ < ∞) = Pr (∪k>K{ζ ≤ k}) = limk→∞ Pr(ζ ≤ k) = 1. In other

words, ζ is finite with probability 1.

2.4 Multistart Methods in the Numerical Comparison

We will compare SOMS to earlier multistart methods, namely MLSL, MATLAB’s Mul-

tiStart, MATLAB’s GlobalSearch, and GLOBAL. MATLAB’s MultiStart and MATLAB’s

GlobalSearch introduced in the MATLAB R2010a version are contained in MATLAB’s global

optimization toolbox. Note that while there are several options of local solvers for MAT-

LAB’s MultiStart (e.g. fmincon, fminunc, lsqnonlin etc.), fmincon is the only local optimizer

used in MATLAB’s GlobalSearch. We chose the methods MLSL and GLOBAL because they

have been shown to be both theoretically and empirically well-suited multistart methods for

blackbox functions. A brief description of each of these algorithms is presented in Algorithms

2.3 through 2.6.

All methods except MATLAB’s MultiStart are based on the clustering method that
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Algorithm 2.3 Multi Level Single Linkage (MLSL) [59, 60]
Parameters:

• N > 0 the number of new random sample points generated in each iteration

• γ ∈ (0, 1] the fraction of the total sample points to be selected in each iteration

1. Generate N uniform points, do expensive function evaluation f at these points, and
add the points to the current cumulative sample set Ck = Ck−1 ∪ {x(k−1)N+1, ..., xkN}

2. Let Tk be the reduced set of sample points constructed by taking the γ percent points
in Ck with the lowest function value.

3. Examine the points in Tk one at a time, starting from the point with the lowest function
value. A local optimization is initiated at a point in Tk if there is no other point in
Tk within some critical distance rk which has a lower objective function value. Repeat
this procedure until every point in Tk has been examined.

4. If the stopping criterion is not met, go to Step 1. Otherwise, return the point with the
lowest value found, and stop.

Algorithm 2.4 MATLAB’s MultiStart (MS)

1. Generate a starting point from uniform distribution.

2. Start the local solver from the starting point in Step 1.

3. If the stopping criterion is not met, go to Step 1. Otherwise, return the point with the
lowest value found, and stop.
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Algorithm 2.5 MATLAB’s GlobalSearch (GS) [119]
Parameters:

• x0 the fmincon starting point used in Step 1

• N1, N2 > 0 the number of points used in Steps 2 and 3

1. Run fmincon from a specified x0.

2. Generate N1 trial points using scatter search.

3. (Stage 1) Start a local optimization from the point with the lowest function value
among the first N2 < N1 points.

4. Initialize the basin of attraction, counters and threshold based on points from Step 1
and 2 (see [119] for more details).

5. (Stage 2) Examine all the remaining points, one at a time: Run a local search optimizer
from a point if it is not in a basin of any existing local minima and f(x) < threshold.
Update the basins of attractions, counters and threshold. Continue this step until all
the trial points have been examined or until the stopping criterion is met.

6. Return the point with the lowest value found, and stop.
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Algorithm 2.6 GLOBAL (GLOB) [30]
Parameters:

• N > 0 the number of new random sample points generated in each iteration

• γ ∈ (0, 1] the fraction of the total sample points to be selected in each iteration

1. Generate N uniform points, do expensive function evaluation f at these points, and
add these points to the current cumulative sample Ck = Ck−1 ∪ {x(k−1)N+1, ..., xkN}.

2. Let Tk be the reduced sample constructed by taking the γ percent points in Ck with
the lowest function value.

3. Cluster the points in Tk one at a time.

4. Start the local optimization from those points in Tk not yet clustered. Repeat Step 3
until every point has been assigned to a cluster.

5. If a new local minimizer has been found, go to Step 1.

6. Return the point with the lowest value found, and stop.

excludes non-promising starting points, decreases the number of local searches, and converges

to the global minimum faster. Note that while a uniform random distribution is used to

generate new candidate points in SOMS, MLSL and GLOBAL, in practice, a sample obtained

by Deterministic Low-Discrepancy Sequences (LDS) (or others) can also be used. See for

example [64] where LDS has been used in MLSL.

In all these multistart methods including SOMS, the local phase evaluates the exact

objective function f. However, Algorithms 2.3 through 2.6 (i.e. all algorithms except SOMS)

also evaluate the exact function in the global phase of the search where SOMS first uses the

response surface to exclude some non-promising starting points, which enables more global

searching.

In each iteration of MLSL and GLOBAL, the algorithm is based on a sampling strategy

where a set of sample points is selected at which the expensive objective function is evaluated.

Several of these points are used as a starting point for the local search. Due to the strict

limitation of allowable function evaluations, only a small number of total function evaluations
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(mf ) can be done in each iteration. The default parameters N = 10d, and γ = min(0.2, 2/d)

are taken for GLOBAL∗. For MLSL, N = 10 and N = 20 are taken for the first three and

the last four problems of the Dixon-Szegö test bench [34], respectively.

For MATLAB’s GlobalSearch, the sample points that are evaluated before the local

search is started are generated only once (whereas in SOMS, MLSL, and GLOBAL a new

set of sample points is generated in each iteration). The two main algorithm parameters of

GlobalSearch are the number of trial points (N1) and the number of points used in Stage

1 of the algorithm (N2). The default values for these two parameters are N1 = 1000 and

N2 = 200, respectively. However, in our experiment, the maximum number of allowable

function evaluations mf for each test functions are quite small. Thus, we used lower values for

N1 and N2 in order to enable several local searches before the budget of function evaluations is

exhausted. We experimented with different algorithm parameters for several combinations of

(N1, N2) each with 30 trials to pick the best pair for each problem. The resulting parameters

are shown in Table 2.2.

MATLAB’s MultiStart starts the local solver from a uniformly generated point (Algo-

rithm 2.4), and thus there are no parameters to adjust.

For SOMS, the set of generated sample points of size N are not evaluated with the expen-

sive objective function. We use the computationally cheap surrogate model to predict the

objective function values of these points. Thus, N can be chosen rather large. However, with

an increasing number of dimensions and increasing N , SOMS’ own computational complexity

increases, and thus a reasonable trade-off between algorithm efficiency and computational

effort must be made by choosing N reasonably.

Denote by N (s), N (m), (N (GS)
1 , N (GS)

2 ), and N (G) the parameters used in Algorithms 2.2,

2.3, 2.5, and 2.6, respectively. For example, for d = 20, mf = 2000, and N (s) = N (m) = 100d,

SOMS does 2000 computationally cheap function evaluations using the response surface.

However, MLSL does these 2000 evaluation with the expensive objective function. Thus,
∗The software for GLOBAL is obtained from: http://www.inf.u-szeged.hu/∼csendes/Reg/regform.php.
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MLSL uses up the budget of allowable function evaluations before a local search could be

started. Therefore, N (m) = 10d is a more appropriate choice. The same argument was

used when we select the parameters N for the other multistart methods. The values of the

parameters that are used for MLSL, SOMS and GlobalSearch are shown in Tables 2.1 and

2.2.

2.5 Numerical Experiments

In this section, we show the numerical results obtained for SOMS and the alternative algo-

rithms. We did 30 trials with each algorithm for each test problem. For SOMS, the initial

evaluation points for fitting the RBF model are generated by a symmetric Latin hypercube

design (SLHD) [129]. This initial set of points is used only for fitting the RBF model and

the points in this design are not used for starting the local search in Step 3a of SOMS.

2.5.1 Experimental Setup

The experiments are all run using MATLAB 7.14 (R2012a) on Intel(R) Core(TM) i7 CPU

@3.40GHz 3.40 GHz. MATLAB’s fmincon is used as a local solver in all algorithms. The

algorithm starts a new local optimization from the next selected point whenever the local

solver has converged to a local minimum until the maximum number of function evaluations

(mf ) is reached. The termination tolerance of the fmincon was set to 10−8.

We chose fmincon as local solver since it is the only available local optimization method

for GlobalSearch. We use the same local solver for all algorithms to facilitate a fair com-

parison. We did not supply the gradient of the test function to fmincon because we treat

the test functions as blackbox problems in order to determine the applicability of the var-

ious methods for true blackbox problems. Thus, in each iteration of fmincon, the gradient
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Table 2.1: Algorithm parameters used for SOMS (Algorithm 2.2) and MLSL (Algorithm 2.3)
for different sets of test problems. Note that σ in Eq. (2.1) was set to be 4 for both SOMS
and MLSL.

(a) Dixon-Szegö

MLSL SOMS

Function N(m) γ(m) N(s) γ(s) n0 n0 + n1

GP 10 0.2 500d 0.005 2(d + 1) 2(d + 1)

Branin 10 0.2 200d 0.005 2(d + 1) 2(d + 1)

HA3 10 0.2 500d 0.001 2(d + 1) 2(d + 1)

HA6 20 0.2 200d 0.001 2(d + 1) 2(d + 2)

SH5 20 0.2 200d 0.005 2(d + 1) 2(d + 2)

SH7 20 0.2 200d 0.005 2(d + 1) 2(d + 2)

SH10 30 0.2 200d 0.005 2(d + 1) 2(d + 2)

(b) Low-dimensional wavy test Functions

MLSL SOMS

Function N(m) γ(m) N(s) γ(s) n0 n0 + n1

easySquareWavy

10d 0.2

1000d 0.002 2(d + 1) 2(d + 1)

Wavy-1D 1000d 0.002 2(d + 1) 2(d + 1)

LgWavy1 1000d 0.002 2(d + 1) 2(d + 4)

LgWavy2 1000d 0.003 2(d + 1) 2(d + 5)

SchWavy-2D 500d 0.006 2(d + 1) 2(d + 4)

SchWavy-5D 150d 0.01 2(d + 1) 2(d + 5)

(c) High-dimensional wavy test functions

MLSL SOMS

Function N(m) γ(m) N(s) γ(s) n0 n0 + n1

Sch-10D

10d 0.2

100d 0.008 2(d + 3) 2(d + 7)

Sch-15D 100d 0.006 2(d + 1) 2(d + 7)

Sch-20D 100d 0.008 2(d + 3) 2(d + 7)

SchWav-10D 100d 0.008 2(d + 3) 2(d + 7)

SchWav-15D 100d 0.006 2(d + 1) 2(d + 7)

SchWav-20D 100d 0.008 2(d + 3) 2(d + 7)
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Table 2.2: Algorithm parameters for GlobalSearch (Algorithm 2.5) for different sets of test
problems

(a) Dixon-Szegö

Function GP BR HA3 HA6 SH5 SH7 SH10

(N1, N2) (120,12) (80,5) (180,18) (350,35)

(b) Low-dimensional wavy test functions

Function easySquareWavy Wavy-1D LgWavy1

(N1, N2) (50,5)

Function LgWavy2 SchWavy-2D SchWavy-5D

(N1, N2) (80,8) (120,12)

(c) High-dimensional wavy test functions

Function All test functions in Table 2.9

(N1, N2) (200,50)

is estimated by finite differences, which requires an additional d function evaluations for a

d-dimensional problem. Thus, a fairly large number of function evaluations was spent in the

local optimization phase for all algorithms (including SOMS).

2.5.2 Performance Measure

An algorithm is said to identify or locate the global minimum if the algorithm can get within

an absolute tolerance d×10−4 of the global minimum point x∗. To measure the effectiveness,

we run each algorithm for 30 trials and keep track of the number of trials that are able to

identify the global minimum within a pre-defined number of function evaluations (mf ). To

measure relative efficiency, we compute the average and the standard deviation of the number

of function evaluations an algorithm actually required to identify the global minimum.
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Table 2.3: Dixon-Szegö testbed. Test functions for numerical experiments.

Function d Domain No. of local min

Goldstein & Price 2 [−2, 2]2 4

Branin 2 [−5, 10]× [0, 15] 3

Hartmann3 3 [0, 1]3 4

Hartmann6 6 [0, 1]6 6

Shekel5 4 [0, 10]4 5

Shekel7 4 [0, 10]4 7

Shekel10 4 [0, 10]4 10

2.6 Numerical Experiments for Dixon-Szegö Test Func-

tions

The purpose of this section is to evaluate the performance of five algorithms for multistart

methods on the well-known Dixon-Szegö test bench [34] when the number of function eval-

uations allowed is limited. This testbed consists of the seven test problems shown in Table

2.3. The abbreviations MS for MATLAB’s MultiStart, GS for MATLAB’s GlobalSearch,

and GLOB for GLOBAL are used throughout this section.

The performance of an algorithm is measured by computing the number of function

evaluations it takes until the algorithm locates the global minimum. For each of the Dixon-

Szegö test function, we do 30 trials with each algorithm (7 test functions x 30 trials x 5

algorithms = 1,050 total runs). The corresponding average and the standard deviation of

the objective function value are calculated and reported in Table 2.4. The number of trials

for which each algorithm failed to locate the global minimum within mf function evaluations

are reported in Table 2.4c. Figure 2.1 shows box plots of the statistics. Note that for the

trials an algorithm failed to locate the global minimum within mf function evaluations, the

number of function evaluations for that particular trial was set to mf , in order to calculate

the average and standard deviation in Table 2.4 and Figure 2.1.
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2.6.1 Discussion on the Dixon-Szegö Test Results

From Table 2.4a, we can see that SOMS requires the lowest average number of function

evaluations to locate the global minimum for three of the seven test functions. The total

number of function evaluations required to locate the global minimum over all seven test

functions (reported in the last column of Table 2.4a) is lowest for SOMS. These results can

also be seen in Figure 2.1.

Also, the efficacy of SOMS can be seen by the fact that SOMS is able to locate the

global minimum in all 30 trials for all test functions (as reported in Table 2.4c). MATLAB’s

MultiStart method is also able to locate the global minimum for all test problems in all

trials. It performs best for the Shekel7 test function and requires the second lowest total

number of function evaluations over all problems to find the global minimum.

MLSL performed well for the first five test functions, but it failed to find the global

minimum for two of the 30 trials for Shekel7 and Shekel10. GLOBAL performs well for

Shekel5 and Shekel7.

MATLAB’s GlobalSearch failed to locate the global minimum within mf evaluations for

five of the seven test problems. Thus, it requires a comparatively very large number of

function evaluations and has the largest standard deviation for almost all test functions.

These results can also be visualized in Figure 2.1, where the mean of the data is displayed

by the asterisk (*), median by the red line in the middle, high and low quartiles by the outer

blue box, 1.5-IQR range by the whiskers, and outliers by +.

MATLAB’s MultiStart does not perform as well as SOMS, but the results in this section

indicate that it is more efficient and effective than its counterpart GlobalSearch, which relies

on a complex clustering procedure. MATLAB’s MultiStart also performs better than MLSL

and GLOBAL for many problems in Dixon-Szegö testbed. The reason for this performance

difference may be related to the generation of sample points from which the local search is

started. MultiStart generates only a single point while the other methods use N (s), N (m),

N (GS)
1 , and N (G) points, respectively.
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Table 2.5: One-tailed two sample t-test results for Dixon-Szegö. A value of 1 indicates that
SOMS is better at 5% significance level, and a value of 0 indicates that we do not have
evidence to suggest that the performance of SOMS and the compared algorithm is different.

Function SOMS vs. MLSL SOMS vs. MS SOMS vs. GS SOMS vs. GLOB

Goldstein & Price 0 0 1 1

Branin 0 1 1 1

Hartmann3 0 0 1 0

Hartmann6 0 1 1 1

Shekel5 0 0 0 0

Shekel7 0 0 1 0

Shekel10 0 0 1 0

Total 0 2 6 3

To justify that the results are statistically significant, a one-tailed two sample t-test has

been conducted at the 5% significance level. The test decision for the alternative hypothesis

is that the µSOMS is less than µA, where µSOMS is the average number of function evaluations

needed by SOMS to find the global minimum and µA is defined similarly for any compared

algorithm A. Test results are reported in Table 2.5. The result is 1 if the test rejects the

null hypothesis (i.e. SOMS is superior) at the 5% significance level, and 0 otherwise (i.e.

we fail to reject the null hypothesis). The results indicate that SOMS and MLSL are not

significantly different for any test functions. SOMS is better than MultiStart, GlobalSearch

and GLOBAL for two, six, and three out of seven test functions, respectively.

2.6.2 Parameters of MATLAB’s GlobalSearch solver

We compared the performance of GlobalSearch with the default parameter settings (N1 =

1000, N2 = 200) to our alternative parameter settings (Table 2.2). Using the default pa-

rameters, we also use the default stopping criterion of GlobalSearch. The results are shown

in Table 2.6. We set the total number of function evaluations of GlobalSearch with default

values for the trials where the global minimum was not detected to the actual total number

of evaluations done in that trial. The results show that even with default parameter values
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and a larger budget of function evaluations, GlobalSearch is not able to perform nearly as

well as the alternative methods.

2.6.3 Influence of the Uniformly Selected Point in SOMS

As mentioned in Section 2.2.3, adding a uniform point in Step 3f can help improve the

performance of SOMS. We illustrate this on the last four test functions (which are higher

dimensional test problems) of Dixon-Szegö. Table 2.7 gives the average and the standard

deviation of the number of function evaluations over 30 trials of SOMS with and without

adding the uniformly selected point until the algorithm locates the global minimum or the

total number of function evaluations exceeds mf . The results show that the performance of

SOMS improves for three of the four test problems when adding the uniformly selected point,

i.e. SOMS requires fewer function evaluations to detect the global minimum. Moreover, if

we do not add the uniformly selected point, SOMS fails to detect the global minimum within

mf function evaluations for Hartmann6 and Shekel5 for one and four trials, respectively.

2.7 Wavy Test Functions

The function given in Figure 2.2 is called the wavy function in [71], where it was used as an

example and is defined by

f(x) = |2(x− 24) + (x− 24) sin(x− 24)| , x ∈ [−20, 60]. (2.7.1)

The global minimum point is at x = 24 with the function value 0. As illustrated in Figure

2.2, the function has several local minima and is thus a challenging optimization problem

[71]. We refer to this function as Wavy-1D.
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Table 2.7: Results of SOMS with and without adding a uniform point in Step 3f of Algorithm
2.2. Shown is the average and the standard deviation of the number of function evaluations
over 30 trials until the algorithm locates the global minimum or the total number of function
evaluations exceeds mf . The number of failed trials is given in the last column.

Test Function
Average Std Dev No. of failed Trials

with Unif w.o. Unif with Unif w.o. Unif with Unif w.o. Unif

Hartmann6 (mf = 600) 139.17 199.37 88.95 160.36 - 1

Shekel5 (mf = 1000) 325.60 391.27 198.88 306.73 - 4

Shekel7 (mf = 1000) 298.43 253.07 230.56 178.25 - -

Shekel10 (mf = 1000) 275.67 333.97 173.80 242.51 - -

−20 −10 0 10 20 30 40 50 60
0

20

40

60

80

100

120

140

x

f(x)

Figure 2.2: Wavy-1D [71]
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2.7.1 Creating Wavy Test Functions for Optimization

In this section we discuss how a more complex and multivariate version of the Wavy 1-D

test function can be generated. Given the underlying function fu, a wavy test function of fu

can be constructed by adding a so-called “wavy part”. Mathematically, if fu is a real-valued

function on a domain D ∈ Rd with the global minimum at x∗ = (m1, ..., ., md) ∈ D, then

the wavy function of fu, denoted by fwavy : D → R is a function defined at a given point

x = (x1, ..., xd) ∈ D by

fwavy(x) = fu(x) +Wavy(x) (2.7.2)

where

Wavy(x) = A(x)× (W1(x)
d
∏

i=2

Wi(x) + 1), (2.7.3)

Wj(x) =











sin(ωj(xj −mj)− π/2);

sin(ωj(xj −mj) + π/2);

j = 1

j > 1

, (2.7.4)

A : D → (0, ∞) and Ω = (ω1, ..., ωd) ∈ Rd
+.

A is the amplitude function of Wavy(x) controlling the height of the wave at each point

x in the domain. A1(x) = c, where c > 0, A2(x) = c×‖x− x∗‖ , or A3(x) = c/(1+‖x− x∗‖)

are examples of the amplitude function. While A1 is just a constant amplitude, with A2,

points near the global minimum have a small amplitude while points further away have a

larger amplitude. The effect of A3 on the wavy function is the opposite of A2, i.e. points near

the global minimum have a larger amplitude than points further away. For each variable j,

ωj is the angular frequency. The argument xj in each of the Wj(·) is shifted to (xj −mj),

rescaled by ωj , and finally π/2 is added or subtracted. We define the function in this way

so that the new function fwavy in Eq. (2.7.2) has the same global minimum point as fu and

the same global minimum value. Thus, if the global optimum of the underlying function fu

is known, the global optimum of fwavy is known as well. The following example is a simple

example illustrating the method.
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Figure 2.3: easySquareWavy

In this example, the underlying function is

fu = (x− 0.5)2.

The minimum value is 0 at x∗ = 0.5. Let A(x) = A1(x) = 0.05 and ω1 = 30π. Then,

fwavy(x) = (x− 0.5)2 + 0.05(sin(30π(x− 0.5)− π/2) + 1)

has the same global minimum as fu. fu and fwavy are illustrated in Figure 2.3. We will refer

to this function as easySquareWavy.

2.7.2 Underlying Function

To obtain a multimodal underlying function fu (before adding the wavy part), we use (a)

the Lagrange interpolating polynomial [105] and (b) the Schoen test function [102] as fu.

We now give a brief review on these two functions.
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2.7.2.1 Lagrange interpolating polynomial

For a given set of n + 1 distinct points {(x0, y0), ..., (xn, yn)}, there exists an nth order

polynomial which passes through all of these points. In particular, for i = 1, .., n, consider

the basis polynomials Li(x) of the following form:

Li(x) =
n
∏

j=0, j )=i

(x− xj)

(xi − xj)
.

The basis polynomial Li(x) has the property that

Li(xj) =











0

1

j 4= i

j = i

.

Define a polynomial L(x) by

L(x) =
n

∑

i=0

yiLi(x).

Then, L(x) has the property that L(xi) = yi, i = 1, ..., n i.e. L interpolates the function

through these points. The polynomial L is called the Lagrange interpolating polynomial.

Therefore, by specifying appropriate pairs of (xj , yj), we can use the Lagrange polynomial

to define an underlying function for the wavy function which passes through the specified

points. Moreover, since the optimum value of a polynomial function can be determined

easily, it is an advantage for using it as an underlying function to create a wavy test function

for optimization. An example of a one-dimensional Lagrange function along with its wavy

function is shown in Figure 2.4. The function L(x) in the figure (the blue dashed line)

is used as the underlying function. The function Lwavy(x) (red solid line) is the function

LagrangeWavy2 listed in Table 2.8.

2.7.2.2 Schoen Function

The Schoen functions are defined as follows [102]:
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Figure 2.4: LagrangeWavy2

f(x) =

k
∑

i=1

fi
∏

1≤j≤k, j )=i

‖x− zj‖αj

∑k
i=1

∏

1≤j≤k, j )=i ‖x− zj‖αj
, x ∈ [0, 1]d, (2.7.5)

where k ∈ N, zi ∈ [0, 1]d, fi ∈ R, and αi ∈ R+ ∀i = 1, ..., k. Given the constants zi, fi, αi ,

this class of functions has the following properties:

1. f(zi) = fi ∀i = 1, ..., k,

2. min1≤i≤k fi ≤ f(x) ≤ max1≤i≤k fi ∀x ∈ [0, 1]d, and

3. if αi > 1, limx→zi∇f(x) = 0 ∀i = 1, ..., k.

Note that (1) and (2) imply that the global minimum value is min1≤i≤k f(zi). Moreover, (3)

implies that z1, ..., zk are stationary points.

