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Abstract

The U.S. Census Bureau’s American Community Survey (ACS) is the foundation
of social science research, much federal resource allocation and the development of
public policy and private sector decisions. However, the high uncertainty associated
with some of the ACS’s most frequently used estimates can jeopardize the accuracy of
inferences based on these data. While there is high level understanding in the research
community that problems exist in the data, the sources and implications of these prob-
lems have been largely overlooked. Using 2006–2010 ACS median household income at
the census tract scale as the test case (where a third of small-area estimates have higher
than recommend errors), we explore the patterns in the uncertainty of ACS data. We
consider various potential sources of uncertainty in the data, ranging from response
level to geographic location to characteristics of the place. We find that there exist
systematic patterns in the uncertainty in both the spatial and attribute dimensions.
Using a regression framework, we identify the factors that are most frequently corre-
lated with the error at national, regional and metropolitan area scales, and find these
correlates are not consistent across the various locations tested. The implication is that
data quality varies in different places, making cross-sectional analysis both within and
across regions less reliable. We also present general advice for data users and potential
solutions to the challenges identified.
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1 Introduction

The socio-economic, demographic and housing data produced by the U.S. Census Bureau

(USCB) through the American Community Survey (ACS) are crucial inputs to social science

research as well as many public and private sector decisions. However, this research and these

decisions are complicated by the high margin of error (MOE) commonly found in the ACS

estimates. High MOEs are especially common when the estimate reflects a small subset of

the population or covers a small geographic area such as a census tract. For example, over

44 percent of the ACS census tract estimates of children in poverty have an MOE at least

as large as the estimate itself.1

There is indeed growing recognition of the uncertainty associated with ACS estimates.

This general recognition is the result of various academic articles (MacDonald, 2006; Salvo

and Lobo, 2006; Citro and Kalton, 2007; Spielman et al., 2014; Bazuin and Fraser, 2013) and

the USCB’s own efforts to publicize the challenges of working with ACS data (U.S. Census

Bureau, 2009a). However, the nature and causes of the uncertainty in the ACS are not

widely understood. As we demonstrate in this research, a major cause for concern is that

the uncertainty generally does not follow a random pattern across attributes and space. This

implies that there is systematic variation in the quality of ACS data—some types of places

have higher uncertainty than others.

This article studies the pattern of uncertainty in one attribute, 2006–2010 median house-

hold income at the census tract scale. This variable is of broad interest to academic, govern-

ment and private sector researchers. Household income is a critical attribute to determine

market demand for business analytics and public or nonprofit service eligibility, to make

decisions about retail site location and to study income inequality, to name a few examples.

The following section empirically motivates the study with examples of patterns in ACS

uncertainty. This is followed by a presentation of the spatial regression specifications and

the data used. An analysis at the national, regional and metropolitan area levels identifies

1Children in poverty is defined as people under 18 living in a family whose income is below the poverty
level and who are related to the householder by birth, marriage or adoption. In 32,332 census tracts (44.3
percent), excluding Puerto Rico, the MOE is greater than or equal to the estimate. 2006–2010 ACS data
extracted from the National Historical Geographic Information System, table B17006.
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key spatial and demographic determinants of the variation in uncertainty. We follow this

analysis with a discussion containing general advice for data users and potential solutions

to the challenges identified. A conclusion summarizes the results and suggests directions for

future research avenues.

2 Empirical Illustration

The distribution of uncertainty in the ACS is not random—uncertainty is not equally likely

in all locations and for all demographic groups. Greater levels of median household income

uncertainty exist in the South and Southwest of the United States, near city centers, and

in places with lower median incomes (Figures 2, 4, 5 and 6). Interestingly, inner-cities and

low income households, the groups and areas typically of most interest to social science

researchers, are the specific subsets of the data that tend to be associated with the greatest

uncertainty.

