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ALL RIGHTS RESERVED



RAMSEY THEORY AND BANACH SPACE GEOMETRY

Diana Cristina Ojeda Aristizábal, Ph.D.
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We present two main results, one related to the original construction of Tsirelson’s

space and one that elaborates on a Ramsey type theorem formulated and proved

by Gowers to obtain the stabilization of Lipschitz functions on the unit sphere of c0.

We obtain an expression for the norm of the space constructed by Tsirelson.

This study of the original construction is aimed at providing a description of the

space that could lend itself to the use of tools coming from Ramsey theory. The

expression can be modified to give the norm of the dual of any mixed Tsirelson

space. In particular, our results can be adapted to give the norm for the dual of

the space S constructed by Schlumprecht.

We give a constructive proof of the finite version of Gowers’ FINk Theorem and

analyse the corresponding upper bounds. We compare the finite FINk Theorem

with the finite stabilization principle in the case of spaces of the form `n∞, n ∈ N and

establish a more slowly growing upper bound for the finite stabilization principle

in this particular case.
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CHAPTER 1

INTRODUCTION

We present two main results, one related to the original construction of Tsirelson’s

space and one that elaborates on a Ramsey type theorem formulated and proved

by Gowers [11] to obtain the stabilization of Lipschitz functions on the unit sphere

of c0. Starting with the construction of spreading models of Banach spaces by

Brunel and Sucheston [2], Ramsey theory has served as an important tool in the

study of the structure of Banach spaces. Gowers’ result is another example of the

connection between these two areas, and the study of the original construction of

Tsirelson’s space is aimed at providing a description of the space that could lend

itself to the use of tools coming from Ramsey theory.

It was observed by Milman (see [19, p.6]) that, given a real-valued Lipschitz

function defined on the unit sphere of an infinite dimensional Banach space, one

can always find a finite dimensional subspace Y of any given dimension such that

the oscillation of the function restricted to the unit sphere of Y is as small as we

want. This motivated the question of whether in this setting one could also pass

to an infinite dimensional subspace with the same property.

It was only in 1992 when W.T. Gowers proved in [11] that c0, the classical Ba-

nach space of real sequences converging to 0 endowed with the supremum norm,

has this property. For the special case of Lipschitz functions defined on the unit

sphere of c0 not depending on the sign of the canonical coordinates (i.e. such

that f(
∑
aiei) = f(

∑
|ai|ei) for every (ai) in the sphere of c0) we can restrict

our attention to the positive sphere of c0, the set of elements of the sphere with
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non-negative canonical coordinates. Gowers associated a discrete structure to a

net for the positive sphere of c0, and proved a partition theorem for the structure

that we shall refer to as the FINk Theorem.

The FINk Theorem is a generalization of Hindman’s Theorem and its proof

uses the Galvin-Glazer methods of ultrafilter dynamics. These methods are now

widely used to give streamlined proofs of Ramsey type theorems such as Hindman’s

Theorem and different variations of the Hales-Jewett Theorem (see [29], [16]).

One of our main results is an inductive proof of the finite version of the FINk

Theorem, together with the calculation of the upper bounds for the corresponding

Ramsey numbers given by the proof. We also calculate upper bounds for the quan-

titative version of Milman’s result about the stabilization of Lipschitz functions on

finite dimensional Banach spaces for the special case of the spaces `n∞, n ∈ N. We

find bounds for the finite stabilization principle that grow much more slowly than

the bounds we find for the finite FINk Theorem.

The question about stabilization of Lipschitz functions defined on the unit

sphere of an infinite dimensional Banach space is closely related to the notion of

distortion. Informally, a space is distortable if it admits an equivalent norm which

is far from being a scalar multiple of the original one. It was proved by James [17]

that the classical spaces c0 and `1 are not distortable.
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In the 1970s Tsirelson [31] constructed a space which was the first example

of a distortable space. The special properties of Tsirelson’s space T derive from

certain saturation properties of its unit ball. The original construction of the space

is indirect: one defines a subset V of `∞ with certain properties and takes T to be

the linear span of V with the norm that makes V be the unit ball. This provides

no expression for the norm of T , which makes it difficult to study the space.

Later, Figiel and Johnson [10] gave an implicit expression for the norm of the

dual of T . It is the dual of the space originally constructed by Tsirelson that came

to be known as Tsirelson’s space and it is denoted in the literature by T . Since we

are interested in analysing the original construction due to Tsirelson, we call the

space he constructed T , the space F will be the completion of c00 with respect to

the norm given by Figiel and Johnson.

Many results about T ∗ followed and the properties of T ∗ were widely studied

(see [5]). The space T ∗ is asymptotically `1 whereas the space T constructed by

Tsirelson is asymptotically c0 (see [25]). As witnessed by Gowers’ argument, the

space c0 lends itself to the use of tools from Ramsey theory, more that the space

`1 does. It is for this reason that we were interested in providing a new description

of the original construction of Tsirelson.

The other main result of this thesis is an expression for the norm of the space

T . The expression can be modified to give the norm of the dual of any mixed

Tsirelson space. In particular, our results can be adapted to give the norm for the

dual of the space S constructed by Schlumprecht in [28].
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The thesis is organized as follows: Chapter 2 includes the notation and basic

definitions from Banach space theory that we shall use, as well as the background

that motivates the results presented in Chapter 4. We mainly talk about distortion

and oscillation stability. We sketch the proof of the non-distortion of `1. We also

define Tsirelson’s space and the space S constructed by Schlumprecht, sketch the

proof of the distortion of these spaces, and outline how the distortion of `2 was

obtained by Odell and Schlumprecht [23] from the distortion of S.

In Chapter 4 we obtain an expression for the norm of the space originally con-

structed by Tsirelson, and specify how this expression can be adapted to obtain

the norm of the dual of mixed Tsirelson spaces.

In Chapter 3 we mention some classical Ramsey type theorems such as the

Hales-Jewett Theorem and Hindman’s Theorem. We present the fundamentals of

the Galvin-Glazer methods of ultrafilter dynamics and sketch the proofs of Hind-

man’s Theorem and the FINk Theorem using these tools. We also sketch the proof

of the oscillation stability of c0 from the FINk Theorem.

In Chapter 5 we present the inductive proof of the finite FINk Theorem, cal-

culate the resulting upper bounds as well as the upper bounds for the finite stabi-

lization principle in the special case of the spaces `n∞, n ∈ N.
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CHAPTER 2

BANACH SPACE GEOMETRY

2.1 Notation and basic definitions

In this section we present the basic results and notation from Banach space ge-

ometry that we shall use later on. We denote by N the set of natural numbers

starting at zero, and take a natural number n to be the set of its predecessors

{0, 1, . . . , n− 1}. We denote the cardinality of a finite set S by #S. We will omit

the range of sequences and summations when it is clear from the context. We shall

use bold face for elements of a vector space. The space generated by a sequence

of vectors (xn) in a normed vector space is the closure of the linear span of the

sequence and is denoted by [xn].

A good reference for Banach space theory is [9]. We denote the unit ball and

the unit sphere of a Banach space (X, ||·||) by BX and SX respectively. If we are

considering different norms on X we shall write B||·|| and S||·|| for the unit ball and

unit sphere with respect to the norm ||·||.

We will work with the classical real sequence spaces c0 and `p (1 ≤ p ≤ ∞).

Recall that `∞ is the vector space of bounded real sequences with the supremum

norm and that c0 is the closed subspace of `∞ containing the sequences converging

to zero. Additionally, for 1 ≤ p < ∞, `p is the space of real sequences a = (an)

such that
∑
|an|p < ∞ with the norm ||a|| = (

∑
|an|p)1/p. We shall also work

with spaces which are the completion of c00, the vector space of finitely supported
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real sequences, with respect to some norm.

Let X, Y be normed vector spaces. We say a linear transformation T : X → Y

is bounded if there exists a constant C such that ||T (x)|| ≤ C ||x|| for all x ∈ X. If

T is also invertible and the inverse is bounded, we say T is an isomorphism. The

norm of a bounded linear transformation is given by

||T || = sup{||T (x)|| : ||x|| = 1}.

We say X and Y are C-isomorphic if there exists an isomorphism T : X → Y such

that ||T || · ||T−1|| ≤ C.

Two norms ||·||, ||·||′ on a vector space X are equivalent if there exist constants

C1, C2 such that 1
C1
||x|| ≤ ||x||′ ≤ C2 ||x|| for every x ∈ X (i.e., if (X, ||·||) and

(X, ||·||′) are isomorphic).

Let X be an infinite dimensional Banach space. A sequence (xi) in X is a Schauder

basis if for every x ∈ X there is a unique sequence of scalars (ai) such that

x =
∑
aixi. If X is finite dimensional, the notion of Schauder basis coincides with

the notion of algebraic basis. A standard reference on Schauder bases is [18]; we

follow the notation therein. A sequence (xi) in a Banach space X is called a basic

sequence if it is a Schauder basis for the closure of the span of (xi). The canonical

projections Pn : X → X associated to a Schauder basis (xi) are defined by

Pn

(∑
i∈N

aixi

)
=
∑
i∈n

aixi

for n ∈ N and
∑
aixi ∈ X. The canonical projections are uniformly bounded and

the basis constant is the supremum of {||Pn|| : n ∈ N}.

For j ∈ N we define the coefficient functional x∗j : X → R by x∗j(x) = aj for

x =
∑
aixi. We say the basis (xi) is shrinking if X∗ is the closure of the span of
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the sequence of coefficient functionals (x∗j) with respect to the norm of X∗.

For C ≥ 1, we say two basic sequences (xi), (yi) in Banach spaces X, Y respectively

are C-equivalent if there exist constants C1 and C2 such that C1 · C2 ≤ C and for

every n ∈ N and scalars (ai)i∈n

1

C1

∣∣∣∣∣
∣∣∣∣∣∑
i∈n

aixi

∣∣∣∣∣
∣∣∣∣∣
X

≤

∣∣∣∣∣
∣∣∣∣∣∑
i∈n

aiyi

∣∣∣∣∣
∣∣∣∣∣
Y

≤ C2

∣∣∣∣∣
∣∣∣∣∣∑
i∈n

aixi

∣∣∣∣∣
∣∣∣∣∣
X

.

Given a Banach space X with Schauder basis (xi)i∈I , I = N or I = n for

some n ∈ N, for x =
∑

i∈I aixi ∈ X we define the support supp(x) of x by

supp(x) = {i ∈ I : ai 6= 0}, we say x is positive with respect to (xi)i∈I if each

ai is non negative. A sequence of vectors (yi)i∈J with J = N or J = n for

some n ∈ N is a block subsequence of (xi)i∈I if each yi has finite support and

max supp(yi) < min supp(yj) for every i < j ∈ J . A space generated by a block

sequence is called a block subspace. The sequence (yi)i∈I is positive with respect

to (xi)i∈I if each yi is positive; it is normalized if each yi has norm 1. A subspace

generated by a positive normalized block sequence is called a positive subspace.

The positive unit sphere of a positive subspace Y of X, denoted by PSY , is the set

of positive vectors in the unit sphere of Y .

When talking about subspaces of a Banach space with a Schauder basis we

shall mainly consider block subspaces. This is justified by the following result of

Pe lczyński:

Theorem 1. [9, Section 4.4] Let X be an infinite dimensional Banach space with

Schauder basis (xi) then every infinite dimensional subspace of X contains for

every K > 1 a sequence which is K-equivalent to a block subsequence of (xi).

In Section 4.1 we will use the Bipolar Theorem, for this we need some additional
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notation.

Let X be a Banach space, and for A ⊂ X, B ⊂ X∗ we define

A◦ = {f ∈ X∗ : for all x ∈ A, |f(x)| ≤ 1}

B◦ = {x ∈ X : for all f ∈ B, |f(x)| ≤ 1}.

We shall need the following instance of the Bipolar Theorem:

Theorem 2 (Alaoglu, Banach). [9, Section 3.4] Let X be a Banach space. For

every A ⊂ X∗, A◦◦ is the weak*- closure of the convex hull of A ∪ −A.

Given a Banach space X with a shrinking basis (xn), we can identify f ∈ X∗

with the sequence of scalars (an) such that f =
∑
anx

∗
n. It is clear that if (fm) is

a sequence in X∗ with fm =
∑
amn x∗n and such that fm converges to f with respect

to the weak*-topology, then f =
∑
bnx

∗
n where lim

m→∞
amn = bn. The following

proposition shows that in fact, the weak*- topology and the topology of pointwise

convergence coincide in the unit ball of X∗.

Proposition 3. Let X be a Banach space with a shrinking basis (xn) and let

(fm) ⊂ BX∗ be such that fm =
∑
amn e∗n and for each n ∈ N, limm→∞ a

m
n = bn. If

f =
∑
bne
∗
n, then f ∈ X∗ and fm converges to f with respect to the weak*-topology.

We shall also consider the following geometric property of Banach spaces. We

say a Banach space X is uniformly convex if for every 0 < ε ≤ 2 there exist δ(ε) > 0

such that for all x,y ∈ X such that ||x|| = ||y|| = 1 and ||x− y|| > ε, we have

that ∣∣∣∣∣∣∣∣x + y

2

∣∣∣∣∣∣∣∣ ≤ 1− δ(ε).

If X is a uniformly convex space and x,y ∈ X we define the angle between x and

y by

α(x,y) =

∣∣∣∣∣∣∣∣ x

||x||
− y

||y||

∣∣∣∣∣∣∣∣ .
8



As the next proposition shows, a stronger triangle inequality holds in uniformly

convex Banach spaces:

Proposition 4. [6] Let X be a uniformly convex space and let x0,x1, . . . ,xk−1 ∈ X

and y =
∑

i<k xi. If αi = α(xi,y), then

||y|| ≤
∑
i<k

(1− 2δ(αi)) ||xi|| .

