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Immobilization of avidinylated enzymes (Glucose Oxidase or GOx and 

Horseradish Peroxidase or HRP) on inorganic particles was accomplished utilizing the 

affinity of avidin for biotin. We have synthesized biotinylated oxides (layered silicates 

and iron oxides) via a condensation reaction, and through a simple one step process, 

we have immobilized enzymes improving their thermal behavior, storage stability and 

behavior in different pH environments.  

Furthermore, a profound catalytic activity increase per mass (30-fold) was 

observed for HRP when immobilized on magnetic iron oxide particles (magnetite 

particles). This phenomenon proved to be independent of the immobilization steps and 

was observed even when particles and HRP were simply suspended together in a 

buffer solution. The activity increase was reversible and could be turned on and off 

with the addition and subtraction of the magnetic particles (with a Nd magnet). The 

results were reproduced using different activity assays and different batches of 

enzyme. Activity assays using particles with increasing magnetic properties showed a 

proportional increase on the enzymatic activity. The results suggest that the randomly 

distributed magnetic particles affect the paramagnetic species found in the catalytic 

cycle of HRP, changing the overall reaction rate. 

On a different approach modified silicates with immobilized gramicidin were 

evaluated as delivery vehicles for gramicidin to E. coli bacteria. Also a fluorescent 



 

protein immobilized on a biotinylated layered silicate was used to track the uptake of 

modified silicates to mammalian 9L Glioma cells.  

Finally, layered silicates and amphiphilic molecules were combined to develop 

a synthetic biomimetic membrane. The biomimetic membrane has the characteristics 

of a lipid bilayer membrane with similar thermotropic transitions. To evaluate the 

membrane’s sensing capability, a sensing platform was developed that utilized the 

biomimetic membrane as the recognition element. The sensing capability was 

evaluated using saccharin as the analyte, a suspected carcinogen molecule already 

proven to interact with lipid bilayer membranes in a sensor setup.  



 

BIOGRAPHICAL SKETCH 

Nikolaos Chalkias (pronounced Nikolas Halkias) was born to parents Giorgo 

and Niki Chalkia in Thessaloniki, Greece on July 30th, 1978. He is the third child of 

the family and has two older sisters, Matina and Tzela. The family is originally from 

the coastal region of Sithonia in Chalkidiki, Greece where both Nikolas’ parents were 

born and raised. Nikolas grew up in Thessaloniki in the northern region of Greece but 

he always considered home the family house near the sea at Chalkidiki where he spent 

all his summers. The curiosity that drove him all the way to the other side of the 

Atlantic was born there, where Nikolas through his parents would get exposed to the 

sea and to the olive trees. Through the little projects around the house that his father 

would take him along, Nikolas’ curiosity for ‘how things work’ was slowly born. In 

high school Nikolas loved only mathematics, physics and chemistry, he had a scornful 

attitude towards literature and all the ‘unimportant classes’; an attitude that later in his 

life would give way to his love for poetry and history. Nikolas graduated from the 

1996 senior class of the 2nd High School of Thessaloniki with honors. Immediately 

after graduation, he successfully passed the entrance examination for the Chemical 

Engineering Department of the Aristotle University of Thessaloniki. During the five 

years of the curriculum, Nikolas was exposed to science and engineering and spent the 

summer of 1999 in Brussels as an intern. In Brussels he worked on a scanning 

tunneling microscope (STM) investigating carbon Nanotubes, an experience that 

strengthened his interest in research. For his undergraduate thesis, Nikolas worked 

with Prof. Michael Stoukides; using a solid state proton (H+)-conducting cell-reactor 

he experimented on the dehydrogenation of methane and the deposition of carbon 

under an AC voltage. During the summer of 2000, Nikolas started searching for his 

next education adventure. Driven by his wander and curiosity, he left home and 

engaged in a new search for knowledge. In August of 2001, Nikolas got accepted into 

iii 



 

the Ph.D. program of the department of Chemical and Biomolecular Engineering of 

Cornell University in Ithaca NY. Ithaca became his home for the next 5 years where 

he worked with the Giannelis research group under the supervision of Prof. E. P. 

Giannelis. In Ithaca he met interesting people and learned the strength of the 

‘scientific method’. During his stay in Ithaca, Nikolas serendipitously found out that 

one of the inspiring figures of his youth, Dr. Carl Sagan, spent most of his life in 

Cornell as a Professor. The experience of studying and living in Cornell was 

extraordinary. In a way Nikolas’ arrival to ‘Ithaca’ marked the beginning of the 

journey not the ultimate objective, as Kavafis’ famous poem proclaims. 

iv 



 

 

 

 

 

 

 

To my beloved Father, Mother and Sisters

v 



 

ACKNOWLEDGMENTS 

This dissertation was a five-year process and involved the input of numerous 

people. First, I would like to thank the members of my advising committee, Professor 

E. P. Giannelis, Professor P. Clancy, and Professor A. J. Baeumner, for their support 

in the completion of this dissertation. I would also like to thank the Cornell University 

Nanobiotechnology Center (NBTC) for providing the funding and the resources for 

my research endeavors. In addition I would like to thank the Cornell Nanoscale 

Science and Technology Facility (CNF) and the Cornell Center for Materials Research 

(CCMR) for the use of their resources and facilities. My thanks also extend to various 

people whose enthusiasm, advice, and scrutiny, helped me in many important ways. 

These include Dr. Magnus Bergkvist from the NBTC, Dr. Daniel Schimdt, Dr. Deepak 

Shah, and generally the past and present members of the Giannelis group that helped 

me during these past years.  

However, the most important support I have received, during the 5 years of 

scientific and personal search, was the emotional support. First and foremost I want to 

thank my friend and brother, Giorgo Vakalopoulo. We have started together the Ph. D. 

journey in Ithaca and Paris and his support all these years maintained my sanity. 

Through the endless hours on the phone, we shared moments, fears and words that 

only we can speak of, understand of, and endure.  

Equally I want to acknowledge the inspiration and support I received from my 

family, my father, my mother, and my two sisters, who gave me the hope and 

motivation to succeed and persist in finishing my degree. This work is dedicated to 

them. 

I also want to thank all the friends, only some of which, I name below, and 

express my gratitude for their love, friendship, and support. Some of them who are in 

Thessaloniki like Dimitri, Thodoro, Sotiri, Damiano, Giorgo, Mario, Yianni, Katerina 

vi 



 

for their love and support all these years. All my friends in Ithaca Christina, Pano, 

Petro, Stathi, and my classmates Alejandro, Yong-Min, Cormac, Rafael for all the 

times we shared and helped me keep going everyday in Ithaca. All my friends in 

Boston, Mari, Niki and Aristeidi who supported me during my escapes from Ithaca 

and for all the amazing moments we shared in ‘our’ Boston.  

Finally, I want to thank my companion Dr. Maria Nikolou who was the most 

important person during the last year of my degree. She has given me the love, support 

and courage to push forward; without her, the next pages would not be possible. 

 

vii 



 

TABLE OF CONTENTS 

 

INTRODUCTION ........................................................................................................1 

References...................................................................................................................5 

CHAPTER 1 : Activity increase of Horseradish Peroxidase in the presence of 

magnetic particles.........................................................................................................7 

Introduction ................................................................................................................7 

Materials and Methods...............................................................................................9 

Materials. ................................................................................................................9 

Synthesis of magnetic iron oxide particles. ..........................................................10 

Characterization of iron oxide particles. ..............................................................10 

UV/vis analysis.....................................................................................................11 

Fitting of Michaelis-Menten equation to experimental data. ...............................12 

Results and Discussion .............................................................................................12 

Properties of the iron oxide particles used ...........................................................13 

Iron oxide particles and Horseradish Peroxidase .................................................18 

Reversibility of the effect of magnetic iron oxide particles on HRP ...................21 

Origin of the activity increase ..............................................................................22 

Michaelis-Menten kinetics assays with B4 iron oxide particles ......................27 

Michaelis-Menten kinetics assays with B3 iron oxide particles ......................28 

Extinction of ABTS radicals ................................................................................30 

References.................................................................................................................36 

viii 



 

CHAPTER 2 : Immobilization of Horseradish Peroxidase on magnetic particles.

......................................................................................................................................40 

Introduction ..............................................................................................................40 

Materials and Methods.............................................................................................41 

Biotinylation of magnetite particles .....................................................................41 

Activity measurements. ........................................................................................41 

Immobilization of HRP-Avidin conjugate ...........................................................42 

Results and Discussion .............................................................................................43 

Conclusions ..............................................................................................................47 

References.................................................................................................................48 

CHAPTER 3 : An Avidin-biotin immobilization approach for Horseradish 

Peroxidase and Glucose Oxidase on layered silicates with high catalytic activity 

retention and improved thermal behavior. ..............................................................50 

Introduction ..............................................................................................................50 

Materials and Methods.............................................................................................51 

Biotinylation of layered silicates ..........................................................................52 

Enzyme Immobilization. ......................................................................................52 

Evaluation of the enzymatic activity ....................................................................53 

Results and Discussion .............................................................................................54 

Horseradish Peroxidase ........................................................................................57 

Glucose Oxidase...................................................................................................60 

ix 



 

Conclusions ..............................................................................................................63 

References.................................................................................................................64 

CHAPTER 4 : A nanohybrid membrane with lipid bilayer-like properties 

utilized as a conductimetric saccharin sensor..........................................................67 

Introduction ..............................................................................................................67 

Materials and Methods.............................................................................................68 

Interdigitated Electrodes (IDEs) microfabrication. ..............................................70 

Synthesis of the nanohybrid membrane. ..............................................................70 

Sensing experimental setup ..................................................................................71 

Equivalent circuit investigation............................................................................71 

Results and Discussion .............................................................................................73 

Characterization of the Nanohybrid Membrane. ..................................................73 

Nanohybrid Membranes: Analogies to Bilayer Membranes ................................74 

The nanohybrid membrane as a sensor. ...............................................................78 

Investigating the origin of the response................................................................83 

Conclusions ..............................................................................................................87 

References.................................................................................................................88 

CHAPTER 5 : Synthesis, characterization and delivery of a modified fluorescent 

silicate to 9L Glioma cells ..........................................................................................92 

Introduction ..............................................................................................................92 

Materials and Methods.............................................................................................93 

x 



 

Modification of a layered silicate .........................................................................93 

Avidin-FITC attachment to the biotinylated silicate. ...........................................93 

9L Glioma cell line...............................................................................................94 

Results and Discussion .............................................................................................94 

Conclusions ..............................................................................................................99 

References...............................................................................................................101 

CHAPTER 6 : Synthesis, characterization and applications of nanohybrids with 

high loadings of gramicidin .....................................................................................103 

Introduction ............................................................................................................103 

Materials and Materials .........................................................................................104 

Nanohybrids synthesis........................................................................................104 

Results and Discussion ...........................................................................................105 

Formation of ion channels in a nanohybrid membrane ......................................108 

Antibiotic action of gramicidin. .........................................................................109 

References...............................................................................................................113 

 

xi 



 

LIST OF FIGURES 

 

Figure 1.1: The five oxidation states of Horseradish Peroxidase. ..................................8 

Figure 1.2: Hysteresis curves of the iron oxide particles used (B3, B4 and SPM). The 

inset graph is an enlargement showing differences in magnetic remanence (MR) of 

three batches of particles. .............................................................................................14 

Figure 1.3: Dynamic light scattering measurements. Diameter distribution of the B4 

particles population. .....................................................................................................14 

Figure 1.4: PXRD spectra for the synthesized iron oxide particles (B3, B4) and the 

commercial super-paramagnetic particles (SPM) used. By using the Debye-Scherer 

equation, an approximate crystallite diameter for each of the different batches of 

particles was evaluated. ................................................................................................15 

Figure 1.5: Activity of HRP when magnetic and super-paramagnetic iron oxide 

particles are present in the assay.. ................................................................................19 

Figure 1.6: The two plates shown are assay runs with super-paramagnetic particles 

(left) and B4 iron oxide particles (right).......................................................................20 

Figure 1.7: Absorption spectra of the native enzyme in water, Fe3O4 particles, and the 

combination of the two. The 403 nm peak, characteristic of the heme group, can be 

observed and neither the peak had shifted nor had the intensity of the peak changed 

when iron oxide particles were present. .......................................................................21 

xii 



 

Figure 1.8: Dependence of enzymatic activity on H2O2 concentration. Various curves 

are shown with different molarities of HRP in the assay with and without 1.4 µg/mL 

of B4 particles. Figure 1.8a was obtained utilizing ABTS as chromogen and Figure 

1.8b with phenol/AAP as the chromogen pair..............................................................23 

Figure 1.9: The actual eight 96-well plates from the experiments with B4 iron oxide 

particles at the end of the data acquisition....................................................................28 

Figure 1.10: The actual eight 96-well plates from the experiments with B3 iron oxide 

particles at the end of the data acquisition....................................................................29 

Figure 1.11: Extent of ABTS radicals recombination in the presence of iron oxide 

particles with increasing permanent magnetic moment. ..............................................32 

Figure 1.12: Spectra scans of a solution of radicals with 0.04 mg/mL SPM particles 

present in the assay.......................................................................................................33 

Figure 1.13: Spectra scans of a solution of radicals with 0.04 mg/mL B3 particles 

present in the assay.......................................................................................................34 

Figure 1.14: Spectra scans of a solution of radicals with 0.04 mg/mL B4 particles 

present in the assay.......................................................................................................35 

Figure 2.1: A schematic of the condensation reaction that was performed for the 

attachment of biotin molecules on the surface of iron oxide particles. ........................43 

xiii 



 

Figure 2.2: IR spectra of biotin and biotinylated magnetite particles. The characteristic 

peaks of the alkyl groups (2980-2850 cm-1) can be observed in the spectrum of the 

biotinylated magnetite. .................................................................................................44 

Figure 2.3: A schematic of an immobilized HRP-Avidin conjugate on a biotinylated 

magnetite particle (not in scale). ..................................................................................45 

Figure 2.4: Dependence of enzymatic activity on H2O2 concentration for the native 

HRP-Avidin conjugate and the immobilized conjugate on biotinylated magnetite 

particles.........................................................................................................................46 

Figure 2.5: Residual activities for the native HRP-Avidin conjugate and its 

immobilized counterpart during two weeks of storage in room temperature. Both 

solutions had a concentration of 47 nM of enzyme in DI water. .................................47 

Figure 3.1: IR spectra for pristine silicate (fluoromica), biotin, and biotinylated 

fluoromica. The characteristic absorption peaks of alkyl groups can be seen in the 

biotinylated fluoromica between 2980 and 2850 cm-1. ................................................54 

Figure 3.2: A schematic of the HRP-Avidin conjugate immobilized on a biotinylated 

silicate (not in scale). ....................................................................................................55 

Figure 3.3: Storage stability at room temperature for the native and immobilized HRP-

Avidin conjugate. .........................................................................................................56 

Figure 3.4: Enzymatic activity at different pH environments for immobilized HRP on 

biotinylated silicates and native HRP...........................................................................56 

xiv 



 

Figure 3.5: Apparent activity increase with temperature for native and immobilized 

HRP. The enzymatic activity was normalized with the activity at  20 ºC and was 

plotted as a function of temperature. ............................................................................57 

Figure 3.6: Residual activity of native and immobilized HRP at 66 ºC during a period 

of 70 minutes. ...............................................................................................................58 

Figure 3.7: Lineweaver-Burk activity representations for the native and immobilized 

enzyme at 20 ºC, 41 ºC and 51 ºC. ...............................................................................59 

Figure 3.8: Arrhenius behavior of the experimental kinetic parameters for the 

immobilized and native enzyme conjugates.................................................................60 

Figure 3.9: Residual activity of the immobilized and native GOx-Avidin conjugate at 

pH 7 as a function of temperature. ...............................................................................62 

Figure 4.1: Equivalent circuit for the IDEs utilized in this work. ................................72 

Figure 4.2: Calibration curve of the IDEs utilizing various concentrations of KCl of 

known conductivities....................................................................................................73 

Figure 4.3: X-ray diffraction spectra of the pristine and the ion-exchanged silicate host 

with two different amphiphiles. Also a schematic of the modification is shown.........75 

Figure 4.4: SEM picture of a nanohybrid membrane. Also a sketch of three bilayers is 

displayed; multi-stacks of these bilayers form the nanohybrid membrane. .................76 

Figure 4.5: Summary of the results utilizing PXRD and MDSC to probe the effect of 

cholesterol on the nanohybrid membrane.....................................................................77 

xv 



 

Figure 4.6: MDSC reversible heat fluxes of 2C18FM, containing 0 wt.%, 11 wt.% and 

38 wt.% cholesterol with respect to the total organic content of the nanohybrid 

membrane. ....................................................................................................................79 

Figure 4.7: Sensing response of the 2C12FM nanohybrid membrane to the analyte. 