Median household income is a key indicator of socio-economic status and its uncertainty

is the focus of our analysis. Uncertainty is measured by the coefficient of variation (CV),

which is the standard error of an estimate divided by the estimate itself. It can be computed

from published ACS data, and provides a relative measure of uncertainty—essentially the

error measured as a percent of the estimate. There is no clear cutoff for what qualifies as an

“acceptable” CV. A comprehensive report on the ACS (Citro and Kalton, 2007) produced

for the National Research Council (NRC) states that the maximum acceptable CV should be

in the 0.10–0.12 range, while noting that “what constitutes an acceptable level of precision

for a survey estimate depends on the uses to be made of the estimate” (p.67). A white

paper produced by the software company ESRI (ESRI, 2011) characterizes a CV below 0.12

as “high reliability”, 0.12–0.40 as “medium reliability” and anything above 0.40 as “low

reliability.” Considering that these data are often used for allocating federal resources or the

development of public policy, the more conservative values seem appropriate.

Figure 1 presents the distribution of the CV of median household income for over 70,000

census tracts in the continental U.S. for the 2006–2010 ACS data. The median CV is 0.095,

with a slightly higher average of 0.110 due to the long tail in the distribution. Using the
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Figure 1: Coefficient of Variation on Median Household Income, Continental U.S. Census
Tracts ACS 2006–2010

high end of the NRC range (0.12), approximately one third (32.1%) of U.S. census tracts

have too much uncertainty while two-thirds (67.9 percent) would be considered acceptable.2

While the quality of the ACS income estimates is concerning, the spatial patterns in data

quality are even more troubling—some areas of the country are more prone to high uncer-

tainty than others. Figure 2 shows local spatial autocorrelation in the quality of income

estimates using the Local Moran’s I statistic (Anselin, 1995). Concentrations of high quality

(low uncertainty) income estimates are found in the north of the country (blue areas on

the map), particularly the Midwest, while red clusters of low quality estimates (high uncer-

tainty) are concentrated more in the South and Southwest. Red areas (hotspots) represent

statistically significant concentrations of high uncertainty, and blue (coldspots) identifies low

uncertainty concentrations. Since census tracts average approximately 4,000 people, at this

scale the map shows the uncertainty pattern in low density parts of the country. Figure

3 zooms in further to present the CV distribution for nine metropolitan areas across the

country. In Madison, Wisconsin, for example, approximately 75 percent of census tracts are

2These estimates are based on census tracts in the continental U.S. with outlier tracts removed (see
Section 3.3).
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Note: Results based on the local Moran’s I statistic (Anselin, 1995). Colored tracts represent statistically
significant clusters at the 0.05 level, based on 999 random permutations of the data. Red tracts are clusters
of high values, and blue tracts are clusters of low values.

Figure 2: Concentrations of Uncertainty on Median Household Income, Census Tracts ACS
2006–2010

below the national median uncertainty level; in contrast, nearly 75 percent of the New Or-

leans, Louisiana census tracts are above this level. Other metropolitan areas such as Chicago

and San Diego have median levels nearly identical to the national median. This diversity in

the magnitude and range of uncertainty across metropolitan areas can affect the reliability

of cross sectional analyses.

The spatial variation in attribute uncertainty is not simply a macro scale phenomenon

that varies from region to region, but also manifests itself within regions. Figure 4 presents

uncertainty hotspots and coldspots within the Chicago, Illinois metropolitan area. The map

highlights multiple high uncertainty concentrations around central Chicago and one in central

Gary, Indiana. The low uncertainty areas are generally located in the exurban periphery of

the region, with notable exceptions such as the village of Oak Lawn, Illinois to the southwest

of downtown Chicago.

The spatial concentration of uncertainty in Chicago is not confined to that region, but

is indicative of a general pattern across U.S. metropolitan areas. To see this we pool all

census tracts from the 150 largest metropolitan areas into 100 bins (percentiles) based on
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Figure 3: Distribution of Uncertainty on Median Household Income, Selected Metropolitan
Area Census Tracts ACS 2006–2010

Note: Results based on the local Moran’s I statistic (Anselin, 1995). Colored tracts represent statistically
significant clusters at the 0.05 level, based on 999 random permutations of the data. Red tracts are clusters
of high values, and blue tracts are clusters of low values.

Figure 4: Concentrations of Uncertainty on Median Household Income, Chicago Metropoli-
tan Area Census Tracts ACS 2006–2010
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Figure 5: Variation in Uncertainty on Median Household Income Coefficient of Variation
Based on Distance from Urban Center, Largest 150 Metropolitan Areas Census Tracts ACS
2006–2010

distance from their respective city centers.3 Each census tract is assigned to a bin based on

its relative distance from the city center. Relative distance is used on the X axis because

MSAs vary greatly in size. Figure 5 shows the median CV value from each of these 100 bins.

