Effective transition cow management to maximize Internal Herd Growth

Thomas R. Overton, Ph.D.
Department of Animal Science
Cornell University
Our charge

- Devise and employ nutritional management strategies and nutritional tools to support metabolic adaptation to lactation
 - Macromineral metabolism (manage DCAD)
 - Glucose metabolism (provide fermentable carbohydrate)
 - Fat metabolism (minimize BCS loss)

- Minimize potential negative effects of nonnutritional factors on metabolic adaptation to lactation
 - Overcrowding
 - Environmental stress (temp., ventilation)
 - Infectious challenge/hygiene
 - Grouping/regrouping
 - Comfort
Big rocks from the nutritional side (common themes in our case farms)

- Manage DCAD
 - Start with including low potassium forages in dry period diets
- Sufficient energy and protein intake from a dry period diet of moderately high nutrient density
- Thinner (within reason) is better
- Trends toward shortened dry periods and one-group nutritional strategies for dry cows
Effects of multiple stressors accumulate...

- Heat stress
- Overcrowding
- Social stress
- Poor housing
- Metabolic stress

Drackley, 2002
Transition period indices relating to Internal Herd Growth

- Nondairy cull rate during first 60 days in milk

- Incidence of metabolic disorders
 - Related to likelihood of high milk production
 - Tied to reproductive performance
When Cows Leave the Herd
(MN DHIA 10/96 - 10/01) Godden et al., 2003
Nondairy cull rate during the first 60 days in milk

- Captures dead cows and cows sold for nondairy during first 60 days in milk
- Crude index of overall transition management
- Minnesota workers (previous slide) reported that 25% of cows that leave herds leave during the first 60 days in milk
- We look at the number of cows dead and sold for nondairy as a percentage of the number of calvings
Fresh cow loss as a percentage of calvings

- Typical values in well-managed herds are 10 to 12% (unacceptable)
- Best herds consistently average 5 to 6%
- Can be as high as 25% during train wrecks
<table>
<thead>
<tr>
<th></th>
<th>Farm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hanehan</td>
</tr>
<tr>
<td>Dead and sold/calvings</td>
<td>74/605</td>
</tr>
<tr>
<td>Percentage</td>
<td>12.2%</td>
</tr>
</tbody>
</table>
Incidence of metabolic disorders

- Combination of objective (retained placenta, displaced abomasum) and subjective (hypocalcemia, ketosis, metritis)

- Goals for each usually set by survey data
Transition cow survey

- Conducted by Buzz Burhans and colleagues
- 27 herds in Vermont and New Hampshire
- Over 600 cows in the dataset
Occurrence of Disorders at the Herd Level

Event	Holsteins																												
	N	min	p50	max																									
Ketosis	13	2.10%	14.70%	50.00%	4	6.30%	8.30%	15.80%	17	2.10%	13.20%	50.00%																	
Milk Fever	14	2.60%	10.10%	26.30%	6	8.10%	37.70%	60.00%	20	2.60%	11.10%	60.00%																	
Off Feed	7	2.30%	4.80%	21.40%	4	2.70%	6.50%	10.50%	11	2.30%	6.30%	21.40%																	
Displaced Abomasum	10	3.60%	8.10%	14.30%	2	2.70%	2.90%	3.10%	12	2.70%	7.30%	14.30%																	
Digestive/Diarrhea	9	2.10%	5.60%	11.80%	2	3.10%	4.20%	5.30%	11	2.10%	5.30%	11.80%																	
Mastitis	10	2.60%	7.10%	15.80%	5	5.30%	10.00%	13.50%	15	2.60%	7.10%	15.80%																	
Edema	7	5.10%	7.10%	40.90%	2	22.20%	25.20%	28.10%	9	5.10%	13.20%	40.90%																	
Dystocia	13	2.10%	5.60%	16.70%	2	2.70%	4.70%	6.70%	15	2.10%	5.60%	16.70%																	
Twins	12	2.10%	5.70%	18.80%	1	3.10%	3.10%	3.10%	13	2.10%	5.60%	18.80%																	
Stillbirths	8	2.60%	6.50%	12.50%	3	3.10%	5.40%	6.70%	11	2.60%	5.90%	12.50%																	
Retained Placenta	13	2.90%	11.80%	23.70%	1	3.10%	3.10%	3.10%	14	2.90%	11.20%	23.70%																	
Metritis	14	4.30%	11.20%	39.30%	3	3.10%	5.40%	15.80%	17	3.10%	11.10%	39.30%																	
Abortions	None	None	None	None	None	None	None	None	None	None	None	None	None	None															