(Inset: the saccharin molecule) .....................................................................................80 

Figure 4.8: 2C18FM membrane response to saccharin. ...............................................80 

Figure 4.9: Response of the sensing setup to various saccharin concentrations. .........81 

Figure 4.10: Data recording from an interference experiment showed no response to 

glucose.. ........................................................................................................................83 

Figure 4.11: Contact angles of different concentration solutions of saccharin on a 

nanohybrid membrane. .................................................................................................84 

Figure 4.12: In Figure 4.12a, X-ray diffraction profiles are plotted for membranes 

exposed to increasing concentrations of analyte. In Figure 4.12b, FTIR spectra of the 

same membranes are shown. ........................................................................................86 

Figure 5.1: IR spectra for pristine and biotinylated MMT silicate. The characteristic 

absorption peaks of biotin’s alkyl groups appear in the biotinylated MMT spectrum 

between 2980 and 2850 cm-1. .......................................................................................95 

Figure 5.2: Image showing a number of fixed cells with green patches indicative of 

Avidin-FITC protein uptake. ........................................................................................96 

xvi 



 

Figure 5.3: Eleven consecutive confocal images showing a single cell (nucleus and 

cell membrane stained red) with a clear green particle. The location of the green 

particle indicated that the particle was located under the cell membrane and 

endocytosis had occurred. ............................................................................................98 

Figure 5.4: These two images were taken with an inverted fluorescence microscope. 

The cells were incubated 24 hrs with Avidin-FITC and washed multiple times with 

PBS. The left picture is the bright field image. The right image is the same area with a 

Hg lamp on, along with a bright field lamp..................................................................99 

Figure 6.1: Schematic diagram of gramicidin showing the polypeptide backbone as 

double helical [left] and as a helical dimer [right]. ....................................................104 

Figure 6.2: Integration of gramicidin into dodecyldimethylammonium surfactant 

micelles. The circles signify the hydrophilic group (ammonium) and the lines the 

hydrophobic alkyl chains of the surfactant.................................................................106 

Figure 6.3: Ion exchange reaction between the gramicidin-containing micelles and the 

layered silicate. A sketch of the gramicidin-nanohybrid as the product is also shown.

....................................................................................................................................106 

Figure 6.4: IR spectra of C12 modified fluoromica and gramicidin nanohybrid 

(nanohybrid: C12 modified fluoromica containing gramicidin). ...............................107 

Figure 6.5: PXRD spectra of C12 modified layered silicate with and without 

gramicidin integration in the interlayer galleries. The 31 Å peak appears in the 

gramicidin nanohybrid spectrum.. ..............................................................................108 

xvii 



 

Figure 6.6: A picture of the setup used for the ion permeability experiment. The tube 

was filled with a NaCl solution and later inserted into a beaker with a CaCl2 solution.

....................................................................................................................................109 

Figure 6.7: Number of colonies measured after 24 hrs on LB Agar plates inoculated 

with E. coli bacteria. ...................................................................................................110 

Figure 6.8: Optical density of E. coli culture media with time and various additions. 

Where applicable, the cultures had the same amount of gramicidin (0.05 mg/mL) and 

silicate.........................................................................................................................112 

 

xviii 



 

LIST OF TABLES 

 

Table 1.1 Summary of characteristics of the particles used. ........................................16 

Table 1.2: Values of the apparent Michaelis-Menten parameters obtained through 

fitting Equation 1.3 to the data. The ± values are the standard deviation of the values 

resulting to the best fit. Data evaluated using the phenol/ AAP chromogen system....25 

Table 1.3: Values of the apparent Michaelis-Menten parameters obtained through 

fitting Equation 1.3 to the data. The ± values are the standard deviation of the values 

resulting to the best fit. Data evaluated using the ABTS chromogen system. .............26 

Table 3.1: Summary of experimental kinetic parameters for the immobilized and 

native HRP-Avidin conjugate. Calculated activation energies and pre-exponential 

factors, assuming Arrhenius behavior, are also listed. .................................................61 

Table 4.1: Summary of the characteristics of the sensor presented here with saccharin 

sensors reported in literature. .......................................................................................82 

 

xix 



 

LIST OF EQUATIONS 

 

Equation 1.1: Equation calculating the magnetic field of a localized current 

distribution....................................................................................................................17 

Equation 1.2: Scalar form of Equation 1.1. The equation returns the magnitude of the 

magnetic field at a distance x from the center of a particle with magnetic moment m.

......................................................................................................................................17 

Equation 1.3 The modified Michaelis-Menten equation for substrate inhibition. .......22 

xx 



 

INTRODUCTION  

Enzymes in their native form have been used for centuries in the food industry 

and their use is vital to different technologies of the human species. Two historically 

key processes such as bread-making and wine-making are based in enzymatic 

reactions that occur inside eukaryotic organisms (yeast).1-4 More recently enzymes 

have found applications in the chemical and pharmaceutical industries as well as many 

other innovating areas of technology such as sensing applications, biotechnology and 

organic synthesis.5-9  

In 1998, Uhlig10 compiled a summary of the major uses of enzymes in an 

industrial scale. Specifically, Uhlig discussed the use of enzymes in food industry 

processes such as flour processing, baking, alcohol production, brewing, dairy 

production and meat processing. Another area where enzymatic processes have an 

important role is molecular biology and biotechnology. In general, the technology 

advancements in the biosciences rely heavily in the specificity and availability of 

enzymes. For example Polymerase Chain Reaction (PCR), a commonly used lab 

technique for the amplification of DNA nucleotides, is based on specialty enzymes (i.e 

DNA polymerases).11 Lysing enzymes (lyases) is another category of enzymes that 

find numerous applications in molecular biology along with transferases.12

In the early 20th century attention was focused to ‘insoluble enzymatic 

molecules’ and the first attempt to immobilize enzymes was via a physical adsorption 

mechanism.13,14 There was little progress for the next decades and only in mid-1960s, 

interest was once again turned to the technology of immobilizing enzymes rendering 

them insoluble recyclable reagents. In 1963 Bernfeld et al. were successful in 

entrapping various enzymes and antigens in a polymeric matrix15 while Silman and 

Katchalski set the foundations of what we know today as ‘enzyme immobilization’ in 

a review article describing the four main techniques of immobilization.16
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During the next decade the first industrial applications using immobilized 

enzymes were reported.7 In 1970 Carrington et al. developed columns of immobilized 

Asperigillus oryzae aminocylase for the resolution of synthetic, racemic D,L-amino 

acids into the corresponding, optically active, enantiomers.7,17 Since then the interest 

and the applications of immobilized enzymes grew rapidly and nowadays enzymatic 

processes are an important tool from food industry to molecular biology and 

renewable energy sources.18 Specifically for the latter, industrial biotechnology and 

enzymes in particular have evolved in a hopeful promise for today’s growing energy 

problems.18-20    

However, all the above applications relative to enzymes have been already 

realized without ever dealing with immobilization. What are the advantages of enzyme 

immobilization? The advantages of using immobilized enzymes instead of their 

soluble counterparts are8 enhanced stability, repeated or continuous use, easy 

separation from the reaction mixture, possible modulation of the catalytic properties, 

contamination prevention in the product and easier prevention of microbial 

contaminations. It is thus apparent, that enzyme immobilization can have immediate 

effects on the cost of a process or the quality of a product. Furthermore, it is the 

potential tuning of enzyme properties through immobilization that has promise. For 

example, choosing an immobilization method that can improve the thermal behavior 

of an enzyme could potentially extend the operating capabilities of a process and allow 

a reactor to operate into higher temperatures, hence increasing the reaction rates and 

product yields. 

The potential applications and technological improvements are endless and 

even though enzymes, as catalysts, have the capability to operate in multiple cycles, in 

practice they are widely treated as one-time-use reagent. The reason for the one-time 

use lies in the multiple complications that immobilization steps introduce. One of the 
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most common disadvantages often encountered is the partial loss of enzymatic 

activity, either during the process of immobilization or due to denaturation at the final 

immobilized enzyme conformation. Harsh chemical conditions during the 

immobilization process usually affect irreversibly the native tertiary structure of 

enzymes leading to loss of activity and deactivation.5  

Nevertheless, in the last few decades the field of enzyme immobilization has 

made significant advances.9,21-23 In the last few years, methods of immobilization were 

devised where the immobilized enzyme suffered minimal loss of enzymatic activity 

when compared to its native soluble form,5,24-26 but commercialization of immobilized 

enzymes is yet to be realized in a large scale and only a few examples exist (i.e. 

Amberzyme® by Rohm and Haas). 

In the literature, enzyme immobilization processes fall into four main 

categories, each of them with unique advantages and disadvantages; these are8,16 non-

covalent adsorption or deposition, covalent attachment or carrier binding, entrapment 

in a gel, matrix or membrane and cross-linking. 

In this work, a versatile immobilization scheme is presented that takes 

advantage of the affinity between biotin and avidin. The immobilization is realized by 

combining biotinylated oxides (iron oxides, layered silicates) and avidinylated 

enzymes that are commercially available. This approach could potentially serve as a 

generic method for the immobilization of a variety of avidinylated enzymes on 

biotinylated oxides as the universal insoluble host.  

This approach is simple and leads to immobilized enzymes with improved 

behavior (i.e. thermal and storage stability) and minimal activity loss. Furthermore, 

immobilization on magnetic iron oxides can offer a quick separation method in a 

magnetic field, hence avoiding expensive separation processes like filtration and 

centrifugation. 
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In addition, results are presented indicating that the immobilization of, at least 

one, heme-containing enzyme (Horseradish Peroxidase) on magnetic particles resulted 

to an increase of its catalytic activity and turnover rate. The investigation was 

extended to probe the origin of the observed effect and initial results showed a 

correlation between the magnetic properties of the iron oxide and the rate of catalysis 

for Horseradish Peroxidase.  

Finally, enzyme immobilization on oxides is extended to a drug delivery 

application. A biotinylated silicate with an attached fluorescent protein (avidin) is 

evaluated as a drug delivery vehicle. In the final chapter, results for the immobilization 

and delivery of an antibiotic protein to E. coli bacteria are presented. The approach is 

based on integrating gramicidin into the inter-layer galleries of a silicate and 

delivering the particles to E. coli.  

 

 4



 

REFERENCES 

1. Martinez Anaya, M. A. Enzymes and Bread Flavor. Journal of Agricultural 
and Food Chemistry 44, 2469-2480 (1996). 

2. Colagrande, O., Silva, A. & Fumi, M. D. Recent Applications of 
Biotechnology in Wine Production. Biotechnology Progress 10, 2-18 (1994). 

3. Amerine, M. A. & Kunkee, R. E. Microbiology of Winemaking. Annual 
Review of Microbiology 22, 323-& (1968). 

4. Pretorius, I. S. Tailoring Wine Yeast for the New Millennium: Novel 
Approaches to the Ancient Art of Winemaking. Yeast 16, 675-729 (2000). 

5. Brena, B. M. & Batista-Viera, F. Immobilization of Enzymes: A Literature 
Survey. Methods in Biotechnology 22, 15 (2006). 

6. Kirk, O., Borchert, T. V. & Fuglsang, C. C. Industrial Enzyme Applications. 
Current Opinion in Biotechnology 13, 345-351 (2002). 

7. Katchalski-Katzir, E. Immobilized Enzymes - Learning from Past Successes 
and Failures. Trends in Biotechnology 11, 471 (1993). 

8. Bornscheuer, U. T. Immobilizing Enzymes: How to Create More Suitable 
Biocatalysts. Angewandte Chemie-International Edition in English 42, 3336-
3337 (2003). 

9. Cao, L. Q. Immobilised Enzymes: Science or Art? Current Opinion in 
Chemical Biology 9, 217-226 (2005). 

10. Uhlig, H. Industrial Enzymes and Their Applications (J. Wiley, New York, 
1998). 

11. McPherson, M. J. & Møller, S. G. PCR (Taylor & Francis, New York; 
Abingdon [England], 2006). 

12. Bryant, J. A. Molecular Biology (Academic Press, San Diego, 1997). 

13. Nelson, J. M. & Griffin, E. G. Adsorption of Invertase. Journal of the 
American Chemical Society 38, 1109-1115 (1916). 

14. Nelson, J. M. & Hitchcock, D. I. The Activity of Adsorbed Invertase. Journal 
of the American Chemical Society 43, 1956-1961 (1921). 

15. Bernfeld, P. & Wan, J. Antigens and Enzymes Made Insoluble by Entrapping 
Them into Lattices of Synthetic Polymers. Science 142, 678-& (1963). 

 5



 

16. Silman, I. H. & Katchalski, E. Water-Insoluble Derivatives of Enzymes 
Antigens and Antibodies. Annual Review of Biochemistry 35, 873-& (1966). 

17. Carrington, T. R. Development of Commercial Processes for Production of 6-
Aminopenicillanic Acid (6-APA). Proceedings of the Royal Society of London 
Series B-Biological Sciences 179, 321-& (1971). 

18. Herrera, S. Industrial Biotechnology - a Chance at Redemption. Nature 
Biotechnology 22, 671-675 (2004). 

19. Kourkoutas, Y., Bekatorou, A., Banat, I. M., Marchant, R. & Koutinas, A. A. 
Immobilization Technologies and Support Materials Suitable in Alcohol 
Beverages Production: A Review. Food Microbiology 21, 377-397 (2004). 

20. Nagashima, M., Azuma, M. & Noguchi, S. Technology Developments in 
Biomass Alcohol Production in Japan - Continuous Alcohol Production with 
Immobilized Microbial-Cells. Annals of the New York Academy of Sciences 
413, 457-468 (1983). 

21. Cao, L. Carrier-Bound Immobilized Enzymes: Principles, Applications and 
Design (Wiley-VCH, Weinheim, 2005). 

22. Hou, C. T. Handbook of Industrial Biocatalysis (Taylor & Francis/CRC, Boca 
Raton, FL, 2005). 

23. Taylor, R. F. Protein Immobilization: Fundamentals and Applications (M. 
Dekker, New York, 1991). 

24. Luckarift, H. R., Spain, J. C., Naik, R. R. & Stone, M. O. Enzyme 
Immobilization in a Biomimetic Silica Support. Nature Biotechnology 22, 211-
213 (2004). 

25. Lei, C. H., Shin, Y. S., Liu, J. & Ackerman, E. J. Entrapping Enzyme in a 
Functionalized Nanoporous Support. Journal of the American Chemical 
Society 124, 11242-11243 (2002). 

26. Dyal, A., Loos, K., Noto, M., Chang, S. W., Spagnoli, C., Shafi, K. V. P. M., 
Ulman, A., Cowman, M. & Gross, R. A. Activity of Candida Rugosa Lipase 
Immobilized on Gamma-Fe2O3 Magnetic Nanoparticles. Journal of the 
American Chemical Society 125, 1684-1685 (2003). 

 

 
 

 

 6



 

CHAPTER 1: ACTIVITY INCREASE OF HORSERADISH 

PEROXIDASE IN THE PRESENCE OF MAGNETIC PARTICLES 

INTRODUCTION 

Magnetic fields have long been suspected to have an effect in biological 

systems. For instance, the magnetic sense of higher animals, particularly of birds, is 

well documented but still awaits a conclusive mechanistic explanation.1-3 During the 

past twenty years, the relationship between magnetic fields and enzymatic reactions 

has been also recognized and explanations have been provided in the context of the 

radical recombination theory.4 The existing experimental evidence is based mainly on 

the effects of uniform external magnetic fields with intensities ranging from a few 

hundred to a few thousand Gauss. However, strong magnetic fields are rare in the 

biological world (the geomagnetic field is around 0.5 Gauss) and evidence of such 

magnetic field effects are yet to be confirmed.5 Here, for the first time, evidence for 

the effect of very low magnetic fields on a biological reaction is presented. The 

presence of magnetite particles (with permanent magnetic moment of 1 emu/g) in the 

assay led to a 30-fold increase on the rate of reaction of Horseradish Peroxidase. The 

activity of this enzyme was evaluated with two chromogen systems and the apparent 

Michaelis-Menten kinetic parameters were extracted. 