2.2 Distortion

If (X, || · ||) is a Banach space, we say | · | is an equivalent norm if there exist

K,L ∈ R such that L|x| ≤ ||x|| ≤ K|x| for every x ∈ X (i.e. if the identity

map id : (X, || · ||) → (X, | · |) is an isomorphism). Note that equivalent norms

generate the same topology and any scalar multiple of || · || gives an equivalent

norm. Given an equivalent norm | · | one can ask whether there is an infinite

dimensional subspace of X where | · | is close to being a scalar multiple of the

original norm. More precisely, for λ > 1 and a Banach space (X, || · ||) we say an

equivalent norm | · | λ-distorts the space if for every infinite dimensional subspace

Y of X, we have that

sup

{
|y1|
|y2|

: y1,y2 ∈ Y and ||y1|| = ||y2|| = 1

}
≥ λ,

so that that the new norm is far form being a scalar multiple of the original norm

on any infinite dimensional subspace of X. If a space admits such an equivalent

norm, we say it is λ-distortable.

James [17] proved that `1 and c0 are not distortable, and it was not until 1974

that the first example of a distortable space was constructed by Tsirelson [31]. We
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shall first present the analysis of distortion for the classical spaces c0 and `1 and

then sketch the original construction of Tsirelson’s space. This space has given

rise to a new generation of Banach spaces, including the space S constructed by

Schlumprecht [28], which played an important role in the proof of the distortion

of `2. The question of whether `2 was distortable became known as the Distortion

Problem which was settled by Odell and Schlumprecht [23]. We shall also present

the main ideas behind their proof.

2.2.1 Classical spaces

The proofs of the results presented in this section can be found in [33]. The

following propositions show that any Banach space containing an isomorphic copy

of `1 (or c0) contains a copy of `1 (resp. c0) that is as close as we want to being a

rescaled isometric copy of `1 (resp. c0).

Proposition 5. [17] Suppose a Banach space (X, || · ||) contains a subspace iso-

morphic to `1, then for every ε > 0 there exists a sequence (zn) ⊂ SX such that for

all k ∈ N and all α0, . . . , αk−1 ∈ R,

(1− ε)
∑
n<k

|αn| ≤

∣∣∣∣∣
∣∣∣∣∣∑
n<k

αnzn

∣∣∣∣∣
∣∣∣∣∣ ≤∑

n<k

|αn|

Proof. Fix ε > 0 and let (xn) ⊂ X be a sequence equivalent to the standard basis

for `1. Let M,N be such that for all k ∈ N and all α0, . . . , αk−1 ∈ R,

M
∑
n<k

|αn| ≤

∣∣∣∣∣
∣∣∣∣∣∑
n<k

αnxn

∣∣∣∣∣
∣∣∣∣∣ ≤ N

∑
n<k

|αn| .

Set

Km = inf

{∣∣∣∣∣
∣∣∣∣∣

k∑
n=m

αnxn

∣∣∣∣∣
∣∣∣∣∣ :

k∑
n=m

|αn| = 1, k ∈ N

}
.

10



This is well defined because this set is bounded below by M . The sequence (Km)

is increasing and bounded above by N so let K = limm→∞Km. Let δ > 0 be such

that 1−δ
1+δ

> 1 − ε. Fix m0 such that Km0 ≥ (1 − δ)K and let α0
m0+1, . . . , α

0
m1

be

scalars such that

y0 =

m1∑
i=m0+1

α0
ixi

be such that
∑m1

i=m0+1 |α0
i | = 1 and |y0| ≤ (1 + δ)K. Then let

y1 =

m2∑
i=m1+1

α1
ixi

be such that
∑m2

i=m1+1 |α1
i | = 1 and |y1| ≤ (1 + δ)K. Continue in this way to get a

sequence (yn) and let zn = yn
||yn|| . Clearly for any k ∈ N and α0, . . . , αk−1 ∈ R we

have that
∣∣∣∣∑

n∈k αnzn
∣∣∣∣ ≤∑n∈k |αn|. For the other inequality we have∣∣∣∣∣

∣∣∣∣∣
k∑

n=0

αnyn

∣∣∣∣∣
∣∣∣∣∣ =

∣∣∣∣∣
∣∣∣∣∣
k∑

n=0

αn

mn+1∑
i=mn+1

αni xi

∣∣∣∣∣
∣∣∣∣∣ ≥ Km0

k∑
n=0

|αn|
mn+1∑
i=mn+1

|αni | = Km0

k∑
n=0

|αn| ,

where the first inequality follows from the definition of Km0 . Then∣∣∣∣∣
∣∣∣∣∣
k∑

n=0

αnzn

∣∣∣∣∣
∣∣∣∣∣ ≥ 1

(1 + δ)K

∣∣∣∣∣
∣∣∣∣∣
k∑

n=0

αnyn

∣∣∣∣∣
∣∣∣∣∣ ≥ Km0

(1 + δ)K

k∑
n=0

|αn|

≥ 1− δ
1 + δ

k∑
n=0

|αn| ≥ (1− ε)
k∑

n=0

|αn| .

Similarly for c0 we have the following:

Proposition 6. [17] Suppose a Banach space (X, || · ||) contains a subspace iso-

morphic to c0, then for every ε > 0 there exists a sequence (zn) ⊂ SX such that for

all k ∈ N and all α0, . . . , αk−1 ∈ R,

max |αn| ≤

∣∣∣∣∣
∣∣∣∣∣∑
n<k

αnzn

∣∣∣∣∣
∣∣∣∣∣ ≤ (1 + ε) max |αn|

The proof is analogous to the proof in the case of `1 that we just presented.

11



2.2.2 Tsirelson-type spaces

Tsirelson’s space was constructed in response to the question of whether or not

Banach spaces must contain copies of c0 or `p (1 ≤ p < ∞). Classical Banach

spaces do contain copies of c0 or some `p and there are some results, including

Rosenthal’s `1 Theorem and Dvoretsky’s Theorem, that fueled the classical hope

that this could be true for general Banach spaces.

In the 1970s Tsirelson [31] constructed a space with no isomorphic copies of c0 or `p

(1 ≤ p <∞). Since any infinite dimensional Banach space which does not contain

copies of c0 or any `p, must contain a distortable subspace (see [24]), Tsirelson’s

space provided the first example of a distortable space.

The special properties of Tsirelson’s space T derive from certain saturation

properties of its unit ball. The original construction of the space is geometric: one

defines a subset V of `∞ with certain properties and then takes T to be the linear

span of V with the norm that makes V be the unit ball.

We shall outline the steps of the original construction of T ; more details can

be found in [31]. First set A to be the smallest subset of `∞ with the following

properties:

(i) A is contained in the unit ball of `∞ and contains the vectors (en)n∈N,

(ii) for every x ∈ A and y ∈ `∞ such that |y| ≤ |x| pointwise (that is, yn ≤ xn

for all n ∈ N), we have that y ∈ A,

(iii) if N ∈ N and (x1, . . . ,xN) is a block subsequence of (en)n∈N contained in A,

then 1
2
QN(x1 + . . . + xN) ∈ A, where QN is the projection onto span{en :
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n ≥ N}.

Let K be the closure of A in the topology of pointwise covergence, then K is

contained in a ball of c0, properties (i)-(iii) are preserved and in addition one gets

(iv) For every x ∈ K there exists n ∈ N such that 2Qn(x) ∈ K.

Note that in a ball on c0 the weak topology coincides with the topology of point-

wise convergence and in this topology K is compact. Finally one must argue that

setting V to be the closed convex hull of K, one obtains a convex weakly compact

set in c0 with properties (i)− (iv).

The space T is the closed linear span of V endowed with the norm || · ||T that

makes V be the unit ball. This is how conditions (i)− (iv) on V imply the desired

properties of the space T :

Condition (i) makes the standard vectors (en) have norm 1 in T . Condition

(iv) guarantees that (en) is a Schauder basis for T since it implies that for every

x ∈ V and every q ∈ N there exists n ∈ N such that 2qQn(x) ∈ V , and hence the

sequence (Qn(x))n∈N converges to zero in norm. Condition (ii) makes the basis (en)

1-unconditional, that is. if k ∈ N, an ≤ bn for n < k and we let y =
∑

n<k anen,

x =
∑

n<k bnen then x/||x||T ∈ V and so by condition (ii) y/||x||T ∈ V , therefore

||y||T ≤ ||x||T .

We say a Banach space X is finitely universal if there exists C > 1 such that

for each finite dimensional normed space E there exists a subspace F ⊆ X of the

13



same dimension which is isomorphic to E with constant smaller than C. If E is

a finite dimensional normed space, then E can be embedded with constant ε in

`N∞ for some N sufficiently large. Therefore to see that a space is finitely universal

it suffices to verify the above condition for spaces of the form `N∞, N ∈ N. From

condition (iii) we get that for any block subsequence (xn) of (en), N ∈ N and

λ1, . . . , λN ∈ R

max |λj| ≤ ||λ1xN+1 + . . .+ λNx2N ||T ≤ 2 max |λj|

Hence any infinite dimensional block subspace of T contains 2-isomorphic copies

of `N∞ for everyN ∈ N and is therefore finitely universal. The spaces `p (1 < p <∞)

are uniformly convex and it can be shown (see [31]) that a uniformly convex space

cannot be finitely universal. It follows that T contains no isomorphic copies of `p

(1 < p <∞).

Finally one can show that T is reflexive and since it has an unconditional basis,

it follows that T contains no copies of c0 or `1.

Note that the construction of T provides no expression for its norm, which

makes it difficult to study the space. Shortly after Tsirelson’s construction, Figiel

and Johnson [10] gave an expression for the norm of T ∗, the dual of T .

We first need to introduce some notation. Recall that c00 is the vector space

of all real valued sequences whose elements are eventually zero. If E,F are finite

subsets of N we write E < F if maxE < minF . If E ⊆ N and x = (xi) a real

sequence, not necessarily with finite support, then Ex is the sequence such that

14



(Ex)i = xi if i ∈ E and (Ex)i = 0 otherwise. In this notation the norm ||·||F

found by Figiel and Johnson is given by

||x||F = max

{
||x||∞ ,

1

2
max

{
k∑
i=1

||Eix||F : k ∈ N, k ≤ E1 < · · · < Ek

}}
, (2.1)

and such that the standard basic vectors ei have norm 1. This formula defines im-

plicitly the norm of T ∗. Note that this expression defines ||·||F on c00 inductively in

the cardinality of the support, alternatively, one can define a sequence of norms on

c00 whose pointwise limit is a norm that satisfies (2.1). Figiel and Johnson proved

that T ∗ is isometrically isomorphic to the completion of c00 with respect to ||·||F .

It is the dual of the space originally constructed by Tsirelson that came to be

known as Tsirelson’s space and it is denoted in the literature by T . Since we are

interested in analysing the original construction due to Tsirelson, we call the space

he constructed T , the space F will be the completion of c00 with respect to the

norm given by Figiel and Johnson.

After the above expression for its norm was available, many results about F

followed and its properties were widely studied (see [5]). We shall now sketch a

direct proof of the distortion of F :

Proposition 7. [24] F is (2− ε)-distortable for every ε > 0.

Proof. We will consider vectors of the form y = 1/k
∑k

i=1 yi where (yi)1≤i≤k is

equivalent to the standard basis of `k1, such a vector is called an `k1-average. Let

ε > 0 and choose n ∈ N such that 1/n < ε/3. Define for x ∈ F the norm

|x| = sup

{
n∑
i=1

||Eix||F : E1 < . . . < En

}
.
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This norm is equivalent to ||·||F since ||x||F ≤ |x| ≤ n ||x||F for x ∈ F . It suffices

to prove that for any normalized block subsequence (xi) of (ei) we have that

inf{|x| : ||x||F = 1,x ∈ [xi]} = 1,

sup{|z| : ||z||F = 1, z ∈ [xi]} > 2/(1 + ε),

where [xi] denotes the closed subspace generated by the sequence (xi). We shall

use the fact that in any block subsequence of (ei) we can find for every k,m ∈ N

lk1-averages whose supports start after m.

Let (xi) be a normalized block sequence of (ei)i>n. For any k > n one can

find a normalized block subsequence (yi)1≤i≤k of (xi)i>k which is equivalent to the

standard basis of `k1 with the equivalence constant as close to 1 as we want. Let y

be the `k1 average y = 1/k
∑k

i=1 yi and note that ||y||F ≈ 1. Also if E1 < . . . < En

then setting I = {i : Ej ∩ supp(yi) 6= ∅ for at most one j} and J = {1, . . . , k} \ I

we have that |J | ≤ n and

n∑
i=1

||Eiy||F ≤ 1

k

(∑
i∈I

||yi||F +
∑
i∈J

n∑
j=1

||Ejyi||F

)

≤ 1

k

(∑
i∈I

||yi||F +
∑
i∈J

2 ||yi||F

)

≤ 1

k
(k − |J |+ 2|J |)

≤ 1 +
n

k

Thus inf{|x| : ||x||F = 1,x ∈ [xi]} = 1. Now let

z =
2

n

n∑
i=1

zi ∈ [xi]i≥n

be such that each zi is an `ki1 -average where ki+1 is chosen very large depending on

max(suppzi) and ε. Since ||zi||F ≈ 1, it follows that |z| ≥ 2/n
∑
||zi||F ≈ 2. Now
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if m ≤ E1 < . . . < Em and i0 is the smallest i such that m < max(supp(zi)). By

the choice of the ki, 1 ≤ i ≤ n we have that ki > m for i0 < i ≤ m. Hence by the

previous calculations we have that

1

2

m∑
j=1

||Ejz||F =
1

n

m∑
j=1

∣∣∣∣∣
∣∣∣∣∣Ej

(
n∑
i=1

zi

)∣∣∣∣∣
∣∣∣∣∣
F

≤ 1

n

(
m∑
j=1

||Ejzi0||F +
n∑

i=i0+1

m∑
j=1

||Ejzi||F

)

≤ 1

n

(
2 ||zi0||F +

n∑
i=i0+1

(
1 +

m

ki

))

≤ 2

n
+ 1 + ε/3

< 1 + ε.

