
GRADUAL SYNCHRONIZATION

A Dissertation

Presented to the Faculty of the Graduate School

of Cornell University

in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

by

Sandra Janel Jackson

August 2014

c� 2014 Sandra Janel Jackson

ALL RIGHTS RESERVED

GRADUAL SYNCHRONIZATION

Sandra Janel Jackson, Ph.D.

Cornell University 2014

A synchronization solution is developed in order to allow finer grained seg-

mentation of clock domains on a chip. This solution incorporates computation

into the synchronization overhead time and is called Gradual Synchronization.

With Gradual Synchronization as a synchronization method the design space

of a chip could easily mix both asynchronous and synchronous blocks of logic,

paving the way for wider use of asynchronous logic design.

BIOGRAPHICAL SKETCH

Sandra Janel Jackson earned her Bachelor of Science degree in Computer Science

from Cornell University in 1999. She worked in the server group at IBM in the

areas of message passing and security for three years before entering graduate

school. She received her Master of Science degree in Electrical and Computer

Engineering in 2006 from Cornell University. In 2006 she continued to the doc-

toral program in Electrical and Computer Engineering under the supervision of

Professor Rajit Manohar at Cornell University. While pursuing her degree, San-

dra Jackson worked as a teaching assistant and as a research assistant for the

department of Electrical and Computer Engineering.

iii

I dedicate this work to my father, Rory Dana Jackson (1947-2002).

iv

ACKNOWLEDGEMENTS

I would like to thank Rajit Manohar for being my advisor, for introducing me to

the field of asynchronous circuits, and for sticking with me through juggling my

dissertation and my young family. He welcomed me into his group after I com-

pleted my Master’s Degree and encouraged me to change to a research topic

more in line with my interests in order to continue working towards my Ph.D.

I thank my thesis committee: Professor Rajit Manohar, Professor Jose Matinez,

and Professor David Albonesi for their helpful input and feedback on this re-

search. Besides the contents of this thesis I have learned so much from other

endeavors undertaken during my time as a graduate student. I would like to

thank Rajit Manohar, David Fang, Chris LaFrieda, Carlos Tadeo Ortega, and

other current and past members of the AVLSI research group for those opportu-

nities and experiences. I would also like to thank Professor David Albonesi and

the members of his group for allowing me to participate in their group project

temporarily. Additional thanks go to Brett Patane who very carefully read this

thesis and identified places where clarification was needed. This work was sup-

ported by a grant from the National Science Foundation, and I thank the NSF

for that funding. And finally, I thank all of the family and friends who offered

encouragement and support during my time as a graduate student.

v

TABLE OF CONTENTS

Biographical Sketch . iii
Dedication . iv
Acknowledgements . v
Table of Contents . vi
List of Tables . viii
List of Figures . ix

1 Introduction 1
1.1 Contributions . 4

1.1.1 Gradual Synchronization [Chapter 3 and Appendix A] . . 4
1.1.2 Gradual Synchronization: Proof of Concept [Chapter 4] . . 4
1.1.3 Applications of Gradual Synchroniztion [Chapter 5] 4
1.1.4 Variation [Chapter 6] . 5

2 Related Work 6
2.1 Synchronization . 6

2.1.1 Synchronizers . 7
2.1.2 Pipeline Synchronization 13

2.2 NoC . 17
2.2.1 Synchronous NoC . 18
2.2.2 Asynchronous NoC . 21

2.3 Variation and Technology Scaling 25
2.3.1 Effects of Variation and Technology Scaling on Synchro-

nizers . 26
2.3.2 Methods to combat effects of Variation on Synchronizers . 27

3 Concept and Theory 28
3.1 Serial Computation . 28
3.2 Fixed Delay . 31
3.3 Merging Delays . 32
3.4 Gradual Synchronization . 33

3.4.1 Correctness Proof . 36
3.4.2 Synchronous to Asynchronous Gradual Synchronizer . . . 45
3.4.3 Four-Phase Protocol FIFO Elements 49

4 Proof of Concept 56
4.1 MTBF . 56
4.2 Latency and Throughput . 66
4.3 Time Available for Computation 70
4.4 Area . 75
4.5 Power . 77

vi

5 Applications of the Gradual Synchronizer 80
5.1 Examples . 80

5.1.1 On-Chip Networks . 80
5.1.2 Mixed synchronous/asynchronous logic 83

5.2 Gradual Synchronization in NoC 84
5.2.1 Network Interface Design Overview 84
5.2.2 Fast Four-Phase Network Interface 87
5.2.3 Gradual Synchronizer Network Interface 90
5.2.4 Pipeline Synchronizer Network Interface 92
5.2.5 Performance . 93

6 Dynamic Variations and Synchronizers 98
6.1 Challenges . 98

6.1.1 Voltage Scaling . 99
6.1.2 Frequency Variations . 99

6.2 Performance . 100
6.2.1 Multiple Synchronizers . 101
6.2.2 Reusing Computation . 103

6.3 Summary . 104

7 Conclusion 105

A Correctness Proofs 107
A.1 Two-Phase Synchronous to Asynchronous Gradual Synchronizer 107
A.2 Four-Phase Asynchronous to Synchronous Gradual Synchronizer 112
A.3 Four-Phase Synchronous to Asynchronous Gradual Synchronizer 120

Bibliography 126

vii

LIST OF TABLES

2.1 Summary of NoC Implementations 18

4.1 Latency comparison of transferring multiple words. 75
4.2 Comparison of synchronizer circuit area. 76

5.1 Message based core send interface. 85
5.2 Message based core receive interface. 86
5.3 Format of data stream . 86
5.4 Outgoing Message NI Simulation Results. 94
5.5 Incoming Message NI Simulation Results. 97

viii

LIST OF FIGURES

1.1 System flow across a timing boundary with various synchroniza-
tion methods in use. 3

2.1 A classic two-flop synchronizer ϕR is the receiver clock and ϕS is
the sender clock. Two sets of flip-flops are needed for complete
synchronization between the two clocked environments. One set
for the req signal and one for the ack signal. 10

2.2 Each stage of the pipeline synchronizer increases the synchronic-
ity of the signal. 14

2.3 An asynchronous-to-synchronous pipeline synchronizer with k
stages and two-phase non-overlapping clocks. 14

2.4 Synchronizer Blocks . 15

3.1 A synchronizer stage with data computation (CL) inserted into
the FIFO block. 29

3.2 Timing-wise placing computation in the FIFO is equivalent to
placing a variable delay (vd) in series with the synchronizer. . . . 30

3.3 A fixed delay synchronizer (FDS) stage. 31
3.4 A synchronizer stage with computation placed outside of the

FIFO, a fixed delay (dm) in series with the synchronizer ensures
data safety. 33

3.5 An asynchronous to synchronous gradual synchronizer with k
stages. 34

3.6 A two-phase FIFO with the added input S i. 35
3.7 A three stage segment of a two-phase asynchronous to syn-

chronous gradual synchronizer. 37
3.8 Steady-state operation of the 2-phase asynchronous-to-synchronous

gradual synchronizer. 41
3.9 A two-phase synchronous to asynchronous gradual synchronizer. 45
3.10 Two-phase FIFO buffer for synchronous to asynchronous grad-

ual synchronization. 46
3.11 A two-phase FIFO with Vo input. Both Ao and Vo must be present

to complete the handshake, but the presence of Vo alone can ini-
tiate latching of the data. 48

3.12 A two-phase synchronous to asynchronous gradual synchro-
nizer with Vo FIFO input. 48

3.13 A 4-phase FIFO element with S i signal for computation safety. . 50
3.14 An asynchronous-to-synchronous gradual synchronizer using

four-phase FIFO elements. 51
3.15 The four-phase FIFO element used for the synchronous-to-

asynchronous gradual synchronizer. 53
3.16 A four-phase protocol synchronous to asynchronous gradual

synchronizer. 54

ix

4.1 MTBF of the Fast 2-Phase Synchronizer for maximum clock fre-
quencies of 800MHz, 900MHz and 1GHz. 58

4.2 MTBF of the 4-Phase Handshake 3-stage and 4-stage Pipeline
and Gradual Synchronizers. 61

4.3 MTBF of the 2-Phase Handshake 3-stage and 4-stage Pipeline
and Gradual Synchronizers. 62

4.4 Comparison of the MTBF of several synchronizer configurations.
The flip-flop synchronizers shown are for N=2 meaning about
one clock cycle is allotted for metastability resolution. 64

4.5 Comparison of the MTBF of several synchronizer configurations.
The flip-flop synchronizers shown are for N=1.5 meaning about
half a clock cycle is allotted for metastability resolution. 64

4.6 Comparison of the MTBF of a 4-phase gradual synchronizer with
varying numbers of stages on the request and acknowledge ends. 66

4.7 Worst case forward latency comparison of the synchronizers. . . 67
4.8 Througput comparison of the synchronizers. 68
4.9 Time Available for Computation in each stage of the Gradual

Synchronizer . 71
4.10 Recovered percentage of synchronization time by stage for the

gradual synchronizer. 72
4.11 Time Available for Computation in the Gradual Synchronizer . . 73
4.12 Model system forward latency using various synchronizer types. 74
4.13 A visual breakdown by area of what function the transistors in

the synchronizers serve. 77
4.14 Energy per word transferred comparison of the synchronizers. . 78
4.15 Raw power usage reported for the synchronizer simulations. . . 79

5.1 A 2D NoC mesh arcitecture. 82
5.2 Various possible flit formats. Bits four and five are the flit type

(FT). 87
5.3 Outgoing message network interface using a fast four-phase flip-

flop synchronizer. 88
5.4 Incoming message network interface using a fast four-phase flip-

flop synchronizer. 89
5.5 Outgoing message network interface using a gradual synchronizer. 91
5.6 Incoming message network interface using a gradual synchronizer. 92

6.1 Changes in MTBF of 3-stage and 4-stage gradual synchronizers
due to frequency and voltage adjustment. 101

6.2 Overview of a scheme that can select between two asynchronous-
to-synchronous synchronizers. 102

6.3 State machine diagram of the synchronizer switch fsm. 103
6.4 Synchronizer computation reuse setup. 104

x

A.1 Segment of the 2-phase synchronous-to-aynchronous gradual
synchronizer. 107

A.2 Steady State Operation of a 2-phase synchronous-to-aynchronous
gradual synchronizer. 110

A.3 Segment of a four-phase asynchronous-to-synchronous gradual
synchronizer. 114

A.4 Steady-state operation of a four-phase asynchronous-to-synchronous
gradual synchronizer. 118

A.5 Segment of the 4-phase synchronous-to-aynchronous gradual
synchronizer. 120

A.6 Steady-state operation of a four-phase synchronous-to-asynchronous
gradual synchronizer. 124

xi

CHAPTER 1

INTRODUCTION

Synchronous circuit design is the most accepted style of circuit design for

modern microprocessors and other digital circuit systems. This method dis-

tributes computation into segments meant to complete during one cycle of a

clock. This clock must be routed across the entire die so that each segment of

computation appears to complete its portion of work at the same time as all

other segments and is therefore known to be ready for the next portion of work.

As the notion of one global clock distributed across an entire die becomes

more difficult to maintain due to larger dies and increasing within die varia-

tion some modern circuit designs divide the die into multiple regions. Circuits

within the same region all use the same local clock, but the different regions all

have different clocks. Each region is referred to as a clock domain. This type of

system is called a globally asynchronous, locally synchronous (GALS) system.

While GALS systems solve the problem of distributing one clock throughout

an entire chip, a new challenge is created when the locally synchronous regions

must communicate with one another. The two regions are now asynchronous

with respect to each other. A signal is synchronous if its voltage is established

and stable around the sampling edge of the reference clock [60]. If a signal

from one region were connected without compensation for clock differences to

another region, the sender region may not be holding data stable at the time

the receiving region samples it. This would cause a metastability, which is an

occurrence of Buridan’s principle [44].

Buridans Principle. A discrete decision based upon an input having a con-

1

tinuous range of values cannot be made within a bounded length of time.

The circuit sampling the signal must decide whether the signal is a logic

value of zero or a logic value of one. This decision is made based on the voltage

of the signal, which is a continuous value. If the voltage is changing at the point

the receiving circuit samples the signal, there is no way to be sure how long the

circuit will take to make a decision. This could cause the circuit to malfunction

if it takes too long to make the decision. The occurrence of metastability in a

physical circuit was first demonstrated in 1973 [16].

In order to avoid corruption of data during communication across clock do-

main boundaries circuitry must be added to synchronize the data to the re-

ceiver’s clock. These circuits are referred to as synchronizers. Synchronizers are

difficult to design because of the possibility of metastable data. Synchronizers

exist to completely eliminate the possibility of a circuit error due to a metastabil-

ity, but these synchronizers can be difficult to design and come at a substantial

performance cost. In order to combat the performance hit synchronizers that re-

duce the probability of a failure due to metastability to an acceptable range for

the design are commonly used instead. These synchronizers can exhibit high

latency and low throughput. Since cycles can be lost to synchronization, de-

signers must carefully weigh the advantages of increasing the number of clock

domains against the additional latency of more synchronizers.

In addition, the mismatch between clock frequencies at timing domain

boundaries often warrants the use of some sort of buffering between the do-

mains to avoid stalls in the progress of the faster domain. Figure 1.1a shows

the basic system flow across a typical timing boundary. Computation, synchro-

nization and buffering are three separate stages. The necessity of buffering also

2

!"#"$ %&'()#"*&+$,-+.$

/)0123+4$

,-+.52&+3617$$
$$$$$$$!"#"$

(a) Basic synchronization

!"#"$ %&'()#"*&+$

,-+./0&+12"*&+$
3$4)5601+7$

,-+./0&+1268$$
$$$$$$$!"#"$

(b) FIFO synchronization

!"#"$ %&'()*+',-".+'/$
0+123#".+'/$"'4$
5367*,'8$

%&'()*+',-74$$
$$$$$$$!"#"$

(c) Gradual synchronization

Figure 1.1: System flow across a timing boundary with various synchronization
methods in use.

creates additional latency. Some systems use synchronization methods that in-

corporate synchronization into the buffering itself (Figure 1.1b).

This thesis proposes gradual synchronization as a synchronization method

that can reduce the synchronization bottleneck by gradually synchronizing sig-

nals. In this way synchronization can be performed in parallel with computa-

tion making it possible to implement a GALS approach at a finer granularity

than previously possible. The method can also handle synchronizing multi-

ple requests at once, in a manner similar to pipelined computation, therefore

providing buffering functionality as well. As shown in figure 1.1c with grad-

ual synchronization all three stages are merged. In addition since the gradual

synchronizer employs a handshaking circuit structure, some asynchronous do-

mains can seamlessly be included in the system. Asynchronous logic uses no

3

clocks and this can pose an advantage for the performance of certain circuits.

1.1 Contributions

In his thesis we introduce a novel synchronization method appropriate for mix-

ing all types of timing domains, including non-clocked, as well as any clock

relationship. Areas covered include:

1.1.1 Gradual Synchronization [Chapter 3 and Appendix A]

The concept and design of the gradual synchronizer. We use mathematical

methods to establish the necessary operating conditions for a correct implemen-

tation of the synchronizer.

1.1.2 Gradual Synchronization: Proof of Concept [Chapter 4]

Circuit simulations of the synchronizer provide proof of concept as well as la-

tency, throughput, area, power and failure rate comparisons to other synchro-

nizers.

1.1.3 Applications of Gradual Synchroniztion [Chapter 5]

Since gradual synchronization reduces the appearance of synchronization la-

tency only in the presence of available computation, we present a sample set of

designs in which gradual synchronization could provide performance benefits.

4

We implement and simulate a gradual synchronizer in the network interface

of a network-on-chip (NoC) as a detailed example of a real world application.

Circuit level simulations demonstrate performance savings using the gradual

synchronization method.

1.1.4 Variation [Chapter 6]

Chapter 6 reviews the effects various types of dynamic variations have on the

gradual synchronizer. We present a design that allows the gradual synchronizer

performance to scale well when DVFS methods are in use.

5

CHAPTER 2

RELATED WORK

2.1 Synchronization

There is a large collection of previous work on the topic of synchronization.

Initially, synchronizers were designed to completely eliminate the possibility

of metastable behavior. Eventually, it became apparent that these circuits were

too costly and designs turned to exploiting known relationships between the

clocks of the two communicating domains in order to eliminate metastabilities.

However, methods were still needed that were capable of synchronizing signals

between domains where clock relationships were completely unknown at de-

sign time. As asynchronous circuit design re-emerged as a technique capable of

reducing power, synchronizers were needed that could interface a clocked do-

main with an entirely asychronous domain. Circuit techniques aimed at saving

power or reducing chip temperature, like dynamic voltage and frequency scal-

ing, require the need for synchronization between two domains where the clock

speeds changed during operation became apparent. These situations extended

the search for synchronizers to finding synchronizers that reduced the proba-

bility of failure due to metastability to an acceptable level instead of completely

eliminating it.

6

2.1.1 Synchronizers

Pausable and Stretchable Clocks

Pausable and Stretchable clocks are an early subset of synchronization solutions

that can handle completely asynchronous clock domains, where the timing rela-

tionships are unknown. The synchronizer circuit simply detects the metastable

state and pauses the receiver clock until the metastability is resolved or stretches

the receiver clock to prevent a metastability from occurring. These solutions can

be viewed as synchronizing the clock to the input; rather than the input to the

clock [60]. Pausable clock methods were some of the first synchronization solu-

tions developed to combat metastability while maintaining ease of design and

testability. Early versions [17], [45], [55] relied on timing restrictions to ensure

correct order of operations and data stability. Q-Modules [58] provided a more

modular design method and preserved order of operation by employing some

acknowledgment that the modules were ready for the next data. The pausable

clocking scheme in [66] uses asynchronous FIFOs to communicate between

pausable clock circuitry in the synchronous modules. In [13] asynchronous

wrappers were introduced, this method stretches the receiver clock until an

asynchronous handshake is completed between the wrapper and the sending

environment. The synchronous circuit asserts the clock stretch signal anytime

communication is required on any input or output port until the asynchronous

handshake of the wrapper is complete. This scheme prevents a metastability

from ever occurring instead of detecting a metastability and then pausing the

clock until the metastability is resolved. Another method [50] proposes us-

ing an arbiter to detect metastability between the clock and the control signals

of an asynchronous handshake and pauses the clock until the metastability is

7

resolved. An asynchronous FIFO decouples the synchronous to asynchronous

and asynchronous to synchronous interfaces allowing the producer to send data

every clock cycle if the FIFO is empty. These methods are extremely robust in

that they completely eliminate the probability of failure due to metastability.

However, as circuit complexity and clock frequencies increase these solutions

become more costly since they cannot maintain high-bandwidth. They also in-

cur a penalty since the clock for the entire receiving domain is paused in the

case of a synchronization issue.

Synchronizers for Phase Differences

In some circuit designs, different clock domains use clocks that have the same

frequency, but the transitions are out of phase relative to each other. In these

cases it is often beneficial to use methods that take advantage of this knowl-

edge. Kol and Ginosar [42] developed a method that applied a data delay to

each data input entering a clock domain in order to readjust the data to the re-

ceiver’s clock. This method uses a training period to learn the proper delay to

apply to each input, once known the circuit can apply the delays during nor-

mal circuit operation. The training period can be repeated if clock drift occurs.

STARI [36] uses a self timed FIFO to interface sender and receiver timing do-

mains and accommodates for clock skew. The self timed FIFO serves as suffi-

cient synchronization because the clocks at either end are simply out of phase,

therefore the FIFO operation can be set up to never over or underflow and be

kept at approximately half full. The use of these types of synchronizers is desir-

able in an environment where clocks are of the same frequency but have phase

differences, because they introduce only a small amount of overhead to circuits.

8

Synchronizers for Systems with Known Frequency Differences

Another possibility that has been exploited in previous synchronizer designs is

a relationship between the clock frequencies. If the clocks are available to the

synchronizer and are periodic it is possible to create a circuit to predict timing

conflicts before they occur even if the frequencies are different [29]. This is

accomplished by creating fast forwarded versions of the clocks and then com-

paring those in advance. If a conflict is detected sampling of the data can then

be delayed until it is safe.

Two Flip-Flop Synchronizer

The most common simple synchronizer is the Two Flip-Flop Synchronizer [21],

[24], [41]. This synchronizer is capable of synchronizing two completely asyn-

chronous domains. It trades robustness for a low probability of failure, enabling

it to synchronize the incoming request to the clock more efficiently. The signal to

be synchronized is passed through two sequential flip-flops that are clocked by

the receiver’s clock. While the two flip-flops are sufficient for synchronization,

the circuit must also ensure that any signals traveling from the sender to the

receiver are held stable long enough for the receiving side to latch them. The re-

ceiver must send an acknowledge signal back to the sender, and that signal must

be synchronized to the sender’s clock. One version of a complete two flip-flop

synchronizer is shown in 2.1. The synchronizer shown synchronizes control sig-

nals sent between the sender domain and receiver domain. Data can be added

by ensuring data is stable before sending out the request, in this way only the

request and acknowledge signals need to be synchronized. Other versions of

this synchronizer type can be implemented including having data traveling in

9

Receiver Sender

!S !R

req

ack

Figure 2.1: A classic two-flop synchronizer ϕR is the receiver clock and ϕS is the
sender clock. Two sets of flip-flops are needed for complete synchronization
between the two clocked environments. One set for the req signal and one for
the ack signal.

both directions. The big draw back to this type of synchronizer is the latency

and throughput. Optimized designs of this synchronizer type have often led

to incorrect operation [31]. Clever modifications, primarily to the surround-

ing circuitry, avoid increasing the failure rate while improving the latency and

throughput [25]. The simple four-phase synchronizer resembles the synchro-

nizer in figure 2.1. The circuitry of the fast four-phase synchronizer succeeds

in reducing latency by changing the logic to remove extra flip-flops while min-

imally altering the path of the synchronizing request and acknowledge signals.

Additional latency reduction can be achieved by changing to a two-phase hand-

shake as in the fast two-phase synchronizer.

10

Pipeline Synchronization

Seizovic proposed pipeline synchronization as a high throughput synchroniza-

tion solution [61]. The pipeline synchronizer is constructed of a series of asyn-

chronous FIFO stages, each stage attempts to further adjust signal timing to the

clock domain of the receiver. This method is capable of synchronizing any sig-

nal, regardless of whether the signal originates from a synchronous circuit or

from an asynchronous circuit. Since the synchronizer incorporates handshak-

ing FIFO blocks as part of the method to reduce the probability of failure, mul-

tiple signals can be in the synchronization pipeline at the same time. While the

throughput of this method can be high the latency is still a significant problem

as each additional FIFO stage adds half of the receiver’s clock cycle to the la-

tency. This work is discussed in greater detail in section 2.1.2 since the gradual

synchronization approach builds on pipeline synchronization.

Mixed-clock FIFO

The general idea behind mixed-clock FIFO synchronizers is that the FIFO is a

circular array of data cells. The sender places data into a cell and data remains in

the same cell until the receiver domain retrieves it. The sender and receiver do-

mains may have different clocks or be completely asynchronous. Early designs

such as Pham and Schmitt’s [56] rely on a RAM to store the data items with

counters that are used to determine the location head and tail pointers as well

as the status of the data in the FIFO. This design is meant to operate at very low

clock frequencies placing the failure rate at an acceptable level without using

synchronization circuits. A similar design that can be used at higher frequen-

cies is Dally and Poulton’s [21] which uses synchronizers to synchronize the

11

addresses of the head and tail pointers on every clock cycle. While this version

is more robust the synchronization scheme decrease the FIFO’s throughput ca-

pability. Some mixed-clock FIFOs use specially designed FIFO cells (similar to

registers) to hold the data. One such design [40], reduces the synchronizer re-

quirement to one synchronizer per cell, but it can only be used to interface two

clocked domains. Another design, proposed by Chelsea and Nowick [18, 19],

includes an interface for asynchronous environments as well. In addition syn-

chronization takes place only on the signals that control the empty and full flags,

using flip-flop synchronizers. If the FIFO is busy (partially full) then the receiver

can grab data from the next cell safely and very quickly. However, if the FIFO

is empty or approaches full the synchronization overhead is exposed. Efficient

use of this method requires knowledge of the relative operating frequencies of

the domains to choose an appropriate number of data cells in order to avoid

exposing the synchronization latency. Chakraborty and Greenstreet [15] in-

troduce circuits that can mediate between clock domains with specific relation-

ships, their method can be applied to FIFO interfaces and for systems with those

particular types of clock relationships the method can significantly reduce syn-

chronization delays. Mixed-clock FIFOs are sometimes called dual-clock FIFOs.