Magnetic field effects (MFE) on enzymatic reactions were investigated as 

early as the 1960s and most of the experiments carried out initially showed no effects 

on the reaction rates.6-10 In the mid 1980s, focus was turned to radical pairs and the 

effect of magnetic fields on radical reactions.4,11 Later, and in the context of the newly 

suggested radical pair recombination theory, magnetic field effects on biological 

reactions involving radicals and paramagnetic species were studied.4-6,12,13 In 

particular, a number of publications examined the effect of an external magnetic field 
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and that of spin-orbit coupling (SOC) on the kinetics of enzymatic reactions.9,10,14-19 

Currently, magnetic field dependence of enzymatic reactions has evolved into an area 

of research that has generated promising results in catalysis, a field of great scientific, 

commercial and economic importance. Molin et al. have reported that the rate of O2 

evolution in H2O2 decomposition catalyzed by the heme enzyme Catalase is increased 

by 20 % in a magnetic field of 8000 G.20 In 1994, Harkins and Grissom showed that 

an external magnetic field affected the kinetics of ethanolamine catalysis by B12 

Ethanolamine Ammonia Lyase, a reaction that involves a radical pair recombination 

step.21-23 The same group also reported the dependence of electron transfer in the case 

of Horseradish Peroxidase (HRP) on an external magnetic field.15 These authors 

reported a 15 % decrease in the relative rate of conversion of Compound I to 

Compound II states of HRP and 35 % decrease in the conversion of Compound II back 

to native ferric HRP at 750 G (see Figure 1.1). 

 

 
Figure 1.1: The five oxidation states of Horseradish Peroxidase. Berglund et al.24

In 2006, Jones et al. revisited the experiment to investigate the effect of low 

intensity magnetic fields on HRP kinetics, but were unable to reproduce the findings.25 

These authors pointed out the lack of evidence for a radical pair recombination step on 
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the second reductive half-reaction of HRP and discussed problems in the initial fitting 

analysis of Taraban et al.15  

Enzyme catalysis is an active field and the complexity of the underlying 

physics is not yet fully understood in many cases.26-29 The discussion for magnetic 

field effects on biological systems is somewhat controversial and the debate is still 

active. Nevertheless, there are a few enzyme systems known to have magnetic field 

dependence. From the literature a magnetosensitive step in the catalytic cycle of HRP 

appears to exist even though is not fully isolated and understood.30-32 The experiments 

presented here are the first ones to report changes on the reaction rate of a heme-

containing enzyme (HRP) in the presence of iron oxide (Fe3O4) magnetic particles. 

MATERIALS AND METHODS 

Materials. 

Two different batches of Peroxidase from Horseradish, Catalase from Bovine 

liver, Chloroperoxidase (CPO) from Caldariomyces fumago, Glucose oxidase (GOx) 

from Aspergillus Niger and Cytochrome C from Equine Heart, were obtained from 

Sigma Aldrich and Fisher Scientific as lyophilized powders. Phenol and 4-

aminoantipyrine (AAP) were obtained from Sigma as solids (98% purity). 2,2΄-Azino-

di-(3-ethyl-benzthiazoline-6-sulphonic acid) (ABTS) was obtained in pellets from 

Sigma. Sodium phosphate buffer (PBS) pH 7.4 and 67mM was purchased from 

Invitrogen, deionized water (DI) with a minimum resistivity of 18MΩcm was used 

throughout the experiments. Amine-terminated iron oxide super-paramagnetic 

particles (SPM), hydrogen peroxide, FeCl2, and FeCl3 were also obtained from Sigma 

Aldrich and all other reagents used were ACS grade. 
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Synthesis of magnetic iron oxide particles. 

Magnetite Fe3O4 particles were synthesized by co-precipitation of Fe2+ and 

Fe3+ in a basic solution under nitrogen. A 25 mL solution containing 5.2 g of 

FeCl3·6H2O, 2 g of FeCl2·4H2O and 1 mL of 12 N HCl was added dropwise to 250 mL 

of 1.5 M NaOH under bubbling nitrogen. All solutions were bubbled with nitrogen for 

15 minutes prior to reaction in order to eliminate any oxygen present. Once the Fe2+ 

and Fe3+ ions were in the sodium hydroxide solution a black precipitate formed. The 

precipitate was separated with a neodymium magnet from the reaction solution and 

consecutively resuspended and precipitated in water multiple times until the pH of the 

suspension reached 8. Thereafter, 100 mL of 0.01 M HCl were added to the precipitate 

to neutralize the anionic charges on the particles. Finally, the particles were separated 

two more times with a neodymium magnet to separate the larger magnetic particles 

from any smaller paramagnetic particles formed. 

Characterization of iron oxide particles. 

The magnetic properties of the iron oxide particles were evaluated in an 

MPMS XL® (Quantum Design) magnetometer utilizing Superconducting Quantum 

Interference Device (SQUID) technology. Magnetization hysteresis curves were 

obtained at 300 K and the applied magnetic field was varied between 40 Oe and 50 

kOe. From the hysteresis curves we evaluated the saturation magnetization of the 

samples (Ms), the coercive field (Hc) and the remanence (MR).  

To evaluate the size distribution of the iron oxide particles in the samples we 

have utilized a Dynamic Light Scattering (DLS) apparatus from Malvern Instruments 

(Zetasizer Nano Series). The medium used during the measurement was DI water with 

a very dilute concentration of particles in the measurement cuvette. Monochromatic 

light was emitted on the test volume and the light scattered at an angle of 173 degrees 
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was measured by a detector. The correlation of the intensity at successive time 

intervals was measured and the signal was then converted to a size distribution for the 

sample through the Stokes-Einstein equation. 

Powder X-Ray Diffraction (PXRD) spectra were collected on a Scintag Inc θ-θ 

diffractometer using CuKα radiation and equipped with a germanium detector. 

UV/vis analysis. 

The concentration of HRP stock solutions were determined from the 

absorbance at 403 nm with a Spectrophotometer (SpectraMax Plus384, Molecular 

Devices, Sunnyvale, CA) based on an extinction coefficient of 102 mM-1cm-1.33

The enzymatic activity of Horseradish Peroxidase was evaluated using a 

phenol/4-aminoantipyrine (AAP) chromogen assay.34 The assay solution contained 80 

mM phenol, 13 mM AAP and 5 mM hydrogen peroxide in 67 mM phosphate buffer 

(pH 7.4). Using an extinction coefficient of 7100 M-1cm-1 for the red product of the 

reaction (quinoneimine), the rate of absorbance increase was monitored at 510 nm.35 

The above protocol was also used to generate plots of activity with varying amounts of 

substrate (Michaelis-Menten plots). Data were obtained using 96-well plates. The 96-

wells of each plate were prepared with the same concentrations of phenol, AAP and 

phosphate buffer as described above. The molarities of hydrogen peroxide were varied 

between 0.01 mM and 0.5 M. The enzyme solution was added last, using a 

multipipettor to minimize the time for adding the enzyme and assure minimal error 

between the multiple measured activities in the wells. The plate was mixed between 

every reading to assure uniformity of the solutions. Software was used to calculate the 

1 cm optical path length equivalent absorbance independently of the amount of liquid 

in the well via a patented PathCheck® sensor technology. The rate of absorbance 

increase at 510 nm was obtained for the initial linear range of the response and the 
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activity of the enzyme was calculated using the extinction coefficient of the 

chromogen. 

2,2΄-Azino-di-(3-ethyl-benzthiazoline-6-sulphonic acid) (ABTS) was also used 

in the assay as another chromogen substrate. In this assay 15 mM of ABTS and 67 

mM of phosphate buffer (pH 7.4) were used. The amount of hydrogen peroxide was 

varied again to obtain activity plots as a function of peroxide concentration. The 

activity was calculated by measuring the rate of absorbance change at 414 nm during 

the first few seconds of the reaction. The extinction coefficient at 414 nm for the 

oxidized ABTS is 36000 M-1cm-1.36

Fitting of Michaelis-Menten equation to experimental data. 

Fitting of a modified Michaelis-Menten Equation to the data was performed 

with Origin® 7.5 software using a non-linear least squares fit (NLSF) routine 

weighting the data according to the standard deviation of the multiple repetitions of 

each experimental point. To obtain an initial set of parameters for the NLSF routine 

we evaluated the Vmax in all cases through a Lineweaver-Burk graph using only the 

values of relatively small substrate concentrations where inhibition is negligible. Since 

the inhibition term depends on the square of the substrate concentration (see Equation 

1.3) this term can be ignored for small concentrations to obtain a rather accurate 

estimate of Vmax from a Lineweaver-Burk representation of the data. 

RESULTS AND DISCUSSION 

During the catalytic cycle, native HRP, Compounds I, II and the oxidized 

substrate radicals generated in the process are all paramagnetic. A combination of any 

two can constitute a paramagnetic (radical) pair that can undergo spin selective 

processes.15,33 The presence of randomly distributed magnetic particles in the assay is 

likely to have an effect on the spin states of geminate pairs (G-pairs) and on random 

 12



 

encounter diffusing radicals (F-pairs) via an accelerated intersystem crossing (ISC) 

mechanism that can alter the overall kinetics of the enzyme reaction.13,23 Most of the 

existing literature has utilized external magnetic fields in the order of 500 G and 

higher; however, it was recently shown that even weak magnetic fields less than 20 G 

can affect radical pairs and their recombination rates.1,4,37  

In this work, iron oxide (magnetite) particles with different magnetic properties 

were used. B3 and B4 represent different samples of iron oxide with different 

magnetic properties. B3 particles were synthesized at room temperature (25 ºC) and 

under nitrogen; B4 was synthesized similarly to B3 except that the temperature during 

synthesis was elevated to 90 ºC. The higher temperature resulted in a higher 

crystallinity, which in turn resulted in higher magnetic moment magnetite particles.  

Properties of the iron oxide particles used 

Various techniques such as Superconducting Quantum Interference Device 

(SQUID, Figure 1.2), Dynamic Light Scattering (DLS, Figure 1.3) and Powder X-Ray 

Diffraction (PXRD, Figure 1.4) were used to characterize the particles used in this 

work. Table 1.1 summarizes the characteristic properties for the iron oxide particles. 

Saturation magnetization (MS) as well as remanence (MR) decreased with 

decreased average crystallite size of particles and the values shown in Table 1.1 are in 

agreement with similar published results.38
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Figure 1.2: Hysteresis curves of the iron oxide particles used (B3, B4 and SPM). 

The inset graph is an enlargement showing differences in magnetic remanence 

(MR) of three batches of particles.  

10 100 1000 10000
0

2

4

6

8

10

12

14

16

18
 

 

Li
gh

t S
ca

tte
re

d 
In

te
ns

ity
 %

Particle diameter (nm)

 
Figure 1.3: Dynamic light scattering measurements. Diameter distribution of the 

B4 particles population. 
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Figure 1.4: PXRD spectra for the synthesized iron oxide particles (B3, B4) and 

the commercial super-paramagnetic particles (SPM) used. By using the Debye-

Scherer equation, an approximate crystallite diameter for each of the different 

batches of particles was evaluated. 
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Table 1.1 Summary of characteristics of the particles used. 

Iron Oxide MR (emu/g) MS (emu/g) HC (Oe) Average crystallite  

diameter PXRD (nm) 

Particles diameter 

DLS (nm) 

Color 

B4 1 ± 0.2 65 ± 0.2 8.6 ± 2 23.6 314 ± 15 Black 

B3 0.48 ± 0.1 49 ± 1.1 9.5 ± 0.1 14.8 449 ± 69 Black 

SPM       ~0 23.8 Light Brown
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The magnetic field of a magnetite particle with 200 nm diameter and 1 emu/g 

permanent magnetic moment was calculated to be 0.67 G at 400 nm from the center of 

the particle using Equation 1.1. Since here only the magnitude of the field is of 

interest, the vector Equation 1.1 can be approximated with a scalar equation that 

returns the magnitude of the field in a distance x (see also Equation 1.2). 

 

Equation 1.1: Equation calculating the magnetic field of a localized current 

distribution (in this case of the magnetic moment of a particle when treated as a 

point; for that x must be much larger than the radius of the particle for the 

equation to hold). B is the magnetic field at distance x from the center of the 

particle, n is the normal vector in the x direction, m is the magnetic moment of 

the particle and µ0 is the magnetic permeability of vacuum.39 
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Equation 1.2: Scalar form of Equation 1.1. The equation returns the magnitude 

of the magnetic field at a distance x from the center of a particle with magnetic 

moment m.  
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The average diameter of particles obtained by Dynamic Light Scattering was 

more than 10 times larger than the average crystallite size obtained from PXRD 

suggesting that the crystallinity of the samples is either poor or the DLS measures 

aggregates rather than individual particles. 
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Iron oxide particles and Horseradish Peroxidase 

The catalytic activity of Horseradish Peroxidase increased when magnetite 

particles were present in the assay at low concentrations. These results were 

reproduced using different batches of enzyme and different vendors (Fisher, Pierce 

Biotechnology). In Figure 1.5 the activity of HRP, evaluated with the Phenol-

Aminoantipyrine (AAP) chromogen system,34 is plotted with various concentrations of 

particles in the assay. The activity of 0.4 nM HRP increased in the presence of B3 

particles and reached a plateau at 1 µg/mL. The increase was about 5 times that of the 

native enzyme alone. The activity decreased back to the levels of the native enzyme 

when the concentration became 9 µg/mL. A similar behavior was observed for B4 

particles but the maximum increase in activity was 30-fold. In contrast, the enzyme 

behavior was not altered when commercial super-paramagnetic particles with no 

permanent magnetic moment were present in the assay.  

We examined various other redox enzymes with and without a heme group 

(Cytochrome C, Chloroperoxidase, Catalase, and Glucose oxidase) under the same 

limiting conditions but we were unable to observe any positive or negative effect on 

the activity when magnetic particles were present in the assay. 

In Figure 1.6, two plates are shown with 12 wells and four repetitions in each. 

All wells in Figure 1.6 contain the same concentration of enzyme (0.4 nM) and the 

same concentration of hydrogen peroxide (5 mM) in each well. The 12 different rows 

of wells (1-12) have different concentrations of iron oxide.  
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Figure 1.5: Activity of HRP when magnetic and super-paramagnetic iron oxide 

particles are present in the assay. The activity was measured with 5 mM of H2O2, 

80 mM of phenol, 13 mM of 4-Aminoantipyrine and 0.4 nM of HRP in the assay. 

The error bars are the standard deviation of 4 repetitions.  

The left plate contains super-paramagnetic particles in various concentrations. 

Row #1 is a blank row and there are no particles. The right plate contains B4 

magnetite particles in various concentrations; in this case Row #2 is a blank row and 

there are no particles present. For both plates all other rows contain iron oxide 

particles with concentrations varying from 0.5 to 14 µg/mL. The intensity of the color 

is directly proportional to the activity of the enzyme.  

The effect of B4 magnetite particles is evident (right plate). In contrast, the 

super-paramagnetic particles had no effect on the activity of the enzyme (left plate). 

The data extracted from these two plates were plotted in Figure 1.5. 
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Figure 1.6: The two plates shown are assay runs with super-paramagnetic 

particles (left) and B4 iron oxide particles (right). The above picture is taken at 

the end of the data acquisition. 

 

Iron oxide particles had no reducing or oxidizing effect on the substrates and 

no activity was found when the protocol was tested solely in the presence of iron oxide 

particles. In addition, the possibility of a redox process between the enzyme’s active 

site and the particles was examined and the Soret band of the enzyme was probed in 

the presence of iron oxide particles and the enzyme alone. The characteristic peak of 

the heme group at 403 nm was not shifted nor was the intensity of the peak changed, 

when iron oxide particles were present (see Figure 1.7). 
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Figure 1.7: Absorption spectra of the native enzyme in water, Fe3O4 particles, 

and the combination of the two. The 403 nm peak, characteristic of the heme 

group, can be observed and neither the peak had shifted nor had the intensity of 

the peak changed when iron oxide particles were present. The small difference 

between the HRP spectrum and the subtracted spectrum of B3 from HRP is 

probably due to background absorption differences. 

Reversibility of the effect of magnetic iron oxide particles on HRP 

The effect of the particles in the assay was reversible, namely, the enzymatic 

activity returned to the original value once the particles were removed from the assay 

with a neodymium rare earth magnet. The reversibility was tested by measuring the 

activity of the same enzyme solution (3 nM of HRP) before and after adding particles, 

and finally after separating the particles with a neodymium magnet. The activity was 

initially 250 U/mg and after the particles were added, the measured activity was 
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approximately 3 times the initial value (706 U/mg). After the particles were removed 

the activity was measured close to the initial value at 240 U/mg. Thus we suggest that 

the activity increase is due solely to the presence of magnetic particles in the assay. 