Figure 2.5 shows a 3D-contour plot of a two-dimensional Schoen function (left) and its

corresponding SchoenWavy function (right). We can see that adding the wavy part to the

underlying Schoen function makes the problem more difficult to solve because many local
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Figure 2.5: SchoenWavy-2D

minima have been added and they are multidimensional. The description of SchoenWavy-2D

can be found in Table 2.8.

2.8 Numerical Experiments of Wavy Test Functions

Multistart methods spend a relatively large number of function evaluations in each local

search phase. With a limited number of function evaluations, SOMS (as well as any alter-

native methods) is not expected to work well on general synthetic test problems that have

a large number of local minima without a structure of the underlying function fu. On the

other hand, SOMS is expected to perform especially well compared to the alternatives on the

class of wavy test functions when the underlying fu has a moderate number of local minima.

Nevertheless, with a moderate number of local minima in the underlying function fu, we see,

for example in Figure 2.5, that adding a wavy part results in a highly multimodal objective

function.
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Table 2.8: Low-dimensional wavy test functions. A1 and wj are defined following Eq. (2.7.2)–
Eq. (2.7.4).

Wavy Test Function fu d A1 ωj Domain

easySquareWavy convex 1 0.05 30π [0, 1]

Wavy-1D -∗ 1 - - [−20 , 60]

LagrangeWavy1 multi∗∗ 1 1.8 30π [0, 1]

LagrangeWavy2 multi 1 1.5 50π [0, 1]

SchoenWavy-2D multi 2 0.05 20π [0, 1]2

SchoenWavy-5D multi 5 0.05 12π [0, 1]5

∗ Wavy-1D has no fu; ∗∗ multi = multimodal

2.8.1 Wavy Test Functions

Table 2.8 gives details of six low-dimensional wavy test functions we will use to test the

performance of the multistart methods. The characteristics of the underlying function fu

are shown in the column fu (convex or multimodal). d denotes the problem dimension.

The parameters A and ωj for the wavy part of each test function (defined following Eq.

(2.7.2)–Eq. (2.7.4)) are also shown.

The first example in the table, easySquareWavy, is the example given at the end of Section

2.7.1. Wavy-1D was introduced at the beginning of Section 2.7. Since the function Wavy-1D

is by itself wavy (i.e. was not defined via our scheme Eq. (2.7.2)–Eq. (2.7.4) of adding

the wavy part to an underlying function), the columns A and ωj for this test function are

left blank. The next two functions are based on the same underlying Lagrange polynomial

(Section 2.7.2.1). The last two wavy functions are based on the underlying Schoen function

(Section 2.7.2.2) with dimensions 2 and 5, respectively.

We also create 10-, 15- and 20-dimensional problems based on the Schoen underlying

function. Table 2.9 gives a summary of the high-dimensional Schoen functions (Table 2.9a)

along with their wavy functions, called SchoenWavy (Table 2.9b), that will be used to test

the effectiveness and efficiency of the multistart methods.
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Table 2.9: High-dimensional Wavy Test Functions. (a) Schoen and (b) SchoenWavy.

(a) Schoen function

Function fu d Domain

Schoen-10D 10 [0, 1]10

Schoen-15D 15 [0, 1]15

Schoen-20D 20 [0, 1]20

(b) SchoenWavy function. A1 and wj are defined following Eq. (2.7.2)–Eq. (2.7.4).

Function Description

SchoenWavy-10D A1 = 0.05, ωj = cjπ

c = [13, 12, 11, 13, 14, 17, 16, 17, 11, 20]

SchoenWavy-15D A1 = 0.1, ωj = cjπ

c = [20, 15, 20, 15, 20, 20, 15, 20, 15, 20, 20, 15, 20, 15, 20]

SchoenWavy-20D A1 = 0.05, ωj = cjπ

c = [13, 12, 11, 13, 14, 17, 16, 17, 11, 20, 13, 11, 19, 14, 12, 13, 12, 11, 13, 14]

Note that all the underlying functions fu in Table 2.9a and hence the corresponding wavy functions in Table

2.9b are multimodal.

2.8.2 Results for Low-dimensional Wavy Test Functions

We do 30 trials with each algorithm for the six low-dimensional wavy test function in Table

2.8. We impose the maximum number of function evaluations mf on each of these test

functions, and again this number is used to calculate the statistics for those trials which

failed to determine the global minimum within mf evaluations.

The results for the low-dimensional wavy test functions are reported in Table 2.10, where

the average and the standard deviation of the number of function evaluations required to

detect the global minimum are summarized. The number of failed trials is given in Table

2.10c. A box plot summarizing the statistics is shown in Figure 2.6.

From Figure 2.6, we see that SOMS performs significantly better than the four alternative

methods for all but one of the six test functions. It required a whole lot fewer number of

function evaluations to locate the location of the global minimum (efficiency) with SOMS

versus the other methods. Also the number of trials that SOMS failed to locate the global

minimum within the budget mf is also smallest, which measures effectiveness (see bottom

Figure 2.6) among all the algorithms. The one case that SOMS did not perform best is
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LgWavy2 test function where 4 trials failed to locate the global minimum within 200 function

evaluations.

SOMS performs better than the alternative methods in particular for the 2- and 5-

dimensional SchoenWavy test problems, for which the alternative methods failed to locate

the global minimum for more than half of the trials (SOMS only failed for one trial of the

2-dimensional problem and for no trials of the 5-dimensional problem).

Many trials of MATLAB’s MultiStart solver and the GLOBAL performed poorly for

the wavy test functions. This contrasts the results for the Dixon-Szegö testbed for which

MultiStart and GLOBAL were able to detect the global minimum for all trials within mf

evaluations. For the wavy test functions, MultiStart and GLOBAL failed to find the global

minimum for many trials.

The box plots in Figure 2.6 summarizes these results. It can be clearly seen that SOMS

requires on average fewer function evaluations than the alternative methods to detect the

global minimum (asterisks). The barplot at the bottom of the same figure also indicates that

the SOMS trials succeeded in getting within the radius of d × 10−4 of the global optimum

much more frequently than any other methods.

Similar to Dixon-Szegö, a one-tailed two sample t-test for low-dimensional wavy test

functions has been conducted at the 5% significance level and reported in Table 2.11 to

determine whether SOMS is better than the compared multistart method in terms of the

number of function evaluations required to identify the global minimum. The result is 1 if

the test rejects the null hypothesis (i.e. SOMS is superior) at the 5% significance level, and

0 otherwise. SOMS is found to be superior to MLSL, MultiStart, and GLOBAL for all but

one test function. SOMS is significantly better than GlobalSearch for all low-dimensional

wavy test functions.
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Table 2.11: One-tailed two sample t-test results for low-dimensional wavy test functions. A
value of 1 indicates that SOMS is better at 5% significance level, and a value of 0 indicates
that we do not have evidence to suggest that the performance of SOMS and the compared
algorithm is different.

Function SOMS-MLSL SOMS-MS SOMS-GS SOMS-GLOB

easySquareWavy 1 1 1 1

Wavy-1D 1 1 1 1

LagrangeWavy1 1 1 1 1

LagrangeWavy2 0 0 1 0

SchoenWavy-2D 1 1 1 1

SchoenWavy-5D 1 1 1 1

Total 5 5 6 5

2.8.3 Results for High-dimensional Schoen and SchoenWavy Test

Functions

In Table 2.12 and Figure 2.7, the results for the high-dimensional Schoen underlying test

functions and their corresponding wavy functions are shown. The description of the tables

and figures is the same as for the low-dimensional wavy test functions in the previous section.

The left side of Tables 2.12a and b shows the results for the non-wavy Schoen test

functions. While all methods are able to locate the global minimum for all trials, we see

the superior efficiency and effectiveness of SOMS as it achieved the smallest values for both

the average and the standard deviation of the number of function evaluations needed to

detect the global minimum. The performance of MLSL and GLOBAL is very similar and

both methods outperform MultiStart and GlobalSearch. The statistics are visualized in the

leftmost plots of Figure 2.7.

Since all algorithms are able to locate the global minimum of all three non-wavy Schoen

test functions within mf function evaluations, we do not report the number of failed trials

in Table 2.12c.

Next, we discuss the performance of algorithms on SchoenWavy test functions. Finding
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the global optimum of the wavy Schoen test functions is considerably more difficult. As

may be expected, the performance of all algorithms decreased. Table 2.12c shows that

SOMS performs best with respect to the number of trials in which the global minimum was

detected. SOMS fails only for one trial of SchoenWavy-10D and for none of the other two

problems. On the other hand, The alternative algorithms failed for 20–35 out of 90 trials in

total. Similar to the results of low-dimensional wavy test functions in the previous section,

the performance of MLSL and GLOBAL is very similar and both algorithms outperform

MultiStart and GlobalSearch.

Therefore, the numerical results suggest that SOMS performs in general better at detect-

ing the global minima of the wavy functions.

The results of the one-tailed two sample t-test for high-dimensional wavy test functions at

the 5% significance level are reported in Table 2.13. SOMS is significantly better than MLSL

in determining the global minimum with fewer number of function evaluations for all but

one test function. SOMS is found to outperform MultiStart, GlobalSearch, and GLOBAL

for all test functions.

Note that SOMS is designed for computationally expensive optimization problems and

the performance is assessed based on the objective function value found after a maximal

number of allowed function evaluations. In order to get a better idea of the performance for

computationally expensive functions, assume that each function evaluation takes one hour.

For example, for the three high-dimensional SchoenWavy functions in Table 2.12a, the last

column represents the approximate number of hours required on average to detect the global

minimum (not counting the algorithms’ own computational overheads). We see that the

difference in the total wall-clock time of SOMS and the other methods is between 300–1300
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Table 2.13: One-tailed two sample t-test results for high-dimensional wavy test functions. A
value of 1 indicates that SOMS is better at 5% significance level, and a value of 0 indicates
that we do not have evidence to suggest that the performance of SOMS and the compared
algorithm is different.

Function SOMS-MLSL SOMS-MS SOMS-GS SOMS-GLOB

Sch-10D 1 1 1 1

SchWav-10D 1 1 1 1

Sch-15D 1 1 1 1

SchWav-15D 0 1 1 1

Sch-20D 1 1 1 1

SchWav-20D 1 1 1 1

Total 5 6 6 6

hours. Therefore, besides being more effective (fewest total number of failed trials), we see

that SOMS is much more efficient than the other multistart methods and a considerable

amount of computation time can be saved by using SOMS.

2.8.4 Solution Accuracy of SOMS

In this section we briefly justify the performance measures we used for reporting the compu-

tational results. An alternative way to report the results of global optimization algorithms

is to plot the best average objective function value against the number of objective function

evaluations performed (e.g. [95]). Such "progress plots" fail however to show the accuracy

of the detected global minimum point.

For example in Figure 2.8, we show the solution found by Stochastic RBF [95] for the

LagrangeWavy2. Stochastic RBF is designed to efficiently find decreases of the objective

function value within a very limited number of function evaluations. Stochastic RBF is a

surrogate-based global optimization algorithm that does not use the multistart procedure

shown in Algorithm 2.1. Unlike multistart methods, Stochastic RBF was not designed to find

the exact location of the global minimum, but instead, it was designed to quickly decrease the

objective function value within a limited number of function evaluations. Once the algorithm

terminates, the lowest objective function value will be reported as the approximate global
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Figure 2.8: The approximate global minimum found by Stochastic RBF algorithm for La-
grangeWavy2

minimum value. This same performance measure has been used widely in surrogate global

optimization methods.

We did 30 trials with Stochastic RBF for the LagrangeWavy2 problem with mf = 200.

Stochastic RBF located the local optimum marked by the red asterisk in Figure 2.8 in all 30

trials (at (x, f(x)) ≈ (0.0846, 1.5712)). The true global minimum, which is at x∗ = 0.6442

with f(x∗) = 0, is marked by a black circle. The solution identified by Stochastic RBF

does have an objective function value somewhat close to the true global minimum value, but

the location of the solution is rather far away from the true global minimum point. The

commonly used progress plots do not give any information about the difference between the

best point found during the optimization and the location of the true global minimum.

2.9 Conclusions

In this chapter we showed how the combination of a multistart method with a local optimiza-

tion algorithm can give high accuracy solutions of global optimization problems. Another
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advantage of using multistart methods over other types of global optimization algorithms is

that it enables users who are currently applying a local optimizer on a complex simulation

model to search for a globally optimal solution to relatively easily interface the existing local

optimization-simulation code with a multistart method.

We have presented SurrOgate Multistart (SOMS), which is a multistart method for op-

timization of blackbox functions. SOMS uses the RBF surrogate model to select promising

points from which the local search is started. SOMS provides a more efficient multistart

method that can reduce the number of local searches required to find the global minimum.

We also proposed a framework for constructing wavy test functions for global optimization

algorithms from any underlying function fu. The constructed wavy test function retains the

same global minimum as the underlying function fu which enables the assessment of the

solution quality of the optimization algorithms.

The practical applicability of SOMS is demonstrated by comparing its overall performance

with four other multistart methods of similar nature. The results of extensive numerical ex-

periments show that SOMS is an effective and efficient multistart strategy that can escape

from local minima and that converges to the global minimum faster than the alternative

methods. Numerical experiments show that SOMS statistically outperforms (at 5% signifi-

cance level) MLSL, MATLAB’s MultiStart, MATLAB’s GlobalSearch, and GLOBAL for 10,

13, 18, and 14 out of 19 test problems. Hence, using the surrogate model in the multistart

framework is a very efficient approach for detecting accurate global optima of multimodal

objective functions whose computational expense limits the number of function evaluations

that can be done.
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Chapter 3

Parallel Dynamic Coordinate Search

with Surrogates

3.1 Introduction

Global optimization of computationally blackbox expensive function are important in many

application areas. In this chapter, we focus on those problems which also have a high-

dimension. Shan and Wang [106] used the acronym HEB (High dimensional, Expensive, and

Blackbox) to refer to this type of optimization problems. The combination of these three

aspects makes the problem very difficult to solve. There are, however, many engineering

application problems that have these characteristics, e.g. the design of the High Speed Civil

Transport aircraft [43, 62, 112], optimization of a measure of vibration of a helicopter rotor

blade [21]. Better algorithms are important for the high dimensional problems because they

arise in many areas of engineering and science. As the computational effort increases expo-

nentially with the problem dimension [106], many available methods for computationally ex-

pensive blackbox objective functions are not suitable or even applicable to high-dimensional

problems because of the increasing computational overhead of the algorithm itself.
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3.1.1 Related Work

When the optimization problem of interest is based on the blackbox simulations, a derivative-

free method or a blackbox solver plays an important role in solving problems that cannot

be solved otherwise. The increase in the number of blackbox solvers in the literature follows

closely the growing number of blackbox optimization problems emerging as applications in

engineering. Examples of blackbox solvers are DAKOTA solvers (originally designed as a

toolkit of blackbox optimization methods) [35], GLOBAL [30] (a MATLAB implementa-

tion of a multistart stochastic method proposed by Boender et al. [20]), HOPSPACK (a

library implementing derivative-free direct search algorithms) [85], MADS/NOMAD (Mesh

Adaptive Direct Search) [1, 2, 66], and DiceOptim (Kriging-based optimization for computer

experiments) [100], as well as many solvers from TOMLAB [49] such as TOMLAB/rbfSolve

and TOMLAB/EGO. A good review and comparison of algorithms on blackbox functions

are given in [99]. In addition, population-based optimization algorithms such as Genetic

Algorithm (GA) [48], Differential Evolution (DE) [113], Evolution Strategies [12] are also

often used to solve blackbox optimization problems.

Since simulations in engineering problems can be computationally extremely expensive,

several surrogate-based methods have been proposed to solve problems in global optimiza-

tion. Response surfaces such as polynomial response surface [53], kriging (Gaussian process

regression) [54, 57], radial basis functions (RBFs) [15, 89, 95, 96, 107], MARS (Regression

Splines), as well as mixture models [76] have been successfully applied to solve many opti-

mization problems arising in engineering from aerospace and aircraft design, hybrid electric

car design, groundwater contaminations, watershed calibration, a pharmaceutical formula-

tion system etc. (e.g. [7, 43, 46, 54, 81, 95, 101, 107, 108]). Among many, a few examples of

surrogate-based optimization methods are Gutmann’s RBF method [45] which involves the

minimization of a bumpiness measure to determine the new sample point in each iteration,

Jones’ EGO method [57], which uses a kriging surface and selects sample points by maximiz-

ing the expected improvement, Regis and Shoemaker’s LMSRBF method [95] which is also
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based on RBF and uses the weighted score of the response surface criterion and the distance

criterion, and is used as a framework of DYCORS [97]. The interested reader is referred to

[41, 46, 63, 122] for a review and more information as well as applications of existing re-

sponse surface based methods for global optimization. A recent survey of surrogate-assisted

evolutionary optimization techniques can also be found in [55].

While most of the previous surrogate-based optimization methods are suitable and have

only been tested on problems with low dimension, DYCORS, on the other hand, was de-

veloped especially for problems in a class of HEB problems. DYCORS incorporates an idea

from the DDS [115], wherein the next evaluated point is selected from random trial solu-

tions obtained by perturbing only a subset of the coordinates of the current best solution.

DYCORS was tested on problems up to 200 dimensions [97].

The progress in parallel computing technologies opened the possibility to develop al-

gorithms for blackbox global optimization problems that exploit the availability of several

processors by doing several expensive function evaluations simultaneously. Parallel TRIOPT

[127, 128] uses parallel partitioning to divide the problem domain into smaller sub-spaces.

Partitions that hold a promise of containing the global optimum are re-partitioned according

to different triangular splitting strategies. HOPSPACK is a parallel pattern search package

for nonlinear programs [85]. Parallelism in HOPSPACK is done by assigning the individ-

ual function evaluations to different processors. There are also several parallel versions of

MADS [9]: p-MADS (evaluates the trial points in parallel), COOP-MADS (launches con-

current executions of MADS with different seeds), and PSD-MADS (explores subspaces of

variables in parallel). The results in [9] indicate that p-MADS gives in general equivalent

results to MADS but is much faster. COOP-MADS is usually more efficient than p-MADS,

and PSD-MADS is well suited for larger problems (up to 500 variables) [9]. Regis and Shoe-

maker [96] also developed a parallel version of LMSRBF (ParLMSRBF) where parallelism is

exploited by selecting several new function evaluation points in each iteration and distribut-

ing these points for the computationally expensive function evaluation among the available
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processors. Viana et al. [120] proposed MSEGO, a method based on EGO [57], which uses

multiple surrogates to select several points per iteration for simultaneous evaluation. Finally,

in population-based methods, the offspring created in each generation can be distributed to

different processors for fitness function evaluations in parallel. Examples of parallel heuris-

tic methods are parallel simulated annealing [80], parallel genetic algorithm [5]. Exploiting

parallelism in optimization with computationally expensive function evaluations reduces the

total computation time tremendously, and thus in this chapter we develop the new algorithm

PADS that exploits multiple processors.

3.1.2 Stochastic Response Surface (SRS) Framework

Regis and Shoemaker [95] introduced a class of stochastic response surface algorithms, called

SRS (Stochastic Response Surface) which is a framework for expensive global optimization.

Examples of methods based on SRS are LMSRBF [95] and DYCORS [97]. A parallel version

of SRS was introduced in [96] where multiple points are selected per iteration and distributed

across several processors in order to reduce the overall execution time of the optimization

algorithm.

The SRS framework is given in Algorithm 3.1. The iteration of any surrogate-based op-

timization consists of performing the function evaluations of the points in the initial experi-

mental design and building an RBF model to approximate an expensive objective function.

The algorithm then makes use of this computationally inexpensive response surface to de-

termine the location of the next function evaluation point. Finally, the algorithm updates

the surrogate after the new evaluated point is added in.

3.1.3 Main Contributions

PADS (PArallel Dynamic coordinate search with Surrogates) is a global optimization method

developed for high-dimensional expensive blackbox functions. As the idea of DDS (to per-

turb only a subset of the coordinates of the current best solution) has recently been shown
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Algorithm 3.1 Stochastic Response Surface (SRS) [95]

Input: initial experimental design

1: build initial response surface
2: repeat
3: generate candidate points around xbest;
4: select a point for function evaluation;
5: update xbest, the best point found so far;
6: update response surface;
7: until termination condition is met

Output: the approximate global minimum

to be effective for high-dimensional problems in DYCORS, in this work, we also incorpo-

rate the idea of DDS into PADS. However, PADS is more general than DYCORS in that it

allows different ways of generating a set of candidate points (from which the next function

evaluation points are selected). In addition, instead of simulating one point per iteration as

was done in DYCORS, the algorithm is more flexible in that it simulates multiple points per

iteration for simultaneous expensive function evaluations.

The purpose of this study is three-fold:

1. In Section 3.2 we develop PADS (PArallel Dynamic coordinate search with Surrogates),

a global optimization framework for HEB problems, which is an extended version of

SRS. In each iteration, J new sample points are selected and evaluated by J processors

simultaneously. Candidate points of PADS are generated by perturbing only a subset

of coordinates of the current best solution as was done in DDE and DYCORS.

2. Two algorithms that follow PADS framework are introduced, namely, PADS1 and

PADS2. PADS1 uses a truncated Gaussian distribution while PADS2 uses a standard

Gaussian distribution with reflective bound as a perturbation distribution. While a

Gaussian distribution has been implemented previously (e.g. [95, 97]), a truncated

Gaussian distribution is a new distribution for SRS that has never been implemented

in any previous algorithms that follows SRS.
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3. In Section 3.3 we prove that PADS converges to the global minimum almost surely.

As PADS can be considered as an extended parallel version (with more flexibility) of DY-

CORS [97], the convergence of PADS also verifies the convergence of DYCORS, which was

not provided in [97]. We compare PADS to other widely used blackbox global optimization

algorithms (serial and parallel algorithms) for 30- and 200-dimensional problems in Section

3.5. We compare to the serial methods NOMADm-RBF and NOMADm-DACE (MATLAB

implementation of the MADS algorithm coupled with RBF and kriging, respectively), LM-

SRBF [95], DE [113], ESGRBF [91, 107], and rbfSolve (an RBF based method implemented

in Tomlab optimization toolbox for Matlab) [15, 50]. The parallel algorithms included in the

comparison are PSD-MADS [9], ParLMSRBF [96], ParDE, and ParESGRBF where at each

generation, the expensive objective function evaluations of population are distributed across

processors. Good results on seven multimodal test functions, each with 30 and 200 variables

illustrate the advantages of our algorithms. The analysis of PADS1 under two measures,

namely, the α-Speedup and the α-Work Ratio will also be discussed.

3.2 PADS Framework

Different algorithms use different techniques to select the next evaluation point and update

the surrogate. These steps are usually the algorithm’s computationally intensive task espe-

cially when the problem dimension is high. Most of the surrogate-based algorithms, however,

only simulate one expensive function evaluation and update the surrogate immediately af-

ter every simulation is done. On the other hand, in each iteration of PADS, the algorithm

simulates multiple points for simultaneous function evaluations, and the algorithm updates

the surrogate only after function evaluations on all selected points are completed.
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3.2.1 PADS(J) Description

The objective function of box-constrained minimization problem is defined in Eq. (1.1).

We will use PADS(J) to mean PADS with J > 0 function evaluations (simulations) per

iteration. PADS(J) requires the input information shown below and the pseudocode is

shown in Algorithm 3.2.

