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Multiphoton microscopy has the potential to become a valuable tool for 

clinical diagnosis of tissue health.  It has the ability to provide images with similar 

cellular and architectural tissue information to the gold standard for tissue diagnosis, 

histopathological analysis of biopsies.  However, unlike histopathology, it can provide 

these images in real time in unstained and unprocessed tissue in vivo.  Due to the depth 

limitations of multiphoton microscopy, endoscopic access to the tissue is required for 

this technology to be clinically useful.  This dissertation details our efforts to translate 

multiphoton microscopy into the clinical field through the development of a GRIN 

lens based multiphoton endoscopic prototype.   

As compared to other endoscopic approaches, GRIN lenses, while rigid, 

provide several advantages, including small diameters (down to 0.350 mm), no need to 

miniaturize excitation and collection optics, low manufacturing costs and potential 

compatibility with existing biopsy instrumentation. 

 In this dissertation we initially show that multiphoton imaging through long 

(up to 285 mm) GRIN lens endoscope systems is possible. We then design fabricate a 

portable, rigid endoscope system suitable for imaging unstained tissues, potentially 

deep within the body, using a GRIN lens system of 1 mm diameter and 8 cm length. 



 
 

The portable device is capable of imaging a ~200 μm diameter field of view at 4 

frames/s. The lateral and axial resolution in water is 0.85 μm and 7.4 μm respectively.  

We demonstrate the capabilities of our device through in vivo imaging of 

unstained tissues in live, anesthetized rats. We further show compatibility of this 

device with three photon excitation.  Finally, we test the diagnostic capabilities of our 

prototype on human prostate cancer samples ex vivo.  The presented results show great 

promise for GRIN endoscopy to become a valuable tool clinically both for the 

diagnosis of tissue health and to aid during surgeries by identifying tumor margins and 

other tissue architecture. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Cancer Diagnosis 

Cancer is a major public health problem in the United States and abroad.  

Approximately one in 4 deaths in the United States is due to cancer with over 1.6 

million new cases and over half a million deaths projected to occur in 2014 [1].  In the 

case of most cancers, early and accurate diagnosis can significantly improve the 

prognosis and help determine the most effective course of treatment.  The first 

indication for a potential cancer diagnosis for most cancers comes from initial tests, 

such as a physical exam or a laboratory test for tumor markers.  Low resolution 

imaging test such as an x-ray, a computerized tomography (CT), or a magnetic 

resonance image (MRI) can provide further information about the chance of cancer 

presence and the extent of the disease.  However, while very effective at raising a 

general suspicion for cancer, these procedures generally cannot give a final diagnosis.  

The gold standard for ultimately providing a diagnosis is the tissue biopsy with 

histological processing and subsequent analysis by a trained pathologist under a white 

light microscope.   

While very accurate and very well established, histopathology can take several 

days to weeks before a diagnosis is known.  This is valuable time during which a 

therapy could have already been started and the patient suffers great discomfort 

waiting on their potential cancer diagnosis.  Further, if this time could be reduced to 
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the order of minutes or less, histopathological findings could become a significantly 

stronger influence intra-operatively, providing valuable information to the surgeons 

that may aid them in margin assessment and other cellular structure identification.   

This dissertation will detail our efforts to translate multiphoton microscopy 

(MPM) into the clinical field.  MPM is a technology that has been predominantly used 

in academic research and can provide very similar cellular and architectural tissue 

information as the gold standard histopathology, but in real time and in unstained, 

unprocessed tissues in vivo.  We will describe our instrumentation development up to 

the point of testing our prototype on ex vivo human samples of prostate cancer.  While 

this technology is applicable to many different types of cancers, the focus of this 

dissertation will be on the example of prostate cancer for simplicity’s sake.  Many of 

the findings here, though, should translate to other cancers or diseases where a biopsy 

is a critical component of the diagnosis or where intra-operative margin assessment or 

tissue architecture plays a critical role. 

 

1.2 Prostate Cancer 

Approximately 240,000 men in the United States were diagnosed with prostate 

cancer in 2012  [2].  It remains the most commonly diagnosed cancer in U.S. men.  

While approximately 28,000 men died of prostate cancer in 2012, many patient’s 

cancers are too small, low grade and noninvasive that they pose little risk to the life or 

health of the host.   Identifying these patients is difficult with current diagnostic 

techniques.  The best predictor of tumor risk to the patient is the biopsy with 
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consequent hematoxylin and eosin (H&E) analysis by a pathologist and Gleason 

scoring.  However, as only a small fraction of the prostate is evaluated during a biopsy 

procedure, most physicians assume that the biopsy underestimates the extent of cancer 

and recommend more aggressive treatments  [3].  This can result in overtreatment and 

potentially unnecessary side effects. 

If diagnosed early and accurately though, prostate cancer can be very 

successfully treated with a radical prostatectomy.  A significant challenge for the 

surgeon is to remove all cancerous tissue, while preserving the nerves surrounding the 

prostate that are responsible for continence and erectile function.   These nerves, as 

well as the malignant glands, are too small to be visualized by eye.  Intraoperative 

frozen sections (IFS) have been shown to provide some benefit in reducing positive 

surgical margins (PSMs)  [4], however, they require time and, similar to diagnostic 

biopsies, only provide an assessment of a fraction of the area of interest.  Further, as 

IFS requires the removal of tissue, there is always a risk of damaging the area one is 

trying to preserve.   

As a result, radical prostatectomy has been estimated to have a 10 - 40% 

occurrence in PSMs [5–8] and 25 - 70% occurrence of postoperative impotence  [9–

13].  Thus, in both the diagnosis and in the treatment of prostate cancer a faster and 

more accurate way of characterizing the tissue at a cellular level could significantly 

improve treatment decision making and patient outcomes. 
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1.3 Multiphoton microscopy 

 Multiphoton microscopy [14] (MPM) has the potential to greatly improve upon 

the current standard for diagnosing and treating cancers.  Several factors make it an 

ideal candidate as a valuable clinical imaging technology: 

 MPM allows for real time histological tissue analysis at high resolution (< 1 

µm); 

 Deep imaging in thick specimens is possible for over 1 mm depth depending 

on the tissue  [15]; 

  Images can be generated without contrast agent, based on inherent 

autofluorescence and harmonic generation  [16]; 

 There is significantly reduced out of focus photobleaching and 

photodestruction as compared to fluorescence or confocal imaging; 

 MPM simultaneously excites species that emit at different wavelengths. 