Origin of the activity increase  

To obtain a better understanding of the enzyme behavior in the presence of 

magnetic particles, the apparent Michaelis-Menten kinetic parameters of the enzyme 

were measured with and without magnetic particles. The enzyme in the absence of 

particles had an activity maximum at 0.3 mM hydrogen peroxide and further increase 

of substrate in the assay resulted in a decrease of the catalytic activity. This last 

observation has been well documented for HRP where, at relatively high 

concentrations of peroxide, the enzyme undergoes substrate inhibition.40-42

The modified Michaelis-Menten equation for substrate inhibition43 is presented 

in Equation 1.3. Figure 1.8 shows the Michaelis-Menten plots of the enzyme alone and 

in the presence of magnetic particles. Clearly the magnetic particles have an effect on 

the reaction kinetics. The activity of HRP with B4 particles reached a plateau at high 

peroxide concentrations, and substrate inhibition was registered only at concentrations 

close to 50 mM. Fitting the data to Equation 1.3, we obtained the apparent kinetic 

values Vmax, Km and the inactivation constant Ki.27,44,45  

Equation 1.3 The modified Michaelis-Menten equation for substrate inhibition.43

2
max

][][
][

SKSK
SVV

im ⋅++
⋅

=  

The data extracted from the fit are listed in Table 1.2. The largest effect of the 

particles on the apparent enzyme kinetics was a significant decrease of the substrate 

inhibition term Ki of close to 10-fold when magnetic particles were present. 
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Figure 1.8: Dependence of enzymatic activity on H2O2 concentration. Various 

curves are shown with different molarities of HRP in the assay with and without 

1.4 µg/mL of B4 particles. Figure 1.8a was obtained utilizing ABTS as chromogen 

and Figure 1.8b with phenol/AAP as the chromogen pair. Solid lines are relative 

to the HRP assay with particles. Dotted lines are relative to the assay with HRP 

alone. The error bars are the standard deviation of 4 repetitions. 
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The presence of particles in the assay had also a significant effect on the value 

of kcat. kcat is Vmax normalized by the moles of enzyme in the assay (Vmax/moles of 

enzyme), and is a measure of the rate at which the enzyme turns substrate into product 

(also known as turnover rate). The turnover rate was greatly increased in the presence 

of particles at low enzyme concentrations (at 0.2 nM of HRP the kcat is almost three 

times larger for B3 particles and five times for B4 particles). At higher concentrations 

of enzyme in the assay the effect of the particles was decreased. Under these 

conditions the kinetics were probably dominated by the mass transfer of the substrate 

and product to and from the active center of the enzyme as this became the limiting 

step masking the effect of the particles.  

A similar series of experiments was also conducted with 2,2΄-Azino-di-(3-

ethyl-benzthiazoline-6-sulphonic acid) (ABTS) as a secondary-chromogen substrate. 

The data extracted for the apparent Michaelis-Menten kinetic parameters through 

fitting Equation 1.3 are presented in Table 1.3. In this case, the kcat of the enzyme was 

once again increased significantly in the presence of magnetic particles. However, 

contrary to the results with phenol/AAP, substrate inhibition was also observed in the 

presence of magnetic particles and the Ki remained unchanged. The Vmax/Km ratio 

increased in the presence of magnetic particles. This observation was consistent with 

the existence of a biradical enzyme-substrate complex which has been suspected to 

exist in the HRP catalytic cycle but has not yet confirmed.15,32 The increase of 

Vmax/Km ratio was an indication that intersystem crossing occurred for a radical pair 

that decreased the probability of non-productive radical recombination, hence 

increasing the forward product formation.23  
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Table 1.2: Values of the apparent Michaelis-Menten parameters obtained 

through fitting Equation 1.3 to the data. The ± values are the standard deviation 

of the values resulting to the best fit. Data evaluated using the phenol/ AAP 

chromogen system. 
 

 kcat (s-1) Km (mM) Ki (M-1) 

Iron 

oxide in 

assay 

(µg/mL) 

HRP 

in 

assay 

(nM) 

164±5.8 0.1±0.06 204±48 0 0.2 

258.2±9.5 0.15±0.08 206±52 0 0.4 

362.7±52 0.31±0.08 344±46 0 1.1 

HRP 

“alone” 

823±319 1.06±0.19 632±69.7 0 5.0 

1009±63 1.51±.020 81.1±0.7 1.4 0.2 

1112±89 1.04±0.24 36.7±8.6 1.4 0.4 

512±154 0.64±0.03 46±2.3 1.4 1.1 

HRP and 

B4 

845±9.5 1.42±0.13 577±35.8 1.4 5.0 

586±3.7 0.21±0.07 18.9±5.2 1.4 0.2 

645±8.5 0.46±0.02 85.2±0.7 1.4 0.4 

585±32 0.50±0.08 33±13 1.4 1.1 

HRP and 

B3 

523±17 0.78±0.1 176±70 1.4 5.0 
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Table 1.3: Values of the apparent Michaelis-Menten parameters obtained 

through fitting Equation 1.3 to the data. The ± values are the standard deviation 

of the values resulting to the best fit. Data evaluated using the ABTS chromogen 

system. 
 

 kcat (s-1) Km (µM) Ki (M-1) 

Iron 

oxide in 

assay 

(µg/mL) 

HRP 

in 

assay 

(nM) 

24.5±1.11 4.7±0.7 117±12 0 0.2 

31.2±0.5 8.2±0.4 63.5±4.4 0 0.4 

31.8±0.49 30±1.2 58.8±4 0 1.1 

HRP 

“alone” 

37.6±0.79 70±3.7 24±2.2 0 5.0 

59.6±1.2 6.7±0.4 93.2±4.3 1.4 0.2 

42.5±0.46 9.0±0. 3 68.3±3.5 1.4 0.4 

40.9±0.51 30±0.9 63.9±3.2 1.4 1.1 

HRP and 

B4 

46.1±0.81 100±5.0 20.1±1.7 1.4 5.0 

82±1.3 6.7±0.4 68.3±7.3 1.4 0.2 

45±3.56 9.0±0.3 64.5±28 1.4 0.4 

61.4±1.9 29±0.9 68.2±14 1.4 1.1 

HRP and 

B3 

33.9±1.5 110±5 6.7±4 1.4 5.0 
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The difference between the apparent kinetic parameters obtained with the two 

chromogen assays was probably due to the differences of the two assays. We believe 

the parameters obtained from the ABTS chromogen are more reliable than those for 

phenol/AAP,44 mainly because the latter depends on the combination of two radicals 

to generate a colored product.45 Secondary side reactions exist for phenol radicals 

resulting in formation of biphenol products 35,45,46 that can generate various artifacts 

and errors in the evaluation of enzyme activity. It is also important to note that the 

kinetics and even the reaction mechanism of most enzymes strongly depend on the 

substrate utilized.42,44,45 Nevertheless, the effect of the magnetic particles on enzymatic 

activity was similar and, with both protocols, an increased kcat was evaluated.  

Michaelis-Menten kinetics assays with B4 iron oxide particles 

In Figure 1.9 the actual experimental plates used to generate Figures 1.8a and 

1.8b can be seen. In addition, data shown in Tables 1.2 and 1.3 were obtained by 

fitting Equation 1.3 to the data extracted from Figure 1.9.  

Figure 1.9 shows assay runs for HRP alone and HRP with B4 iron oxide 

particles using two different secondary substrate sets. The green colored wells (1 to 4) 

are the ABTS chromogen substrate assays and the red colored wells (5 to 8) are the 

phenol-aminoantipyrine assays.  

All the wells in the same plate have the same concentration of enzyme. Plates 1 

and 5 have 0.2 nM of HRP, plates 2 and 6 have 0.4 nM HRP, plates 3 and 7 have 1.1 

nM and plates 4 and 8 have 5 nM of HRP. 
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Figure 1.9: The actual eight 96-well plates from the experiments with B4 iron 

oxide particles at the end of the data acquisition. 

In each plate, columns E, F, G and H are four repetitions of assays with the 

same concentration of B4 particles (i.e. wells E7, F7, G7 and H7 are identical assay 

runs). Columns A and B are 2 repetitions of HRP without particles (i.e. wells A2 and 

B2, A3 and B3 are identical). Furthermore, rows 1 to 12 have 12 different 

concentrations of hydrogen peroxide ranging from 10-6 to 10-1 M. 

Michaelis-Menten kinetics assays with B3 iron oxide particles 

Figure 1.10 shows assay runs for HRP alone and HRP with B3 iron oxide 

particles using two different secondary substrate sets. The data from these graphs were 

used to generate the values reported in Tables 1.2 and 1.3. 
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Figure 1.10: The actual eight 96-well plates from the experiments with B3 iron 

oxide particles at the end of the data acquisition. 

The green-colored-well plates (1-4) are the ABTS substrate assays and the red-

colored-well plates (5-8) are the phenol-aminoantipyrine assays. All the wells in the 

same plate have the same concentration of enzyme. In addition, plates 1 and 5 have 

0.2 nM of HRP, plates 2 and 6 have 0.4 nM HRP, plates 3 and 7 have 1.1 nM and 

plates 4 and 8 have 5 nM of HRP. 

In each plate, columns E, F, G and H are four repetitions of assays with the 

same concentration of B3 particles (i.e. wells E7, F7, G7 and H7 are identical assay 

runs). Columns A and B are 2 repetitions of HRP without particles (i.e. wells A2 and 

B2, A3 and B3 are identical). Rows 1 to 12 contain different hydrogen peroxide 

concentrations ranging from 10-6 to 10-1 M. 
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Extinction of ABTS radicals 

From the data obtained using ABTS as the chromogen molecule, B3 particles 

appeared to have a larger effect on the turnover rate than the more magnetic B4 

particles. This was counter-intuitive as we expected the more magnetic particles to 

have a larger effect. However, one possibility might be the increase of the 

recombination rate of the generated ABTS radicals which partially disproportionated 

back into ABTS due to the presence of magnetic particles.36 To prove the above 

hypothesis and the assumption that magnetic particles can affect spin correlated 

radical pairs and their recombination rates, an experiment was designed that would 

track the evolution of a disproportionation reaction between two radicals when 

considered as Random Encounter Radical Pairs (RERP or F-pairs).4

A solution of HRP, hydrogen peroxide and excess ABTS was prepared so that 

all hydrogen peroxide was consumed to oxidize ABTS into ABTS radical cations (no 

further reaction could occur) and then the iron oxide particles were added. ABTS and 

ABTS radicals are spectrophotometrically distinct with an absorption peak at 340 nm 

for ABTS and 414 nm for the oxidized ABTS radical.36 It is known that two ABTS 

radicals can disproportionate back into ABTS and an azodication product.36 However, 

this step is very slow and, once formed, the ABTS radicals are very stable.47 After the 

formation of radicals, iron oxide particles were added to the assay. The 

disproportionation rate of the diffusing radicals reacting back to ABTS was registered 

by tracking the changes of the characteristic absorption peaks at 340 and 414 nm. To 

avoid the error caused by light scattering of iron oxide particles, the particles were 

separated from the solution using a neodymium magnet every five to ten minutes. The 

spectrum of the solution in the absence of the particles was then obtained using a 

spectrophotometer registering the peaks of 340 and 414 nm. Figure 1.11 shows the 

percentage of the initially-formed radicals recombining to ABTS. 
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The raw data of the full spectra scans of the samples as a function of time are 

included in Figures 1.12, 1.13 and 1.14. Particles with increasing permanent magnetic 

moment had an increasingly beneficial role in the extent of disproportionation of 

radicals. A control solution was also made with the same concentration of ABTS 

radicals but with no iron oxide particles. In this case, no significant disproportionation 

was observed in the time scale of the experiment. 

We believe the increase in the disproportionation rate is due to the presence of 

magnetic particles. In particular, the weak magnetic field of the randomly distributed 

particles increased the recombination rate of the diffusing ABTS radicals. The above 

observation is an indication that magnetic particles can play a significant role in 

reactions with spin correlated radical pairs and could possibly affect paramagnetic 

species, similar to the species formed during the HRP catalytic cycle (geminate pairs 

or diffusing RERPs) 

In summary, our results indicated that low magnetic fields originating from 

randomly distributed magnetic particles had a profound increase on the catalytic 

activity of HRP. The above experiments may open a new area of investigation into the 

effects of very low magnetic fields on biological reactions. Further experiments with 

rapid-screening stopped-flow spectrophotometry could offer insight into the 

mechanism of the observed phenomenon. Additionally, a possible mechanistic 

explanation could have potential impact on other heme-containing proteins with 

radical intermediates and our understanding of magnetic field effects on the biological 

world. 
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Figure 1.11: Extent of ABTS radicals recombination in the presence of iron oxide 

particles with increasing permanent magnetic moment. 

(SPM=superparamagnetic ~0 emu/g, B3=magnetite 0.49 emu/g, B4= magnetite 1 

emu/g)
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Figure 1.12: Spectra scans of a solution of radicals with 0.04 mg/mL SPM 

particles present in the assay. 
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Figure 1.13: Spectra scans of a solution of radicals with 0.04 mg/mL B3 particles 

present in the assay.
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Figure 1.14: Spectra scans of a solution of radicals with 0.04 mg/mL B4 particles 

present in the assay. 
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CHAPTER 2: IMMOBILIZATION OF HORSERADISH PEROXIDASE 

ON MAGNETIC PARTICLES.  

INTRODUCTION 

Heme-peroxidases are present extensively in nature and they are found in 

plants, fungi, bacteria and mammals serving various biological functions.1 In 

particular, Horseradish Peroxidase (HRP) utilizes hydrogen peroxide to oxidize a wide 

variety of organic and inorganic compounds. Horseradish is a hardy perennial herb 

cultivated in temperate regions and its roots are a rich source of the peroxidase 

enzyme. In the literature, numerous research papers have dealt with the reaction 

mechanism, properties and applications of HRP in the biological and analytical 

sciences.1

Currently, the production of Horseradish Peroxidase occurs on a relatively 

large scale because of its commercial use in clinical diagnostic kits, immunoassays, 

waste-water treatment and elsewhere.2,3 However, the cost of HRP is relatively high  

(a few US dollars per mg) making the enzyme a costly reagent. As an example, the 

removal of phenol from wastewater using HRP is considered expensive and alternative 

routes have been suggested in the literature.4 On the other hand, immobilization is a 

successful route to attain enzyme reusability with low cost and improved enzyme 

performance.5,6 The immobilization of enzymes is accomplished mainly in four 

different ways including adsorption, cross linking, entrapment and covalent 

attachment on an insoluble moiety.7  

Using the knowledge obtained from experiments in Chapter 1, we present an 

immobilization approach for HRP on magnetite particles which results in increased 

enzymatic activity and improved stability. This immobilization method falls in the 

“covalent attachment” category mentioned above, in which HRP binds to an insoluble 
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carrier in our case iron oxide (magnetite) particles. The benefit of using magnetic 

carriers for the immobilization of enzymes has been previously explored extensively 

due to the simplicity of magnetic field separation.8-10

MATERIALS AND METHODS 

The deionized (DI) water used throughout the experiments was purified in a 

“Barnstead Nanopure RO” unit and had minimum resistivity of 18 MΩcm. Biotin, 

phenol, 4-aminoantipyrine (AAP), sulfuric acid and hydrogen peroxide (H2O2) were 

purchased from Sigma-Aldrich. Horseradish Peroxidase conjugate with Avidin (HRP-

Avidin) was obtained from Pierce Biotechnology (2 moles of HRP per 1 mole of 

Avidin). 

Fourier Transform Infra-Red (FTIR) spectroscopic measurements were 

performed on a Bruker Vertex 70 FTIR spectrometer equipped with a diamond crystal 

for attenuated total reflectance (ATR) IR scans. 

Biotinylation of magnetite particles 

Biotinylation of magnetite particles (Fe3O4) was realized through a 

condensation reaction in acidic conditions. 100 mg of biotin were dissolved in 5 mL of 

ethanol where previously 10 mg of B4 magnetite particles (see Chapter 1) were 

suspended. Finally, 0.5 mL of fuming sulfuric acid was added and the solution was 

stirred for 4 minutes in a 40 ºC water bath. Next, the particles were separated from the 

solution using a neodymium magnet and washed multiple times with deionized water 

until neutral pH was attained. 

Activity measurements.  

