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In this thesis we investigate Coulomb blockade phenomena and single-electron

charging effects in two nanoscale structures: Long semiconducting carbon nan-

otubes (CNTs) and gold nanoparticles that are linked to a CNT by an organic

molecule. While gold nanoparticles naturally exhibit single-electron charging at

low temperature, it is disorder that causes the formation of quantum dots in long

semiconducting CNTs at low carrier density. Our instrument of choice is a low-

temperature atomic force microscope (AFM) that is sensitive to electrostatic sam-

ple forces. A theory of the interactions between single-electron charging of a quan-

tum dot and the AFM tip and cantilever is worked out in linear response.

In semiconducting CNTs we resolve single-electron charging events in the reso-

nance frequency of the AFM cantilever. The AFM’s spatial resolution allows us to

locate the quantum dots and address them individually. We extract the size of the

quantum dots, their gate couplings, and exemplify how to extract their charging

energy from the AFM measurements. We frequently observe interaction between

neighboring quantum dots and characterize their interdot coupling. The evolution

of the quantum dots in CNTs with gate voltage reflects the underlying potential

energy landscape for the carriers on the tube. We observe the CNT band structure

and extract quantitative information about the disorder potential.



On the gold nanoparticle sample, we combine dissipation and frequency shift

measurements by our AFM. In addition to the electrostatic gate couplings and the

charging energy, this combination allows us to characterize the tunnel coupling

between the gold nanoparticle and the CNT, which is acting as a lead.

The power of the demonstrated force probe techniques lies largely in the local

nature of the measurement. Sensitive, spatially resolved information on electron

transport is available even in the absence of device conduction. This advantage is

apparent in the single-contact geometry of the gold nanoparticles, but also demon-

strated on CNTs.
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CHAPTER 1

INTRODUCTION

“Small is big!” is a characteristic slogan for the trend of technology over the past

few decades. In all domains of technology – mechanical, optical, and electronic –

the size of functional devices that serve a useful purpose has steadily decreased.

Apart from the convenience of ever-decreasing size, typical reasons for miniatur-

ization include better device performance (faster operation, lower power consump-

tion), smaller production cost per unit (cheaper fabrication, less material input),

and new functionality. This ubiquitous trend in technology has a parallel evolution

in science. Led by the capabilities of the microelectronics industry, scientists and

engineers have been able to design and fabricate ever-smaller man-made devices.

New discoveries and developments in materials science and chemistry have further

added to this progress.

When miniaturization leads to very small sizes, it ultimately results in rudi-

mentary changes in the behavior of the device. There are two common mechanisms

that bring such changes about:

1. Classical vs. quantum mechanical phenomena. As the device size

shrinks from macroscopic via mesoscopic to microscopic, its proper descrip-

tion and governing laws cross over from classical to quantum mechanical.

This results in fundamentally new behavior of the system.

2. Reduced dimensionality and finite size effects. If the size of some

structure is continuously reduced in all dimensions, the structure ultimately

always turns into a zero-dimensional (0D) dot-like object. This example illus-

trates the more general observation that reducing the size eventually implies

1
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a reduction of dimensionality. Reducing the dimensionality has important

consequences, as the same governing laws often manifest themselves in qual-

itatively different behavior depending on the the system’s dimensionality.

In the transition regime between two dimensionalities, these phenomena are

often called finite-size effects.

Both effects are well illustrated by electron transport in conductors: Ohmic con-

duction in metals, as described classically by the Drude theory (Drude 1900),

is fundamentally different from conduction by Cooper pairs of electrons in a su-

perconductor1, which is inherently quantum mechanical in nature and requires a

many-body quantum description, such as the BCS theory (Bardeen et al. 1957).

Universal conductance fluctuations (Altshuler 1985, Lee and Stone 1985) and the

Aharanov-Bohm effect (Aharonov and Bohm 1959, Beenakker and van Houten

1991) are two more examples of quantum effects in the electron transport. On

the other hand, phenomena that depend on the dimensionality of the conduc-

tor and do not occur in three-dimensional (3D) bulk metals include the integer

and fractional quantum Hall effect in two-dimensional (2D) sheet-like conductors,

spin-charge separation and Luttinger-liquid behavior in a one-dimensional (1D)

conduction channel, quantized conductance through a quantum point contact, and

Coulomb blockade and single-electron charging effects in 0D dot-like conductors,

called quantum dots.