MPM can be used to visualize similar tissue components as are visible in 

traditional histopathology.  However MPM can produce these images in real time, in 

unstained and unfixed tissue [17–21], thus potentially allowing for faster diagnosis 

and intra-operative margin assessment.  Table 1.1 details the types of tissue 

components that can be visualized using MPM and Table 1.2 and Figure 1.1 provide a 

comparison between multiphoton imaging and histology.  The diagnostic capabilities 

of MPM have been successfully demonstrated in a variety of organs such as the 

gastrointestinal tract  [17], the bladder  [18], the lung  [19], the ovaries  [21], and the 

prostate  [22].  
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Table 1.1 Tissue components visualized via Multiphoton Excitation of intrinsic emitters 
(reproduced from  [23]). 
Process Source Tissue Components Visualized Ref. 

2PE 
NADH, Flavins, Retinol, Folic 

Acid 

cell cytoplasm, striated muscle 
fibers (i.e., skeletal & cardiac 
muscles) 

 [20,24] 

2PE Elastin 
elastic fibers (e.g., connective 
tissue, blood vessel walls) 

 [20] 

3PE 
Serotonin, Melatonin, 

Tyrosine, Tryptophan, 5-
HIAA, 5-HTOL 

cell cytoplasm, cell nuclei  [20] 

SHG Collagen 

collagen fibers (e.g., connective 
tissue, blood vessel walls, 
components of neuronal tissue & 
muscle tissue) 

 [20,25–
27] 

SHG Tubulin 
Microtubules (e.g., cilia, mitotic 
spindles), cell cytoskeleton 

 [25,26,28]

SHG Myosin 
striated muscle fibers (i.e., skeletal 
& cardiac muscles) 

 [20,25–
27,29] 

THG Myosin 
striated muscle fibers (i.e., skeletal 
& cardiac muscles) 

 [25,27] 

THG Lipids & Lipid Bodies 
neuronal tissue (e.g, axons, 
dentrites, myelin sheaths), cell 
cytoplasm 

 [25,30–
32] 

THG Hemoglobin RBCs, blood vessels  [25,27,30]

THG Collagen 

collagen fibers (e.g., connective 
tissue, blood vessel walls, 
components of neuronal tissue & 
muscle tissue) 

 [25,27] 

THG Elastin 
elastic fibers (e.g., connective 
tissue, blood vessel walls) 

 [33] 
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Table 1.2 Tissue components visualized by histopathology & multiphoton excitation of 
intrinsic emitters (reproduced from  [23]). 
 Histopathological Stain Multiphoton Process 

Cell Nuclei 
Hematoxylin, Masson’s Trichome, Van Gieson, 

Iron Hematoxylin 

Dark-appearing, no 
fluorescence 

Cell 
Cytoplasm 

Eosin, Masson’s Trichome, Van Gieson, 2PE, 3PE 

Collagen 
Fibers 

Eosin, Masson’s Trichome, Van Gieson, 
Periodic Acid-Schiff 

SHG, THG 

Elastic Fibers Weigert’s, Orcein’s, Verhoeff’s 2PE, THG 

Striated 
Muscle 

Hemotoxylin & Eosin, Masson’s Trichome, Iron 
Hematoxylin 

2PE, SHG, THG 

Blood Cells 

RBC’s: Giesma, Eosin, Masson’s Trichome, Iron 
Hematoxylin 

WBC’s: Giesma, Hematoxylin & Eosin 

THG (RBC’s & WBC’s)

Myelin Hematoxylin & Eosin, Iron Hematoxylin  THG 
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1.4 Multiphoton GRIN Endoscopy 

 A major challenge in translating multiphoton microscopy into a clinical setting 

is the limited penetration depth.  As a result, an endoscopic approach is required.  A 

number of different endoscopes and techniques have been demonstrated  [35–46], 

including in vivo imaging of unstained tissues  [47,48].  These devices are typically 

composed of a miniaturized scanning mechanism and focusing optics in a protective 

housing. The scanners proposed generally use either a miniaturized fiber scanning 

mechanism or microelectromechanical systems scanning mirror. The need to 

encapsulate a scanning mechanism into a housing of suitable size for minimally 

invasive procedures poses several challenges including: (1) uniformity of scan, (2) 

sensitivity, durability and reliability of the scanner, and (3) miniaturization of the 

distal scan mechanism and optics. A different approach has been to use gradient index 

(GRIN) lenses to relay the excitation light and TPF/SHG emission to and from an 

external microscope deep into soft tissue  [49–53]. Since only the GRIN lens 

penetrates the tissue, the excitation, scanning, and collection optics need not be 

miniaturized for in vivo imaging. Another advantage of this approach is that GRIN 

lens systems, while rigid, can be fabricated in diameters as small as 0.350 mm.   

In addition, GRIN lenses have been shown to be biocompatible and previously 

used in a clinical setting for non-penetrative imaging of chronic leg ulcers with 

delayed wound healing  [54]. Use of a small diameter lens to penetrate deeply within 

tissue has been demonstrated with a hypodermic needle GRIN system  [55] and in the 

study of sarcomere contractile dynamics in human muscle tissue [53]. These studies 
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show great promise for GRIN endoscopy to be used as either a guide for or a 

replacement of traditional surgical biopsies.  Larger diameter (2 mm) GRIN lenses 

could also be used during traditional or minimally invasive surgery to assist the 

surgeon in tissue identification and margin assessment.   

Previous studies, however, have been limited to short (<4 cm) GRIN systems 

primarily intended for small animals and external clinical use [53,54,56–59]. The 

eventual adaptation of GRIN lenses in the diagnosis of human diseases would require 

significantly longer GRIN endoscope systems. Commonly used prostate biopsy 

needles, for example, are as long as 25 cm.  In this dissertation, we describe our efforts 

to develop a clinical multiphoton endoscope based on GRIN lens endoscopy.  In 

Chapter 2, we demonstrate that multiphoton GRIN lens endoscopy is possible through 

long (>28cm) GRIN lens systems and describe our design and in vivo animal testing of 

a compact and portable multiphoton GRIN endoscope.  In Chapter 3, we adapt our 

endoscope to show that its use is not limited to two photon imaging, but can be used as 

a three-photon endoscope also.   Finally, in Chapter 4 we test the diagnostic 

capabilities of our endoscope using human ex vivo prostate tissue.  Combined, these 

results show that multiphoton GRIN lens endoscopy has great potential to aid in the 

real time cellular assessment of unstained tissue in vivo.  It could prove to be very 

helpful in guiding a diagnostic biopsy and providing a surgeon with valuable tissue 

information intra-operatively.  
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CHAPTER 2 

IN VIVO IMAGING OF UNSTAINED TISSUES USING LONG GRADIENT 

INDEX LENS MULTIPHOTON ENDOSCOPIC SYSTEMS1 

 

Abstract 

We characterize long (up to 285 mm) gradient index (GRIN) lens endoscope 

systems for multiphoton imaging. We fabricate a portable, rigid endoscope system 

suitable for imaging unstained tissues, potentially deep within the body, using a GRIN 

lens system of 1 mm diameter and 8 cm length. The portable device is capable of 

imaging a ~200 μm diameter field of view at 4 frames/s. The lateral and axial 

resolution in water is 0.85 μm and 7.4 μm respectively. In vivo images of unstained 

tissues in live, anesthetized rats using the portable device are presented. These results 

show great promise for GRIN endoscopy to be used clinically. 