Bi-Synchronous FIFO

This FIFO design is similar to the mixed-clock FIFOs above, except it uses a to-

ken ring encoding scheme on the read/write pointers to synchronize the com-

putation of the empty and full signals [53]. The write and read tokens are

passed through a ring of flip-flops that determines which data register is safe

to write or read next. This design avoids the use of status registers, is imple-

12

mentable using standard cells and includes a lower latency mode for mesosyn-

chronous clocks. A mesosynchronous clock is one which shares the same fre-

quency with another reference clock but the phase offset of the two clocks is

unknown.

The subset of FIFO synchronizers can be compared to credit based flow con-

trol [43]. In fact FIFO synchronizers in their most basic form are credit-based

flow control only with the realization that in order to avoid corrupting good

data or fetching bad data the credit operations must be synchronized when the

structure is used at timing boundaries.

Even/Odd Synchronizer

The even/odd synchronizer is a fast, all digital periodic synchronizer [22]. It

measures the relative frequency of the two clocks and then computes a phase

estimate using interval arithmetic. The transmitting side writes registers on al-

ternating clock cycles and the receiver uses the estimate to decide which register

is safe to sample. In order to ensure that every data is sampled this approach

must be integrated with flow control. This approach requires that the two com-

municating domains have a clock, neither can be asynchronous.

2.1.2 Pipeline Synchronization

The distinguishing factor of pipeline synchronization is that synchronization

is treated as a staged process, rather than one distinct signal manipulation to

create a synchronous signal from an asynchronous signal. In this vein the no-

13

!"#$%&'#'()*+)"#$%&'#'()*

!,-#./*0&'-&1))*2%&'(-%*0,31/,#1*!"$#%&'#,41&*

!"#$%&'#,$,2"*!31$2&(5*

,#3(2* '(23(2*

Figure 2.2: Each stage of the pipeline synchronizer increases the synchronicity
of the signal.

A i A o

D i D o

2 R i R oS

0

S

1

A i A o

D i D o

2 R i R o

A i A o

D i D o

2 R i R oS

(k-1)mod2

(1)(0) (k-1)

Figure 2.3: An asynchronous-to-synchronous pipeline synchronizer with k
stages and two-phase non-overlapping clocks.

tion of asynchronicity and its opposite, synchronicity, are introduced, establish-

ing a spectrum (figure 2.2) with signals completely synchronous to a particular

reference clock at one end and completely asynchronous signals at the other.

However, asynchronicity also allows for signals to lie somewhere in the range

between the two end points of the distribution.

The pipeline synchronizer adjusts the asynchronous signal further toward

the synchronous end of this spectrum with each stage. This is accomplished by

using a synchronizing (SYNC) block and an asynchronous FIFO element in each

stage as shown in figure 2.3. The stages are cascaded to form the full pipeline.

The SYNC blocks are built from mutual exclusion (ME) elements [60]. Syn-

14

S

!"#$

%&'(%)$ %&*+,-./0+$S

!"#$

%&'(%)$ %&*+,-./0+$ S

!"#$

%&'(%)$ %&*+,-./0+$

(a) Rising Transition Syn-
chronizer

S

!"#$

%&'(%)$ %&*+,-./0+$S

!"#$

%&'(%)$ %&*+,-./0+$ S

!"#$

%&'(%)$ %&*+,-./0+$

(b) Falling Transition Syn-
chronizer

S

!"#$

%&'(%)$ %&*+,-./0+$S

!"#$

%&'(%)$ %&*+,-./0+$ S

!"#$

%&'(%)$ %&*+,-./0+$

(c) Dual Edge Synchro-
nizer

Figure 2.4: Synchronizer Blocks

chronization circuits that synchronize the rising transition of a signal (figure

2.4a) or the falling transition of a signal (figure 2.4b) can be built from the ME

elements simply by attaching one input to the clock. The aforementioned syn-

chronizers are suitable if a four-phase signaling protocol is in use because the

synchronizer only needs to synchronize one transition, since two transitions oc-

cur on the signal per event In order to work with to a two-phase signaling pro-

tocol, the SYNC block must be able to synchronize both transitions (figure 2.4c).

This is accomplished using two ME elements and minimal additional control

circuitry.

The receiver clock is connected to one input of the SYNC block and the sig-

nal to be synchronized is connected to the other input. When the input sig-

nal changes at the same time as the relevant clock edge a metastability occurs.

The ME element is given until the next clock edge is encountered to exit the

metastable state on its own, but will be forced out of the metastable state by

that clock transition otherwise. This effectively adds a bounded variable delay

to the signal when a metastability is encountered. This variable delay is what

15

makes the adjustment to the timing of the input signal and helps reduce the

asynchronicity. If the timing bound is encountered then the signal is passed to

the next stage so it can try again. This forced metastability resolution is how

the latency of the pipeline synchronizer remains at T
2 per stage and how the

throughput is maintained.

The SYNC blocks in alternate stages use two-phase non-overlapping clocks.

This prevents the input signal from racing through the stages of the pipeline

synchronizer if the pipeline is not full and maintains synchronicity (the stable

state) once it is attained.

The asynchronous FIFO blocks act as data storage for each stage. The hand-

shaking protocols of the asynchronous FIFO blocks deems synchronization nec-

essary only on the request signal for an asynchronous-to-synchronous pipeline

synchronizer or on the acknowledge signal for a synchronous-to-asynchronous

pipeline synchronizer. The pipeline synchronizer can be designed to use either

4-phase or two-phase handshaking protocols.

As the asynchronous signal travels through the stages of the pipeline syn-

chronizer the probability of synchronization failure decreases, until it is in an

acceptable range at the end of the pipeline. Increasing the number of stages

decreases the probability of metastability failure.

The reader is encouraged to refer to [61] for more detail.

16

2.2 NoC

NoC is a chip communication strategy introduced to alleviate problems with

point-to-point dedicated wires and buses moving data in large designs. The

modularity of NoC designs makes it a natural candidate for reducing clock

wiring and power by using multiple clocks or by changing between timing-

based and data-based communication. In both cases, synchronization is re-

quired, and an efficient synchronization method can increase the performance

of such a NoC.

Various NoC strategies are characterized into two basic groups - syn-

chronous NoC and asynchronous NoC. Some synchronous NoCs assume that

the entire system operates off of the same clock, in this case data synchroniza-

tion need not be addressed, however these approaches need careful clock net-

work design and timing analysis to ensure proper chip operation. Other Syn-

chronous NoCs employ multiple clocks (GALS), when data crosses the bound-

ary of one clocked region into another synchronization is necessary. Region

boundaries can be network to module or the network itself may span multiple

regions requiring multiple synchronizations along the transfer path. In asyn-

chronous NoC synchronization is only required at either end of a communica-

tion, the routers are completely asynchronous using handshaking protocols to

pass the messages. These synchronizations take place in the network interface

that attaches each clocked module to the clock-less network. Table 2.1 shows a

summary of relevant NoC implementations. Since the need for multiple clock

systems continues to increase in importance NoCs that assume operation under

a signal clock frequency are omitted. The service type granted by the NoC is

shown in the third column. Guaranteed services (GS) ensure that data is deliv-

17

NoC Type Service Synchronization
DSPIN Synchronous BE,GS bi-synchronous FIFOs
AEthereal Synchronous BE,GS bi-synchronous FIFOs
Chain Asynchronous N/A Unspecified
Nexus Asynchronous N/A Clock Domain Converter
MANGO Asynchronous BE, GS Two Flip-Flop Synchronizer
QNoC Asynchronous SL Unspecified

Table 2.1: Summary of NoC Implementations

ered within a bounded amount of time. Best effort service specifies that there is

no bound on latency or minimum throughput level, the network simply makes

it’s best attempt to deliver data based on the current network traffic. Service

Levels (SL) implement the same concept except that all data transfers are charac-

terized by importance, highest priority data will be routed through the network

first, but there can be many different priority levels.

2.2.1 Synchronous NoC

Synchronous NoCs can take different approaches to clocking. If clocks are used

to control progress through the routers in the network, designs can rely on meth-

ods to ensure the same clock is used over the entire chip and network. In this

case no synchronization issues need to be addressed. However, since a sin-

gle clock network dispersed over an entire chip is becoming more difficult and

undesirable to maintain in terms of complexity and power another approach

allows the NoC to span multiple clock domains which means communications

may require synchronization en-route.

18

NoCs Operating in a Single Clock Domain

NoCs that assume operation with a single clock across the network do not re-

quire synchronization. However, a short discussion of some of these NoCs ap-

pears here to highlight the motivation behind moving away from a single clock,

bus based system. In [51] a NoC router is presented that supports virtual chan-

nels and can accommodate multiple service levels, the router can route flits in

a single cycle if a path is available by computing some path and arbitration

control in the previous router. However, the design requires a special clocking

scheme to ensure minimal clock skew between adjacent routers. SPIN [37],

[1] is a packet switched network with a fat-tree topology. It uses wormhole

switching, adaptive routing and credit-based flow control. The links between

the routers can be pipelined and operate using the same clock as the modules.

SPIN is compared to a bus only communication architecture showing that as the

number of cores increases a network communication approach offers much bet-

ter performance. ViChaR [52] dynamically allocates virtual channels to match

low-latency/efficient utilization conditions for various traffic patterns by using

a unified buffer. The evaluation assumes operation of the network of routers

with the same clock frequency, but results show that this router buffer modifi-

cation can provide similar performance with a 50 percent smaller buffer thereby

reducing router area and power.

DSPIN

DSPIN [54] is an extension of SPIN that allows for use of a GALS design ap-

proach of the system. The network is updated to use a mesh topology and links

between routers are implemented with bi-synchronous FIFOs [53]. The entire

19

network uses clocks with the same frequency, however the clocks can be out of

phase. The network interface controllers that link the clusters to the network

also use the bi-synchronous FIFOs to synchronize the router clock to the cluster

clock. The cluster clocks do not have to operate at the same frequency as the

network clock. DSPIN provides support for both Best Effort (BE) and Guaran-

teed Service (GS) network traffic. GS is implemented using a virtual channel

(VC) approach that separates the storage resources and synchronization for the

two types of traffic.

AEthereal

AEthereal [23], [34], [35], [57], provides both BE and GS services using time

division multiplexing (TDM), no arbitration is necessary in the router. GS re-

quests wait until their allocated time slot and then move uncontested into the

network. Empty slots are used to provide the BE services. The router assumes

a global clock. AElite [38] updates the technique to accommodate local clock

regions using bi-synchronous FIFOs for synchronization.

Xpipes

The Xpipes [20], [48], [7] network-on-chip uses wormhole switching and flow

control. Virtual channels exist to provide improved latency and throughput.

Routing is set statically with a look-up table. This method does not include a

concept of service levels. The network is clocked, [48] discusses integrating

synchronization into the Xpipes switches first using a mesosynchronous syn-

chronizer for clock-phase offsets and then a dual-clock FIFO synchronizer for

20

clock frequency differences this allows the clocking schemes to vary not only

from core to network, but in the network from switch to switch as well.

Nostrum

The Nostrum NoC architecture [49] supplies both Guaranteed Bandwidth (GB)

and Best-Effort (BE) packet delivery options. The network is a 2D-mesh ar-

chitecture that establishes Virtual Circuits (VC) across a set of switches to sup-

ply GB. The VCs are implemented using the concept of Looped Containers and

Temporarily Disjoint Networks. The looped containers provide empty packets

that can be filled by the application requiring GB. However, Nostrum requires

a globally synchronous clock, rendering the technique in need of additional re-

search to meet the needs of a multi-clocked chip.

2.2.2 Asynchronous NoC

There are several advantages of using an Asynchronous NoC design style. Most

relevant to this thesis are the synchronization advantages. Primarily there are

fewer required synchronizations. Since clocks are only used within the mod-

ules, the network interface (NI) that connects the modules to the router mesh

only needs to use one synchronization circuit in each interface, synchroniz-

ing incoming messages or acknowledgements to the local module’s clock. The

router mesh uses asynchronous handshaking protocols so additional synchro-

nization is not necessary to communicate with the router side of the NI. Ad-

ditional synchronizations are also not necessary in the routers since no clocks

are used. The remainder of this section is dedicated to an overview of various

21

asynchronous NoC implementations.

CHAIN

The CHAIN [2] interconnect uses small links to transmit two bits at a time in a

one hot/return to zero encoding scheme. Each link routes the bits from sender

to receiver using a route path predetermined by the initiating sender. For higher

bandwidth multiple links are grouped together, routing information is sent to

each link and the data bits are spread over several links. The links are freed only

after the end of packet symbol is observed, allowing packets of variable size.

These links can be used to set up any type of network topology depending on

the needs of the system. Since the network is asynchronous the network inter-

faces could be designed to attach synchronous modules to the network, but the

CHAIN implementation described connects only asynchronous modules. No

specific interface is specified for cases in which a synchronous module would

be connected to the network, but pausable clocks are mentioned as a standard

synchronization solution.

Nexus

Nexus [46], [47] is an asynchronous interconnect designed to connect syn-

chronous modules. Synchronous source modules send data to synchronous

destination modules across a crossbar that uses asynchronous QDI handshake

signaling to advance data through multiplex/demultiplex circuits that are ar-

ranged in a grid structure. Nexus is capable of variable length transfers but

only offers a single service level. Each module has a clock domain converter

22

that handles synchronization of the incoming data to the module’s clock. An

arbiter is used to ensure that both sender and receiver are ready to complete the

data transfer on the rising edge of the clock. If both sides are ready the new data

is latched otherwise the old data must be held. This synchronization method

does not completely eliminate the possibility of failure due to metastability.

QoS Router

While the Asynchronous NoC architectures above solve the problem of a dis-

tributed clock across a chip and provide modularity to system communication

they do not address QoS. Since TDM cannot apply to an asynchronous router

(because TDM requires network synchronization) the solution is to introduce

priority levels to the scheduling scheme used in the network. An asynchronous

router with QoS support was presented in [27]. The proposed router is a typical

5-port router that supports GS and BE service levels using multiple buffers to

access the links. BE traffic uses one buffer and GS traffic is assigned to different

buffers so that BE traffic cannot block GS traffic. The scheduler then accepts

and transmits flits from the buffer with the highest priority first. Each service

level also has a credit counter in order to ensure the receiving buffer is not full.

Note that this work refers to the service levels as virtual channels. While no net-

work interface is implemented the work refers to the pausable clocking scheme

presented in [50] as a standard solution for interfacing clocked modules to the

asynchronous NoC.

23

ANOC

ANOC [5], [6] provides a full NoC architecture implementation, including the

NIs. The routers are implemented with full asynchronous QDI four rail encoded

handshakes. Two service levels are provided, one is ”real-time” which is similar

to GS and the other is BE. Requests from ports are serviced using a First-in-

First-Serve priority with ”real-time” requests receiving higher priority than the

BE requests, and requests that arrive at the same time are settled by a ”Fixed

Topology Arbiter” that assigns an order based on which port the request arrived

on either north, east, south or west. The NI is implemented using two multi-

clock synchronization FIFOs based on Gray code per input/output port. One

FIFO is used for ”real-time” traffic and the other for BE traffic. The full and

empty FIFO signals are synchronized to the synchronous clock using two-flop

synchronizers. Additional synchronizers are required on the FIFO outputs in

the synchronous-to-asynchronous direction in order to ensure the stability of

the value until the acknowledge is received.

MANGO

Mango [8], [11], [10], [9], [12] is another asynchronous implementation of a

NoC. It provides both best effort and guaranteed services routing. It uses a

scheduling discipline called Asynchronous Latency Guarantee (ALG) that en-

sures hard per connection latency and bandwidth guarantees and also uses vir-

tual channels. Cores are connected to the network using a network adapter

which is responsible for synchronization. The network adapter uses two-flop

synchronizers with 2-phase handshaking. Since the handshaking on the net-

work is four-phase the NA employs a handshake converter in between the syn-

24

chronizer and router port.

QNoC

QNoC [59], [26] provides an implementation of an asynchronous router that

provides a given number of service levels (SL) that implement priority routing.

In the paper four service levels are explored, however the architecture could

easily be adjusted for more or less SLs. Within the SLs virtual channels (VCs)

are provided which help alleviate contention among service levels when routing

paths do not conflict. The router dynamically allocates VCs based on availabil-

ity. While a network interface is needed for the cores connected to the network,

such an interface is not included in the work. Synchronization methods for

clocked cores are not discussed.

2.3 Variation and Technology Scaling

Currently, the industry is seeing increased need for synchronization, given that

synchronizers can cause such catastrophic circuit failures [33], it seems pru-

dent to study the effects technology scaling, increased process variation, and

dynamic variations such as temperature, voltage and frequency could have on

synchronizer circuits. Unless methods are found to combat the effects these is-

sues have on synchronizers, chip performance will suffer from over-designed

synchronization times.

25

2.3.1 Effects of Variation and Technology Scaling on Synchro-

nizers

There is some discordance among researchers about whether synchronizer per-

formance scales along with technology. Some research [4], [3] suggests that the

synchronizer resolution time constant (τ) degrades as technology scales, requir-

ing the use of more robust synchronizers. Other research [64] suggests τ really

does scale with technology, but that use of standard-cell components, common

flip-flop optimizations, or addition of test circuitry can result in degrading the

synchronizer. What is clear is that synchronizers are more affected by simple

circuit changes and variations than logic circuits, so careful consideration and

design must be applied when employing the use of synchronizers.

In a synchronizer, a slower circuit could mean the difference between a cor-

rectly sampled value and a value sampled during metastability. Since the im-

pact of process variation increases as technology scales [30], [39], [68], this leads

to designing for longer periods for synchronization, just in case.

Dynamic variations also affect τ causing synchronizer performance to vary

[41], [67]. Specifically, the mean time before failure (MTBF) can change over

time, so either a static synchronizer must be used that can accommodate for

every possible operating point or methods must be developed that can handle

worst case dynamic variations without degrading the performance of the com-

mon case.

26

2.3.2 Methods to combat effects of Variation on Synchronizers

Improvements in synchronizer metastability resolution time can be accom-

plished simply, by increasing the size of the transistors in the synchronizer.

This approach has its drawbacks, namely increased power consumption, which

is another current hot issue. Some researchers [68] propose training periods

which can either pick from redundant synchronizers which has the best perfor-

mance or adapt a variable delay line (VDL) which controls the synchronization

time of the synchronizer. Both approaches prevent an increase in power con-

sumption during normal operation.

The use of redundant synchronizers is intended to combat process varia-

tions, therefore it only runs once upon start up, after which point the extra

circuitry is powered down. Power consumption during operation remains the

same as for a single non-redundant synchronizer. This method is easily adapted

to other synchronizer types and seems like a wise caution to take given that syn-

chronizers are such an important chip component.

Use of a VDL must be considered carefully according to the design require-

ments of the chip as this method requires a large amount of area and consumes

quite a bit of power, especially if it needs to be running often to combat clock,

voltage and temperature variations.

An outline of a method capable of adapting the number of flip-flop (FF)

stages to combat the combined effects of multiple variations on the synchro-

nizer appears in [3]. However, details of the implementation are left to future

publications.

27

CHAPTER 3

CONCEPT AND THEORY

Gradual Synchronization is a staged synchronization method that merges

synchronization with computation in order to hide the synchronization latency.

Gradual Synchronization takes advantage of the pipelined structure of com-

putation to preserve throughput and utilizes handshaking control signals to

achieve a low probability of synchronization failure.

The intuition is that once synchronization is attained in the gradual syn-

chronizer the operation of the synchronizer resembles that of pipelined compu-

tation. Asynchronous FIFOs in each stage act similar to flips-flops in a syn-

chronous environment, locking in stable data. Since the clock signals used

by the synchronizing elements in alternating stages are two-phase alternating

clocks the behavior resembles that of two-phase pipeline operation.

3.1 Serial Computation

The FIFOs in the pipeline synchronizer (PS) [61] are asynchronous, which means

the desired computation could be added inside the FIFO block as shown in fig-

ure 3.1. The FIFO block would receive data from the previous stage, perform

computation on the data and then send the completed result to the next stage.

Implemented in this manner synchronization would still occur outside of the

FIFO blocks. The asynchronous FIFO block would ensure the stability of the

data during communication however this method has disadvantages.

The probability of metastability failure at the end of the kth stage of the

pipeline synchronizer (PS) is [61]:

28

Ai
Ao

Di Do

2!

Ri Ro

!

S

CL

Control

Figure 3.1: A synchronizer stage with data computation (CL) inserted into the
FIFO block.

P(k)
f (PS) = P(0)

f e−
k(T

2 −Toh)
τ0 (3.1)

where Toh is the overhead of the implementation and τ0 is the resolution time

constant of the synchronizer block. In pipeline synchronization Toh is the sum

of the delay through the synchronizer τS and the time between a FIFO element

receiving a request on Ri and sending one out on Ro (τRiRo):

Toh(PS) = τS + τRiRo (3.2)

If gradual synchronization were implemented with the computation internal

to the FIFO, τRiRo would increase because of the addition of computation delay

(τvd). The asynchronous FIFO internalized computation delay would also be

variable, since asynchronous logic signals its own completion. A simple way

to represent the timing result is that including the computation delay inside the

FIFO is equivalent to adding a delay in a stage serially with the FIFO request

signal and synchronization as shown in figure 3.2.

29

A i A o

D i D o

2!
R i R o

!

vd S

Figure 3.2: Timing-wise placing computation in the FIFO is equivalent to plac-
ing a variable delay (vd) in series with the synchronizer.

Represented in this way Toh becomes:

Toh(S CS) = τS + τRiRo + τvd (3.3)

where τvd is variable and SCS stands for serial computation synchronizer.

The configuration described above adds a variable computation delay (τvd)

to the FIFO delay (τRiRo). This reduces the time allotted for synchronization Tsync

in each stage, since:

Tsync =
T
2
− Toh. (3.4)

Reduced synchronization time means that the probability of metastability fail-

ure of the serial computation synchronizer would increase compared to the

pipeline synchronizer. In addition asynchronous circuitry signals the comple-

tion of computation with handshakes as soon as results are stable, rather than

sampling after a fixed period of time equal to the worst case logic delay. A vari-

able delay inserted serially into each stage of the pipeline synchronizer would

cancel out any synchronization the previous stages had achieved, essentially

rendering the signals fully asynchronous again.

30

Ai Ao

Di Do

2!
Ri Ro

!

S

 CL

Control

d

Figure 3.3: A fixed delay synchronizer (FDS) stage.

3.2 Fixed Delay

If we force the variable delay in the above case to be fixed, the problem of recre-

ating an asynchronous signal would be solved. The fixed delay τd would be

equal to the worst case delay through the computation and the FIFO could

be designed to ensure that at least τd has passed since it received a request

on Ri before releasing a request on Ro as shown in figure 3.3. However, this

method would still result in a less efficient synchronizer since Toh would still

be increased. An increased Toh means more stages are necessary to meet an ac-

ceptable MTBF. Timing wise this set up is equivalent to placing a fixed delay in

series with the synchronizer yielding a Toh equivalent to:

Toh(FDS) = τS + τRiRo + τd. (3.5)

31

3.3 Merging Delays

The configuration above leads to a paranoid synchronizer since we are employ-

ing both worst case timing and asynchronous computation completion signals.

Since the worst case delay would avoid sabotaging the synchronization the

computation could be moved to the data lines in between the FIFOs. We could

remove the asynchronous completion tree and place a fixed delay in series with

the synchronization on the request signal as shown in figure 3.4. In this con-

figuration the additional overhead could be reduced by combining the delays.

The two delays could be merged by subtracting the known delay through the

synchronizer τS from τd and then using the resulting value as the fixed delay:

τdm = τd − τS . (3.6)

Toh is still increased, leaving less time for synchronization. Since the synchro-

nizer still has the possibility of an unknown delay portion due to metastability

resolution or blocking, the computation even in the worst case could be com-

plete before the end of the fixed computation delay. This means the data would

be stable for the remaining duration of τdm causing an unnecessary increase in

latency.