Inputs:

• A continuous real-valued function f defined on a hyperrectangle D = [lb, ub] ⊂ Rd

• The number of expensive function evaluations simulated per iteration J

• A response surface model

• A set of initial evaluation points S0 = {x1, ..., xn0}

• The number of candidate points in each iteration, denoted by Ncand, where Ncand 9 J

• The maximum number of function evaluations allowed, denoted by Nmax

• The initial step size σinit and the minimum step size σmin

• The tolerance for the number of consecutive failed iterations τfail and the threshold for

the number of consecutive successful iterations τsuccess

Outputs: The best point xbest and the corresponding value fbest

Below we will give a description of the four functions, namely, ϕ(n) (Step 3b), Perturb_x

(Step 3(c)ii), Select_J_Evaluation_Points (Step 3d), and Adjust_Step_Size (Step

3g). Two algorithms PADS1 and PADS2 that follow PADS framework will also be in-

troduced along the way. Note the difference of these two algorithms in Perturb_x and

Adjust_Step_Size. We use the term PADS whenever the description is applied to both

algorithms of PADS. We will specifically mention PADS1 or PADS2 if the description only

applies to one but not the other.
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Algorithm 3.2 PArallel Dynamic coordinate search with Surrogates (PADS)

1. Initialization. Set σ0 ← σint, Cfail ← 0, Csuccess ← 0.

2. Evaluation of initial design points. Do expensive function evaluations on S0 =
{x1, ..., xn0}, the initial points. Set n = n0. Denote the best point found so far by xbest,
i.e. xbest = argminx∈S0

f(x), and fbest = f(xbest).

3. While stopping criterion not met (while n < Nmax is true)

(a) Build or update the surrogate model, sn(x), using all evaluated points in Sn and
their corresponding function values.

(b) Compute the probability of perturbing a coordinate: pselect = ϕ(n).

(c) Generate Ncand candidate points around xbest : Ωn = {yn,1, ..., yn,Ncand
}. For

j = 1, ..., Ncand, each candidate point yn, j is generated by

i. Select perturbation coordinates: For each coordinate i, generate d uniform
random numbers u1, ..., ud ∈ [0, 1]. Let Iperturb = {i : ui < pselect} be the set
of indices of coordinates of xbest to be perturbed. If Iperturb = ∅, randomly
select the coordinate i from {1, ..., d} and set Iperturb = {i}.

ii. Generate candidate point: yn, j = Perturb_x(xbest, Iperturb, σn, lb, ub)

(d) Select the next J points to evaluate: We select the set of points {xn+1, ..., xn+J}
from the set of candidate points Ωn based on the information from the surrogate
sn(x) and from the location of previously evaluated points through the function
Select_J_Evaluation_Points(Ωn, sn(x), Sn).

(e) Perform expensive function evaluations: For each l = 1, ..., J, computes f(xn+l).

(f) Update counters: If min1≤l≤J f(xn+l) < fbest, reset Csuccess = Csuccess + 1 and
Cfail = 0; otherwise reset Cfail = Cfail + 1 and Csuccess = 0.

(g) Adjust step size σn+J : [σn, Csuccess, Cfail] = . . .
Adjust_Step_Size(σn, Csuccess, τsuccess, Cfail, τfail).

(h) Update the set of evaluated points: Sn+J = Sn ∪ {xn+1, ..., xn+J}.
(i) Reset n = n + J, and update the best point xbest found and f(xbest) =

minx∈Sn f(x).

4. Return the best solution found: Return xbest and fbest.
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Figure 3.1: Probability ϕ(n) of selecting a variable of xbest for perturbation versus the number
of function evaluations when n0 = 6 and Nmax = 200

3.2.1.1 Function pselect = ϕ(n)

In Step 3b, the probability ϕ(n) of perturbing a coordinate of xbest when generating candidate

points is defined by

ϕ(n) = ϕ0 × [1− ln(n− n0 + 1)/ ln(Nmax − n0)], (3.2.1)

for all n0 ≤ n ≤ Nmax−1, where ϕ0 = min(20/d, 1) as was done in [97]. Thus, if the problems

dimension d is larger than 20, the average number of variables being initially perturbed is

d × (20/d) = 20. With this definition of ϕ(n), the algorithm searches initially globally

because all coordinates of xbest are perturbed. As the number of total function evaluations

approaches the computational budget, the probability ϕ(n) decreases and fewer variables of

xbest are perturbed. Thus, towards the end, the algorithm searches locally for improvements.

This approach has been shown to improve the solution quickly for HEB problems [97]. Figure

3.1 shows an example of the probability ϕ(n) of perturbing a variable of xbest as a function

of total function evaluations when n0 = 6 and Nmax = 200.
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3.2.1.2 Function yn, j = Perturb_x(xbest, Iperturb, σn, lb, ub) and two versions of

PADS: PADS1 and PADS2

Given xbest, Iperturb, σn, and the domain D = [lb, ub] where lb = (l(1), ..., l(d)), ub =

(u(1), ..., u(d)) ∈ Rd, two types of candidate points are introduced in Figure 3.2.

Definition 3.1. We will call the two versions of PADS algorithm based on the type of

candidate points generated in Perturb_x:

(1) PADS1: the PADS algorithm with truncated Gaussian candidate points

(2) PADS2: the PADS algorithm with Gaussian with reflective bound candidate points.

Function yn, j = Perturb_x(xbest, Iperturb, σn, lb, ub)
• generate yn, j = xbest + z, where z(i) is a random variable such that:

• PADS1: Truncated Gaussian Perturbation

– z(i) =

{

Ntruncated(0, σ2
n; a

(i), b(i))

0

for i ∈ Iperturb

for i /∈ Iperturb

, where

a(i) = l(i) − x(i)
best; b

(i) = u(i) − x(i)
best.

(Refer to section 3.2.2 for details about the truncated normal distribution.)

• PADS2: Gaussian Perturbation with Reflective Bound

– z(i) =

{

N(0, σ2
n)

0

for i ∈ Iperturb

for i /∈ Iperturb

.

– If yn, j /∈ D, then replace it by a point in D obtained by performing
successive reflection of yn, j about the closest point on the boundary of D.

Figure 3.2: Pseudocode Perturb_x

While the Gaussian distribution has been used to generate candidate points in previous

algorithms that follow SRS framework [90, 95, 96, 97], the truncated Gaussian distribution is

new for SRS framework. In previous versions of SRS, if a Gaussian candidate point yn, j /∈ D,

the point is either replaced by the nearest point in D [95, 96] or successive reflected about
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Figure 3.3: Candidate points (×) generated around xbest (*) for various values of pselect

the closest point on the boundary of D [97]. Unlike any previous SRS methods, PADS1

generates truncated normal candidate points within the domain, and thus the reflection is

not necessary.

Figure 3.3 illustrates the perturbation of xbest for various values of pselect in a two-

dimensional example on the domain [−1, 1]×[−1, 1]. We see that as the algorithm progresses

and pselect decreases, fewer coordinates are selected for perturbation. Hence, the search be-

comes more local.

3.2.1.3 Function [xn+1, ..., xn+J ] = Select_J_Evaluation_Points(Ωn, sn(x), Sn)

The function Select_J_Evaluation_Points in Step 3d is based on a weighted score which

is used to select the next J evaluation points from the set of candidate points Ωn. The J

points with the best weighted scores of the RBF and the distance criterion are selected for

function evaluations. A balance between exploration and exploitation is achieved by cycling

through a set of weights for these two criteria. This weight cycling method is a key component
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of the SRS method [95] and was used in subsequent papers by Regis and Shoemaker [90, 96]

including DYCORS-LMSRBF [97]. The weight pattern for the RBF criterion is denoted by

Υ =< v1, ..., vκ >, where 0 ≤ v1 ≤ · · · ≤ vκ ≤ 1. If n is the number of previously evaluated

points, the weights wR
n and wD

n for the RBF and the distance criterion, respectively, are

defined for n ≥ n0 by

wR
n =











vmod(n−n0+1,κ)

vκ

if mod(n− n0 + 1, κ) 4= 0

otherwise
, and wD

n = 1− wR
n .

As in [96], given n previously evaluated points Sn = {x1, ..., xn} and the weights wR
n and

wD
n , the function Select_J_Evaluation_Points described in Figure 3.4 selects {xn+1, ..., xn+J}

for evaluation in parallel. When J > 1, each of the J points {xn+j : j = 1, .. J} within the

current iteration is selected sequentially so that each point xn+j is far away from both previ-

ous evaluated points Sn = {x1, ..., xn}, and the j − 1 already selected points in the current

iteration, {xn+1, ..., xn+j−1}. When J = 1, the scheme Select_J_Evaluation_Points

selects one point for function evaluation, which coincides with the function

Select_Evaluation_Point of DYCORS [97].
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Function [xn+1, ..., xn+J ] = Select_J_Evaluation_Points(Ωn, sn(x), Sn) [95, 96]
1. Estimate function value of candidate points: For any point y ∈ Ωn, compute the

surrogate value sn(y), as well as smax
n = max{sn(y) : y ∈ Ωn} and smin

n = min{sn(y) :
y ∈ Ωn}.

2. Compute score based on RBF surrogate value: For any point y ∈ Ωn, compute V R
n (y) =

(sn(y)− smin
n )/(smax

n − smin
n ) if smax

n 4= smin
n and V R

n (y) = 1 otherwise.

3. Select the J evaluation points sequentially: For j = 1, ... J , do

(a) Calculate minimum distance from previously evaluated points and previously se-
lected points: For any point y ∈ Ωn, compute Dn+j−1(y) = min{‖x− y‖ : x ∈
Sn ∪ Bj}, where ‖·‖ is the Euclidean norm and B1 = ∅, Bj = {xn+1, ..., xn+j−1}
for j = 2, ..., J . Note that Bj contains previously selected points within the
current iteration. Also, compute Dmax

n+j−1 = max{Dn+j−1(y) : y ∈ Ωn} and
Dmin

n+j−1 = min{Dn+j−1(y) : y ∈ Ωn}.
(b) Compute score based on minimum distance: For any point y ∈ Ωn, compute

V D
n+j−1(y) = (Dmax

n+j−1 − Dn+j−1(y))/(Dmax
n+j−1 − Dmin

n+j−1) if Dmax
n+j−1 4= Dmin

n+j−1 and
V D
n+j−1(y) = 1 otherwise.

(c) Compute weighted score: For any point y ∈ Ωn, compute Wn+j−1(y) =
wR

n+j−1V
R
n (y) + wD

n+j−1V
D
n+j−1(y).

(d) Select the next evaluation point: xn+j = argminy∈Ωn Wn+j−1.

Figure 3.4: Pseudocode Select_J_Evaluation_Points

3.2.1.4 Function [σn, Csuccess, Cfail] = Adjust_Step_Size(σn, Csuccess, τsuccess, Cfail, τfail)

We now define the function Adjust_Step_Size (Step 3g). When Csuccess ≥ τsuccess, differ-

ent schemes are used to update σn in PADS1 and PADS2.
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Function [σn, Csuccess, Cfail] = Adjust_Step_Size(σn, Csuccess, τsuccess, Cfail, τfail)
• If Cfail ≥ τfail, then

– σn+1 = max(σn/2, σmin), and

– Cfail = 0.

End

• If Csuccess ≥ τsuccess, then

– σn+1 =

{

min(2σn, σinit)

2σn

for PADS1
for PADS2

, and

– Csuccess = 0.

End

Figure 3.5: Pseudocode Adjust_Step_Size

The current step size σn for both PADS1 and PADS2 is reduced by half and Cfail is reset

to 0 whenever Cfail reaches τfail. This step size is decreased to facilitate convergence and the

minimum step size σmin prevents the candidate points from getting too close to xbest. On the

other hand, the current step size σn is doubled and Csuccess is reset to 0 whenever Csuccess

reaches τsuccess. The step size is doubled to accelerate the search in the domain, which was

proven to be effective [90, 95, 96, 97].

Note that the bound for PADS2 is defined to be the same as that of DYCORS. However,

for PADS1, we also impose an upper bound σinit so that the step size used to perturb xbest

does not become unnecessarily large.

Remark 3.2. When J = 1, PADS2(1) coincides with DYCORS-LMSRBF in [97].

3.2.2 Truncated Gaussian Distribution

The truncated Gaussian distribution (or the truncated normal distribution) is the probability

distribution of a normally distributed random variable whose value is bounded in the domain

[a, b] , where −∞ < a < b <∞.
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Suppose X ∼ N(µ, σ2) has a normal distribution. Then, X conditional on a ≤ X ≤ b

has a truncated normal distribution with the probability density function given by [44]

f(x; µ, σ, a, b) =











1
σ
φ(x−µ

σ
)

Φ( b−µ
σ

)−Φ(a−µ
σ

)
; a ≤ x ≤ b

0 ; otherwise
(3.2.2)

where φ(z) = 1√
2π

exp(−1
2z

2) is the probability density function of the standard normal

distribution N(0, 1) and Φ is its corresponding cumulative distribution function. We denote

this distribution by Ntruncated(µ, σ2; a, b).
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Figure 3.6: Comparison of Gaussian and truncated Gaussian distributions

Figure 3.6 gives various examples of the probability density function of the truncated

Gaussian distribution and the Gaussian distribution. With a fixed (µ, σ2) values, we see

that the two distributions are very different especially when σ2 is large relative to the bound

(σ2 = 102) or when µ does not fall towards the middle of the bound (µ = −4). In PADS2 and

DYCORS-LMSRBF, if a generated point falls into the area outside the bound [−4, 5], the
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algorithm will successively reflect the point about the closest boundary. On the other hand,

PADS1 generates a point according to a truncated Gaussian distribution, the generated point

will always fall into the bound [−4, 5].

3.3 Convergence of PADS Methods

With some technical conditions for the algorithm parameters, it has been shown that LM-

SRBF converges to the global minimum almost surely [95]. In this section we will prove the

global convergence of the PADS(1) algorithm. The method can be extended to prove the

convergence of PADS(J) when J > 1.

To prove the convergence of serial PADS(1), we will apply the theorem that was proved in

[95]. Using the notation introduced in [95], we will show that PADS(1) satisfies all conditions

required for the theorem.

Definition 3.3. For 1 ≤ j ≤ Ncand and n ≥ n0,

Yn, j is the random vector representing the random candidate point yn, j before it was

forced to be in the domain D (See function Perturb_x in Figure 3.2).

YD is a transformation of a random vector Y (whose realization is in Rd) so that YD

is always in D. i.e. T : Rd → D is a deterministic function and YD = T(Y ) ∈ D.

Xn+1 is the random vector representing the (n+ 1)th function evaluation point xn+1.

Note that the generated candidate points of PADS1 are always in the domain D, and thus

Yn, j = (Yn, j)D in this case. Therefore, the transformation YD defined above in fact occurs

only in PADS2.

Fix n ≥ n0, and let x∗
n be the best point found so far (the point with the lowest objective

function value). Recall that in PADS, each coordinate of x∗
n has a probability ϕ(n) ∈ [0, 1] to

be perturbed and any candidate point y is generated by perturbing a subset of the variables of
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x∗
n. In case no variable of x∗

n is selected for perturbation with ϕ(n), one variable is randomly

chosen, and thus at least one variable of x∗
n will always be perturbed to obtain y.

Let Q be a random vector in {0, 1}d \ {(0, ..., 0)} that determines which coordinates of

x∗
n will be perturbed to obtain y, i.e. Q(j) = 1 if the jth coordinate of x∗

n is selected to

perturb, and Q(j) = 0 otherwise. Then, Q can be modeled as follows through the random

vectors R and E:

Define R = (R(1), ..., R(d)) to be a random vector in {0, 1}d that follows the multivariate

Bernoulli distribution with parameter p, i.e. each coordinate i of R is such that P (R(i) = r) =

pr(1− p)1−r, r ∈ {0, 1}. If at least one of the coordinates is selected for perturbations, then

the distribution of Q will simply follow R. However, in the case that none of the coordinates

are being selected, then the algorithm will uniformly pick exactly one of the coordinates for

a perturbation. We shall introduce another random vector, called E = (E(1), ..., E(d)), to

capture the latter scenario.

Let ei = (0, 0, ..., 0, 1, 0, ..., 0) be the ith row of the d× d identity matrix. Then, E is a

random vector such that P (E ∈ ∪di=1{ei}) = 1 and P (E = ei) = 1/d for i = 1, .. d.

Combining the two random vectors R and E gives us a correct representation of Q :

Q = R1{R)=,0} + E1{R=,0}, (3.3.1)

where for any set A,

1A(x) =










1

0

if x ∈ A

if x /∈ A

(3.3.2)

is an indicator function and 10(i) = 0 for all i = 1, ... d.

Definition 3.4. For 1 ≤ j ≤ Ncand and n ≥ n0, let random vectors Qn, j , Rn, j, En, j have

the same distributions corresponding to Q, R and E defined above where the parameter

p = ϕ(n) > 0. Then, Qn, j is the random vector that determines which coordinates of X∗
n are

chosen for a perturbation to obtain Yn, j , where X∗
n is the random vector representing x∗

n.
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For each n ≥ n0, let

• Fn := {X1, .., Xn0 , Yn0, 1 , ..., Yn0, Ncand
, ..., Yn, 1, ..., Yn,Ncand

},

• Qn := {Qn0, 1 , ..., Qn0, Ncand
, ..., Qn, 1, ..., Qn,Ncand

}.

Then, define

• En = Fn ∪Qn for n ≥ n0, and En0−1 := {X1, ..., Xn0}.

So Fn is the set of points that were used to build the initial surrogate model for PADS(1)

(in Step 2) and all candidate points generated (in Step 3c of Algorithm 3.2) in all iterations

up to n. Qn is the set of vectors describing which coordinates of X∗
n are perturbed to obtain

each of the candidate point Yn, j in all iterations up to n.

Remark 3.5. In PADS(1), for each n > n0, the value of Xn is selected deterministically from

the values of the random vectors (Yn−1, 1)D, ..., (Yn−1, Ncand
)D (see Step 3d of Algorithm 3.2).

Therefore, after the nth function evaluation, the entire path of the algorithm is completely

determined by σ(En−1), the σ − algebra generated by the random vectors in En−1.

To show that PADS(1) converges to the global minimum almost surely, we will apply the

following theorem which was presented in [95].

Theorem 3.6. Let f be a function defined on D ⊆ Rd and suppose that x∗ = minx∈D f(x) >

−∞ is the unique global minimizer of f in D such that minx∈D,‖x−x∗‖≥η f(x) > f(x∗) for

all η > 0. Suppose further that the SRS method generates the random vectors {Xn}n≥1 and

{Yn, 1, ..., Yn,Ncand
}n≥n0 satisfying the following two conditions:

[C1] For each n ≥ n0, Yn, 1, ..., Yn,Ncand
are conditionally independent given the random

vectors in En−1.

[C2] For any j = 1, ..., Ncand, x ∈ D and δ > 0, there exists νj(x, δ) > 0 such that

P [Yn, j ∈ B(x, δ) ∩D|σ(En−1)] ≥ νj(x, δ)
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for all n ≥ n0, where B(x, δ) is the open ball of radius δ centered at x.

If the sequence of random vectors {X∗
n}n≥1 is defined by X∗

1 = X1 and

X∗
n =











Xn

X∗
n−1

if f(Xn) < f(X∗
n−1)

otherwise
,

then X∗
n

a.s.−−→ x∗.

Proof. Replacing En defined in [95] with our (larger) En defined in Definition 3.4 and by

a straightforward replication of the proof in [95], this theorem also holds for the PADS(1)

framework.

To apply this theorem, one needs to show that PADS(1) satisfies conditions [C1] and

[C2] of Theorem 3.6. The condition [C1] is trivial. The condition [C2] says that the

algorithm is able to sample points in any region of D. The following two lemmas will show

that PADS(1) indeed satisfies [C2].

Lemma 3.7. For a fixed j ∈ {1, ... Ncand}, let H be the event that all coordinates of x∗
n are

selected for perturbation (to generate yn, j), i.e. H = {Rn, j(i) = 1 for all i = 1, ..., d}. Let

gn, j be the conditional density of Yn, j given σ(En−1) and H. Then, there is a constant C > 0

such that gn, j(y) ≥ C for all y ∈ D = [lb, ub] ⊂ Rd, and n ≥ n0.

Proof. First note that Yn, j is a random vector before a candidate point is forced into the

domain D (see Definition 3.3). Under the assumption that all coordinates of x∗
n are selected

for perturbation and that all the information up to function evaluation n−1 are known, the

conditional density gn, j of each version of PADS(1) can be written in one of the following

forms:

PADS1(1): gn, j(y) = A1 exp
{

−‖y−x∗
n‖

2

2σ2
n

}

for y ∈ D and 0 otherwise (truncated normal

density);

PADS2(1): gn, j(y) = A2 exp
{

−‖y−x∗
n‖

2

2σ2
n

}

for all y ∈ Rd (multivariate normal density).
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In either case, A1, A2 > 0 are normalizing constants and it is easy to see that C :=

Ai exp
{

−‖ub−lb‖2

2(infn≥n0
σn)2

}

> 0 will be a desired constant such that gn, j(y) ≥ C for all y ∈ D =

[lb, ub].

Lemma 3.8. If infn≥n0 ϕ(n) > 0, the Condition [C2] holds for PADS(1).

Proof. Assume that infn≥n0 ϕ(n) > 0. Let j ∈ {1, ... Ncand}, x ∈ D and δ > 0 be given.

Continuing with the notation used in Lemma 3.7, in particular recall that H = {Rn, j(i) =

1 for all i = 1, ..., d} and gn, j the conditional density of Yn, j given σ(En−1) and H .

P [Yn, j ∈ B(x, δ) ∩D|σ(En−1)]

≥ P [(Yn, j ∈ B(x, δ) ∩D) ∩H|σ(En−1)]

= P [Yn, j ∈ B(x, δ) ∩D|σ(En−1), H ]× P (H)

=






ˆ

B(x, δ)∩D

gn, j(y)dy




× ϕ(n)d

≥ Cµ (B(x, δ) ∩D)×
(

inf
n≥n0

ϕ(n)

)d

:= νj(x, δ)

for any n ≥ n0, where C > 0 is a constant existing in Lemma 3.7. Then, by Lemma 3.7 and

the fact that D is a compact hyperrectangle and our assumption on ϕ that infn≥n0 ϕ(n) > 0,

one can easily see that νj(x, δ) > 0. Note also that νj(x, δ) is independent of n. Thus, the

condition [C2] is now verified.

Since the two conditions [C1] and [C2] hold for PADS(1), we can apply Theorem 3.6

and conclude that PADS(1) converges to the global minimum with probability 1.

Remark 3.9. Analogous to the arguments we made above for serial PADS(1), in general

parallel PADS(J) where J > 1 can also be shown to converge to the global minimum in a

probabilistic sense in a similar way.
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Example 3.10. One example of ϕ that satisfies the sufficient condition given in Lemma 3.8

is:

ϕ(n) =











ϕ0 × [1− ln(n− n0 + 1)/ ln(M − n0)]

ϕ(M − 2)

ifn0 ≤ n ≤M − 2

n > M − 2

,

where ϕ0 > 0 and M >> 0. This is an extension of ϕ(n), which was defined in [97] up to

n = Nmax, to the space of natural numbers larger than n0.

Remark 3.11. Since DYCORS framework is equivalent to PADS2(1), the convergence of

DYCORS is proven which was not done in [97].

3.4 Computational Experiments

3.4.1 Test Problems

Our algorithm is tested on the set of 7 well-known benchmark functions each with 30 and

200 dimensions, making a total of 14 functions. The benchmark functions are given in Table

3.1. The domain, the global minimum value, and its characteristic (unimodal or multimodal)

are also given in the table.