Burhans et al., 2003
Problem Cow: Any problem (Dystocia, Mastitis, Abortion, Twinning, Stillbirths, Retained Placenta, Milk Fever, Digestive, Ketosis, Metritis, Edema, Displaced Abomasum, Off Feed)

Metabolic Problem: (Milk Fever, Retained Placenta, Digestive, Ketosis, Displaced Abomasum and Off Feed)

Infectious Problem: All cows with Mastitis, Metritis

Energy Problem: (Digestive, Ketosis, Off Feed, Displaced Abomasum)

Bad Calving: (Dystocia, Abortion, Twinnings, Stillbirths)

Preventables: (Mastitis, Retained Placenta, Milk Fever, Digestive/Diarrhea, Ketosis, Metritis, DA, Off Feed)
Achievable goals for metabolic disorders

- Milk fever -- < 5%
- Retained placenta/metritis -- < 9%
- Displaced abomasum -- < 5%
- Clinical ketosis (blood BHBA > 27 mg/dl) -- < 5%
- Subclinical ketosis (blood BHBA > 14.4 mg/dl) -- < 15%
Our case farms

<table>
<thead>
<tr>
<th></th>
<th>Farm</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hanehan</td>
<td>Durfee</td>
<td>Adams</td>
<td></td>
</tr>
<tr>
<td>Milk fever</td>
<td>2.8</td>
<td>< 5</td>
<td>1.8</td>
<td></td>
</tr>
<tr>
<td>RP</td>
<td>11.7</td>
<td>~ 10</td>
<td>10.0</td>
<td></td>
</tr>
<tr>
<td>Metritis</td>
<td>2.6</td>
<td>~ 5</td>
<td>4.5</td>
<td></td>
</tr>
<tr>
<td>DA</td>
<td>5.6</td>
<td>~ 5</td>
<td>4.5</td>
<td></td>
</tr>
<tr>
<td>Ketosis</td>
<td>11.6</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Fresh Cow Protocol

Check Temperatures for 10 Days

Fever
- Looks Sick
 - Pump 10 gal. for 5 days
 - Tube of Ca day 1 in pump
 - Hypersaline for 2 days
 - Banamine for 3 days
 - Polyflex for 4 days
 - Dextrose w/100 cc oxy-tet
 - If fever not down 2nd day
 - ECP (3cc) on day 3
 - Check for DA
- Looks OK
 - Recheck temp next day
 - Talk to Pat®
 - ECP (3cc) on day 3
 - Check for Mastitis
 - Check for DA

No Fever
- Looks Sick
 - Pump 10 gal. for 5 days
 - Tube of Ca day 1 in pump
 - Hypersaline for 2 days
 - ECP (3cc) on day 3
 - Check for DA
- Looks OK
 - Recheck temp next day

All Fresh Cows Get Pumped for 3 days
- 5 gal. water
- 3½ cups fresh cow mix
- 16 oz. propylene glycol

Sick Pump
- 10 gal. water
- 7 cups fresh cow mix
- 16 oz. propylene glycol

Vacas Frescas

Cheque la Temperatura por 10 días

Tiene Fiebre
- Parece Enferma
 - Bombee 10 galones por 5 días
 - Agregue tubo de Calcio el primer día
 - Hipersalino por 2 días
 - Banamine por 3 días
 - Polyflex por 4 días
 - Dextrose con 100 cc de oxy-tet si sigue el fiebre 2º día
 - ECP (3cc) el 3º día
 - Chequee para un Abomaso Desplazado (DA)
- Parece Bien
 - Chequee la temperaturas el siguiente día
 - Hable con Pat
 - ECP (3cc) el 3º día
 - Chequee para la Mastitis
 - Chequee para un Abomaso Desplazado (DA)