There is a steep decline in uncertainty as distance initially increases from urban cores, which

eventually moderates and then begins increasing again when reaching the peripheries of the

regions.

In addition to a clear spatial structure, uncertainty of median household income in the

U.S. major metropolitan areas also displays a pattern across income levels. Figure 6 is similar

in design to Figure 5, except in this case we group census tracts based on 100 income bins for

their respective MSAs. This allows us to control for inter-metropolitan variations in income.

The results show that uncertainty in median household income declines as median household

income increases. The similar patterns in Figures 5 and 6 are likely related, as some MSAs’

lower income residents live closer to the urban core. The increasing level of uncertainty at

the urban periphery is likely caused by the diversity of exurban locations, which can range

from wealthy suburban enclaves to lower income agricultural communities.

3See Table 1 for notes on the data source.
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Figure 6: Variation in Uncertainty on Median Household Income Coefficient of Variation
Based on Increasing Income, Largest 150 Metropolitan Areas Census Tracts ACS 2006–2010

3 Methodology and Data

The previous section showed that there are clear social and geographic patterns in the quality

of ACS median household income estimates. We next adopt a regression framework in an

effort to identify the determinants of these patterns. In order to assess this process at

different degrees of spatial resolution, the analysis is conducted at three levels: the nation,

large-scale regions, and metropolitan areas.

3.1 National Model Specification

We begin with a national equation that allows us to obtain a global picture of the process:

log yi = α + δ log inci + φ log hu respondi + β logXi + γ logEi + ϑ log Ti + ui (1)

where yi represents the margin of error (provided by the USCB) of the estimate of income,

inci, in tract i. Uncertainty is explained by ACS response level (hu respondi), a set of

socio-demographic variables (Xi), a group of characteristics of the housing environment (Ei)

and features relating to the structure and definition of the census tract as a statistical entity
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(Ti). (α, δ, φ, β, γ, ϑ) is a vector of parameters and ui is the error term. Table 1 summarizes

the description of the variables and their sources. The equation takes a log-log specification

that allows coefficients to be interpreted as elasticities, expressing the percentage change

expected on yi given a one percentage increase in the explanatory variable.

Given the fine-grained scale of census tracts, it is likely that some of the unobserved

characteristics captured by the error term are spatially correlated, in which case the estimates

loose precision (Anselin, 1988). To account for this form of spatial dependence, we assume

a spatial auto-regressive error term of the following structure:

ui = λ
∑
j

wijuj + εi (2)

where wij is the ijth element of a spatial weights matrix W that formally represents the

spatial connectivity of tracts, and εi is an i.i.d. and well-behaved disturbance. All the results

shown relate to a matrix built using the common queen contiguity criterion, under which

two observations are neighbors, and thus assigned a weight of one, if they share a border of

any length, including a single point. This matrix is then standardized so every row sums

to one, effectively converting
∑

j wijuj into the average value of u in the surroundings of

i. These models are estimated with a generalized method of moments, following the recent

approach proposed by Arraiz et al. (2010), which suggests an estimator robust to spatial

autocorrelation and heteroskedasticity.

3.2 Regional and Metropolitan Model Specifications

To explore geographical variation in the determinants of uncertainty we maintain the census

tract as the unit of analysis, and apply a spatial regimes approach that determines whether

factors associated with uncertainty play a different role in different places. The baseline

model of Equation 1 is expanded with spatial regimes yielding the following:

log yir = αr + δr log incir +φr log hu respondir +βr logXir + γr logEir +ϑr log Tir +uir, (3)

9



Figure 7: U.S. Census Bureau Divisions

where the subscript r indicates membership to a given region; otherwise the specification

remains the same. This means we obtain a set of (αr, δr, φr, βr, γr, ϑr) parameters by region.

Also, we subset the spatial weights matrix W so only neighbors within the same region

remain connected. The combination of both is equivalent to running separate regressions for

each group of observations under the same r subscript. The advantage of this framework is

that it allows for a significance test of the stability of estimates across regions by means of

the spatial Chow test (Anselin, 1990).