By the definition of the norm, we get ||z||F ≤ 1 + ε. Hence

sup{|z| : ||z||F = 1, z ∈ [xi]} > 2/(1 + ε).

We shall also define Mixed Tsirelson spaces. These are spaces whose norm is

given by a variation of the expression found by Figiel and Johnson.

LetM denote a compact family (in the topology of pointwise convergence) of fi-

nite subsets of N which includes all singletons. We say that a family E1 < · · · < En

of subsets of N is M-admissible if there exists M = {mi}ni=1 in M such that

m1 ≤ E1 < m2 ≤ E2 < · · · < mn ≤ En.

Definition 8. Let (Mn)n, (θn)n be two sequences with eachMn a compact family

of finite subsets of N, 0 < θn < 1 and limn θn = 0. The mixed Tsirelson space
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T [(Mn, θn)n] is the completion of c00 with respect to the norm

‖x‖∗ = max{||x||∞ , sup
n

sup θn

k∑
i=1

‖Eix‖∗},

where the inside sup is taken over all choices E1 < E2 < · · · < Ek ofMn-admissible

families.

The definitions above and further properties of mixed Tsirelson spaces can

be found in [1, Part A, Chapter 1]. In this notation, the space S constructed

by Schlumprecht in [28], is the mixed Tsirelson space T [(An, 1
log(n+1)

)n], where

An = {F ⊂ N : #F ≤ n}. That is, the space S is the completion of c00 with

respect to the norm

||x||S = max

{
||x||∞ ,max

{
1

log(l + 1)

l∑
i=1

||Eix||S : l ∈ N, E1 < · · · < El

}}
.

We say a space is arbitrarily distortable if it is λ-distortable for all λ > 1. The

space S was the first known example of an arbitrarily distortable space. The proof

of the arbitrary distortion of S follows the argument for the distortion of F we just

presented. We shall outline the details below; the complete proof can be found in

[28].

For each l ∈ N, define the norm

||x||l = sup

{
1

log(l + 1)

l∑
i=1

||Eix||S

}
,

for x ∈ S. These are equivalent norms since for x ∈ S

1

log(l + 1)
||x||S ≤ ||x||l ≤ ||x||S .

It follows from the following theorem that ||·||l is an log(l + 1)-distortion for each

l ∈ N:
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Theorem 9. [28] For each l ∈ N, ε > 0, and each infinite dimensional subspace

Z of S there are z1, z2 ∈ Z with ||z1||S = ||z2||S = 1 and

||z1||l ≥ 1− ε, and ||z2||l ≤
1 + ε

log(l + 1)
.

We shall sketch the proof of this theorem.

Proof. One must first show that `1 is finitely block representable in any block

subspace of S. Let Z be a block subspace of S and let ε > 0. Most of the

work in the proof goes into finding a sequence (yi)1≤i≤l of `1-averages such that

y1 < . . . < yl and ||yi||S ≥ 1 − ε for 1 ≤ i ≤ l and
∣∣∣∣∣∣∑l

i=1 yi

∣∣∣∣∣∣
S
≤ l

log(l+1)
. If

(yi)1≤i≤l is such a sequence, one can set

z1 =
l∑

i=1

yi/

∣∣∣∣∣
∣∣∣∣∣

l∑
i=1

yi

∣∣∣∣∣
∣∣∣∣∣
S

.

Hence

||z1||l ≥
1

log(l + 1)

l∑
i=1

||yi||S /

∣∣∣∣∣
∣∣∣∣∣

l∑
i=1

yi

∣∣∣∣∣
∣∣∣∣∣
S

≥ 1− ε.

Now to find z1, let n ∈ N be such that 2l/n ≤ ε and choose (yi)1≤i≤n to be a block

sequence in Z equivalent to the standard basis of `n1 with the equivalence constant

as close to 1 as we want. Let z2 be the `n1 -average z2 = 1
n

∑n
i=1 yi and note that

||y||S ≈ 1. Let E1 < . . . < El be such that

||z2||l =
1

log(l + 1)

l∑
i=1

||Eiz2||S .

We may assume each Ei is an interval. For 1 ≤ i ≤ l let

Ẽi =
⋃
{supp(yj) : 1 ≤ j ≤ n, supp(yj) ⊆ Ei} .
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Let z′2 =
∑l

i=1

(
Eiz2 − Ẽiz2

)
Then

||Eiz2||S ≤ ||Ei(z2 − z′2)||S + ||Eiz′2||S

=
∣∣∣∣∣∣Ẽi(z2)

∣∣∣∣∣∣
S

+ ||Eiz′2||S

.
∣∣∣∣∣∣Ẽi(z2)

∣∣∣∣∣∣
S

+
2

n
.

Observe that (Ẽi(z2))1≤i≤l is a block subsequence of (yi)1≤i≤n so the corresponding

normalized sequence is again equivalent to the standard basis of `l1 with equivalence

constant as close to 1 as we want. Therefore∣∣∣∣∣
∣∣∣∣∣

l∑
i=1

Ẽi(z2)

∣∣∣∣∣
∣∣∣∣∣
S

≈
l∑

i=1

∣∣∣∣∣∣Ẽi(z2)
∣∣∣∣∣∣
S
.

So we have that

||z2||l ≤
1

log(l + 1)

(
2l

n
+

l∑
i=1

∣∣∣∣∣∣Ẽi(z2)
∣∣∣∣∣∣
S

)

.
1

log(l + 1)

(
2l

n
+ 1

)
≤ 1 + ε

log(l + 1)
.

This finishes the proof of the theorem.

2.2.3 The distortion problem

In 1993 Odell and Schulmprecht proved that `2 and moreover the spaces `p (p > 1)

are arbitrarily distortable. For uniformly convex spaces there is a condition equiv-

alent to distortion that suggests how to transfer the distortion from one space to

another. We shall need a few definitions to state this precisely.

For a Banach space X, A ⊆ SX is asymptotic if for every infinite dimen-

sional subspace Y of X and every ε > 0 we have that SY ∩ Aε 6= ∅, where
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Aε = {y : ||x− y|| < ε for some x ∈ A}. We say A,B ⊆ SX are separated if

inf{||x− y|| : x ∈ A,y ∈ B} > 0. The following proposition gives a condition

under which a uniformly convex space is distortable:

Proposition 10. [23] A Banach space X is distortable if there exist separated

asymptotic sets A,B ⊆ SX .

Proof. Let X be a uniformly convex Banach space and suppose A,B ⊆ SX are

separated and asymptotic. Let V be the closed convex hull of A∪−A∪γB||·|| , where

−A = {−x : x ∈ A} and γB||·|| is the ball of radius γ around the origin for some

γ > 0. Define |·| to be the norm whose unit ball is V . Note that γB||·|| ⊆ B|·| ⊆ B||·||

and so | · | is an equivalent norm. Let Y be an infinite dimensional subspace of X.

Since A,B are asymptotic, there exist x ∈ Y ∩Aε, y ∈ Y ∩Bε. Let k be such that

ky ∈ V . Suppose ky =
∑

i<n aixi for some x0, . . . ,xn−1 ∈ A and a0, . . . , an−1 such

that
∑

i<n ai = 1. By Proposition 4 we have that

||y|| =

∣∣∣∣∣
∣∣∣∣∣∑
i<n

ai
k

xi

∣∣∣∣∣
∣∣∣∣∣ ≤∑

i<n

(1− 2δ(C))
ai
k

=
1− 2δ(C)

k
,

where C = inf{||x− y|| : x ∈ A,y ∈ B}. If ky is a convex combination of a

collection of elements of A∪−A∪ γB||·|| that includes some elements of γB||·|| , say

y =
∑

i<n aixi with x0 ∈ γB||·|| and x1, . . . ,xn−1 ∈ A, then

||y|| =

∣∣∣∣∣
∣∣∣∣∣∑
i<n

ai
k

xi

∣∣∣∣∣
∣∣∣∣∣ ≤ ||x0||

k
+

1− 2δ(C)

k
.

Since ||y|| = 1, in any case it follows that k ≤ 1− 2δ(C) + γ, hence

|x|
|y|
≥ 1

1− 2δ(C) + γ
> 1

for small enough γ.

The spaces `2 and more generally `p (p > 1) are uniformly convex, therefore

to obtain the distortion of these spaces it suffices to obtain a pair of separated
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asymptotic sets. Odell and Schlumprecht followed this strategy to obtain the

distortion of the spaces `p, (p > 1). We shall outline the steps of the proof as

presented in [22], the details can be found in [23].

Their proof is based on the idea of transferring separated asymptotic sets from one

space to the other using uniform homeomorphisms. A uniform homeomorphism is

a uniformly continuous bijection with uniformly continuous inverse. An example

of such a map is the Mazur map defined by

Mp : S`1 → S`p

(ai)i∈N 7→ (sign(ai)|ai|1/p)i∈N.

The map Mp preserves asymptotic sets and more generally uniform homeomor-

phisms preserve separated sets, so it suffices to find separated asymptotic sets in

`1. Note that since `1 is not uniformly convex, the existence of such pair of sets

does not contradict the fact that `1 is not distortable.

The separated asymptotic sets come from the space S, which as the next proposi-

tion shows contains a sequence of separated asymptotic sets:

Proposition 11. [23] There are sequences of sets Ak ⊆ SS, A∗k ⊆ SS∗ and a

monotone sequence (εk) decreasing to zero such that:

(i) Ak is asymptotic in S for all k,

(ii) |x∗k(xl)| ≤ εmin(k,l) for k 6= l, x∗k ∈ A∗k and xl ∈ Al,

(iii) for all k and x ∈ Ak there exists x∗ ∈ A∗k such that x∗(x) > 1− εk.

It also follows from the existence of this sequence of asymptotic sets that S is

arbitrarily distortable via the collection of norms |x|k = 1
k
||x||S + sup{|x∗(x)| :

x∗ ∈ A∗k}.
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Using the sets given by Proposition 11 one can define the following subsets of `1

Bk =

{
x∗k ◦ xk
||x∗k ◦ xk||`1

: xk ∈ Ak,x∗k ∈ A∗k, and ||x∗k ◦ xk||`1 ≥ 1− εk

}
,

where x∗ ◦ x denotes the sequence obtained by pointwise multiplication. Thus if

x∗ =
∑
aie
∗
i and x =

∑
biei, then x∗ ◦ x = (aibi), which is an element of `1. The

sets Bk are asymptotic, the proof of this fact is technical and can be found in [23].

Hence the distortion of `2 follows by taking Ck = M2(Bk).
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CHAPTER 3

RAMSEY THEORY

3.1 Overview

Ramsey theory takes its name from Frank P. Ramsey who stated and proved a

higher dimensional version of the pigeon-hole principle [27]. Ramsey’s Theorem

states that for any natural numbers r, d and any r-coloring of [N]d, the set of d-

element subsets of N, there exists an infinite subset A of N such that [A]d, the

collection of all d-element subsets of A, is monochromatic. We see [A]d as a copy

of [N]d. This reveals the general essence of Ramsey-type theorems, that is, given

a finite coloring of a structure one looks for a copy of the original structure which

realizes fewer colors, or in some cases finite but arbitrarily large substructures that

realize fewer colors. The notion of copy varies depending on the context. An

important example of a Ramsey-type theorem is van der Waerden’s Theorem:

Theorem 12 (Van der Waerden). [32] For any natural number r and any r-

coloring of N there exists i < r such that there are arbitrarily long arithmetic

progressions with color i.

Note that one cannot hope to obtain for any coloring an infinite monochromatic

arithmetic progression. This is easily seen by considering the 2-coloring that assigns

red to 0, then blue to 1, 2, then red to 3, 4, 5 and so on, alternating between red

and blue on blocks of increasing length.

One important generalization of van der Waerden’s Theorem is the Hales-Jewett

Theorem. We need to introduce some notation before stating the theorem. Let

L =
⋃
Ln be a given alphabet decomposed into an increasing chain of finite subsets
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Ln and let v be a variable symbol different from all the symbols in L. We denote

by WL the collection of finite words in the language L. A word w in the language

generated by L ∪ {v} is called a variable word if w has at least one occurrence

of the symbol v. For a variable word w and a ∈ L we denote by w[a] the word

obtained from w by replacing every occurrence of v by a. We are now ready to

state the theorem:

Theorem 13 (Infinite Hales-Jewett). [4],[3] For any natural number r and any

r-coloring of WL there exists an infinite sequence of variable words (wn) such that

[wn]L =
{
wn0 [λ0]awn1 [λ1]a . . .awnk [λk] : n0 < n1 < . . . < nk, λi ∈ Li for i ≤ k, k ∈ N

}
,

the language generated by the sequence (wn), is monochromatic.

One more result in Ramsey theory that is of particular interest for us is Hind-

man’s Theorem:

Theorem 14 (Hindman). [15] For any natural number r and any r-coloring of N

there exists an infinite sequence (xn) of distinct natural numbers such that the col-

lection of non-repeating finite sums of elements of the sequence is monochromatic.

The theorems we have just presented have finite counterparts. The general

form of the finite versions is, given a number of colors r and a number m there

exists a number n big enough so that for any r-coloring of a structure of size n

there exists a substructure of size m that realizes fewer colors. We state below the

finite version of Ramsey’s Theorem:

Theorem 15 (Finite Ramsey). For any m, d, r ∈ N there exists n ∈ N such that

for any r-coloring of [n]d, the d-element subsets of n, there exists A ⊂ n of size m

such that [A]d, the set of d-element subsets of A, is monochromatic.

25



Let Rd(m) be the minimum n satisfying the conditions in the theorem for

r = 2.

We now state the finite versions of van der Waerden’s Theorem, Hales Jewett

Theorem and also state Folkman’s Theorem which is finite version of Hindman’s

Theorem.

Theorem 16 (Finite Van der Waerden). For every m, r ∈ N there exists n ∈ N

such that for any r-coloring of n there exists a monochromatic arithmetic progres-

sion of length m.