A better solution would completely decouple the synchronization time from

the computation time and merge them only when both are complete.

32

Ai Ao

Di Do
2!

Ri Ro

!

dm S

CL

Figure 3.4: A synchronizer stage with computation placed outside of the FIFO,
a fixed delay (dm) in series with the synchronizer ensures data safety.

3.4 Gradual Synchronization

The Gradual Synchronizer places computation on the data wires in between

FIFOs. The computation now occurs in parallel with the synchronization. This

configuration uses the synchronization delay as computation time, which hides

a portion of the synchronization latency and preserves the low probability of

metastability failure.

In the steady state operation of the gradual synchronizer the computation

delay can be viewed as built into the blocking phase of the SYNC block. How-

ever, before the steady state is achieved the stages still need to ensure enough

time has passed for computation to be complete. This is guaranteed by adding

a fixed delay equal to the worst case delay through the computation in parallel

with the SYNC block. While it might seem undesirable to use worst case de-

lay with asynchronous circuits, the synchronizer elements are already clocked

which means the performance of the asynchronous circuitry is already limited

33

CL

S

!(k-1)mod2

d

Ai Ao
Di Do

2"

Ri Ro
Si

CL

S

!0

d

CL

S

!1

d

Ai Ao
Di Do

2"

Ri Ro
Si

Ai Ao
Di Do

2"

Ri Ro
Si

Figure 3.5: An asynchronous to synchronous gradual synchronizer with k
stages.

by the presence of the receiver clock. In addition the presence of a fixed time for

computation ensures the probability of failure remains low and only affects the

circuit operation if the gradual synchronizer is not in the steady state. The fixed

delay also allows more computation time to be reclaimed than employing the

use of completion trees. The signal that feeds into the fixed delay is the same

request that is already issued from the previous stage’s FIFO. That request is

split and passed to both the fixed delay and the SYNC block as shown in figure

3.5. The FIFO block is modified so that both versions of the request are present

before acknowledging the request and issuing its own request to the next stage

as shown in figure 3.6. The control signals for a two-phase protocol FIFO now

follow the specification:

∗[[Ri ∧ S i]; Ai,Ro; [Ao]] (3.7)

The brackets ([]) around signal names indicate that the FIFO is waiting for the

signal(s) named inside them. A semi-colon (;) separates events that must occur

in sequential order and the (,) creates a list of events that can occur at the same

time. The asterisk followed by brackets (*[])surrounding the whole sequence

means to repeat the sequence forever. So, the FIFO waits for Ri and S i, after

34

2!

Ri Ro

Si

Di

Ai

Do

Ao A

D

R

S

Figure 3.6: A two-phase FIFO with the added input S i.

events on both signals are present it generates events on both Ai and Ro. Then

the FIFO waits for an event on Ao and returns to the beginning of the sequence.

The events on each signal are numbered starting with zero. So, the times of the

events generated by the FIFO (Ai and Ro) are:

t(j)
Ai
=




max(t(0)
Ri
+ τRiAi , t

(0)
S i
+ τS iAi) j = 0

max(t(j)
Ri
+ τRiAi , t

(j)
S i
+ τS iAi , t

(j−1)
Ao
+ τAoAi), j > 0

, (3.8)

t(j)
Ro
=




max(t(0)
Ri
+ τRiRo , t

(0)
S i
+ τS iRo) j = 0

max(t(j)
Ri
+ τRiRo , t

(j)
S i
+ τS iRo , t

(j−1)
Ao
+ τAoRo), j > 0

, (3.9)

The environment must work as follows:

t(j)
Ri
>




0, j = 0

t(j−1)
Ai
, j > 0

, (3.10)

t(j)
S i
>




0, j = 0

t(j−1)
Ai
, j > 0

, (3.11)

t(j)
Ao
> t(j)

Ro
, j ≥ 0. (3.12)

With this structure the synchronization delay is used for computation time and

should the synchronization complete before the computation is complete, the

35

FIFO will not lock the data until the data values are safe. Each stage is still

limited to T
2 in length meaning the total latency introduced per stage is the same

as in the pipeline synchronizer, but computation that was occurring on either

side of the synchronizer has been distributed internally. Throughput is also

maintained. The only thing left to do is ensure that the gradual synchronizer

can exhibit effective synchronization performance.

3.4.1 Correctness Proof

The validity of the gradual synchronization method is examined below. The

same notation and structure is used as in the correctness proof for pipeline syn-

chronization [61].

In gradual synchronization the intention is that the data exiting the synchro-

nizer will be different than when it entered. The full synchronizer circuit resem-

bles a computation pipeline. However, since the asynchronous FIFOs that lock

the data are speed independent, any delay introduced on a signal wire, either

from the synchronizer or the computation delay does not affect the functional

behavior of the circuit.

The probability of metastabiity failure decreases with each additional syn-

chronizer stage. In any one stage the j(th) event on R(i)
o can occur at time:

t(j)
R(i)

o
= t(j)

R(i)
i
+ τRiRo , (3.13)

t(j)
R(i)

o
= t(j−1)

A(i)
o
+ τAoRo , (3.14)

36

CL

S

!(i+1)mod2

Ai Ao

Di Do

2"

Ri Ro
Si

CL

S

!(i-1)mod2

CL

S

!(i)mod2

d

(i-1) (i) (i+1)
Ai Ao

Di Do

2"

Ri Ro
Si

Ai Ao

Di Do

2"

Ri Ro
Si d d

Figure 3.7: A three stage segment of a two-phase asynchronous to synchronous
gradual synchronizer.

or at time:

t(j)
R(i)

o
= t(j)

S (i)
i
+ τS iRo , (3.15)

where i is one stage in the gradual synchronizer as shown in figure 3.7.

Metastable behavior occurs when Ro arrives at a synchronizer at the same time

as the clock edge the synchronizer is attempting to synchronize to. For the du-

ration of this proof the falling edge will be used for consistency, however the

method can be adapted to either clock edge. The probability of metastability

failure at stage (i + 1) is therefore the sum of the probabilities of failure for each

possible arrival time:

P(i+1)
f ≤ P(i+1)

f (Ri) + P(i+1)
f (Ao) + P(i+1)

f (S i). (3.16)

The final term is equal to the probability that S i arrives at the input to the

FIFO τS iRo before the relevant clock edge. Therefore, the time available for com-

putation in each stage is limited only by the presence of the FIFO in that stage,

37

not by the synchronization:

τd + τS iRo <
T
2
. (3.17)

R(i−1)
o must arrive at the computational delay exactly ta after the clock edge

in order for S (i)
i to cause a metastability in the (i + 1)st synchronizer. However,

since R(i−1)
o will also arrive at the (i)th synchronizer at the same time τd begins,

the ith synchronizer will block Ro and the (i)th FIFO will be waiting for R(i)
i , not

S i. Meaning,

P(i+1)
f (S i) = 0. (3.18)

Since the probability that any S i causes a metastability is zero, the modifica-

tions made to support gradual synchronization do not affect the term P(i+1)
f (Ri).

This is because the only condition in which Ri causes a metastability in the (i+1)st

stage is when there was a metastability in the previous stage. Since S i cannot

cause a metastability it cannot affect the Ri term. So that probability remains:

P(i+1)
f (Ri) ≤ P(i)

f e
−T/2−τS −τRiRo

τ0 . (3.19)

It is useful to note that at the input to the synchronizer S i does not exist. The

first stage of the synchronizer splits the incoming request into the inputs for the

computation delay and the synchronizer. Therefore there is no endpoint case

for S i because the first S i could only affect the synchronizer in the second stage.

Now, the remaining term, Ao, must be examined. In pipeline synchroniza-

tion this probability could be ignored even if it was not equal to zero. This is

38

due to the property called second-event metastabilty (SEM) [61]. First-event

metastability (FEM) and second event metastability are defined specifically for

the purposes of the proof of pipeline synchronization. The definitions are in-

cluded here as they also apply to the proof for gradual synchronization.

Definition 1 When the input of a synchronizer element S , clocked with ϕ, changes

state coincident with an arbitrary, jth, down-going edge of ϕ, and there were no prior

input events between the (j − 1)st and the jth down-going edge of ϕ, we shall say that S

has entered first-event metastability.

Defintion 2 When the input of a synchronizer element S, clocked with ϕ, changes state

coincident with an arbitrary, jth down-going edge of ϕ, and there was at least one prior

input event between the (j − 1)st and the jth down-going edge of ϕ, we shall say that S

has entered second-event metastability.

SEM is not a problem because the synchronous end of the pipeline can be

designed to accept only one input event per clock cycle. This means that any

event occurring after another within the same clock cycle will be ignored until

the next clock cycle and therefore cannot cause a metastability.

If the computational delay and the addition of S i to the FIFO can cause

SEM created by a transition on Ao the gradual synchronizer still operates cor-

rectly due to the synchronous environment. This implies that the only way

the changes can significantly impact the behavior of Ao would be if the grad-

ual synchronizer signal S i can influence a transition on Ao to cause a first-event

metastability (FEM). This would mean that t(j−1)
R(i)

o
could somehow occur at a time:

t(j−1)
R(i)

o
< t(j)

R(i)
o
− T. (3.20)

39

However,

t(j−1)
A(i+1)

i
≡ t(j−1)

A(i)
o
= t(j)

R(i)
o
− τAoRo (3.21)

and the only way S i could change the behavior of A(i)
o would be if the transition

on S (i+1)
i dominated the FIFO delay. This would imply that:

t(j−1)
R(i)

o
= t(j)

R(i)
o
− τAoRo − τS iAi − τd (3.22)

For any FIFO implementation that includes S i:

τS iAi ≈ τS iRo (3.23)

Therefore, as long as the previously existing requirement

τAoRo < T/2 (3.24)

is preserved,

t(j−1)
Ri

o
> t(j)

Ri
o
− T. (3.25)

contradicting equation 3.20 which means a transition on Ao cannot cause FEM

in the gradual synchronizer.

Finally, if the jth event on R(i)
o is SEM at the (i + 1)st synchronizer and that

causes a metastability at the (i+2)nd synchronizer, the metastability at the (i+2)nd

synchronizer is also SEM because the (j − 1)st event at the (i + 2)nd synchronizer

must have occurred less than T before the the jth event. Since the synchronous

domain at the end of the gradual synchronizer is designed to only accept one

event per clock period SEM is harmless.

Throughput

Since the synchronous environment on the receiving end of the synchronizer

must be designed to only accept one data item per clock cycle this limits the

40

!S

t1

t2

Ao
(o)

Ai
(e)

Ri
(e) Ro

(e)

Si
(e)

!da

!S

t1

t2

Ao
(o)

Ai
(e)

Ri
(e) Ro

(e)

Si
(e)

!da

!S

t1

t2

Ao
(e)

Ai
(o)

Ri
(o) Ro

(o)

Si
(o)

!da

!0

!1

Figure 3.8: Steady-state operation of the 2-phase asynchronous-to-synchronous
gradual synchronizer.

throughput of the gradual synchronizer. For the best performance the gradual

synchronizer should be able to sustain that throughput at all times. To ensure

the gradual synchronizer operates at the desired throughput a few additional

requirements must be met, these requirements are derived below.

Figure 3.8 shows the steady state of a gradual synchronizer with an infi-

nite number of stages. All events on Ri entering even-numbered FIFO blocks

arrive τS after the rising edge of ϕ0. All events on Ri entering odd-numbered

FIFO blocks arrive τS after the rising edge of ϕ1. All events on S i entering even-

numbered FIFO blocks arrive τda after the rising edge of ϕ0 and all events on S i

entering odd-numbered FIFO blocks arrive τda after the rising edge of ϕ1. τda is

the portion of the computational delay that occurs after the clock edge. In the

steady state, no synchronizer assumes a metastable state, and:

41

t1 = max(τS + τRiAi , t1 + τAoAi −
T
2
, τda + τS iAi)

t2 = max(τS + τRiRo , t1 + τAoRo −
T
2
, τda + τS iRo)

(3.26)

The value τda is just the portion of the computational delay that takes place

after the clock edge, because τd may cross over the clock edge. So, τda is just,

τda = τd − τdb, (3.27)

and

τdb = T/2 − t2. (3.28)

For τAoAi <
T
2 ,

t1 = max(τS + τRiAi , τda + τS iAi)

t2 = max(τS + τRiRo , τS + τRiAi + τAoRo −
T
2
, τda + τS iAi + τAoRo −

T
2
, τda + τS iRo)

(3.29)

To maintain the steady state t2 must be less than T
2 . Based on that fact and

the above equations the additional requirements for the FIFO implementation,

synchronizer implementation and computation time allowed are:

τAoAi < T/2

τS + τRiRo < T/2

τS + τRiAi + τAoRo < T

τda + τS iRo < T/2

τda + τS iAi + τAoRo < T

(3.30)

It is important to note that τda + τS iRo is already limited to a value less than T
2

by the stricter requirement in equation 3.17, so this requirement need not be

42

included in the final list of conditions. It is enough to simply state that:

τd = τdb + τda. (3.31)

That leaves only the final inequality in the above equation with the rather am-

biguous term τda. Going back to equation 3.29, and substituting for τda,the third

term in the equation becomes:

τd − τdb + τS iAi + τAoRo −
T
2
. (3.32)

Substituting for τdb gives:

τd − (
T
2
− t2) + τS iAi + τAoRo −

T
2
, (3.33)

which reduces to:

t2 + τd + τS iAi + τAoRo − T. (3.34)

In order to cancel the above term. The inequalitiy:

τd + τS iAi + τAoRo < T (3.35)

is added to the requirement list. Since τAoRo is the same value in all equations,

the above inequality really means that the value τS will be equal to or more than

τda and in the steady state the receiving FIFO will never be left waiting for S i.

The gradual synchronizer is not infinitely long, it has a finite number of

stages starting at the asynchronous interface and ending at the synchronous

interface. If the asynchronous side meets the requirements1:

τS + τRiAi + τAR < T (3.36)
1An asynchronous environment cannot be held to these requirements by definition, but [62]

contains a proof showing that if equation 3.36 is valid after a request is initiated the steady state
will be achieved.

43

and

τd + τS iAi + τAR < T, (3.37)

where τAR is the delay from one acknowledge until the next request, and if the

synchronous side satisfies the condition:

τRA + τAoRo < T, (3.38)

where τRA is the delay from request to acknowledge, then the maximum

throughput can be maintained.

In order to ensure safe operation of the two-phase asynchronous-to-

synchronous gradual synchronizer and maintain the required throughput the

design requirements that must be met are:

τS + τRiRo < T/2

τAoRo < T/2

τAR < T/2

τAoAi < T/2

τd + τS iRo < T/2 (new)

τS + τRiAi + τAoRo < T

τS + τRiAi + τAR < T

τRA + τAoRo < T

τd + τS iAi + τAoRo < T (new)

τd + τS iRi + τAR < T (new)

(3.39)

44

!(k-1)mod2

S

d

 CL

Ai Ao

Di Do
2"

Ro Ri

Ai Ao

Di Do
2"

Ro Ri

!1

S

d

!0

S

d

 CL CL

Ai Ao

Di Do
2"

Ro Ri
(0) (1) (k-1)

SY
N

C
H

R
O

N
O

U
S

EN
V

IR
O

N
M

EN
T

A
SY

N
C

H
R

O
N

O
U

S
EN

V
IR

O
N

M
EN

T

Figure 3.9: A two-phase synchronous to asynchronous gradual synchronizer.

3.4.2 Synchronous to Asynchronous Gradual Synchronizer

The gradual synchronizer described above takes care of sending signals from

an asynchronous environment to a synchronous environment. In order to send

signals between two synchronous environments that are asynchronous with re-

spect to each other, a gradual synchronizer must also exist that can send signals

from a synchronous environment to an asynchronous environment. The two

can be paired to allow two different clock domains to interface with each other.

The main difference between a synchronous-to-asynchronous (s-to-a) syn-

chronizer and an asynchronous-to-synchronous (a-to-s) synchronizer is that the

synchronization now must be performed on the acknowledge signal. The data

travels in the opposite direction of the acknowledge so the SYNC block gets

moved to the wire between Ai and Ao and there is no need for the FIFO block to

include the extra signal S i as in the asynchronous to synchronous case since the

computation delay block can be placed directly on the request wire as shown in

figure 3.9. At first glance this setup looks like it causes the computation delay

to take place in series with the synchronization delay, and indeed it does if the

transfer being observed is the just the jth item. But the jth event on A(i)
i does not

45

2!

Ri Ro

Di

Ai

Do

Ao A

D

R

Figure 3.10: Two-phase FIFO buffer for synchronous to asynchronous gradual
synchronization.

block the forward progress of the jth transfer. However, the FIFO may be waiting

for the arrival of the (j − 1)st event on A(i)
o when the jth event on R(i)

i arrives. This

is the synchronization time computation can take place during without adding

latency.

The FIFO block shown in figure 3.10 follows the behavioral specification:

∗[[Ri]; Ai,Ro; [Ao]]. (3.40)

The FIFO block receives a request on Ri, if the previous request has already

been acknowledged it locks the data and then acknowledges the current request

and sends a request on Ro.

This structure shown in 3.9 of a gradual synchronizer using the FIFO block

shown in 3.10 allows the computation timer to begin as soon as data is present

on the data output of the FIFO block. There will not be a case in which the

computation timer is delayed in starting because of synchronizations. We can

use similar proof techniques to show correctness and find the rest of the re-

quirements for correct operation of the synchronous-to-asynchronous gradual

46

synchronizer. The proof is shown in section A.1 of Appendix A.

All the requirements for a synchronous to asynchronous gradual synchro-

nizer are:

τS + τAoAi < T/2

τRiAi + τd < T/2

τRA < T/2

τRiRo + τd < T/2

τS + τAoRo + τRiAi + τd < T

τS + τAoRo + τRA < T

τAR + τRiAi + τd < T.

(3.41)

While this structure and requirements are enough to provide sufficient syn-

chronization, the overhead (Toh) of this synchronizer can be reduced. We know

that when FIFO(i) is waiting on A(i)
o to lock the data A(i−1)

i is present at least τS

before A(i)
o arrives. At that point it is safe to lock the data in the FIFO, just not to

release the control signals because of synchronization. We can therefore reduce

τAoAi by adding a data locking signal Vo to the FIFO as shown in figure 3.11. The

resulting FIFO follows the behavioral specification:

∗[[Ri]; Ai,Ro; [Ao ∧ Vo]]. (3.42)

The resulting gradual synchronizer splits the Ai signal with one wire attached

directly to the Vo input of the FIFO and the other to the SYNC block (see figure

3.12). Given the set up of the synchronizer we know that Vo will always arrive

at least τS before Ao, now the FIFO starts locking the data at least τS before the

arrival of Ao. This reduces τAoAi since previously τAoAi included all of the data

47

2!

Ri Ro

Di

Ai

Do

Ao A

D

R

Vo V

Figure 3.11: A two-phase FIFO with Vo input. Both Ao and Vo must be present
to complete the handshake, but the presence of Vo alone can initiate latching of
the data.

!(k-1)mod2

S

d

 CL

Ao

Di Do
2"

Ro Ri

Ai Ao

Di Do
2"

Ro Ri

!1

S

d

!0

S

d

 CL CL

Ai Ao

Di Do

2"

Ro Ri
(0) (1) (k-1)

SY
N

C
H

R
O

N
O

U
S

EN
V

IR
O

N
M

EN
T

A
SY

N
C

H
R

O
N

O
U

S
EN

V
IR

O
N

M
EN

T

Vo Vo Vo

Ai

Figure 3.12: A two-phase synchronous to asynchronous gradual synchronizer
with Vo FIFO input.

locking delay.

This synchronizer design change does not functionally change the require-

ments of the synchronizer because of the known arrival order of Ao and Vo. Since

V (i)
o always arrives before A(i)

o FIFO(i) is never waiting for V (i)
o . Vo only allows

some of the latching time of the jth transfer to occur in parallel with the syn-

chronization of the (j − 1)st acknowledge.

48

3.4.3 Four-Phase Protocol FIFO Elements

The Gradual Synchronizer can also be implemented using a four-phase hand-

shake protocol. This is accomplished by replacing the two-phase FIFO elements

with four-phase FIFO elements and also replacing the computation delay block

and the synchronizer. Although the four-phase handshake is more complex, the

synchronizer is much simpler because it only needs to acknowledge either an

up-going transition of the input signal or a down-going transition of the input

signal, it is a single ME element. The computation delay block must also be

asymmetric since computation delay will only apply to transitions in one direc-

tion as well. There are many valid implementations of a four-phase FIFO ele-

ment, [14] presents a study of them. For the purposes of the four-phase gradual

synchronizer many implementations are viable. A FIFO implementation that

simultaneously completes the acknowledge handshake and releases the first

part of the request handshake is a good choice in both the asynchronous-to-

synchronous and synchronous-to-asynchronous cases.

Four-Phase Protocol Asynchronous-to-Synchronous Gradual Synchronizer

In the asynchronous-to-synchronous case the four-phase FIFO we use is shown

in figure 3.13. The handshaking expansion for this FIFO block is:

∗[[Ri ∧ S i]; Ai ↓; [Ri ∧ S i]; Ai ↑,Ro ↑; [Ao]; Ro ↓; [Ao]]. (3.43)

It waits for Ri and S i then latches the data and acknowledges the request by

setting Ai low. The FIFO then waits for Ri and S i to transition from high to low,

at which point it sets Ai high signifying that the data has been latched. At the

same time Ro is set high and then waits for an acknowledge low event on Ao. It

49

4!

Ri Ro

Si

Di

Ai

Do

Ao A

D

R

S

Figure 3.13: A 4-phase FIFO element with S i signal for computation safety.

pulls Ro low and proceeds to wait for the final acknowledge high event on Ao at

which point the handshake starts over again.

The signal S i is still a copy of Ro coming from the previous stage passed

through a delay instead of the synchronizer but in this case the delay only needs

to be present on the initial part of the handshake. When Ro from the previous

stage is logical 0 it is immediately forwarded to S i of the FIFO bypassing τd so

that S i does not delay the rest of the handshake. The synchronizer block in this

case synchronizes only the up-going transition of Ro. A down going transition of

Ro is not blocked. The four-phase asynchronous-to-synchronous synchronizer

structure is shown in figure 3.14.

The proof of this case is located in section A.2 of Appendix A. The require-

ments that must be met to ensure correct operation are:

50

CL

S

!(k-1)mod2

d

Ai Ao

Di Do

4"

Ri Ro
Si

CL

S

!0

d

CL

S

!1

d

(0) (1) (k-1)
Ai Ao

Di Do

4"

Ri Ro
Si

Ai Ao

Di Do

4"

Ri Ro
Si

Figure 3.14: An asynchronous-to-synchronous gradual synchronizer using four-
phase FIFO elements.

τS + τRiRo < T/2

τAoRo < T/2

τAR < T/2

τAoAi < T/2

τd + τS iRo < T/2 (new)

τS + τRiAi + τAoRo < T

τS + τRiAi + τAR < T

τRA + τAoRo < T

τd + τS iAi + τAoRo < T (new)

τd + τS iRi + τAR < T (new)

(3.44)

Note that in the equations above the various FIFO delays encompass both

rising and falling transitions, so

51

τRiAi = τRi↑Ai↓ + τAo↓Ro↓ + τRi↓Ai↑

τRiRo = τRi↑Ai↓ + τAo↓Ro↓ + τRi↓Ro↑

τAoAi = τAo↑Ai↓ + τAo↓Ro↓ + τRi↓Ai↑

τAoRo = τAo↑Ai↓ + τAo↓Ro↓ + τRi↓Ro↑

τS iAi = τS i↑Ai↓ + τAo↓Ro↓ + τS i↓Ai↑

τS iRo = τS i↑Ai↓ + τAo↓Ro↓ + τS i↓Ro↑.

(3.45)

There will be some minimal delay in forwarding Ro ↓ to S i ↓ as it bypasses

the computation delay (one AND delay). Therefore, in the four phase case:

τd = τd↑ + τd↓, (3.46)

where τd↑ is the worst case computation delay and τd↓ is the delay of an AND

gate.