The Worthington protocol was followed to calculate the activity of the particle-

immobilized enzymes as well as the residual activity in the washout solutions during 
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the immobilization process.11 According to the protocol, a chromogen molecule was 

produced and the increase of absorbance at 510 nm was followed on a SpectraMax 

Plus spectrophotometer. The increase of absorbance at 510 nm was translated into 

enzyme activity through the specific absorptivity of the chromogen (ε = 7100  

M-1cm-1).12 The substrates used were 2.5 mM 4-aminoantipyrine with 0.17 M phenol 

and 1.7 mM H2O2. All measurements were in a phosphate buffer saline (PBS) with a 

pH of 7.2. Each experiment was repeated three times. 

Immobilization of HRP-Avidin conjugate 

In 2 mL of DI water, 0.3 mg of biotinylated magnetite particles and 1 nmole of 

HRP-Avidin conjugate were added. The suspension was stirred for 10 minutes and the 

particles with the attached enzyme were separated with the use of a neodymium 

magnet. The solution was named washout #1 and the particles were resuspended in  

2 mL of DI water and separated once again. The process was repeated for a total of 

three times and produced three washout solutions.  

To evaluate the extent of enzyme immobilization, the enzyme mass in the three 

washout solutions was estimated by measuring the enzymatic activity according to the 

Worthington protocol.11 The measured activity was then translated to enzyme mass 

through a calibration curve generated previously. Finally, the mass of non-

immobilized enzyme was subtracted from the initial amount and the enzyme bound to 

the biotinylated particles was estimated.  

In addition, a protein concentration assay based on the absorption of the HRP 

heme group in the Soret band was employed (ε = 102 mM-1cm-1 at 403 nm).13 

Likewise, the moles of HRP in the washout solution #1 were estimated and the 

number of moles immobilized was calculated. The amount of enzyme in washout #2 

and #3 was minimal.  
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RESULTS AND DISCUSSION 

Biotin molecules were attached on magnetite particles via a condensation 

reaction as described in Materials and Methods section. A schematic of the process is 

shown in Figure 2.1. 
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Figure 2.1: A schematic of the condensation reaction that was performed for the 

attachment of biotin molecules on the surface of iron oxide particles.  

Successful synthesis was assessed using FTIR spectroscopy and in Figure 2.2 

the IR spectra of biotin, biotinylated magnetite particles and magnetite particles are 

plotted. The existence of absorption peaks from alkyl groups was verified for the 

biotinylated particles even after multiple washes; these peaks were evidence of biotin 

attachment on the particles.  

Immobilization of HRP on magnetite particles was realized using the strong 

interaction of biotin and Avidin. The process was a simple, one-step immobilization 

process that occurred under mild conditions of temperature (25 ºC) and pH 7. Since 

we were unable to measure directly the amount of enzyme immobilized (due to the 

presence of particles), we have calculated the amount of enzyme that was washed out 

during the process. Two different approaches were followed as described in Materials 

and Methods section. The first relied on the characteristic absorption of HRP enzyme 

at 403 nm 13 and the second was based on the residual activity measured in the 

washout solutions according to the Worthington protocol.11 The estimated mass of 
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immobilized enzyme with the above methods was 28 and 15 µg of protein per 1 mg of 

magnetite particles or 0.18 nmoles and 0.096 nmoles per 1 mg of particles accordingly 

(Molecular weight of HRP-Avidin conjugate: 156 kDa). 
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Figure 2.2: IR spectra of biotin and biotinylated magnetite particles. The 

characteristic peaks of the alkyl groups (2980-2850 cm-1) can be observed in the 

spectrum of the biotinylated magnetite. 

Based on the above calculated mass of immobilized enzyme, an increase of 

enzymatic activity per mg was observed, consistent with the results presented in 

Chapter 1. Following that, multiple experiments were realized with different amounts 

of hydrogen peroxide using the process described in Chapter 1. The above were 

accomplished using two forms of the same enzyme, the native HRP-Avidin conjugate 

and the immobilized conjugate on biotinylated particles. To make a valid comparison, 

the solutions needed to have identical enzyme masses. However, the exact moles of 

immobilized enzyme were measured indirectly and only estimates were available as 
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described previously. To obtain comparable results, the native enzyme solution 

contained the largest estimate for HRP mass per particles. 
 

 
Figure 2.3: A schematic of an immobilized HRP-Avidin conjugate on a 

biotinylated magnetite particle (not in scale). Pictures for the protein structures 

where obtained through the protein databank PDB.14

Contrary to Chapter 1 where assays of HRP activity were performed in the 

presence of magnetite particles, the assays performed here had HRP attached on 

magnetite particles. Nevertheless, a similar beneficial effect on HRP kinetics was also 

observed. In Figure 2.4 the data of enzymatic activity for the immobilized HRP were 

consistent with the magnetic field effects observed in Chapter 1. 

Furthermore, the storage stability of the immobilized enzyme was improved 

when compared to the native HRP-Avidin conjugate. The residual activity of the two 

enzyme solutions stored in 25 ºC is plotted in Figure 2.5. In a period of 15 days, the 

immobilized enzyme lost approximately 20 % of its initial activity where the native 

form had lost over 50 %. 
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Figure 2.4: Dependence of enzymatic activity on H2O2 concentration for the 

native HRP-Avidin conjugate and the immobilized conjugate on biotinylated 

magnetite particles. The native enzyme assay contained 1.6 nM of HRP and the 

immobilized enzyme assay 1.6 nM of HRP and 5.3 µg/mL biotinylated magnetite 

particles. 
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Figure 2.5: Residual activities for the native HRP-Avidin conjugate and its 

immobilized counterpart during two weeks of storage in room temperature. Both 

solutions had a concentration of 47 nM of enzyme in DI water. 

CONCLUSIONS 

Using the proposed immobilization method for HRP on biotinylated magnetite 

particles, we have achieved improved enzyme stability and higher enzymatic activity 

to the native counterpart. The immobilization process was a simple one-step process 

that was completed under mild conditions of temperature and pH using the strong 

affinity of biotin for Avidin. Moreover, the magnetic properties of the iron oxide 

particles had a significant effect in the kinetics of the immobilized HRP, which was 

consistent with the observations in Chapter 1. Further optimization could provide a 

measure for the application range of the proposed immobilization approach. 
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CHAPTER 3: AN AVIDIN-BIOTIN IMMOBILIZATION APPROACH 

FOR HORSERADISH PEROXIDASE AND GLUCOSE OXIDASE ON 

LAYERED SILICATES WITH HIGH CATALYTIC ACTIVITY 

RETENTION AND IMPROVED THERMAL BEHAVIOR. 

INTRODUCTION 

During the last decades of the 20th century, enzymatic reactions found an 

increasing number of applications due to their versatility and specificity. A broad array 

of technologies ranging from organic synthesis, biosensors, green energy applications 

and many other fields are now depended on biological catalysis.1 This strengthened 

the need for better and improved enzymatic properties and led to numerous efforts for 

the development of insoluble enzymes with tailored properties.2-5 Immobilized 

enzymes have various advantages compared to their soluble counterparts, including 

enhanced stability, repeated or continuous use, easy separation and possible 

modulation of their catalytic properties.6 Successful control of all the above can result 

in a lower production cost or improved process control in an industrial scale. 

Currently, there is a growing number of publications investigating new enzyme 

immobilization approaches or improving existing methods.7-12 Most immobilization 

techniques fall into four categories of non-covalent adsorption, covalent attachment, 

entrapment, and crosslinking. However, one of the drawbacks of enzyme 

immobilization is the alteration of the enzyme’s three dimensional conformation. In 

this context, the advantages of immobilization are often accompanied with partial loss 

of the catalytic activity. To obtain optimum immobilization conditions, one has to 

balance between a number of conditions that are not always well understood.  

In the recent past, there has been an increasing number of publications 

investigating immobilization approaches with minimal activity loss10,13,14 and 
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improved performance.15,16 In that direction, an immobilization approach with high 

retention of catalytic activity and improved thermal behavior is presented for two 

frequently used enzymes, namely Horseradish Peroxidase (HRP) and Glucose Oxidase 

(GOx). The immobilization support was a synthetic layered silicate. Layered silicates 

are stable inorganic materials with interesting properties such as excellent 

dispersability in water, large surface area per mass and tunable surface chemistry via 

simple ion-exchange and surface chemistry reactions. Layered silicate-enzyme 

complexes have appeared in literature before and various immobilization methods and 

applications were realized.17-25 In this work, a new approach of enzyme 

immobilization on layered silicates is presented, utilizing the edge hydroxyl groups on 

their surface. Using this approach, the large surface area of the silicates remained 

available for functionalization, leaving open the possibility of various modifications of 

the surface area present in the galleries between the layers of the silicates. As an 

example, modification of the layered silicates with surfactants26-28 can render the 

silicates highly hydrophobic. Suspension of the immobilized enzymes in hydrophobic 

organic solvents and non aqueous enzymatic catalysis could be possible.29-32

MATERIALS AND METHODS 

UV/Vis spectra were obtained on a Perkin-Elmer® model Lambda 10 

instrument, connected serially on a PC running Windows® 2000 and controlled 

through UVWinlab software provided by Perkin Elmer. 

Fourier Transform Infra-Red (FTIR) spectroscopic measurements were 

performed on a Bruker Vertex 70 FTIR spectrometer equipped with a diamond crystal 

for attenuated total reflectance (ATR) setup.  

Several buffer solutions of different pH were employed. The pH 7 buffer was a 

0.05 M potassium phosphate monobasic solution, the pH 10 buffer was a 0.05 M 
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Potassium Carbonate/Potassium Tetraborate/Potassium Hydroxide/Disodium EDTA 

Dihydrate solution. The pH 4 and pH 5 were 0.01 M sodium acetate solutions. The pH 

7.4 was a 0.05 M potassium phosphate solution and the pH 8 was a 0.01 M Tris-HCl 

solution.  

The deionized water (DI) used throughout the experiments was purified in a 

“Barnstead Nanopure RO” unit and had minimum resistivity of 18 MΩcm. Phenol,  

4-aminoantipyrine, hydrochloric acid and hydrogen peroxide were purchased from 

Sigma-Aldrich, and the temperature controller was a Mirak Thermolyne 49 by 

Barnstead Corporation. 

Biotinylation of layered silicates 

A synthetic layered silicate, Somasif ME-100 (Na+-Fluoromica or FM) with a 

cation exchange capacity of 120 mequiv/100 g was obtained from CO-OP Chemical 

LTD. Biotin was obtained from Sigma Aldrich as a lyophilized powder. 

Functionalization of layered silicates with biotin was accomplished through a 

condensation reaction between the carboxyl group of biotin and the hydroxyl groups 

located at the edges of the silicate. 100 mg of fluoromica and 370 mg of biotin were 

added in 20 mL of ethanol with 0.5 mL of hydrochloric acid (12 N). After stirring the 

mixture for 5 minutes at 40 ºC the solid product was washed and centrifuged multiple 

times with deionized water until neutral pH was reached. 

Enzyme Immobilization. 

The high affinity between Avidin and biotin was utilized to immobilize 

enzyme-Avidin conjugates on biotin functionalized silicates (biotinylated silicates). 

Horseradish Peroxidase (HRP) conjugate with Avidin and Glucose Oxidase (GOx) 

conjugate with Avidin were obtained from Pierce Biotechnology and Rockland 

Immunochemicals as lyophilized powders. The immobilization of the enzyme 
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conjugates was accomplished in a simple one-step process. An excess amount of an 

enzyme-Avidin conjugate with biotinylated silicates were added in an aqueous 

solution. After stirring for 3 minutes, the solution was centrifuged at 11,000 rpm for 

10 minutes. The resulting pellet was resuspended and centrifuged three times in order 

to remove any unbound enzyme. The activity of the washouts was evaluated in order 

to calculate the amount of enzyme lost during the process and thus, the extent of 

immobilization. 

Evaluation of the enzymatic activity  

The activity of HRP was measured spectrophotometrically according to the 

Worthington protocol.33 The protocol involves the production of a colored product 

with maximum absorbance at 510 nm. According to the Worthington protocol,  

1.5 mL of buffered hydrogen peroxide (1.7 mM) was added in a quartz cuvette to  

1.4 mL phenol (0.17 M) and 4-aminoantipyrine solution (2.5 mM). The pH during the 

assay was kept constant using a potassium phosphate monobasic buffer (pH 7). After 

temperature equilibration, 0.1 mL of an unknown activity HRP solution was added. 

From the increase of absorbance at 510 nm with time, the activity of the unknown 

solution was calculated. Likewise the activity of GOx was evaluated using a similar 

protocol described in the Worthington manual.33  

The enzymatic activity at various temperatures was measured using the above 

protocol. A temperature controlled digital stirrer and a water bath were used during the 

measurements. The accuracy of the temperature controller was ±1 ºC. The cuvette 

containing all reagents was immersed into the bath and after temperature equilibration, 

it was inserted into the spectrophotometer where the enzyme solution was finally 

added. 

 53



 

For the thermal stability experiments, 2 mL of the enzyme solution (in a sealed 

container to avoid evaporation of the solvent) were placed in a temperature controlled 

oven and at various times 0.1 mL of the sample were removed and tested (at 25 ºC) for 

residual enzymatic activity. 

RESULTS AND DISCUSSION  

Successful functionalization of the silicates with biotin was assessed using 

FTIR spectroscopy. The functionalized silicates showed the characteristic absorbance 

peaks of biotin’s aliphatic groups after extensive washing and decantation through 

centrifugation (see Figure 3.1).  

3200 3100 3000 2900 2800 2700

0.00

0.01

0.02

0.03

0.04

 

Ab
so

rb
an

ce

Wavenumber (cm-1)

 Biotinylated Fluoromica
 Fluoromica
 Biotin

 
Figure 3.1: IR spectra for pristine silicate (fluoromica), biotin, and biotinylated 

fluoromica. The characteristic absorption peaks of alkyl groups can be seen in 

the biotinylated fluoromica between 2980 and 2850 cm-1. 
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The maximum loading of enzyme on the support was approximately 1 wt.%. A 

sketch of the immobilized enzyme on a biotinylated silicate is shown in Figure 3.2. 

 

Biotin
Silicate

Avidin
HRP  

Figure 3.2: A schematic of the HRP-Avidin conjugate immobilized on a 

biotinylated silicate (not in scale). The pictures for the protein structures where 

obtained through the protein databank PDB.34

In the case of Horseradish Peroxidase-Avidin conjugate (HRP), the activity 

retention for the immobilized enzyme was close to 95 % when compared to the native 

enzyme. All data presented for the native enzyme are based on the Avidin conjugate of 

HRP. However, the activities of commercial HRP enzymes with or without Avidin 

conjugation are comparable (a few hundreds of units per mg of enzyme). In Figure 

3.3, the storage stability at room temperature of the immobilized HRP is presented. 

The results were almost identical when compared to the native enzyme conjugate after 

34 days. Furthermore, the pH behavior of the immobilized and native enzyme 

followed the same bell-curve behavior with an optimal value of pH 7 (see Figure 3.4). 

However, the immobilized HRP and GOx appeared to have improved thermal 

behavior at elevated temperatures when compared to their native forms. 
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Figure 3.3: Storage stability at room temperature for the native and immobilized 

HRP-Avidin conjugate. 
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Figure 3.4: Enzymatic activity at different pH environments for immobilized 

HRP on biotinylated silicates and native HRP. 
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Horseradish Peroxidase 

Horseradish Peroxidase is a heat-stable enzyme that denatures at temperatures 

over 76 ºC. The enzyme retains most of its catalytic activity for temperatures below  

70 ºC 35,36 and due to enzyme’s thermal stability, its apparent activity increases with 

increasing temperature. This is a well-documented phenomenon and chemical reaction 

rates approximately double for every 10 ºC increase. The behavior of HRP is 

illustrated in Figure 3.5, where the normalized activities of the native and immobilized 

enzymes are plotted as a function of temperature. 
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Figure 3.5: Apparent activity increase with temperature for native and 

immobilized HRP. The enzymatic activity was normalized with the activity at  

20 ºC and was plotted as a function of temperature. The activity of native HRP at 

20 ºC is 142 U/mg and of the immobilized HRP under the same conditions, 137 

U/mg. 
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In Figure 3.5, the activity increase for the immobilized enzyme with 

temperature is more pronounced when compared to the native enzyme. We suspected 

that the temperature dependence was due to the improved stability of the immobilized 

HRP. To investigate the above hypothesis, the evolution of the residual activity of the 

two forms of HRP at elevated temperatures was plotted. The residual activity of both 

enzymes in a period of 70 minutes is plotted in Figure 3.6. The residual activity of 

both native and immobilized enzymes was found to be almost identical when heated at 

66 ºC and measured again at 25 ºC. 
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Figure 3.6: Residual activity of native and immobilized HRP at 66 ºC during a 

period of 70 minutes. 