Let W (m) be the the minimum n satisfying the conditions in the theorem for

r = 2.

Theorem 17 (Finite Hales-Jewett). [14] For every m, r ∈ N there exists n ∈ N

such that for any alphabet L of size m and any r-coloring of WL(n), the words

in the alphabet L of length n, there exists a variable word w such that the set

{w[λ] : λ ∈ L} is monochromatic.

Let HJ(m) be the minimum n satisfying the conditions in the theorem for

r = 2.

Theorem 18 (Folkman). [20] For every m, r ∈ N there exists n such that for any

r-coloring of n there exist pairwise disjoint subsets x0, x1, . . . , xm−1 of n such that

the collection of unions of these sets is monochromatic.

In Section 5.1, we shall present a proof of a variation of Folkman’s theorem

where the sets x0, x1, . . . , xm−1 are not only disjoint but they are also in block po-

sition. That is, maxxi < minxi+1 for i < m−1. We will also analyse the resulting
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upper bounds.

The finite versions just presented can be obtained from the infinite versions us-

ing compactness, however such arguments give no information about the numbers

Rd(m),W (m) and HJ(m).

It turns out that these numbers grow very rapidly and, in order to deal with

such rapidly growing functions, we use the Ackermann Hierarchy. The Ackermann

hierarchy is the sequence of functions fi : N→ N defined as follows:

f1(x) = 2x

fi+1(x) = f
(x)
i (1)

Already the function f3 grows very fast with f3(5) = 265536 a number with nearly

20,000 decimal digits (see [13, section 2.7]). The function f3 is called TOWER and

f4 is called WOW. The Ackermann function is obtained by diagonalization and

grows even faster than any fi, i ∈ N:

fω(x) = fx(x)

There is a slight variation of the function TOWER in the Ackermann Hierarchy

which is useful to express upper bounds for the Ramsey numbers Rd(m) and the

van der Waerden numbers W (m). The tower functions ti(x) are defined inductively

by

t1(x) = x

ti+1(x) = 2ti(x)
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We shall use the following well known upper bounds for Rd(m) and W (m):

Rd(m) ≤ td(cdm)

W (m) ≤ 22222m+9

= t6(m+ 9).

(Where cd is a constant that depends on d). See [13, Section 4.7] for a deduction

of the bound for Rd(m). The bound for W (m) was found by Gowers in [12]. For a

more detailed discussion of Ramsey numbers, van der Waerden numbers and Hales

Jewett numbers, see [13, Ch. 4].

3.2 The FINk Theorem

The FINk Theorem is a generalization of Hindman’s Theorem. For a fixed k ∈ N,

FINk is the set of all functions f : N→ {0, 1, . . . , k} that attain the maximum value

k and whose support supp(f) = {n ∈ N : f(n) 6= 0} is finite. Given f, g ∈ FINk we

say that f < g if the maximum of the support of f is smaller than the minimum of

the support of g. We consider two operations in FINk defined pointwise as follows:

(i) Sum: (f + g)(n) = f(n) + g(n) for f < g,

(ii) Tetris : T : FINk → FINk−1. For f ∈ FINk, (Tf)(x) = max{0, f(x)− 1}.

Note that if f0 < . . . < fn−1 ∈ FINk then T l0(f0)+ . . .+T ln−1(fn−1) ∈ FINk as long

as one of l0, . . . , ln−1 is zero. A sequence (fi)i∈I of elements of FINk with I = N or

I = n for some n ∈ N such that fi < fj for all i < j ∈ I is called a block sequence.

The FINk Theorem states that for any finite coloring c : FINk → {0, 1, . . . , r − 1}

there exists an infinite block sequence (fi)i∈N such that the combinatorial space
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〈fi〉i∈N generated by the sequence (fi)i∈N,

〈fi〉i∈N = {T l1(fi1) + . . .+ T ln(fin) : i1 < . . . < in,min{l1, . . . , ln} = 0},

is monochromatic.

The proof uses the Galvin-Glazer methods of ultrafilter dynamics. These meth-

ods are now widely used to give streamlined proofs of Ramsey type theorems

such as Hindman’s Theorem and different variations of the Hales-Jewett Theorem.

Detailed proofs of these and other Ramsey type theorems can be found in ([29,

Chapter 2]). We shall present here the fundamentals behind these methods, use

this machinery to obtain Hindman’s Theorem and sketch the proof of the infinite

FINk Theorem.

We say (S, ∗) is a partial semigroup if ∗ is a binary operation partially defined

on S satisfying the associative law, (x ∗ y) ∗ z = x ∗ (y ∗ z) whenever both sides

of the equality are defined. We say (S, ∗) is directed if for every finite sequence

x0, . . . , xn−1 of elements of S there exists y ∈ S such that y 6= xi and xi ∗ y is

defined for all i < n.

Here we only consider countably infinite partial semigroups. Given a directed

partial semigroup (S, ∗), let βS be the Stone-Cech compactification of S. For what

follows it is useful think of an ultrafilter on S in terms of the quantifier it defines

as follows: UxP (x) means that the set {x ∈ S : P (x)} is an element of U .

We focus on the collection of ultrafilters on S such that for every x ∈ S we

have that Uy(x ∗ y is defined), let γS denote this collection of ultrafilters. Note

that γS is a non-empty closed subspace of βS, so it is a compact Hausdorff space
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with the topology generated by sets of the form A = {U ∈ γS : A ∈ U}, where

A ⊆ S. We extend the operation ∗ defined on S to a total operation on γS by

A ∈ U ∗ V if and only if UxVy(x ∗ y ∈ A)

A compact semigroup is a nonempty semigroup with a compact Hausdorff topology

for which the map

x 7→ xs

is continuous for all elements s of the semigroup. Note that γS with the operation

we just defined is a compact semigroup. We shall use the following result by Ellis

about compact semigroups:

Lemma 19 (Ellis). [8], [29] Every compact semigroup (S, ∗) has an idempotent,

that is, there exists s ∈ S such that s ∗ s = s.

Given a directed partial semigroup S, the aim is to find a non-principal idem-

potent ultrafilter in γS. The following lemma gives conditions under which we can

find such an idempotent:

Lemma 20. [29] If (S, ∗) is a semigroup without idempotents or with left cancel-

lation then there is a non-principal idempotent in γS.

Using these two lemmas we get the main result:

Theorem 21 (Galvin-Glazer). [29] Let (S, ∗) be a directed partial semigroup with-

out idempotents or with left cancellation. Then for every finite coloring of S

there is a sequence (xi)i∈N of pairwise distinct elements of S, such that whenever

n0 < . . . < nl, the product xn0 ∗ . . . ∗ xnl is defined and the space 〈xi〉i∈N generated

by the sequence,

〈xi〉i∈N = {xn0 ∗ . . . ∗ xnl : l ∈ N, n0 < . . . < nl ∈ N}
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is monochromatic.

Proof. Fix a finite coloring of S and let U ∈ γS be a non-principal idempotent.

We shall construct a sequence (Pn)n∈N of elements of the ultrafilter and a sequence

of (xn)n∈N of elements of S such that

(i) Pn+1 ⊆ Pn,

(ii) xi ∈ Pi for i ∈ N,

(iii) all products xi0 ∗ . . . ∗ xil with i0 < . . . < il ∈ N are defined,

(iv) xi ∗ y ∈ Pi for all y ∈ Pi+1, i ∈ N.

To construct such sequence let P0 be a monochromatic subset of S such that

P0 ∈ U . Since U ∗ U = U , we have that UxUy(x ∗ y ∈ P0) so let x0 ∈ P0 be such

that P1 = {y ∈ P0 : x0 ∗ y ∈ P0} ∈ U . Suppose x0, . . . , xn−1 and P0 ⊇ P1, . . . ⊇ Pn

satisfy properties (i)-(iv) above. Since Pn ∈ U , we have that UxUy(x ∗ y ∈ Pn).

Let xn ∈ Pn be such that Pn+1 = {y ∈ Pn : xn ∗ y ∈ Pn} ∈ U .

Claim 22. [29] For any l ∈ N and n0 < n1 < . . . < nl, xn0 ∗ xn1 ∗ . . . ∗ xnl ∈ Pn0.

Proof of Claim. We proceed by induction on l. The base case is clear. Suppose

the claim holds for l let n0 < n1 < . . . < nl < nl+1. By induction hypothesis

x = xn1 ∗ . . . ∗ xnl ∈ Pn1 . Since n1 ≥ n0 + 1, we have that Pn1 ⊆ Pn0+1 and by

property (iv) we have that xn0 ∗ x ∈ Pn0 .

It follows that (xn)n∈N is the sequence we were looking for.

As a corollary we obtain the finite unions formulation of Hindman’s Theorem:
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Theorem 23 (Hindman). [7] For any finite coloring of FIN, the collection of

finite subsets of N, there is an infinite sequence (xi)i∈N ⊆ FIN such that maxxi <

minxi+1 for all i ∈ N and all finite unions of elements of the sequence have the

same color.

We now sketch the proof of the infinite FINk Theorem as presented in [29]:

Theorem 24. [11] For every finite coloring of FINk there exists a block sequence

(fi)i∈N such that the space 〈fi〉i∈N generated by the sequence (fi)i∈N,

〈fi〉i∈N = {T l1(fi1) + . . .+ T ln(fin) : i1 < . . . < in,min{l1, . . . , ln} = 0},

is monochromatic.

The proof of the infinite FINk Theorem builds on the proof we just presented

for Theorem 21. Let k ∈ N, k ≥ 1 be fixed. Note that for 1 < j ≤ k (FINj,+)

is a partial semigroup and we can extend the tetris operation defined on FINj to

T : γFINj → γFINj−1 as follows:

For U ∈ γFINj define T (U) = {A ⊆ FINj−1 : Ux(T (x) ∈ A)}.

It is easy to check that T is a continuous onto homomorphism. We shall also

work with the structure FIN[1,k] =
⋃k
i=1 FINi with addition and tetris operation

defined just as in FINk. Note that (FINk,+) and (FIN[1,k],+) are directed partial

semigroups and γFINk is a two-sided ideal of

γFIN[1,k] =
k⋃
i=1

γFINi

The following lemma provides a sequence of idempotent ultrafilters that we shall

use in the proof of Theorem 24.
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Lemma 25. [29] For every k ∈ N, there exists a sequence of ultrafilters (Ui)1≤i≤k

such that for 1 ≤ i < j ≤ k

(i) Ui is a non-principal idempotent in γFINi,

(ii) T (i−j)(Ui) = Uj,

(iii) Uj + Ui = Ui + Uj = Uj.

Proof. Let U1 be and idempotent in γFIN1. Suppose Ui is defined for 1 ≤ i < j.

Let Sj = {U ∈ γFINj : T (U) = Uj−1}, this set is non-empty since T is onto

and it is closed because T is continuous. Also Sj + Uj−1 is a closed subsemigroup

of γFINj so there is an idempotent W ∈ Sj + Uj−1. Let V ∈ Sj be such that

W = V + Uj−1 and set Uj = Uj−1 + V + Uj−1. It is easy to check that Uj is an

idempotent, T (Uj) = Uj−1 and Uj−1 + Uj = Uj + Uj−1 = Uj.

We are now ready for the proof of the infinite FINk Theorem.

Proof of Theorem 24. Fix k ∈ N and a finite coloring of FINk. Let (Uj)1≤j≤k be

the sequence of ultrafilters given by Lemma 25. We will construct inductively the

sequence (xn)n∈N and for 1 ≤ l ≤ k a decreasing sequence (Ajn)n∈N ⊆ Uj such that

for n ∈ N and i, j < k

(i) xn ∈ Akn,

(ii) T k−j(Akn) = Ajn,

(iii) Ukx(T k−i(xn) + T k−j(x) ∈ Amax{i,j}
n ) and for n < m this is witnessed by Akm.

Let Ak0 ∈ Uk be a piece of the partition and for 1 ≤ j < k let Aj0 = T k−j(Ak0).

Since A
max{i,j}
0 ∈ Umax{i,j} = T k−i(Uk) + T k−j(Uk) for any i, j < k, we have that Uk
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many x0 ∈ Ak0 satisfy condition (iii). Let x0 be one such element of Ak0.

Now suppose we have constructed (xn)n<m and (Ajn)n<m, 1 ≤ j ≤ k. For each

n < m and 1 ≤ i, j ≤ k let

Ci,j
n = {x : T k−j(xn) + T k−i(x) ∈ Amax{i,j}

n }.

By induction hypothesis Ci,j
n ∈ Uk so we can let

Akm = Akm−1 ∩
⋂
n<m

1≤i,j≤k

Ci,j
n .

This way Akm witnesses (iii) for all n < m as we wanted. We now check that the

sequence (xn)n∈N works.

Claim 26. [29] For all p ≥ 1, T (k−l0)(xn0) + . . . + T (k−lp−1)(xnp−1) + y ∈

A
max{l0,...,lp−1}
n0 whenever n0 < . . . < np, l0, . . . , lp ∈ {1, . . . k} and y ∈ Alpnp.

Proof of claim. We proceed by induction on p. To verify the base case let n0 <

n1, l0, l1 ∈ {1, . . . k}, y ∈ Al1n1
= T (k−l1)(Akn1

). By condition (iii) we have that

Ukx(T (k−l0)(xn0) + T (k−l1)(x) ∈ Amax{l0,l1}
n0 ) and this is witnessed by Akn1

. Let x ∈

Akn1
be such that T (k−l1)(x) = y then T (k−l0)(xn0) + y = T (k−l0)(xn0) + T (k−l1)(x) ∈

A
max{l0,l1}
n0 .

Now suppose the statement holds for p − 1 and let n0 < . . . < np, l0, . . . , lp ∈

{1, . . . k} and y ∈ Alpnp be given. Let y′ = T (k−l1)(xn1) + . . . + T (k−lp−1)(xnp−1) + y.