2.1  Introduction 

Two-photon fluorescence (TPF) and second-harmonic generation (SHG) 

microscopy are powerful tools for imaging unstained biological tissues [1]. These 

label-free techniques are capable of producing high-resolution real-time in vivo 

images and have shown great promise for medical diagnostics of various diseases, 

potentially replacing surgical biopsies [2–7]. The maximum imaging depth, however, 

is limited in most tissues to ~1 mm [8,9]. 

                                                            
1 The contents of this chapter have been reproduced from Biomedical Optics Express, Vol. 3, No. 5, pp. 
1077-1085, 2012. 
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One strategy to overcome the depth limitation is to develop miniaturized TPF 

microscopes that could be used as endoscopes in a clinical setting. A number of 

different endoscopes and techniques have been demonstrated [10–17], including in 

vivo imaging of unstained tissues [18]. These devices are typically composed of a 

miniaturized scanning mechanism and focusing optics in a protective housing. The 

scanners proposed generally use either a miniaturized fiber scanning mechanism or 

microelectromechanical systems scanning mirror. The need to encapsulate a scanning 

mechanism into a housing of suitable size for minimally invasive procedures poses 

several challenges including: (1) uniformity of scan, (2) sensitivity, durability and 

reliability of the scanner, and (3) miniaturization of the distal scan mechanism and 

optics. A different approach has been to use gradient index (GRIN) lenses to relay the 

excitation light and TPF/SHG emission to and from an external microscope deep into 

soft tissue [19–22]. Since only the GRIN lens penetrates the tissue, the excitation, 

scanning, and collection optics need not be miniaturized for in vivo imaging. GRIN 

lenses have been shown to be biocompatible and previously used in a clinical setting 

for non-penetrative imaging of chronic leg ulcers with delayed wound healing [23]. 

Use of a small diameter lens to penetrate deeply within tissue has been demonstrated 

with a hypodermic needle GRIN system [24]. These studies show great promise for 

GRIN endoscopy to be used as either a guide for or a replacement of traditional 

surgical biopsies. 

Previous studies, however, have been limited to short (<4 cm) GRIN systems 

primarily intended for small animals and external clinical use [19–23]. The eventual 

adaptation of GRIN lenses in the diagnosis of human diseases would require 
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significantly longer GRIN endoscope systems. Commonly used prostate biopsy 

needles, for example, are as long as 25 cm. In this study we investigate the effect of 

GRIN system length on the imaging performance. We characterize the loss in imaging 

performance with increased GRIN system length and present a compact and portable 

two-photon microscope that could be used in a clinical environment in combination 

with various GRIN lens systems. Finally, the capability of the system for in vivo 

imaging of unstained tissues is demonstrated in live, anesthetized rats. 

2.2  GRIN endoscopes 

GRIN lenses use a negative gradient in the refractive index of glass with 

increasing radius to bend and focus light. The pitch of a GRIN lens characterizes how 

many internal images are formed within the lens, with a pitch of 1 being the length of 

one full sinusoidal path. Most previously reported GRIN two-photon endoscope 

systems use a combination of relay and objective GRIN lenses in either a doublet 

(relay/objective) or triplet (objective/relay/objective) system [19–23]. The usually low 

NA relay lens avoids a tight focus of the excitation light within the glass, while the 

higher NA objective lens allows for high-resolution two-photon imaging at the 

sample. Previous studies have shown that a doublet system offers several advantages 

over a triplet system such as similar fields of view at reduced lens cost, greater image 

magnification, lower NA for coupling the laser beam, and lower autofluorescence at 

the endoscope surface [21]. GRIN lenses are commercially available in varying 

lengths and in diameters as small as 350 μm. We obtained doublet systems of 1 mm 

and 2 mm diameter from GRINTECH GmbH consisting of a 0.5 NA objective lens 
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and a 0.1 NA relay lens of varying length and pitch. The different systems obtained 

are summarized in Table 2.1. All systems were designed for 800 nm excitation light 

and with working distances of 100-140 μm in air on either side (~140-190 μm in 

water). The GRIN lens systems were protected by a stainless steel tube of 0.1 mm 

thickness, resulting in total system outer diameters (OD) of 1.2 mm and 2.2 mm. 

Table 2.1. Summary of Optical Characterization Resultsa 
GRIN 
System 

Part Number Diameter 
(mm) 

Length 
(mm) 

Relay 
Lens Pitch 

FWHM (µm) Diameter of 
FOV (µm) Lateral Axial 

1A  GT-ERLS-100-
075-11-50-NC 

1.00 35.9 0.75 0.94 10.8 199 

1B GT-ERLS-100-
125-11-50-NC 

1.00 57.7 1.25 0.99 15.1 195 

2A GT-ERLS-200-
075-11-50-NC 

2.00 81.4 0.75 0.99 12.6 370 

2B GT-ERLS-200-
125-11-50-NC 

2.00 132.6 1.25 1.05 15.6 365 

2C GT-ERLS-200-
275-11-50-NC 

2.00 285.0 2.75 1.17 25.0 359 

a
 Six different doublet grin systems were designed by and purchased from Grintech GmbH. The lateral and axial two-photon 

resolution were determined in air using subresolution fluorescent beads and a thin rhodamine film respectively. 