3.4.2 Alternative Global Optimization Methods

There are several freely available serial surrogate model algorithms. However, only very few

algorithms exploit the possibilities of parallel computing. For example, the serial code for

NOMADm (implemented in MATLAB [2]) has a build-in response surface (e.g. kriging,

RBF) options. However, PSD-MADS (a parallel version of MADS available in C++ [9])

does not have a response surface implemented. Moreover, the serial rbfSolve from TOM-

LAB [49, 50, 51] also does not have a parallel implementation. In addition to PSD-MADS
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Table 3.1: Test problems used in the experiments

Test function Domain f(x∗) Uni/Multi-modal (U/M)

Ackley30 [−15, 20]30 −22.7183 M

Griewank30 [−400, 600]30 1 M

Levy30 [−10, 10]30 1 M

Michalewicz30 [0, π]30 n/a M

Rastrigin30 [−4, 5]30 −30 M

Rosenbrock30 [−5, 10]30 1 U

Schwefel30 [−500, 500]30 1.0004 M

Ackley200 [−15, 20]200 −22.7183 M

Griewank200 [−400, 600]200 1 M

Levy200 [−10, 10]200 0 M

Michalewicz200 [0, π]200 n/a M

Rastrigin200 [−4, 5]200 −200 M

Rosenbrock200 [−5, 10]200 0 U

Schwefel200 [−500, 500]200 0.0025 M

which is a parallel method designed specifically for large-scale problems, the alternative par-

allel surrogate-based methods we use in this study are ParLMSRBF [96]. Moreover, since

population-based algorithms are also well suited for blackbox optimization [87] and it also of-

fers an opportunity for parallelization, the parallel version of Differential Evolution, ParDE,

as well as ParESGRBF, a parallel version of Evolution Strategy with surrogate [91, 107],

are used in the comparison. A description of alternative algorithms for our comparison is

discussed below.

3.4.2.1 rbfSolve

rbfSolve implemented in the TOMLAB Optimization Environment [50] is based on Gut-

mann’s method [45]. The method uses an RBF model and seeks to balance between using

the minimum of the response surface and minimizing a bumpiness measure [15, 45]. The

solver does a warm start and resumes optimization from where the last run ended. We set

the experimental design as ExD5, where SLHDs is used as the the initial points supplied

to the solver. Note that this is the same as those used in PADS as well as other RBF

based methods for the numerical comparison. The default values were assigned for other
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parameters.

3.4.2.2 LMSRBF

The major difference between LMSRBF [95] and PADS is that a trial point in LMSRBF is

generated by applying normal distributed random perturbations on all coordinates of the

current xbest as opposed to just some of the coordinates as done in PADS. See Table 3.2 for

the parameter settings.

3.4.2.3 Evolutionary Algorithms

The use of evolutionary algorithms to solve blackbox optimization problems has gained pop-

ularity in recent years. Among many evolutionary algorithms, Differential Evolution (DE)

[113] which is based on weighted vector differences is considered one of the most powerful

stochastic optimization algorithms for blackbox functions. While traditional evolutionary

strategies use predetermined probability distributions to perturb population vectors, DE uses

vector differences for perturbing the vector population with self adaptation. The Matlab im-

plementation of DE that is available from: http://www.icsi.berkeley.edu/∼storn/code.html

is used for our comparison.

The main parameters of DE are: NP (the population size ≥ 4), CR (the crossover

constant ∈ [0, 1]), and F (the weight applied to random differential, called a scaling factor

∈ [0, 2]). Since there is no single strategy that works out to be the best for all given problems,

following Storn and Price [113], we set the parameters F = 0.5 for the scaling factor and

CR = 0.9 for the probability of crossover. The recommended value of NP is between 5 × d

and 10× d (i.e. 150 ≤ NP ≤ 300 for d = 30 and 1000 ≤ NP ≤ 2000 for d = 200). However,

with the limitation of the number of function evaluations allowed, this choice is no longer

appropriate when d = 200. Therefore, after some preliminary tests, NP = 304 (≈ 10 × d)

and 512 (≈ 2.5× d) are taken for problems with 30 and 200 dimensions, respectively.

There are many variants of DE proposed in [113]. In addition to DE/rand/1, which is
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the classical version of DE, we also use DE/best/1 strategy, with the same set of parameters

(“rand” refers to a randomly chosen population vector, and “best” refers to the vector of

lowest cost from the current populations). We found that the DE/best/1 strategy works

much better on all the test functions we consider. With this strategy, we also tried a different

set of parameters: (F = 0.3, CR = 1) where NP are kept the same as previous. In addition,

for d = 30 problems, we also reduced the number of NP to 64 (≈ 2× d).

Preliminary results of DE for various test problems and different parameter settings are

summarized in Figures 3.7 and 3.8 for 30- and 200-dimensional problems, respectively. We

see that for the 30-dimensional problems, DE/best/1 performs better with the parameters

(F = 0.5, CR = 0.9). However, for the 200-dimensional problems, (F = 0.3, CR = 1)

works significantly better for all problems. In addition, for the 30-dimensional problems

with smaller NP, the algorithm is able to find improved objective function values for most

problems only within the first few hundred evaluations and then flattens out, which indicates

that the algorithm may be in a local minimum.

In the following we will use, for example, DE/rand/1-(0.5,0.9,304) to refer to the DE/rand/1

strategy with parameters (F = 0.5, CR = 0.9, NP = 304). For a clearer presentation,

for a 30-dimensional problem, we will include only the best two algorithms: DE/best/1-

(0.5,0.9,304) and DE/best/1-(0.3,1,64), while for a 200-dimensional problem, we include

DE/best/1-(0.3,1,512) in our numerical comparison with other alternative methods.

In addition to DE, we also compare an evolutionary algorithm that uses RBF approxi-

mation (ESGRBF) [91, 107] with our method. ESGRBF incorporates the use of RBFs into

a standard Evolution Strategy (ES). Based on self-adaptive algorithm parameters, in each

generation, λ ≥ ν offspring are generated and their objective function value is predicted by

the RBF surrogate. The true objective function is evaluated for the ν individuals with the

best predicted objective function values. Finally, the µ parents for the next generation are

then selected from these ν offspring. In the numerical experiments, the parameters are taken
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Figure 3.7: Results of DE for 30-dimensional problems. Plots show the mean of the best
objective function value (y) vs. the number of function evaluations (x).
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Figure 3.8: Results of DE for 200-dimensional problems. Plots show the mean of the best
objective function value (y) vs. the number of function evaluations (x).
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as: µ = 8, λ = 50, and ν = 16. Note that the parameter ν was set to 20 in [107]; however,

after a preliminary test, we found that the results are not significantly different from ν = 16.

Thus, to make it easy to parallelize (with P = 4, 8, 16 processors), we set ν = 16.

3.4.2.4 MADS (Mesh Adaptive Direct Search methods)

NOMAD [1, 9, 65, 67] is a C++ implementation of MADS methods [4, 8] and is designed to

solve nonlinear, nonsmooth optimization problems. Besides a serial version, several parallel

versions of MADS have also been proposed. P-MADS is the most straightforward imple-

mentation of MADS, where several points are evaluated in parallel by different processors.

Recently, Audet et al. [9] proposed PSD-MADS which uses Parallel Space Decomposition

within the MADS framework. PSD-MADS splits the variables of the original problem into

a fixed number of subproblem, where each subproblem has only a small number of variables.

The algorithm was used to solve problems with up to 500 variables [9].

For the comparison of serial algorithms, we use NOMADm, which is a MATLAB imple-

mentation of the MADS algorithm [2]. NOMADm can be used with an RBF or a kriging

(DACE) surrogate model. We refer to these algorithms as NOMADm-RBF and NOMADm-

DACE, respectively. For the comparison of the parallel algorithms, we will use the C++

implementation of PSD-MADS [9, 66].

Good results for a high-dimensional problem were obtained by setting bbemax = 10 and

ns = 2 in [9, 66]. We tested PSD-MADS both with ns = 2 and ns = 20, and we also found

that having the processors work on small-dimensional subspaces with ns = 2 leads to better

results. Therefore, we keep bbemax = 10 and ns = 2 fixed for all test problems.

3.4.3 Experimental Setup

All numerical experiments except for PSD-MADS were carried out on MATLAB 7.14 (R2012a)

on Intel(R) Core(TM) i7 CPU @3.40GHz 3.40 GHz. Since PSD-MADS is implemented in

C++, the parallel experiments were performed on the NSF and NCAR Yellowstone com-
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Table 3.2: Parameter values for PADS and LMSRBF

Parameter Value
N cand = |Ωn| (number of trial points for each iteration) min(500d, 5000)
Υ (weight pattern) < 0.3, 0.5, 0.8, 0.95 >
κ (number of weights in Υ) 4
σint (initial step size) 0.2l(D)
σmin (minimum step size) (0.2)(1/2)6l(D)
τsuccess 3
τfail max(d, 5)

puting environment [26] and solutions were computed and stored using double precision.

Ten trials of all algorithms are performed for all 30-dimensional problems and five trials are

performed for the 200-dimensional problems.

All algorithms based on RBF used the cubic RBF model with a linear polynomial tail.

The RBF model is initialized using symmetric Latin hypercube designs (SLHDs) [129] for the

30-dimensional problems, while non-symmetric Latin hypercube designs (LHDs) are used for

the 200-dimensional problems as was done in [97]. The initial sample size n0 for an algorithm

running with P processors is set to the smallest non-negative integer in the set MP , where

MP = {m ∈ N : m ≥ 2(d + 1) andP | m}, and MP = {m ∈ N : m ≥ d+ 1 andP | m} are

used for problems with 30 and 200 dimensions, respectively.

The parameter values for PADS and LMSRBF are set as in [97] and are for convenience

shown in Table 3.2, where l(D) denotes the length of the shortest side of the hyperrectangle

D.

3.5 Numerical Results and Discussion

In this section, the experimental results are presented for the benchmark test functions

described in Section 3.4.1.
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3.5.1 Performance Measurement Setup

Assume that the computational time for each function evaluation is approximately equal.

Let AP be an algorithm we consider that uses P processors for doing P function evaluations

in parallel. Then, for any AP , P function evaluations can be done simultaneously in one

parallel iteration, and the total wall-clock time can be broken down as:

W (P ) = (nf (P )/P )
︸ ︷︷ ︸

t+ T−f (P )

=: IP

(3.5.1)

where

• P is the number of processors

• t is the CPU time for one function evaluation

• nf(P ) is the total number of function evaluations performed by any of the P processors

• IP := nf (P )/P is the number of parallel iterations (where nf (P ) is divisible by P )

• T−f(P ) is the wall-clock time the algorithm spends on everything else except the func-

tion evaluations. In particular, this includes fitting and updating the response surface,

selecting the next evaluation points as well as the communication time between the

master and the workers, and contention for shared data structures.

Note that the number of iterations (IP ) should not be confused with the number of function

evaluations (nf (P )). Since we assume that each function evaluation takes approximately the

same amount of time to compute, P function evaluations can be done simultaneously for

algorithm AP in one iteration. For example, PADS(16), PADS(8), and PADS(4) perform 16,

8 and 4 function evaluations, respectively, in one parallel iteration while the serial algorithm

PADS(1) only does a single function evaluation in each iteration. Hence, if IP = 10, then

nf (P ) = 160 for PADS(16), nf (P ) = 80 for PADS(8), nf(P )= 40 for PADS(4), and nf(P ) =

10 for the serial algorithm.
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As discussed in [96], when the objective function is truly expensive (i.e. t is very large),

then T−f (P ) is generally negligible compared to tIP = t(nf (P )/P ) which is the total time

spent on function evaluations. In addition, since the actual computation times of our test

problems are low (milliseconds), we compare the algorithms based on the number of parallel

iterations IP .

3.5.2 Comparison with Alternative Methods

In this section, PADS1 and PADS2 are compared with the methods described in Section

3.4.1. We assume that the number of processors P = the number of evaluated points per

iteration J .

3.5.2.1 Serial Algorithms

Figures 3.9 and 3.10 show the progress curve of the serial algorithms for 30- and 200-

dimensional problems, respectively. PADS1 performs similarly to PADS2 for the 30-dimensional

problems. PADS1 outperformed or was as least as good as PADS2 for most 200-dimensional

problems. PADS2 performs better than LMSRBF for all but one test problem (Ackley200).

Recall that for the serial algorithm, PADS2(1) is essentially DYCORS-LMSRBF [97]. Thus,

the new truncated Gaussian distribution implemented in PADS1(1) is proven more effective

on this test suite than the Gaussian distribution with the reflective bound used in DYCORS.

Since DE does not use surrogate models, one would not expect it to work as well compared

to the other methods. We can see that DE with both strategies performs worst for most

30-dimensional problems (Figure 3.9). For the 200-dimensional problems (Figure 3.10), DE

outperforms NOMADm-DACE for three problems, and performs equally for the remaining

problems. Recall that the latter is based on the surrogate.

NOMADm-RBF performs in general better than NOMADm-DACE. Both NOMADm

versions are outperformed by the PADS and LMSRBF algorithms. ESGRBF was shown to

be very promising algorithm on watershed calibration problems [107], but it is outperformed
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for the test problems by several alternative algorithms including NOMADm-RBF.

We also investigated the performance of rbfSolve for the test problems. However, since

the algorithm was not designed for high-dimensional problems, the algorithm’s own computa-

tional time becomes unacceptable (e.g. about 5 days for 1 trial of 800 function evaluations on

Levy200 function versus less than 1 hour (using the same machine) when running PADS1(1)).

Thus, we used rbfSolve only for the 30-dimensional problems. While rbfSolve did very well

for three of the 30-dimensional problems (Griewank30, Levy30, Rastrigin30), rbfSolve was

outperformed for the other test problems. Thus, overall the results of the serial algorithms

suggest that the PADS algorithms are promising and more robust over a much wider set of

problems than the alternative methods.

3.5.2.2 Parallel Algorithms

Figures 3.11 and 3.12 show that overall PADS1(4) and PADS2(4) (with 4 function evaluations

per iteration) perform best for all problems in comparison to the alternative methods with 4

processors. The performance of these two algorithms is very similar for the 30-dimensional

problems. For the 200-dimensional problems, PADS1(4) performs in general better than

PADS2(4). The overall performance of PADS(4) becomes more outstanding than that of

others on 200-dimensional problems.

Figures 3.13, 3.14 and Figures 3.15, 3.16 show the progress curves of the algorithms

when using 8 and 16 processors, respectively. The results are very similar to those with

four processors, i.e. PADS1 and PADS2 are always the best two algorithms. PSD-MADS,
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Figure 3.9: SERIAL, 30D: Performance comparison of serial algorithms for 30-dimensional
problems. Shown are the progress curves (the mean of the best function values vs. the
number of iterations) of the compared algorithms. For serial algorithms, the number of
iterations equals the number of function evaluations. Error bars represent 95% confidence
intervals about the mean.
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Figure 3.10: SERIAL, 200D: Performance comparison of serial algorithms for 200-
dimensional problems. Shown are the progress curves (the mean of the best function values
vs. the number of iterations) of the compared algorithms. For serial algorithms, the number
of iterations equals the number of function evaluations. Error bars represent 95% confidence
intervals about the mean.
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Figure 3.11: 4PARALLEL, 30D: Comparison when using 4 processors for 30-dimensional
problems. Shown are the progress curves (the mean of the best function values vs. the
number of iterations) of the compared algorithms. Error bars represent 95% confidence
intervals about the mean.

90



0 50 100 150 200

−8

−6

−4
Ackley200

iteration no.

b
e
s
t 
o
b
j.
 v

a
lu

e

0 50 100 150 200
1000
2000
3000
4000

Griewank200

iteration no.

b
e
s
t 
o
b
j.
 v

a
lu

e

0 50 100 150 200
500

1000
1500
2000
2500

Levy200

iteration no.

b
e
s
t 
o
b
j.
 v

a
lu

e

0 50 100 150 200

−80

−60

−40

Michalewicz200

iteration no.

b
e
s
t 
o
b
j.
 v

a
lu

e

0 50 100 150 200
200
400
600
800

1000
1200
1400

Rastrigin200

iteration no.

b
e
s
t 
o
b
j.
 v

a
lu

e

0 50 100 150 200

0.5
1

1.5
2

2.5
x 107 Rosenbrock200

iteration no.

b
e
s
t 
o
b
j.
 v

a
lu

e

0 50 100 150 200
5

6

7

8
x 104 Schwefel200

iteration no.

b
e
s
t 
o
b
j.
 v

a
lu

e

 

 
PADS1(4)(4)
PADS2(4)(4)
ParLMSRBF(4)
ParDE/best/1-(0.3,1,512)(4)
PSD-MADS(4)
ParESGRBF(4)

Figure 3.12: 4PARALLEL, 200D: Comparison when using 4 processors for 200-dimensional
problems. Shown are the progress curves (the mean of the best function values vs. the
number of iterations) of the compared algorithms. Error bars represent 95% confidence
intervals about the mean.
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ParESGRBF, and ParLMSRBF perform quite well for the 30-dimensional problems, but

their overall performance becomes worse for many of 200-dimensional problems.

Overall, the results indicate that both PADS1(J) and PADS2(J) are much more efficient

algorithms for HEB problems compared to the alternative methods. The alternative methods

ParLMSRBF and ParESGRBF perform comparatively well for the 30-dimensional problems,

but their performance for the 200-dimensional problems degrades significantly as the number

of processors increase. Hence, not all parallel surrogate-based optimization methods are

suitable for HEB problems. Lastly, although PSD-MADS was reported to work well for

constrained problems with up to 500 dimensions [9], PSD-MADS did not perform well for

any of the test problems used in this chapter in comparison to the algorithms used here.

3.5.2.3 Cumulative normalized results index

We compiled the results of all test problems with the same dimension into one cumulative

index, namely I(A, n), to reflect the performance of algorithm A for all test functions after

n iterations.

Let Vf (A, n) be the average best objective value of algorithm A for problem f found

within n iterations. Let N denote the number of algorithms.

Fix a test function f , let mf = min1≤i≤N Vf(Ai, n) and Mf = max1≤i≤N Vf (Ai, n). So

then mf and Mf are the minimum and maximum, respectively, of the best average value
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Figure 3.13: 8PARALLEL, 30D: Comparison when using 8 processors for 30-dimensional
problems. Shown are the progress curves (the mean of the best function values vs. the
number of iterations) of the compared algorithms. Error bars represent 95% confidence
intervals about the mean.
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Figure 3.14: 8PARALLEL, 200D: Comparison when using 8 processors for 200-dimensional
problems. Shown are the progress curves (the mean of the best function values vs. the
number of iterations) of the compared algorithms. Error bars represent 95% confidence
intervals about the mean.
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Figure 3.15: 16PARALLEL, 30D: Comparison when using 16 processors for 30-dimensional
problems. Shown are the progress curves (the mean of the best function values vs. the
number of iterations) of the compared algorithms. Error bars represent 95% confidence
intervals about the mean.
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Figure 3.16: 16PARALLEL, 200D: Comparison when using 16 processors for 200-dimensional
problems. Shown are the progress curves (the mean of the best function values vs. the
number of iterations) of the compared algorithms. Error bars represent 95% confidence
intervals about the mean.
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found among all algorithms. We first calculate the normalized value Rf (Ai, n) for any

algorithm Ai as follow. For i = 1, ..., N,

Rf(Ai, n) =
Vf (Ai, n)−mf

Mf −mf
× 100. (3.5.2)

Rf (Ai, n) is defined in such a way that, for a fixed test function f and iteration number n,

0 is assigned to the best algorithm, 100 to the worst algorithm, and a value between [0, 100]

to other algorithms.

Let M denote the number of test functions. Then, the cumulative index for algorithm A

after n iterations is defined by

I(A, n) =
M
∑

i=1

Rfi(A, n)/M. (3.5.3)

So I(A, n) is the average value over all test functions, rescaled to be in [0, 100].

The cumulative indices for results that were presented in Sections 3.5.2.1 and 3.5.2.2

are shown in Figures 3.17 through 3.20. The abbreviations LMSRB for LMSRBF, DE1

for DE/best/1-(0.5,0.9,304), DE2 for DE/best/1-(0.3,1,64), DE3 for DE/best/1-(0.3,1,512),

NOMA-R for NOMADm-RBF, NOMA-D for NOMADm-DACE, rbfSOL for rbfSolve, and

PSD-MA for PSD-MADS are used throughout this section.

We see that the cumulative index of PADS1 in all cases are lowest for 30- and 200-

dimensional problems. Hence, it is the best algorithm based on this measure. PADS2 also

does very well according to this measure.

3.5.3 Analysis of PADS1(J)

In this section, we will compare the performance of PADS1(J) for J being the number of

simulated points per iteration. The analysis for PADS2 can be done in the same manner.
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Figure 3.17: Cumulative indices when using 1 processor
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Figure 3.18: Cumulative indices when using 4 processors
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Figure 3.19: Cumulative indices when using 8 processors
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Figure 3.20: Cumulative indices when using 16 processors
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3.5.3.1 Progress Plot

In Figures 3.21 and 3.22, we present the progress plots for PADS1(J) for J = 1, 4, 8, and

16 processors. Each subplot shows the mean of the best objective function value versus the

number of iterations of PADS1(J). The results show that for a fixed number of iterations,

PADS1(J) performs significantly better as J increases. The effect of a larger number of

processors J becomes more prominent in 200-dimensional test functions where the plot of

PADS1(16) has clearly separated from the rest. One thing we should point out is that for

a serial PADS1(1), the first two hundred function evaluations of a 200-dimensional problem

are spent merely on building the response surface, this explains why the plot is almost flat

in this case in Figure 3.22.

3.5.3.2 The α-Speedup

Assume that the number of processors (P ) is equal to the number of evaluated points per

iteration (J). Let

{x1, ..., xJ ,
︸ ︷︷ ︸

· · · ,

Iter.1

x(k−1)J+1, ..., xkJ ,
︸ ︷︷ ︸

· · · ,

Iter.k

x(Nmax−J)+1, .., xNmax}
︸ ︷︷ ︸

Iter.(Nmax/J)

be the sequence of evaluated points for PADS1(J), where in every iteration, J function

evaluations are done simultaneously. Let n(α)(J) and I(α)(J) be the number of function

evaluations and the number of iterations required by PADS1(J) to reach a specified value,

called an α−level, i.e.

n(α)(J) = argmini{f(xi) ≤ α given J processors} (3.5.4)
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Figure 3.21: Progress plots of PADS1 for 30-dimensional problems. Shown is the average
best function value vs. the number of iterations for various values of J . Iteration number is
proportional to wall-clock time for parallel computation.
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Figure 3.22: Progress plots of PADS1 for 200-dimensional problems. Shown is the average
best function value vs. the number of iterations for various values of J .
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and

I(α)(J) =
⌈

n(α)(J)/J
⌉

. (3.5.5)

Then, the α−level speedup for PADS1(J) is defined by:

α-Speedup(J) := I(α)(1)/I(α)(J) = n(α)(1)/
⌈

n(α)(J)/J
⌉

. (3.5.6)

For each test function, the α-Speedup(J) is calculated for many different α-levels. The

α-levels for each test problem are shown in Table 3.3.

For each test function, six α-levels presented in Table 3.3 are calculated using the following

procedure. We ran PADS1(16) for 3200 function evaluations, and PADS1(1), PADS1(4),

and PADS1(8) for 1600 function evaluations. Let y∗1, y
∗
4, y

∗
8 and y∗16 be the average best

objective function values obtained from PADS1(1), PADS1(4), PADS1(8) and PADS1(16),

respectively. First, we set α6 = max {y∗1, y∗4, y∗8, y∗16} so that PADS1(J) with any number of

processors can reach α6, which corresponds to the lowest level. α1 is defined to be the average

best objective function value obtained by PADS1(1) within 100 function evaluations for 30-

dimensional problems and within 300 function evaluations for 200-dimensional problems.

Finally, we divide the [α6, α1] range into five equal subranges with α6 < α5 < ... < α1.

The relative distance (%) between α6 and y∗1 is defined by

(α6 − y∗1) / (y
w
1 − y∗1)× 100 (3.5.7)

where y∗1 and yw1 are the average best and worst objective function values obtained from

PADS1(1), respectively. This value describes relatively how close the α6 is to the best

objective value y∗1 obtained from PADS1(1) after 1600 function evaluations (scaled by the

difference of y∗1 and yw1 ). Table 3.4 shows the relative distance from α6 to y∗1 for each test

function.