The above results prompted further investigation for the apparent enhanced 

performance and further study of the enzymatic mechanism was undertaken. 

Michaelis-Menten kinetics were assumed for both native and immobilized enzymes. 

Multiple experiments with different substrate concentrations were performed at 
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different temperatures in order to obtain Michaelis-Menten kinetics plots (see Figure 

3.7). Through linear fitting, we obtained values for the kinetic parameters of the native 

and immobilized enzymes. The kinetic data calculated from the Lineweaver-Burk 

graphs were also in agreement with the values calculated from fitting the data in the 

classical exponential form.  
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Figure 3.7: Lineweaver-Burk activity representations for the native and 

immobilized enzyme at 20 ºC, 41 ºC and 51 ºC. The kinetic parameters Km and 

Vmax can be extracted by fitting the data to a line.  

Assuming Arrhenius behavior, the logarithm of Km as a function of the inverse 

of temperature was plotted as shown in Figure 3.8, in order for the values of the pre-

exponential factor, A, and the activation energy, EA, to be obtained. A summary of 

these values and parameters are listed in Table 3.1. The activation energy for the 

immobilized enzyme is doubled but the pre-exponential factor increases significantly 

compared to the native HRP.  

 

 59



 

 60

0.0030 0.0032 0.0034
-11.0

-10.5

-10.0

-9.5

-9.0

 

 

Native HRP
Immobilized HRP

ln
 K

m

Temperature-1 (1/K)

Glucose Oxidase  

Avidin-Glucose Oxidase conjugate was also immobilized on biotin 

functionalized layered silicates. The activity retention in the case of immobilized 

glucose oxidase (GOx) was almost 70 % at 20 ºC and pH 7 when compared to the 

native GOx (GOx-Avidin conjugate). 

Figure 3.8: Arrhenius behavior of the experimental kinetic parameters for the 

immobilized and native enzyme conjugates 

The above results suggest that the immobilized enzyme was altered in a way 

that, even though the activation energy for the reaction was larger by a factor of two, 

the pre-exponential factor increased more. This resulted in higher activity for the 

immobilized enzyme at higher temperatures compared to the native enzyme. 
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Table 3.1: Summary of experimental kinetic parameters for the immobilized and native HRP-Avidin conjugate. Calculated 

activation energies and pre-exponential factors, assuming Arrhenius behavior, are also listed. 

 K  (M) at 20 m ºC K  (M) at 41 m ºC K  (M) at 51 m ºC A (M) 
Ea 

(KJ/mol) 

Native HRP 
4.3·10-5 ± 

2.1·10-6

7.4·10-5 ± 

8.2·10-6

8.1·10-5 ± 

3.2·10-6
0.04 ± 0.03 16.8 ± 2.9 

Immobilized HRP 
2.7·10-5 ± 

4.3·10-6

7.1·10-5 ± 

7.2·10-6

9.8·10-5 ± 

4.4·10-6
23 ± 2.9 33.3 ± 1.9 

 



 

Similarly to HRP, an improved catalytic behavior at higher temperatures was 

observed for GOx. In Figure 3.9, the immobilized GOx retained 65 % of its activity at 

58 ºC while in the case of the native enzyme only 20 % of the enzymatic activity was 

still present under the same conditions. 
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Figure 3.9: Residual activity of the immobilized and native GOx-Avidin 

conjugate at pH 7 as a function of temperature. 

Improved catalytic behavior of the immobilized GOx enzyme was also 

observed at different pH environments. In particular, the immobilized GOx retained  

35 % of its activity compared to 15 % for the native enzyme at 20 ºC and pH 4. 

Furthermore, in a basic environment (pH 10) the immobilized GOx retained 20 % of 

its activity where the native enzyme under the same conditions retained only 5 % of its 

initial enzymatic activity. 
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CONCLUSIONS 

We have presented a versatile immobilization approach for avidinylated 

enzymes on biotin modified layered silicates with the biotin-Avidin moiety serving as 

the spacer between the inorganic particles and enzyme. The immobilized enzymes 

retained high levels of activity compared to the native enzymes and showed improved 

thermal behavior. In addition, immobilized GOx at various pH environments showed 

enhanced activity when compared to the native form. This simple one-step 

immobilization approach could find applications (such as non aqueous enzymatic 

catalysis) in various fields.
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CHAPTER 4: A NANOHYBRID MEMBRANE WITH LIPID BILAYER-

LIKE PROPERTIES UTILIZED AS A CONDUCTIMETRIC 

SACCHARIN SENSOR. 

INTRODUCTION 

In the last few years, there has been an unprecedented interest in the 

development of analytical devices for the detection and monitoring of various 

biological and chemical analytes. For several decades analytical chemists were 

inspired from the biological sciences. One of the most important models was the cell, 

whose specificity and sensitivity made it the ideal sensor. All of the communications 

of the cell with the outside world materialize on its surface consisting of the cell lipid 

bilayer and integrated proteins. Inspired by the above example, the number of 

publications related to lipid films as sensors and biosensors has grown considerably.1 

A review article in 2001 listed 122 articles using Bilayer Lipid Membranes (BLMs) in 

analytical applications2 and in 2000 the first book focused on biomimetic sensor 

technologies was published.3

One of the major disadvantages in adopting this technology is that freely 

suspended BLMs are mechanically fragile and unsuitable for most practical 

applications. However, in the last few years supported BLMs were used on metal 

surfaces (solid-supported), in polymer matrices (gel-supported) or deposited on porous 

membranes (filter-supported).1,2,4 Even though the above modifications improved the 

stability of BLMs, they didn’t resolve the problem and most of these had a lifetime of 

only hours or days.  

There are two distinct areas of sensing applications based on either modified or 

unmodified BLMs. The term “modified” signifies a BLM where an enzyme, antibody, 

receptor protein or DNA probe were immobilized while “unmodified” describes a 
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BLM “as-is”, where the sensing ability originates from the interaction of the analyte 

with the lipid bilayer alone, and no specific binding or chemical reaction is taking 

place. In literature, various molecules were reported to interact with unmodified BLMs 

and sensing devices have been realized.4-12 On the other hand, layered silicates have 

been utilized in numerous applications and their versatile properties13,14 were exploited 

by a large number of researchers in the fields of materials science, environmental 

applications and elsewhere.15-21  

In this work, we utilized an alternative approach to a more stable nanohybrid 

membrane that served as a robust and fast sensor. Modeling the lipid bilayer structure, 

an inorganic layered silicate and amphiphilic molecules were combined to obtain a 

nanohybrid membrane with BLM-like structure. To evaluate the membrane’s sensing 

capability we developed a sensing platform that utilized the nanohybrid membrane as 

the recognition element. The sensing capability was evaluated using saccharin as the 

analyte, a suspected carcinogen molecule already proven to interact with unmodified 

BLMs in a sensor setup.12,22 Impedance Spectroscopy (IS) was employed to monitor 

the electrical properties changes of the membrane due to analyte exposure and 

microfabricated Interdigitated Electrodes (IDEs) were utilized to enhance the 

sensitivity of the device. 

MATERIALS AND METHODS 

A synthetic layered silicate, Somasif ME-100 (Na+-Fluoromica or FM), with a 

cation exchange capacity (CEC) of 120 mequiv/100 g was obtained from CO-OP 

Chemical LTD. Dihexadecyl-dimethylammonium bromide and didodecyl-

dimethylammonium bromide were obtained from Sigma-Aldrich. Deionized water 

was used throughout the measurements (Barnstead Nanopure RO, 18 MΩcm 

resistivity). Saccharin, glucose and sucrose (>98 %) were obtained from Sigma-
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Aldrich. The buffer solution was obtained from Fisher Scientific and was a pH 7,  

10 mM potassium phosphate monobasic and sodium hydroxide solution. All other 

materials and solvents were ACS grade. 

Powder X-Ray Diffraction (PXRD) spectra were collected on a Scintag Inc θ-θ 

diffractometer using CuKα source radiation and a germanium detector. Modulated 

differential scanning calorimetry (MDSC) was performed under nitrogen on a TA 

instruments DSC Q1000 series, with a scanning rate of 3 ºC/min and modulation of  

±1 ºC/min. The percent of organic content in the material was estimated Thermo-

Gravimetrically (TGA) from the weight loss associated with decomposition. The latter 

analyses were carried out under an 80 mL/min flow of nitrogen on a TG/DTA 320 S.I. 

instrument at 10 ºC/min rate. Contact angle measurements were performed on an 

apparatus equipped with an x-y-z controlled stage and a microscope positioned 

parallel to the stage plane. The angle was read through the microscope by a scale built 

inside the optical tube. The measurements were realized by adding 2.5 mL of a 

solution with different concentrations on a previously cast nanohybrid membrane. 

Scanning electron microscopy (SEM) was performed on a LEICA 440 SEM 

instrument. An Energy Dispersive X-Ray Spectrometer (SEM-EDS) JEOL 8900 

EPMA Microprobe was utilized for quantitative elemental analysis. The utilized beam 

ranged from 15 KV to 25 KV. Fourier Transform Infra-Red (FTIR) spectroscopy was 

performed in a Mattson Galaxy 2020 IR spectrometer. The samples were prepared by 

mixing and grinding with potassium bromide in a mortar and pestle, and finally 

pressed into a pellet using a hydraulic press. The FTIR spectra were obtained under a 

nitrogen flow in the sample chamber. 
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Interdigitated Electrodes (IDEs) microfabrication. 

Multiple sensors/IDEs with Pt electrodes were fabricated on silicon using 

facilities at the Cornell Nanoscale Science and Technology Facility (CNF). The design 

was done in CAD and a mask was patterned on a GCA/Mann 3600F Pattern 

Generator. On a 4” silicon substrate wafer, 10 µm SiO2 layer was deposited using a 

GSI PECVD tool, and UV resist, Shipley 1813, was patterned on a GCA-6300 5x g-

line stepper. A stack of 5 nm of Cr and 50 nm of Pt layers were deposited in an e-

beam evaporator CVC SC4500. An array of fourteen IDEs/sensors was deposited on a 

single wafer and was cut into fourteen single sensors using a diamond knife. The 

IDE’s characteristic lengths were 20 µm wide Pt electrodes with 20 µm inter-electrode 

spacing. The electrode fingers were 3.8 mm long and each sensor had 100 fingers. The 

scanning area was 0.076 cm2. The contact pads were part of the design and contact for 

electrical measurements was realized through copper clips. 

Synthesis of the nanohybrid membrane. 

The nanohybrid membrane was synthesized by a cation exchange reaction 

between the layered host and excess alkylammonium cations (1.5 times the cation 

exchange capacity). The quaternary ammonium cations were dissolved in a 1:1 

mixture of ethanol and deionized water at 60-70 ºC. A 1 wt.% aqueous suspension of 

the host was added to the alkylammonium solution and the mixture was stirred for 24 

hours at 60-70 ºC. The modified silicate was collected by filtration and was 

subsequently washed with a mixture of hot ethanol and deionized water three times. In 

addition, the filter cake was washed in a soxhlet apparatus with ethanol overnight to 

remove any remaining alkylammonium salt. Once the filter cake was dried overnight 

under vacuum and 60 ºC, the white solid was grinded at 14000 rpm using an 80 µm 

mesh in a Glen Mills Inc centrifugal grinder. 2C12FM and 2C18FM correspond to 
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didodecyldimethylammonium and dihexadecyldimethylammonium exchanged silicate 

respectively.  

Sensing experimental setup 

To evaluate the sensing capability of the nanohybrid membrane, thin films 

were formed on IDEs by evaporating 20 µL of 4 wt.% modified silicate suspensions in 

toluene. The cast membranes were dried at room temperature for several hours. The 

thickness of the membranes measured by SEM was 7±1 µm. The IDEs/membranes 

were immersed in a beaker of 100 mL pH 7 buffered stirred solutions. The response of 

different analyte concentrations was measured by standard addition of aliquots of 

analyte to the beaker. The temperature during the experiments was kept at room 

temperature unless otherwise specified. To evaluate the electrical properties of the 

membrane, an Impedance Spectrometer HP 4192A controlled by a PC and Labview® 

software was used. Measurements were done using a two-electrode setup applying a 

10 mV amplitude AC voltage while measuring the current passing through the IDE 

and the phase angle. The Spectrometer had an option of measuring the impedance 

modulus and the phase angle while sweeping frequencies from 5 Hz to 13 MHz or 

evaluating conductance at a set frequency and registering the changes with time. The 

latter was used extensively for all the sensing measurements; however, frequency 

sweeps were also obtained to identify the equivalent circuit of our setup and to decide 

the value of the optimum frequency where all further experiments were performed. 

Equivalent circuit investigation 

The equivalent circuit investigation of the IDEs and IDEs with deposited 

membranes were based on previously published work.23,24 The equivalent circuit 

suggested in literature and adopted in this work is shown in Figure 4.1. The capacitor 

Cdi is the dielectric capacitance over the plane of the electrodes, the capacitors CDL are 
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the double layer capacitances formed in the vicinity of the electrodes and Rsol is the 

resistance of the solution over the plane of the electrodes. To validate the circuit 

proposed and estimate the values of the circuit elements, impedance spectra were 

obtained and fitted by LEVMW v.8 software using complex nonlinear least squares. 

The software was made available by Prof R. Macdonald and Solarton Group ltd. To 

obtain a calibration curve various concentrations of KCl solutions were used and the 

Rsol was measured. The result was a conductivity-conductance calibration graph for 

the IDEs (see Figure 4.2). The calibration curve was in agreement with an analogous 

curve presented in literature using a two-electrode technique and an IDE with similar 

geometry.25

The spectra of IDEs with the membranes deposited were similar and the 

equivalent circuit already discussed held where the Rsol of the circuit was the 

resistance of the hydrated membrane. Based on impedance spectra, the frequency of 1 

KHz was chosen for the sensing experiments in order to minimize the noise and 

achieve a relatively large magnitude component for the real vector on the Nyquist plot 

complex plane. 
CDL CDL

Cdi

Rsol

CDL CDL

Cdi

Rsol

 
Figure 4.1: Equivalent circuit for the IDEs utilized in this work. 
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Figure 4.2: Calibration curve of the IDEs utilizing various concentrations of KCl 

of known conductivities. This graph was utilized to transform the conductance 

values of the experimental setup into conductivity values.  

RESULTS AND DISCUSSION 

Characterization of the Nanohybrid Membrane. 

Didodecyldimethylammonium bromide modified fluoromica (2C12FM) and 

dihexadecyldimethylammonium bromide modified fluoromica (2C18FM) were fine, 

white, highly hydrophobic powders, dispersable in solvents like toluene and 

chloroform. To evaluate the modification success, Powder X-ray diffraction (PXRD) 

was employed and the results are plotted in Figure 4.3. The pristine silicate had a 

gallery d-spacing of 0.9 nm, this peak disappeared in the 2C18FM and 2C12FM 

modified silicate, whose galleries d-spacings became 3.3 and 2.4 nm accordingly 

(Figure 4.3). 
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Energy dispersive scanning electron (SEM-EDS) microscopy was used to 

calculate the extent of ion–exchange and intercalation in the nanohybrids. The results 

showed 72 % for 2C18FM and 69 % for 2C12FM based on the CEC value (120 

mequiv/100 g) which corresponded to a calculated 38 % and 27 % organic content, 

respectively. The presence of unexchanged salt in the nanohybrid was less than 2 wt.% 

and Thermo-Gravimetric Analysis revealed an organic content of 41 % for 2C18FM 

and 32 % for 2C12FM, which were consistent with the above SEM-EDS results. The 

nanohybrids were suspended in toluene at 4 or 2 wt.% concentrations and cast to 

produce thin multi-bilayered membranes. 

Nanohybrid Membranes: Analogies to Bilayer Membranes  

Films formed by solvent casting consisted of a multi-bilayered membrane of 

several (hundreds) stacks of a few nanometer thick bilayers (see Figure 4.4). The 

resulting artificial membrane had many similarities with the two-leafed structure of the 

cell membrane. The membrane consisted of bilayers with defined hydrophobic and 

hydrophilic areas and overall thickness that varied between 1.5 and 3 nm depending 

on the amphiphile utilized. The silicate served as host and template for the bilayer 

formation of the amphiphilic molecules inside the inter-layer gallery. The amphiphiles 

simulate the phospholipids (Figure 4.4 and 4.3) with the hydrophobic alkyl chains and 

the charged head groups (the ammonium group in this case). The result was a very 

stable and robust membrane that withstood large variations of pH and temperature up 

to 200 ºC without losing its properties.
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Figure 4.3: X-ray diffraction spectra of the pristine and the ion-exchanged 

silicate host with two different amphiphiles. Also a schematic of the modification 

is shown. 
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Figure 4.4: SEM picture of a nanohybrid membrane. Also a sketch of three 

bilayers is displayed; multi-stacks of these bilayers form the nanohybrid 

membrane. In the sketch, the beads represent the hydrophilic groups and the 

long lines the hydrophobic alkyl chains. The planes represent the silicate layers. 