By induction hypothesis y′ ∈ Amax{l1,...,lp}
n1 . Let l = max{l1, . . . , lp} and let y∗ ∈ Akn1

be such that T (k−l)(y∗) = y′. We want to see that T (k−l0)(xn0) + y′ ∈ A
max{l0,l}
n0 .

By condition (iii) we have that Ukx(T (k−l0)(xn0) + T (k−l)(x) ∈ Amax{l0,l}
n0 ) and this

is witnessed by Akn0+1 ⊇ Akn1
. Since y∗ ∈ Akn1

, it follows that T (k−l0)(xn0) + y′ =

T (k−l0)(xn0) + T (k−l)(y∗) ∈ Amax{l0,l}
n0 .

34



3.3 Oscillation stability of c0

The FINk Theorem presented in the previous section was formulated and proved

by W.T. Gowers in [11] to obtain the oscillation stability of the Banach space

c0. Let X be a Banach space with Schauder basis (xi), we say that a Lipschitz

function f : SX → R stabilizes on the positive sphere if for every ε > 0 there exists

an infinite dimensional positive subspace Y such that

osc(f � PSY ) = sup{|f(x)− f(y)| : x,y ∈ PSY } < ε.

We shall prove next the stabilization of Lipschitz functions on the positive

sphere of c0:

Theorem 27. [11] Every Lipschitz function defined on the sphere of c0 stabilizes

on the positive sphere of c0.

We will need some additional terminology. For a Banach space X, subsets

∆, Y ⊆ X and δ > 0, we say ∆ is a δ-net for Y if for every y ∈ Y there exists

x ∈ ∆ such that ||x − y|| < δ. That is, we can approximate elements of Y using

elements of ∆ with an error smaller than δ.

Proof. Let f : Sc0 → R be a Lipschitz function with Lipschitz constant 1 and let

ε > 0. The main idea of the proof is to identify FINk for some k ∈ N with a δ-net

for PSc0 for some δ > 0. Let δ = ε/3 and choose k ∈ N such that (1+δ)−(k−1) < δ.

Define ∆k ⊆ PSc0 to be the collection of all finitely supported functions

ξ : N→
{

0,
1

(1 + δ)k−1
, . . . ,

1

1 + δ
, 1

}
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that take the value 1. Note that ∆k is a δ-net for PSc0 and there is a natural

correspondence between ∆k and FINk, namely, let Φ : ∆k → FINk be defined by

Φ(x)(n) = max
{
k + log1+δ x(n), 0

}
.

Note that Φ((1 + δ)−1x) = T (Φ(x)) and Φ(x+ y) = Φ(x) + Φ(y).

Suppose the range of f is contained in an interval [c, d]. We can partition this

interval into subintervals of length δ and color ξ ∈ ∆k depending on the interval

containing f(ξ). This induces a coloring of FINk and by the FINk theorem there is a

block sequence (gi)i∈N ⊆ FINk such that 〈gi〉i∈N is monochromatic. For each i ∈ N

let xi = Φ−1(gi) and let Y be the space generated by the positive sequence (xi)i∈N.

Since the tetris operation T corresponds to scalar multiplication by (1 − δ)−1,

it follows that the preimage of 〈gi〉i∈N under Φ is a δ-net for PSY . Therefore

osc(f � PSY ) < ε.

We say that a space X is oscillation stable if every Lipschitz function stabilizes

on the unit sphere, that is, for every ε > 0 there exists an infinite dimensional

subspace Y such that

osc(f � SY ) = sup{|f(x)− f(y)| : x,y ∈ SY } < ε.

Note that a space X is not distortable if and only if every equivalent norm stabi-

lizes, and since an equivalent norm is an example of a Lipschitz function, it follows

that oscillation stable spaces are not distortable.

To obtain the stabilization of Lipschitz functions on the whole unit sphere of

c0, Gowers used a modification of the combinatorial structure FINk to account for

the change of signs, and in this case proved an approximate Ramsey type theorem
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for it and obtained:

Theorem 28. [11] The space c0 is oscillation stable.

It turns out that only ”c0-like” spaces are oscillation stable (see [24, p. 1349]).

However, given a Lipschitz function defined on the unit sphere of an infinite di-

mensional Banach space X, we can always pass to a finite dimensional subspace

Y of any given dimension such that the oscillation of the function restricted to the

unit sphere of Y is as small as we want. This was first observed by Milman (see

[19, p.6]). The following theorem gives the quantitative version of this fact:

Theorem 29. [19],[21] For every C, ε > 0 and m ∈ N there exists n ∈ N such that

if F is a Banach space of dimension n and (fi)i∈n is a basis for F with constant at

most C and f : SF → R is C-Lipschitz, then there is an m-dimensional subspace

G of F such that osc(f � SG) < ε.

In Section 5.3 we present a proof of this theorem for the special case of spaces

of the form `n∞. We shall also give an upper bound on how big n should be for

given values of C, ε and m.
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CHAPTER 4

TSIRELSON’S SPACE

In this chapter we will give an expression for the norm of Tsirelson’s space T

defined in Section 2.2.2. We will prove that there is a norm || · || on c00 that

satisfies the following implicit equation

||x|| = min{2 min{max
1≤i≤k

||Eix|| : k ≤ E1 < · · · < Ek,x =
k∑
i=1

Eix},

inf{||y|| + ||z|| : x = y + z, supp(y) ⊆ supp(x)}}.

Or equivalently,

||x|| ≤ 2 min{max
1≤i≤k

||Eix|| : k ≤ E1 < · · · < Ek,x =
k∑
i=1

Eix}.

In fact, we shall prove that the norm of the space T is maximal (in the point-

wise sense) among the norms satisfying the implicit equation above and such that

||ei|| = 1 for every vector ei in the standard basis of c00. Note that, as opposed to

the implicit equation given by Figiel and Johnson, this expression doesn’t allow us

to calculate the norm of finitely supported vectors inductively in the cardinality of

the support.

The expression for this norm can be adapted for the dual of any mixed Tsirelson

space. In particular one can get an expression for the norm of the dual of the space

S defined in Section 2.2.2.
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4.1 Definition of the norm

The norm ||·||F of the dual of T can be obtained as a limit of norms in the following

way. For x ∈ c00 define

||x||0 = ||x||∞

||x||n+1 = max

{
||x||n ,

1

2
max

{
k∑
i=1

||Eix||n : k ∈ N, k ≤ E1 < · · · < Ek

}}

It is clear that if we let ||x||F = limn→∞ ||x||n, then ||·||F satisfies the implicit equa-

tion (2.1). To get an expression for the norm of T we shall take the limit of a sequence

of positive scalar functions on c00. It is not the case that each scalar function is a norm

but the sequence is defined in such a way that the pointwise limit is a norm on c00.

Definition 30. For x ∈ c00 let

ρ0(x) = ||x||`1

ρn+1(x) = min{2 min{max
1≤i≤k

ρn(Eix) : k ≤ E1 < · · · < Ek,x =

k∑
i=1

Eix},

inf{ρn(w1) + ρn(w2) : x = w1 + w2}}

||x|| = lim
n→∞

ρn(x)

Lemma 31. The function || · || defines a norm on c00 and whenever x = (xn), y =

(yn) ∈ c00 are such that |yn| ≤ |xn|, we have ||y|| ≤ ||x||.

Proof. Let x = (xn),y = (yn) ∈ c00 be such that |yn| ≤ |xn|. We prove by induction on

n that ρn(y) ≤ ρn(x). The base case is clear so suppose the inequality holds for n. Let

k ≤ E1 < · · · < Ek be such that x =
∑
Eix. Note that since supp(y) ⊆ supp(x), we

have that y =
∑
Eiy.

By induction hypothesis max
1≤i≤n

ρn(Eiy) ≤ max
1≤i≤n

ρn(Eix) so

min

{
max
1≤i≤n

ρn(Eiy) : k ≤ E1 < · · · < Ek,y =
∑

Eiy

}
≤ max

1≤i≤n
ρn(Eix).
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Since k ≤ E1 < · · · < Ek was arbitrary, we have that

ρn+1(y) ≤ 2 min

{
max
1≤i≤n

ρn(Eix) : k ≤ E1 < · · · < Ek,x =
∑

Eix

}
.

Let x1,x2 be such that x = x1 + x2 , then we can find y1,y2 such that y = y1 + y2 and

|yin| ≤ |xin|, hence

ρn+1(y) ≤ inf{ρn(w1) + ρn(w2) : x = w1 + w2}.

It follows that ρn+1(y) ≤ ρn+1(x). Therefore for all n ∈ N, ρn(y) ≤ ρn(x) and it follows

that ||y|| ≤ ||x||.

This monotonicity implies that || · || is bounded below by the sup norm. Now we prove

that || · || defines a norm.

We summarize the properties of the sequence (ρn)n that will be used in the proof:

(i) For all x ∈ c00, (ρn(x))n is monotone decreasing,

(ii) For x,y ∈ c00, ρn+1(x + y) ≤ ρn(x) + ρn(y).

(iii) For any λ ∈ R and x ∈ c00, ρn(λx) = |λ|ρn(x).

The only non trivial property we must verify is the triangle inequality. Let x,y ∈ c00;

first we prove that for all m ∈ N,

||x + y|| − ||x|| ≤ ρm(y). (4.1)

For m ∈ N and n > m we have

||x + y|| ≤ ρn+1(x + y) ≤ ρn(x) + ρn(y) ≤ ρn(x) + ρm(y),

therefore ||x + y|| − ρm(y) ≤ ρn(x) and this holds for all n > m so

||x + y|| − ρm(y) ≤ inf
n>m

ρn(x) = ||x||,

hence ||x + y|| − ||x|| ≤ ρm(y).

Since (4.1) holds for all m ∈ N, we have that ||x + y|| − ||x|| ≤ inf
m
ρm(y) = ||y||. Hence

|| · || defines a norm on c00.
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We will now see that the norm ||·|| satisfies an implicit expression, dual to that found

by Figiel and Johnson.

Proposition 32. For any x ∈ c00, we have that

||x|| = min{2 min{max
1≤i≤k

||Eix|| : k ≤ E1 < · · · < Ek, x =
∑

Eix},

inf{||y|| + ||z|| : x = y + z, supp(y) ⊆ supp(x)}}.

Furthermore, if || · ||′ is a norm satisfying the implicit equation above and such that

||ei||′ = 1 for every vector ei in the standard basis of c00, then for all x ∈ c00, ||x||′ ≤ ||x||.

Proof. Since ||·|| satisfies the triangle inequality, ||x|| = inf{||y|| + ||z|| : x = y +

z, supp(y) ⊆ supp(x)}. So we have to check that

||x|| ≤ 2 min{max
1≤i≤k

||Eix|| : k ≤ E1 < · · · < Ek,x =
∑

Eix}.

Let k ≤ E1 < · · · < Ek be such that x =
∑
Eix, and define

J = {j ≤ k : max
1≤i≤k

||Eix|| = ||Ejx||}.

Let j0 ∈ J be such that for some cofinal C ⊆ N we have that for n ∈ C, max
1≤i≤k

ρn(Eix) =

ρn(Ej0x).

Then for n ∈ C

||x|| ≤ ρn+1(x) ≤ 2 max
1≤i≤k

ρn(Eix) = 2ρn(Ej0x).

So ||x|| ≤ 2 ||Ej0x|| = 2 max
1≤i≤k

||Eix||.

Now suppose || · ||′ is a norm on c00 that satisfies the implicit equation and such that

||ei||′ = 1 for every vector ei in the standard basis of c00. It follows easily by induction

that for all n ∈ N and all x ∈ c00, ||x||′ ≤ ρn(x). Hence for all x ∈ c00, ||x||′ ≤ ||x||.

Unlike the expression given by Figiel and Johnson, this implicit expression does not

allow us to calculate the norm of a vector recursively in the cardinality of its support.

This is because of the infimum term in each ρn; this term is necessary in order to have
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the triangle inequality hold in the limit.

Since T is reflexive and T ∗ = F , the space T is isometrically isomorphic to the dual

of F . We will prove that the norm ||·|| we defined and the norm of F ∗ coincide in c00.

We observed before that the sequence (en)n is a Schauder basis for F . Let (e∗n)n be

the corresponding coefficient functionals. We shall define a subset of F ∗ that contains

all the information needed to calculate the norm of a given vector x ∈ F . Let

V0 = {±e∗k : k ∈ N}

Vn+1 = Vn ∪
{

1

2
(f1 + · · ·+ fk) : k ∈ N, k ≤ f1 < · · · < fk, fi ∈ Vn

}
V =

⋃
n

Vn.

Proposition 33. For every x ∈ F , ||x||F = sup{f(x) : f ∈ V }.

Proof. Let (||·||F,n)n be the sequence of norms defined by Figiel and Johnson. For each

n ∈ N and x ∈ c00 define τn(x) = sup{f(x) : f ∈ Vn}. It is easy to prove by induction

on n that τn(x) = ||x||F,n for every x ∈ c00. Therefore

||x||F = lim
n→∞

||x||F,n = lim
n→∞

τn(x) = sup{f(x) : x ∈ V }.

We denote the convex hull of a set A by conv(A). We are now ready to use the

instance of the Bipolar Theorem presented in Section 2.1 to prove the following

Proposition 34. The unit ball of the dual of F is the weak*-closure of the convex hull

of V . Also, BF ∗ ∩ c00 = conv(V ).

Proof. By Proposition 33, V ◦ = BF and V ◦◦ = (BF )◦ = BF ∗ . Hence by the Bipolar

theorem, we have that BF ∗ is the weak*- closure of the convex hull of V .
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For the second part, let x ∈ BF ∗ ∩ c00, G = supp(x). Then VG = {f ∈ V : supp(f) ⊆ G}

is a compact subset of a finite dimensional subspace of F ∗, therefore conv(VG) is compact.

Let PG : F ∗ → [{e∗i : i ∈ G}] denote the projection map with PGy = Gy. Note that PG

is w∗-continuous. Then

x ∈ PG[BF ∗ ] = PG[conv(V )
w∗

] ⊆ conv(PG[V ])
w∗

= conv(VG)
w∗

= conv(VG).