The same goes for the asymmetric synchronizer delay which becomes:

τS = τS ↑ + τS ↓. (3.47)

Four Phase Protocol Synchronous to Asynchronous Gradual Synchronizer

Use of a four-phase protocol for the case when data is being sent from a syn-

chronous to an asynchronous environment is more complex. The critical part

is ensuring that the computation occurs in parallel with synchronization. Since

there are two transitions on each signal for every data item transferred, only

one of the two directions is chosen for synchronization. In addition only one

transition must be subject to the computation delay. In the synchronous to asyn-

chronous case either Ai ↓ or Ai ↑ must be chosen for synchronization and either

52

4!

Ri Ro

Di

Ai

Do

Ao A

D

R

Figure 3.15: The four-phase FIFO element used for the synchronous-to-
asynchronous gradual synchronizer.

Ro ↑ or Ro ↓ must be delayed by the computation timer. In order to determine

which edge is suitable it is helpful to examine the handshake. Assume the four-

phase FIFO block in figure 3.15 can be used. The following handshaking expan-

sion describes the behavior of the FIFO’s control signals:

∗[[Ri]; Ai ↓; [Ri]; Ai ↑,Ro ↑; [Ao]; Ro ↓; [Ao]]. (3.48)

This FIFO receives a request (Ri ↑), sends an initial acknowledge (Ai ↓) of that

request and begins the latching process. Once the latching is complete and the

FIFO receives Ri ↓ it send the final acknowledge (Ai ↑) out simultaneously with

the outgoing request (Ro ↑). It then waits for an acknowledge of the request

(Ao ↓) before sending Ro ↓. At this point the FIFO waits for Ao ↑ which indicates

that it is now safe to change the data. At the same time the FIFO returns to

waiting for an incoming request (Ri ↑).

We know that in order for computation to take place in parallel with syn-

chronization one FIFO must be waiting for the computation to end and for syn-

chronization to end at the same time. In addition we know that computation

must be complete before the FIFO latches data. Since the FIFO begins latching

data when it receives Ri ↑ computation must be complete so that delay occurs on

the incoming up-going transition of Ri. We only need to look at the handshake

53

!(k-1)mod2

S

d

 CL

Ai Ao

Di Do
4"

Ro Ri

Ai Ao

Di Do
4"

Ro Ri

!1

S

d

!0

S

d

 CL

(0) (1) (k-1)

SY
N

C
H

R
O

N
O

U
S

EN
V

IR
O

N
M

EN
T

A
SY

N
C

H
R

O
N

O
U

S
EN

V
IR

O
N

M
EN

T

Ai Ao

Di Do
4"

Ro Ri

 CL

Figure 3.16: A four-phase protocol synchronous to asynchronous gradual syn-
chronizer.

to know that the synchronization must occur on the up-going transition of Ao as

this is the only time the FIFO is waiting for transitions on both inputs. The re-

quest must bypass the computational delay block if its value is logical zero and

the acknowledge is simply passed through the synchronizer when it transitions

to logical zero. The resulting gradual synchronizer is shown in figure 3.16.

The proof of this case is presented in section A.3 to enhance the flow of this

thesis for the reader. The union of all the requirements for this synchronizer is:

τS + τAoAi < T/2

τRiAi + τd < T/2

τRA < T/2

τRiRo + τd < T/2

τS + τAoRo + τRiAi + τd < T

τS + τAoRo + τRA < T

τAR + τRiAi + τd < T,

(3.49)

where,

54

τRiAi = τRi↑Ai↓ + τAo↓Ro↓ + τRi↓Ai↑

τRiRo = τRi↑Ai↓ + τAo↓Ro↓ + τRi↓Ro↑

τAoAi = τAo↑Ai↓ + τAo↓Ro↓ + τRi↓Ai↑

τAoRo = τAo↑Ai↓ + τAo↓Ro↓ + τRi↓Ro↑.

(3.50)

In addition, τS must become:

τS = τS ↑ + τS↓. (3.51)

And so τd must be:

τd = τd↑ + τd↓. (3.52)

Previously, in the two-phase case, we added an extra FIFO acknowledge

input in order to reclaim some time from the AoRo and AoAi delays. In the four

phase case described in this section the Vo FIFO modification provides a similar

benefit. The saving occurs in the Ao ↑ Ai ↓ delay which is part of both the AoAi

and the AoRo delay in the four-phase case.

55

CHAPTER 4

PROOF OF CONCEPT

We have proven theoretically that the gradual synchronizer is a valid syn-

chronizer assuming all the requirements can be met. Now, we evaluate the syn-

chronizer in a more realistic manner. The 2-phase and 4-phase gradual synchro-

nizers have been simulated over a range of transmitter and receiver operating

frequencies. We compare the results against three different flip-flop based syn-

chronizers: simple 4-phase, fast 4-phase, and fast 2-phase; the 2-phase and the

4-phase pipeline synchronizer and the dual clock FIFO synchronizer.

All simulations in this section are done with HSIM using technology files for

a 90nm process. The various synchronizers are placed between a synchronous

transmitter environment and a synchronous receiver environment. The two

synchronous environments are simulated over a range of clock speeds and rela-

tionships.

4.1 MTBF

Fast synchronizers are designed to diminish the probability of a metastability

failure at the output of the synchronizer. Most synchronizer research classifies

the performance of these synchronizers in terms of the mean time before failure

(MTBF). In order to fairly compare the performance of synchronizers the MTBF

should be taken into account, in addition to latency and throughput. In order

to compare MTBFs we must know the operating frequency, in general faster

frequencies result in lower MTBFs.

The flip-flop synchronizers have an MTBF of:

56

MT BF(FFsingle) =
eS/τ

Tw · Fc · Fd
, (4.1)

where S is the time allotted by the synchronizer for metastability resolution,

τ is the resolution time constant of the synchronizer, Tw is the time window dur-

ing which the input signal must be held stable in order to avoid a metastability,

Fc is the sampling clock frequency, and Fd is the frequency of changes in the

input data [32].

Recall that for two clock domains to be synchronized to each other the re-

quest signal must be synchronized to the receiving clock and the acknowledge

signal must be synchronized to the sending clock. This means that the MTBF in

equation 4.1 is actually only for one side of the synchronization. The flip-flop

synchronizers need two synchronizer circuits to accomplish the task of synchro-

nizing between the two clocked domains. The MTBF for the full synchronizer

is equal to:

MT BF(FFtotal) =
1

1/MT BF(send) + 1/MT BF(rcvr)
. (4.2)

If we plot the MTBF over a range of receiver to sender frequency ratios of one

of the base comparison synchronizers, say the fast 2-phase synchronizer, we can

observe from figure 4.1 that while 1GHz is an acceptable and popular operat-

ing frequency for chips using a 90nm process, synchronizers in this case may

need to be made more robust (adding additional flip-flops or stages) in order to

increase the MTBF. For instance, we can observe that if two clock domains inter-

face with each other both operating at 1 GHz (clock ratio of one) the MTBF is a

little less than one year. Since we would like to compare all of the synchronizers

57

!"#$

#$

#!$

#!!$

#!!!$

#!!!!$

#!!!!!$

#!!!!!!$

#!!!!!!!$

#!!!!!!!!$

!"%$ #$ #"%$ &$ &"%$ '$

!
"#

$%
&'
()
*+
,%

-.%/'/0(%1%".%/'/0(%%

$)+2%3456)+(%7'8/6*98:;(*%!"#$%<=3%
(!!)*+$

,!!)*+$

#-*+$

Figure 4.1: MTBF of the Fast 2-Phase Synchronizer for maximum clock frequen-
cies of 800MHz, 900MHz and 1GHz.

over a variety of sender/receiver clock ratios without varying their structure

and with a high maximum frequency we use a 900MHz clock frequency which

yields a high enough MTBF for simulation purposes. We also want to show the

flip-flop synchronizers at their best latency and throughput performance so we

do not inadvertently bias the results in favor of our research.

Next, we take a look at the MTBF of the pipeline and gradual synchronizers.

The probability of a metastability failure at the output of the two phase pipeline

or gradual synchronizer is equal to,

P(PS orGS)
f = P(k)

f = P(0)
f e−

k(T/2−Toh)
τo . (4.3)

P(0)
f is the rate that metastability occurs at the inputs to the synchronizer. The

58

rate of entering metastability can be calculated as:

R(metastability) = Tw · FC · FD, (4.4)

where Tw is the window around the sampling edge of the clock during which a

change in the input data could cause the latch to become metastable, FC is the

clock frequency and FD is the injection rate of the input data.

The synchronizer then reduces the chance that a metastability at its input

will cause a failure in the circuit at its output. Therefore the rate of failure is:

R(f ailure) = Tw · FC · FDe−
k(T/2−Toh)
τo (4.5)

The MTBF is the inverse of the failure rate:

MT BF(GS) =
e

k(T/2−Toh)
τo

W · FC · FD
, (4.6)

Toh is equal to the overhead introduced by the signaling asynchronous FIFOs.

For example, in the asynchronous-to-synchronous two-phase gradual synchro-

nizer the overhead is

Toh = τS + τRiRo . (4.7)

Both the Pipeline Synchronizer and the Gradual Synchronizer have many

different configuration options. They can use 2-phase or 4 phase handshakes,

synchronize either the request or the acknowledge, and the number of stages

can be varied. Increasing the number of stages yields a better MTBF but will

also result in a longer latency. Figures 4.2 and 4.3 compare the different config-

urations for a maximum clock frequency of 900MHz. The MTBFs of the four

59

phase synchronizers are very close. Slight differences can be attributed primar-

ily to differences in fanout and transistor stacks. The MTBF of the s-to-a gradual

synchronizer suffers slightly from the down-going transition of the asymmetric

computation delay (no computation is going on at this time but the signal by-

passes the delay using an AND gate). In the a-to-s direction the down-going

transitions do not stack therefore we don’t see a difference between the pipeline

and gradual synchronizers in that case. The MTBFs of the three-stage synchro-

nizers are low enough to be a bit risky for any system. We conclude that a four-

stage 4-phase gradual synchronizer is a suitable choice for our comparisons.

When using two phase synchronizers, the MTBFs vary a bit more. The 3-

stage pipeline synchronizers show the shortest MTBF, and this is especially sig-

nificant when the frequency ratios are one or lower. For this reason 4-stage

2-phase synchronizers are used for latency and throughput comparisons. No-

tice that the s-to-a direction of the gradual synchronizer has higher MTBFs. This

is because of the Vo input modification to the FIFO for this direction, which al-

lows the FIFO to get a jump start on locking the next data which reduces τAoAi as

the entire data lock can take place before even the minimal sync block delay, τS

completes. This modification could also be applied to the pipeline synchronizer

to improve its MTBF but since it would only improve the s-to-a direction and

for our main comparison we choose not to vary the synchronizer structure it is

not necessary to make this modification.

The most fair latency and throughput comparison of synchronizers would

be between synchronizers where the third characteristic, MTBF, were equal. As

can be seen in figure 4.4 this is difficult to achieve. The synchronizer config-

urations can only be adjusted by adding or removing flip-flops in the case of

60

!"#$

#!!!!!!$

#%&#'$

#%&(!$

#%&()$

#%&'*$

#%&*#$

#%&*+$

#%&,,$

#%&-($

#%&-.$

#%&)-$

#%&+'$

#%&.!$

!",$ #$ #",$ ($ (",$ '$

!
"#

$%
&'
()
*+
,%

-.%/'/0(%1%".%/'/0(%%

%!"#$%23%4567)+(%8)9:+7);(%<"=>%6?@(0?9(%)9:%A*):B)0%<'9/7*29?C(*+%
/0$0123$*405678$

/0$0123$'405678$

90$0123$*405678$

90$0123$'405678$

(a) synchronous-to-asynchronous

!"

!#$%&"

!#$!'"

!#$()"

!#$*+"

!#$,-"

!#$-,"

!#$+*"

!#$)("

!#$'!"

!#$&%"

!#$&&"

!#$!%'"

%.-" !" !.-" (" (.-" *"

!
"#

$%
&'
()
*+
,%

-.%/'/0(%1%".%/'/0(%%

%!"#$%23%4567)+(%8)9:+7);(%<"=>%6?@(0?9(%)9:%A*):B)0%>'9/7*29?C(*+%
/0"1230",405678"

/0"1230"*405678"

90"1230",405678"

90"1230"*405678"

(b) asynchronous-to-synchronous

Figure 4.2: MTBF of the 4-Phase Handshake 3-stage and 4-stage Pipeline and
Gradual Synchronizers.

61

!"#$

#!!!!!!$

#%&#'$

#%&(!$

#%&()$

#%&'*$

#%&*#$

#%&*+$

#%&,,$

#%&-($

#%&-.$

#%&)-$

#%&+'$

#%&.!$

!",$ #$ #",$ ($ (",$ '$

!
"#

$%
&'
()
*+
,%

-.%/'/0(%1%".%/'/0(%%

!"#$%23%4567)+(%8)9:+7);(%<"=>%6?@(0?9(%)9:%A*):B)0%<'9/7*29?C(*+%
/0$0123$*405678$

/0$0123$'405678$

90$0123$*405678$

90$0123$'405678$

(a) synchronous-to-asynchronous

!"#$

#!!!!!!$

#%&#'$

#%&(!$

#%&()$

#%&'*$

#%&*#$

#%&*+$

#%&,,$

#%&-($

#%&-.$

#%&)-$

#%&+'$

#%&.!$

!",$ #$ #",$ ($ (",$ '$

!
"#

$%
&'
()
*+
,%

-.%/'/0(%1%".%/'/0(%%

!"#$%23%4567)+(%8)9:+7);(%<"=>%6?@(0?9(%)9:%A*):B)0%>'9/7*29?C(*+%
/0$1230$*405678$

/0$1230$'405678$

90$1230$*405678$

90$1230$'405678$

(b) asynchronous-to-synchronous

Figure 4.3: MTBF of the 2-Phase Handshake 3-stage and 4-stage Pipeline and
Gradual Synchronizers.

62

flop based synchronizers and adding or removing stages in the pipeline and

gradual synchronizers. Instead of equal MTBFs, we settle for choosing configu-

rations that lead to MTBFs above a certain threshold. Note that a higher MTBF is

better. For our comparison simulations we choose a threshold of 100 years since

nothing catastrophic is going to happen if our simulations fail due to a metasta-

bility. When the synchronization of the request and acknowledge are combined

the worse of the two MTBFs dominates the resulting MTBF of the combined

system. This is why there are dips and jumps around a ratio of one. A jump

in the MTBF occurs when the worst MTBF changes from the request curves to

the acknowledge curves seen in figures 4.3 and 4.2. Jumps do not occur as we

transition from the send side being slower to the receive side being slower for

the flip-flop synchronizers because the send and receive sides are essentially

identical except for the clock frequencies. The dips in the data for both types of

synchronizers occur as a result of the combined MTBFs. At a ratio of one the

two MTBFs are close and therefore combined create a worse resultant MTBF. At

ratios other than one the order of magnitude of the MTBFs differ enough that

the higher MTBF is an insignificant contribution toward the total MTBF.

Figure 4.5 shows that reducing the time allotted for metastability resolu-

tion in the flip-flop based synchronizers to one-half of a clock cycle (by using

opposite-edge triggered flip-flops) reduces the MTBF of all the flip-flop based

synchronizers below our simulation target MTBF of 100 years. The graph also

shows the same result for reducing the staged synchronizers to 3-stages. For

this reason section 4.2 discusses only the four-stage versions of the pipeline

and gradual synchronizers and the N=2 versions of the flip-flop synchronizers.

Another option is employing a different number of stages/flip-flops on the

63

!"

!#"

!##"

!###"

!####"

!#####"

!######"

!#######"

!########"

!$%#&"

#'(" !" !'(")")'(" *"

!
"#

$%
&'
()
*+
,%

-.%/'/0(%1%".%/'/0(%%

2'3/4*5356+78572'3/4*5356+%!"#$%

+,-./0"1234567890"

189:"1234567890"

189:";<2"67890"

=5+:8>0"=567890"6+"

=5+:8>0"=567890"?+"

=5+:8>0")567890"6+"

=5+:8>0")567890"?+"

Figure 4.4: Comparison of the MTBF of several synchronizer configurations.
The flip-flop synchronizers shown are for N=2 meaning about one clock cycle is
allotted for metastability resolution.

!"!!!!!!#$

!"!!!!!#$

!"!!!!#$

!"!!!#$

!"!!#$

!"!#$

!"#$

#$

#!$

#!!$

!"%$ #$ #"%$ &$ &"%$ '$

!
"#

$%
&'
()
*+
,%

-.%/'/0(%1%".%/'/0(%%

2'3/4*5356+78572'3/4*5356+%!"#$%

()*+,-$./0123456-$

.567$./0123456-$

.567$89/$3456-$

'2(75:-$;23456-$3($

'2(75:-$;23456-$<($

'2(75:-$&23456-$3($

'2(75:-$&23456-$<($

Figure 4.5: Comparison of the MTBF of several synchronizer configurations.
The flip-flop synchronizers shown are for N=1.5 meaning about half a clock
cycle is allotted for metastability resolution.

64

request side than on the acknowledge side based on the corresponding clock

speeds. This is definitely a possibility and should be considered in the design

of any system. Figure 4.6 shows what happens to the MTBF for a few different

combinations of one of the staged synchronizers. We used the gradual syn-

chronizer, it is the most interesting since we need to be aware that changing the

number of stages not only changes the latency but also changes the total amount

of time available for computation. In most cases where one side is twice as fast

as the other it is possible to reduce the number of stages on the slow end to just

one stage. For cases where one side is faster but less than double the speed of the

other end it is possible to reduce the number of stages on the slower end to three

or even two stages. This reduction will obviously have a significant (positive)

effect on the latency of the synchronizer. However, presenting the performance

of all of these options had the effect of making our data seem very jumbled and

hard to interpret. Instead of presenting latency and throughput for every syn-

chronizer in multiple configurations we’ve shown comprehensive results for the

synchronizers with the same number of stages at both ends and included a few

significant results for different configurations at certain ratios. This improves

readability of this thesis and also gives the reader a good representation of the

effect all the synchronizer design factors can have on performance.

The Dual-Clock Synchronizer is not included on the MTBF graphs because

the synchronization of the empty and full control signals uses flip-flop synchro-

nizers. The MTBF of the flip-flop synchronizers depends on the characteristics

of the flip-flops used and not the surrounding circuitry.

65

!"#!!$
!"#!%$
!"#%&$
!"#%'$

%(%%%%%%!$
%(%%%%%!$
%(%%%%!$
%(%%%!$
%(%%!$
%(%!$
%(!$
!$

!%$
!%%$

!%%%$
!%%%%$
!%%%%%$

!%%%%%%$
!%%%%%%%$

%()$!$!()$ *$ *()$ +$

!
"#

$%
&'
()
*+
,%

-.%/'/0(%1%".%/'/0(%%

2'3/4*5356+78572'3/4*5356+%!"#$%

!#,$-.$

*#,$-.$

+#,$-.$

,#,$-.$

,#+$-.$

,#*$-.$

,#!$-.$

Figure 4.6: Comparison of the MTBF of a 4-phase gradual synchronizer with
varying numbers of stages on the request and acknowledge ends.

4.2 Latency and Throughput

For our latency and throughput comparisons we created two synchronous envi-

ronments and addressed synchronization between the two environments using

each synchronizer type. For each synchronizer type we ran multiple simula-

tions, varying the clock speeds and phase relationships for the sender environ-

ment and receiver environment. This allows us to report absolute worst case

forward latency for any data item and ensure throughput is maintained. Max-

imum throughput is maintained for the FIFO style methods, including gradual

synchronization, if the environment for the slower of the two clocks is able to

send or receive every cycle.

The latency reported in figure 4.7 is the forward latency, from entry of re-

quest into the synchronizer to validity in the receiver. We present latency and

66

!"

#"

$!"

$#"

%!"

%#"

&!"

!" !'#" $" $'#" %" %'#" &"

!"
#$

%#
&'
(%
)*
+,
-'
./
0'
,1
",
2'
,-
,1
*3
'

40',-,1*'5'/0',-,1*'

(%)*+,-'

()*+,-"./0123-"

4235"./0123-"

4235"%/0123-"

672,"8,9"4:4;"

0("%/0<"=/(>?"

?("%/0<"=/(>?"

0("./0<"=/(>?"

@?("./0<"=/(>?@"

Figure 4.7: Worst case forward latency comparison of the synchronizers.

throughput results in terms of tx cycles and words per tx cycle because no mat-

ter what the top clock frequency is the latency and throughput trends remain the

same when reported in this manner, therefore it is unnecessary to show results

for multiple clock speeds. It is important to note that the latency of the gradual

synchronizer does not include the cycles that would be saved by merging com-

putation from the surrounding circuitry into the synchronizer. We refer to this

as the raw latency of the gradual synchronizer. The raw latency is reported here

both because it is hard to quantify the total latency savings without picking the

functionality of the system and also because our aim in this section is to show

that the gradual synchronizer does not result in longer raw latencies than the

pipeline synchronizer or dual-clock FIFO. For estimates of the reduced system

latency and time available for computation please refer to section 4.3.

The flip-flop synchronizers have the shortest latency. Their forward latency

is purely based on the delay the request signal experiences through the two flip-

flops used as a synchronizer on the receiving end. The simple 4-phase version

67

!"

!#$"

!#%"

!#&"

!#'"

("

(#$"

!" !#)" (" (#)" $" $#)" *"

!
"#
$%
&'
(#
&)
*&
+,
"+
-&
+.
+,
(&

/*&+.+,(&0&)*&+.+,(&

)1#"231'24&
+,-./0"1234567890"

189:"1234567890"

189:";<2567890"

=38/5>/2?@"1A1B"

6+"'5+:8C0"

D+"'5+:8C0"

Figure 4.8: Througput comparison of the synchronizers.

of this synchronizer takes the longest because its synchronizer is two flip-flops

placed before the flip-flop on the border of the receiving end. This means the

control signal actually has to pass through three flip-flops. The fast 4-phase and

fast 2-phase versions use the receiving flip-flop as one of the flip-flops in the

synchronizer, allowing the request control signal to pass through one less flip-

flop, hence reducing the forward latency. The disadvantage of these methods

is the throughput as shown in figure 4.8. Only one data item can be synchro-

nized at a time, the acknowledge cannot begin its return to the sender until the

clock cycle in which the receiver locks that data. Then the acknowledge sig-

nal returns to the sender through its own set of synchronizing flip-flops. Since

the simple and fast 4-phase synchronizers use a four-phase handshake both the

receive and send side synchronizers must be passed through twice before the

next data item can be injected into the synchronizer. The fast two-phase has

the highest throughput of the flip-flop synchronizers since each synchronizer is

68

only encountered once to complete the handshake.

The throughput results for the FIFO synchronizers show the expected re-

sults. All of the FIFO synchronizers do exactly what they are supposed to -

which is allow the slower end to send or receive every cycle. If the sender is

slower (ratios less than one) then the throughput is equal to one data word per

send clock cycle. If the receiver is slower the throughput is equal to one data

word per receiver clock cycle, so since the throughput is reported in send clock

cycles the resulting throughput exhibits a direct inverse relationship to the clock

ratios.

The latency of the FIFO synchronizers is much more interesting. When the

send side is slower (ratios less than one) the gradual synchronizer appears to

have the longest latency. This is because the pipeline synchronizer send side

forward latency only takes as long as it takes the data to pass through all the

stages, since the synchronization delay only occurs on the backward traveling

acknowledge signal. When we use the gradual synchronizer the computation

delay adds latency to the forward direction since the computation in between

stages needs time to complete. So the raw latency from insertion into the syn-

chronizer to receipt at the other end is longer, but the total system latency will

be reduced from the relocation of computation into the synchronizer. Again,

please see section 4.3 for system latency estimates. We could also counter this

effect by using a pipeline synchronizer for the send half and a gradual synchro-

nizer for the receive half, hence eliminating the computation that increases the

send side latency.