 

2.3. Experimental setup 

Figure 2.1 shows the custom built horizontal multiphoton microscope used to 

characterize the GRIN lens systems. A mode-locked Ti:sapphire laser (Tsunami, 

Spectra Physics, Inc.) was used as the excitation source at 800 nm with 10 nm 

bandwidth. Dual axis (5 mm diameter) galvo based scan mirrors (GVSM002, Thorlabs 

Inc.), and two scan lenses of 10 cm and 30 cm focal length (respectively, AC508-100-

B-ML and AC508-300-B-ML, Thorlabs Inc.) were used to scan the beam angle at the 

overfilled back aperture of a 0.1 NA microscope objective. The focus of the objective 

was raster scanned by the galvo mirrors across the proximal face of the GRIN lens 

systems. The GRIN lens systems were mounted on a three axis manual linear 
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translational stage close to the focal plane of the objective to aid alignment. All optical 

characterizations were conducted by moving the sample mounted on a 3D stage (MP-

285, Sutter Instruments) allowing axial scanning of the sample while maintaining the 

GRIN lens system in a fixed position. The fluorescent signal from the sample was epi-

collected through the GRIN lenses and the microscope objective. Collected light is 

reflected by a dichroic beam splitter (FF-665-Di01, Semrock Inc.). After passing 

through two 575/250 bandpass filters (HQ575_250 2p, Chroma Technology Corp.) 

separated by a colored glass (FGS900, Thorlabs Inc.), the fluorescence is detected by a 

photo-multiplier tube (PMT) (HC125-02, Hamamatsu Photonics). Data acquisition 

and motion control were implemented using a DAQ card (PCI-6115, National 

Instruments Corp.) and MPScan software [25]. The axial resolution of the GRIN lens 

systems was characterized in air using the full width at half maximum (FWHM) two-

photon excited fluorescence signal from a 500 nm thin film of Rhodamine B (RhB) 

dye, while the lateral resolution was characterized using FWHM two-photon excited 

fluorescence from subresolution (0.2 μm) fluorescent beads. The field of view (FOV) 

was characterized by raster-scanning the proximal face of the GRIN lens system and 

measuring the one-photon transmission using a photodiode (SM05PD1A, Thorlabs 

Inc.), and was defined as the FWHM of the resulting intensity profile. 
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The off-axis axial resolutions of the different systems were measured by 

acquiring a through-focus z-series of the RhB thin film and fitting a Lorentzian 

function to individual off-axis areas of ~6 by 6 μm in size. The resulting FWHM of 

each area is plotted in Figure 2.4. The lateral off-axis performance was also measured 

for system 1B using sub-resolution fluorescent beads, and the FWHM of the obtained 

PSF remained below 1.2 μm up to the edge of the FOV. These results indicate that the 

off-axis resolution of these GRIN systems remains within ~20% of the on-axis 

resolution for most of the FOV (~80% of the area). The ability to deliver ultrashort 

pulses to the sample is critically important for multiphoton imaging. The effect of the 

longest GRIN lens system (285 mm in length, system 2C) on the excitation laser pulse 

was characterized. Without dispersion compensation, the initial 80 fs pulse width was 

broadened to 740 fs. Using precompensation with a rotating cylindrical lens and 

grating [26], we were able to achieve an 85 fs pulse width at the sample, indicating 

that a simple dispersion compensation setup that accounts for the second order 

dispersion is sufficient for delivering pulses on the order of 80 fs. 

 

2.5. Portable endoscope design and system characterization 

To demonstrate that these GRIN lens systems have potential clinical 

applications, a compact, fiber-coupled multiphoton GRIN lens endoscope was 

constructed for in vivo image acquisition (Figure 2.5). The 800 nm femtosecond pulse 

from the Ti:sapphire laser is delivered by a 2 meter hollow core PCF fiber (HC-800B, 

Thorlabs Inc.), and collimated to a beam of about 2 mm diameter using an aspheric 
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lens. A small aperture (3 mm) galvo scanning mirror system (6210H, Cambridge 

Technology) was selected for a fast imaging rate (up to 4 frames/s at 512 by 512 

pixels). The beam is then expanded by two scan lenses of 18 and 36 mm focal length 

(respectively, LSM02-BB and LSM03-BB, Thorlabs Inc.) to underfill a 0.3 NA 

microscope objective (RMS10X-PF, Thorlabs Inc.) to achieve an effective NA of 

~0.1. The microscope objective couples the excitation beam into the proximal side of 

the GRIN lens system. We selected the longest 1 mm diameter system (1B) for this 

demonstration. The fluorescence signal from the sample is epi-collected through the 

GRIN lenses and the objective, and is reflected by a dichroic beam splitter (FF705-

Di01, Semrock Inc.). After passing through two short pass filters (FF01-720/SP, 

Semrock Inc.) separated by colored glass (FGS900, Thorlabs Inc.), a second dichroic 

(Di01-R405, Semrock Inc.) separated the signal into the second harmonic and the 

autofluorescence channel. The housing of the GRIN lens endoscope was constructed 

from custom machined aluminum components using a milling machine with a 

fabrication tolerance of 0.001”. Optical elements in the GRIN endoscope were aligned 

in the z-axis to specification using calipers. We verified that illumination light 

projected through the system was centered as it passed through each optical element. 

The GRIN lens position was verified by confirming the focal length of the lens met 

specification (i.e. verified GRIN lens working distance by locating peak two-photon 

excited signal of a fluorescent sample ~130μm 
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2.7. Discussion 

Both the axial and lateral resolution obtained for our systems (1A, 1B,  2A, and 

2B) are similar to previous reports of similar NA systems at much shorter lengths [19, 

20, 22, 23]. Our longest system, 2C, shows a significant degradation in axial 

resolution. This is probably due to the accumulation of spherical aberrations and 

manufacturing imperfections with increasing relay lens length. The lateral resolution, 

however, is only minimally affected, and the axial resolution remains on the order of a 

layer of mammalian cells, showing promise that long GRIN endoscopy has diagnostic 

potential. This is also evident from our in vivo imaging results. While image quality is 

decreased slightly when compared to a microscope objective of similar NA, many of 

the important tissue features are identifiable, show similarity to anatomic features seen 

in histology slides, and are potentially useful for diagnosis [27]. It is also noteworthy 

that no tissue damage was observed throughout the in vivo experiments, and our 

imaging conditions were comparable to those previously shown to have negligible 

tissue mutagenicity [28, 29]. In our imaging experiments, using up to 75mW 

illumination power at the sample, we did not witness any laser-induced visible 

luminescence within the GRIN endoscope, a concern with increasing relay lens length 

due to the increased number of internal foci. Previous studies have found this effect in 

higher NA systems (0.45 NA) with a threshold of 73 mW at 800nm [23]. We did 

observe, however, when the GRIN lens was misaligned to the extent that the distal 

focus was inside the high NA GRIN objective lens, the endoscope probe was 

damaged. The FOV for all systems remained large enough for diagnostic potential 

(195-370 μm diameter).  