In parallel with the progress in miniaturization, new analytical tools and mea-

surement techniques were developed to resolve and characterize these ever-smaller

samples. Among them, a new class of imaging tools called Scanning Probe Mi-

1Even though superconductivity does not arise from small size, but occurs in
specific materials at low temperature, it illustrates the effect of fundamentally
different physical laws.
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croscopes (SPMs) was devised. In all SPMs, a sharp tip or probe is brought near

the surface of the sample. The local interaction between the tip and the sample is

resolved to measure some sample property at the position of the tip. By scanning

the tip over the sample surface and measuring this local property at many points,

one obtains a spatial image. The first SPM invented was the Scanning Tunneling

Microscope (STM) (Binnig et al. 1982). It measures the tunneling current between

the tip and the metallic sample across the gap between them. The STM is a very

sensitive, high-resolution tool, but its application is limited to conducting samples.

The most widely used SPM today is the Atomic Force Microscope (AFM) (Binnig

et al. 1986), which is sometimes also called Scanning Force Microscope (SFM). As

the name suggests, it measures the local force between the tip and the sample.

Even though the resolution of most AFMs is typically inferior to STMs, its versa-

tility makes it broadly applicable. We discuss its principles of operation in more

detail below.

In this thesis we use the capabilities of AFMs to investigate the electronic

properties of two low-dimensional nanostructures: Semiconducting carbon nan-

otubes (CNTs) and gold nanoparticles that are tethered to a CNT by an organic

molecule. We observe Coulomb blockade phenomena and single-electron charing

in both samples. To resolve these phenomena, our AFM operates at cryogenic

temperatures.

This thesis is organized as follows: In the remainder of this chapter, we briefly

introduce carbon nanotubes and discuss their basic properties, followed by some

comments on the principles of atomic force microscopy. Theoretical background

on Coulomb blockade phenomena and single-electron charging effect are provided

in Chap. 2. This chapter also discusses the theoretical aspects of force detection
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by a cantilever and the interaction between an AFM and quantum dots. Some

details and features of our specific home-built AFM are provided in Chap. 3. The

fabrication procedure of our samples is outlined in Chap. 4. In Chap. 5 we discuss

frequency shift measurements on semiconducting CNTs at T = 4.2 K. Scanning

probe measurements on the gold nanoparticles are detailed in Chap. 6. The thesis

finishes with some final remarks and conclusions (Chap. 7).

1.1 Carbon nanotubes

Carbon nanotubes are a family of stable crystalline forms of carbon that were

discovered only 15 years ago (Iijima 1991). We distinguish between single-walled

and multi-walled CNTs. A single-walled CNT can be thought of as a single sheet

of graphite (called graphene) rolled seamlessly into a tube. There are many ways

to roll up a sheet of graphite: Rolling it more or less tightly would give the tube

a smaller or larger diameter. We can also roll the sheet at different angles with

respect to a crystallographic direction of the graphene lattice, as illustrated in Fig.

1.1. This gives a single-walled CNT a specific chirality. The crystal structure of a

single-walled CNT is fully specified by its diameter and chiral angle. Multi-walled

CNTs essentially consist of several concentric single-walled CNTs. In this thesis,

we are only concerned with single-walled carbon nanotubes.

CNTs have a number of amazing properties. Typically, they are only 1 to

a few nanometers in diameter, but can be extremely long (Huang et al. 2003a).

CNTs that are several millimeters long have been reported (Zheng et al. 2004).

Their mechanical properties place them among the strongest materials synthesized

to date (Treacy et al. 1996). Electronically, a single-walled CNT can be either

metallic or semiconducting, depending on its diameter and chiral angle. Metallic
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(a) Rolling graphene into a CNT. (b) Zig-zag CNT (θ = 0◦).

(c) Chiral CNT (0◦ < θ < 30◦). (d) Armchair CNT (θ = 30◦).