Lipid bilayer membranes are known to have three major thermotropic phases: 

the Lβ phase, where the alkyl chains are in a rather ordered state also called the ‘gel’ 

phase, the Lα phase, where the alkyl chains adopt a more fluid-like character, also 

called the ‘liquid crystalline’ phase, and an in-between Lo phase, which rises from the 

presence of cholesterol in the lipid bilayer membrane.26-30 A phase diagram of these 

three phases was reported in the phosphatidylcholine-cholesterol system.29 Similarly, 

the nanohybrid membrane exhibited 1st order thermal transitions that correspond to 

the “melting” of an ordered gel phase to a more disordered liquid crystalline phase.  

Furthermore, cholesterol was integrated in the nanohybrid membrane by 

mixing a suspension of 2C18FM or 2C12FM in toluene with a cholesterol-chloroform 

solution. After casting of the membrane, we expected cholesterol integration in the 

gallery and alignment with the ammonium ions due to the amphiphilic character of 

cholesterol. Evidence of cholesterol integration was obtained by FTIR and PXRD. In 

Figure 4.5 the d-spacing expansion of the interlayer gallery due to the integration of 

cholesterol is plotted. Similar data were reported previously in the dipalmitoyl-L-

lecithin, cholesterol and water system.31
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Figure 4.5: Summary of the results utilizing PXRD and MDSC to probe the effect 

of cholesterol on the nanohybrid membrane. The top graph is the d-spacing of 

the silicate interlayer gallery (note that in the values reported the 9 Å of the 

silicate thickness is included). The middle graph is the temperature where the 

transition peak is observed and finally, the bottom is the integration value of the 

peak corresponding to the enthalpy of the 1st order transition. The data are in 

agreement with previous results.28
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To obtain an 11, 38 and 55 wt.% cholesterol content membranes, modified 

silicate and cholesterol solutions were made with 20:1, 4:1 and 2:1 weight ratios. 

MDSC investigations of the above cholesterol containing samples revealed similar 

decrease on the thermal transitions as with conventional lipid bilayer membranes and 

liposomes.29-31 The MDSC curve for 55 wt.% cholesterol was identical with the 38 

wt.% with no transition observed. It is important to note that beyond 38 wt.%  

(44 % mole) concentration, the presence of cholesterol crystals was verified by PXRD, 

suggesting that the membrane was saturated with cholesterol and the lipid bilayers 

were all in the Lo phase. The saturation concentration was previously reported at  

34 wt.% (50 % mole) for the 1,2-dipalmitoyl-L-lecithin–cholesterol system.28 Figure 

4.5 summarizes results from several techniques to further characterize the effect of 

cholesterol on the nanohybrid membrane. MDSC experiments verified the shift of the 

transition temperature as well as the enthalpic magnitude of the transition with 

different cholesterol concentration (see Figure 4.6). 

The nanohybrid membrane as a sensor. 

In Figure 4.7 the response of 2C12FM membrane to saccharin is plotted. The 

response plot for 2C18FM is shown in Figure 4.8 with the main difference between 

the two the limit of detection and sensitivity that are lower in the latter. For all the 

experimental points used to produce the response graph, a new IDE and a newly cast 

nanohybrid membrane was employed. The structure of the analyte molecule is 

illustrated as an inset in Figure 4.7. 
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Figure 4.6: MDSC reversible heat fluxes of 2C18FM, containing 0 wt.%, 11 wt.% 

and 38 wt.% cholesterol with respect to the total organic content of the 

nanohybrid membrane. 
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Figure 4.7: Sensing response of the 2C12FM nanohybrid membrane to the 

analyte. (Inset: the saccharin molecule) 
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Figure 4.8: 2C18FM membrane response to saccharin.  

The y-axis in Figures 4.7 and 4.8 are conductance slope µS/s and the 

justification of that selection is shown in Figure 4.9 where raw data of various 
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experiments are plotted. The dynamic range of the sensor was 20 µM to 400 µM and 

the lower limit of detection was 6 µM. The sensitivity of the sensor was 12 nS·s-1 per 

10 µM of analyte and the error was ±16 µM. A summary of the specifications of our 

sensor together with properties of other reported saccharin sensors are included in 

Table 4.1 for comparison.12,32,33

Figure 4.9: Response of the sensing setup to various saccharin concentrations. 

The second curve from the bottom had two slopes due to a second consecutive 

addition of analyte at t~550 sec.  
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Table 4.1: Summary of the characteristics of the sensor presented here with saccharin sensors reported in literature. 

 

Nanohybrid 

Membrane 

sensor 

Capitan-Vallvey et al, 
33

Elmosallamy et al, 32 Nikolelis et al, 12

Transduction method Conductimetric Spectrophotometric   Potentiometric Electrochemical

Recognition element Artificial BLM 
Sephadex G-25 solid 

column 

Aliquat 336S-

saccharinate ion pair in a 

PVC membrane 

Surface stabilized 

BLM 

Lower limit of 

detection 
6 µM 5.5 µM 30 µM 0.3 µM 

Dynamic Range 20 - 400 µM 5.5 - 1000 µM 50 µM - 0.1 M 0.4 -7 µM 



 

To evaluate the selectivity of the sensor, the response of the setup to glucose 

and sucrose was investigated. Interference studies were done in a competitive study 

where both analyte and interference molecules were present at the same solution; no 

significant interference was observed. To further ensure the specificity of the response, 

a blank buffered solution was examined; glucose was consecutively added up to 250 

µM following an addition of a saccharin aliquot that resulted to a membrane response 

as if glucose was absent.  
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Figure 4.10: Data recording from an interference experiment showed no response 

to glucose. The addition of saccharin gave rise to the anticipated response.  

Investigating the origin of the response. 

To determine the mechanism of the response, we focused on the structural 

changes of the membrane caused by analyte exposure. MDSC, FTIR, PXRD and 

Contact Angle measurements were utilized to probe the origin of the response. 

Previous studies on supported BLMs found that exposure of a BLM to saccharin 

caused an increase to the hydrophilicity of the membrane; consequently more water 
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molecules could integrate and associate with the polar head groups of the membrane. 

An increase in hydrophilicity, apart from increasing permeation of ions, can also 

change the “effective area” of the head group of the amphiphile and the 

orientation/association of water; therefore, the electrostatic field at the surface of a 

membrane.3,12,34-38

Measurements with nanohybrid membranes revealed a decrease in the contact 

angle with increasing saccharin content. At 0.1 mM of saccharin the contact angle was 

93 degrees, at 1 mM it was 77 and at 10 mM was 65. The decrease of the contact angle 

supported the suggestion that the membrane became more hydrophilic with increasing 

saccharin concentration exposure. A control experiment on an inert surface (Teflon) 

showed no dependence of the contact angle with different concentrations of saccharin. 
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Figure 4.11: Contact angles of different concentration solutions of saccharin on a 

nanohybrid membrane. 

 

To further examine the mechanism, four different samples were prepared to 

evaluate the changes of the membrane structure due to saccharin exposure. 
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Nanohybrid membranes were cast on a glass slide from a 4 wt.% toluene solution. 

After drying overnight at room temperature the membranes were exposed to a 

different saccharin concentration solution for 15 minutes. Finally, the membranes 

were dried and removed from the glass substrate for further analysis. PXRD scans 

showed that when exposed to a saccharin solution, the d-spacing of the bilayer 

increased by 5.7 Å (see Figure 4.12a). 

The extent of this expansion was proportional to the concentration of the 

analyte. Given that the Van der Waals average diameter of a water molecule is 

approximately 2.8 Å the expansion came from the integration of water molecules in 

the lipid bilayer into the layered host justifying the 5.6 Å (2·2.8 Å) expansion.39,40 

From MDSC and FTIR investigations larger water content in samples C and D than 

samples A and B, were also observed.  

To ensure that Saccharin entered the nanohybrid membrane and it was 

responsible for the observed signal, we employed FTIR spectroscopy to track the 

saccharin signature peaks in samples A, B, C and D. The spectra of the samples 

described above were obtained and plotted in Figure 4.12b. As it was expected the 

characteristic peaks of saccharin at 1580 and 1270 cm-1 were gradually appearing with 

increasing intensity for the membranes exposed to increasing analyte concentration. 

The ratio of the intensity at 1580 cm-1 over the intensity at 1469 cm-1 (1469 cm-1 is a 

characteristic peak of the membrane modifier C12) it was larger for samples C and D 

indicating that saccharin was present at higher concentrations in the membranes with 

increased exposure to saccharin. Furthermore, the characteristic peak of water at  

1643 cm-1 also increased in intensity, an observation consistent with the hypothesis of 

water integration in the interlayer gallery of the nanohybrid membrane. 
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Figure 4.12: In Figure 4.12a, X-ray diffraction profiles are plotted for 

membranes exposed to increasing concentrations of analyte. In Figure 4.12b, 

FTIR spectra of the same membranes are shown. Sample A was exposed to 

water. Sample B was exposed to 0.1 mM of saccharin. Sample C was exposed to 1 

mM of saccharin. Sample D was exposed to 10 mM of saccharin. All 4 samples 

were exposed to the above solutions for 15 minutes. Sample E is exposed to 10 

mM of saccharin for 12 hours. 
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From the above observations, we concluded that the saccharin molecule 

entered the bilayers of the membrane, interacting with the polar groups of the lipid 

bilayers allowing water molecules to integrate into the nanohybrid membrane. These 

changes in membrane’s hydrophilicity lead to the observed conductimetric response. 

CONCLUSIONS  

A stable artificial membrane and a sensor mimicking a lipid bilayer using a 

nanohybrid of an inorganic host and amphiphilic organic molecules were presented. 

The nanohybrid membrane exhibited two thermotropic phases corresponding to the Lα 

and Lβ phases that lipid bilayer membranes are known to adopt. Integration of 

cholesterol molecules into the nanohybrid membrane lead to the same qualitative 

effect as in lipid bilayers, including expansion of the bilayer spacing and decrease of 

the Lα to Lβ transition enthalpy. The nanohybrid membrane was used as a 

conductimetric sensor and its ability to sense saccharin molecules was evaluated. The 

lower limit of detection of the sensor was 6 µM and the dynamic range was from 20 

µΜ to 400 µM. Our mimetic approach offers high stability, robustness and simple 

synthesis compared to other artificial membranes. 
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CHAPTER 5: SYNTHESIS, CHARACTERIZATION AND DELIVERY 

OF A MODIFIED FLUORESCENT SILICATE TO 9L GLIOMA CELLS 

INTRODUCTION 

During the last decades, the field of drug delivery has generated a number of 

novel delivery techniques and numerous researchers have focused on the complex 

challenges. As an example, there is an increasing need to enhance delivery of 

therapeutic proteins to the brain for treating neurodegenerative disorders.1,2 However, 

delivery of therapeutic proteins greatly depends on the penetration of proteins through 

the cell membrane3 and the biggest challenge often encountered is the translocation of 

water soluble proteins across the hydrophobic core of the membrane. Post-

translational modification of proteins is a method used by cells to transport proteins to 

their final destination after synthesis in vivo.4-6  

In 1987 Kabanov et al. were successful in modifying a water soluble protein 

with fatty acids. The modified protein could translocate through a lipid membrane and 

penetrate intact cells.7,8 The lipid modifier served the role of the anchoring moiety for 

the protein onto the outer lipid cell membrane. Finally, the anchored protein was 

uptaken by the cell through endocytosis. This approach was employed in a number of 

different delivery experiments. For example, fatty acid acylated peroxidase was able to 

cross the cell membrane of hamster ovary fibroblastic cells and reside in endocytic 

vesicles.9 Fatty acid acylated antibodies were successfully used for virus suppression 

on a madin darby canine kidney (MDCK) cell line.10 Inspired by the above 

experiments, we used a layered silicate modified with amphiphilic molecules, to 

deliver a fluorescent protein to 9L Glioma cells, namely Avidin Fluorescein 

Isothiocyanate (Avidin-FITC). 
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MATERIALS AND METHODS 

Biotin was obtained from Sigma-Aldrich and deionized (DI) water (Barnstead 

Nanopure RO) was used throughout the measurements. 

Fourier Transform Infra-Red (FTIR) spectroscopic measurements were 

performed on a Bruker Vertex 70 FTIR spectrometer equipped with a diamond crystal 

for attenuated total reflectance (ATR) setup.  

Modification of a layered silicate 

Functionalization of a layered silicate (Montmorillonite or MMT) with biotin 

was accomplished through a condensation reaction between the carboxyl group of 

biotin and the hydroxyl groups at the silicate edges. 100 mg of MMT and 370 mg 

biotin were added in 20 mL of ethanol with 0.5 mL hydrochloric acid (12 N). After 

stirring for 5 minutes at 40 ºC the solid product was washed and centrifuged multiple 

times with DI water until neutral pH was reached.  

MMT had cation exchange capacity of 80 mequiv/100 g. The MMT silicate 

was modified with dodecyl-dimethylammonium surfactants (abbreviated as C12) via 

an ion-exchange reaction between the pristine sodium ions of the silicate and the 

ammonium salts. The product of the modification was a relatively hydrophobic 

dispersion of C12 modified silicate in water that was centrifuged at 11,000 rpm and 

resuspended in water multiple times to remove unexchanged C12 surfactants. The C12 

modified and biotinylated MMT was abbreviated as C12MB. 

Avidin-FITC attachment to the biotinylated silicate. 

The high affinity between Avidin and biotin was utilized to attach Avidin-

FITC conjugate on the biotin functionalized silicate. The immobilization was 

accomplished in a simple one-step process. An excess amount of Avidin-FITC 

conjugate and biotinylated silicates were added in a container. After stirring for 3 
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minutes, the solution was centrifuged at 11,000 rpm for 10 minutes. The resulting 

pellet was resuspended and centrifuged three times to remove the unbound Avidin. 

9L Glioma cell line  

9L Glioma cells were cultured in Dulbecco’s Modified Eagle Medium 

(DMEM) with high glucose and supplemented with 10 % Fetal Bovine Serum (FBS) 

and 1 % Penicillin-Streptomycin. At 70-80 % confluence, cells were trypsinized and 

plated on glass coverslips. An amount of biotinylated silicates with immobilized 

Avidin-FITC was added and the cells were incubated at 37 ºC and a humid 

atmosphere with 5 % CO2 for 24 hrs. The media was then removed and replaced with 

fresh media; this was repeated 3 times to ensure all silicates previously suspended in 

the media were removed from the flask. The coverslips were washed with phosphate-

buffered saline (PBS pH 7.2), fixed in 4 % formaldehyde for 30 minutes and rinsed 

with PBS. The fixed cells were then stained consecutively with 2 fluorescent dyes. 

First the cells were stained with propidium iodide (PI), a red fluorescent dye staining 

primarily the nucleic acid of the nucleus. Secondly, and after the coverslips were 

rinsed with PBS, the fixed cells were also stained with Alexa Fluor® 568 phalloidin, a 

red fluorescent dye that formed a complex with F-actin. After two more rinses with 

PBS, the coverslips were sealed onto glass slides using Cytoseal. Slides were analyzed 

with confocal microscopy using a 488, 568 nm dual excitation filter on a Bio-Rad 

Confocal Microscope, or on an Inverted Fluoresence Microscope (Olympus IX71). 

RESULTS AND DISCUSSION 

Successful functionalization of the layered silicate with biotin was assessed 

using FTIR spectroscopy. The functionalized silicate had the characteristic 

absorbance-peaks of biotin’s aliphatic groups even after extensive washing and 
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centrifugation. The FTIR Spectra of the modified and unmodified MMT silicate are 

plotted in Figure 5.1. 
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Figure 5.1: IR spectra for pristine and biotinylated MMT silicate. The 

characteristic absorption peaks of biotin’s alkyl groups appear in the biotinylated 

MMT spectrum between 2980 and 2850 cm-1. 

9L Glioma cells were incubated in the presence of modified fluorescent 

montmorillonite layered silicate (C12MB-Avidin-FITC) for 24 hrs. In Figure 5.2 the 

images obtained indicated that fluorescent modified silicate was uptaken by the cells.  