41 
 

While long GRIN lens systems are limited to rigid endoscope applications, 

they offer several advantages over flexible multiphoton endoscopes. A significant 

advantage is the diameter of the endoscope probe. GRIN lenses are commercially 

available in diameters as small as 350 μm, which allows them to be inserted into 

needles as small as 22 gauge (inner diameter of 413 μm). Using the doublet design, we 

would expect similar imaging performance with such a lens except with a smaller 

FOV of about 70 μm diameter. Furthermore, the use of externally mounted galvo 

based scanning mirrors solves several challenges faced by other endoscope designs 

when considering clinical implementation such as uniformity of the scan and 

durability of the device. Because GRIN lenses are inexpensive, they could ultimately 

be used as disposable devices, eliminating the need for sterilizing the endoscope probe 

between procedures. The GRIN lens approach would also allow for an external focus 

adjustment in the depth of the sample without movement of the endoscope probe that 

has penetrated the tissue. By axially translating the scan objective, a z-scan in the 

sample of 0 to 95 μm from the surface of the lens has previously been shown [20]. 

 

2.8. Conclusions 

We have demonstrated that TPF and SHG imaging are possible through long 

GRIN lens systems up to 28.5 cm in length. Long GRIN lenses can be integrated with 

a compact and portable two-photon microscope suitable for a clinical environment. 

The device presented can acquire TPF and SHG images at a rate of 4 frames/s with a 

field of view of ~200 μm diameter and with subcellular resolution. The presented in 
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vivo results of unstained organs of live rats show great promise for using GRIN 

endoscopy for optical biopsy. 
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CHAPTER 3 

THREE-PHOTON EXCITED FLUORESCENCE IMAGING OF 

UNSTAINED TISSUE USING A GRIN LENS ENDOSCOPE2 

 

Abstract 

We present a compact and portable three-photon gradient index (GRIN) lens 

endoscope system suitable for imaging of unstained tissues, potentially deep within 

the body, using a GRIN lens system of 1 mm diameter and 8 cm length. The lateral 

and axial resolution in water is 1.0 μm and 9.5 μm, respectively. The ~200 μm 

diameter field of view is imaged at 2 frames/s using a fiber-based excitation source at 

1040 nm. Ex vivo imaging is demonstrated with unstained mouse lung at 5.9 mW 

average power. These results demonstrate the feasibility of three-photon GRIN lens 

endoscopy for optical biopsy. 

 

3.1. Introduction  

In vivo two-photon (2P) microscopy has become a valuable tool for the study 

of subsurface features in intact tissues and organs  [1]. To be clinically useful, 

endoscopic 2P approaches are required. A number of different endoscopes and 

techniques have been demonstrated in the past  [2–9], including in vivo imaging of 

unstained tissues  [10,11].  

                                                            
2 The contents of this chapter have been reproduced from Biomedical Optics Express, Vol. 4, No. 5, pp. 
652-658, 2013. 
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Previous 2P endoscope demonstrations rely on the mode-locked Ti:S laser at 

800 nm to excite intrinsic fluorescence. However, longer excitation wavelengths have 

been shown to provide several advantages. As a result of an increased scattering 

length in tissue for longer excitation sources, the imaging penetration depth can be 

increased significantly using longer excitation wavelengths  [12,13]. There are also 

strong indications that using longer wavelengths could lead to diminished 

phototoxicity. For example, imaging with longer wavelength has been shown to 

reduce destructive plasma formation  [14,15]. Furthermore, femtosecond pulsed 

excitation at 1030 to 1070 nm can be conveniently provided by robust, compact fiber 

based lasers, which will significantly reduce the cost and improve the clinical 

compatibility. Although fiber lasers at these wavelengths can be used for 2P imaging 

of red dyes  [16], 2P excitation of intrinsic molecules such as nicotinamide adenine 

dinucleotide (NADH) and flavin adenine dinucleotide (FAD) is impractical using the 

fiber source due to their small 2P cross sections at the long wavelengths  [17]. 

Three-photon (3P) microscopy was first demonstrated in the 1990s  [17–19]. 

3P excitation is an effective approach to extend the spectral range of the excitation 

source. For example, 3P intrinsic fluorescence microscopy has been performed with 

deep UV-excitable intrinsic fluorophores such as serotonin and melatonin  [20,21]. 

Here we demonstrate a GRIN lens endoscope that is capable of imaging unstained 

mouse lung tissues using 3P excitation by a fiber laser at 1040 nm. To the best of our 

knowledge, this is the first demonstration of 3P imaging of unstained tissues through a 

compact and portable system with potential for endoscopic tissue diagnosis. 
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3.2. Endoscope design and characterization 

The compact and portable GRIN lens endoscope is shown in Figure  3.1, which 

was described in our previous work for 2P excitation of intrinsic fluorescence using a 

mode-locked Ti:S laser at 800 nm [11]. This system weighs less than 2lbs and was 

used successfully for in vivo 2P imaging in rats. For 3P endoscopic imaging, we used a 

longer wavelength, fiber laser source. (IMRA µJewel laser, 1040 nm wavelength and 

1 MHz repetition rate). The optical components such as scan mirrors, scan lenses, 

objective and GRIN lens system are compatible with this new excitation source. For 

example, we found that the transmission of the GRIN lens is ~ 80% at 1040 nm, which 

is adequate for our applications. Modifications were made in the pulse delivery. The 

excitation light is delivered to the endoscope via a 1.6 m long hollow-core photonic 

band-gap fiber (HC-1060-2, NKT Photonics). A half-wave plate (WPH05M-1053, 

Thorlabs Inc.) was used to align the polarization of the excitation light with the 

polarization axis of the fiber. An aspheric lens on the portable GRIN lens endoscope 

collimates the excitation light to a beam about 2 mm in diameter. A small aperture (3 

mm), galvanometer scanning mirror system (6210H, Cambridge Technology) allows 

for a fast imaging rate (up to 4 frames/s at 512 by 512 pixels). The beam is then 

expanded by two scan lenses 18 and 36 mm in focal length (respectively, LSM02-BB 

and LSM03-BB, Thorlabs Inc.) to underfill a 0.3 NA microscope objective (RMS10X-

PF, Thorlabs Inc.) to achieve an effective focusing NA of ~0.1. A polarizer was added 

between the scan lenses to eliminate any residual light in the orthogonal polarization. 

The microscope objective couples the excitation beam into the proximal side of the 

GRIN lens system. This 1 mm diameter system is composed of a 0.1 NA relay lens 
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3.3c shows that the fluorescence signal generated closely follows a cubic dependence on the 

excitation power. To demonstrate the capability of our device for imaging intrinsic 

fluorescence, we imaged unstained mouse lung tissue ex vivo. A 3 month old female, wild 

type mouse (Jackson Labs) was euthanized and a lung lobe was removed, embedded in 

agarose gel and plated on a standard glass microscope slide. The tissue was imaged within 1 

hour of euthanasia using 5.9 mW at the sample and at a frame rate of 2 frames/s (512 by 512 

pixels). Representative images are shown in Figure  3.4(a)‐(c). We can identify the surface of 

the lung with strong SHG signal coming presumably from the pleura (Figure 3.4(a)). Below 

that, we can identify individual circular alveoli Figs.3. 4(b)‐3.4(c), showing that the images 

could potentially provide diagnostic information. To confirm 3P excitation, fluorescence 

photons of the autofluorescence channel were measured at 5 different excitation powers at 

the sample by photon counting while scanning the laser beam at a fixed area in the tissue. 