Above a ratio of one the pipeline and gradual synchronizers perform better

than the Dual Clock FIFO. This is because while the dual clock fifo only locks

69

data once because the data is written in a register and does not move until it is

read by the receiving end; once the FIFO has filled up the full and empty point-

ers are constantly colliding, so you get latency from the FIFO plus the latency

of synchronization between the two pointers. You can see this visually on the

graph in the jump in latency from 1 to 1.1, this is where the pointers begin to col-

lide. Here too, the forward latency of the system using the gradual synchronizer

will actually be reduced. The gradual and pipeline synchronizers experience a

latency jump as well, at ratio 1.9 and 1.7 respectively. This jump is not as drastic

as the one for the dual-clock fifo and corresponds to the point at which moving

data forward through the sender stages of the synchronizer no longer hides all

of the time it takes the slower receiving end to acknowledge the last transfer.

The difference between the pipeline synchronizer and the gradual synchronizer

is exclusively a result of the acknowledge forward signal present in the s-to-a

synchronizer. This modification could be applied to the pipeline synchronizer

as well.

4.3 Time Available for Computation

The amount of computation that can be accomplished in the synchronizer de-

pends on two factors. First it depends on the requirements derived in chapter

3. For each synchronizer type and clock speed the limiting requirement for τd

must be determined, i.e. the requirement that leads to the smallest τd. In addi-

tion the design must take into account how much relocatable computation pre-

exists in the environment. For instance, even if there is time for 1.68 clock cycles

of computation, in reality only whole cycles can actually be relocated into the

synchronizer, unless the cycles in the synchronous environment were not ”full”

70

!"

#!"

$!!"

$#!"

%!!"

%#!"

&!!"

!" !'#" $" $'#" %" %'#" &"

!"
#
$%
&'
()
*%

+,%-.-/$%0%!,%-.-/$%%

12#3456728%!"#$%9:6"/6;/$%3$<%=56>$%

()*+",-./"0!!1+2"

()*3"/-.,"0!!1+2"

%)*3",-./"0!!1+2"

%)*3"/-.,"0!!1+2"

Figure 4.9: Time Available for Computation in each stage of the Gradual Syn-
chronizer

in the first place and then a full two cycles may be eliminated from the environ-

ment. This is hard to determine without more knowledge of the surrounding

system’s functionality. In this section, we assume that the synchronous envi-

ronment’s pipeline is well used. This means that in the above example only one

cycle could be merged into the gradual synchronizer.

Figure 4.9 shows the amount of time (given in FO41) available in each stage

for each synchronizing direction. The delay associated with passing through

the FIFO in each stage does not change and therefore more time is available for

computation as clock frequencies decrease. Figure 4.10 shows the percentage

of synchronization time that can be used for computation in each stage over

a range of frequencies. At 1GHz the 4-phase handshake gradual synchronizer
1The delay of an inverter with a fanout of four is used as a metric of logic gate delay. It is

useful here because it provides a better idea of the amount of work that can be accomplished in
a given amount of time at a particular technology point.

71

!"!!#

$!"!!#

%!"!!#

&!"!!#

'!"!!#

(!!"!!#

($!"!!#

!# (!!# $!!#)!!# %!!# *!!# &!!# +!!# '!!# ,!!# (!!!# ((!!#

!"
#$
"%

&'
("
)*+

,)

-#"./"%$0)*123,))

!"#$"%&'(")45)60%$7#4%83'94%):8;")<"$4="#">)!"#)6&'(")

%-./#0123#

%-.4#3120#

$-.4#0123#

$-.4#3120#

Figure 4.10: Recovered percentage of synchronization time by stage for the
gradual synchronizer.

can recover 43 percent of synchronization time for computation. A two-phase

handshake allows recovery of 65 percent. Slower frequencies allow a greater

percentage recovery since the overhead of the method remains static.

Now, assuming high pipeline stage utilization we know that only full cy-

cles can be merged into the synchronizer so figure 4.11 shows both the number

of send cycles and the number of receive cycles that could be merged into the

gradual synchronizer if we remove computation from each end respectively. We

could also take different numbers of cycles from both sides in order to make the

most use of the time available. For instance, at a RX/T X ratio of 0.1 the compu-

tation time available is only equal to 1.5 TX clock cycles. So only one clock cycle

from the Send side can be merged into the synchronizer. However, after merg-

72

!"

#"

$"

%"

&"

'!"

'#"

'$"

'%"

'&"

!" !()" '" '()" #" #()" *"

!"
#
$%
&'
()
*+
%'
,*
($
-.
%

/0%*,*($%1%!0%*,*($%%

')#23456)7%!"#$%895"(5:($%;7<=4)=;7<%

$+,-"./"

$+,-"0/"

#+,-"./"

#+,-"0/"

Figure 4.11: Time Available for Computation in the Gradual Synchronizer

ing one send clock cycle we could then use the rest of the available computation

time to merge in some of the shorter RX cycles.

Without knowledge of the particular system it is difficult to determine ex-

actly how many cycles could be merged and from where. In addition, if only

using one synchronizer direction (either s-to-a or a-to-s) computation could also

be merged from from the asynchronous environment as well. As result the po-

tential resultant system latency that follows is only an estimate. For our esti-

mate, we use the structure from section 4.2, where the two synchronizers are

connected end-to-end. We use a reasonable worst case projection; where only

full cycles can be merged into the gradual synchronizer. The projected latency

of the system is shown in figure 4.12. The system latency shown includes five

cycles preceding the synchronizer from the synchronous send domain.

The system latency graph shows that when the full system latency is taken

73

!"

#"

$!"

$#"

%!"

%#"

&!"

&#"

!" !'#" $" $'#" %" %'#" &"

!"
#$

%#
&'
(%
)*
+,
-'
./
0'
,1
",
2'
,-
,1
*3
4'

50',-,1*'6'/0',-,1*'

7-3)*8'(%)*+,-'

()*+,-"./0123-"

4235"./0123-"

4235"%/0123-"

672,"8,9"4:4;"

<("./0=">/(?<"

0("./0=">/(?<"

Figure 4.12: Model system forward latency using various synchronizer types.

into account the gradual synchronizer exhibits further latency savings verses

the other FIFO synchronizers when clock frequencies are close and when the

receive side is slower. The gradual synchronizer has a higher single item for-

ward latency than the flip-flop synchronizers, therefore knowledge of the sys-

tem throughput requirements is necessary before choosing between the gradual

synchronizer and the flip-flop synchronizers.

Just to put things in perspective, table 4.1 shows the latency of transferring

ten data words using one of the FIFO synchronizers and one of the flip-flop

synchronizers assuming the system is trying to transmit every cycle. Clearly,

the FIFO based synchronizers are better in this situation.

74

Synchronizer Latency (TX clk cycles)
Ratio Fast 4-Phase GS 4-Phase 8-Stage

0.5 31.75 14.10
1.0 56.04 13.03
2.0 56.54 30.50

Table 4.1: Latency comparison of transferring multiple words.

4.4 Area

Area reported is the product of the width and length of the transistors in the

synchronizer circuits only. The gates implementing the computational logic in

the gradual synchronizer have not been included in the area calculation given

that these gates pre-existed in the circuitry around the synchronizer and have

simply been relocated to within the synchronizer, therefore they do not repre-

sent an area increase within the circuit. The area of the gradual synchronizer can

change if extra data is created due to calculations that span stages. Therefore the

area shown is an estimate and may vary slightly depending on the function of

the surrounding circuitry. However, since some of these latches may also just

be relocated the number of data latches is kept static from stage to stage in the

estimate. Since the Gradual Synchronizer can reduce the number of pipeline

stages necessary in the surrounding circuitry the Gradual Synchronizer can also

cause a reduction in the area of the total circuit as compared to a Pipeline Syn-

chronizer, this reduction is also not reflected in the area reported for the Gradual

Synchronizer. The area shown in table 4.2 is for synchronizers moving one word

(32 bits) of data.

The pipeline synchronizer and the gradual synchronizer are much larger

than the flip-flop based synchronizers. Figure 4.13 shows this increase is due

75

Synchronizer Area (µm2)
Simple 4-Phase Synchronizer 3.888
Fast 4-Phase Synchronizer 3.552
Fast 2-Phase Synchronizer 4.176
Dual-Clock FIFO 266.096
2-Phase 6-Stage Pipeline Synchronizer 87.024
2-Phase 8-Stage Pipeline Synchronizer 112.496
4-Phase 6-Stage Pipeline Synchronizer 76.256
4-Phase 8-Stage Pipeline Synchronizer 98.192
2-Phase 6-Stage Gradual Synchronizer 89.184
2-Phase 8-Stage Gradual Synchronizer 115.376
4-Phase 6-Stage Gradual Synchronizer 81.08
4-Phase 8-Stage Gradual Synchronizer 106.096

Table 4.2: Comparison of synchronizer circuit area.

largely to the increased data storage necessary within the synchronizer in or-

der to have multiple synchronizations ’in flight’ at the same time. The gradual

synchronizer is not much larger than the pipeline synchronizer, the difference is

mostly compromised of the transistors implementing the computational delay

block which is only an inverter chain. Computation delay can also vary depend-

ing on clock frequency. Here, we have assumed fast maximum clock frequencies

for both the transmitter and receiver domains. However, we can observe from

figure 4.13 that the area of the computation delay block is minimal compared

to the rest of the synchronizer. Even at clock speeds as slow as 90MHz the de-

lay block will not be larger than 11µm2. The Simple 4-Phase, Fast 4-Phase, and

Fast 2-Phase synchronizers do not store any data, instead data is kept steady at

the synchronizer send interface until it has been safely passed to the receiving

interface.

The Dual-Clock FIFO is over double the size of the largest gradual synchro-

nizer and four times the size of the flip-flop synchronizers. Since the dual clock

FIFO only places data into the synchronizer once and does not move it until it

76

!"

#!"

$!!"

$#!"

%!!"

%#!"

&!!"

'()
*+,
"-.
/0
12,
"

31
24"
-./
01
2,"

31
24"
%./
01
2,"

56
1+.
7+8
9:"
3;3
<"

%.*
01
2,"
=.'
41>
,"/
'"

-.*
01
2,"
=.'
41>
,"/
'"

%.*
01
2,"
=.'
41>
,"?
'"

-.*
01
2,"
=.'
41>
,"?
'"

%.*
01
2,"
@.'
41>
,"/
'"

-.*
01
2,"
@.'
41>
,"/
'"

%.*
01
2,"
@.'
41>
,"?
'"

-.*
01
2,"
@.'
41>
,"?
'"

!"
#$
%&!

"
'
%

()*+,"-*./#"%0)1#%

()*+,"-*./#"%!"#$%

78)*641A8B"5,+1C"

'CB90D8B(E,D"

5141"

Figure 4.13: A visual breakdown by area of what function the transistors in the
synchronizers serve.

is removed from the synchronizer the dual-clock FIFO data cells require more

support logic to handle cell access.

Still, when you consider that the largest synchronizer is 250µm2 which trans-

lates to 0.000250mm2 and chip sizes at 90nm are at least several mm2 synchroniz-

ers in general do not account for a large percentage of chip area.

4.5 Power

For power estimates we have removed data computation from the simulations

in order to avoid duplicate power consumption. Since the computation is re-

ally just relocated from the system environment surrounding the synchronizer

77

!"

#$%&#"

'$%&#"

($%&#"

)$%&#"

&$%&&"

&*#$%&&"

&*'$%&&"

!" !*+" &" &*+" #" #*+" ,"

!"
#$
%&
'()
*+

,#
-'.

#$
'/

*$
01
'

23'4&4,#'5'63'4&4,#'

!"#$%&'
-./012"3456%789:2"

39:;"3456%789:2"

39:;"<=4%789:2"

>591%?14@A"3B3C"

7-"#%7D")%-;9E2"

F-"#%7D")%-;9E2"

7-"'%7D")%-;9E2"

F-"'%7D")%-;9E2"

Figure 4.14: Energy per word transferred comparison of the synchronizers.

it should not factor into synchronizer power usage. Only the computational de-

lay line remains since this is an addition of transistors exclusive to the gradual

synchronizer.

Figure 4.14 shows the energy usage with throughput taken into account. As

expected the Dual-Clock FIFO generally uses less energy than the other FIFO

synchronizers, it saves energy by keeping the data in place after it is inserted

into the synchronizer and instead synchronizing the full and empty pointers.

As ratios become larger the longer latency of the Dual Clock FiFO causes it to

use more power than the staged synchronizers per word transferred. Surpris-

ingly, the Simple Four-Phase Synchronizer uses more power per word trans-

ferred than all the other synchronizers. This is a result of its low throughput,

which causes static power to play a more significant role.

However, all of the methods are on the same rather low order of magnitude.

If we take a look at the raw power numbers from the simulations (shown in

figure 4.15 they show that none of the synchronizers use that much power as

compared to the chip as a whole. Optimistic power estimates for a chip at the

78

!"

!#!!!$"

!#!!%"

!#!!%$"

!#!!&"

!#!!&$"

!#!!'"

!#!!'$"

!" !#$" %" %#$" &" &#$" '"

!"
#
$%
&'(

)*
+&"

%&,
"-

.$
+&/

$%
&0
$1
"2

34
&

56&171.$&8&96&171.$&

!"#$%&
()*+,-"./0123456-"

.567"./0123456-"

.567"89/23456-"

:05,2;,/<=".>.?"

3("&23@"A2(75B-"

C("&23@"A2(75B-"

3("D23@"A2(75B-"

C("D23@"A2(75B-"

Figure 4.15: Raw power usage reported for the synchronizer simulations.

90nm process point with parts running at 900MHz start at about 10 Watts. Even

in the very worst case one of these synchronizers only amounts to about .028%

of that power usage.

79

CHAPTER 5

APPLICATIONS OF THE GRADUAL SYNCHRONIZER

This chapter provides several high level descriptions of how the gradual

synchronizer could be used and one detailed example. The shorter visible la-

tency, consistent throughput and ability to function over a long link delay means

the gradual synchronizer is adaptable to many different systems. For the maxi-

mum benefit of the gradual synchronizer approach to be realized it is important

to ensure that a sufficient amount of computation exists and can be dispersed

into the synchronizer stages. The last section in this chapter details an imple-

mentation of a network interface that uses Gradual Synchronization. The im-

plementation is simulated, evaluated and compared to a network interface that

uses a fast four-phase flip-flop synchronizer.

5.1 Examples

The structure of the gradual synchronizer is such that it can be used under a

broad range of circumstances. A few possible uses are presented here.

5.1.1 On-Chip Networks

GALS systems on chip (SoC) often employ network style designs with on chip

interconnects and on chip routers to organize communication among the differ-

ent domains. There have been a multitude of ways ([2], [5], [8], [59], [26], [27],

[46], [54]) proposed to implement these on chip networks. A high level view

is shown in figure 5.1. A network design is used because moving data around

80

a chip with large and long buses is becoming expensive and difficult (in terms

of power and timing). Using a network, each of the modules can operate as a

different clock domain and can still communicate with any of the other modules

on the chip. A network-like protocol is an obvious choice to manage the move-

ment of data around the chip. Communication is implemented by packaging

data into a message which then gets routed through the interconnect. The links

and routers make up the network interconnect. Some designs implement the

interconnect as a clocked interconnect others implement a fully asynchronous

interconnect. Once a message reaches the destination module the data must be

unpacked and synchronized to the receiving module’s clock.

The use of gradual synchronization as the synchronization method of choice

allows message preparation/unpacking and synchronization to take place si-

multaneously. In addition, many NoC designs include some buffering in order

to allow multiple messages to be in flight. The gradual synchronizer provides at

least some of this buffering automatically. Gradual Synchronization has the po-

tential to significantly reduce network overhead latency because it merges three

tasks that are usually done separately and serially. In addition this application

of gradual synchronization is also easier to implement since it contains the cus-

tom design within the network interface (NI) which can then be used multiple

times.

Synchronous NoCs usually use one clock domain for the entire routing struc-

ture. Modules then attach to the network through a network interface. Since

each module could potentially operate at a different clock frequency a synchro-

nization mechanism must be included in the network interface. Assuming the

use of a synchronizer that directly employs handshake signals, two synchro-

81

!"#$%

&'()*&%

+',(!*% #*)-'&$%
"#)*&./0*%

Figure 5.1: A 2D NoC mesh arcitecture.

nizations occur as the message travels from the module through the network

interface to the network fabric. One synchronization is required for the request

signal and one for the acknowledge signal. Two additional synchronizations

occur in the destination module’s NI once the message arrives. Additional

synchronizations would be required if the routing structure existed in multiple

clock domains.

Asynchronous NoCs usually refer to NoCs that use data driven communi-

cation - no clock exists in the routing structure. The modules are clocked and

82

attached to the network through a network interface but in this case only one

synchronization occurs as the message travels through the NI. An outgoing

message only needs to synchronize the acknowledge signal to the module clock

and an incoming message synchronizes the request signal to the module clock.

Some research also extends NoCs to include error checking, error correct-

ing and/or encryption [65]. These functions require a lot of computation and

would be excellent candidates for the type of computation that could easily be

merged with synchronization using a gradual synchronizer.

5.1.2 Mixed synchronous/asynchronous logic

Gradual Synchronization could be used to mix synchronous and asynchronous

logic in a pipeline. Since the gradual synchronizer can be built into synchronous

portions of the pipeline some computational units could be designed to use

asynchronous style circuits. This would be a smaller scale application of the

method but it could be beneficial in certain designs.

The design for this type of application could replace some of the pipeline

stages leading up to the computational unit(s) designed to be asynchronous

with gradual synchronization stages. If the clock domain on either side of the

computational unit is the same clock the computation unit could easily be de-

signed to swap between an asynchronously designed unit and a synchronously

designed unit in the layout and simulation phase in order to achieve better

power or performance.

Alternatively, the asynchronous computation unit could be designed to in-

83

corporate the gradual synchronization stages, making the unit itself completely

swappable with a synchronous unit of the same function without modification

to the surrounding synchronous pipeline. The benefit of the asynchronous com-

putation would be reduced because at least part of the computation would still

appear synchronous due to the synchronizer stages.

5.2 Gradual Synchronization in NoC

In this section we use gradual synchronization to improve the performance of

an NI implementation, providing one concrete example of how the method can

be applied. We selected the asynchronous version of QNoC as the NoC type

that the NI interfaces with. This network is chosen because there are fewer

synchronizations that need to take place in order for a communication to occur

between two modules. Since the aim of gradual synchronization is to minimize

the negative performance impact of synchronization, a set-up requiring fewer

synchronizations in the base design is in line with our goals.

A simplified core interface has been designed and the NI implemented trans-

lates between the simple core requests and the QNoC compatible flits. The NI

also unpacks arriving flits into the format recognized by the cores.

5.2.1 Network Interface Design Overview

QNoC uses a 2D mesh architecture as shown in figure 5.1. Each clocked mod-

ule interfaces with an asynchronous router in the network through a network

interface. The network interface connects to one of the standard router ports.

84

Name I/O Width Description
Valid O 1 Indicates all other outputs are valid
Start O 1 Indicates first word of transfer
End O 1 Indicates last word of transfer
Data O 32 Message data
Wait I 1 Applies backpressure, preventing

core from advancing data/ctrl signals
until it is deasserted

Table 5.1: Message based core send interface.

Each port is bi-directional, encompassing both an input and an output commu-

nication path. In order to prioritize important messages QNoC uses service

levels (SLs), short important messages use different SLs and hence different

wires therefore preventing less important messages from blocking important

ones. Within SLs virtual channels (VCs) can also exist which reduces contention

among messages of the same importance.

The network interface handles synchronization of incoming and outgoing

requests. For outgoing messages the NI also controls selection of the SLs and

VCs in addition to determining the routing path the flits must take through the

network in order to reach their destination. A simple core interface (table 5.1

provides all the information the NI needs in order to prepare flits for transmis-

sion. Messages entering the core use a similar interface, except the I/O direc-

tions are reversed as shown in table 5.2 and the additional error signal must be

included. In this design if a flit arrives at an incorrect node the NI asserts the

error flag when it injects the message into the receiving core and it is the core’s

responsibility to prepare an appropriate response.

Data entering the NI from the core can be either a short message or a long

message divided into multiple parts (table 5.3), each of which enter the NI indi-

85

Name I/O Width Description
Valid I 1 Indicates all other outputs are valid
Start I 1 Indicates first word of transfer
End I 1 Indicates last word of transfer
Error I 1 Indicates destination is not a match

for the current node
Data I 32 Message data
Ready O 1 Applies backpressure, preventing NI

from advancing data/ctrl signals un-
til it is asserted

Table 5.2: Message based core receive interface.

Word Description
0 Contains Logical ID of destination, used in out-

going transmissions as the input to the routing
table. Contains the command, which is used to
determine the appropriate SL and VC.

1 Message word 0
2 Message word 1
... ...
N Message word N

Table 5.3: Format of data stream

vidually, one following the next. This leads to four different assertion cases for

the NI inputs start and end. Figure 5.2 shows the four different injection cases

and the flit outcomes at the NI output. The header message splits into two flits

in order to reduce the data width requirement of the network routers. Since

the header message splits into two flits the NI must take care of the transmis-

sion of the two flits. This has been addressed exclusively in the asynchronous

domain since we anticipate that interface being faster than attempting the dual

transmission synchronously.

In the following section we provide the design of two network interfaces:

one which uses a fast four-phase flip-flop synchronizer and one that uses a

86

bit 0 1 2 3 4 5 6 17 18 38

field

bit 0 1 2 3 4 5 6 38

field

bit 0 1 2 3 4 5 6 17 18 38

field

bit 0 1 2 3 4 5 6 38

field

bit 0 1 2 3 4 5 6 38

field

bit 0 1 2 3 4 5 6 38

field VC SL 10 data

VC SL 00 data

VC SL 01 path unused

VC SL 10 data

data

path unusedVC SL 01

VC SL 00

(a) Header only

bit 0 1 2 3 4 5 6 17 18 38

field

bit 0 1 2 3 4 5 6 38

field

bit 0 1 2 3 4 5 6 17 18 38

field

bit 0 1 2 3 4 5 6 38

field

bit 0 1 2 3 4 5 6 38

field

bit 0 1 2 3 4 5 6 38

field VC SL 10 data

VC SL 00 data

VC SL 01 path unused

VC SL 10 data

data

path unusedVC SL 01

VC SL 00

(b) Head and tail

bit 0 1 2 3 4 5 6 17 18 38

field

bit 0 1 2 3 4 5 6 38

field

bit 0 1 2 3 4 5 6 17 18 38

field

bit 0 1 2 3 4 5 6 38

field

bit 0 1 2 3 4 5 6 38

field

bit 0 1 2 3 4 5 6 38

field VC SL 10 data

VC SL 00 data

VC SL 01 path unused

VC SL 10 data

data

path unusedVC SL 01

VC SL 00

(c) Body (neither head or tail)

bit 0 1 2 3 4 5 6 17 18 38

field

bit 0 1 2 3 4 5 6 38

field

bit 0 1 2 3 4 5 6 17 18 38

field

bit 0 1 2 3 4 5 6 38

field

bit 0 1 2 3 4 5 6 38

field

bit 0 1 2 3 4 5 6 38

field VC SL 10 data

VC SL 00 data

VC SL 01 path unused

VC SL 10 data

data

path unusedVC SL 01

VC SL 00

(d) Tail only

Figure 5.2: Various possible flit formats. Bits four and five are the flit type (FT).

gradual synchronizer. These have been chosen based on their MTBF, latency

and throughput performance in the previous chapter.

5.2.2 Fast Four-Phase Network Interface

Figure 5.3 shows the structure of the send portion of a network interface that

uses a fast four-phase flip-flop synchronizer. Outgoing data is injected into the

NI, the interface then determines the correct service level (SL), virtual channel

(VC), flit type (FT) and the routing path of the message. Flit preparation can

occur during this clock cycle because the signal that needs synchronization is

the acknowledge, not the request. At the beginning of the next clock cycle req

87

!"

!"
#
$%

&'
#
'
(
!)
$'

&*
)

+#
,(

-)
,'

&-
)

#$%&$!!!!!!!!!!!!!!!!

'()

*+,
,

&'-.,
,

,'(,
,

)
)
/%$%,,,,
+'-,

)
)
)

01*230,

456$,
7&'8%&%9:(,

)
)
)
)

2;<'&,
=$%-',.6

#($
'(

&'>

%?@

%?@A6(!!!!!!!!!!!!!!!!

&'>A6(

)%$%A6()%$%!