In order to allow for sufficient variation across space while keeping the number of param-

eters to interpret tractable, we use census divisions (Figure 7), which partition the U.S. into

nine separate regions. This regimes approach helps assess the spatial variation in correlates

of uncertainty and, as the discussion below shows, helps shed light on the results of the

national model.

In the last step of the analysis, we explore spatial differences in more detail. The census

divisions are now replaced by the 150 largest metropolitan statistical areas (MSAs) in the

country. MSAs are defined by the U.S. Office of Management and Budget, and approximate

a functional urban region. Although MSAs do not cover the entire extent of the country,

these 150 MSAs were home to approximately 84 percent of the U.S. population in 2010. We

model these using the regime approach presented in Equation 3 where the subscript r now

represents an MSA.

10



3.3 Data

We know that the characteristics of places, the population mix, the built environment, etc.,

do not vary randomly in space (Jargowsky, 1997; Briggs, 2005). Our concern in this model

relates to potential covariation in these attributes and ACS uncertainty. Ideally there would

be no correlation, a result indicating that uncertainty at the census tract scale is not a

systematic function of the place.

The dependent variable is the MOE on median household income. Due to the complex-

ity of the sampling and weighting processes used to compute ACS estimates, the USCB

estimates the MOE using an empirical approach. The successive differences replication ap-

proach recomputes all ACS estimates 80 times using different base weights on the completed

surveys each time, and then uses all this information to compute the variability in the actual

estimate (see U.S. Census Bureau, 2009b, Chapter 12 for more details). To control for the

magnitude of the MOE, the income estimate itself is included as an explanatory variable in

Equations 1 and 3. These are the only two variables in the model taken from ACS estimates.

We specifically do not include other ACS variables in the strategy design because they are

expected to contain similar uncertainty problems as what we are trying to model—it is im-

portant that the explanatory factors of uncertainty are, as much as possible, unaffected by

measurement error. As a result, the pool of potential explanatory variables is heavily con-

strained, so we turn to the 2010 decennial census and a 2010 restricted-use database from

the U.S. Department of Housing and Urban Development (HUD). Since the ACS data are

collected over five years, there is some degree of temporal mismatch; however, the extent to

which this affects our results is limited since the variables used are rather persistent over

time and thus offer a good approximation to establish a long-term relationship, as specified

in Equations 1 and 3. The variables used and their sources are summarized in Table 1.

When considering potential determinants of uncertainty in ACS estimates we first con-

sider the total number of surveys collected in the particular tract (hu respond). More

responses are expected to reduce margin of error. Beyond this purely sampling aspect of

tracts, we consider characteristics of the place along three dimensions: socio-demographics,

housing and residential environment and tract structure and diversity. The first dimension

11



considers the residents and household structure of the place, along with a proxy for low

income in the form of the number of federally subsidized housing units (hud total).4 The

second dimension captures variables on the types of housing units in the place (rental units,

vacant units and group quarters population) and also a measure of how urban the place

is (urban hsu). The final dimension investigates the census tract as a unit of analysis by

looking at variation in land area, whether the tract population was stable over the previous

decade (proxied by tracts that did not change shape) and three variables measuring diversity.

Diversity is measured using the Simpson index (also known as the Herfindahl index), which

takes higher values if the population is spread more evenly across groups and lower ones if

the population is more concentrated in a single group. We measure diversity in resident age,

race of residents and household size, with the expectation that more diverse places will have

higher uncertainty since the population is not of uniform type.

The unit of analysis is always the census tract. Although there are high level parameters

that constrain tract delineation (U.S. Census Bureau, 1994), exceptions do occur. For this

reason we only include census tracts with a population greater than 500 and with more than

200 housing units. In general this excludes areas such as national parks, lakes, prisons, large

college dormitories, etc. We also exclude tracts that have a household income estimate, but

no associated MOE; these generally occur when the median household income estimate is at

the reporting bounds of $2,499 or $250,001. Combined, these steps remove 1,186 tracts. The

geography is further constrained to the lower continental U.S., leaving 71,353 census tracts

for the analysis.