No Tiene Fiebre
- Parece Enferma
 - Bombee 10 galones por 5 días
 - Agregue tubo de Calcio el primer día
 - Hipersalino por 2 días
 - ECP (3cc) el 3º día
 - Chequee para un Abomaso Desplazado (DA)
- Parece Bien
 - Chequee la temperaturas el siguiente día

Todas las vacas frescas son bombeadas por 3 días
- 5 galones de agua
- 3½ tazas de la mezcla para vacas frescas
- 16 oz glicol

Para vacas enfermes
- 10 galones de agua
- 7 tazas de la mezcla para vacas frescas
- 16 oz glicol
Framework for actualizing “optimum” nutritional management strategies on commercial dairy farms in the context of shortened dry periods
What are our nutritional goals and how do we achieve them?

- The Goals
 - Moderately high DMI of well-formulated close-up diets while attempting to minimize extent of DMI decrease during the prepartum period

- How do we achieve them?
 - Many herds still struggle to get ENOUGH dry matter intake in close-up cows (goal Holstein 26 to 28 lb/d of suggested close-up cow diet)
 - In herds where close-up cows are consuming large amounts of DM (> 30 to 33 lb/d), limit grain-type forages and other very palatable feeds to control intake within goal and complement with a consistent, low potassium forage source (preferably bulky)

- The challenge – extent of DMI decrease extremely difficult to characterize in group-fed animals
Far-Off Dry Cows

• Dry-off until ~ 3 weeks pre-freshening

• Ration considerations
 – \(\text{NE}_L \) 0.59 to 0.63 Mcal/lb for maintenance BCS
 – Do not want to overfeed (Dann et al., 2003)
General goals for diet formulation for closeup cows and one-group dry cow systems up to 40 days

<table>
<thead>
<tr>
<th></th>
<th>Partial anionic</th>
<th>Full anionic</th>
</tr>
</thead>
<tbody>
<tr>
<td>NE_L, Mcal/lb</td>
<td>0.68 to 0.70</td>
<td></td>
</tr>
<tr>
<td>Metabolizable protein, g/d</td>
<td>1100 to 1200</td>
<td></td>
</tr>
<tr>
<td>NFC, %</td>
<td>34 to 36</td>
<td></td>
</tr>
<tr>
<td>Starch, %</td>
<td>19 to 21</td>
<td></td>
</tr>
<tr>
<td>Dietary Ca, g/d</td>
<td>100</td>
<td>140</td>
</tr>
<tr>
<td>Dietary Ca, %</td>
<td>0.90</td>
<td>1.2</td>
</tr>
<tr>
<td>Dietary P, %</td>
<td>0.30 to 0.35</td>
<td></td>
</tr>
<tr>
<td>Mg, %</td>
<td>0.40 to 0.42</td>
<td></td>
</tr>
<tr>
<td>Cl, %</td>
<td>0.3</td>
<td>0.8 to 1.2</td>
</tr>
<tr>
<td>K, %</td>
<td>< 1.3</td>
<td>< 1.3</td>
</tr>
<tr>
<td>Na, %</td>
<td>0.10 to 0.15</td>
<td></td>
</tr>
<tr>
<td>S, %</td>
<td>0.20</td>
<td>0.3 to 0.4</td>
</tr>
<tr>
<td>Vitamin A (IU/d)</td>
<td>100000</td>
<td>100000</td>
</tr>
<tr>
<td>Vitamin D (IU/d)</td>
<td>30000</td>
<td>30000</td>
</tr>
<tr>
<td>Vitamin E (IU/d)</td>
<td>1800</td>
<td>1800</td>
</tr>
</tbody>
</table>

Prefer use of organic trace elements, including organic Se
Advantages of shorter dry period

- Avoid forfeiting milk during late lactation
- Simplify dry cow management and decrease cost of dry cow housing (one dry cow group)
- Decrease sociological stress associated with multiple group changes, etc.
- More closely match dry period length with biologically required length (~ 25 days)
Summary of research on planned shorter dry period length