Figures 3.23 and 3.24 show the α-Speedup(J) for PADS1(J) versus the number of pro-
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cessors (J = 1, 4, 8, 16). Each graph corresponds to a different α-level. When the objective

function is computationally expensive, one would need to terminate the algorithm before

it reaches the global minimum. Thus, the analysis of the algorithm through α-Speedup(J)

is useful because it shows how much the parallel PADS1(J) when J > 1 is faster than a

corresponding sequential algorithm PADS1(1) for different levels of α.

While the ideal speedup (α-Speedup(J) = J) is not obtained in most of the cases, we

can see a relatively good scalability with PADS1. In some cases, superlinear speedup (a

speedup of more than J when using J processors) occurs here. For example, at α6-level for

Schwefel-30D.

For 30-dimensional problems, Griewank-30D and Rosenbrock-30D are two cases for which

the α6-Speedup (corresponding to smaller function values) is worse than the rest of αi-Speedup

(i < 6). For the Griewank function, this might be due to the fact that it becomes unimodal

(hence simpler) as the dimension increases [69]. For the Rosenbrock function, although it is

unimodal, since the global minimum is located inside a long, narrow, parabolic flat valley,

the minimizer is very difficult to find [74, 84]. Therefore, for these two test functions, once the

function value gets small enough (α6-level), it may not be necessary for PADS1 to generate many

points that are far away from one another (hence far from the best point found so far) as done in

the parallel algorithm, but instead focusing around the best point found so far as done in the serial

algorithm.

On the other hand, the α6-Speedup of both Michalewicz-30D and Schwefel-30D is better

than the rest of αi-Speedup (i < 6). Michalewicz-30D has d! local optima, and the function

values for points in the space outside the narrow peaks give very little information on the

location of the global optimum [73, 86]. As for Schwefel-30D, since the global minimum

is geometrically distant over the parameter space from the next best local minima, the

algorithm is likely to converge in the wrong direction [86, 104]. These characteristics of the

functions make it very hard to get a solution that is close to the global minimum within a

limited number of function evaluations. In addition, as can be seen from Table 3.4, the α6-

levels of these two test functions are relatively high. With only a fixed number of evaluations
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allowed, evaluating at J spread-out points in each iteration may be more useful than doing

one function evaluation per iteration throughout the function evaluation budget.

As for 200-dimensional problems, the algorithm achieves very similar values of αi-Speedup

at all αi-levels. Due to the high-dimensionality of the problems, with a limited number of

iterations, the α6-level are still relatively high compared to those for 30-dimensional problems.

Therefore, in this case, it may be useful to do many function evaluations per iteration at any

αi-levels we used.

3.5.3.3 The α-Work Ratio

To analyze the performance of PADS1(J), in addition to the α-Speedup(J), we introduce

the concept of the α-Work Ratio(J):

α-Work Ratio(J) := n(α)(J)/n(α)(1) (3.5.8)

where n(α)(J) is defined earlier in Eq. (3.5.4) as the number of function evaluations required

for algorithm PADS1(J) to reach a given α-level. This is a measure of how much the change

in the algorithm to enable J simultaneous evaluations per iteration affects the total number

of evaluations required to reach a given α-level. α-Work Ratio(J) × 100 is approximately

(parallel efficiency)−1, since communication times are insignificant in comparison to function

evaluation times. Therefore, α-Work Ratio(J) < 1 implies the parallel efficiency is greater

than 100%.

Since PADS1(J) selects J points at once for function evaluations and updates the surro-

gate every J function evaluations, typically the inequality n(α)(J) > n(α)(1) holds, i.e. the
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Figure 3.23: α-Speedup(J) of PADS1(J), J = 1, 4, 8, 16, for 30-dimensional problems
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Figure 3.24: α-Speedup(J) of PADS1(J), J = 1, 4, 8, 16, for 200-dimensional problems
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Table 3.4: The relative distance (%) from α6 to y∗1

Test Functions 30-D 200-D
Ackley 0.01 17.02
Griewank 0.01 0.84
Levy 0.06 1.41
Michalewicz 0.00 10.75
Rastrigin 0.00 1.74
Rosenbrock 0.00 0.11
Schwefel 0.00 5.00

total work (e.g. number of expensive evaluations) done by J processors to reach the given

α-level for PADS1(J) is more than the work done by a single processor for serial PADS1(1).

Figures 3.25 and 3.26 show a plot of the α-Work Ratio(J) versus the number of processors.

As in α-Speedup(J), each graph corresponds to a different α-level (Table 3.3). We see that for

any fixed number of processors and for all α-levels, the α-Work Ratio(J) is always less than

J. The α-Work Ratio(J)’s for all the problems are in fact bounded above by 3. Moreover, in

some cases (e.g. Schwefel30 with α6 ≈ 300), the α-Work Ratio(J) is below 1 for any J > 1.

That is to say, the algorithm can reach that particular α-level with less work when J is

increasing.

3.6 Conclusions

In this chapter we have developed PADS, a new parallel global optimization framework,

which is empirically proven to be a promising algorithm for HEB problems. In the numer-

ical experiments, we introduced two algorithms PADS1(J) and PADS2(J). Parallelism is

exploited when doing the expensive objective function evaluations at J > 1 selected points

simultaneously in every iteration.
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Figure 3.25: α-Work Ratio(J) of PADS1 for 30-dimensional problems
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Figure 3.26: α-Work Ratio(J) of PADS1 for 200-dimensional problems
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We compared the serial versions of PADS to two evolutionary algorithms, namely Dif-

ferential Evolution and ESGRBF, as well as to DYCORS, LMSRBF, NOMADm-DACE

and NOMADm-RBF. We compared the parallel versions of PADS to ParDE, ParESGRBF,

ParLMSRBF, and PSD-MADS. While there are a few parallel algorithms available for MADS

methods, we used PSD-MADS as it was shown to be well suited for high dimensional prob-

lems. These serial and parallel methods (with J = 4, 8, and 16 processors) are compared on 7

test problems, each with 30 and 200 dimensions, respectively. In addition to these mentioned

methods, TOMLAB/rbfSolve was also used to solve the 30-dimensional problems.

The algorithms are compared in terms of the average (over multiple trials) best objective

function value after an equal number of iterations, where the number of iterations corresponds

to the number of function evaluations divided by the number of parallel processors. The

results indicate that both PADS1 and PADS2 are more efficient for HEB problems than the

alternative algorithms. The computation results show that PADS1 and PADS2 perform very

similar for the 30-dimensional problems and that PADS1, which is based on the truncated

Gaussian candidate points, performs better than PADS2 for the 200-dimensional problems.

In addition, the analysis through α-Speedup and α-Work Ratio encourages the use of PADS1

for selecting multiple points per iteration for simultaneous function evaluation.

We provided a theorem that shows that the PADS algorithms converge to the global

optimum with probability one under some mild conditions. This also proves the conjecture

about the convergence of DYCORS which was raised but was not yet verified in [97].
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Chapter 4

Surrogate Optimization with Pareto

Center Selection for Single Objective

Problems∗

4.1 Introduction

Real-world applications in various fields, such as science, physics, engineering, or economics

often have a simulation model which is multimodal, computationally expensive, and black-

box. “Blackbox” implies many mathematical characteristics are not known including deriva-

tives or number of local minima. Many existing optimization methods for blackbox functions

such as genetic algorithm, simulated annealing, or pattern search are not suitable for this

type of problem due to a large number of objective function evaluations that these methods

generally require.

One approach for dealing with this type of problem is to use a surrogate model (al-

ternatively called metamodel or response surface) to approximate the objective function.

Response surface based optimization methods start by building a (computationally inexpen-

∗This chapter will be published with authors T. Krityakierne, T. Akhtar, C.A. Shoemaker.
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sive) surrogate surface, which is then used to iteratively select new points for the expensive

function evaluation. The surrogate surface is updated in each iteration.

The purpose of this research is to present a new way to solve surrogate optimization

problems for computationally expensive functions in parallel. Previous efforts (mostly serial)

have usually involved generating candidate points by normal perturbations around one center

point (usually the best solution found so far), by uniform sampling in the domain, or by using

an optimization method on the surrogate to find the point that satisfies some criterion.

In this work, we use a different approach involving non-dominated sorting on previously

evaluated points to select multiple centers, which are points on the Pareto fronts. Hence,

we are using concepts from multi-objective optimization for single objective optimization of

computationally expensive functions.

4.1.1 Literature Review

Jones et al. [57] used kriging as a basis function to develop a global optimization method,

Efficient Global Optimization (EGO), where the next point to evaluate is obtained by maxi-

mizing an expected improvement, balancing the response surface value with the uncertainty

of the surface. Huang et al. [54] extended Jones’ EGO algorithm and developed a global

optimization method for noisy cost functions. Booker et al. [22] also used kriging surface to

speed up the pattern search algorithms. Gutmann [45] built the response surface with radial

basis functions where the next point to evaluate is obtained by minimizing the bumpiness of

the interpolation surface. Sóbester et al. [111] used Gaussian radial basis functions and pro-

posed weighted expected improvement to control the balance of exploitation and exploration

to select the next evaluation point.

In [92], Regis and Shoemaker developed the CORS-RBF method based on radial basis

functions. The next point chosen for the expensive function evaluation is the point x ∈ D that

minimizes the CORS-RBF auxiliary optimization subproblem (an RBF model subject to the

constraints that x is at least of distance τn away from each of the previously evaluated points,
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where the threshold τn depends on all previously evaluated points). Regis and Shoemaker

[95] also used radial basis functions in the Metric Stochastic Response Surface algorithm

(also known as the Stochastic RBF algorithm), which is a global optimization algorithm

wherein the next point to evaluate is chosen by randomly generating a large number of

candidate points and selecting the point that minimizes a weighted score of response surface

predictions and a distance metric. Wild et al. [124, 125] developed ORBIT (Optimization

by Radial Basis Interpolation in Trust-regions), which is a method for unconstrained local

optimization, using radial basis function models and utilizing a trust-region framework. The

multistart global optimization algorithm GORBIT that runs ORBIT from multiple start

points was introduced in [126].

Due to the advanced technology of parallel computing, there has recently been an inter-

est in developing surrogate algorithms that select and evaluate multiple (computationally

expensive) points in each iteration to reduce the wall-clock time (∝ the number of optimiza-

tion iterations). For example, Sóbester et al. [110] developed a parallel version of EGO.

Several local maximum points of the expected improvement function are selected for the

parallel computationally expensive evaluations. In [94], Regis and Shoemaker developed

parallel versions of two global optimization methods by radial basis functions: (1) Parallel

Gutmann-RBF method [93] and (2) Parallel CORS-RBF method [92]. In the first approach,

P distinct target values are chosen and the next P function evaluation points are obtained

by solving a corresponding minimization problem for the bumpiness of the interpolation sur-

face. In the second approach, the next P function evaluation points are chosen by solving the

CORS-RBF auxiliary optimization subproblem sequentially. In 2009, Regis and Shoemaker

[96] proposed a parallel version of the stochastic RBF algorithm [95]. In each iteration, a

fixed number of points are selected for doing the expensive function evaluations. The se-

lection is done sequentially and based on the weighted score of (1) the surrogate value, and

(2) the minimum distance from previously evaluated points and previously selected points

within that parallel iteration, until the desired number of points are selected. The expensive
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function evaluations at the selected points are done simultaneously. The experimental results

showed that the algorithm is very efficient compared to their previous methods.

Viana et al. [120] proposed MSEGO that is based on the idea of maximizing the expected

improvement (EI) functions, but instead of using just one surrogate as in [57], multiple sur-

rogates are used. Since different EI functions are obtained for different surrogates, multiple

points can be selected per iteration. Although MSEGO was shown to reduce the number

of iterations, the numerical convergence rate does not scale up with the number of points

selected in each iteration for evaluation, i.e. the results when using five and ten surro-

gates per optimization iteration were very similar. Recently, Bischl et al. [14] proposed

MOI-MBO which is a parallel kriging based optimization algorithm that uses a multiobjec-

tive infill criterion that rewards the diversity and the expected improvement for selecting

the next expensive evaluation points. Many versions of MOI-MBO were proposed based

on various multiobjective infill criteria: mean of the surrogate model, model uncertainty,

expected improvement, distance to the nearest neighbor, and the distance to the nearest

better neighbor. Evolutionary optimization was used to handle the embedded multiobjec-

tive optimization problem. The overall test results suggested that the version that used a

combination of mean, model uncertainty, and nearest neighbor worked best. More reviews

on techniques for selecting multiple points as well as parallel surrogate-based methods can

be found in [14].

4.1.2 Differences between SOP and Previous Algorithms

SOP (Surrogate Optimization with Pareto center selection) is a parallel surrogate assisted

algorithm, where many points can be chosen simultaneously for computationally expensive

evaluations. Furthermore, the search mechanism of the algorithm incorporates bi-objective

search, tabu search, and surrogate assisted local search.

The major difference between SOP and other existing parallel optimization algorithms

is the use of a Pareto non-dominated sorting technique to select P distinct evaluated points
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(whose function values are small and are far away from other evaluated points) which will

then serve as centers. The selected centers are then used for generating a set of candidate

points from which the next function evaluation points are chosen. The latter step can

be done in parallel. This contrasts with the approach Regis and Shoemaker [96] used to

generate the P points for expensive function evaluations. In [96], all the P points are

obtained from the same center that is the best point found so far (xbest). Selecting the P

points from different centers (as was done in this work) allows the algorithm to search more

globally simultaneously in each iteration. The method proposed in [14] is also based on the

multiobjective optimization. However, their embedded multiobjective optimization problem

was solved on the surrogate while in our approach, a bi-objective optimization problem is

solved on previously evaluated expensive function evaluation points.

We found no journal papers on surrogate global optimization that select a large number

of evaluation points in each iteration. For example, the maximum number of points used in

[14], [96], and [120] were 5, 8, and 10 points, respectively. On the other hand, SOP can do

many expensive objective function evaluations simultaneously. (SOP was tested on as many

as 64 points per parallel iteration.) SOP thus greatly reduces wall-clock time.

The structure of this chapter is as follows: Section 4.2 gives a general framework for

surrogate model based optimization and summarizes the necessary basics of bi-objective

optimization. In Section 4.3, we describe SOP in detail. We give sufficient conditions for

almost sure convergence of SOP in Section 4.4. In Section 4.5, we illustrate the performance

of SOP and compare algorithms on a number of test functions as well as a groundwater

bioremediation problem. Lastly, we give our concluding remarks in Section 4.6.
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Algorithm 4.1 General framework: P surrogate-based optimization

Input: initial set of n0 evaluated points and their objective function values:

S(0) =
{

x
(0)
1 , ..., x

(0)
n0

}

, T (0) =
{

f(x(0)
1 ), ..., f(x(0)

n0
)
}

1: initialize n = 0
2: while n < MAXIT
3: fit or update surrogates gn(·) to the data (S(n), T (n));

4: select new P points
{

x
(n+1)
1 , . . . , x

(n+1)
P

}

using gn(·) and other criteria;

5: evaluate y
(n+1)
i = f

(

x
(n+1)
i

)

for i = 1, ..., P;

6: update: S(n+1) = S(n) ∪
{

x
(n+1)
1 , ..., x

(n+1)
P

}

;

7: T (n+1) = T (n) ∪
{

y
(n+1)
1 , ..., y

(n+1)
P

}

;

8: n = n+ 1;
9: end while

Output: ybest = min(T (n)), xbest =
{

x ∈ S(n) : f (x) = ybest
}

4.2 Background

4.2.1 General Framework for Surrogate Model Based Optimization

The general framework of the surrogate model based optimization method is presented in

Algorithm 4.1. First, the algorithm constructs a surrogate based on n0 initial data points.

The algorithm selects the next P points for function evaluations using algorithm-specific

selection criteria, e.g. model value, model uncertainty. After the P promising points are

selected, they will be evaluated and if the budget of allowable expensive function evaluations

is not exhausted, the algorithm then uses all (or some) of the evaluated points to update the

surrogate. One of the most important aspects of the surrogate-based optimization algorithm

is how to effectively select the next P points for expensive evaluations for simultaneous

evaluation on multiple processors.
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4.2.2 Bi-objective Optimization

We now give a brief review of some concepts related to bi-objective optimization that will be

used in Section 4.3 for the selection of already evaluated points in the main structure of the

algorithm. Here we simultaneously consider two conflicting objective functions of the form:

min [F1(x), F2(x)]

subject tox ∈ S
. (4.2.1)

The goal of bi-objective optimization problems is to find the best compromise between these

two conflicting objectives. Because we cannot usually find a solution which is best with

respect to both objectives, we instead seek for a set of solutions such that for any points in

this set, there does not exist another point that will improve one attribute without degrading

another attribute. That is, we face with a set of non-dominated solutions, which is known

as Pareto optimal or non-dominated solutions. For more details see [32, 121].

4.2.2.1 Non-dominated solutions and Pareto front

Definition 4.1. A point x1 ∈ S is said to dominate another point x2 ∈ S if (1) the point

x1 is no worse than x2 in both objectives, and (2) the point x1 is strictly better than x2 in

at least one objective. We denote this by “x1 = x2”. Mathematically, for x1, x2 ∈ S,

x1 = x2 ⇔










Fi(x1) ≤ Fi(x2)

∃j ∈ {1, 2}

∀i ∈ {1, 2}

Fj(x1) < Fj(x2)

. (4.2.2)

The set of all non-dominated solutions in the decision space is called Pareto set (X ∗). The

image of the Pareto set is called Pareto front (P∗). That is, X ∗ = {x ∈ S : !x′ ∈ S, x′ = x}

and P∗ = F [X ∗] . Note that F (x1) = F (x2) is used to indicate x1 = x2 for F (x).
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Figure 4.1: A two-objective space and the corresponding non-dominated fronts

4.2.2.2 Non-dominated sorting

The procedure for sorting points into levels of fronts is referred as non-dominated sorting,

which was introduced by Deb et. al [31, 33]. To sort points into levels of non-dominated

fronts, first, the Pareto front of non-dominated points is determined based on all available

points (Front 1 in Figure 4.1b). Next, points in Front 1 (Pareto front) are removed and

the non-dominated front is recalculated for the remaining points to determine the points of

Front 2. Continue the process to get Front k by removing all points on Front 1 to Front k-1

and calculating the non-dominated front from the remaining points. Figure 4.1 shows an

example of a two-objective space and the corresponding non-dominated fronts.

4.2.2.3 The Hypervolume

The hypervolume (S-metric or Lebesgue measure) is a measure used to indicate the quality

of the Pareto front. It was initially proposed by Zitzler and Thiele [134], in which it was

called the size of dominated space. The hypervolume is widely used and many methods have

122



F1

F 2

P1

P2

P3

v_ref

Figure 4.2: Hypervolume

been developed to efficiently calculate the hypervolume (e.g. [36, 123]). Figure 4.2 shows an

example of the hypervolume of a non-dominated set P = {P1,P2, P3} with respect to the

reference point vref.

Definition 4.2. Given a set P ⊂ R2 of non-dominated solutions in the objective space, the

hypervolume HV(P, vref) of P is a measure relative to a reference point vref ∈ R2. It is an

area that is dominated by the points in P. Mathematically,

HV(P, vref) = Vol (∪p∈P [p(1), vref(1)]× [p(2), vref(2)]) (4.2.3)

where Vol denotes the Lebesgue measure, and for sets A and B, A×B denotes the Cartesian

product, i.e. A× B = {(a, b) : a ∈ A ∧ b ∈ B} .

The hypervolume indicator has been the only measure that is known to have the property

that [39, 132, 135]

A = B ⇒ HV(A, vref) > HV(B, vref), (4.2.4)
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where A = B if and only if ∀y ∈ B ∃x ∈ A : x = y. That is the dominance relation is

extended to a relation on sets A, B ⊂ S.

If a solution set P has a larger hypervolume than P ′, then P is said to have a better set

of solutions than P ′ as it is likely to give a better trade-offs. Maximizing the hypervolume

is equivalent to finding the Pareto set [38]. See e.g. [133] for more details of hypervolumes

as well as other measures used for Pareto set comparison.

4.3 SOP: Surrogate Optimization with Pareto center se-

lection

The objective function we consider is a box-constrained real-valued function as defined in Eq.

(1.1). Algorithm 4.2 shows the SOP algorithm, which is based on the framework presented

in Algorithm 4.1. Below are inputs and output of the algorithm.

Input:

• Ncand - the number of candidate points generated in Local Candidate Search

• Nfail - the maximum number of non-registered improvement before a particular center

will be declared as tabu

• m - the tenure length

• rint - the initial search radius

• τ - the tolerance for local improvement

• P - the number of centers per iteration (= the number of function evaluation points

per iteration)

• MAXIT - the maximum number of optimization iterations
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• f - a continuous real-valued objective function to minimize

• D = {lb ≤ x ≤ ub} ⊂ Rd - the hyperrectangle domain of f

Output: The best point found

List of notation used in Algorithm 4.2:

• x(n)
i the ith evaluation point in nth optimization iteration (1 ≤ i ≤ P )

• y(n)i the function value corresponding to x(n)
i

• S(n) the list (ordered set) containing all evaluated points up to nth iteration, i.e. S(n) =

〈s1, ..., sn0+nP 〉 =
〈

x(0)
1 , ..., x(0)

n0
︸ ︷︷ ︸

,

initial pts

x(1)
1 , ..., x(1)

P
︸ ︷︷ ︸

, · · · ,

iteration 1

x(n)
1 , ..., x(n)

P
︸ ︷︷ ︸

iteration n

〉

. Note
∣
∣S(n)

∣
∣ =

n0 + nP.

• λ(n)
i the minimum distance from x(n)

i to the set of already evaluated points S(n)\
{

x(n)
i

}

• T (n), D(n), R(n) a similar list to S(n) containing all function values, minimum distances,

and search radii.

• 〈·〉 is used to distinguish a list from a regular set.

We treat S(n), T (n), D(n), R(n) as a list. That is, the order of the members in these lists is

important. Whenever we write si ∈ S(n) for example, we do not take into account in which

iteration the point si is simulated. On the other hand, x(n)
i tells us that this point is generated

as the ith point in the nth iteration. Note the relationship: sn0+((n−1)P+i) = x(n)
i for n ≥ 1

and si = x(0)
i holds. For example, s1 = x(0)

1 , ..., sn0 = x(0)
n0 , sn0+1 = x(1)

1 , ..., sn0+P = x(1)
P , etc.

Similar argument applies to members in other lists. In addition, tabu_struct consists of two

lists tabu_struct(1) and tabu_struct(2), corresponding to si. We now explain in detail each

of the steps in Algorithm 4.2:
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Algorithm 4.2 Surrogate Optimization with Pareto center selection (SOP)

1. Set counter n = 0. Generate initial points S(0) =
〈

x
(0)
1 , ..., x

(0)
n0

〉

and do function evaluations

y
(0)
i = f

(

x
(0)
i

)

for i = 1, ..., n0. Calculate di = min
{

‖si − s‖ : s ∈ S(0) \ {si}
}

, for si ∈ S(0).

Let T (0) =
〈

y
(0)
1 , ..., y

(0)
n0

〉

, D(0) = 〈d1, ..., dn0〉 and R(n0) = 〈σ1, ..., σn0〉 , where σi = rint.

In addition, let tabu_struct = [tabu_struct(1), tabu_struct(2)] , where tabu_struct(1) =
tabu_struct(2) = 〈z1, ... zn0〉 , where zi = 0 for all i = 1, ..., n0.

2. Define F = (F1, F2) : S(0) → T (0) × −D(0) by F (si) = (ti, −di) for si ∈ S(0), ti ∈ T (0) and
di ∈ D(0).

3. Iterative Loop (while n < MAXIT)

(a) Fit or update the response surface model g(n)(·).
(b) Find [Xint,Pint] = pareto_front

(

S(n), F1, F2
)

.

(c) Select P center points:

i. J = [J1, ..., JP ] = select_P_indices(S(n), T (n),D(n), R(n), tabu_struct, P ).

ii. For i = 1, ..., P, ci = s(J (i)) ∈ S(n) is the selected center point and ri = σ(J (i)) ∈
R(n) the search radius of center i.