In order to prove that X is the dual of F , we need the following lemma:

Lemma 35. For x ∈ c00, if ρn(x) ≤ 1 then x ∈ BF ∗.

Proof. Note that BF ∗ has the following properties:

(i) The sequence (e∗n) is contained in BF ∗ ,

(ii) if f ∈ BF ∗ and |α| ≤ 1, then αf ∈ BF ∗ ,

(iii) if f1, · · · , fn ∈ BF ∗ ∩ c00 are such that n ≤ f1 < · · · < fn, then 1/2(f1 + · · ·+fn) ∈

BF ∗ ∩ c00.

This follows from the original construction of T . We include the proof for completeness,

since we want to generalize our arguments to the dual of mixed Tsirelson spaces.

Property (i) is clear by the definition of V . Note that the set V has the closure property

described in property (iii). Let V ′ be the convex hull of V then V ′ has property (ii). Let

f1, · · · , fn ∈ V ′ be such that n ≤ f1 < · · · < fn and let f = 1/2(f1 + · · ·+ fn). For each

i = 1, . . . , n, fi can be written as

fi = α1
i g

1
i + · · ·+ αmi g

m
i

for some m ∈ N, some gji ∈ V ∪{0} and some non negative scalars αji such that
∑

s α
s
i = 1

for all i ≤ n. We may assume that supp(gji ) ⊂ supp(fi) for each i, j. Therefore for each

choice of s1 < · · · < sn ≤ m we have that n ≤ gs11 < gs22 < · · · < gsnn , so

1

2
(gs11 + · · ·+ gsnn ) ∈ V.
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Since f can be written as a convex combination of vectors of this form, it follows that

f ∈ V ′. Hence V ′ has the closure property described in (iii).

We now prove by induction on n that for x ∈ c00, if ρn(x) ≤ 1 then x ∈ BF ∗ . For

the base case, assume that ||x||`1 ≤ 1 and x = (xi)
k
i for some k, then

∑k
1 |xi| ≤ 1 so

x ∈ BF ∗ by convexity of BF ∗ .

Now suppose that ρn+1(x) ≤ 1. If ρn+1(x) = 2 max
1≤i≤k

ρn(Eix) for some k ≤ E1 < · · · <

Ek such that x =
∑
Eix, then ρn(2Eix) ≤ 1 for all 1 ≤ i ≤ k. By induction hypothesis

this implies that 2Eix ∈ BF ∗ for all 1 ≤ i ≤ k. Hence x = 1
2

∑
2Eix ∈ BF ∗ by property

(iii).

Now suppose that ρn+1(x) = inf{ρn(y) + ρn(z) : x = y + z}. For each k ∈ N

let yk, zk ∈ c00 be such that x = yk + zk and ρn(yk) + ρn(zk) ≤ 1 + 1/k. Then

uk := yk/ρn(yk),vk := zk/ρn(zk) ∈ BF ∗ , by induction hypothesis. Since

x

ρn(yk) + ρn(zk)
=

ρn(yk)

ρn(yk) + ρn(zk)
uk +

ρn(zk)

ρn(yk) + ρn(zk)
vk,

and BF ∗ is convex, it follows that /(ρn(yk) + ρn(zk)) ∈ BF ∗ , or in other words,

x ∈ (ρn(yk) + ρn(zk))BF ∗ ⊂ (1 + 1/k)BF ∗

for every k. Hence, x ∈ BF ∗ .

Let X be the completion of c00 with respect to the norm ||·|| from Definition 30.

Theorem 36. BF ∗ ∩ c00 = BX ∩ c00. Hence X = F ∗.

Proof. It can be proved by induction using the implicit equation in Proposition 32 that

Vn ⊂ BX for all n ∈ N. Therefore the convex hull of V is contained in BX and by
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Proposition 34, this proves the first inclusion.

For the reverse inclusion, let x ∈ BX ∩ c00, we may assume that ||x|| = 1. Let (nk)k

be a sequence of natural numbers such that ρnk(x) < 1 + 1/k. By the previous lemma

x
1+1/k ∈ BF ∗ , hence x ∈ BF ∗ .

Thus we have proved that the norm ||·|| coincides with ‖ · ‖F ∗ on c00. Since c00 is

dense in X and [e∗n] is dense in F ∗, it follows that X = F ∗, that is F ∗ is the completion

of c00 with respect to the norm ||·||.

4.2 A norm for the dual spaces of mixed

Tsirelson spaces

We shall show how our results can be adapted to give an expression for the norm of the

dual of any mixed Tsirelson space T [(Mn, θn)n]. As in Section 4.1, we have the following

definition.

Definition 37. For x ∈ c00 let ρ0(x) = ||x||`1 and let ρn+1(x) be the minimum of the

quantities

min

{
1

θk
max
1≤i≤k

ρn(Eix) : (Ei)
k
1 Mk-admissible,x =

k∑
i=1

Eix, k ∈ N

}
and

inf
{
ρn(w1) + ρn(w2) : x = w1 + w2

}
.

This defines a norm || · || on c00, since the proof of Lemma 31 can be carried out for

this modified expression. Specifically, the argument for monotonicity is independent of
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the Schreier condition and of the coefficient 2. Clearly the properties (i)-(iii) used in the

proof of the lemma are also satisfied.

The proof of Proposition 32 goes through as well, so the norm defined above satisifies

the following implicit equation

||x|| = min{min{ 1

θl
max
1≤i≤k

||Eix|| : (Ei)
k
1 Ml-admissible,x =

k∑
i=1

Eix, l ∈ N},

inf{||y|| + ||z|| : x = y + z, supp(y) ⊆ supp(x)}},

the standard basis of c00 is normalized with respect to ||·||, and is the maximum such

norm.

To describe the unit ball of T [(Mn, θn)n]∗, we use the following sequence of sets:

V0 = {±e∗k : k ∈ N}

Vn+1 = Vn ∪ {θl(f1 + · · ·+ fk) : f1 < · · · < fk, fi ∈ Vn,

(supp(fi))
k
i , Ml-admissible, l ∈ N}

V =
⋃
Vn.

It is easy to see, just as for F , that for any x ∈ T [(Mn, θn)n],

‖x‖∗ = sup{f(x) : f ∈ V }.

So by the Bipolar Theorem, the unit ball of the dual of T [(Mn, θn)n] is the weak*-closure

of the convex hull of V .

Let X be the completion of c00 with respect to the norm ||·|| defined in 37. We

restate Theorem 36 for T [(Mn, θn)n]∗:

Theorem 38. BT [(Mn,θn)n]∗ ∩ c00 = BX ∩ c00. Hence X = T [(Mn, θn)n]∗.

The inclusion BT [(Mn,θn)n]∗ ∩c00 ⊆ BX ∩c00 can be proved just as we did for F ∗. For

the reverse inclusion, one can prove that the unit ball of T [(Mn, θn)n]∗ has the following

properties:
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(i) The sequence (e∗n) is contained in BT [(Mn,θn)n]∗ ,

(ii) if f ∈ BT [(Mn,θn)n]∗ and |α| ≤ 1, then αf ∈ BT [(Mn,θn)n]∗ ,

(iii) for every k ∈ N, if f1, · · · , fn ∈ BT [(Mn,θn)n]∗ ∩ c00 are such that f1 < · · · < fn,

and (supp(fi))
n
i is Mk-admissible, then θk(f1 + · · ·+ fn) ∈ BT [(Mn,θn)n]∗ ∩ c00.

So the norm defined in 37 is the norm of the dual of the mixed Tsirelson space

T [(Mn, θn)n].

4.3 Additional remarks

At this moment it is not clear whether the norm of T satisfies an implicit equation that

allows us to calculate the norm of finitely supported vectors inductively in the cardinality

of the support. A natural attempt is to replace the infimum term in Proposition 32 by

the `1 norm and let

ρ(x) = min{||x||1, 2 min{max
1≤i≤k

ρ(Eix) : k ≤ E1 < · · · < Ek,x =

k∑
i=1

Eix}}.

A few calculations show that ρ does not satisfy the triangle inequality. Nevertheless, the

vectors f ∈ BF ∗ with the property that ρ(f) = ||f ||, actually produce the unit ball of

F ∗ in the sense stated below:

Proposition 39. BF ∗ = conv{f ∈ BF ∗ : ρ(f) = ||f ||}.

Proof. By Proposition 34, it follows that BF ∗ ∩ c00 = conv{f ∈ V : ||f || = 1}. Note that

for f ∈ c00, we have that ||f || ≤ ρ(f). Also one can prove by induction on n that for

every f ∈ Vn, ρ(f) ≤ 1. It follows that if f ∈ V is such that ||f || = 1, then we have that

||f || = ρ(f). This finishes the proof.
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CHAPTER 5

FINITE STABILIZATION AND THE FINITE FINK THEOREM

As we saw in Section 3.3, the FINk Theorem is closely related to the oscillation stability

of the Banach space c0. In this chapter we give a constructive proof of the finite version

of Gowers’ FINk Theorem presented in Section 3.2. Namely we prove the following:

Theorem 40. For all natural numbers m, k, r there exists a natural number n such that

for every r-coloring of FINk(n), the functions in FINk supported below n, there exists

a block sequence in FINk(n) of length m that generates a monochromatic combinatorial

subspace.

Let gk(m, r) be the minimum n satisfying the conditions in the theorem. This result

follows easily from the infinite version by a compactness argument (For more details and

examples of compactness arguments used to obtain finite Ramsey type theorems, see

[13]). This compactness argument could be formalized within second order arithmetic

and would yield a second order proof of the finite FINk Theorem, provided there was a

proof of the infinite version within second order arithmetic. However, the existing proof

of the infinite FINk Theorem uses ultrafilter dynamics and it has not been formalized

in second order arithmetic. Towsner [30] showed how to carry out an analog of Glazer’s

proof of Hindman’s Theorem in second order arithmetic. It is not known if a similar

argument could yield a proof in second order arithmetic of the infinite FINk Theorem.

J. Paris and L. Harrington [26] found the following example of a Ramsey type theorem

which is unprovable in PA:

(PH) For all natural numbers n, k, r there exists a natural number m such that for

any r-coloring of the k-element subsets of the interval of natural numbers [n,m], there

exists a monochromatic set S such that #S > minS.

48



The situation is different for the finite FINk Theorem since our proof uses only

induction and can be proved using only the axioms of PA. In the notation of Theorem

40, the bounds we find for k > 1 and m > 0 are

gk(m, 2) ≤ f2k+2 ◦ f4(6m− 2),

where for i ∈ N, fi denotes the i-th function in the Ackermann Hierarchy.

Since the FINk Theorem was a crucial step in the proof of the oscillation stability of

c0, one might expect that the bounds for the quantitative version of Milman’s result about

the stabilization of Lipschitz functions on finite dimensional Banach spaces mentioned in

Section 3.3, for the special case of the spaces `n∞, n ∈ N, would be comparable to those

we find for the finite version of the FINk Theorem. However, this is not the case: we will

establish much smaller bounds for the Finite Stabilization Principle in the special case

of `n∞- spaces and functions defined on their positive spheres. We repeat the statement

of the Finite Stabilization Principle now in terms of block sequences:

Theorem 41. [21] For every pair of real numbers C, ε > 0 and every natural number m

there is a natural number n such that for every n-dimensional normed space F with a

Schauder basis (xi)
n−1
i=0 , whose basis constant does not exceed C, and for every C-Lipschitz

f : F → R, there is a block subsequence (yi)
m−1
i=0 of (xi)

n−1
i=0 so that

osc(f � S[yi]m−1
i=0

) < ε,

where SY is the unit sphere of [yi]
m−1
i=0 is the vector space generated by the sequence

(yi)
m−1
i=0 .

Let N(C, ε,m) be the minimum n such that for every C-Lipschitz function f :

PS`n∞ → R, there is a block sequence (yi)
m−1
i=0 of positive vectors such that osc(f �

PS[yi]m−1
i=0

) < ε. By analysing the proof of Theorem 41 in [21] for the special case of the

spaces `n∞, n ∈ N, we obtain the following upper bound for N(C, ε,m):

N(C, ε,m) . f3

(
ms · dC

ε
ems
)
,
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where s = log(ε/12C)/ log(1− ε/12C) + 2. For fixed ε and C, this upper bound is more

slowly growing than the bound we found for gk(m, 2) for a fixed k ≥ 2.

5.1 The finite FINk Theorem

We start by fixing some notation based on the terminology introduced in Section 3.2. Let

k ∈ N be given. For N, d ∈ N we define the finite version of FINk and its d-dimensional

version by:

FINk(N) = {f ∈ FINk : max(supp(f)) < N}

FINk(N)[d] = {(fi)i<d| fi ∈ FINk(N) and fi < fj for i < j < d}.

The elements of FINk(N)[d] are called block sequences. The combinatorial space 〈fi〉i<d

generated by a sequence (fi)i<d ∈ FINk(N)[d] is the set of elements of FINk(N) of

the form T l0(fi0) + . . . + T ln−1(fin−1) where n ∈ N, i0 < . . . < in−1 < d and

min{l0, . . . , ln−1} = 0. A block subsequence of (fi)i<d is a block sequence contained

in 〈fi〉i<d. Just as we defined the d-dimensional version of FINk(N), if (fi)i<l is a block

sequence, we define (〈fi〉i<l)[d] to be the collection of block subsequences of (fi)i<l of

length d.

The following definition is important when coding an element of FINk in a sequence of

elements of FINk−1. Given f = (fi)i<m ∈ FIN
[m]
k , for

g =
∑
i<m

T k−nifi,

we define suppfk(g) to be the set of all i < m such that ni = k. The cardinality of this set

determines the length of the sequence we need in order to code g, as we shall describe in

detail later on. The proof is by induction on k. The starting point is Folkman’s Theo-

rem. In the inductive step, the idea is to code an element of FINk in a finite sequence of

elements of FINk−1 and apply the result for FINk−1 and its higher dimensional versions.