Figure 1.1: Chirality of single-walled carbon nanotubes. The chiral angle θ of

a CNT is defined between the “zig-zag” direction of the honeycomb lattice (as

indicated in red in all images) and the direction of rolling the graphene sheet

(perpendicular to the CNT axis). It varies uniquely between 0◦ and 30◦. Single-

walled CNTs with a chiral angle at either extreme are called zig-zag (θ = 0◦)

and armchair (θ = 30◦). The crystal structure of a single-walled CNT is fully

determined by its diameter and chiral angle.
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CNTs have a continuous dispersion relation, while semiconducting CNTs have

a bandgap. The curvature of the rolled graphene sheet can also open a small

bandgap in the continuous dispersion relation. This kind of CNT is referred to

as small-bandgap tube. To measure the electronic properties of a CNT, we place

the tube in a field-effect transistor (FET) geometry. In the FET device geometry,

the CNT is contacted by two metal electrodes, called source and drain. A third

electrode, commonly called gate, is brought near the CNT. In our samples, we

use the degenerately doped silicon wafer as a gate electrode, which we call the

backgate. A topographic AFM image of such a CNT device is shown in Fig.

1.2. The voltage applied to the gate influences the electrostatic potential of the

CNT through their mutual capacitance. The FET geometry allows us to measure

the electronic properties of a CNT. Figure 1.3 shows several transport traces of

different CNT devices, where we plot the source-drain conductance as a function

of the voltage applied to the backgate. The conductance of a metallic CNT is

independent of the voltage on the backgate. In a semiconducting CNT, the gate

voltage can turn the conductance of the nanotube on and off. In between these two

transport characteristics falls the case of small-bandgap CNT, whose conductance

shows a marked drop near zero gate voltage, but does not reach the off state of

zero conductance at room temperature. Many more details of CNTs and their

properties can be found in the literature (see Dresselhaus et al. 1996, 2001, Saito

et al. 1998, Thune and Strunk 2005, for example).

Due to their small diameters, imaging carbon nanotubes requires high-resolution

tools. A commonly used instrument for this purpose is the AFM, whose principles

of operation are outlined below.



7

Figure 1.2: Topographic AFM image of a CNT that is contacted by two leads.

This image was recorded in tapping mode at room temperature. The CNT is

visible in the image as a thin line connecting the two tall metal contacts.
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(a) Metallic CNT.

(b) Small-bandgap CNT. (c) Semiconducting CNT.

Figure 1.3: Transport characteristics of different CNT devices. All traces are

recorded under ambient conditions at room temperature. The maximum (theoret-

ical) conductance of a single-walled carbon nanotube is 4e2/h ≈ 155 µS, but any

contact resistance between the carbon nanotube and either metal lead or non-unity

transmission probability of the CNT due to electron scattering reduce the device

conductance.
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1.2 Scanning Force Microscopy

A scanning force microscope (SFM), which is synonymously also called atomic

force microscope (AFM), is a specific kind of scanning probe microscope (SPM)

that resolves local sample forces. In an AFM, a sharp tip is mounted on a flexible

cantilever and brought near the sample surface. The cantilever can deflect up and

down in response to a force acting on the tip. By Hooke’s law, the cantilever

deflection ∆z resolves the force F acting on the tip,

F = −k ∆z . (1.1)

The proportionality constant k is the spring constant of the cantilever. By raster

scanning the tip over the sample surface and recording the cantilever deflection

point by point on a square grid, we obtain a spatial map of the forces originating

from the sample – an AFM image.

In effect, the cantilever acts as a mobile, microscopic force detector on our local

probe, the AFM tip. There are many different ways to operate an AFM and extract

information from the cantilever deflection. For example, in the so-called contact

mode, the tip is lightly pushed into the sample surface and then dragged over it by

scanning. In this regime the interatomic repulsion between the sample and the tip

is strong. This mode of operation is typically used to collect a topographic image

of the sample surface. In intermittent contact or tapping mode, the tip is oscillating

and makes contact with the sample surface only for part of each oscillation cycle.

This reduces the shear forces on the tip, but the signal is still dominated by surface

repulsion. An example of a topographic AFM image recorded in tapping mode is

shown in Fig. 1.2. In any non-contact mode of operation, in contrast, the tip never

touches the surface of the sample, and van-der-Waals, electrostatic, magnetic and



10

other forces can be resolved. All our low-temperature images are collected in non-

contact mode.