(d) pselect = ϕ(n). for i = 1 : P do

Generate a new point x
(n+1)
i = ...

local_candidate_search
(

ci, ri, D, Ncand, g
(n)(·), pselect

)

.

Evaluate y
(n+1)
i = f(x(n+1)

i ).

end for

Update S(n+1) = S(n) ∪
〈

x
(n+1)
1 , ..., x

(n+1)
P

〉

and T (n+1) = T (n) ∪
〈

y
(n+1)
1 , ..., y

(n+1)
P

〉

.

Calculate di = min
{

‖si − s‖ : s ∈ S(n+1) \ {si}
}

for all si ∈ S(n+1).

Redefine D(n+1) =
〈

d1, ..., dn0+(n+1)P

〉

.

Update F = (F1, F2) : S(n+1) → T (n+1)×−D(n+1) by F (si) = (ti, −di) for si ∈ S(n+1),
ti ∈ T (n+1), and di ∈ D(n+1).

(e) for i = 1 : P do

λ
(n+1)
i = dn0+(nP+i) ∈ D(n+1).

Ii = hypervol_improv_indc
(

Xint,Pint, F1, F2, x
(n+1)
i ,

[

y
(n+1)
i , λ

(n+1)
i

]

, τ
)

.

end for

(f) Update R(n+1) = R(n) ∪ 〈σ1, ..., σP 〉 , where σi = rint, and tabu_struct(1) =
tabu_struct(1)∪〈z1, ... zP 〉 , tabu_struct(2) = tabu_struct(2)∪〈z1, ... zP 〉 , where zi = 0.
Set n = n+ 1.

(g) Update
[

tabu_struct, R(n)
]

= update
(

tabu_struct, I, J , Nfail, m, rint, R
(n), P

)

.

4. Terminate and return the best point found.
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Step 1: n0 initial points are generated and expensive function evaluations are done at

these points. Let S(n) be the list of evaluated points so far and T (n) the list of corresponding

expensive function values. di is the minimum distance of each si ∈ S(n) from other points

in S(n), where ‖·‖ is the Euclidean norm on Rd. Then, D(n) is defined to be the list of

such distances. R(n) is the list of corresponding search radii (initially set to rint). Finally,

tabu_struct is a pair of lists of tabu structure. Initially, all these lists consist of n0 elements.

Step 2: defines a bi-objective function over a finite set, F = (F1, F2) : S(0) → T (0) ×

−D(0), where F1, F2 map each member (in order) of the list S(0) onto the lists T (0), −D(0),

respectively. Here, instead of maximizing the minimum distance from points already evalu-

ated, we minimize its negative. Thus, the second objective is defined on the set −D(0). See

Section 4.3.1 for a detailed discussion of this bi-objective function.

Note since the values ti = f(si) and di for each point si ∈ S(0) are pre-computed and

stored in T (0) and D(0), respectively, no additional expensive evaluation of f or distance

calculation is required in this step.

Step 3 is the iterative step, starting from:

• Step 3a: the algorithm fits or updates the surrogate g(n)(·) based on previously evalu-

ated points in S(n) and their corresponding function values in T (n).

• Step 3b: finds the Pareto front of S(n) based on two objectives F1 and F2. The function

pareto_front is defined as in Definition 4.1.

• Step 3c: selects the P center points c1, ..., cP from the list S(n). The algorithm keeps

track of the original index of each of the point s(·) in the list S(n) = 〈s1, . . . , sn0+nP 〉

that are selected as centers. That is, J = [J1, ..., JP ] ⊂ {1, ..., n0 + P}P is a vector

of indices such that ci = s(J (i)) ∈ S(n) for i = 1, ..., P. Also, the search radius of

center i, ri = σ(J (i)) ∈ R(n), is defined accordingly. The pseudocode for function

select_P_indices is shown in Figure 4.3. The select_P_indices is based on the

sub-functions non_dom_sorting (Figure 4.7) and P_centers_sel (Figure 4.8).
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Since the selection of P center indices is the key step and is based on the concept of

bi-objective optimization over a finite set S(n), we postpone the details of these two

sub-functions until Section 4.3.1 so as not to interrupt the flow of the main algorithm.

Function J = [J1, ..., JP ] = select_P_indices(S(n), T (n), D(n), R(n), tabu_struct, P )
1.

[

Sorder, Rorder, tabu_structorder
]

= ...
non_dom_sorting

(

S(n), T (n), D(n), R(n), tabu_struct
)

2. [c1, ..., cP ] = P_centers_sel
(

Sorder, Rorder, tabu_structorder, P
)

3. For j = 1, ..., P, let J (j) be such that cj = sJ (i) ∈ S(n). That is, J is the P -vector
containing the indices of the selected centers corresponding to the original list S(n).

Figure 4.3: Pseudocode select_P_indices used in Step 3(c)i

• Step 3d: the algorithm updates ϕ(n) by

ϕ(n) = ϕ0 × [1− ln(nP + 1)/ ln(MAXIT× P )], (4.3.1)

for all 0 ≤ n ≤ MAXIT− 1, where ϕ0 = min(20/d, 1).

This formula is adopted from [97] with n denoting here the number of optimization iterations

rather than the number of function evaluations. The probability pselect = ϕ(n) is an input

of the function local_candidate_search (Figure 4.10). Each coordinate of the center has

a probability of ϕ(n) to be perturbed and any candidate point is generated by perturbing

a subset of the variables of the center. This is defined precisely in Figure 4.10 (see Section

4.3.3).

After the probability of selection is updated, local_candidate_search is applied around

each assigned center ci to determine the next function evaluation points x(n+1)
i . Two types

of local candidate search are introduced in Section 4.3.3. The expensive function evaluations

y(n+1)
i = f(x(n+1)

i ) are done at each of the P selected points.

The algorithm updates S(n+1) and T (n+1). The distance metric di for all members si ∈

S(n+1) are calculated. Note that the algorithm has to recalculate this value also for those
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previously evaluated points (in previous iterations) since the distance of all points to all

other evaluated points is of interest. Update D(n+1). Finally, the bi-objective function F is

redefined accordingly.

• Step 3e: Hypervolume Improvement Indicator (hypervol_improv_indc) is calcu-

lated at each of the P newly evaluated points and the P -vector I = [I1, ..., IP ] of

hypervolume improvement indicator is defined.

The pseudocode for function hypervol_improv_indc is shown in Figure 4.4. First, it

checks if the new point xnew is dominated by any points on the previous Pareto front Xint.

If this is the case, HI is set to zero. Otherwise, it computes the relative hypervolume

improvement (µ) as follows. vint_best is a vector of the best point in the objective space

with respect to Pint = F [Xint]. Pnew is the new Pareto front of Xint ∪ {xnew} (the previous

Pareto set plus the new point). vref is a vector of the worst point in the objective space

with respect to Pnew. Then, the relative hypervolume improvement µ is calculated. See Eq.

(4.2.3) for a definition of HV. Finally, if µ > τ, HI = 1, otherwise HI = 0. Recall that

all objective values F1 (si) = ti and F2 (si) = −di are pre-computed and stored in the list

T (n) and −D(n), respectively. Therefore, no additional expensive function evaluations or any

distance calculations are required.

Function HI = hypervol_improv_indc(Xint, Pint, F1, F2, xnew, [ynew, λnew] , τ)
if for some x ∈ Xint, x = xnew

HI= 0
else

vint_best = (minF1 [Xint] , minF2 [Xint])
vref = (maxF1 [Xint ∪ {xnew}] , maxF2 [Xint ∪ {xnew}])
[Xnew, Pnew] =pareto_front(Xint ∪ {xnew} , F1, F2)
µ = (HV(Pnew, vref)−HV(Pint, vref))/

∏2
i=1

(

vref(i)− vint_best(i)
)

HI = 1µ>τ

end if

Figure 4.4: Pseudocode hypervol_improv_indc used in Step 3e

Figure 4.5 shows an example of the hypervolume improvement. First, the Pareto front is

Pint = {P1, P2, P3} . The hypervolume corresponding to Pint is the gray shade. Then, after

129



F1

F 2

P1

P2

P3

v_ref

P_new

Figure 4.5: Hypervolume improvement

adding the new point P_new, the new Pareto front becomes Pnew = {P1, P_new, P3}. We

see that the hypervolume is bigger. The light magenta area is the improvement made after

the new point is added.

Definition 4.3. We say that the local improvement is registered (and write HI = 1)

if the relative hypervolume improvement (the difference of the hypervolume calculated after

and before adding a newly evaluated point xnew) is larger than some tolerance τ. Otherwise,

we say that the local improvement is not registered (and write HI = 0).

• Step 3f: the algorithm updates the list R(n+1). Also, tabu_struct(1) and tabu_struct(2)

attach P copies of zeros to the end of the list (these zeros correspond to the tabu_struct

of P newly evaluated points). Finally, the optimization iteration counter n is updated.

Definition 4.4. We define as tabu any center whose local improvement is not registered

for Nfail search efforts around that center. We will call such center a tabu center. The tabu

center will not be used as a center for m iterations, i.e. the tenure length is m.

130



• Step 3g: the algorithm updates the tabu structure and search radii of centers by check-

ing whether the local improvement is registered. The input of the function update

are tabu_struct (tabu structure), I (a P -vector of hypervolume improvement indica-

tor), J (a P -vector of selected center indices), Nfail (the maximum number of non-

registered improvements allowed), m (tenure length), rint (the initial search radius),

and R(n) (the list of search radii). tabu_struct consists of two lists tabu_struct(1) and

tabu_struct(2):

– the i-th element in tabu_struct(1) keeps track of the number of times local im-

provement is not registered when using si ∈ S(n) as a center.

– the i-th element in tabu_struct(2) keeps track of the number of wait time (0 ≤

wait_time ≤ m) until a particular tabu point si ∈ S(n) can be used as a center

again.

The pseudocode for function update is shown in Figure 4.6. In the first for-loop in the

function update, the algorithm updates the number of non-registered improvements for the

centers that failed to find a local improvement (Ij = 0). Also, the search radii of these

centers are reduced to half.

The second for-loop in the function update only applies to the first n0+(n−1)P points in

S(n) (which are the points that were evaluated in previous iterations). It reduces the counter

of wait time of the tabu centers (t2(i) > 0). For any center whose local improvement is not

registered for Nfail search efforts (t1(i) > Nfail), the corresponding center will be marked as

tabu (t2(i) = m) and will be skipped for the next m iterations (wait_time is m). Also, the

counter of the non-registered local improvement is reset to zero (t1(i) = 0). Finally, the

search radii of the newly marked tabu points are reset to rint.
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Function
[

tabu_struct, R(n)
]

= update
(

tabu_struct, I, J , Nfail, m, rint, R(n), P
)

t1 = tabu_struct(1)
t2 = tabu_struct(2)
for j = 1 : P

if Ij = 0
t1 (J (j)) = t1 (J (j)) + 1
R(n) (J (j)) = R(n) (J (j)) /2

end if
end for
for i = 1 : n0 + (n− 1)P

if t2(i) > 0
t2(i) = t2(i)− 1

else if t1(i) > Nfail

t2(i) = m
t1(i) = 0
R(n) (i) = rint

end if
end for

Figure 4.6: Pseudocode update used in Step 3g

4.3.1 Non-dominated Sorting (NDS) and P Center Selection

This section gives a description of sub-functions non_dom_sorting and P_centers_sel

that are called within the function select_P_indices in Step 3c (Figure 4.3) used in

Algorithm 4.2. Unlike [96] where only the best point found so far is used as a center of

perturbation, SOP selects P points from the set of all evaluated points to use as centers by

using these two sub-functions.

To manage the trade-off between exploration and exploitation, in addition to the under-

lying objective function value (F1), an additional second objective, namely, the minimum

distance to the set of already evaluated points, is considered. High distance indicates regions

where the accuracy of the current solution can possibly be improved with additional points

in that region. Thus, to explore previously unexplored regions, the algorithm maximizes this

distance. Maximizing the minimum distance from points already evaluated is the same as
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minimizing its negative. Thus, F2 is defined as the negative of the minimum distance to the

set of already evaluated points.

Mathematically, the following bi-objective optimization over a finite set S(n) is considered

for center selection:

min
x∈S(n)

[F1(x), F2(x)], (4.3.2)

where F (x) = [F1(x), F2(x)] ∈ R2 is a vector of the conflicting objective functions that we

want to minimize simultaneously. These conflicting objective in the nth iteration are to find

x that 1) minimizes the expensive function value f(x), and 2) minimizes the negative of the

minimum distance between x and other previously evaluated points in S(n). For simplicity,

let N = n0 + nP be the number of points in S(n). F : S(n) → T (n)×
(

−D(n)
)

, where S(n) =

{s1, ..., sN} is the set of all evaluated points so far, T (n) = {t1, ..., tN} , where ti = f(si),

and −D(n) = − {d1, ..., dN} is the image of the negative of the minimum distance of point

si ∈ S(n) from all other evaluated points in S(n), i.e. di = min
{

‖si − s‖ : s ∈ S(n) \ {si}
}

.

The pseudocode of two sub-functions non_dom_sorting and P_centers_sel is rep-

resented in Figures 4.7 and 4.8, respectively.
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Function
[

Sorder, Rorder, tabu_structorder
]

= ...
non_dom_sorting(S(n), T (n), D(n), R(n), tabu_struct)

1. Sort all the evaluated points in the set S(n) into levels of non-dominated fronts using
the procedure in Section 4.2.2.2 and Eq. (4.2.2) according to the two following (pre-
computed) objectives:

(a) the objective function value (F1) in T (n);

(b) the negative of the minimum distance from all other evaluated points (F2) in
−D(n).

2. Let xFront(i, j) be the jth point of the ith front that is ordered such that for a fixed front
i, xFront(i, j) is in an increasing order of objective function values, i.e. f

(

xFront(i, 1)
)

≤
f
(

xFront(i, 2)
)

≤ · · · .

3. Denote by Sorder =
{

xFront(1, 1), xFront(1, 2), · · · xFront(2, 1), xFront(2, 2), ...
}

the list of
points obtained from this procedure starting from Front 1. Also, let Rorder and
tabu_structorder be the sorted R(n) and sorted tabu_struct based on this order.

Figure 4.7: Pseudocode non_dom_sorting used in select_P_indices (Figure 4.3)

The purpose of Non-dominated Sorting (NDS) is to maintain the balance between ex-

ploitation (local search) and exploration (global search). By NDS, those points whose func-

tion values are small (exploitation) and/or are far away from other evaluated points (explo-

ration) will be more likely to be selected as a center.

After the function non_dom_sorting sorts points in S(n) into levels of non-dominated

fronts, the function P_centers_sel (Figure 4.8) iteratively selects a center in order (based

on Radius Rule and Tabu Rule) from the list Sorder starting from the first point in the list.

Assume that c1, ..., ci−1 (i − 1 < P ) have been selected as centers. In P_centers_sel,

the next point sok on the front will be selected as the ith center if it is (1) at least εj

distance away from all the previous selected center cj, j = 1, ..., i − 1 (Radius Rule) and

also (2) not marked as tabu, i.e. tok = 0 (Tabu Rule). These two conditions appear in Do

[Until...] loop of the function P_centers_sel in Figure 4.8. Note that only the second

list of tabu_structorder (i.e. tabu_structorder(2)), which stores the wait time for tabu points,

is actually used in P_centers_sel.
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Function [c1, ..., cP ] = P_centers_sel
(

Sorder, Rorder, tabu_structorder, P
)

Let N be the number of points in Sorder.
Let Sorder = {so1 , so2, ..., soN} , Rorder = {ro1, ... roN} , and

tabu_structorder(2) = {to1 , ..., toN} .
Set c1 = so1 , ε1 = ro1, and k = 1.
for i = 2 : P

k = k + 1
Do [Until (‖cj − sok‖ > εj ∀j = 1, . . . , i− 1) and (tok = 0)]

k = k + 1
[Exit Do]
Set ci = sok , εi = rok

end for

Figure 4.8: Pseudocode P_centers_sel used in select_P_indices (Figure 4.3)

The selection of the P center points is done sequentially to avoid selecting points that are

close to other center points already selected in the same iteration. Note that the best point

with the lowest function value (corresponding to so1) is always chosen as a center regardless

of its tabu structure. That is, the algorithm makes a locally optimal choice (greedy) as one

of the P choices in the hope that it will lead to a globally optimal solution. We found, in

practice, that selecting the best point as one of the centers in every iteration accelerates the

convergence of the algorithm.

In case that all the points on the sorted fronts Sorder have already been examined but the

number of selected centers (i) is less than P (the number of centers needed), we reexamine

the tabu points on the fronts (i.e. those with tok > 0) starting from Front 1. This time

with only one condition imposed: (‖cj − sok‖ > εj ∀j = 1, . . . , i− 1). Finally, if the number

of centers selected is still less than P , the next P − i centers, ci+h, h = 1, .., P − i, will

be selected iteratively by cycling through the set of already selected centers {c1, ..., ci}, i.e.

cqi+l = cl for q ≥ 1 and 1 ≤ l ≤ i, until all the P centers are selected. This is because good

solutions often lie in a very small neighborhood. Therefore, it is also necessary to focus the

local candidate search around those promising centers.

Figure 4.9 illustrates an example of the center selection via P_centers_sel. After

the points in S(n) are sorted into the levels of non-dominated fronts (Figure 4.9b), in this
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Figure 4.9: Example of center selection in (a) decision space and (b) objective space

example, four center points (P = 4) are selected sequentially along the sorted fronts. First,

the point A1 on the first front is selected. Since A2 is within a radius (defined in Figure

4.8) of A1, and A3 is marked as tabu (defined in Definition 4.4), neither of these two points

are selected. We move on to the second front and the next point that will be selected is

therefore B1. Continue the process, the four points that pass both the Radius Rule and the

Tabu Rule are A1, B1, B3, and C2.

4.3.2 Example of Tabu Structure

In this section we provide a simple example to illustrate how tabu_struct is updated using

functions P_centers_sel (Figure 4.8) and update (Figure 4.6). Let x ∈ Sorder be the

point on the front that we consider. If x is selected as a center, the new point suggested by

the center x (for a function evaluation) is denoted by xselect.

Iterations 1 through 11 are shown in Table 4.1. The first column is the number of

iterations, the second column will be marked as “Y” if the point x passes the Radius Rule,

136



and “N” otherwise. The third column indicates whether the point x that has passed the

Radius Rule will be used as a center by checking whether or not that point is marked as

tabu. This can be done by checking the last column wait_time of the previous row. The

wait_time column of the previous row records the number of iterations that the tabu point

has to wait before it can be used as a center again. 0 means the center is currently not marked

as tabu, and so it can be used as a center if it is selected. Otherwise if this number is greater

than 0, then the point will not be used as a center (even though the point passed the Radius

Rule). The fourth column records the number of failed improvement trials so far. Once this

number exceeds Nfail, the maximum number of non-registered local improvements allowed,

that center will be marked as tabu, resetting this number to 0 and marking the column

wait_time as m. Once the center has been marked as tabu, that center has to wait for m

more iterations (the number in this column for a tabu point decreases by 1 each iteration)

before it can be used as a center again. Note that the column #failed improvement trials

corresponds to tabu_struct(1) while the column wait_time corresponds to tabu_struct(2)

in Algorithm 4.2.

In this particular example, let Nfail = 3 be the maximum number of non-registered local

improvement allowed before that particular point is marked as tabu, and m = 5 the tenure

length. In iteration 1, the point x passed the Radius Rule (“Y” in the second column). To

check whether this point can be used as a center or not, we look at the column wait_time

of the previous row (i.e. row iteration 0). Since the wait_time in the previous row is 0, the

point x is selected. After a new point xselect, suggested by this center, has been evaluated,

the column #failed improvement trials will be increased by 1 if there is no improvement. In

iteration 3, the point x did not pass the Radius Rule; hence, it cannot be used as a center

and the third column is marked as N (without having to check whether it is tabu or not). In

both iterations 4 and 5, the point x does pass the Radius Rule and is selected as a center. In

iteration 5, since there is again no improvement, #failed improvement trials is now increased

to 4. Since it exceeds the maximum number of non-registered local improvements allowed
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Table 4.1: Example of tabu structure at a particular center x ∈ Sorder. Nfail = 3 and m = 5
are used in this example.

Iter# Pass Selected #failed wait_time
Radius Rule? (Y/N) improvement trials

0 - - - 0
1 Y Y → 1 0
2 Y Y 2 0
3 N N after 2 0
4 Y Y evaluating 3 0
5 Y Y xselect 4→0 5
6 Y N suggested 0 4
7 N N by 0 3
8 Y N center x 0 2
9 N N 0 1
10 Y N 0 0
11 Y Y 0 0

(Nfail = 3), that center is now marked as tabu. The #failed improvement trials is reset to 0,

while the column wait_time is updated to 5 (which means the point x has been marked as

tabu for the next m = 5 iterations). In iteration 6, the point x passes the Radius Rule, but

since column wait_time in iteration 5 is marked as 5 (x is tabu for another 5 iterations),

this point will not be selected as a center. As the algorithm proceeds, the number in column

wait_time decreases by 1 in each iteration. In iteration 11, the point x passed the Radius

Rule and also the last column of the previous row (row iteration 10) is 0. Therefore, the

point x can now be used as a center point again. This time, there is an improvement after

a point xselect suggested by this center has been evaluated. Hence, the #failed improvement

trials in the last row is still 0.

4.3.3 Local Candidate Search

The pseudocode of the function local_candidate_search in Step 3d is given in Fig-

ure 4.10. For convenience, we will suppress the subscript i (of ci, ri and x(n+1)
i ). In lo-

cal_candidate_search, a center point c is perturbed to generate Ncand candidate points

{v1, ..., vNcand
}. As in [97], we randomly select the variables of c that will be perturbed and
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generate the candidate points by adding a random perturbation. Finally, the candidate point

whose predicted objective function value is smallest is selected for doing the next computa-

tionally expensive function evaluation. Here, rand(1) denotes a uniformly selected real value

in [0, 1] and randi(d) a random integer between 1 and d. Recall that D = {x : lb ≤ x ≤ ub}.

Function x = local_candidate_search(c, r, D, Ncand, g(·), pselect)
for j = 1 : Ncand

for i = 1 : d, ui = rand(1), end for
let Iperturb = {i : ui < pselect}
if Iperturb = ∅, Iperturb = randi(d), end if
generate vj = L (c, r, D, Iperturb)

end for
x = argmin1≤j≤Ncand

g (vj)

Figure 4.10: Pseudocode local_candidate_search used in Step 3d

The local search mechanisms similar to local_candidate_search have been shown to

be very effective, e.g. [95, 96, 97]. The Gaussian distribution has been used to generate

candidate points in these previous algorithms. If a generated candidate point does not fall

inside the domain D, the point will be either replaced by the nearest point in D [95, 96]

or successive reflected about the closest point on the boundary of D. In this work, we

investigate two other generator types L within SOP as described below.

4.3.3.1 Type 1 (L = Ntruncated): truncated normal candidate points (nSOP)

For nSOP, we generate the jth candidate point vj as follows:

• vj = c + Z, where Z(i) ∼ Ntruncated(0, σ2; a(i), b(i)), σ = r, a(i) = lb(i) − c(i) and

b(i) = ub(i)− c(i) for i ∈ Iperturb, and Z(i) is zero for i /∈ Iperturb. See Section 3.2.2 for

a description of the truncated normal distribution, Ntruncated.
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4.3.3.2 Type 2 (L = U): uniform candidate points (uSOP)

Let U [u1, u2] denote a uniform random variable on [u1, u2]. For uSOP, we uniformly select

candidate points from the interval [a(i), b(i)] defined as follows:

• vj(i) = U [a(i), b(i)] where a(i) = max(lb(i), c(i) − r), b(i) = min(c(i) + r, ub(i)) for

i ∈ Ipurturb, and vj(i) = c(i) for i /∈ Ipurturb.

