Toward High-Fidelity Multi-Scale Modeling of 3D Crack Evolution

Presented at the retirement symposium for Professor Tony Ingraffea
September 27, 2014

Ashley D. Spear (Ph.D. 2014)
Assistant Professor
Dept. of Mechanical Engineering
University of Utah

Brett R. Davis (Ph.D. 2014)
Associate, Mechanical Engineering Practice
Exponent

Albert R. Cerrone (Ph.D. 2014)
Mechanical Engineer, Lifing Lab
GE Global Research Center
Presentation Outline

• PART I: Predicting crack propagation at the component scale
 – Toolset to simulate elastic-plastic crack growth in 3D
 – Toolset to simulate crack-shape evolution using energy-release-rate formulation

• PART II: Understanding fatigue-crack formation and early propagation at the microstructural scale
 – Study of crack nucleation in Ni-base superalloy
 – Study of crack propagation in Al-Mg-Si alloy

• Lessons learned from our time in the CFG
Overview of Work

• Generalized hypotheses:
 – *Compared to existing approaches for predicting crack evolution, more accurate predictions can be made:*
 1) *by accounting for three dimensionality of the cracked body and*
 2) *by maintaining high level of fidelity appropriate for given length scale*

Micro-scale considerations: *sensitivity to microstructural heterogeneities

Component-scale considerations: *sensitivity to constraint conditions*
 tearing/fracture at limit state

schematic adopted from Suresh, *Fatigue of Materials*
Toolset I: Generalized 3D Fracture Simulation

- Extended FRANC3D capabilities for EPFM simulations
- Applications:
 - Crack-growth predictions when material-state history is important and LEFM is not valid
- Toolset description:
 - Geometrically explicit crack representation
 - Adaptive remeshing
 - Allows prediction of crack growth direction
 - Recent enhancements for EPFM simulations

Collaboration with: Veilleux, Hochhalter
Toolset I: Validation Example

- Aluminum-alloy 2024-T3 fracture specimen in Arcan test fixture*
- 30° loading angle induces mixed-mode I/II crack growth

*Amstutz, et al., 1995 and 1997
Toolset I: Validation Example

Collaboration with: Veilleux, Hochhalter
Toolset I: Validation Example

EPFM framework better predicts crack-extension response compared to LEFM framework.
Presentation Outline

• PART I: Predicting crack propagation at the component scale
 – Toolset to simulate elastic-plastic crack growth in 3D
 – Toolset to simulate crack-shape evolution using energy-release-rate formulation

• PART II: Understanding fatigue-crack formation and early propagation at the microstructural scale
 – Study of crack nucleation in Ni-base superalloy
 – Study of crack propagation in Al-Mg-Si alloy

• Lessons learned from our time in the CFG
Toolset II: Energy-Based Crack Shape Evolution

- Develop simulation capability that permits arbitrary growth with unknown crack-shape evolution
 - Geometrically explicit cracks
 - Re-meshing techniques

Non-self-similar crack growth in mixed-mode bending specimen

Collaboration with: Wawrzynek, Hwang, Carter
Toolset II: Energy-Based Crack Shape Evolution

Energy Release Rate Expansion:

\[\frac{\delta G_i}{\delta a_j} \Delta a_j + \cdots \]

Local Extension Criterion:

\[G_i^1 = G_{ic} \]

Local Extension Balance Condition:

\[G_{ic} = G_i^0 + \frac{\delta G_i}{\delta P} \Delta P_i \]

Collaboration with: Wawrzynek, Hwang, Carter
Toolset II: Numerical Example

Collaboration with: Wawrzynek, Hwang, Carter
Presentation Outline

• PART I: **Predicting** crack propagation at the **component** scale
 – Toolset to simulate elastic-plastic crack growth in 3D
 – Toolset to simulate crack-shape evolution using energy-release-rate formulation

• PART II: **Understanding** fatigue-crack formation and early propagation at the **microstructural** scale

Micro-scale considerations:
sensitivity to microstructural heterogeneities
Study I: MSFC Nucleation in Superalloy

- How can we use “big data” to understand highly nonlinear microstructural phenomena?

- Case Study: Microcrack nucleation in Ni-based superalloy
 1. Develop constitutive relations and geometric representations of superalloy
 - calibrate crystal plasticity model
 - generate microstructural model for 3D crystal-plastic finite-element analysis
 2. Capture relevant physics related to microcrack nucleation event
 3. Correlate grain boundary character with slip localization

Collaboration with: Rollett, Stein, Tucker, Pokharel, Hefferan, Lind, Suter
Study I: MSFC Nucleation in Superalloy

• Establish correlations between microstructural attributes and fatigue indicator parameters (FIPs)
 - Analyze every grain boundary in Ni-based superalloy
 - Quantify correlation between postulated FIPs and grain boundary character
 - Determine microstructural characteristics most relevant to nucleation event

Collaboration with:
Rollett, Stein, Tucker, Pokharel, Hefferan, Lind, Suter
Presentation Outline

- PART I: Predicting crack propagation at the component scale
 - Toolset to simulate elastic-plastic crack growth in 3D
 - Toolset to simulate crack-shape evolution using energy-release-rate formulation
- PART II: Understanding fatigue-crack formation and early propagation at the microstructural scale
 - Study of crack nucleation in Ni-base superalloy
 - Study of crack propagation in Al-Mg-Si alloy
- Lessons learned from our time in the CFG
Study II: MSFC Propagation in Al Alloy

• Application: aluminum alloy used by NASA in *ultrathin* pressure-vessel components

 2.5mm \rightarrow <0.75mm by chemical milling

• Why do *ultrathin* liners deserve attention?

 – Consequences of crack nucleation and growth could be catastrophic

 – Effect of microstructure potentially more significant for *ultrathin* liners

 – Real application for multiscale materials characterization and 3D modeling!

• Little is known about how cracks propagate in 3D at microstructural length scale for polycrystalline materials
Study II: MSFC Propagation in Al Alloy

- Broken specimens measured using synchrotron radiation at Argonne National Laboratory
 - X-ray computed tomography (CT)
 - Highly resolved fracture surface
 - High-energy X-ray diffraction microscopy (HEDM) *
 - Grain geometries and orientations

Study II: MSFC Propagation in Al Alloy

angle (degrees) between local normal and loading direction

Crack-plane normal in crystallographic frame
observed variability in 3D crack-growth rate

3D da/dN (µm/cycle)
Study II: MSFC Propagation in Al Alloy

Collaboration with: Hochhalter, Cerrone
Study II: MSFC Propagation in Al Alloy

Lots of data here! Remaining need for quantitative post-processing.

Collaboration with: Hochhalter, Cerrone
Presentation Outline

- **PART I:** Predicting crack propagation at the component scale
 - Toolset to simulate elastic-plastic crack growth in 3D
 - Toolset to simulate crack-shape evolution using energy-release-rate formulation
- **PART II:** Understanding fatigue-crack formation and early propagation at the microstructural scale
 - Study of crack nucleation in Ni-base superalloy
 - Study of crack propagation in Al-Mg-Si alloy
- Lessons learned from our time in the CFG
Lessons Learned from Tony and the CFG

• Collaborate (it’s required to do the best job possible!)
• Be rigorous (computing time is not an excuse for not doing good work!)
• Don’t forget the two most important Vs in life… (verification and validation)
• “A good leader brings good people together and makes them better.” - Brett
• “The boss was always a big proponent of continuing education, seeking answers proactively, and never letting ignorance get in the way of scientific progress.” - Al
• “Oh yeah, and when in doubt, ask Bruce.” - Everyone