4 Findings

The results from the national and regional regressions are presented in Table 2 along with the

Chow test on each variable. To help interpret the large number of coefficients for the MSA

regressions, we summarize the results in Figures 8 and 9. The former presents the count of

MSAs in which a particular variable is significant, and whether it has a positive or negative

4Federally subsidized housing programs include public housing (traditional and HOPE VI), multi-family
housing (including housing for the elderly and disabled, Section 202 and 811), and vouchers (predominantly
Housing Choice Vouchers for tenants). Address-level records were aggregated to the tract level.

12



Variables Description Source

inc Median household income estimate 2006–10 ACS
hu respond Housing units responding to ACS 2006–10 ACS

Socio-demographics (X)
hud total Federally subsidized housing units HUD
child fam Families with children 2010 Census
black African-American population 2010 Census
hisp Hispanic population 2010 Census

Housing and Residential Structure (E)
group pop Population in group quarters 2010 Census
urban hsu Urban housing units 2010 Census
vacant Vacant housing units 2010 Census
renter Rental housing units 2010 Census
hsu Total housing units 2010 Census

Tract Structure and Diversity (T )
area Land area 2010 Census
tr nochange 2000–10 tract boundary stability (dummy) 2000–10 Census†
hhSize simp Household size diversity (Simpson index) 2010 Census
age simp Resident age diversity (Simpson index) 2010 Census
race simp Racial/ethnic diversity (Simpson index) 2010 Census
dist2center* Distance to urban core 2010 Census‡
population Total residents 2010 Census

Dependent Variable
Income Error Median household income margin of error 2006–10 ACS

All variables measured in levels unless noted in the table. Natural logarithms are taken of each variable
before use in the econometric model.

* Only included in metropolitan area regressions

† Computed by authors based on physical census tract boundary changes between 2000 and 2010 re-
ported in the 2010 Census Tract Relationship Files.

‡ Urban centers identified using the U.S. Geological Survey’s Geographic Names Information System.
The latitude-longitude marker for the first city listed in the MSA name is extracted from the database,
and then distances are computed from each census tract centroid to the urban center.

Table 1: Description of Dependent and Independent Variables
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effect on MOE; while the latter shows the spatial distribution of the significant variables along

with the direction and magnitude of the effect on MOE. The models perform reasonably well:

the pseudo-R2 index5 for the national regression is 0.45, with the corresponding values for

the regional regressions ranging from 0.38 to 0.51, and for the MSA models they range from

0.21 to 0.73. Some broad trends emerge from the results, which we present below.

The key variables associated with MOE are income (inc) and response level (hu respond).

These are the only two variables that are significant in the national model and all nine cen-

sus divisions (called “regions” going forward). These two variables are also significant in

68 percent and 91 percent of the MSA regressions respectively. Furthermore, when these

two variables are significant, their directional impact on the margin of error is consistent:

negative impact for response level and positive for income. At the same time, there is wide

variation in the significance level and direction for the other variables when comparing across

regions and MSAs. For the national model, a 1 percent increase in inc is associated with a

0.8551 (Table 2) increase in MOE. This indicates that the magnitude of the error on income

increases at a slower rate than income itself, which leads to lower relative uncertainty (mea-

sured by the coefficient of variation) in higher income places. For the country as a whole,

a one percent increase in the number of responding housing units results in a half percent

reduction (-0.5091) in MOE, which reinforces the premise that more raw data from which

to build the estimates results in lower uncertainty in those estimates. When estimating the

national model with these two variables only, we find the coefficients on inc and hu respond

to be 0.7096 and -0.4715 respectively. The removal of the covariates in X, E and T from

Equation 1 has little influence on response level, but without these variables the influence of

inc on MOE is much stronger, i.e. further away from 1.

Higher levels of renters (renter), subsidized housing (hud total), vacant units (vacant)

and group quarters population (group pop), which includes prisons, college dormitories and

military barracks, tend to be associated with higher MOE. None of these are significant in

all regions and MSAs but, when they are, the direction of influence tends to be positive. A

notable exception is that renter has a negative association in four California MSAs. The

significant Chow tests on most of these variables indicate that while the impacts are similar,

5This is the squared correlation between the actual and predicted dependent variable.
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Figure 8: Counts of Significant Regression Coefficients, Metropolitan Areas
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Figure 9: Magnitude and Spatial Distribution of Significant Regression Coefficients,
Metropolitian Areas 17



the coefficients are statistically different across regions. These four variables are indicators of

population churn, and not necessarily growth or decline of areas. Population stability from

2000 to 2010, as proxied by the dummy variable tr nochange, captures aggregate change,

and presents a less clear picture. In the national model population stability leads to more

error, it is largely insignificant at the regional level, but tends to point to less error at the

MSA level.