Because both the truncated normal candidate points and the uniform candidate points are

generated within the domain, neither the reflection nor the replacement of the candidate

point is necessary in our case.

4.4 Convergence of nSOP

In this section, we will give some conditions which ensure the global convergence in a prob-

abilistic sense (with probability 1) of nSOP. First, note the main differences between SOP,

StochRBF [95] and ParStochRBF [96].

StochRBF ParStochRBF SOP

# of simulated points per iteration 1 P P

perturbation center(s) xbest xbest c1, ..., cP

# of candidate point batches per iteration 1 1 P

Since ParStochRBF is essentially the same as StochRBF except for the number of points

selected for evaluation in each iteration, one can easily apply Theorem 1 in [95] and prove

the convergence for ParStochRBF. On the other hand, each center of SOP does its own local

candidate search (Step 3d of Algorithm 4.2), which results in P batches of candidate points

per iteration. Moreover, only some of the coordinates of the centers in SOP are selected for

perturbation, whereas all coordinates of the center xbest in [95] are perturbed for generating

candidate points. In order to prove the convergence of SOP, we need the following definitions.

Definition 4.5. For 1 ≤ j ≤ Ncand, n ≥ 1, and 1 ≤ i ≤ P,
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V (n−1)
i, j is the random vector representing the jth random candidate point v(n−1)

i, j gener-

ated around center ci in function local_candidate_search of Step 3d (Figure

4.10).

X(n)
i is the random vector representing x(n)

i , the ith function evaluation point of iter-

ation n (chosen from
{

V (n−1)
i, j : j = 1, ..., Ncand

}

)

Fix n ≥ 0 (optimization iteration counter) and 1 ≤ i ≤ P . Let c(n)i ∈ S(n) be the

ith selected center for perturbation in iteration n (Algorithm 4.2, Step 3c). Recall that

in function local_candidate_search of Step 3d (Figure 4.10), Ncand candidate points
{

v(n)i, j : j = 1, ..., Ncand

}

are generated by perturbing randomly selected coordinates of c(n)i .

Each coordinate of c(n)i has a probability pselect = ϕ(n) ∈ [0, 1] to be perturbed. If no variable

of c(n)i is selected for perturbation, one variable is chosen at random.

We next define the σ-algebra generated by relevant information available up to iteration

n.

Definition 4.6. Let n ≥ 1 and 1 ≤ i ≤ P. For 1 ≤ j ≤ Ncand, let Q(n−1)
i, j be the random

vector that determines which coordinates of c(n−1)
i ∈ S(n−1) are chosen for a perturbation to

obtain V (n−1)
i, j .

For each n ≥ 1, define Fn−1, Qn−1 ⊂ Rd by

• Fn−1 :=





















X(0)
1 , .., X(0)

n0
︸ ︷︷ ︸

initial pts
,

V (0)
1, 1 , ..., V

(0)
1, Ncand

,

...

V (0)
P, 1, ..., V

(0)
P,Ncand

,
︸ ︷︷ ︸

cand pts iter 0

...

V (n−1)
1, 1 , ..., V (n−1)

1, Ncand
,

...

V (n−1)
P, 1 , ..., V (n−1)

P,Ncand

︸ ︷︷ ︸

cand pts iter n− 1





















← center1
...

← centerP

• Qn−1 :=





















Q(0)
1, 1, ..., Q

(0)
1, Ncand

,
...

Q(0)
P, 1, ..., Q

(0)
P,Ncand

,
︸ ︷︷ ︸

iteration 0

...

Q(n−1)
1, 1 , ..., Q(n−1)

1, Ncand
,

...

Q(n−1)
P, 1 , ..., Q(n−1)

P,Ncand

︸ ︷︷ ︸

iteration n− 1





















← center1
...

← centerP
.
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Then, define

• En−1 = Fn−1 ∪Qn−1 for n ≥ 1, and E−1 =
{

X(0)
1 , .., X(0)

n0

}

.

Then, Fn−1 contains the initial data used to fit the initial surrogate and all the candidate

points V (n−1)
i, j generated within the function local_candidate_search of Step 3d up to

iteration n−1.Qn−1 contains all Q(n−1)
i, j , the random vector that determines which coordinates

of selected centers are chosen for a perturbation, up to iteration n− 1.

Remark 4.7. For n ≥ 1, since the new ith evaluation point X(n)
i , 1 ≤ i ≤ P, is selected

deterministically from the values of the random vectors
{(

V (n−1)
i, 1

)

, ...,
(

V (n−1)
i, Ncand

)}

through

the local_candidate_search, the entire path of algorithm up to optimization iteration

n is completely determined by σ(En−1), where σ(En−1) is the σ − algebra generated by the

random vectors in En−1.

Theorem 4.8 is an extension theorem of Theorem 1 in [95] (see Theorem 3.6, Chapter 3

for the statement of this theorem). Unlike [95] whose sequence {X∗
n}n≥1 is defined for every

function evaluation point (since the number of function evaluations = number of optimization

iteration in [95]),
{

X∗(n)
}

n≥0
in our case is defined for n that is the number of optimization

iterations.

Theorem 4.8. Let f be a function defined on D ⊆ Rd and suppose that x∗ = minx∈D f(x) >

−∞ is the unique global minimizer of f in D such that minx∈D,‖x−x∗‖≥η f(x) > f(x∗) for

all η > 0. Suppose further that the algorithm generates the random vectors
{

X(0)
i

}

1≤i≤n0

,
{

X(n)
i : n ≥ 1, 1 ≤ i ≤ P

}

and
{

V (n)
i, 1 , ..., V

(n)
i,Ncand

: n ≥ 0, 1 ≤ i ≤ P
}

satisfying the follow-

ing two conditions:

[E1] For each n ≥ 0, the random vectors
{

V (n)
i, j : 1 ≤ i ≤ P, 1 ≤ j ≤ Ncand

}

are jointly

independent conditional on En−1.

[E2] For any j = 1, ..., Ncand, x ∈ D and δ > 0, there exists νj(x, δ) > 0 such that

P [V (n)
i, j ∈ B(x, δ) ∩D|σ(En−1)] ≥ νj(x, δ)
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for all n ≥ 0, 1 ≤ i ≤ P , where B(x, δ) is the open ball of radius δ centered at x.

If the sequence of random vectors {X∗(n)}n≥0 is defined by X∗(0) = argmin
x∈{X(0)

1 ,...,X(0)
n0 }f(x)

and

X∗(n) =











argmin
x∈{X(n)

1 ,...,X(n)
P }f(x)

X∗(n−1)

if min
{

f(X(n)
1 ), ..., f(X(n)

P )
}

< f(X∗(n−1))

otherwise

for n ≥ 1, then X∗(n) a.s.−−→ x∗

Proof. In order to avoid the tedious arguments, we will use Theorem 1 in [95] to prove

our theorem. First, replace En defined in [95] with the one defined in Definition 4.6 above.

We define random vectors {Xk}k≥1 and {Yk,1, ..., Yk, t}k≥n0
that satisfy the two conditions

[C1]–[C2] of Theorem 1 in [95] as follow:

Xk =











X(0)
k

argmin
x∈{X(k−n0)

1 ,...,X
(k−n0)
P }f(x)

for 1 ≤ k ≤ n0

for k ≥ n0 + 1

Let t = NcandP. Then, {Yk,1, ...., Yk, t}k≥n0
is defined as

{

V (k−n0)
i, j : i = 1, ..., P, j = 1, ..., Ncand

}

k≥n0

.

That is, all the candidate points generated from each of the P centers in the same optimiza-

tion iteration are combined into one set. Since the two conditions [E1]–[E2] in this theorem

are assumed, it follows immediately that the two conditions [C1]–[C2] in [95] also hold.

Finally, we define X∗
1 = X1 and X∗

k = Xk if f(Xk) < f(X∗
k−1) and X∗

k = X∗
k−1 otherwise.

Then, by Theorem 1 of [95], we can conclude that X∗
k

a.s.−−→ x∗. Since
(

X∗(k)) , (X∗
k) have the

same tail, they converge to the same limit. Therefore, X∗(n) a.s.−−→ x∗.

We now show that conditions [E1] and [E2] of Theorem 4.8 hold for nSOP. The condition

[E1] is trivial. Condition [E2] requires that the algorithm is able to sample at any point of

the variable domain.
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Lemma 4.9. [nSOP] For a fixed j ∈ {1, ... Ncand}, let H be the event that all coordinates of

the center c(n)i are selected for perturbation with search radius r(n)i > 0 (and v(n)i, j is generated).

Let h(n)
i, j be the conditional density of V (n)

i, j in nSOP given σ(En−1) and H. Then, there is a

constant C > 0 such that h(n)
i, j (u) ≥ C for all u ∈ D = {x : lb ≤ x ≤ ub} , 1 ≤ i ≤ P and

n ≥ 0.

Proof. Assume that all coordinates of c(n)i are selected for perturbation and that all the in-

formation σ(En−1) is known. Since candidate points of nSOP follow multivariate truncated

normal distributions, given that all coordinates of c(n)i are selected for perturbation, the

conditional density h(n)
i, j can be written as: h(n)

i, j (u) = A exp

{

−
∥

∥

∥

u−c(n)
i

∥

∥

∥

2

2σ2

}

for u ∈ D and 0

otherwise, where σ = r(n)i and A > 0 is a normalizing constant for truncated multivariate

normal density. Recall that in function update of Step 3g, each time when the local improve-

ment of a particular center is not registered, the search radius of that center is shrunk by

half. Moreover, the center whose local improvement is not registered for Nfail search efforts

will be marked as tabu and the search radius of that center is reset back to rint. Therefore,

r(n)i ≥ rint/2Nfail := B > 0. Taking C := A exp
{

−‖ub−lb‖2

2B2

}

. It follows that h(n)
i, j (u) ≥ C > 0

for all u ∈ D, 1 ≤ i ≤ P and n ≥ 0.

Lemma 4.10. If infn≥0 ϕ(n) > 0, the condition [E2] holds for nSOP.

Proof. Recall that ϕ(n) is used to compute pselect, the probability for selecting a variable of

the current center c(n)i for perturbation. Assume that infn≥0 ϕ(n) > 0. Let j ∈ {1, ... Ncand},

x ∈ D and δ > 0 be given. Continuing with the notation used in Lemma 4.9, in particular

recall the definition of H ,

P [V (n)
i, j ∈ B(x, δ) ∩D|σ(En−1)]

≥ P [
(

V (n)
i, j ∈ B(x, δ) ∩D

)

∩H|σ(En−1)]

= P [V (n)
i, j ∈ B(x, δ) ∩D|σ(En−1), H ]× P (H)
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=






ˆ

B(x, δ)∩D

h(n)
i, j (u)du




× ϕ(n)d

where h(n)
i, j is defined in Lemma 4.9.

≥ Cµ (B(x, δ) ∩D)×
(

inf
n≥0

ϕ(n)

)d

:= νj(x, δ)

for any n ≥ 0, where C > 0 is a non-negative constant existing in Lemma 4.9. Due to the

compactness of hypercube D and our assumption on ϕ that infn≥0 ϕ(n) > 0, it follows that

νj(x, δ) > 0. Note also that νj(x, δ) is independent of n and i. Thus, the condition [E2] is

now verified.

Since the conditions of Theorem 4.8 hold for nSOP, we can conclude that nSOP converges

to the global minimum with probability 1. Note, however, that since uSOP does not satisfy

the condition [E2], we cannot apply Theorem 4.8 directly. Therefore, another approach is

necessary but outside our scope of this work.

4.5 Numerical Experiments

4.5.1 Alternative Optimization Algorithms

We compare our algorithm to Parallel Stochastic RBF [96] and an evolutionary algorithm

that uses radial basis function approximation (ESGRBF) [107]. Both of these algorithms

were shown to be very efficient for computationally expensive functions. In terms of ap-

plications, Parallel Stochastic RBF was used to solve an optimization problem arising in

groundwater bioremediation introduced in [75] and ESGRBF was used to calibrate compu-

tationally expensive watershed models.
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4.5.1.1 Parallel StochRBF

Parallel Stochastic RBF [96] is a parallel version of Stochastic RBF by Regis and Shoemaker

[95]. In each iteration, the algorithm generates candidate points around xbest and the best

P points are selected. The selection is done sequentially, based on the weighted score of (1)

the surrogate value, and (2) the minimum distance from previously evaluated points and

previously selected points within that parallel iteration. The weights for these two criteria

are adjusted in a cycling manner according to a predefined weight pattern.

4.5.1.2 ESGRBF

An evolutionary algorithm that uses radial basis function approximations ESRBF within

a standard evolutionary strategy (ES) was proposed in [91]. ESRBF uses multiple local

RBF models in each generation of an evolutionary algorithm, one RBF model for each

offspring. Based on self-adaptive algorithm parameters, in each generation, λ ≥ ν offspring

are generated and their objective function values are estimated using the RBF surrogate

model. The true objective function is evaluated at the ν best individuals. The µ parents

for the next generation are selected from these ν best offspring. In ESRBF, to estimate

the objective function value of any offspring x, first the k nearest neighbors of x among

all previously evaluated parameter vectors are located. Then these nearest neighbors are

used to build a local RBF approximation that is then used to estimate f(x). In contrast,

ESGRBF [107] uses a single RBF model to estimate the fitness values of the offspring in each

generation. Shoemaker et al. [107] found that the performances of ESRBF and ESGRBF are

almost identical because the global RBF approximation in ESGRBF typically agrees with

the individual local RBF approximations (for each offspring). However, as mentioned in

[107] that ESGRBF is much easier to implement and it involves less overhead than ESRBF,

therefore we also use ESGRBF in this study.

146



Table 4.2: Parameter values for SOP

Parameter Value

Ncand min(500d, 5000)
Nfail 3
m 5

rint (nSOP) 0.2× l (D)
rint (uSOP) 0.1× l (D)

τ 10−5

4.5.2 Experimental Setup

All algorithms are run with P = 8 and P = 32 function evaluations per iteration. We use the

notation A-8P and A-32P to distinguish the algorithm A that does 8 function evaluations

from the one that does 32 function evaluations per iteration. For example, Parallel StochRBF

algorithm simulating 8 function evaluations per iteration is denoted by StochRBF-8P.

We use a cubic RBF interpolation model [89] for all three examined algorithms. We

use Latin hypercube sampling [129] for generating the initial evaluation points. The size of

the initial experimental designs was set to n0 = min {n : n ≥ 2(d+ 1) ∧ P |n}, which is the

smallest integer larger than 2(d+1) and divisible by P. The number 2(d+1) has previously

been used and shown to be an efficient size for initial experimental data set (see e.g. [95, 96]).

The definition of n0 is based on the assumption that (1) each function evaluation takes

approximately the same time and (2) P parallel processors are available and the P expensive

evaluations can be distributed to these P processors such as to use the available computing

power most efficiently.

We do ten trials of each algorithm for each test problem. All algorithms use the same

initial experimental design in order to facilitate a fair comparison. Table 4.2 summarizes

the values of the algorithm parameters for SOP. l (D) denotes the length of the shortest side

of the hyperrectangle D. For Parallel StochRBF, all algorithm parameter values are set as

recommended in [96]. For ESGRBF, the parameters are set to µ = 4, λ = 20, and ν = 8 for

P = 8 and µ = 14, λ = 80, and ν = 32 for P = 32.
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Table 4.3: Benchmark functions for SOP

No. Test Function
F15 Rastrigin Function
F16 Weierstrass Function
F17 Schaffers Function
F18 Schaffers Function, moderately ill-conditioned
F19 Composite Griewank-Rosenbrock Function F8F2
F20 Schwefel Function
F21 Gallagher’s Gaussian 101-me Peaks Function
F22 Gallagher’s Gaussian 21-hi Peaks Function
F23 Katsuura Function
F24 Lunacek bi-Rastrigin Function

4.5.3 Test Functions

Ten benchmark functions F15–F24 were selected from the BBOB test suite [47]. All of

them are 10 dimensional problems. These functions are multimodal, where F15–F19 are of

adequate global structure, and F20–F24 of weak global structure. The functions are listed

in Table 4.3. For definition and properties of these functions, refer to [47].

4.5.4 Progress Curve in Wall-clock Time

Although the test functions are computationally inexpensive, we assume that each function

evaluation takes one hour computation time and that other computational overheads aris-

ing, for example, from updating the response surface are negligible. This approach enables

us to efficiently compare the performance of the individual algorithms for computationally

expensive application problems. Under the assumption that P function evaluations are sim-

ulated simultaneously in each unit of wall-clock time, we plot progress curve as a function

of wall-clock time as was done in [96]. When the objective functions are computationally
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expensive and function evaluations are done in parallel, the stopping criterion for the op-

timization is a given limit on the allowable wall-clock time rather than a certain number

of function evaluations. The progress curve enables us to compare the performance of the

different algorithms over a range of the allowable computation time.

We set the maximum wall-clock time to be 60 hours. The total number of function

evaluations (= 60P ) for P = 8 and P = 32 will then be 480 and 1920, respectively.

4.5.5 Experimental Results and Discussion

Figures 4.11, 4.12 and 4.13 show the progress curves of selected test functions. The mean

of the best objective function value is plotted on the vertical axis and the wall-clock time is

plotted on the horizontal axis. Figure 4.11 shows the case for doing eight expensive evalu-

ations simultaneously and Figure 4.12 shows the results when doing 32 parallel evaluations

in each iteration. For each test function, in addition to the main plot, the last 15 iterations

are plotted separately in the small subfigure so that the tail of the plot before the algorithm

terminates can be seen clearly.

Overall, SOP together with either normal or uniform strategies (nSOP or uSOP) leads

to a very good performance, clearly outperforming the other two alternative methods both

when P = 8 and P = 32. We also find that for P = 8, StochRBF-8P performs better than

ESGRBF-8P. However, when P = 32, ESGRBF-32P performs better than StochRBF-32P.

Figure 4.13 shows the results of all algorithms using P = 8 and P = 32 parallel evaluations

for a clearer comparison.

When doing more function evaluations per iteration, it should be expected that the

algorithm improves the objective function value in less wall-clock time since more information

is obtained for refining the response surface.

However, in some cases our methods with 8 points outperformed the alternative methods

with 32 points. For example, in Figure 4.13, for function F15, nSOP-8P and uSOP-8P with 8

processors got better results in a shorter wall-clock time than StochRBF-32P and ESGRBF-
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32P. For function F16, both ESGRBF-8P and ESGRBF-32P are worse than nSOP-8P, uSOP-

8P, as well as StochRBF-8P. In addition, ESGRBF-8P even outperformed ESGRBF-32P

after around 15 hours.

As for functions F21 and F22, nSOP and uSOP converge fastest and to a better final

solution. Moreover, nSOP-8P and uSOP-8P again outperformed both StochRBF-32P and

ESGRBF-32P by getting a lower answer in less wall-clock time for SOP with 8 processors

versus the alternative methods with 32 processors. StochRBF-32P did very poorly on these

two test functions and StochRBF-8P even surpassed StochRBF-32P in both functions.

Although Parallel StochRBF was shown to work well in [96], we find that our method

SOP outperformed it here. While SOP sophisticatedly selects various centers for generating

candidate points using the Pareto trade-off strategy, Parallel StochRBF uses xbest as the

only center and generates only one batch of candidate points from which the next P function

evaluation points are selected. We assume this is why Parallel StochRBF is not as effective

when P is large.

The mean and standard deviation of the best function value obtained after the algorithms

terminate (60 hours) when using 8 and 32 processors are reported in Tables 4.4 and 4.6,

respectively. In addition to ParStochRBF and ESGRBF, we also report the results of two

other serial surrogate-based algorithms, namely Stochastic RBF [95] and NOMADm-DACE

(NOMADm with kriging surrogate) [2, 3, 8, 72] after 480 function evaluations in Table 4.4.

We also conduct a two-sample t-test to compare the results of the final solution from

Table 4.4. The one-tailed test is performed at the 5% level of significance. Tables 4.5a and

b show the number of test functions (out of ten) in which nSOP or uSOP is significantly

better or worse than the compared algorithm (in terms of the final solution).

For example, to read the number of test functions in which nSOP-8P significantly out-

performs ESGRBF-8P, one would look at the row ‘better’ in Table 4.5a across the columns

150



0 10 20 30 40 50 60
−50

0

50

100

150

200

250

300

Wall clock time (hours)

M
ea

n 
be

st
 fu

nc
tio

n 
va

lu
e

Global optimization methods with 8 points per iteration on F15

 

 
nSOP−8P
uSOP−8P
StochRBF−8P
ESGRBF−8P

45 50 55 60

−10

0

10

20

0 10 20 30 40 50 60
−260

−255

−250

−245

−240

−235

−230

−225

Wall clock time (hours)

M
ea

n 
be

st
 fu

nc
tio

n 
va

lu
e

Global optimization methods with 8 points per iteration on F16

 

 
nSOP−8P
uSOP−8P
StochRBF−8P
ESGRBF−8P

45 50 55 60

−256

−254

−252

−250

−248

−246

0 10 20 30 40 50 60
−40

−35

−30

−25

−20

−15

−10

−5

0

5

Wall clock time (hours)

M
ea

n 
be

st
 fu

nc
tio

n 
va

lu
e

Global optimization methods with 8 points per iteration on F18

 

 
nSOP−8P
uSOP−8P
StochRBF−8P
ESGRBF−8P

45 50 55 60
−36

−35

−34

−33

−32

−31

0 10 20 30 40 50 60
44

46

48

50

52

54

56

58

60

62

Wall clock time (hours)

M
ea

n 
be

st
 fu

nc
tio

n 
va

lu
e

Global optimization methods with 8 points per iteration on F19

 

 
nSOP−8P
uSOP−8P
StochRBF−8P
ESGRBF−8P

45 50 55 60
44

44.5

45

45.5

0 10 20 30 40 50 60
310

320

330

340

350

360

370

380

Wall clock time (hours)

M
ea

n 
be

st
 fu

nc
tio

n 
va

lu
e

Global optimization methods with 8 points per iteration on F21

 

 
nSOP−8P
uSOP−8P
StochRBF−8P
ESGRBF−8P

45 50 55 60

314

316

318

320

0 10 20 30 40 50 60
40

50

60

70

80

90

100

110

120

Wall clock time (hours)

M
ea

n 
be

st
 fu

nc
tio

n 
va

lu
e

Global optimization methods with 8 points per iteration on F22

 

 
nSOP−8P
uSOP−8P
StochRBF−8P
ESGRBF−8P

45 50 55 60
45

50

55

60

Figure 4.11: Best objective function value found averaged over ten trials versus wall-clock
time. Eight points are simulated per iteration. Assume that each function evaluation takes
1 hour and 8 processors are available.