Figure 3.4(d) shows that the fluorescence signal generated from the unstained tissue closely 

follows a cubic dependence on the excitation power, confirming that the image contrast is 

indeed generated by 3P excitation of intrinsic fluorescence. 
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axial for 2P imaging. Since the GRIN lens system was originally designed for 800 nm 

excitation, the imaging performance at 1040 nm may be somewhat degraded. 

Nonetheless, our results showed that the spatial resolution is sufficient to provide 

diagnostic information. 

There are several advantages for 3P endoscopy as compared to 2P endoscopy. 

The longer excitation wavelength and 3P excitation significantly improve the 

capability of tissue penetration [22], which is desirable for tissue diagnostics. 3P 

excitation allows the use of compact, convenient fiber femtosecond laser as the 

excitation source, which significantly reduces the cost and improves the clinical 

compatibility. Furthermore, the fiber laser at 1040 nm can excite intrinsic molecules 

(e.g., NADH, FAD) significantly closer to their 3P excitation peaks than 2P excitation 

at 800 nm [20]. While the pulse energy has increased in our demonstration as 

compared to our 2P endoscope, we found that the required average power for image 

generation is less than 6 mW, bringing multiphoton endoscopy to average power 

levels comparable to other optical diagnostic techniques such as confocal endoscopy 

and optical coherence tomography  [23]. While the exact impact of pulse energy, 

duration, wavelength and average power on tissue damage needs to be investigated 

further, previous studies showed a lower phototoxicity at longer 

wavelengths  [14,15,24]. We note that third harmonic generation (THG), which is 

much more ubiquitous than SHG, could potentially be added as another imaging 

contrast. Although THG imaging is not possible in our experiments because the 

transmission of the GRIN lens we used drops significantly below 370 nm, there is no 

fundamental limitation in making new lenses with high transmission at ~ 350 nm.  
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The main disadvantage of 3P endoscopy would be an increase in chromatic 

aberrations in the endoscope optics due to the larger difference between the excitation 

and signal wavelengths. The impact of this, however, can be reduced by carefully 

designing the optics for specific applications. Fiber delivery of the energetic 

femtosecond pulses for 3P excitation is another concern. The use of hollow core 

fibers, as shown in this paper, overcomes this difficulty. While hollow core fibers 

cannot effectively collect the fluorescence signal back through the excitation path, 

efficient signal collection through non-reciprocal optical path (e.g., using large core 

multimode fibers) has been demonstrated in the past  [25,26]. Thus, 3P excitation can 

be implemented in a flexible endoscope with a small rigid tip.  

It should be noted that although we used a fiber laser that is capable of 

producing average power up to 1 W (i.e., 1 µJ pulses), less than 6 mW (i.e., 6 nJ 

pulses) was used at the sample in our experiments. Compact, fiber based femtosecond 

oscillators producing >40 nJ pulse energy are commercially available. These sources 

are adequate for 3P excitation of intrinsic fluorophores assuming a reasonable system 

throughput of ~ 25%. Furthermore, our frame rate (2 frames per second) was limited 

by the low repetition rate of the laser (1MHz). Oscillators providing higher repetition 

rates (e.g., 3 MHz) and shorter pulses (e.g., 150 fs) can significantly increase the 

imaging acquisition rate without increasing the average excitation power, which will 

be valuable for overcoming motion artifacts for in vivo applications. Alternatively, the 

pixel clock of the image acquisition system could be synchronized to the laser pulses 

to maximize the frame rate [27], For example, 3 MHz repetition rate can provide a 

maximum frame rate of ~ 12 frames/s at 512 pixels by 512 pixels per frame, which is 
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adequate to overcome motion artifacts in in vivo imaging. Such a frame rate was 

shown to be adequate for in vivo imaging of Fluorescein stained human bladders using 

a confocal laser endoscope [28].   

 

3.4. Conclusion 

We have demonstrated the feasibility of 3P intrinsic fluorescence endoscopy 

using a GRIN lens endoscope and a fiber-based excitation source at 1040 nm. The 

compact and portable device can acquire 3P intrinsic fluorescence and SHG images at 

a rate of 2 frames/s with a field-of-view of ~200 μm diameter with subcellular 

resolution. The presented ex vivo results of unstained mouse lung tissue show great 

promise for using 3P GRIN lens endoscopy for optical biopsy. The combination of 

longer wavelength and 3P excitation, together with the convenient fiber-based 

excitation source, may make 3P endoscopy a valuable alternative to the conventional 

2P approach. 
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CHAPTER 4 

MULTIPHOTON GRIN ENDOSCOPY FOR EVALUATION OF PROSTATIC 
TISSUE: TOWARDS REAL TIME HISTOLOGY IN UNSTAINED TISSUE3 

 

Abstract 

Multiphoton microscopy can instantly visualize cellular details in unstained 

tissues.  Multiphoton probes with clinical potential have been developed.  This study 

evaluates the suitability of a multiphoton GRIN endoscopy as a diagnostic tool for 

prostatic tissue. A portable and compact multiphoton endoscope based on a 1 mm 

diameter, 8 cm length GRIN lens system probe was used. Fresh ex vivo samples were 

obtained from 14 radical prostatectomy patients and benign and malignant areas were 

imaged and correlated with subsequent H&E sections. Multiphoton GRIN endoscopy 

images of unfixed and unprocessed prostate tissue at a subcellular resolution are 

presented.  We note several differences and identifying features of benign versus low 

grade versus high grade tumors and are able to identify periprostatic tissues such as 

adipocytes, peri-prostatic nerves and blood vessels. Multiphoton GRIN endoscopy can 

be used to identify both benign and malignant lesion in ex vivo human prostate tissue 

and may be a valuable diagnostic tool for real-time visualization of suspicious areas of 

the prostate.  