The cantilever deflection also lends itself to extracting multiple quantities. For

example, if the tip is set into oscillation, we can record the static deflection, the

tip oscillation amplitude, its phase with respect to the driving force, the cantilever

resonance frequency, the oscillation amplitude and phase at some harmonic, etc.

Most importantly, all of these quantities are contained in the deflection signal

and can be recorded simultaneously. There are further signal channels that may

contain useful information about the sample. Just to give an example, in Scanning

Gate Microscopy (SGM) the conductance of an electronic device on the sample is

recorded as the biased AFM tip scans above it. The number of imaging modes

devised for AFMs has become quite large, and many of them are detailed in the

literature (Wiesendanger 1994, Sarid 1994, Odom et al. 2001, Morita et al. 2002).

To observe basic electronic properties of our samples, such as single-electron

charging, we need to reduce the thermal energy of the carriers. Consequently, we

need to operate the AFM at cryogenic temperatures. For that purpose, our home-

built AFM is mounted in a 3He cryostat. Some details of our low-temperature

AFM are discussed in Chap. 3.



CHAPTER 2

THEORETICAL BACKGROUND

The purpose of this chapter is to summarize the known body of theory that un-

derlies our experiments in a coherent and comprehensive manner. We introduce

relevant concepts, discuss necessary conditions to observe the phenomena in our

experiments, explore their various limits, and provide a set of essential equations

needed to understand our observations and analyze the data.

This chapter divides into two sections: The first section, entitled single-electron

tunneling and quantum dots, relates to our nanoscale samples and discusses phe-

nomena observed in our experiments. Since there is a vast amount of literature

available on this subject (Grabert and Devoret 1992, Sohn et al. 1997), we keep

this section brief and refer to published work liberally. The second section, entitled

cantilever dynamics, focuses on instrumentation and the particular way we mea-

sure such phenomena using an atomic force microscope (AFM). Of main concern

are the interactions between a quantum dot and the biased AFM tip, particu-

larly during single-electron charging, and how this interaction is resolved by the

cantilever. To our knowledge, this particular subject is not extensively covered

externally, and we offer considerable detail in some parts, including a few detailed

derivations.

2.1 Single-Electron Tunneling and Quantum Dots

2.1.1 Tunnel Junctions

The essential ingredient to quantum dots and single-electron charging is the tunnel

junction. A tunnel junction is a quantum mechanical circuit element, consisting

11
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Figure 2.1: Circuit symbol and equivalent circuit of a tunnel junction.

of two conductors that are separated by a thin insulating barrier. It is macroscop-

ically characterized by the junction capacitance C and the tunneling rate Γ (or

equivalently the tunnel resistance RT ∝ 1/Γ) across the junction. A tunnel junc-

tion is different from a classical capacitor in that it permits quantum tunneling of

electrons across the insulating barrier when energetically favorable. Although com-

monly depicted as a resistor, the tunnel resistance is fundamentally different from

an ohmic resistance. The circuit symbol of a tunnel junction and its equivalent

circuit are depicted in Fig. 2.1.

2.1.2 Quantum dots and Coulomb blockade

A quantum dot is a small conducting island that is weakly coupled to one or more

charge reservoirs through tunnel barriers. Due to its small size, the Coulomb in-

teraction between charges on the island becomes important. Simply put, electrons

feel each other’s presence on the dot. Before an electron can tunnel onto the dot,

it has to overcome the Coulomb repulsion from the electrons already on the dot.

This phenomenon is called Coulomb blockade and is a result of the quantization

of charge. In effect, the Coulomb interaction opens an energy gap between the

occupied and empty electron states on the small island. This energy gap due to
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electrostatics is called the charging energy of the quantum dot and is given by

EC =
e2

Cdot

, (2.1)

where −e is the charge of an electron and Cdot is the total capacitance of the island.

Expressing these conditions quantitatively, a quantum dot must meet two re-

quirements to exhibit Coulomb blockade:

1. As the term quantum dot suggests, the conductive island must be effectively

0-dimensional (0D) in size so that the Coulomb interaction between individ-

ual charges on the dot becomes relevant. This geometric size requirement

is reflected by the value of the total capacitance of the quantum dot, Cdot.