#./0123)+4/.2567.)8#+9)
)

*"

Figure 5.3: Outgoing message network interface using a fast four-phase flip-flop
synchronizer.

is set high and the data is locked in DataReg and snt is set high indicating to

the core that it can inject new data. The earliest point it would do this would

be the next cycle (two clock cycles after the first injection). Req high initiates

a handshake with the buffer stage, the ack transitions must be synchronized

before interacting with synchronous signals. An asynchronous reset on regv

eliminates an extra clock cycle in the handshake. The buffer stage forwards

body flits, tail flits and the first flit of a header message flit pair directly to the

network. At the same time if the data contains a header flit pair the second flit

is saved into a buffer. If the second flit buffer becomes full then control of the

NI-network handshake is transferred to the second flit buffer after the first flit

has been transferred.

The receive portion of the fast four-phase (F4PH) NI, figure 5.4, requires the

request be synchronized to the receiving clock before unpacking the incoming

flits into the message format required by the core. This is because vo must be

88

!"

!
"
#$
"
#%
$!

&#
%

'(
)
*+

&!
)
!
"
'%
*!

&,
%

#
#

#
#

#$%&#
#

%
%
'()(####
&*+#

%
%
%

,-./%,#

0*1

(23

45

0*(67

8)(0)!

4(9:6

6()(

)-./012%34.-1567-%8)39%

;*88(+*#
<=>(23#

%
%
%
%
%
#,-#

.&#
#

#
#

#,-##
#

#
#

#
#

,-###
#

*=6!

?(9:6#
@A;#

B(:)!0*(67#
2(92#

C*(6

)(:9

%
%
%
%,)%

*0050!

%
%
%
%,)%

48

!D

Figure 5.4: Incoming message network interface using a fast four-phase flip-flop
synchronizer.

stable for processing to occur. If an attempt is made to process R2 with the

incoming data, we would introduce the possibility of metastability at the input

to the data register. A flit that enters this interface passes through the fast-four

phase synchronizer and then once synchronized, flit processing begins. If the

flit is a header flit the FSM will squash the flit without forwarding it to the

core. (Alternatively, the flit data could be forwarded to the core in order to

save the routing path in case of an error, but it would still not be marked as

the start of the message.) The next flit it receives becomes the header flit and

the destination is checked against the current node to ensure the message was

routed to the correct place. If not, the NI flags an error as it passes the header

to the core. In order to keep the NI small, we assume the core handles any

errors. Since we want to evaluate the effect of the synchronizers on latency

through the NI we assume that the core is always ready for new data. This

89

simplifies the FSM and allows evaluation at faster clock speeds. However, the

NI could easily be changed to accommodate a core stall. The fast four-phase

synchronizer only pulses the vo signal for one clock cycle so if the core were not

ready to receive incoming data the Valid FSM would need to both keep track of

flit reconstruction and keep track of an unsent flit in the pipe.

5.2.3 Gradual Synchronizer Network Interface

A NI send interface implemented with a 3-stage gradual synchronizer (GS) is

shown in figure 5.5. The Synchronous core must simulate four-phase handshak-

ing. In order to prevent loss of data the synchronous side needs knowledge of

the state of vi, if vi is high the core will not advance the data on the interface.

The down going transition of Ai is used to asynchronously clear vi, at which

point the FIFO can complete the left side handshake by raising Ai. The gradual

synchronizer NI is then ready for the core to inject a new request in the next

cycle.

Flit preparation is split into the multiple stages of the gradual synchronizer.

Flit type encoding takes place in the first stage in parallel with service level

decoding from the command field of a header flit. Once the service level and

flit type are known this stage also generates tokens used by the virtual channel

selection and update computation in the second stage. Since QNOC uses XY

routing, the X and Y routing paths are retrieved separately from two small LUTs

in the first stage. The following stage shifts the Y path into the correct position.

The final stage chooses the correct virtual channel field based on the service

level. The buffer stage handles messages in the same manner as in the F4PH NI.

90

!"
#
$%

&'
#
'
(
!)
$'

&*
)

+#
,(

-)
,'

&-
)

!"#$"!!!!!!!!!!!!!!!!

%&'

.&) ()

#*+

#*+,)&!!!!!!!!!!!!!!!!

$%-,)&

'#"#,)&

'#"#!

#/01234)+50/3678/)9#+:)

"#!!!!"$!
!
!
%./
!
!
!
!
!

&#!!!&$!
!
!
!
!
!
!
!

!!!!!!!'$!
(#!!!!($!

"#!!!!"$!
!
!
%./
!
!
!
!
!

&#!!!&$!
!
!
!
!
!
!
!

!!!!!!!'$!
(#!!!!($! S S S

;8
)</

=)
>7
30
)?
);8
)</

=)
>7
30
)@
)

<A
BC
)>
70
A)

;8
)</

=)
>7
30
)D
)

E)
=F
0)

G)
=F
0)

<=)
</
=)

C)
/5

82
H/

)

d d d

0#)"

$%-

12#"3

42#"3

'#"#

56

(*!

)
)
)
)

789%$/
:"#;%/<=

5>

<?

"#!!!!"$!
!
!
%./
!
!
!
!
!

&#!!!&$!
!
!
!
!
!
!
!

!!!!!!!'$!
(#!!!!($!

2#"3!

<?

Figure 5.5: Outgoing message network interface using a gradual synchronizer.

The GS NI receive interface is implemented with three stages as shown in

figure 5.6. Note that since there is so little computation involved in unpacking

the message the first stage does not contain computation.. The second stage

checks each bit in the destination bit field of the message against the bits in the

current node ID. Information needed exclusively for the routers in the NoC (sl

and vc) is stripped off of the incoming flit and the message start and end bits get

reconstructed. The third stage then checks that each destination bit was a match

and flags whether there was a routing error.

The synchronous core consumes one message per clock cycle. If the core is

ready when Ro in the last stage rises, valid will rise as well. Once valid rises

ready gets pulled low and by default so does Ao, allowing the last FIFO stage to

continue the handshake with the core. When Ro falls, valid is kept high waiting

for the clock edge. When the clock edge arrives the message data will be locked

91

!"####!$#
#

%"#
#
&!"
#
#
#
#
#

'"###'$#
#
#
#
#
#
#
#

########
("####($#

!"####!$#
#

%"#
#
&!"
#
#
#
#
#

'"###'$#
#
#
#
#
#
#
#

########
("####($#

!"
#
$%

&'
#
'
(
!)
$'

&*
)

#$%&$!!!!!!!!!!!!!!!!

'()

+$)

)%$%!

#,-./01)23-,0456,)7#28)

S

*0
0/
0)

9,
3,

05
:/

3)

!-
50
-);

<-)
=,

>:
35
:/

3)
?
5-
6@
)

d

&'%)*

+%,-)!!!!!!!!!!!!!!!!

'&&

S

d

S !"####!$#
#

%"#
#
&!"
#
#
#
#
#

'"###'$#
#
#
#
#
#
#
#

########
("####($#

'
(
AB
(
A)
B'

&A
)

&.!!!!!!!!!!!!!!!!

).!!!!!!!!!!!!!!!!

%.!!!!!!!!!!!!!!!!

%#*/"
0','/"

12 13"

13 12 13

Figure 5.6: Incoming message network interface using a gradual synchronizer.

in the core and ready rises, allowing valid to fall and the last FIFO stage to service

the next flit.

5.2.4 Pipeline Synchronizer Network Interface

The pipeline synchronizer NI is included in order to show how important it is to

merge computation, buffering and synchronization. The send interface in this

case is very similar to the gradual synchronizer NI except that all of the com-

putation moves into a synchronous stage, or stages before the synchronization

FIFO. The clock matches the one in the sending core. In the receive interface

computation follows the synchronization. It occurs in a synchronous stage fol-

lowing the pipeline synchronizer whose clock matches the receiver clock.

92

5.2.5 Performance

The network interfaces described in the previous sections have been simulated

with HSIM using 90nm technology files. The simulations focus on the function

and performance of the network interface only.

Core to Network

The output portion of the NI assumes that the network is always ready to accept

new flits, preventing throttling of the NI by network stalls. Ideally, we’d also

like comparable MTBFs for the two methods. We use the MTBF of the F4PH

synchronizer as our minimum allowed MTBF and ensure the MTBF of the GS

NI is the same as or better. We simulate the NI at 400, 600 and 800 MHz since

selection of the core clock frequency is unlikely to be chosen according to NI

performance.

To calculate the F4PH MTBFs we also require the average frequency with

which the ack input to the first flip-flop of the synchronizer changes. This is

difficult to ascertain since we don’t know how often the core will try to send

messages. It is wise to ensure we design for the worst case (ie. the highest

frequency of change). Since an acknowledge can only occur after a request has

occurred we know that highest average rate of change will be when the core is

constantly trying to transmit. For the F4PH MTBF we must include both up-

going and down-going transitions in the rate.

The average frequency of the ack entering the GS NI will be different from

the F4PH synchronizer. In this case only the rising-edge transition is synchro-

nized. Just as in the F4PH NI, a rising edge can also only be observed after a

93

Sync Type
TX Clock Network MTBF Latency (ns) Data Rate

(MHz) (MHz) (years) Header Body or Tail (Mflits/s)
min max min max Head BT

Fast 4-Phase
400 272 1.84x1040 5.897 8.454 2.473 5.027 132
600 397 4.12x1019 4.221 5.906 1.632 3.313 198
800 531 2.05x109 4.732 8.475 2.525 6.277 264

Pipeline
400 400 5.63x1052 4.776 4.805 3.75 3.78 800 400
600 600 6.48x1021 3.954 7.663 2.928 2.955 954 600
800 800 5.55x1013 5.207 10.02 4.172 6.576 956 640

Gradual
400 400 2.04x1051 2.625 2.656 1.549 1.586 800 400
600 600 6.20x1020 2.839 6.654 1.759 2.254 952 600
800 800 2.47x1012 2.997 7.971 1.973 4.836 948 639

Table 5.4: Outgoing Message NI Simulation Results.

request is generated. We should design the GS NI to handle the case where a

send is initiated by the core every cycle. It is impossible to know what the aver-

age frequency would be without implementing and testing the NI. Even though

the network side may be fast, we expect an average around the same frequency

as the core clock because a long wait will occur before the next request arrives.

Table 5.4 shows results obtained by simulating the NIs described above.

The Network frequency is the average frequency of change of the acknowledge

signal, this helps determine the MTBF, and is affected by the synchronization

method chosen. The latency shown is the latency from when the message packet

is injected into the NI to when the flit(s) appears at the NI output. Throughput

is shown measured in packets per clock cycle.

Looking at the F4PH results we can see the effect design changes can have

on results. For instance, speeding up the clock to 800MHz causes relocation of

some flit preparation into an additional stage in the F4PH NI before synchro-

nization. This leads to increased latency because the throughput bottleneck of

this method can cause a packet to get stalled in the first stage of the NI if another

packet is already in the synchronizer stage. At 600 MHz all flit preparation logic

94

fits in one clock cycle, this frequency prevents the need for extra synchronous

pipeline stages and also prevents wasting any portion of the clock cycle because

there is no work left to be done even in the worst case. At 400 MHz there is time

in the computation stage of the F4PH NI where no computation is left, but the

F4PH NI cannot move the flit forward until the end of the clock cycle.

As expected the data rate of the fast 4-phase synchronizer is slow, permitting

one message every three cycles. In contrast the data rate of the GS NI is much

faster and until the network side becomes slower than the clock the GS NI can

handle transmitting both flits of a header message without degradation. At 600

MHz transmitting long messages allows continued high throughput, however

if the core is transmitting a lot of headers the network side becomes slower as

it transmits two flits for every one header packet. This lower throughput is still

higher than the F4PH NI in the same situation. Boosting the clock speed to 800

MHz causes the need for an extra stage to be added to the Gradual Synchro-

nizer in order to meet the required MTBF. This increases latency but is helpful

too because the extra stage gets the portion of computation that no longer fits

in the first three stages. Comparing the PS NI to the F4PH NI shows the data

rate capability of the FIFO methods, however we can see that latency can in-

crease. Switching to the GS NI maintains the data rate capability advantage but

eliminates the latency penalty.

Network traffic can vary by application, since a core will not always be try-

ing to inject messages into the NI conditions will vary greatly over time. How-

ever, we can conclude which synchronizer is better for the send NI by charac-

terizing network traffic into two categories. If the core transmits one message

packet followed by nothing for at least three cycles then the F4PH NI is better.

95

If the core transmits one message packet followed by another less than three

cycles later, the Gradual Synchronizer wins because it will transmit the mul-

tiple packets in a lower time even though the latency of one packet might be

increased.

Network to Core

In the receive case we observe the worst and best case forward latency of a flit

from entry into the NI from the network to validity at the NI output to the core.

Although the first flit of a short message (which consists of two flits) does not

contain any portion of the message, we save and pass along the routing path in

case an error is detected. In this case we report the throughput in flits per clock

clycle. We will assume that the receiving end is always ready so that the NI and

hence the synchronizers are not stalled by a busy core. They can operate at their

best capability within the limits of the core clock speed.

Table 5.5 shows the results of simulating the receive interfaces described

above. Recall that computation needed to unpack flits into messages is much

less complex than the packaging of messages, it fits into one clock cycle even at

800 MHz, therefore the latency of the Fast 4-phase NI scales as expected with

frequency increases. The Gradual Synchronizer NI uses a 3-stage design for

400MHz and 600MHz, adding a 4th stage for 800MHz to meet our requirement

that the MTBF of the GS NI be the same as or higher than the F4PH NI. This

results in little decrease in the latency of the GS NI when increasing the clock

speed from 600MHz to 800MHz. Minimum latencies for the GS NI are generally

lower, however for both NI types these latencies are seen at the first message

when the NI is empty and waiting for a new flit. The common case is closer

96

Sync Type
RX Clock Network MTBF Latency (ns) Data Rate

(MHz) (MHz) (years) min max (Mflits/s)

Fast 4-Phase
400 271 1.14x1040 5.12 7.01 132
600 395 3.93x1019 4.51 5.096 198
800 527 1.95x109 3.26 3.64 264

Pipeline
400 400 3.99x1051 5.00 9.13 400
600 600 1.37x1021 4.38 5.83 600
800 800 6.02x1012 3.82 4.31 800

Gradual
400 400 3.98x1051 2.56 6.53 400
600 600 1.22x1021 2.54 3.31 600
800 800 6.02x1012 2.65 3.06 800

Table 5.5: Incoming Message NI Simulation Results.

to the maximum latencies. The GS NI can push a flit through faster primarily

because of the parallel computation/synchronization. The difference merging

computation into the FIFO makes is shown by comparing the latency of the GS

NI to the PS NI which keeps computation separate from the buffering. Through-

put remains the same for both methods, however only GS can keep latencies

down.

In the receive case the data rate is consistent. The Fast 4-Phase NI can handle

one flit every three cycles and the GS NI one every cycle. We know there are

at least two flits for every incoming message, therefore throughput capability

causes the GS NI to beat the F4PH NI in full message latency in all cases.

97

CHAPTER 6

DYNAMIC VARIATIONS AND SYNCHRONIZERS

Chip designs sometimes include dynamic voltage and frequency scaling

(DVFS) mechanisms to vary operating conditions. DVFS helps mitigate prob-

lems such as high temperatures and can be used to save power. Typically both

aspects are varied in conjunction with one another for a greater effect. For in-

stance, in order to save power, the voltage might be reduced, however a reduc-

tion in supply voltage could cause timing margin problems. To make the timing

margins safer at lower power, frequency should be reduced as well. This chap-

ter reviews the challenges presented by DVFS when used in a multiple clock-

domain system and in particular the considerations necessary to ensure gradual

synchronizers continue to function correctly.

6.1 Challenges

Dynamic variations affect the gradual synchronizer in much the same way that

they affect synchronous circuits. Both synchronizers and fully synchronous cir-

cuits are subject to critical path timing requirements in order to ensure correct

functionality. The circuits must be able to function correctly under all intended

operating conditions, including during changes initiated by DVFS. The key dif-

ference between the two types of circuits is that the synchronizer circuit must

also ensure that MTBF requirements are met as well.

Another interesting aspect of the gradual synchronizer circuit is what hap-

pens during a voltage or frequency change. The synchronization progress must

be maintained. It turns out that correctness and safety depend on how the

98

changes to voltage and frequency are accomplished.

6.1.1 Voltage Scaling

Assuming the synchronous circuits and synchronizers are designed to meet tim-

ing margins under all intended operating points voltage scaling techniques ap-

ply equally well to both. If more performance is required from the system, it

may become desirable to increase the supply voltage hence making the tran-

sistors capable of switching faster and reducing the critical delay path timing.

Once the worst case timing is reduced, the system can increase the frequency

accordingly. When decreasing the supply voltage any required frequency re-

duction should occur before the voltage change.

6.1.2 Frequency Variations

Frequency variations are a little more involved. Synchronizers subjected to a

clock switch could end up temporarily (for one cycle) allotted a shorter cycle

time. This would mean that the gradual synchronizer FIFO would have to be

drained and remain empty for a switch, otherwise synchronization could not be

maintained. A reduced cycle time could cause errors for synchronous circuits

in the system as well and draining the pipe in the core would be undesirable.

In order to prevent large pauses or emptying the pipeline stages when a switch

occurs, clock switching is regulated to ensure that new clocks are switched in-

phase with the clock in use. This is most efficiently accomplished by using either

clock scaling in conjunction with a pulse-locked loop (PLL) or by using clock

99

masking.

Clock scaling uses a reference clock and dividers to generate the core clocks.

A PLL is then used to swap the clocks in phase (on an edge) and neither a speed

up or slow down can cause a situation where a cycle becomes too short [28].

However the synchronizer must be designed to work for any clock that might

be placed in use.

Clock Masking uses a reference clock as well, but uses circuitry to squash

certain pulses which results in an effective frequency reduction. Clock masking

requires that the voltage remains the same at least for a time since some of the

periods remain the same as the reference clock [63].

Both of these methods allow the gradual synchronizer to continue operation

during a switch.

6.2 Performance

Although the gradual synchronizer can continue to operate while the frequency

and voltage are scaled, a synchronizer designed for an acceptable MTBF at one

operating frequency and voltage may not in fact meet requirements for other

frequency and voltage pairs. For example figure 6.1 shows a 4-stage gradual

synchronizer at 800MHz and 1.2 volts has a higher MTBF than that same syn-

chronizer operating at 600MHz and 1.0 volts. In that case more stages would be

required in order to raise the MTBF of the synchronizer. On the other hand the

MTBF can become exceedingly high, such as the case for a 4-stage synchronizer

operating at 400MHz and 1.0 Volts. A high MTBF is relatively harmless except

100

!"##$%!&'
!"##$%!!'
!"##$%#('
!"##$%#)'
!"##$*#!'
!"##$*#&'
!"##$*#+'
!"##$*!)'
!"##$*!('
!"##$*,!'
!"##$*,&'
!"##$*,+'
!"##$*))'
!"##$*)('
!"##$*-!'
!"##$*-&'
!"##$*-+'
!"##$*&)'
!"##$*&('
!"##$*.!'
!"##$*.&'
!"##$*.+'
!"##$*()'

-##' .##' /##'

!
"#

$%
&'
()
*+
,%

$*(-.(/0'%&!12,%

!"#$%

)%01234'!"#5'

)%01234'!",5'

-%01234'!"#5'

-%01234'!",5'

Figure 6.1: Changes in MTBF of 3-stage and 4-stage gradual synchronizers due
to frequency and voltage adjustment.

that in the case of the gradual synchronizer it means that some of the stages are

not needed, and their presence adds extra latency for no reason. It would be

nice to be able to use fewer stages in the synchronizer under these conditions.

6.2.1 Multiple Synchronizers

One way to accomplish varying the number of stages in the gradual synchro-

nizer would be to have two entirely separate synchronizers and switch between

them as shown in figure 6.2. The synchronous side initiates a switch between

the two, once indicated by a chosen operating threshold. Figure 6.3 shows the

diagram of the state machine used for controlling the switch. The asynchronous

101

!"#$%#&'
()*+,"-*./0"'1'

'
12)*+,"-*-%2'
3*4."-*50*6'

'
()*+,"-*-%2'
3*4."-*50*6'

()*+,"-*./0"'
(7.6+,'8(9'

!"#$%#&'
()*+,"-*./0"':'

;<'

;='

>'

1'

!"!#$%&!#'()

%*+$,)

%*+$-)

%&!#'() +.%#)

%*+$-)

%*+$,)

/*0)

1.#.)

.'2)

Figure 6.2: Overview of a scheme that can select between two asynchronous-to-
synchronous synchronizers.

side sends one last data item plus a last signal with the data through the syn-

chronizer in use, and then starts sending its requests to the other synchronizer.

The second synchronizer is not enabled yet, so it won’t be acknowledging re-

quests yet. It is not necessary for the init switch signal to be synchronized sep-

arately in this case. The last signal functions as both a safety signal to know

that the first synchronizer is empty and can now be turned off and also as the

handshake for the init switch signal. Once the synchronous side receives the last

data item it turns on the other synchronizer which then begins acknowledging

requests. This method causes a small switching penalty since one synchronizer

must be drained before the other is placed in use. However, this feature be-

comes useful for reducing the area impact of this strategy. A similar method

can be applied to a stoa synchronizer.

102

!"#$#%&'($
)))))))))))))))))$
+,-./*,%0$1$2$

.(3-2$1$4$

.(3-4$1$2$

!"5$#%&'($
)))))))))))))))))$
+,-./*,%0$1$2$

.(3-2$1$2$

.(3-4$1$4$

"/*,%0$,6$5$
)))))))))))))))))$
+,-./*,%0$1$4$

.(3-2$1$4$

.(3-4$1$2$

"/*,%0$,6$#$
)))))))))))))))))$
+,-./*,%0$1$4$

.(3-2$1$4$

.(3-4$1$2$

!"#$%&'()

!"#$%&'*)

+,!$'()

+,!$'*)

!"#$%&'()

!"#$%&'*)

+,!$'*)

+,!$'()

Figure 6.3: State machine diagram of the synchronizer switch fsm.

6.2.2 Reusing Computation

For gradual synchronization duplicating the synchronizers also means dupli-

cating the computation within the synchronizers. In reality, it would be nice

to accomplish some reuse of the GS circuitry in order to reduce the area impact.

Especially since the exact same computation must be accomplished in both. The

setup above nicely lends itself to reuse of computation since emptying the syn-

chronizers before switching ensures that no computation segment can be used

by more than one synchronizer stage at any one time.

Figure 6.4 shows the computation in the stages is divided into segments. The

segments must complete in order, but the stages in which they are completed

103

!"#$%&'& !"#$%&(&

!"#$%&(&!"#$%&'&!"#$%&)&

+,& *+*,& *+*,&

'-&

+,& *+*,&

'.&)-&).& /-& /.&0#"#&

1'&

1)&

-)&

-'&

0#"#'&

0#"#)&

#23'&

#23)&

4%5)&

4%5'&

Figure 6.4: Synchronizer computation reuse setup.

can be adjusted by using two (or more) different sets of FIFO blocks. Avoiding

the addition of extra circuitry in the request signal path is important as addi-

tional overhead negatively affects the MTBF. This is why the FIFO blocks and

synchronizer blocks are not reused. The computation contains logic to select

between input sources since it is not guaranteed that the signals in the path not

in use will always be logic 0.

6.3 Summary

In this section we have reviewed the affects of dynamic processor variations on

the gradual synchronizer. We have outlined the issues that designers should be

aware of, and provided a design to combat over-designed timing margins in the

gradual synchronizer when DVFS techniques are in use.

104

CHAPTER 7

CONCLUSION

This thesis explores a new concept in synchronization - that is, synchroniza-

tion in parallel with computation - and shows the potential benefit of this pos-

sibility.

We prove theoretically that synchronization can indeed take place while

other useful work continues. We have mathematically established conditions

under which an asynchronous (handshaking) FIFO can be used to pipeline com-

putation and synchronization at the same time; we name this concept gradual

synchronization. Assuming circuit components can meet the derived require-

ments, we have proven that the gradual synchronizer will function correctly, re-

duce probability of failure, maintain a throughput of one item per synchronous

clock cycle, and limit latency. Requirements have been established for both two-

phase and four-phase handshaking protocols, both transmitting and receiving

data.