151



0 10 20 30 40 50 60
−40

−20

0

20

40

60

80

100

120

140

Wall clock time (hours)

M
ea

n 
be

st
 fu

nc
tio

n 
va

lu
e

Global optimization methods with 32 points per iteration on F15

 

 
nSOP−32P
uSOP−32P
StochRBF−32P
ESGRBF−32P

45 50 55 60
−30

−20

−10

0

10

20

0 10 20 30 40 50 60
−260

−255

−250

−245

−240

−235

−230

Wall clock time (hours)

M
ea

n 
be

st
 fu

nc
tio

n 
va

lu
e

Global optimization methods with 32 points per iteration on F16

 

 
nSOP−32P
uSOP−32P
StochRBF−32P
ESGRBF−32P

45 50 55 60

−255

−250

−245

0 10 20 30 40 50 60
−40

−35

−30

−25

−20

−15

−10

Wall clock time (hours)

M
ea

n 
be

st
 fu

nc
tio

n 
va

lu
e

Global optimization methods with 32 points per iteration on F18

 

 
nSOP−32P
uSOP−32P
StochRBF−32P
ESGRBF−32P

45 50 55 60
−38

−37

−36

−35

−34

0 10 20 30 40 50 60
43

44

45

46

47

48

49

50

Wall clock time (hours)

M
ea

n 
be

st
 fu

nc
tio

n 
va

lu
e

Global optimization methods with 32 points per iteration on F19

 

 
nSOP−32P
uSOP−32P
StochRBF−32P
ESGRBF−32P

45 50 55 60

43.5

44

44.5

0 10 20 30 40 50 60
310

315

320

325

330

335

340

345

350

355

360

Wall clock time (hours)

M
ea

n 
be

st
 fu

nc
tio

n 
va

lu
e

Global optimization methods with 32 points per iteration on F21

 

 
nSOP−32P
uSOP−32P
StochRBF−32P
ESGRBF−32P

45 50 55 60

312
313
314
315
316
317
318

0 10 20 30 40 50 60
40

50

60

70

80

90

100

110

Wall clock time (hours)

M
ea

n 
be

st
 fu

nc
tio

n 
va

lu
e

Global optimization methods with 32 points per iteration on F22

 

 
nSOP−32P
uSOP−32P
StochRBF−32P
ESGRBF−32P

45 50 55 60

46
47
48
49
50
51
52

Figure 4.12: Best objective function value found averaged over ten trials versus wall-clock
time. Thirty-two points are simulated per iteration. Assume that each function evaluation
takes 1 hour and 32 processors are available.
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Figure 4.13: Combined results of Figures 4.11 and 4.12
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Table 4.4: The results for F15–F24 from BBOB testbed using 8 processors. Mean and
standard deviation of the best function value after 480 function evaluations

Alg nSOP-8P uSOP-8P StochRBF-8P ESGRBF-8P StochRBF∗ NOMADm-DACE∗

Test Func mean std mean std mean std mean std mean std mean std

F15 -15.276 12.608 -14.993 13.575 15.616 10.299 17.834 7.193 -2.421 22.896 27.586 23.731
F16 -254.080 3.144 -255.652 1.768 -256.633 1.591 -247.473 4.957 -256.387 1.366 -253.097 3.530
F17 -37.648 0.307 -37.460 0.508 -37.616 0.608 -37.667 0.612 -35.371 1.936 -34.576 2.821
F18 -35.795 1.091 -33.681 4.181 -33.904 1.706 -33.130 2.228 -28.136 5.279 -21.989 11.048
F19 44.967 0.767 44.375 0.999 44.974 0.962 44.759 0.896 44.549 1.121 44.787 1.773
F20 185.634 0.248 185.447 0.279 185.828 0.407 185.637 0.516 184.658 0.416 185.102 0.543
F21 312.711 1.397 313.432 2.806 315.551 3.058 320.990 11.478 313.676 2.958 317.403 8.411
F22 45.380 0.528 46.634 3.901 48.310 7.498 58.931 19.076 45.318 1.917 60.297 18.733
F23 212.922 0.671 212.868 0.582 213.057 0.449 212.888 0.699 211.733 0.438 212.072 1.062
F24 110.676 6.868 113.276 13.650 116.597 9.293 121.462 10.161 111.856 14.105 150.201 37.613

∗StochRBF and NOMADm-DACE are serial algorithms that simulate 1 function evaluation per iteration.

to find ‘ESGRBF-8P’, which yields a value of 6. On the other hand, the value of 0 in the row

‘worse’ in the same column indicates that nSOP-8P is not outperformed by ESGRBF-8P on

any of the 10 test functions.

From Table 4.5, the values of zero in the first column indicate that nSOP-8P and uSOP-

8P are not significantly different. However, nSOP-8P outperforms the compared algorithms

on more test functions than uSOP-8P does (total 17 versus 14 test functions).

While nSOP-8P, uSOP-8P, StochRBF-8P, and ESGRBF-8P simulate eight function eval-

uations per iteration, the serial algorithms Stochastic RBF and NOMADm-DACE simulate

one point per iteration and are therefore able to exploit more information during the opti-

mization, and the surrogate is updated after each function evaluation. Hence, given the same

number of function evaluations (480), one would expect these serial algorithms to outperform

the algorithms that simulate P = 8 function evaluations per iteration.

We see that both nSOP-8P and uSOP-8P could attain a better final solution than

StochRBF for 2 test problems and are significantly better than NOMADm-DACE for 6

out of 10 test problems.
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Table 4.5: The total number of test functions (out of ten) that SOP-8P can attain a better
or worse final solution than the compared algorithm at 5% significance level. The data is
collected after 480 function evaluations.

(a) nSOP-8P

nSOP-8P vs. uSOP-8P StochRBF-8P ESGRBF-8P StochRBF∗ NOMADm-DACE∗ Total

better 0 3 6 2 6 17

worse 0 1 0 3 2 6

(b) uSOP-8P

uSOP-8P vs. nSOP-8P StochRBF-8P ESGRBF-8P StochRBF∗ NOMADm-DACE∗ Total

better 0 2 4 2 6 14

worse 0 0 0 2 2 4

∗StochRBF and NOMADm-DACE are serial algorithms that simulate 1 function evaluation per iteration.

Table 4.6: The results for F15–F24 from BBOB testbed using 32 processors. Mean and
standard deviation of the best function value after 1920 function evaluations

Alg nSOP-32P uSOP-32P StochRBF-32P ESGRBF-32P

Test Func mean std mean std mean std mean std

F15 -23.385 5.541 -30.612 3.304 12.689 6.762 -0.159 6.700
F16 -257.141 0.707 -257.538 1.052 -257.637 1.686 -244.834 1.868
F17 -38.168 0.325 -38.075 0.379 -38.144 0.275 -38.609 0.038
F18 -37.224 0.352 -36.604 0.877 -35.666 0.979 -37.852 0.604
F19 43.855 0.498 43.885 0.462 44.151 0.683 43.668 0.896
F20 185.237 0.241 185.117 0.336 185.480 0.292 185.081 0.253
F21 312.001 0.414 311.774 0.901 317.249 2.963 315.660 5.573
F22 45.572 0.001 45.503 0.216 51.512 10.272 47.490 6.068
F23 212.361 0.551 212.584 0.442 212.683 0.524 212.813 0.608
F24 96.234 11.835 96.954 10.063 105.678 7.581 96.665 8.889
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Table 4.7: The total number of test functions (out of ten) that SOP-32P can attain a better
or worse final solution than the compared algorithm at 5% significance level. The data is
collected after 1920 function evaluations.

(a) nSOP-32P

nSOP-32P vs. uSOP-32P StochRBF-32P ESGRBF-32P Total
better 1 6 4 11
worse 1 0 2 3

(b) uSOP-32P

uSOP-32P vs. nSOP-32P StochRBF-32P ESGRBF-32P Total
better 1 6 3 10
worse 1 0 2 3

Similarly, we conduct a two-sample t-test to compare the final results obtained in Table

4.6 at the 5% level of significance. Tables 4.7a and b show the number of test functions in

which nSOP-32P or uSOP-32P is significantly better or worse than the compared algorithm.

From Table 4.7, we see that both nSOP-32P and uSOP-32 outperform each other on

one test function. Both algorithms are better than StochRBF-32P on 6 test functions.

nSOP-32P is better than ESGRBF-32P on 4 test functions while uSOP-32P is better than

ESGRBF-32P on 3 test functions.

4.5.6 Groundwater Bioremediation Problem

In addition to the BBOB testbed, we also tested our algorithms on a 12-dimensional problem

arising in the detoxification of contaminated groundwater using aerobic bioremediation [130].

The constrained global optimization problem aims at finding the cheapest cleanup strategy

by determining the pumping rates of oxygenated water into the ground to promote the

degradation of the contaminants by microbes. The locations of the injection wells are known.

Monitoring wells are also set up in order to measure the concentration of the contaminant
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and to ensure that it will be below some threshold level at specified time periods. Because

the pumping of oxygenated water is expensive, the goal is to determine the pumping rates

for each injection well at the beginning of each management period in order to minimize

the total pumping cost required to reduce the contaminant concentration at the monitoring

wells to the maximum allowed by EPA regulations. [130] introduced a penalty term to

incorporate a contamination constraint into the total pumping cost (objective function).

This implementation resulted in a box-constrained global optimization problem. The decision

variables are the pumping rates at each of the 3 injection wells in each of the management

periods. The four time period problem (resulting in 12 decision variables) is considered. We

shall refer to this groundwater problem as GWB12D.

In addition to P = 8 and P = 32, the results using P = 64 are also given in Figure

4.14. The parameters µ = 26, λ = 160, and ν = 64 are set for ESGRBF-64P. All other

algorithm parameters are the same as those used in Section 4.5.5. We did ten trials with

each algorithm.

From Figure 4.14, both nSOP and uSOP can make a faster reduction in function values

than the alternative methods at each wall-clock time unit. The mean and the standard

deviation of the best function value after 60 iterations (hence, 480, 1920, 3840 function

evaluations for P = 8, 32, 64) are also reported in Table 4.8. We see that SOP can reach

the lowest average final value with the smallest standard deviation in all cases (uSOP is best

on P = 8 and P = 32 while nSOP is best on P = 64). StochRBF with P = 8 was shown

in [96] to work well on another groundwater bioremediation model of chlorinated ethenes

introduced in [75]. However, here we find that the method did not perform nearly as well as

SOP on GWB12D with any of the processor numbers evaluated. This significantly supports

the effectiveness of our method.

Similar to that of BBOB, we also carry out a two-sample t-test to compare the final results

of GWB12D obtained in Table 4.8a. For any two algorithms A1, A2, we write A1 ≈ A2 if

A1 and A2 are not significantly different and write A1 ≺ A2 if A1 is significantly better than
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Figure 4.14: Best objective function value on groundwater problem GWB12D averaged over
ten trials versus wall-clock time. Eight (top left), thirty-two (top right) and sixty-four (lower
left) expensive evaluations are done simultaneously per iteration.
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Table 4.8: Results for GWB12D after 60 hours

(a) Mean and standard deviation of the best function value after 60 hours for P=8, 32 and 64
processors on GWB12D. The best value for each P is shown in bold font.

Alg nSOP uSOP StochRBF ESGRBF

P mean std mean std mean std mean std

8 350.964 17.940 346.727 15.606 390.614 31.145 377.373 27.752
32 329.166 8.034 326.112 5.016 342.550 13.997 329.128 9.875
64 318.774 2.465 319.182 3.658 332.473 4.390 325.420 8.837

(b) Two-sample t-test results for GWB12D at 5% significance
level

P Two-sample t-test results
8 nSOP ≈ uSOP ≺ ESGRBF ≈ StochRBF
32 nSOP ≈ uSOP ≈ ESGRBF ≺ StochRBF
64 nSOP ≈ uSOP ≺ ESGRBF ≺ StochRBF

A2 at the 5% level of significance. The statistical results are summarized in Table 4.8b.

In short, overall SOP can reduce the function values faster and achieve a better final

solution than the alternative methods on more test functions in BBOB and the groundwater

bioremediation problem.

4.5.7 Relative Speedup

To compute speedups for computationally expensive functions, we need to be able to compare

the number of function evaluations an algorithm required to reach a solution of a certain

accuracy. The results can vary according to the accuracy level, which we call α−level. Hence,

in Chapter 3.5.3.2, we have defined

α-Speedup(P) := I(α)(1)/I(α)(P ) = n(α)(1)/
⌈

n(α)(P )/P
⌉

,

where

n(α)(P ) = argmini{f(xi) ≤ α givenP processors}
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and

I(α)(P ) =
⌈

n(α)(P )/P
⌉

are the number of function evaluations and the number of iterations that an algorithm

required to reach a specified α−level. Note that SOP is not designed to run in serial. If

SOP selects only one center per iteration, the point with the lowest objective function value

will be selected as the center in each iteration regardless of the results obtained from the

Pareto non-dominated sorting (Figures 4.7 and 4.8). We thus use Stochastic RBF, which

was proven to be very efficient [95] as a serial algorithm to compute I(α)(1) and n(α)(1).

The relative α-Speedup(P) for each test function is calculated for different α-levels, α1 >

α2 > α3. To get the three α-levels of nSOP for test functions in BBOB testbed, nSOP(8)

and Stochastic RBF are run for 496 function evaluations and nSOP(32) for 1984 function

evaluations. Let y∗1, y∗8, and y∗32 be the average best objective function values obtained

from Stochastic RBF, nSOP(8) and nSOP(32), respectively. We set α3 = max {y∗1, y∗8, y∗32},

α2 = α3 + |α3| × 0.01 and α1 = α3 + |α3| × 0.05, i.e. α3 is the smallest value that can

be reached by all the three algorithms, and α2, α1 are α-values corresponds to relative

errors of α3 at 1% and 5%, respectively. For GWB12D test function, we ran in addition

nSOP(64) for 3968 function evaluations. Let y∗64 be the average best objective function

values obtained from nSOP(64), and define α3 = max {y∗1, y∗8, y∗32, y∗64}, α2 = α3+ |α3|×0.01

and α1 = α3 + |α3|× 0.05.

We calculate also three α-levels for uSOP using the same approach as in nSOP. The

α-levels for nSOP and uSOP are shown in Table 4.9.

Table 4.10 shows the α-Speedup(P) for nSOP and uSOP using 8, 32 processors for test

functions in BBOB testbed and 8, 32, 64 processors for GWB12D test function. We can

see that α-Speedup for each test function varies based on the number of processors and the

α-level.
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Table 4.9: α-levels

Test Function
nSOP uSOP

α1 α2 α3 α1 α2 α3

F15 -2.876 -2.997 -3.027 -2.876 -2.997 -3.027

F16 -241.649 -251.824 -254.367 -243.050 -253.284 -255.842

F17 -33.626 -35.041 -35.395 -33.626 -35.041 -35.395

F18 -26.742 -27.868 -28.149 -26.742 -27.868 -28.149

F19 47.176 45.378 44.929 46.686 44.908 44.463

F20 194.821 187.399 185.543 194.693 187.276 185.422

F21 329.358 316.811 313.675 329.358 316.811 313.675

F22 47.851 46.028 45.572 48.958 47.093 46.627

F23 223.550 215.034 212.905 223.511 214.996 212.868

F24 115.991 111.572 110.467 118.940 114.409 113.276

GWB12D 367.716 353.708 350.206 362.463 348.655 345.203

Table 4.10: α-Speedup of nSOP and uSOP

Test Function P
nSOP uSOP

α1 α2 α3 α1 α2 α3

F15
8 11.805 11.976 12.195 11.524 11.690 11.905

32 19.360 19.640 20.000 20.167 20.458 20.833

F16
8 2.318 2.545 3.159 3.105 3.182 4.889

32 5.100 4.308 5.378 6.556 5.600 9.059

F17
8 10.333 23.706 27.500 8.857 21.211 24.750

32 24.800 57.571 61.875 20.667 44.778 49.500

F18
8 17.529 23.000 24.800 12.417 15.607 17.103

32 37.250 48.556 55.111 29.800 39.727 45.091

F19
8 8.800 6.500 5.689 7.600 9.639 8.267

32 29.333 37.143 34.700 22.800 31.545 19.840

F20
8 5.636 5.333 2.032 6.200 6.400 2.143

32 20.667 16.000 3.048 15.500 12.800 3.649

F21
8 3.818 14.056 19.192 3.500 14.056 10.848

32 8.400 31.625 38.385 7.000 31.625 38.385

F22
8 12.391 10.258 10.578 17.375 13.714 4.698

32 40.714 31.800 8.207 39.714 36.000 32.889

F23
8 2.000 8.375 1.746 2.000 13.800 2.651

32 2.000 33.500 5.000 2.000 23.000 4.071

F24
8 7.275 9.226 8.197 6.577 7.220 7.267

32 13.741 14.382 14.706 24.429 20.286 18.957

GWB12D

8 3.850 3.255 3.000 4.289 3.345 3.397

32 9.059 8.950 9.000 8.150 7.462 7.926

64 12.833 11.933 11.812 12.538 12.125 12.588
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The algorithm is changed by using P centers to generate candidate points and updat-

ing the response surface only once every P evaluations. On some problems, the change is

quite helpful and actually reduces the number of evaluations required to reach an α-level.

In this case, the speedup is “superlinear”, i.e. α-Speedup(P) is greater than P . The super-

linear speedup holds for F17, F18, F21, and F22. F17 is Schaffers function, which is highly

multimodal– both the frequency and amplitude of the modulation vary. F18 is a moderately

ill-conditioned counterpart to F17, with conditioning of about 1000. Both F21 and F22

are Gallagher’s Gaussian function, where F21 consists of 101 optima, and the conditioning

around the global optimum is about 30. F22 consists of 21 optima with the conditioning

around the global optimum is about 1000 [47].

The three functions that have poor scalability (i.e. speedup low compared to P ) are F16,

F20, and F23. These functions are highly rugged and moderately to highly repetitive.

For F15, the superlinear speedup holds for 8 processors but not for 32 processors. As

for F19, and F24, although they do not achieve a superlinear speedup, we can see that the

speedup seems to improve in the number of processors. These three functions, despite being

highly multimodal, are not as rugged as those mentioned in the previous paragraph. The

global amplitude of F15 is large compared to local amplitudes. As for F24, the function

was constructed to be deceptive for some evolutionary algorithms with large population size.

This might be the reason why the scalability of SOP on this test function deteriorates with

32 processors.

Finally, we do not get good scalability for our groundwater bioremediation application,

GWB12D. The speedup is around 3, 9, and 12 for 8, 32, and 64 processors. Recall however

none of the other algorithms did as well as SOP (see Figure 4.14) on this blackbox problem.
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4.6 Conclusions

Parallel computation has the potential to greatly reduce the wall clock time to solve a

global optimization problem for a computationally expensive objective function, but that

potential can only be realized if the parallel algorithm is able to effectively select the work

to be computed in parallel. Because of the expense of the objective function, the parallel

surrogate algorithms (Algorithm 4.1) are designed so that the objective function (simulation)

evaluations for P values of the decision vector are done simultaneously (in parallel) and the

remaining calculations for optimization (used to determine which new decision variable values

should be next evaluated) can be done in serial since they take an insignificant amount of

time in comparison to the objective function evaluations. As a result the surrogate is updated

only once for each P expensive evaluations done in parallel.

The efficiency of the parallel computation depends on selecting the values of the P deci-

sion vectors to be evaluated in each iteration to provide the most useful information over the

course of many iterations, which are used to construct the surrogate surface used to help guide

the selection of evaluation points. From the results of the n iterations, we obtain the values

{
(

x(0)
1 , f(x(0)

1 )
)

, ...,
(

x(0)
n0 , f(x

(0)
n0 )

)

,
(

x(1)
1 , f(x(1)

1 )
)

, ...,
(

x(1)
P , f(x(1)

P )
)

, ...,
(

x(n)
1 , f(x(n)

1 )
)

,

...,
(

x(n)
P , f(x(n)

P )
)

}. We want these values to both help improve the surrogate surface accu-

racy over the domain and to help identify the neighborhood of the global minimum, which

are two different objectives. To increase efficiency with a large numbers of processors, we

improve the diversity of the points selected for the next expensive evaluation by utilizing

non-dominated sorting on these two objectives. We also incorporate a tabu structure to fur-

ther diversify the search. Hence, we have used multi-objective and tabu search approaches

to improve parallel computation of single-objective multimodal problems.

In this chapter we introduced the algorithm SOP, which is based on the selection of

center points through Pareto non-dominated sorting. Promising points on the Pareto fronts

whose function values are small and are far away from other evaluated points are selected

as a center. The selected centers are then used for generating a set of candidate points
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from which the next function evaluation points are chosen. Multiple centers generate a more

diverse set of candidate points.

Two types of random candidate point generations are introduced, namely candidate point

generation by uniform perturbations (uSOP) and truncated normal perturbations (nSOP). A

more general convergence theorem of Theorem 1 in [95] was proven that allows the possibility

that candidate points are generated from many centers as opposed to just one center as was

done in [95]. Following this general convergence theorem, the nSOP method is shown to

converge to the global optimum almost surely.

In the numerical experiments, we compared SOP to the two available and feasible parallel

surrogate methods, ParStochRBF and ESGRBF. For all compared algorithms, evaluations

with eight and thirty-two parallel processors are done on 10-dimensional BBOB testbed and

a 12-dimensional groundwater bioremediation problem. In addition, 64 parallel evaluations

are also done on the latter groundwater problem. In some cases SOP with 8 processors

obtained a better result in less wall-clock time than the other algorithms (ParStochRBF

and ESGRBF) with 32 processors. The results of these algorithms show that SOP is more

efficient on average in making a fast reduction in function values compared to the alternative

algorithms, and SOP finds better solutions in many more problems including the groundwater

problem.
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Chapter 5

Conclusions

In this dissertation, we investigated the performance of surrogate model based optimization

algorithms for computationally expensive blackbox functions. (a) We developed a multistart

surrogate model framework. (b) We developed a parallel method and investigated the appli-

cability of surrogate models to high-dimensional problems (tested on up to 200 variables).

(c) We developed a new parallel algorithm that uses a bi-objective optimization approach

for effectively selecting several new evaluation points in each iteration.

5.1 A Surrogate Multistart Framework

In Chapter 2, we propose SOMS, which is a multistart method that uses radial basis function

models as a surrogate. We use the surrogate model approach to select promising starting

points for local searches. We carried out numerical experiments to examine the ability of

SOMS to find the global optimum of multimodal functions and we compared SOMS with

four other multistart methods on a set of benchmark problems. The numerical experiments

showed that SOMS outperforms the other methods and finds a significantly better solution

within an equal number of function evaluations. Furthermore, SOMS can be easily interfaced

with existing local optimization codes for complex simulation models.
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5.2 Surrogate Models for HEB Problems

In Chapter 3, we propose PADS, which is a surrogate model based global optimization al-

gorithm for high-dimensional, expensive, blackbox (HEB) problems. PADS uses a dynamic

coordinate search strategy in order to deal with the large problem dimensions. We imple-

mented PADS such that several function evaluations can be done in parallel. We compared

PADS in numerical experiments with different surrogate-based global optimization algo-

rithms with up to 200 dimensions (which is considered large-scale for the problems usually

addressed with surrogate models). The results show that PADS is a very effective method

compared to the alternative methods because it finds better solutions within the same unit

of wall-clock time.

5.3 Surrogate Model Algorithm with Bi-objective Point

Selection Optimization

In Chapter 4, we propose SOP, which is a new parallel surrogate model algorithm that

selects several evaluation points by solving a computationally cheap bi-objective optimization

problem. We investigated the performance of SOP when the number of computationally

expensive evaluation points per iteration increases. We simulated up to 64 points in parallel

in each iteration in the numerical experiments. This helps push the frontier in surrogate-

based optimization since previous methods have done only up to 10 function evaluations

per iteration. We compared the performance of SOP with two other RBF based algorithms

with various numbers of evaluation points per iteration and found that SOP is efficient and

reduces the objective function values faster than the alternatives.
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5.4 Future Work

The SOMS algorithm introduced in Chapter 2 can be extended by coupling it with a

surrogate-based local optimization algorithm such as ORBIT [124, 125]. This has the ad-

vantage that the local optimization will require fewer expensive function evaluations and we

expect the performance to be significantly improved. By sharing the points generated during

the global phase (from uniform sampling) and the local phase (from the local optimization),

a new efficient surrogate multistart algorithm for global optimization can be developed.

PADS and SOP, which are parallel algorithms, can be extended to solve optimization

problems that involve also computationally expensive blackbox inequality constraints. This

can be done by building several surrogate models, one for the objective function and the

others for the constraint functions. These surrogate models can then be used to select the

points where the objective and constraint functions will be evaluated next. The objective

and constraint function evaluations of all selected points can be done simultaneously. Hence,

a significant reduction in wall-clock time can be achieved.
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