Practically, this means that the charging energy of the dot must be the largest

energy scale of the system. In particular, is must be larger than the average

thermal energy kBT of electrons,

EC =
e2

Cdot

� kBT . (2.2)

2. The total number of electrons on the quantum dot must be well defined.

Stated differently, the amount of charge on the island must be quantized in

units of e. In practice, this requirement mandates that the tunnel barrier

at each junction be sufficiently large. Quantum mechanically, this condition

implies that the wavefunctions of electrons on the dot are well localized

within the boundaries of the dot. Correspondingly, the tunnel resistances

RT of the tunnel junctions must be large (or equivalently their tunneling

rates Γ ∝ 1/RT must be small),

RT �
h

e2
≈ 25.8 kΩ . (2.3)
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The Coulomb blockade can be lifted in multiple ways. Most commonly, the voltage

on a nearby electrode (called gate) is used to change the electrostatic potential of

the quantum dot1. Once the gate has electrostatically overcome the charging

energy, a single electron can tunnel onto the quantum dot. But unless an electron

tunnels off, the dot is in Coulomb blockade again, and the gating procedure starts

over before another electron can join the dot. In other words, the gate induces

electrons discretely on the quantum dot, one at a time. This effect is called single-

electron charging of the quantum dot and is described in more detail in Sec. 2.1.5.

Theoretically, the dynamics of quantum dots under the two conditions above

is described by the so-called orthodox theory (Likharev 1988, Averin and Likharev

1991, Grabert and Horner 1991, Grabert and Devoret 1992, Sohn et al. 1997). A

few aspects of this theory that are relevant to this thesis are outlined below.

2.1.3 Energy scales

To further specify condition 1 above, we explore a few energy scales that are native

to quantum dots:

• The most important energy scale of quantum dots is the charging energy

EC = e2/Cdot. It measures the strength of Coulomb interactions between

charges on the dot and is determined by the size of the quantum dot. The

smaller the quantum dot, the more pronounced the Coulomb interactions

between the electrons on the quantum dot and the larger the charging energy.

• The thermal energy of electrons, kBT , is set by the electron temperature

T of the sample, where kB = 1.38× 10−23 J/K is Boltzmann’s constant. The

1Alternatively to gating, a large bias across the quantum dot or irradiation with
photons of high enough energy can also lift the Coulomb blockade.
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electron temperature is important as it sets the width of the Fermi-Dirac

distribution (2.10) in the charge reservoirs.

• Given the small size requirement for quantum dots, quantum mechanical

effects such as energy level quantization may become important, as well.

The relevant energy scale here is the single-particle energy level spacing

∆Elevel,N = EN−EN−1 of the quantum system. Apart from the size of the

quantum dot, material parameters influence this energy scale.

• A charge that is energetically permitted to tunnel into the leads does not do

so instantaneously. It still has a non-zero life time on the quantum dot, which

is related to the finite tunneling rates that characterize the tunnel junctions

of the dot. The energy scale hΓ introduced by the electron life time τ = 1/Γ

is the intrinsic broadening of Coulomb oscillations. It turns out that the

requirement of small intrinsic broadening is equivalent to Eq. (2.3).

There are other energy scales of quantum dots that are not listed above. For

example, the exchange energy of electrons, which favors alignment of their spins,

is always present. Furthermore, particular samples may have additional energy

scales that are not generic to quantum dots in general. To give an example,

the description of quantum dots in CNTs (Oreg et al. 2000) involves the exchange

energy J between electron spins, the subband mismatch δ, and the excess Coulomb

energy δU . Experimental measurements on CNTs suggest, though, that these are

small (Sapmaz et al. 2005).

Our experimental apparatus – the scanning force microscope – introduces an-

other two energy scales that may become relevant during the measurement. The

energy scales set by the AFM cantilever are the total energy stored in the can-
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tilever, 1
2
kz2

ω, and the energy of a single oscillation quantum, ~ω0. Here k is the

cantilever spring constant, zω is the oscillation amplitude, 2π~ = 6.626× 10−34 J s

is Planck’s constant, and ω0 is the cantilever resonance frequency. The total energy

in the cantilever oscillations needs to be considered for peak broadening; different

ratios between the cantilever resonance frequency and the electron tunneling rate,

ω0/Γ, can affect the measurement signal due to single-electron tunneling. We will

comment on them in the experimental chapters as needed.