Once we had established the theoretical possibility of such a synchronizer,

we implemented multiple versions of the gradual synchronizer with the inten-

tion of comparing performance with several other synchronizers. We showed

the necessity of including a mean time before failure (MTBF) comparison in any

presented results and factored the MTBF into the design of several synchronizer

scenarios.

Latency, throughput, area and power results are presented for several classic

synchronizers in addition to the gradual synchronizer, under various operating

conditions. Through these results we show that the gradual synchronizer can

105

maintain throughput in practice and established a baseline for the potential la-

tency reduction of the method. Potential latency reduction is particularly ev-

ident in cases where the receiving end is much slower than the sending side.

The gradual synchronizer also keeps worst case latency down in the event of a

metastability. These results all confirm that circuits can be designed to meet the

requirements necessary to make use of gradual synchronization.

Since, the method would only be useful if available computation could be

gracefully divided into the synchronizer stages we suggested some possible de-

sign types that could make use of the gradual synchronizer. Then we took one of

the high level examples (the network interface) and designed and implemented

an NI capable of interfacing with an existing NoC design. Simulations validate

that viable computation can be found to merge with synchronization, and that

the result is increased performance.

In systems with multiple clock domains, DVFS can often be useful. We re-

view the challenges that arise for the gradual synchronizer when DVFS is ap-

plied. We identify the types of voltage and frequency scaling that allow syn-

chronizers to function correctly. In addition we design a synchronizer switch-

ing circuit that can be used to switch between different synchronizers in order

to adapt the synchronization to changes introduced by DVFS.

106

APPENDIX A

CORRECTNESS PROOFS

A.1 Two-Phase Synchronous to Asynchronous Gradual Syn-

chronizer

This section presents the correctness proof for the two-phase synchronous-to-

asynchronous gradual synchronizer and the requirements for correct operation

are derived as well. A segment of a two-phase synchronous-to-asynchronous

gradual synchronizer is shown in figure A.1. Recall from equation 3.40 that the

handshaking expansion of this FIFO is:

∗[[Ri]; Ai,Ro; [Ao]].

The jth event on A(i)
i can only occur at time:

t(j)
A(i)

i
= t(j)

R(i)
i
+ τRiAi , (A.1)

t(j)
A(i)

i
= t(j−1)

A(i)
o
+ τAoAi . (A.2)

!(i+2)mod2

S

d

 CL

Ai Ao

Di Do
2"

Ro Ri

Ai Ao

Di Do
2"

Ro Ri

!(i+1)mod2

S

d

!imod 2

S

d

 CL CL

Ai Ao

Di Do
2"

Ro Ri
(i) (i+1) (i+2)

Figure A.1: Segment of the 2-phase synchronous-to-aynchronous gradual syn-
chronizer.

107

This event can cause metastable behavior at the (i+ 1)st synchronizer if it occurs

coincidently with the falling clock edge of ϕ(i+1)mod2. The probability of metasta-

bility failure at the (i + 1)st synchronizer is

P(i+1)
f ≤ P(i+1)

f (Ri) + P(i+1)
f (Ao). (A.3)

The second part of the sum in equation A.3 is the probability that an event on Ao

takes place τAoAi before the clock edge. If the the delay through the FIFO when a

transition on Ai was waiting on a transition of the signal Ao is:

τAoAi < T/2 − τS , (A.4)

then for a metastability to occur at the (i + 1)st synchronizer, the ith synchronizer

must have entered the metastable state half a clock period beforehand and re-

mained in the metastable state for exactly:

tm = T/2 − τS − τAoAi . (A.5)

Thus, the probability that there is a metastability failure at the (i + 1)st synchro-

nizer due to Ao is:

P(i+1)
f (Ao) ≤ P(i)

f e−
T/2−τS −τAoAi

τ0 . (A.6)

If we could show that P(i+1)
f (Ri) = 0 then:

P(k)
f ≤ P(0)

f e−
k(T/2−Toh)
τ0 , (A.7)

where,

Toh = τS + τAoAi . (A.8)

As in the asynchronous to synchronous case, if a metastability is caused by

a transition on R(i)
i and that metastability is SEM, it does not affect the correct

operation of the synchronizer. Therefore even if the behavior of R(i)
i changes due

108

to τd, as long as the metastability caused is still SEM there is no problem. If the

jth event on A(i)
i is caused by the jth event on R(i)

i :

t(j)
R(i+1)

o
+ τd = t(j)

R(i)
i
= t(j)

A(i)
i
− τRiAi . (A.9)

If a metastability at the (i + 1)st synchronizer is a result of the (j)th transition on

R(i)
i , then as a result, metastability can occur at the (i + 2)nd synchronizer. The

metastability at the (i + 2)nd synchronizer will always be SEM if:

t(j)
A(i)

i
− T/2 < t(j)

A(i+1)
i
< t(j)

A(i)
i
+ T/2. (A.10)

Which leads to the requirement:

τRiAi + τd < T/2 (A.11)

Next the SEM can only cause SEM argument needs to be reevaluated for any

changes due to the addition of τd. Suppose the jth event on A(i)
i is SEM. By defi-

nition, this event must have occurred at time:

t(j)
A(i)

i
= t(k)
ϕ(i+1)mod2↓, (A.12)

and the previous event must have occurred within the last clock cycle,

t(k−1)
ϕ(i+1)mod2↓ < t(j−1)

A(i)
i
< t(k)
ϕ(i+1)mod2↓, (A.13)

therefore the (j − 1)st event on A(i+1)
o :

t(j)
A(i)

i
− T0 + τS ≤ t(j−1)

A(i+1)
o
< t(j)

A(i)
i
+ τS (A.14)

t(j−1)
A(i+1)

i
≥ t(j)

A(i)
i
− T0 + τS + τAoAi , (A.15)

which implies that the arrival of the (j − 1)st event at the (i + 2)nd synchronizer

must be

t(j−1)
A(i+1)

i
> t(j)

A(i)
i
− T/2. (A.16)

109

!S

t1

t2

Ro
(e)

Ao
(e) Ai

(e)

Ri
(e)

!da

!S

t1

t2

Ro
(e)

Ao
(e) Ai

(e)

Ri
(e)

!da

!S

t1

t2

Ro
(o)

Ao
(o) Ai

(o)

Ri
(o)

!da

!0

!1

T10 T0 T01 T1 T10 T0 T01

Figure A.2: Steady State Operation of a 2-phase synchronous-to-aynchronous
gradual synchronizer.

Since, for this fifo implementation the timing of Ro and Ai are approximately

equal

t(j−1)
A(i+1)

i
≈ t(j−1)

R(i+1)
o
≤ t(j)

A(i)
i
− τRiAi − τd, (A.17)

and according the previously established requirement τRiAi − τd < T/2 and equa-

tion A.16:

t(j)
A(i)

i
− T/2 < t(j−1)

A(i+1)
i
<(j)

A(i)
i
+T/2 (A.18)

Meaning, in the presence of SEM at the ith synchronizer, a resulting metastable

event at the (i + 1)st synchronizer must also be SEM.

Throughput

The synchronous environment on the sending end of the gradual synchro-

nizer is capable of sending one request and accepting one acknowledge per

110

clock cycle. The gradual synchronizer stages must be able to operate at the same

throughput level. Figure A.2 shows the steady state of a 2-phase synchronous-

to-asynchronous gradual synchronizer with an infinite number of stages. All

events on Ao entering even-numbered FIFO blocks arrive τS after the rising edge

of ϕ0. All events on Ao entering odd-numbered FIFO blocks arrive τS after the

rising edge of ϕ1. All events on Ri entering even-numbered FIFO blocks arrive

τda after the rising edge of ϕ0 and all events on Ri entering odd-numbered FIFO

blocks arrive τda after the rising edge of ϕ1. τda is the portion of the computa-

tional delay that occurs after the clock edge. Note that it can be equal to zero.

The Vo input is left off the diagram since it only contributes to shortening τAoAi

and τAoRo . In the steady state no synchronizer assumes a metastable state, and:

t1 = max(τS + τAoRo , τda + τRiRo ,)

t2 = max(τS + τAoAi , τda + τRiAi)
(A.19)

Since

τda = τd − τdb (A.20)

and

τdb =
T
2
− t1, (A.21)

t1 = max(τS + τAoRo , τd − (T/2 − t1) + τRiRo ,)

t2 = max(τS + τAoAi , τd − (T/2 − t1) + τRiAi)
(A.22)

For τd + τRiRo < T/2,

t1 = τS + τAoRo

t2 = max(τS + τAoAi , τd − T/2 + τS + τAoRo + τRiAi)
(A.23)

For the maximum throughput to be maintained t2 must be less than half a clock

period, so:

τS + τAoAi < T/2

τS + τd + τAoRo + τRiAi < T
(A.24)

111

The synchronous end has an interface which does not include computation,

therefore the requirement at the synchronous end of a finite-length pipeline re-

mains:

τAR + τRiAi < T. (A.25)

If computation is included on the interface then:

τAR + τd + τRiAi < T (A.26)

τAR is the delay from the time when one transfer is acknowledged until the next

transfer is requested. The asynchronous end requirement must also include the

computational delay effect:

τS + τAoRo + τRA + τd < T, (A.27)

if computation is left out of the interface than τd in the above equation equals

zero.

A.2 Four-Phase Asynchronous to Synchronous Gradual Syn-

chronizer

The four-phase asynchronous to synchronous gradual synchronizer is similar

to the two-phase case. The FIFO element handshake order below:

∗[[Ri ∧ S i]; Ai ↓; [Ri]; Ai ↑,Ro ↑; [Ao]; Ro ↓; [Ao]]. (A.28)

makes it easier to see the relationship as the full receive handshake takes place

before the send handshake begins, but other four-phase FIFO reshufflings are

suitable as well. The four-phase FIFO element produces signals with timings

112

represented by the following equations:

t(j)
Ai↓ =




max(t(0)
Ri↑ + τRi↑Ai↓, t

(0)
S i↑ + τS i↑Ai↓) j = 0

max(t(j)
Ri↑ + τRi↑Ai↓, t

(j)
S i↑ + τS i↑Ai↓, t

(j−1)
Ao↑ + τAo↑Ai↓), j > 0

(A.29)

t(j)
Ro↑ =




max(t(0)
Ri↓ + τRi↓Ro↑, t

(0)
S i↓ + τS i↓Ro↑) j = 0

max(t(j)
Ri↓ + τRi↓Ro↑, t

(j)
S i↓ + τS i↓Ro↑), j > 0

(A.30)

t(j)
Ai↑ =




max(t(0)
Ri↓ + τRi↓AI↑, t

(0)
S i↓ + τS i↓Ai↑) j = 0

max(t(j)
Ri↓ + τRi↓Ai↑, t

(j)
S i↓ + τS i↓Ai↑), j > 0

(A.31)

t(j)
Ro↓ =




t(0)
Ao↓ + τAo↓Ro↓ j = 0

t(j)
Ao↓ + τAo↓Ro↓ j > 0

(A.32)

The computational delay and the synchronizer delay are both bounded.

Placing a bounded delay previous to the input of the four-phase asynchronous

FIFO element does not interfere with correct operation. The end result of several

synchronizer stages placed end-to-end is still an asynchronous FIFO. Placing

computation on the data wires in between the FIFOs changes the data, making

the FIFO resemble pipelined computation.

The timing difference between the two-phase and four-phase handshaking

is the result of the return to the same starting state nature of the four-phase

handshake. The signals must complete both an up-going transition and a down

going transition before the next data exchange can begin. A three stage segment

of the four-phase asynchronous-to-sycnhronous gradual synchronizer is shown

in figure A.3. The jth up-going event on R(i)
o can only occur at time:

t(j)
Ro↑(i) = t(j)

Ri↑(i) + τRi↑Ai↓ + τAo↓Ro↓ + τRi↓Ro↑, (A.33)

113

CL

S

!(i+1)mod2

d

Ai Ao

Di Do

4"

Ri Ro
Si

CL

S

!(i-1)mod2

d

CL

S

!(i)mod2

d

(i-1) (i) (i+1)
Ai Ao

Di Do

4"

Ri Ro
Si

Ai Ao

Di Do

4"

Ri Ro
Si

Figure A.3: Segment of a four-phase asynchronous-to-synchronous gradual
synchronizer.

t(j)
Ro↑(i) = t(j−1)

Ao↑(i) + τAo↑Ai↓ + τAo↓Ro↓ + τRi↓Ro↑, (A.34)

or at time:

t(j)
Ro↑(i) = t(j)

S i↑(i) + τS i↑Ai↓ + τAo↓Ro↓ + τRi↓Ro↑. (A.35)

It is important to observe that only one transition of a signal can drive a metasta-

bility failure because the four-phase version of the synchronizer only provides

exclusion of the transition in one direction and the computational delay only

delays one transition as well. The arrival times of the other transitions are deter-

ministic based on the τs of the FIFO implementation. Therefore, the probability

of metastability failure at the (i + 1)st synchronizer is:

P(i+1)
f ≤ P(i+1)

f (Ri ↑) + P(i+1)
f (Ao ↑) + P(i+1)

f (S i ↑). (A.36)

The first term of the sum in A.36 is the probability that an upgoing event on Ri

occurs τRi↑Ai↓ + τAo↓Ro↓ + τRi↓Ro↑ before a falling edge of ϕ(i + 1)mod2. The second

term corresponds to the probability that an upgoing event on Ao occurs τAo↑Ai↓ +

τAo↓Ro↓ + τRi↓Ro↑ before a falling edge of ϕ(i+ 1)mod2 and the third term in the sum

is the probability that and upgoing event on S i occurs τS i↑Ai↓ + τAo↓Ro↓ + τRi↓Ro↑

114

before a falling edge of ϕ(i + 1)mod2. If the FIFO block implementation and the

ME element implementation meet the requirement:

τS + τRi↑Ai↓ + τAo↓Ro↓ + τRi↓Ro↑ < T/2, (A.37)

then metastability at the (i + 1)st synchronizer can only occur if the ith synchro-

nizer was in the metastable state for exactly

tm = T/2 − τS − τRi↑Ai↓ − τAo↓Ro↓ − τRi↓Ro↑. (A.38)

The resulting probability of metastability failure is

P(i+1)
f (Ri ↑) ≤ P(i)

f e−
T/2−τS −τRi↑Ai↓−τAo↓Ro↓−τRi↓Ro↑

τ0 . (A.39)

If both remaining probabilities, P(i+1)
f (Ao ↑) and P(i+1)

f (S i ↑) are equal to zero the

probability of failure at any stage k would be:

P(k)
f ≤ P(0)

f e−
k(T

2 −Toh)
τ0 , (A.40)

where,

Toh = τS + τRi↑Ai↓ + τAo↓Ro↓ + τRi↓Ro↑ (A.41)

In the case of P(i+1)
f (S i ↑), the j(th) up-going transition of R(i−1)

o must arrive at

the computational delay (τd) in stage (i) exactly

ta = τd + τS i↑Ai↓ + τAo↓Ro↓ + τRi↓Ro↑ (A.42)

before the falling clock edge in order for S (i)
i ↑ to cause a metastability at the (i +

1)st synchronizer. However, this is also the time that Ro ↑ arrives at synchronizer

(i). Synchronizer (i) will be in a blocking phase at this point, therefore if the

implementation of the gradual synchronizer satisfies the requirement

τd + τS i↑Ai↓ + τAo↓Ro↓ + τRi↓Ro↑ < T/2 (A.43)

115

then,

P(i+1)
f (S i ↑) = 0, (A.44)

since Ri ↑ will not propagate to the ith FIFO until τS after the falling edge of the

clock at which point a metastability cannot occur in the (i + 1)st synchronizer.

If the (j − 1)st up-going transition of A(i)
o causes the jth up-going event on R(i)

o

then:

t(j−1)
Ai↑(i+1) ≡ t(j−1)

Ao↑(i) = t(j)
Ro↑(i) − τAo↑Ai↓ − τAo↓Ro↓ − τRi↓Ro↑. (A.45)

As in the two-phase case a metastability at the (i+1)st synchronizer caused by an

event on Ao can only cause SEM at the (i + 2)nd synchronizer which is harmless

if:

t(j)
Ro↑(i) − T/2 < t(j−1)

Ro↑(i+1) < t(j)
Ro↑(i) + T/2. (A.46)

The requirement:

τAo↑Ai↓ + τAo↓Ro↓ + τRi↓Ro↑ < T/2, (A.47)

follows from A.45 and A.46.

The proof that SEM can only cause SEM is the same as in the two phase case,

not much changes, but the argument is included here for completeness and to

show the equations in four-phase form. If the j(th) up-going transition on R(i)
o is

SEM, then Definition 3.4.2 requires that

t(j)
Ro↑(i) = t(k)

ϕ(i+1)mod2↓, (A.48)

t(k−1)
ϕ(i+1)mod2↓ < t(j−1)

Ro↑(i) < t(k)
ϕ(i+1)mod2↓, (A.49)

which means:

t(j)
Ro↑(i) − T0 + τS ≤ t(j−1)

Ri↑(i+1) < t(j)
Ro↑(i) + τS , (A.50)

t(j−1)
R(i+1)

o
≥ t(j)

Ro↑(i) − T0 + τS + τRi↑Ro↑, (A.51)

116

and this implies

t(j−1)
Ro↑(i+1) > t(j)

Ro↑(i) − T/2. (A.52)

Since the timing of R(i+1)
o and A(i+1)

i are approximately equal, from equations A.45

and A.52:

t(j)
Ro↑(i) − T/2 < t(j−1)

Ro↑(i+1) < t(j)
Ro↑(i) + T/2, (A.53)

which is in accordance with A.46 meaning SEM at he i(th) synchronizer can only

cause SEM at the synchronizer in the next stage.

The synchronous environment on the receiving side of the synchronizer can

only accept data once every clock cycle. The synchronizer itself must be able

to sustain that throughput. The requirements that must be met for the synchro-

nizer to function at that throughput can be found by modeling the steady-state

of the synchronizer chain. Figure A.4 shows the steady state of the four-phase

synchronizer. In the four-phase case multiple transitions contribute to the delay

between receiving a request and completing the acknowledge, so t1 becomes:

t1 = max(τS + τRi↑Ai↓ + τAo↓Ro↓ + τRi↓Ai↑, τda + τS i↑Ai↓ + τAo↓Ro↓ + τRi↓Ai↑,

t1 + τAo↑Ai↓ + τAo↓Ro↓ + τRi↓Ai↑ −
T
2

)
(A.54)

and t2 must include all the transitions that occur before sending a request on to

the next stage, therefore t2 is

t2 = max(τS + τRi↑Ai↓ + τAo↓Ro↓ + τRi↓Ro↑, τda + τS i↑Ai↓ + τAo↓Ro↓ + τRi↓Ro↑,

t1 + τAo↑Ai↓ + τAo↓Ro↓ + τRi↓Ro↑ −
T
2

).
(A.55)

If

τAo↑Ai↓ + τAo↓Ro↓ + τRi↓Ai↑ <
T
2

(A.56)

then

t1 = max(τS + τRi↑Ai↓ + τAo↓Ro↓ + τRi↓Ai↑, τda + τS i↑Ai↓ + τAo↓Ro↓ + τRi↓Ai↑) (A.57)

117

!d-

!S+

t1

t2

Ao
+(o)

Ai
+(e)

Ri
+(e) Ro

+(e)

Si
+(e)

!da

!S

t1

t2

Ao
+(o)

Ai
+(e)

Ri
+(e) Ro

+(e)

Si
+(e)

!da

!S

t1

t2

Ao
+(e)

Ai
+(o)

Ri
+(o) Ro

+(o)

Si
+(o)

!da

!0

!1

Ao
-(o)

Ai
-(e)

Si
-(e)

Ri
-(e)

Ro
-(o)

!S-

!d-

Ao
-(e)

Ai
-(o)

Si
-(o)

Ri
-(o)

!S-

Ro
-(e)

!d-

Ao
-(o)

Ai
-(e)

Si
-(e)

Ri
-(e)

Ro
-(o)

!S-

Figure A.4: Steady-state operation of a four-phase asynchronous-to-
synchronous gradual synchronizer.

t2 = max(τS + τRi↑Ai↓ + τAo↓Ro↓ + τRi↓Ro↑, τda + τS i↑Ai↓ + τAo↓Ro↓ + τRi↓Ro↑,

τS + τRi↑Ai↓ + τAo↓Ro↓ + τRi↓Ai↑ + τAo↑Ai↓ + τAo↓Ro↓ + τRi↓Ro↑ −
T
2
,

τda + τS i↑Ai↓ + τAo↓Ro↓ + τRi↓Ai↑ + τAo↑Ai↓ + τAo↓Ro↓ + τRi↓Ro↑ −
T
2

).

(A.58)

In order for the steady state to be possible t2 cannot exceed half the clock period:

τS + τRi↑Ai↓ + τAo↓Ro↓ + τRi↓Ro↑ <
T
2

τda + τS i↑Ai↓ + τAo↓Ro↓ + τRi↓Ro↑ <
T
2

τS + τRi↑Ai↓ + τAo↓Ro↓ + τRi↓Ai↑ + τAo↑Ai↓ + τAo↓Ro↓ + τRi↓Ro↑ < T

τda + τS i↑Ai↓ + τAo↓Ro↓ + τRi↓Ai↑ + τAo↑Ai↓ + τAo↓Ro↓ + τRi↓Ro↑ < T

(A.59)

Again τda is just a place holder to represent the portion of τd that occurs after

the clock edge. Ideally, the requirements should be expressed in terms of τd, so

going back to equation A.58 and substituting for τda, the second term in the max

118

expression becomes:

τd − τdb + τS i↑Ai↓ + τAo↓Ro↓ + τRi↓Ro↑ (A.60)

Since,

τdb = T/2 − t2 (A.61)

the term then becomes

τd − T/2 + t2 + τS i↑Ai↓ + τAo↓Ro↓ + τRi↓Ro↑ (A.62)

Given that the above equation includes t2, the term can be canceled by including

the requirement:

τd + τS i↑Ai↓ + τAo↓Ro↓ + τRi↓Ro↑ < T/2. (A.63)

The fourth term in the max expression from equation A.58 can be canceled in a

similar manner leading to the requirement:

τd + τS i↑Ai↓ + τAo↓Ro↓ + τRi↓Ai↑ + τAo↑Ai↓ + τAo↓Ro↓ + τRi↓Ro↑ < T. (A.64)

The gradual synchronizer is not infinitely long so there are boundary conditions

that must be met in order to ensure the steady state is possible as well. At the

synchronous end this conditions is:

τRA + τAo↑Ro↑. (A.65)

At the asynchronous end the conditions are:

τS + τRi↑Ai↓ + τAo↓Ro↓ + τRi↓Ai↑ + τAR < T

τd + τS i↑Ai↓ + τAo↓Ro↓ + τS i↓Ai↑ + τAR < T
(A.66)

The explanation of these boundary requirements is exactly the same as in the

two-phase asynchronous-to-synchronous case, the only changes are due to the

four-phase handshake, so the explanation is not repeated here. Please refer to

the correctness proof in section 3.4.1.

119

!(i+2)mod2

S

d

 CL

Ai Ao

Di Do
4"

Ro Ri

Ai Ao

Di Do
4"

Ro Ri

!(i+1)mod2

S

d

!(i)mod 2

S

d

 CL CL

Ai Ao

Di Do
4"

Ro Ri
(i) (i+1) (i+2)

Figure A.5: Segment of the 4-phase synchronous-to-aynchronous gradual syn-
chronizer.