- Milk yield similar between cows managed for 40 vs. 60 days dry – 65 herds in NY
 - Coppock et al., 1974

- Milk yield after 49- or 70-d dry periods comparable; 28-d dry reduced subsequent milk yield
 - Sorensen and Enevoldsen, 1991

- Milk yield comparable for cows managed for 60 vs. 30 to 35 d-dry periods
 - Shairer, 2001; Bachman, 2002; Gulay et al., 2003

- Comparable milk yield for 60 vs. 30-d dry; continuous lactation decreased subsequent milk yield (differences greater in primiparous cows)
 - Annen et al., 2003; Rastani and Grummer, 2003
Cornell study

- Two commercial dairy farms (cows over 27 kg/d at 60 d before expected calving)

 - Treatments
 - 60 d dry period, label bST (two group dry cow management)
 - 40 d dry period, label bST (moved to closeup group at 40-d dry)
 - Continuous lactation, label bST (stop bST at calving and resume during 9th week of lactation) – remained on lactating cow ration for the duration

 Fernandez et al., 2004
Least squares means for milk yield and milk composition during the first 6 months of the subsequent lactation for cows managed for 60, 40, or zero days dry.¹

<table>
<thead>
<tr>
<th>Treatment</th>
<th>60-d dry</th>
<th>40-d dry</th>
<th>0-d dry</th>
<th>SEM</th>
</tr>
</thead>
<tbody>
<tr>
<td># of cows</td>
<td>22</td>
<td>23</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>Average days dry</td>
<td>57</td>
<td>41</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Milk yield, kg/d</td>
<td>47.1<sup>a</sup></td>
<td>46.3<sup>a</sup></td>
<td>37.1<sup>b</sup></td>
<td>1.8</td>
</tr>
<tr>
<td>Fat, %</td>
<td>3.51</td>
<td>3.62</td>
<td>3.40</td>
<td>0.14</td>
</tr>
<tr>
<td>Fat yield, kg/d</td>
<td>1.68<sup>a</sup></td>
<td>1.62<sup>a</sup></td>
<td>1.28<sup>b</sup></td>
<td>0.09</td>
</tr>
<tr>
<td>True protein, %</td>
<td>2.74<sup>a</sup></td>
<td>2.84<sup>b</sup></td>
<td>2.83<sup>b</sup></td>
<td>0.06</td>
</tr>
<tr>
<td>True protein yield, kg/d</td>
<td>1.31<sup>a</sup></td>
<td>1.30<sup>a</sup></td>
<td>1.06<sup>b</sup></td>
<td>0.04</td>
</tr>
</tbody>
</table>

¹Means within a row with different superscripts differ, P <0.05.

Fernandez et al., 2004
The Economics – 60 versus 40 days dry

<table>
<thead>
<tr>
<th>Item</th>
<th>50</th>
<th>60</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marginal income</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Milk ($0.14/lb)</td>
<td>$140</td>
<td>$168</td>
</tr>
<tr>
<td>Marginal expense</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lactating diet</td>
<td>$48</td>
<td>$56</td>
</tr>
<tr>
<td>Closeup diet</td>
<td>$14</td>
<td>$14</td>
</tr>
<tr>
<td>Variable cost</td>
<td>$15</td>
<td>$15</td>
</tr>
<tr>
<td>Total expenses</td>
<td>$77</td>
<td>$85</td>
</tr>
<tr>
<td>Net per cow</td>
<td>$63</td>
<td>$83</td>
</tr>
</tbody>
</table>
Current thinking on management considerations for 40-d dry period

- Either two-group or one-group nutritional strategies acceptable
 - Marginal feed cost approximately $15 per cow for 20 additional days fed close-up diet
 - One-group dry cow program fits better with shortened dry period

- Moderate NFC/energy close-up diet acceptable to feed for 40 d dry, regardless of DCAD strategy

- Continue to require far-off type diet to feed to cows with dry periods longer than 40 days