The race and ethnicity variables are insignificant in the national model, but are signifi-

cant in many of the regions and MSAs. The magnitude of the African American population

(black) is significant (0.05 level) in seven regions and 31 MSAs, while the Hispanic popu-

lation (hisp) is significant in only three regions but 36 MSAs. Generally, increases in these

populations correspond to decreases in MOE, but exceptions exist. For example, all MSAs

where hisp is associated with increasing MOE are in the eastern half of the country. A third

race variable, race simp, captures diversity within the tract, but is only significant in the

East South Central region and 17 MSAs. Of note is that when it is significant the magnitude

of the coefficient tends to be relatively large. Overall, these variables tend to point to less

error in places with increased representation of one ethnic group.

Two variables look at urban character of tracts: area and urban hsu. Greater land area

is typically associated with more error. That being said, area is either not significant or

negative in the densest regions, e.g. East North Central, New England and Middle Atlantic,

and all but one MSA with a significant negative coefficient are located in these parts of the

country. The impact of more urban housing units, as defined by the USCB, has a less clear

impact on MOE. It is negatively correlated in the national model and for the Middle Atlantic

and South Atlantic, and split nearly evenly for the 19 MSAs where it is significant. These

results might be related to a greater ease of identifying and collecting surveys in denser

locations.

Beyond these nationally consistent trends, there is considerable variation in the mag-

nitude and significance of the remaining coefficients across regions and MSAs. Even when

controlling for factors expected to vary from region to region, we still find that one model

does not provide the same explanations for the MOE pattern in all regions. A global Chow

test shows that we can reject the null hypothesis that all coefficients are the same across
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regions. No two regions have the same set of significant explanatory variables, and only

income (inc) and response rate (hu respond) are significant in all nine regions and the U.S.

5 Implications

The results from the previous sections show that while the uncertainty in the ACS is not

random, the form of its structure varies from region to region and MSA to MSA. The key

implication therefore is that any broad “solution” a user of ACS data might consider must

be flexible enough to accommodate the idiosyncratic nature of the error itself.

We can split the use of ACS data into two categories: 1) direct reporting of the data and

2) statistical reporting of the data. Direct reporting is the presentation of raw ACS estimates

in tables, charts and maps. For example, a table comparing the number unemployed residents

for selected census tracts or a map of unemployment levels by census tract for a city. The

challenge of integrating the uncertainty then becomes a communication issue—the goal is

to add value to the estimates through clear communication of the uncertainty. The most

straightforward examples of this are adding a column of MOEs to a table of estimates or

including a second map that shows the MOEs. However, these approaches may not be the

most effective means of communicating uncertainty information to all audiences, especially

those unfamiliar with the interpretation of survey data. It is possible that a more coarse

representation of the uncertainty could be used, such as a red-yellow-green light icon attached

to each estimate in a table indicating how much caution should be used when interpreting

the value. In a mapping context, interactions of color intensity or hatching overlays could

be used to create a single map that integrates the estimates and MOEs (see for example Sun

and Wong, 2010).

A subcategory of direct reporting is the computation of ratios, proportions and sums of

ACS data. The USCB provides equations for the computation of MOEs on these user gen-

erated estimates in the appendix of U.S. Census Bureau (2009a). Once these are computed

the challenge then reverts back to modes of communication of the uncertainty. In all cases,

if the uncertainties for some or all of the estimates being reported are high, some form of

communication of this information should be included. Striking a balance between too much

19



and not enough information is a challenge that continues to be studied (see for example

Wong and Sun, 2013).