We canonically identify FIN1 with FIN, the collection of finite subsets of N. The case
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k = 1 of the finite FINk Theorem, phrased in terms of finite sets and finite unions, is

a variation of Folkman’s Theorem. We include a proof of Folkman’s Theorem for the

sake of completeness and more importantly because we are interested in analysing the

corresponding upper bounds. The proof presented here is extracted from [13, Section

3.4].

Theorem 42 (Folkman). [13] For every pair of natural numbers m, r there exists N ∈

N such that for every c : FIN(N) → r there exists (xi)i<m ∈ FIN(N)[m] such that

c � 〈xi〉i<m is constant.

It easily follows from the Pigeon-Hole principle that the theorem reduces to the

following:

Lemma 43. [13] For every pair of natural numbers m, r there exists N ∈ N such that

for all c : FIN(N) → r there exists (xi)i<m ∈ FIN(N)[m] such that c � 〈xi〉i<m is min-

determined. That is, if x =
⋃
i∈s xi, y =

⋃
i∈t xi with s, t ⊆ m such that min s = min t

then c(x) = c(y).

We denote by N(m, r) the minimal N satisfying the conditions of Lemma 43. We

shall use van der Waerden’s Theorem. For n, r ∈ N, let W (n, r) be the minimal m such

that for any r-coloring of m there is a monochromatic arithmetic progression of length

n.

Proof. We fix the number of colors r ∈ N and proceed by induction on m, the length

of the desired sequence. The base case m = 1 is clear, so we suppose the statement

holds for m and prove it for m+ 1. By a repeated application of Ramsey’s theorem, we

fix N ∈ N such that given any r-coloring of FIN(N), there exists A ⊆ N of cardinality

W (N(m, r), r) such that for all i < W (N(m, r), r), the coloring c is constant on [A]i, the

color possibly depending on i.
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Now let c : FIN(N) → r be given and let A ⊂ N be as above with c � [A]i constant

with value ci < r. Define d : W (N(m, r), r)→ r by

d(i) = ci.

We use van der Waerden’s Theorem to find α, λ < W (N(m, r), r) and i0 < r such that

d � {α+ λj : j < N(m, r)} is constant with value ci0 . Let x0 be the set consisting of the

first α elements of A and let y1 < . . . < yN(m,r) be a block sequence of subsets of A \ x0

each one of which has cardinality λ. Note that the combinatorial space generated by

(yi)i<N(m,r) is canonically isomorphic to FIN(N(m, r)), therefore by induction hypothesis

there exists a block subsequence x1 < . . . < xm of (yi)0<i≤N(m,r) such that c � 〈xi〉mi=1 is

min-determined.

We shall see that (xi)i<m+1 is the sequence we are looking for. Fix x, y ∈ 〈xi〉0≤i≤m with

the same minimum. Suppose first that x0 ⊆ x then also x0 ⊆ y and #x = m+ λi,#y =

m+ λj for some i, j < N(m, r). Hence c(x) = c(y) = ci0 . Now suppose x0 * x then the

same holds for y and consequently x, y ∈ 〈xi〉mi=1. By the choice of (xi)
m
i=1 it follows that

c(x) = c(y).

We now prove Theorem 40 in its multidimensional form.

Theorem 44. For every k,m, r, d ∈ N there exists n ∈ N such that for every coloring

c : FINk(n)[d] → r there exists (fi)i<m ∈ FINk(n)[m] such that c � (〈fi〉i<m)[d] is constant.

Let gk,d(m, r) be the minimum n satisfying the conditions in Theorem 44. We prove

the theorem by induction on k. If we have the theorem for some k and d = 1, we can

deduce the theorem for k and dimensions d > 1 using a diagonalization argument that

we shall describe in detail in Section 5.2 when calculating the upper bounds. We include

the dimensions in the statement of the theorem because they play an important role in

the proof and because we are interested in calculating upper bounds for gk,d(m, r).

Proof. The base case k = 1 in dimension 1 is Folkman’s Theorem. Suppose the theorem

holds for k and all m, r, d ∈ N. We work to get the result for k+1. We need the following
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preliminary result:

Claim 45. For every N, r ∈ N there exists N̄ such that for every c : FINk+1(N̄) → r

there exists h = (hi)i<N ∈ FINk+1(N̄)[N ] such that for

f =
∑
i<N

T k+1−si(hi)

g =
∑
i<N

T k+1−ti(hi),

c(f) = c(g) whenever supphk+1(f) = supphk+1(g), that is, whenever for all i < N , si =

k + 1 if and only if ti = k + 1.

Let N̄k+1(N, r) be the minimum N̄ satisfying the conditions in Claim 45.

Proof of Claim 45. Let N, r ∈ N be given. By iteratively applying the induction

hypothesis, fix N̄ be such that for any sequence of r-colorings (ei)i<N with ei :

FINk(N̄)[2i+3] → r, there exists a block sequence (fj)j<3N such that for each i < N , ei

is constant on (〈fj〉j<3N )[2i+3], its value possibly depending on i.

Let c : FINk+1(N̄)→ r be given. Define U : FINk → FINk+1 by

(Uf)(i) =


f(i) + 1 if f(i) 6= 0

0 otherwise.

For each i < N define the coloring ei : FINk(N̄)[2i+3] → r by

ei((hj)j<2i+3) = c

 ∑
j<2i+3

U j mod2hj

 ,

By the choice of N̄ , we can find a block sequence (fj)j<3N such that for each i < N ,

ei is constant on (〈fj〉j<3N )[2i+3]. We shall see that the sequence (hi)i<N defined by

hi = f3i+Uf3i+1+f3i+2 for i < N is the sequence we are looking for. Let g1, g2 ∈ 〈hi〉i<N

be such that supphk+1(g1) = supphk+1(g2), and let l be the cardinality of supphk+1(g1).
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Then we can write g1, g2 as

g1 =
∑

j<2(l−1)+3

U j mod2wj

g2 =
∑

j<2(l−1)+3

U j mod2w′j

for some (wj)j<2(l−1)+3, (w
′
j)j<2(l−1)+3 ∈ (〈fj〉j<3N )[2(l−1)+3]. Since el−1 is constant on

(〈fj〉j<3N )[2(l−1)+3], it follows that c(g1) = c(g2).

We now verify that for the case k + 1, d = 1 in Theorem 44, we may take n =

N̄k+1(H, r) where H = g1,1(m, r) . Let c : FINk(n) → r be given. By the choice of

n we can find h = (hi)i<H such that c � 〈hi〉i<H depends only on supphk+1. Define

d : P(H)→ r by

d(x) = c

(∑
i∈x

hi

)
.

By the choice of H we can find x0 < . . . < xm−1 subsets of H such that d � 〈xi〉i<m is

constant. For i < m let fi =
∑

j∈xi hj . Note that for f ∈ 〈fi〉i<m, supphk+1(f) is a finite

union of x0, . . . xm−1. Therefore c � 〈fi〉i<m is constant.

The result for d > 1 is obtained by a standard diagonalization procedure that we shall

describe in more detail in the next section.

5.2 Bounds for the finite FINk Theorem

In this section we calculate upper bounds for the numbers gk,d(m, r) given by the proof

in Section 5.1. Since we used Ramsey’s Theorem and van der Waerden’s Theorem in

our arguments, we will need upper bounds for the numbers corresponding to these two

theorems. We shall use the bounds presented in Section 3.1, which we repeat here for

easy reference:

Rd(m) ≤ td(cdm) (5.1)

W (m) ≤ 22
222m+9

= t6(m+ 9) (5.2)
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We now analyse the proof of Theorem 44 presented in Section 5.1 to get some information

about the corresponding upper bounds. We consider only 2-colorings and so we will omit

the number of colors in the arguments of our functions and write gk,d(m) for gk,d(m, 2).

That is, gk,d(m) is the minimal n such that for every coloring c : FINk(n)[d] → 2 there

exists (fi)i<m ∈ FINk(n)[m] such that c � (〈fi〉i<m)[d] is constant. We adopt the same

convention for any other numbers defined in the course of the proof of Theorem 44 that

have the number of colors as a parameter.

In what follows we will analyse each step in the proof presented in Section 5.1 and

refer to the sequence of lemmas and claims presented therein. Recall that in the proof

we proceeded by induction on k and in the inductive step from k to k + 1 we used the

inductive hypothesis in several dimensions d > 1. Therefore we will first find the upper

bounds corresponding to the base case k = 1 in dimension 1, and then describe the di-

agonalization argument to obtain the result for k = 1 and dimension 2. The arguments

are similar for higher dimensions and so we get upper bounds for g1,d(m), d > 1. To

illustrate how the bounds behave when the value of k increases, we analyse the inductive

step in the proof and obtain an upper bound for g2,1(m). The arguments to pass from

k to k+ 1 and to increase the dimension are similar for bigger values of k and so we get

upper bounds for gk,d(m), k ≥ 2, d ≥ 1.

We start by finding an upper bound for N(m), the minimal N ∈ N such that for

all c : FIN(N) → r there exists (xi)i<m ∈ FIN(N)[m] such that c � 〈xi〉i<m is min-

determined. In the proof of Lemma 43 we had to apply Ramsey’s Theorem in dimensions

1, 2, . . . ,W (N(m)) in order to obtain a suitable set of cardinality W (N(m)). To iterate

easily the upper bound (5.1), note that for any i ∈ N and any given constant c, if x is big

enough then we have that ti(cx) ≤ ti+1(x). Using these estimates we get the following
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recursive inequality:

N(m+ 1) ≤ RW (N(m)) ◦ . . . R2 ◦R1(W (N(m)))

≤ tl+1(W (N(m)))

= tl+6(N(m) + 9)

≤ tt6(N(m)+10)(N(m) + 9)

≤ f3(t6(N(m) + 10) +N(m) + 9)

≤ f3(t6(N(m) + 11))

≤ f33 (N(m))

Where l counts the index of the tower function resulting from the iteration of the bound

for Rd(m), that is

l =

t6(m+9)∑
i=1

i.

From the recursive inequality for N(m), we get that

N(m) ≤ (t3)m(1) = f4(3m).

In order to obtain Folkman’s Theorem from Lemma 43, we applied the Pigeon-Hole

principle, and so we have that

g1,1(m) ≤ N(2(m− 1) + 1) (5.3)

≤ f4(6m− 3). (5.4)

We now work to obtain bounds for g1,d(m) for d > 1. To increase the dimension by 1,

we use a standard diagonalization argument which results in upper bounds of the form

g1,d(m) ≤ fd5 (7m+ 2(d− 1)).

We describe the diagonalization argument we used to obtain Theorem 44 for k = 1

and d = 2 and calculate the resulting upper bound for g1,2(m). Let c : FIN(N)[2] → 2

be given and let us calculate how large N should be in order to ensure the existence of
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a block sequence of length m generating a monochromatic combinatorial subspace. We

define block sequences S0, . . . , Sp−1 and a0 < . . . < ap−1 where p = g1,1(m) with the

following properties:

(i) S0 = {{0}, . . . , {N − 1}},

(ii) aj is the first element of Sj ,

(iii) For j > 0, Sj is a block subsequence of Sj−1 such that for each x ∈ 〈ai〉i<j , the

coloring cx : FIN(N \x)→ 2 of the finite subsets of N \x defined by cx(y) = c(x, y)

is constant with value ix when restricted to 〈Sj〉,

(iv) the sequence Sp−1 has length 2.

Each Sj , 0 < j < p can be obtained by a repeated application of Theorem 44 for k = 1

in dimension 1. Let S = {aj : j < p} and consider the coloring d : 〈S〉 → 2 defined by

d(x) = ix.

By the choice of p, we can find a block subsequence of S of length m that generates

a d-monochromatic combinatorial subspace, and by construction this sequence will also

generate a c-monochromatic combinatorial subspace. Since the total number of refine-

ments to obtain the sequences (Sj)j<p is 2p − 1, it suffices to start with N ≥ g2
p−1

1,1 (2)

and so

g1,2(m) ≤ g2p−11,1 (2) (5.5)

One can prove by induction on l that gl1,1(m) ≤ f l4(6m+ l − 4), so we have that

g1,2(m) ≤ f2
p−1

4 (2p + 7) (5.6)

≤ f
f4(6m−2)
4 (f4(6m− 2)) (5.7)

≤ f
f4(6m−2)+1
4 (6m− 2) (5.8)

≤ f5(f4(7m)) (5.9)

≤ f25 (7m). (5.10)
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In general the recursive inequality resulting from the diagonalization argument is

g1,d+1(m) ≤ ghd(g1,d(m))
1,1 (2), (5.11)

where hd(l) for l ∈ N, is the cardinality of FIN
[d]
1 (l). Note that hd(l) ≤ 2ld. From

calculations like the ones in (5.6)-(5.10), one gets that for d ≥ 2

g1,d(m) ≤ fd5 (7m+ 2(d− 1)). (5.12)

Now we find an upper bound for gk,1(m), k > 1. Recall that in the proof of Theorem 44

we proceeded by induction on k. In the inductive step from k to k+1 we used the higher

dimensional versions of the result for k. We first found a subsequence where the coloring

depends only on suppk, which is the content of Claim 45. We then applied Folkman’s

Theorem to obtain the desired sequence in FINk+1.