A.3 Four-Phase Synchronous to Asynchronous Gradual Syn-

chronizer

This section shows the derivation of the requirements and the correctness proof

of the four-phase synchronous-to-asynchronous gradual synchronizer. A seg-

ment of this synchronizer if shown in figure A.5. The HSE of the FIFO used in

this gradual synchronizer is:

∗[[Ri]; Ai ↓; [Ri]; Ai ↑,Ro ↑; [Ao]; Ro ↓; [Ao]]. (A.67)

The jth upgoing event on A(i)
i can only occur at time:

t(j)
A(i)

i ↑
= t(j)

R(i)
i ↑
+ τRi↑Ai↓ + τAo↓Ro↓ + τRi↓Ai↑, (A.68)

t(j)
A(i)

i ↑
= t(j−1)

A(i)
o ↑
+ τAo↑Ai↓ + τAo↓Ro↓ + τRi↓Ai↑. (A.69)

In the four-phase gradual synchronizer the down-going transitions of Ro and

Ai are forwarded directly to their receiving FIFO blocks, these transitions do

not get delayed or synchronized. There is only a very small logic cost for this

forwarding, so in order to simplify the above equations this cost is assumed to

120

be absorbed into the receiving FIFO delay, since this constant delay would look

the same as τAo↓Ro↓ and τRi↓Ai↑ taking slightly longer. Obviously, when designing

a system these delays must be taken into account. The upgoing event on A(i)
i

can cause metastable behavior at the (i+1)st synchronizer if it occurs at the same

time as the falling clock edge of ϕ(i+1)mod2. The probability of metastability failure

at the (i + 1)st synchronizer is

P(i+1)
f ≤ P(i+1)

f (Ri ↑) + P(i+1)
f (Ao ↑). (A.70)

The second term in equation A.70 refers to the probability that the timing of an

up-going event on Ao takes place τAo↑Ai↓ + τRi↓Ai↑ + τAo↓Ro↓ before the clock edge.

If the delay from the incoming upgoing transition on Ao until the outgoing up-

going transition on Ai when a new incoming request on RI was waiting for Ao

is:

τAo↑Ai↓ + τRi↓Ai↑ + τAo↓Ro↓ < T/2 − τS , (A.71)

then for a metastability to occur at the (i + 1)(st) synchronizer, the i(th) sycnhro-

nizer must have entered the metastable state half a clock period beforehand and

remained in the metastable state for exactly:

tm = T/2 − τS − τAo↑Ai↓ + τRi↓Ai↑ + τAo↓Ro↓ (A.72)

This means the probability of metastability failure at synchronizer (i + 1) due to

Ao is:

P(i+1)
f (Ao) ≤ P(i)

f e−
T/2−τS −(τAo↑Ai↓+τRi↓Ai↑+τAo↓Ro↓)

τ0 . (A.73)

If the second term in A.70 were equal to zero then:

P(k)
f ≤ P(0)

f e−
k(T/2−Toh)
τ0 , (A.74)

where,

Toh = τS + τAo↑Ai↓ + τRi↓Ai↑ + τAo↓Ro↓. (A.75)

121

Recall from the previous proofs that if a metastability is SEM then it does not

affect the correct operation of the synchronizer. Even if τd changes the arrival

time of R(i)
i ↑ to a time where it causes a metastability the method is still valid as

long as that metastability is SEM. If the jth up-going event on A(i)
i is caused by

the jth up-going event on R(i)
i :

t(j)
R(i+1)↑

o
+ τd = t(j)R(i)

i ↑
= t(j)

A(i)
i ↑
− τRi↑Ai↓ − τAo↓Ro↓ − τRi↓Ai↑. (A.76)

If a metastability at the (i + 1)st synchronizer happens as a result of the arrival

time of the (j)th up-going transition of R(i)
i , then in turn a metastability can occur

at the (i + 2)nd synchronizer. The metastability at the (i + 2)nd synchronizer will

always be SEM if:

t(j)
A(i)

i
− T/2 < t(j1)

A(i+1)
i
< t(j)

A(i)
i
+ T/2 (A.77)

Which, in the four-phase case, leads to the requirement:

tauRi↑Ai↓ + τAo↓Ro↓ + τRi↓Ai↑ + τd < T/2. (A.78)

SEM itself can cause metastability as well, however SEM can only cause SEM.

Suppose the jth event on A(i)
i is SEM, this event must have occurred at time:

t(j)
A(i)

i ↑
= t(k)
ϕ(i+1)mod2↓, (A.79)

and the previous up-going event must have occurred within the last clock cycle,

t(k−1)
ϕ(i+1)mod2↓ < t(j−1)

A(i)
i ↑
< t(k)
ϕ(i+1)mod3↓ (A.80)

therefore the (j − 1)st up-going event on A(i+1)
o took place

t(j)
A(i)

i ↑
− T0 + τS ≤ t(j−1)

A(i+1)
o
< t(j)

A(i)
i
+ τS (A.81)

and

t(j−1)
A(i+1)

I ↑
≥ t(j)

A(i)
i ↑
− T0 + τS + τAo↑Ai↓ + τAo↓Ro↓ + τRi↓Ai↑ (A.82)

122

which implies that the arrival of the (j − 1)st up-going event at the (i + 2)nd syn-

chronizer must be

t(j−1)
A(i+1)

i ↑
> t(j)

A(i)
i ↑
− T/2. (A.83)

Since, for the fifo implementation the arrival times of Ro ↑ and Ai ↑ are approxi-

mately equal

t(j−1)
A(i+1)

i ↑
≈ t(j−1)

R(i+1)
o ↑
≤ t(j)

A(i)
i ↑
− τRi↑Ai↓ − τd↓ − τAo↓Ro↓ − τRi ↓ Ai ↑ − τd↑ (A.84)

and according to the requirement τRi↑Ai↓ + τd↑ + τAo↓Ro↑ + τRi↓Ai↑ + τd↓ < T/2 and

equation A.83:

t(j)
A(i)

i
− T/2 < t(j−1)

A(i+1)
i
< t(j)

A(i)
i
+ T/2 (A.85)

Meaning, in the presence of SEM at the ith synchronizer, a subsequent metastable

event at the (i + 1)st synchronizer must also be SEM.

Throughput

The gradual synchronizer must be capable of accepting one request and re-

tuning one acknowledge per clock cycle. Figure A.6 shows the steady state of

a 2-phase synchronous-to-asynchronous gradual synchronizer with an infinite

number of stages. All up-going events on Ao entering even-numbered FIFO

blocks arrive τS after the rising edge of ϕ0. All upgoing events on Ao entering

odd-numbered FIFO blocks arrive τS after the rising edge of ϕ1. All up-going

events on Ri entering even-numnered FIFO blocks arrive τda after the rising

edge of ϕ0 and all up-going events on Ri evtering odd-numbered FIFO blocks

arrive τda after the rising edge of ϕ1. The Vo input is left off the diagram since

it only contributes to shortening τAo↑Ai↓. While τS − and τd− are shown on the di-

agram, for simplicity they are not displayed in the following equations. Since

they are constants we assume that they are included in the following FIFO delay.

In the steady state no synchronizer assumes a metastable state, and:

123

!d-

!S-
!S

t1

t2

Ro
+(e)

Ao
+(e) Ai

+(e)

Ri
+(e)

!da

!S

t1

t2

Ro
+(e)

Ao
+(e) Ai

+(e)

Ri
+(e)

!da

!S

t1

t2

Ro
+(o)

Ao
+(o) Ai

+(o)

Ri
+(o)

!da

!0

!1

T10 T0 T01 T1 T10 T0 T01

Ao
-(o)

Ai
-(e)

Ri
-(e)

Ro
-(o)

!d-

!S-

Ao
-(e)

Ai
-(o)

Ri
-(o)

Ro
-(e)

!d-

!S-

Ao
-(o)

Ai
-(e)

Ri
-(e)

Ro
-(o)

Figure A.6: Steady-state operation of a four-phase synchronous-to-
asynchronous gradual synchronizer.

t1 = max(τS + τAo↑Ai↓ + τAo↓Ro↓ + τRi↓Ro↑,

τda + τRi↑Ai↓ + τAo↓Ro↓ + τRi↓Ro↑),
(A.86)

t2 = max(τS + τAo↑Ai↓ + τAo↓Ro↓ + τRi↓Ai↑,

τda + τRi↑Ai↓ + τAo↓Ro↓ + τRi↓Ai↑).
(A.87)

Since

τda = τd − τdb (A.88)

and

τdb =
T
2
− t1, (A.89)

t1 = max(τS + τAo↑Ai↓ + τAo↓Ro↓ + τRi↓Ro↑,

τd − (T/2 − t1) + τRi↑Ai↓ + τAo↓Ro↓ + τRi↓Ro↑),
(A.90)

t2 = max(τS + τAo↑Ai↓ + τAo↓Ro↓ + τRi↓Ai↑,

τd − (T/2 − t1) + τRi↑Ai↓ + τAo↓Ro↓ + τRi↓Ai↑).
(A.91)

124

For τd + τRi↑Ai↓ + τAo↓Ro↓ + τRi↓Ro↑ < T/2,

t1 = τS + τAo↑Ai↓ + τAo↓Ro↓ + τRi↓Ro↑ (A.92)

t2 = max(τS + τAo↑Ai↓ + τAo↓Ro↓ + τRi↓Ai↑,

τd − T/2 + τS + τAo↑Ai↓ + τAo↓Ro↓ + τRi↓Ro↑ + τRi↑Ai↓ + τAo↓Ro↓ + τRi↓Ai↑)
(A.93)

For the maximum throughput to be maintained t2 must be less than half a clock

period, so:

τS + τAo↑Ai↓ + τAo↓Ro↓ + τRi↓Ai↑ < T/2

τS + τd + τAo↑Ai↓ + τAo↓Ro↓ + τRi↓Ai↑ + τRi↑Ai↓ + τAo↓Ro↓ + τRi↓Ai↑ < T
(A.94)

The synchronous end has an interface which does not include computation,

therefore the requirement at the synchronous end of a finite-length pipeline re-

mains:

τAR + τRi↑Ai↓ + τAo↓Ro↓ + τRi↓Ai↑ < T. (A.95)

The asynchronous end requirement must include the computational delay ef-

fect:

τS + τAo↑Ai↓ + τAo↓Ro↓ + τRi↓Ro↑ + τRA + τd < T. (A.96)

125

BIBLIOGRAPHY

[1] Adrijean Adriahantenaina, Herv Charlery, Alain Greiner, Laurent Mortiez,
and Cesar Albenes Zeferino. Spin: a scalable, racket switched, on-chip
micro-network. In Proceedings of the Design, Automation and Test in Europe
Conference and Exhibition, pages 70–73, 2003.

[2] John Bainbridge and Steve Furber. Chain: A delay-insensitive chip area
interconnect. In Proceedings of the 35th Annual International Symposium on
Microarchitecture (MICRO), pages 16–23, 2002.

[3] Salomon Beer, Ran Ginosar, Jerome Cox, Tom Chaney, and David M. Zar.
Metastability challenges for 65nm and beyond; simulation and measure-
ments. In Design, Automation and Test in Europe Conference and Exhibition
(DATE), pages 1297–1302, 2013.

[4] Salomon Beer, Ran Ginosar, Michael Priel, Rostislav (Reuven) Dobkin, and
Avinoam Kolodny. The devolution of synchronizers. In IEEE Symposium
on Asynchronous Circuits and Systems (ASYNC), pages 94–103, 2010.

[5] E. Beigné, F. Clermidy, P. Vivet, A. Clouard, and M. Renaudin. An asyn-
chronous noc architecture providing low latency service and its multi-level
design framework. In Proceedings of the 11th International Symposium on
Asynchronous Circuits and Systems, pages 54–63, 2005.

[6] E. Beigné and P. Vivet. Design of on-chip and off-chip interfaces for a gals
noc architecture. In Proceedings of the 12th International Symposium on Asyn-
chronous Circuits and Systems, pages 172–181, 2006.

[7] Davide Bertozzi and Luca Benini. A retrospective look at xpipes: The ex-
citing ride from a design experience to a design platform for nanoscale
networks-on-chip. In Proceedings of the IEEE 30th International Conference on
Computer Design, pages 43–44, 2012.

[8] Tobias Bjerregaard and Jens Sparso. Virtual channel designs for guarantee-
ing bandwidth in asynchronous network-on-chip. In Proceedings of Norchip
Conference, pages 269–272, 2004.

[9] Tobias Bjerregaard and Jens Sparso. An ocp compliant network adapter for
gals-based soc design using the mango network-on-chip. In Proceedings of
the International Symposium on System-on-Chip, pages 171–174, 2005.

126

[10] Tobias Bjerregaard and Jens Sparso. A router architecture for connection-
oriented service guarantees in the mango clockless network-on-chip. In
Proceedings of the Design, Automation and Test in Europe Conference and Exhi-
bition, pages 1226–1231, 2005.

[11] Tobias Bjerregaard and Jens Sparso. A scheduling discipline for latency and
bandwidth guarantees in asynchronous network-on-chip. In Proceedings of
the 11th International Symposium on Asynchronous Circuits and Systems, pages
34–43, 2005.

[12] Tobias Bjerregaard and Jens Sparso. Packetizing ocp transactions in the
mango network-on-chip. In Proceedings of the 9th EUROMICRO Conference
on Digital System Design, pages 657–664, 2006.

[13] David S. Bormann and Peter Y. K. Cheung. Asynchronous wrapper for
heterogeneous systems. In Proceedings of the International Conference on Com-
puter Design, pages 307–314, 1997.

[14] Steven M. Burns. Performance analysis and optimization of asynchronous
circuits. Technical report, Caltech, 1991.

[15] Ajanta Chakraborty and Mark Greenstreet. Efficient self-timed interfaces
for crossing clock domains. In Proc. 9th IEEE Int. Symposium on Asyn-
chronous Circuits and Systems (ASYNC), pages 78–88, 2003.

[16] Thomas J. Chaney and Charles E. Molnar. Anomalous behavior of synchro-
nizer and arbiter circuits. IEEE Transactions on Computers, pages 412–422,
1973.

[17] D. M. Chapiro. Reliable high-speed arbitration and synchronization. IEEE
Transactions on Computers, C-36(10):1251–1255, October 1987.

[18] Tiberiu Chelcea and Steven M. Nowick. Robust interfaces for mixed-timing
systems with application to latency-insensitive protocols. In Proceedings of
the Design Automation Conference (DAC), 2001.

[19] Tiberiu Chelcea and Steven M. Nowick. Robust interfaces for mixed-timing
systems. IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
pages 857–873, 2004.

[20] Matteo Dall’Osso, Gianluca Biccari, Luca Giovannini, Davide Bertozzi, and
Luca Benini. Xpipes: a latency insensitive parameterized network-on-chip

127

architecture for multiprocessor socs. In Proceedings of the 21st International
Conference on Computer Design, pages 536–539, 2003.

[21] William J. Dally and John Poulton. Digital Systems Engineering. Cambridge
University Press, 1998.

[22] William J. Dally and Stephen G. Tell. The even/odd synchronizer: A fast,
all digital periodic synchronizer. In Proceedings of the 16th International Sym-
posium on Asynchronous Circuits and Systems, pages 75–84, 2010.

[23] John Dielissen, Andrei Radulescu, Kees Goossens, and Edwin Rijpkema.
Concepts and implementation of the philips network-on-chip. In IP-Based
SoC Design, 2003.

[24] Charles Dike and Edward (Ted) Burton. Miller and noise effects in a syn-
chronizing flip-flop. IEEE Journal of Solid-State Circuits, 34:849–855, 1999.

[25] Rostislav Dobkin and Ran Ginosar. Fast universal synchronizers. In Pro-
ceedings of the 19th International Workshop on Power and Timing Modeling, Op-
timization and Simulation, 2008.

[26] Rostislav Dobkin, Ran Ginosar, and Avinoam Kolodny. Qnoc asyn-
chronous router. Integration, the VLSI journal, 42:103–115, 2009.

[27] Tomaz Felicijan and Steve B. Furber. An asynchronous on-chip network
router with quality-of-service (qos) support. In Proceedings of the IEEE In-
ternational Society Conference, pages 274–277, 2004.

[28] Tim Fischer, Jayen Desai, Bruce Doyle, Samuel Naffziger, and Ben Patella.
A 90-nm variable frequency clock system for a power-managed itanium
architecture processor. IEEE Journal of Solid-State Circuits, 41:218–228, 2006.

[29] Uri Frank, Tsachy Kapshitz, and Ran Ginosar. A predictive synchronizer
for periodic clock domains. Formal Methods in System Design, 28:171–186,
2006.

[30] Manish Garg, Aatish Kumar, Johannes van Wingerden, and Laurent Le
Cam. Litho-driven layouts for reducing performance variability. In IEEE
International Symposium on Circuits and Systems, pages 3551 – 3554, 2005.

[31] Ran Ginosar. Fourteen ways to fool your synchronizer. In Proceedings of the
International Symposium on Asynchronous Circuits and Systems, 2003.

128

[32] Ran Ginosar. MTBF of a Multi-Synchronizer System on Chip, 2005.

[33] Ran Ginosar. Metastability and synchronizers. IEEE Design and Test of Com-
puters, 28:23–35, 2011.

[34] Kees Goossens, John Dielissen, and Andrei Radulescu. Aethereal network
on chip: concepts architectures and implementations. Design and Test of
Computers, 22:414–421, 2005.

[35] Kees Goossens and Andreas Hansson. The aethereal network on chip after
ten years: Goals, evolution, lessons and future. In Proceedings of the Design
Automation Conference (DAC), pages 306–311, 2010.

[36] Mark R. Greenstreet. Implementing a stari chip. In Proceedings of the Inter-
national Conference on Computer Design (ICCD), 1995.

[37] Pierre Guerrier and Alain Greiner. A generic architecture for on-chip
packet-switched interconnections. In Proceedings of the Design, Automation
and Test in Europe Conference and Exhibition, pages 250–256, 200.

[38] Andreas Hansson, Mahesh Subburaman, and Kees Goossens. aelite: A flit-
synchronous network on chip with composable and predictable services.
In Proceedings of the Design, Automation and Test in Europe Conference and
Exhibition, pages 250–255, 2009.

[39] ITRS. International Technology Roadmap for Semiconductors (ITRS), 2006 up-
date.

[40] Jerry Jex, Charles Dike, and Keith Self. Fully asynchronous interface
with programmable metastability settling time synchronizer. US Patent
5,598,113, January 28, 1997.

[41] David J. Kinniment, Alexandre Bystrov, and Alex V. Yakovlev. Synchro-
nization circuit performance. IEEE Journal of Solid State Circuits, 37:202–209,
2002.

[42] Rakefet Kol and Ran Ginosar. Adaptive synchronization for multi-
synchronous systems. Comput. Methods Appl. Mech. Engrg, 117:98–188,
1994.

[43] H. T. kung, Trevor Blackwell, and Alan Chapman. Credit=based flow con-
trol for atm networks: Credit update protocol, adaptive credit allocation,

129

and statistical multiplexing. In Proceedings of the ACM SIGCOMM Sym-
posium on Communications, Architectures, Protocols, and Applications, pages
101–114, 1994.

[44] L. Lamport. Buridan’s principle. Digital Equipment Corporation Systems
Research Center, 1984.

[45] Willie Y-P. Lim and Jr. Jerome R. Cox. Clocks and the performance of syn-
chronizers. IEE Proceedings-E, 130:57–64, March 1983.

[46] Andrew Lines. Nexus: An asynchronous crossbar interconnect for syn-
chronous system-on-chip designs. In Proceedings of the 11th Symposium on
High Performance Interconnects, pages 2–9, 2003.

[47] Andrew Lines. Asynchronous interconnect for synchronous soc design. In
Proceedings of the 37th Annual International Symposium on Microarchitecture
(MICRO), pages 32–41, 2004.

[48] Daniele Ludovici, Alessandro Strano, and Davide Bertozzi. Architec-
ture design principles for integration of synchronization interfaces into
network-on-chip switches. In 2nd International Workshop on Network on Chip
Architectures, pages 31–36, 2009.

[49] Mikael Millberg, Erland Nilsson, Rikard Thid, and Axel Jantsch. Guaran-
teed bandwidth using looped containers in temporarily disjoint networks
within the nostrum network on chip. In Proceedings of the Design, Automa-
tion and Test in Europe Conference and Exhibition, pages 890–895, 2004.

[50] Simon Moore, George Taylor, Robert Mullins, and Peter Robinson. Point to
point gals interconnect. In Proceedings of the Eighth International Symposium
on Asynchronous Circuits and Systems, pages 69–75, 2002.

[51] Robert Mullins, Andrew West, and Simon Moore. Low-latency virtual
channel routers for on-chip networks. In Proceedings of the 31st Annual In-
ternational Symposium on Computer Architecture, pages 188–197, 2004.

[52] Chrysostomos A. Nicopoulos, Dongkook Park, Jongman Kim, N. Vijaykr-
ishnan, Mazin S. Yousif, and Chita R. Das. Vichar: A dynamic virtual chan-
nel regulator for network-on-chip routers. In Proceedings of the 39th Annual
International Symposium on Microarchitecture (MICRO), pages 333–346, 2006.

[53] Ivan Miro Panades and Alain Greiner. Bi-synchronous fifo for synchronous

130

circuit communication well suited for network-on-chip in gals architec-
tures. In Proceedings of the First International Symposium on Networks-on-Chip
(NOCS’07), pages 83–94, 2007.

[54] Ivan Miro Panades, Alain Greiner, and Abbas Sheibanyrad. A low cost
network-on-chip with guaranteed service well suited to the gals approach.
In 1st International Conference on Nano-Networks and Workshops,, pages 1–5,
2006.

[55] Miroslav Pechoucek. Anomalous response times of input synchronizers.
IEEE Transactions on Computers, C-25:133–139, February 1976.

[56] Giao N. Pham and Kenneth C. Schmitt. A high throughput, asynchronous,
dual port fifo memory implemented in asic technology. In Proc. Annual
IEEE Int. ASCI Conf. and Exhibition, pages P3–1.1–1.4, 1989.

[57] Andrei Radulescu, John Dielissen, Kees Goossens, Edwin Rijpkema, and
Paul Wielage. An efficient on-chip network interface offering guaranteed
services, shared-memory abstraction, and flexible network configuration.
In Proceedings of the Design, Automation, and Test in Europe Conference and
Exhibition (DATE), pages 878–883, 2004.

[58] Fred U. Rosenberger, Charles E. Molnar, Thomas J. Chaney, and Tien-Pien
Fang. Q-modules: Internally clocked delay-insensitive modules. IEEE
Transactions on Computers, 37(9):1005–1018, September 1988.

[59] Dobkin (Reuven) Rostislav, Victoria Vishnyakov, Eyal Friedman, and Ran
Ginosar. An asynchronous router for multiple service levels networks on
chip. In Proceedings of the 11th IEEE International Symposium on Asynchronous
Circuits and Systems, pages 44–53, 2005.

[60] Charles L. Seitz. System timing. In Carver Mead and Lynn Conway, edi-
tors, Introduction to VLSI Systems, chapter 7. Addison-Wesley, 1980.

[61] Jakov Seizovic. Pipeline synchronization. In Proceedings of the International
Symposium on Asynchronous Circuits and Systems, 1994.

[62] Jakov N. Seizovic. The architecture and programming of a fine-grain mul-
tiprocessor. Technical Report Caltech-CS-TR-93-18, Caltech, 1993.

[63] Manoj Kumar Yadav, Mario R. Casu, and Maurizio Zamboni. Dvfs based
on voltage dithering and clock scheduling for gals systems. In Proceedings of

131

the 18th International Symposium on Asynchronous Circuits and Systems, pages
118–125, 2012.

[64] Suwen Yang, Ian W. Jones, and Mark R. Greenstreet. Synchronizer perfor-
mance in deep sub-micron technology. In IEEE Symposium on Asynchronous
Circuits and Systems (ASYNC), pages 33–42, 2011.

[65] Qiaoyan Yu. A flexible and parallel simulator for networks-on-chip with
error control. IEEE Transactions on Computer-Aided Design of Integrated Cir-
cuits and Systems, 29:103–116, 2009.

[66] Kenneth Y. Yun and Ryan P. Donohue. Pausible clocking: A first step to-
ward heterogeneous systems. In Proceedings of the International Conference
on Computer Design, pages 118–123, 1996.

[67] Jun Zhou, David Kinniment, Gordon Russell, and Alex Yakovlev. A robust
synchronizer. In IEEE Computer Society Annual Symposium on Emerging VLSI
Technologies and Architectures, 2006.

[68] Jun Zhou, David Kinniment, Gordon Russell, and Alex Yakovlev. Adapting
synchronizers to the effects of on chip variability. In IEEE Symposium on
Asynchronous Circuits and Systems (ASYNC), pages 39–47, 2008.

132