 

                                                            
3 The contents of this chapter have been reproduced from “Multiphoton GRIN Endoscopy for 
Evaluation of Prostatic Tissue: Towards Real Time Histology in Unstained Tissue”, David M. Huland, 
Manu Jain, Dimitre G. Ouzounov, Brian D. Robinson, Diana S. Harya, Maria M. Shevchuk, Paras 
Singhal, Chris Xu, Ashutosh K. Tewari (in submission). 
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4.1 Introduction 

Prostate cancer remains the most commonly diagnosed cancer in U.S men with 

approximately 240,000 new diagnosis in 2012 1.  While approximately 28,000 men 

died of prostate cancer in 2012, the majority had indolent cancer that may be less 

likely to progress or cause death. Identifying these patients is difficult with current 

diagnostic techniques.  Gleason score, which is obtained on biopsy, is by far the best 

predictor of cancer progression 2. However, as only a fraction of the prostate gland is 

sampled and mostly in a blinded manner, prostate biopsies are only successful in 

detecting tumors in 60-70% of cases 3. In prostates removed by radical prostatectomy 

(RP) an upstaging (>T2) is seen in 20.6% cases and an upgrading (Gleason score >6) 

in 44.9% cases was found on final histopathology 4. As a consequence of such 

inaccuracies in staging and grading Prostate Cancer (Pca), non-indolent cancer 

candidates are often put under active surveillance (AS) leading to cancer progression. 

Furthermore, many suitable candidates are not enrolled in AS and receive unnecessary 

over-treatment with concomitant side effects.  

RP is frequently selected treatment option for men with localized prostate 

cancer. However, a significant challenge faced by surgeons during RP is the complete 

removal of the cancerous tissue, while preserving the nerves surrounding the prostate 

that are responsible for continence and erectile function.   These nerves, as well as the 

malignant glands, are too small to be visualized by eye. Although, RP with the da 

Vinci robotic surgical system allows for a significant advantage in surgical precision 

due to 10-12x magnification of the surgical field, it lacks the cellular resolution to 
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differentiate cancerous cells from surrounding nerve tissue. Thus the surgeons rely on 

intraoperative frozen section (IFS) analysis to provide some benefit in reducing 

positive surgical margins (PSMs) 5.  However, frozen sections require time and, only 

provide an assessment of a fraction of the area of interest.  Further, as IFS requires the 

removal of tissue, there is always a risk of damaging the area one is trying to preserve, 

especially the peri-prostatic nerves.  As a result, RP’s have  PSMs 6–9  in 10 - 40% of 

cases and a 25 - 70% rate of postoperative impotence 10–14.  In essence, inaccurate 

disease quantification, staging and unavailability of intraoperative pathological 

guidance often results in mismatched treatment recommendations, over treatment, 

residual cancer (positive surgical margins) during surgery and need for expensive 

radiation treatment to salvage these cancers.  Thus, for both the diagnosis and the 

treatment of prostate cancer a faster and more accurate way of characterizing the tissue 

at a cellular level could significantly improve decision making during treatment and 

patient outcomes. 

Multiphoton microscopy (MPM) provides the ability to image fresh, 

unprocessed (unstained and unfixed) tissues at subcellular resolution in vivo 15–17.  It 

has been demonstrated to provide tissue architecture comparable to gold standard 

H&E and has been shown as a valuable tool in the diagnosis of benign and malignant 

lesions in multiple organs including the lung 18,19, bladder 20, and ovaries 21. Its ability 

to image unprocessed and unstained human prostate tissue ex vivo has further shown 

that MPM can identify relevant prostatic and periprostatic tissues and pathological 

changes 22,23.  Although these studies serve as a baseline to establish the signature of 
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the various tissue types and pathologies on MPM, the bench top MPM microscope, 

used in these studies cannot be used in vivo intraoperatively.  

We have previously reported on a compact and portable GRIN based 

endoscope for clinical multiphoton applications24,25. The design of this device is 

centered around a rigid 8 cm length, 1 mm diameter GRIN endoscopic probe and can 

image a 200 µm diameter field-of-view at 4 frames per second (512 * 512 pixels) at 

subcellular resolution.  We have demonstrated the device through in vivo imaging of 

the kidney, colon and liver in anesthetized rats.  In this study we test the diagnostic 

capabilities of our GRIN endoscope on ex vivo human prostate samples obtained from 

radical prostatectomy patients. 

 

4.2 Portable & Compact GRIN Endoscope System 

The compact and portable GRIN endoscope system is shown in Figure 4.1 and 

was previously described 24,25.  In brief, the near infra-red excitation pulses are 

delivered to the device via a ~2 m hollow core photonic band-gap fiber.  After being 

collimated by a aspheric lens on the portable GRIN lens endoscope, the beam is 

scanned by a two-axis galvanometer scan mirror system, and two scan lenses and a 0.3 

NA objective are used to scan the back of the GRIN lens endoscope system.  This is 

composed of a 0.1 NA relay lens (1.75 pitch) and a 0.5 NA objective lens (<0.25 

pitch). For the ex vivo human tissue demonstration at Weill Cornell Medical Center we 

used a turn-key, compact fiber laser system at 780 nm with a repetition rate of 50MHz 

(Carmel, Calmar Laser).  Due to the shifted wavelength closer to the zero dispersion 
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The present study included 14 robotic radical prostatectomies from patients 

who agreed to participate in an Institutional Review Board approved study.  Patients 

age ranged from 41-75 years.  Prostates removed by RP were first taken to the 

Department of Surgical Pathology for gross examination. One specimen was imaged 

intact immediately after RP to identify peri-prostatic tissue. For the rest of the 13 

specimens, surfaces were inked as per institutional protocol and then specimens were 

sliced in roughly 0.5-cm thick sections. One section per specimen with visible tumor 

or most likely to have tumor was chosen by a uropathologist. The sections were 

brought to the multiphoton endoscopy facility in normal saline and imaged at room 

temperature with the GRIN endoscope.  All the sections were imaged under the 

guidance of research pathologist experienced with MPM imaging. Images were 

acquired from areas labeled as benign and malignant on gross inspection of the 

section. Unless otherwise noted, all samples were imaged within ~3hrs of excision 

from the patient, and at 50 mW at the sample and at 4 frames per second.  During 

imaging the sample was fixed in agar gel to reduce motion artifacts. 0.9% phosphate 

buffered saline (PBS) was used for GRIN objective immersion and to prevent the 

tissue from drying out.  Throughout the imaging sessions, the portable GRIN 

endoscope was mounted on 3D stage for fine movement control.  After imaging, the 

specimen was returned to the Department of Surgical Pathology in 10% buffered 

formalin and processed for routine histopathology (formalin fixation, embedding, 

sectioning and staining).  All H&E images shown in the figures were taken under oil 

immersion objective (100X) with total magnification of 1000X to match the field-of-

view (FOV) of ~150 µm x 150 µm on MPM.  H&E comparison images were taken 
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from the same sample and of a similar area of the site where the original multiphoton 

endoscopy image was taken. 