We consider the case k = 2, the calculations for bigger values of k are similar. Let

N ∈ N be given, in order to establish Claim 45 for N and k = 2 we used Theorem 44 for

k = 1 in dimensions 2i+ 3(i < N). Using the notation in the proof, we see that

N̄2(N) ≤ g1,2(N−1)+3 ◦ . . . ◦ g1,5 ◦ g1,3(N) (5.13)

≤ gN1,2(N−1)+3(N) (5.14)

≤ f2N
2+N

5 (2N2 + 10N − 1) (5.15)

≤ f6(4N
2 + 11N − 1). (5.16)

Where in (5.15) we have used the inequality gl1,d(m) ≤ (7m + 2(d − 1) + (l − 1)d), for

l, d ∈ N, d > 1. From the final application of Folkman’s Theorem we get

g2,1(m) ≤ N̄2(g1,1(m)) (5.17)

≤ g1,2(g1,1(m)−1)+3 ◦ . . . ◦ g1,5 ◦ g1,3(g1,1(m)) (5.18)

≤ f6(f4(6m− 2)). (5.19)

For the case k = 2, the bounds for the higher dimensional numbers we obtain are:

g2,d(m) ≤ fd7 (f4(6m− 2) + 2(d− 1)), (5.20)
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In general from the inductive step we get that for any k ∈ N,

N̄k+1(N) ≤ gk,2(N−1)+3 ◦ . . . ◦ gk,5 ◦ gk,3(N), and (5.21)

gk+1,1(m) ≤ gk,2(g1,1(m)−1)+3 ◦ . . . ◦ gk,5 ◦ gk,3(g1,1(m)). (5.22)

The diagonalization argument used to increase the dimension from d to d+ 1 in the case

k = 1 is similar for bigger values of k so we get that

gk,d+1(m) ≤ ghk,d(gk,d(m))
k,1 (2), (5.23)

where hk,d(l) for l ∈ N, is the cardinality of FIN
[d]
k (l). Note that hk,d(l) ≤ dlk. Using

(5.21), (5.22) and (5.23), we can carry out similar calculations as the ones presented for

the case k = 2 to obtain:

gk,1(m) ≤ f4+2(k−1) ◦ f4(6m− 2), (5.24)

gk,d(m) ≤ fd5+2(k−1)(f4(6m− 2) + 2(d− 1)), (5.25)

where d > 1. We summarize in the following table the upper bounds we obtain.
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k Dimension Upper bound

2

1 f6 ◦ f4(6m− 2)

2 f27 (f4(6m− 2) + 2)

...

d fd7 (f4(6m− 2) + 2(d− 1))

3

1 f8 ◦ f4(6m− 2)

2 f29 (f4(6m− 2) + 2)

...

d fd9 (f4(6m− 2) + 2(d− 1))

...

k

1 f4+2(k−1) ◦ f4(6m− 2)

2 f25+2(k−1)(f4(6m− 2) + 2)

...

d fd5+2(k−1)(f4(6m− 2) + 2(d− 1))

5.3 Bounds for the finite stabilization theorem

In this section we shall prove the Finite Stabilization Principle mentioned in Section 3.3

for the special case of spaces of the form `n∞, namely we shall prove the following:

Theorem 46. [21] For every C, ε > 0 and m ∈ N there is n ∈ N such that for every

C-Lipschitz function f : PS`n∞ → R there is a positive block sequence (yi)i<m such that

osc(f � PS[yi]i<m) < ε.

Let n(C, ε,m) ∈ N be the minimum n satisfying the conditions in Theorem 46. This

quantitative version is stated and proved in [21] for the sphere of arbitrary finite di-

mensional Banach spaces. At first, it seemed plausible that Theorem 46 would suffice

to prove the finite FINk Theorem. Given a coloring of FINk(n) for some n ∈ N, one

would have to define a function on a subset of the positive sphere of `n∞ and extend this
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coloring to the positive sphere of `n∞. Problems arise because we have no control over

the Lipschitz constant of the resulting function on the positive sphere of `n∞.

It is interesting to see how the bounds found in the previous section for the finite

FINk Theorem compare to the bounds for Theorem 46. In what follows we shall outline

the proof of Theorem 46 as presented in [21] and calculate the resulting upper bound for

the function n(C, ε,m). The argument is organized in two claims. The statement of the

first one as we present it here, is slightly different from [21]; in its proof we use Ramsey’s

Theorem explicitly. We reproduce the argument for the second claim and provide the

details that allow us to calculate the upper bounds.

Let (ei)i∈N be the standard basis of c0.

Claim 47. [21] For any l ∈ N, C, ε > 0, there exists m̄ ∈ N such that for any C-Lipschitz

function f : PS[ei]i<m̄ → R, there exists A ⊂ m̄ of cardinality m such that f � PS[ei]i∈A

is ε- almost spreading, that is, for any n0 < . . . < nl−1,m0 < . . . < ml−1 ∈ A , l < m

and any sequence of scalars (ai)i<l such that 0 < ai ≤ 1 and maxi ai = 1, we have that

|f(
∑

i<l aieni)− f(
∑

i<l aiemi)| < ε.

Let m̄(C, ε,m) be the minimum m̄ satisfying the conditions in Claim 47.

Proof. Let ε > 0. Given a C-Lipschitz function f : PS[ei]i<d → R, d ∈ N and a sequence

of scalars a = (ai)i<l such that 0 < ai ≤ 1 and maxi ai = 1, we define a coloring cf,a of

[d]l as follows: Let (Ij)j<r be a partition of the range of f into intervals of length at most

ε/3, where r = d3C/εe. Define cf,a : [d]l → r by cf,a({n0, . . . , nl−1}<) = j if and only if

f(
∑

i<l aieni) ∈ Ij . Note that if A ⊂ d is homogeneous for cf,a then for any n0 < . . . <

nl−1,m0 < . . . < ml−1 ∈ A, we have that |f(
∑

i<l aieni)− f(
∑

i<l aiemi)| < ε/3. We see

that m̄ should be big enough so that given a C-Lipschitz function f : PS[ei]i<m̄ → R, we

can find A ⊂ m̄ of cardinality m that is homogeneous for colorings cf,a with a ranging
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over some ε/3C-nets of PS[ei]i<l for l < m. For each l < m we use an ε/3C-net for

PS[ei]i<l of cardinality d3C/εel−1. Hence for each l < m it suffices to use Ramsey’s

Theorem for r-colorings of l-tuples, consequently:

m̄(C, ε,m) ≤ f3
((

m
⌈3C

ε

⌉m)
·
⌈

log2
3

ε

⌉)

For the next step we need to introduce some notation. We say that x,y ∈ c00 have

the same distribution, denoted by x
dis
= y if x =

∑
i<k aieni and y =

∑
i<k aiemi for

some k ∈ N, (ai)i<k ⊂ R, and n0 < . . . < nk−1, m0 < . . . < mk−1 ∈ N. For x,y ∈ c00 let

dis(x,y) = inf{||x̄− ȳ||∞ : x̄
dis
= x, and ȳ

dis
= y}.

For 0 < r < 1 define recursively a sequence of finitely supported vectors (y
(n)
r )n∈N as

follows. Let y
(0)
r = e0 and assuming y

(n)
r =

∑
i<ln

y
(n)
r (i)ei is already defined we let

y(n+1)
r =

∑
i<ln

(
rn+1e3i + y(n)r (i)e3i+1 + rn+1e3i+2

)
(thus y

(1)
r = (r, 1, r, 0, . . .),y

(2)
r = (r2, r, r2, r2, 1, r2, r2, r, r2, 0, . . .), etc.). Note that

#supp(y
(n)
r ) = 3n for n ∈ N. We shall need the following observation:

Claim 48. [21] Let t, s ∈ N, 0 < r < 1, and let (zl)l<3t be a block sequence of vectors

with the same distribution as y
(st)
r . Then for every linear combination z =

∑
l<3t r

αlzl

with at least one αl = 0, there exists z̄
dis
= y

(st)
r such that for every j ≤ (s− 1)t and i ∈ N

such that z(i) = rj, we have that z̄(i) = rj+l for some 0 ≤ l ≤ t.

Proof. Let s ∈ N and 0 < r < 1. We prove the claim by induction on t. For the base

case t = 1, let (zl)l<3 be a block sequence of vectors distributed as y
(s)
r . It is useful to

note that

y(s)
r

dis
= ry(s−1) + r2y(s−2) + . . . r(s)y(0) + y(0) (5.26)

+r(s)y(0) + . . .+ r2y(s−2) + ry(s−1),
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where for i < s, y(i) dis= y(i) dis= y
(i)
r , y(0) dis= e0 and are such that there is no overlap or

gaps between the supports of the terms of the sum. Let z =
∑

l<3 r
αlzl with at least

one αl = 0. Since each y(i), i < s also has an structure as in (5.26), it is easy to find a

vector distributed as y
(s)
r that satisfies the conclusion of the claim.

For the inductive step, let (zl)l<3t+1 be a block sequence of vectors with the same distri-

bution as y
(s(t+1))
r and let z =

∑
l<3t+1 rαlzl with at least one αl = 0. It is easy to see

that we can write z as

z =
∑
m<3

rβmwm,

where each wm is a linear combination of 3t many vectors distributed as y
(s(t+1))
r and at

least one βm = 0. For each m < 3 let z̄m
dis
= y

(st)
r be the vector given by the induction

hypothesis when applied to the vector obtained from wm by restricting to the coordinates

with values greater than or equal to rst. Let z̄ =
∑

m<3 r
βm z̄m. We may now apply the

claim in the case t = 1 to the vector obtained by restricting z̄ to the coordinates with

value greater than or equal to rs. Let ¯̄z be the vector obtained in this way. It is easy to

extend the vector ¯̄z to a vector distributed as y
(s(t+1))
r with the desired property.

Claim 49. [21] For every ε > 0 and m ∈ N there exists a normalized block subsequence

(zi)i<m of (ei) such that the positive sphere of [zi]i<m has diameter less than ε with

respect to dis(·, ·).

Let D(ε,m) be the minimal n such that we can find a block subsequence (zi)i<m of

(ei)i<n as in Claim 49.

Proof. Let ε > 0, m ∈ N be given. To simplify the notation suppose m = 3t for some

t ∈ N. Let 0 < r < 1 be such that 1− rt < ε/4 and let s ∈ N be such that r(s−1)t < ε/4.

Take n = s · t. Let z0 < . . . < zm−1 be distributed as y
(n)
r . Let w0,w1 be in the positive

sphere of [zi]i<m. Let w̄i, i < 2 be linear combinations of the vectors z0, . . . , zm−1 of

norm 1, whose coefficients are positive powers of r and such that ||wi−w̄i|| < ε/4, i < 2.

By Claim 48 we have that dis(w̄i, z0) < ε/4, and therefore dis(w0,w1) < ε.
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We now calculate the upper bound for D(ε,m) given by the proof. From the conditions

1− rt < ε/4 and r(s−1)t < ε/4 we get

s >
| log (ε/4) |
|t log r|

+ 1

|t log r| < | log(1− ε/4)|,

so s > | log(ε/4)|
| log(1−ε/4)| + 1 and we have that

D(ε, 3t) ≤ 3(s+1)·t ≤ (3t)
| log(ε/4)|
| log(1−ε/4)|+2

.

To see how Theorem 46 follows from Claims 47 and 49, and obtain the resulting

upper bound for n(C, ε,m), let C, ε > 0, m ∈ N be given. Suppose m = 3t for some

t ∈ N. Let

n = m̄(C, ε/3, D(ε/3C,m)).

Let f : `n∞ → R be C-Lipschitz. By Claim 47, we can find A ⊂ n of cardinality

D(ε/3C,m) such that f is ε/3-almost spreading on PS[ei]i∈A . By Claim 49 we can find

a block subsequence (zi)i<m of (ei)i∈A such that PS[z0,...,zm−1] has diameter less than

ε/3C with respect to dis(·, ·).

Let yi ∈ PS[z0,...,zm−1], i = 0, 1. We can find ȳi ∈ PS[z0,...,zm−1] such that ȳi
dis
= yi,

i = 0, 1 and ||ȳ0 − ȳ1||∞ < ε/3C. Hence we have that

|f(y0)− f(y1)| ≤ |f(y0)− f(ȳ0)|+ |f(ȳ0)− f(ȳ1)|+ |f(y1)− f(ȳ1)|

< ε.

Therefore

n(C, ε, 3t) ≤ m̄(C, ε/3, D(ε/3C, 3t)) < f3

(
3t·sd9C

ε
e3t·sdlog2

9

ε
e
)
,

where s = d log(ε/12C)
log(1−ε/12C)e+ 2.
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5.4 Additional remarks

As far as we know there is no proof of the infinite FINk Theorem that avoids the use

of idempotent ultrafilters. The proof we present of the finite version cannot be adapted

to the infinite case. This is because when proving the result for k + 1, we have to know

how many dimensions of the inductive hypothesis we need, and this number depends on

the desired length of the homogeneous sequence.

We found upper bounds for the Finite Stabilization Theorem in the special case of

the spaces `n∞ that grow much more slowly than the upper bounds we have for the finite

FINk Theorem. This suggests that the FINk Theorem is stronger than this special case

of the Finite Stabilization Theorem. To make this comparison precise and also because

it is interesting in its own right, we still have to find lower bounds for the functions

gk(n), k ∈ N. This would amount to finding for any given l ∈ N, a bad coloring of

FINk(N) for some N , for which there is no sequence of length l generating a monochro-

matic combinatorial subspace. In this direction it would also be interesting to find a way

for stepping up lower bounds for a given k ∈ N to larger values of k.
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[2] A. Brunel and L. Sucheston. On B-convex Banach spaces. Math. Systems Theory,
7(4):294–299, 1974.

[3] T. J. Carlson. An infinitary version of the Graham-Leeb-Rothschild theorem. J.
Combin. Theory Ser. A, 44(1):22–33, 1987.

[4] T. J. Carlson and S. G. Simpson. Topological Ramsey theory. In Mathematics of
Ramsey theory, volume 5 of Algorithms Combin., pages 172–183. Springer, Berlin,
1990.

[5] P. G. Casazza and T. J. Shura. Tsirelson’s space, volume 1363 of Lecture Notes in
Mathematics. Springer-Verlag, Berlin, 1989.

[6] J. A. Clarkson. Uniformly convex spaces. Trans. Amer. Math. Soc., 40(3):396–414,
1936.

[7] W. W. Comfort. Ultrafilters: some old and some new results. Bull. Amer. Math.
Soc., 83(4):417–455, 1977.

[8] R. Ellis. Lectures on topological dynamics. W. A. Benjamin, Inc., New York, 1969.
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