Correlations, regression coefficients and other forms of model output fall into the second

category: statistical reporting of ACS data. These types of measures are fraught with

hidden statistical issues when the input data are measured with error, as is the case in the

context of ACS data. The primary issue is attenuation bias, which causes the magnitude

of a statistic (e.g. correlation or regression coefficient) to be reduced when one or more

variables are measured with error. Corrections for the correlation coefficient have existed

for over a century (Spearman, 1904), but not without controversy (Muchinsky, 1996). In

the regression context, the issue is more complex. Standard econometric theory assumes

that explanatory variables are deterministic and measured without error. The presence

of a variable with error in the design matrix has the potential to taint all the regression

coefficients in unpredictable ways (Greene, 2003, chapter 5). The main problem then lies in

the interpretation of regression coefficients, which are likely to be biased if the ACS error

is large. Various errors-in-variables and instrumental variables types approaches have been

considered as a potential fix for this problem; the spatial structure embedded in the ACS is

another option to consider in order to ameliorate the data challenges (see Anselin and Lozano,

2008 for a discussion on the topic). One strength of ACS data, as compared to other cases

of error in measurement, is that we know the magnitude of the error on each estimate, and

can leverage this information in the model specification. Future research along these lines

could provide interesting insights for more robust inferences using ACS data. When it comes

to the dependent variable, consequences are less severe since the measurement mismatch is

transferred to the error component of the regression specification, and this can then be

appropriately modelled to account for its structure.

The USCB identifies two user level approaches for reducing the uncertainty in ACS esti-

mates: combine attributes or combine geographic areas (U.S. Census Bureau, 2009a). Com-

bining attributes can be accomplished by collapsing finer grain measures (say racial/ethnic

unemployment levels) into aggregate categories (such as “white” and “non-white”). If the

substantive research project does not allow for attribute collapsing, then geographic areas

can be combined into “regions.” Both of these approaches will almost always result in a
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reduction in the CV over the original data, but they also reduce the amount of informa-

tion available for analysis. This trade-off is readily apparent when combining attributes and

straightforward to implement in spreadsheet software; in contrast, combining geographic

areas does not offer this same ease. As the number of areas grows, the possible ways to com-

bine contiguous observations into regions grows at an increasing rate meaning that, for all

but trivially small problems, it is not possible to examine all possible combinations of areas

to find the “best” solution. Folch and Spielman (2014) propose a multivariate and multiple

criteria regionalization algorithm based on the max-p approach (Duque et al., 2012) that can

be used to group areas together such that the estimates on each region meet some predeter-

mined CV threshold and also minimize information loss due to the grouping of geographic

areas.

6 Conclusion

By now the higher levels of uncertainty associated with ACS estimates compared to the

decennial census are widely recognized. However, when we think of measurement error we

generally hope that it is of the well behaved type that follows a random pattern, equally

likely in all locations. As this work has shown, such a perspective should not be taken when

using ACS data. Uncertainty is not only clustered over space, but the characteristics of

places with high margins of error vary from region to region.

The results in Section 2 suggest that analyses of urban core areas involving more diverse

households with lower incomes are especially vulnerable to data quality problems—this im-

pacts a large proportion of sociological, urban and policy research. In contrast, more affluent

and homogeneous suburban areas have better income estimates but less need for improve-

ments in public services. By means of regression, we find that the typical sampling rules

hold nationally: higher response rates are associated with less error. What was less expected

is that the socio-demographic and built environment characteristics of places are also asso-

ciated with the precision with which median household income is measured. Furthermore,

the particular correlates of MOE vary regionally and by metropolitan area, which precludes

meaningful national summaries and recommendations because the kind of error analysts will
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encounter, and its drivers, vary by study area.

On the other hand, a position that ACS income estimates generally have too much error

at the tract level to be useful in research and decision making at all is also not warranted: if

one’s area of interest is one with lower-than-average margins of error (such as some areas in

the North), it might have enough accuracy to be included in an analysis. But to determine

this requires a review of the error associated with the estimates in an area of interest rather

than assuming a priori that errors will be too high or low at the tract level.

Users of ACS data are thus left to identify workarounds to these data quality issues. For

higher-income areas, commercial vendors (such as InfoUSA) offer good quality data on areas

with strong consumer expenditures, but these are the same areas with relatively good ACS

data. Regionalization solutions that can reduce uncertainty, as discussed in the previous

section, will likely result in larger regions in the urban core than in more affluent suburbs,

precluding small-scale urban analysis. These gaps are key because they disproportionately

affect the most vulnerable neighborhoods, and reduce our ability to study rising inequalities

between low and high income areas.
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