 

4.4 Results: 

MPM imaging of Prostate gland: The prostate gland is composed of mainly 

two components: acini and fibromuscular stroma.  In the multiphoton endoscopy 

images of the benign prostatic tissue (Figure 4.2), we could identify benign glands 

based on their architecture i.e. large gland with infolded epithelium and ill-defined 

luminal border. In addition, strong punctate autofluorescence in the cytoplasm was 

uniquely seen in the benign glands. This signal most likely originates from lipofuscin 

found abundantly in cytoplasm of the benign glands. Some benign glands were seen 

lined by flattened epithelium with secretions/concretions in their lumen.  Similarly, the 

fibromusclar stroma had strong SHG signal generated by collagen along with 

autofluorescent muscle fibers and some elastin fibers. By comparsion, the images 

taken from areas with adenocarcinoma (Figure 4.3) showed clusters of small acini 

with sharp luminal borders and some aggregated small secretions in the lumen. These 

areas were confirmed to have low grade tumor (Gleason 3+3=6) on H&E. In the areas 

confirmed as high grade (Gleason 7+) adenocarcinoma on H&E, MPM images 

showed loss of normal architecture and it was challenging to identify individual acini. 

Furthermore, SHG signal was significantly reduced in areas of high grade tumor as 

compared to areas of low grade tumor. 
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MPM imaging of peri-prostatic tissue:  In addition to imaging sections from 

the prostate glands, in one case we imaged the surface of intact RP specimen to 

simulate intraoperative margin imaging. Here we could identify relevant periprostatic 

tissues, such as adipocytes, peri-prostatic nerves and blood vessels (Figure 4.4). 

Adipocytes were recognized based on their globular shape and homogenous 

cytoplasm. Nerve was clearly identified by its wavy nerve fibers and was 

distinguishable from blood vessel due to lack of lumen. 

Being able to obtain histology quality images at lower excitation powers could 

be beneficial to reduce concerns about the safety of multiphoton endoscopy.  In Figure 

4.5 we reduce the power to 32 mW while keeping the frame rate constant at 4 frames/s 

(Figure 4.5B).  While the signal-to-noise ratio in the image is decreased, most of the 

architecture is still visible as compared to the original image at 50 mW.  Similarly, if 

motion artifacts could be overcome to a point where longer integration times are not a 

problem, Figure 4.5E shows that we can obtain images of very comparable quality at 

6mW excitation power when averaging 16 frames obtained at 1 frame /s (i.e. 16 

seconds total acquisition time).   
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adenocarcinoma in ex vivo prostate sections. In addition, we identified important peri-

prostatic tissues such as nerves, adipocytes and blood vessels.  This study 

demonstrates the feasibility and lays the foundation for future in vivo imaging in 

prostate cancer patients to improve their diagnosis and management.  

Images obtained from the in vivo rat experiment demonstrates multiphoton 

GRIN endoscopy as a potential tool for in vivo imaging in human subjects, intra-

operatively.  As we have previously described 24 the main source of motion artifacts 

during in vivo rat experiments is movement from the diaphragm during respiration.  

While we were able to isolate this motion successfully during this demonstration, the 

exact effect of this on the quality of the images during surgery needs to be 

investigated. We would anticipate the respiratory motion to be less significant in 

human subjects due to significantly slower respiratory rate and a considerable distance 

of pelvis from the diaphragm. However, one could expect more contribution from 

cardiovascular motion in a human subject.  The pneumoperitoneum created during 

robotic RP could help significantly in reducing the effect of both cardiac and 

pulmonary motion artifacts.   

The ultimate goal of multiphoton endoscopy is to achieve a real time 

visualization of prostatic tissue in clinical setting. Based on the images obtained in this 

study and the fact that this device is potentially compatible in dimensions (8cm length 

x 1mm diameter) with a biopsy needle, we envision its integration in the prostate 

biopsy gun to carry out targeted biopsies. By achieving real time histology, we can 

improve the diagnostic accuracy of the Gleason grading by increasing the yield of 
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cancerous tissue (by sampling the suspicious area) for histopathological diagnosis 

during biopsy procedure. This can be a valuable tool for better selection of active 

surveillance patients and reduce the rate of under or overtreatment.  This device could 

also be used intra-operatively during radical prostatectomy to identify periprostatic 

nerves and to assess surgical margins, thus potentially reducing complications 

associated with RP such as erectile dysfunction and urinary incontinence, resulting in 

improved functional outcomes and quality of life for the patients. 

Before this endoscopic device can be integrated into routine clinical workflow, 

several potential challenges need to be addressed.  The most significant one is 

probably proving that the excitation powers used are not harmful to the imaged tissue.  

We have shown that if motion artifacts could be reduced significantly, excitation 

powers as low as 6 mW would be sufficient for similar quality images. Additionally, 

several studies have suggested that the higher power levels used in this study are 

below the threshold for DNA and other tissue damage 16,26.  However, due to multiple 

factors potentially influencing these thresholds (including numerical aperture, 

wavelength, pulse width, aberrations in the optical system, and exposure time), the 

exact threshold needs to be characterized for the presented endoscope.   

Further, the clinical environment may provide new challenges, such as cardiac 

motion and blood interfering with the imaging.  The presented endoscope can image a 

200 µm field-of-view at 4 frames/s.  Motion artifacts could be overcome by increasing 

the frame rate further and strategies have been suggested to achieve this 27.  

Challenges involving blood and other tissues interfering with the images could be 
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overcome by adding the ability to flush the surface of the endoscope with saline. The 

major limitation from diagnostic point of view is the very small field-of-view of 200 

µm that limits the area under inspection and impedes architectural analysis.  A larger 

field-of-view would be advantageous to scan a larger fraction of the prostate to give an 

idea of overall architecture under imaging.  At the cost of resolution, one could 

increase the field-of-view by decreasing the objective NA used.  Although in our study 

the field-of-view appeared sufficient to generally distinguish benign from malignant 

tissue and we were able to identify areas with low grade and high grade tumor, a larger 

sample size and further studies are needed to verify this claim.   

In summary, we have shown that multiphoton GRIN endoscopy can be used to 

identify both benign and malignant lesion in ex vivo human prostate tissue.  The GRIN 

endoscope is integrated into a compact and portable device that could potentially be 

used in a clinical setting for guided biopsies or intra-operative assessment of peri-

prostatic nerves and prostatic margins. This may reduce complications associated with 

over/under treatment and improve functional outcomes and quality of life for prostate 

cancer patients. 
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