The C12MB-Avidin-FITC particles appeared to have no significant lethal 

effect on the cell culture. The surfactant modified silicate served the role of the 

delivery moiety. The hydrophobic alkyl chains were the anchoring molecules to the 

lipid bilayer in the same manner that Kabanov et al. used fatty acid alkyl chains for 

proteins. The biotin molecules were the connectors for the Avidin-FITC conjugate and 

the layered silicate. We suggest that the hydrophobic C12 modifiers of the silicate 

anchor the particles onto the cell membrane and with time endocytosis of the particle 

and protein occurred. 
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Figure 5.2: Image showing a number of fixed cells with green patches indicative 

of Avidin-FITC protein uptake. The cells are stained red with two fluorescent 

dyes, one targeting the nucleus and another, the membrane protein F-actin. 

The MMT particles had a size distribution that ranged from a few hundred nm 

to 1 µm, and the smaller particles of the population were possibly uptaken by the cells. 

In this context, optimization of size distribution could improve greatly this delivery 

approach. As an example, lucentite silicate particles with average size around 300 nm 

or smaller could be another choice for this delivery approach. In the literature, the 

diameter of spherical particles uptaken through endocytosis ranges from tens to 

hundreds of nanometers with the optimal size at 50 nm.11
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To determine the location of the green fluorescent particles, we utilized two 

red fluorescent staining molecules. Propidium Iodide (PI) stained the cell nucleus and 

Alexa Fluor®-Phalloidin formed a complex with F-actin. F-actin is a protein located 

on the cell membrane and serves as the backbone of the lipid bilayer as well as the 

regulator of the cell shape.12 The confocal images revealed a distribution of particles 

onto and into cells. The smallest particles were located under the membrane and inside 

the cell, when for larger particles it was not conclusive if they were fully uptaken or 

residing on the surface of the cells (Figures 5.2 and 5.3). 

As a control, 9L Glioma cells were incubated in the presence of MMT silicate 

particles with no C12 surfactant modification. The result of this experiment was 

different from when the silicate was modified. The presence of the unmodified silicate 

had resulted either in the death of the cells or the detachment of the cells from the 

glass surface. We were not able to distinguish between the above two cases because 24 

hrs after the incubation, no cells could be seen anchored on the bottom of the 

incubation well and only a suspension of agglomerates could be seen (possibly cells 

and silicate particles). The layered silicate is inherently negatively charged and sodium 

cations exist on the surface balancing the charge. This negative surface charge of the 

silicate could be the reason that the anchorage-dependent 9L Glioma cells attach to the 

silicate; the same property is used by cells to attach on the glass coverslip surface.13
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Figure 5.3: Eleven consecutive confocal images showing a single cell (nucleus and 

cell membrane stained red) with a clear green particle. The location of the green 

particle indicated that the particle was located under the cell membrane and 

endocytosis had occurred. 

In light of the above encouraging results for the uptake of fluorescent modified 

silicate particles by 9L Glioma cells, we have decided that a flow cytometry 

experiment was needed to evaluate the extent of transfection. In the process of 

obtaining these data, we tested a blank experiment for possible uptake of the 

fluorescent protein (Avidin-FITC) alone by the 9L Glioma cells. The conditions of the 

control experiment were identical with the above experiment performed with 9L 

Glioma cells and modified silicate. The cells were incubated for 24 hours in the 
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presence of the fluorescent protein alone and fluorescence microscopy images were 

obtained.  

By using an Inverted Fluorescence Microscope we have obtained images 

suggesting the transfection of a number of cells with the fluorescent protein alone. The 

images obtained can be seen in Figure 5.4. 

 

 
Figure 5.4: These two images were taken with an inverted fluorescence 

microscope. The cells were incubated 24 hrs with Avidin-FITC and washed 

multiple times with PBS. The left picture is the bright field image. The right 

image is the same area with a Hg lamp on, along with a bright field lamp. The 

fluorescent areas on the cells can be seen clearly. 

CONCLUSIONS 

The effect of the protein uptake from the cells was initially not examined and it 

was assumed that the transfection of the cells by the fluorescent protein was due to the 

uptake of a modified fluorescent silicate. Furthermore, no reference was found for 

Avidin uptake by the cell line in literature. However, the results of the above control 

experiment raised doubts on the above presented data using a modified silicate.  

The data obtained with the control experiment did not dismiss the presented 

results with the modified silicate, since the protein in that case was immobilized on the 
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silicate. Nevertheless, the control experiment left open the possibility of the protein 

being detached from the silicate and being uptaken by the cells. That could be possible 

if a hydration reaction occurred between the carboxyl group of biotin and the hydroxyl 

group of the silicate. However, this reaction, in principle, is very slow in the 

environment that the experiments were realized (pH 7.2). Furthermore, the results 

from Figure 5.4 could also signify that the uptake of the modified particles, if 

successful, was due to the protein uptake by the cells and not the other way around. 

The above methodology, if proven successful, could be utilized for delivering 

various therapeutic proteins to cell cultures in vitro and potentially in vivo 

applications. As an example, the protein to be delivered could be attached to the 

delivery moiety (the modified layered silicate) via a different chemistry approach that 

would include a sulfur-sulfur bond. This bond is known to be easily cleaved by 

intracellular reductase (i.e. protein disulfide isomerase).14 This sulfur-sulfur 

dissociation delivery approach was successful for the delivery of a biotinylated DNA 

transferin conjugate by Sato et al.15
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CHAPTER 6: SYNTHESIS, CHARACTERIZATION AND 

APPLICATIONS OF NANOHYBRIDS WITH HIGH LOADINGS OF 

GRAMICIDIN  

INTRODUCTION 

Gramicidin is a polypeptide antibiotic from Bacillus Brevis with a molecular 

weight of 1880 Dalton. Gramicidin’s unique properties lie in the primary structure of 

the protein which is: HCO–L-Val–Gly–L-Ala–D-Leu–L-Ala–D-Val–L-Val–D-Val–L-

Try–D-Leu–L-Try–D-Leu–L-Try–D-Leu–L-Try–NHCH2CH2OH.1 Due to the 

alternating L- and D- amino acid residues, the polypeptide forms β-type helices.1 In 

these β-helices, the carbonyl moieties of the residues are located in the interior of the 

helix.2 The above unique property results in a helical molecule with a hydrophilic core 

and a hydrophobic outer shell as shown in Figure 6.1.  

Gramicidin is known to form membrane-spanning ion channels in lipid 

bilayers that are selective to alkali metals and protons.3 The property of channeling 

monovalent cations through a lipid bilayer is the key property for gramicidin’s 

antibiotic action. The protein can be integrated in the lipid bilayer and form ion 

channels that disrupt the ionic balance of a cell. In literature, various applications have 

been realized using gramicidin’s ability to form ion channels selective to alkali 

metals.3-5  

Utilizing the concept of a biomimetic membrane presented in Chapter 4, we 

have integrated gramicidin into a layered host (fluoromica) to form a nanohybrid of an 

inorganic host and a protein. This resulted to multibilayered particles with high 

loadings of gramicidin that could form membranes according to the same process 

described in Chapter 4. In addition, the synthesized nanohybrid particles were also 
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examined as delivery vehicles of gramicidin to E. coli bacteria and the protein’s 

antibiotic ability was evaluated. 

 
Figure 6.1: Schematic diagram of gramicidin showing the polypeptide backbone 

as double helical [left] and as a helical dimer [right].6  

MATERIALS AND MATERIALS 

A synthetic layered silicate, Somasif ME-100 (Na+-Fluoromica or FM), with a 

cation exchange capacity (CEC) of 120 mequiv/100 g was obtained from CO-OP 

Chemical LTD. Dodecyl-dimethylammonium bromide was obtained from Sigma-

Aldrich and deionized (DI) water was used throughout the measurements (Barnstead 

Nanopure RO). 

Fourier Transform Infra-Red (FTIR) spectroscopic measurements were 

performed in a Mattson Galaxy 2020 IR spectrometer. The samples were prepared by 

mixing and grinding with potassium bromide in a mortar and pestle and pressed into a 

pellet using a hydraulic press. The FTIR spectra were obtained under a nitrogen flow 

in the sample chamber.  

Powder X-Ray Diffraction (PXRD) spectra were collected on a Scintag Inc θ-θ 

diffractometer using CuKα source radiation and a germanium detector. 

Nanohybrids synthesis 

In a vial with 4 mL dodecyl-dimethylammonium bromide (C12) of 15.5 mM 

concentration (critical micelle concentration 15 mM), 13 mg of gramicidin were 
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introduced under stirring. Gramicidin due to its hydrophobic character did not dissolve 

in water and was incorporated into the micelles. After stirring for 5 minutes, 2.5 mL of 

a 2 w.t.% Na+ Fluoromica aqueous solution was added and the mixture was left on a 

shaker table for 15 minutes. An ion exchange reaction occurred with the ammonium 

groups of the surfactants taking the place of Na+ ions on the surface of the silicate. 

Flocculation was immediately observed rendering the layered silicate slightly 

hydrophobic due to their modification with the amphiphilic surfactants.  

The product of the reaction was centrifuged at 12,000 rpm for 10 minutes and 

separated from any unexchanged C12 surfactants. The gramicidin-containing modified 

layered silicate (nanohybrids) were washed multiple times with water and centrifuged. 

To evaluate the amount of protein immobilized on the nanohybrid, we quantified the 

absorbance peak at 280 nm of the washout solutions. The majority of proteins absorb 

around the above wavelength due to the presence of aromatic moieties in three amino 

acids, namely tryptophan, tyrosine and phenylalanine. Gramicidin also such residues 

and absorbs at 280nm wavelength (ε ~ 11000 M-1cm-1);7 by calculating the amount of 

gramicidin lost in the washout solutions, we were able to estimate the amount of 

gramicidin integrated into the layered silicate.  

RESULTS AND DISCUSSION 

Integration of gramicidin on a layered silicate (fluoromica in this case) was 

realized through an ion exchange reaction between cationic surfactant micelles and the 

layered silicate. The micelles were formed in a solution with concentration higher of 

the critical micelle concentration (CMC) and gramicidin was then added to the micelle 

solution. Due to the highly hydrophobic character of the molecule, gramicidin was 

incorporated into the micelles. The synthetic process is summarized in Figure 6.2 and 

6.3. 

 105



 

 
Figure 6.2: Integration of gramicidin into dodecyldimethylammonium surfactant 

micelles. The circles signify the hydrophilic group (ammonium) and the lines the 

hydrophobic alkyl chains of the surfactant. 

 
Figure 6.3: Ion exchange reaction between the gramicidin-containing micelles 

and the layered silicate. A sketch of the gramicidin-nanohybrid as the product is 

also shown. 

Successful synthesis of gramicidin-nanohybrids was verified through FTIR 

spectroscopy. Proteins have multiple characteristic absorption peaks in the IR region 

that rise from the existence of amide bonds between aminoacids. The amide A (3225-

3280 cm-1) and amide II (1510-1580 cm-1) absorption peaks, as they are referred in 

literature,8 were identified in the IR spectra of the gramicidin nanohybrid (see Figure 

6.4). We were unable to distinguish amide I peak (around 1650 cm-1) since the peak 

coincided with the absorption peak of the ammonium group of the C12 modifier. 

However, the intensity of the peak when compared to the 1480 cm-1 peak (signature 

peak for the alkyl groups of the modifier) increased in the spectrum of the nanohybrid 

indicating that the amide I peak was contributing to that absorption. 
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Figure 6.4: IR spectra of C12 modified fluoromica and gramicidin nanohybrid 

(nanohybrid: C12 modified fluoromica containing gramicidin). 

The integration of gramicidin on a layered silicate with the above method 

resulted in high loading of protein on silicate (20 mg of protein per 100 mg of 

unmodified silicate). 

The high loading of gramicidin into the interlayer gallery of the layered silicate 

had also an effect on the d-spacing of the gallery. The above phenomenon was verified 

through PXRD. In Figure 6.5 the PXRD spectrum of a modified silicate with C12 

surfactants is plotted together with the spectrum of the same material with gramicidin 

integrated between the galleries (see Figure 6.3). 
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Figure 6.5: PXRD spectra of C12 modified layered silicate with and without 

gramicidin integration in the interlayer galleries. The 31 Å peak appears in the 

gramicidin nanohybrid spectrum. Protein integration resulted to the swelling of 

the interlayer gallery. The 22 Å peak can still be seen, probably due to the co-

existence of layered silicate modified with C12 surfactants only. 

Formation of ion channels in a nanohybrid membrane 

The synthesized gramicidin-containing nanohybrid was examined for two 

possible applications, which are described below. Taking advantage of the channel 

forming property of gramicidin, a setup was realized to test the nanohybrid membrane 

as an ion selective membrane. The membrane was cast on a paper mesh and separated 

two aqueous solutions (see Figure 6.6); the two solutions had the same amounts of two 

different salts, namely CaCl2 and NaCl. Since gramicidin is selective to monovalent 

cations we anticipated that Na+ could cross the membrane and establish a small ∆V 

between the two sides of the membrane. Two Ag/AgCl reference electrodes and a 
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voltmeter were utilized to measure possible potential differences between the two 

sides of the membrane. The above phenomenon is the basic principle behind the 

technology used in manufacturing ion selective electrodes.9 However, from the above 

experiment we were unable to document reproducible potential differences resulting 

from the integration of gramicidin in the nanohybrid membrane. 

 
Figure 6.6: A picture of the setup used for the ion permeability experiment. The 

tube was filled with a NaCl solution and later inserted into a beaker with a CaCl2 

solution. The paper mesh with the cast nanohybrid membrane was screwed onto 

the tube. 

Antibiotic action of gramicidin. 

Gramicidin has antibiotic properties and, in order to function, the protein needs 

first to be dissolved in an aqueous media for the targeted host to uptake it. However, 

the solubility of gramicidin in water is very small. To resolve this, we examined the 

possibility of suspending the protein, rather than dissolving it, into an aqueous solution 

using the synthesized nanohybrids. 

To examine this, E. coli bacteria (ATCC 12407) were exposed to gramicidin 

and gramicidin nanohybrids. Initially, we utilized Luria-Bertani (LB) Agar plates with 

integrated gramicidin and gramicidin nanohybrids in the gel, yet from multiple 

platings, we saw no effect on the number of E. coli colonies (see Figure 6.7) in either 

case. We ascribed the lack of gramicidin’s antibiotic effect to the solid substrate used 
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(LB Agar gels) that prevented diffusion of species. In an effort to improve the 

availability of gramicidin, we have repeated the experiments in a liquid media. 
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Figure 6.7: Number of colonies measured after 24 hrs on LB Agar plates 

inoculated with E. coli bacteria. The experiment with nanohybrids is shown along 

with 3 control experiments. “Control” column is a blank LB Agar plate, 

“gramicidin” is an LB Agar plate with the same amount of gramicidin as in the 

nanohybrid experiment, and the “nanohybrid with no gramicidin” column has 

the same amount of the modified layered silicate (C12FM) but no gramicidin. 

E. coli were used to inoculate an LB broth where gramicidin and gramicidin 

nanohybrids were previously added. The growth of the bacteria was monitored by 

measuring the optical density of the culture media. As has been well documented, 

bacteria scatter light in the same way as particles scatter light, and the extent of the 

scattering is proportional to the population of bacteria. In a UV/Vis 

spectrophotometer, light scattering is registered as absorption (or optical density, OD), 

so the OD of the culture media is a proportional measure of bacteria population. 
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From Figure 6.8 it is evident that addition of gramicidin to the media had no 

effect on the growth of the bacteria, while the gramicidin nanohybrid had a significant 

antibiotic effect. The data plotted in Figure 6.8 shows that all cultures tested were into 

the log phase after 5-6 hours, something that was not observed with the gramicidin 

nanohybrid culture. Even though nanohybrids without gramicidin (C12FM) had a 

small effect on the bacteria population, this cannot be accounted for the large effect 

registered in the case of gramicidin nanohybrids.  

The presented delivery approach of gramicidin to E. coli bacteria was based on 

integrating the hydrophobic gramicidin molecule into the modified silicate. The 

nanohybrid particles were suspended in an aqueous solution and through the 

modifiers’ alkyl chains anchored the particles onto the lipid bilayer in a similar 

mechanism as described in Chapter 5.10,11 Since gramicidin’s antibiotic action rises 

from the formation of ion channels in the lipid bilayers of bacteria, it is possible that 

the proximity of nanohybrid particles to bacteria enhanced the delivery and the 

antibiotic action of gramicidin. 
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Figure 6.8: Optical density of E. coli culture media with time and various 

additions. Where applicable, the cultures had the same amount of gramicidin 

(0.05 mg/mL) and silicate.  
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