2.1.4 The classical and the quantum limit of Coulomb blockade

The conditions for observing Coulomb blockade phenomena, which were discussed

in Sec. 2.1.2, mandate that the charging energy EC is the largest energy scale in

the system and that the intrinsic broadening hΓ is small. This hierarchy of energy

scales still leaves room for comparison between the thermal energy of electrons

kBT and the quantum level spacing of single-particle states ∆Elevel. As a result,

we distinguish between two different regimes of Coulomb blockade:

1. Classical limit, EC � kBT � ∆Elevel. If the electron temperature is

larger than the single-electron level spacing, the width of the Fermi-Dirac

distribution of electrons in the charge reservoir spans multiple levels and the

electron density of states of the dot is effectively continuous. This situation

is called the classical regime of Coulomb blockade. In this limit, the state of

the quantum dot is well described by the total number of electrons on the

dot. The occupation of electron states on the dot follows the Fermi-Dirac

distribution (2.10). Quantum dots in the classical regime are sometimes

referred to as classical dots. For example, our gold nanoparticles at T =77 K,

as discussed in Chap. 6, fall certainly into the classical limit.
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2. Quantum limit, EC ≥ ∆Elevel � kBT . The single-particle energy levels

retain their individual character in a measurement if the electron temperature

is small compared to the non-interacting level spacing. Under this condition,

quantum dots need to be treated as quantum mechanical objects with a

discrete single-particle density of states. Denoting the state of the quantum

dot in this limit is slightly more tedious as the occupation of each single-

particle level needs to be accounted for.

While Coulomb blockade and single-electron charging phenomena are observed in

either regime, the difference in the density of states of the quantum dot has subtle

consequences on some details of the single-electron charging effects.

2.1.5 Electrostatics of quantum dots

For our analysis of quantum dots in the Coulomb blockade regime, we introduce

two simplifications that are known as the constant interaction model (Averin et al.

1991, Kouwenhoven et al. 2001). This model assumes that the charging energy EC

is independent of the number of electrons on the quantum dot. In other words, the

charging energy is taken to be the same for all charging events of the quantum dot.

Furthermore, the constant interaction model hypothesizes that the single-particle

energy spectrum is unaffected by the electron-electron interaction.

In our analysis, we start from a general quantum dot circuit. In principle,

it can have any number of tunnel coupled leads and capacitively coupled gates.

Fig. 2.2 illustrates two common circuits each containing one quantum dot. The

simplest useful quantum dot circuit is the single-electron box (Fig. 2.2(a)), where

the quantum dot is coupled to a single charge reservoir (labeled ‘lead’) and at least

one gate. The most common quantum dot circuit is the single-electron transistor,
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(a) Single-electron box. (b) Single-electron transistor (SET).

Figure 2.2: Circuit diagrams of the single-electron box and the single-electron

transistor, each with only one gate electrode. The different electrodes (except

GND) are labeled in grey.
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as shown in Fig. 2.2(b). Here the quantum dot couples to two charge reservoirs

(labeled ‘source’ and ‘drain’) via tunnel barriers and has at least one gate.

To calculate the electrostatics of a quantum dot, we turn off all tunnel couplings

to the quantum dot, which fixes the number of electrons on the dot and converts

all tunnel barriers into capacitors. Then the circuit is easily analyzed in a total

energy calculation or, more simply, in a capacitive network by Kirchhoff’s laws.

Assuming that there are N electrons on the dot, the electrostatic potential of the

quantum dot is given by

φdot, N = −(N−N0)
e

Cdot

+
∑

i

Cid

Cdot

Vi . (2.4)

The index i in the sum runs over all conductors in the system except for the

quantum dot. Cid is the mutual capacitances between the ith conductor and the

quantum dot, and Vi is the voltage on that conductor. N0 is a constant that

fixes the electrostatic potential of the dot when the number of electrons N on the

dot and all voltages Vi are set to 0. The electrostatic potential depends on the

total charge on the quantum dot, qdot, N = −(N−N0) e, and the voltages on all

conductors. The latter is externally adjustable and sometimes summarized in a

so-called gate charge or control charge qc of the quantum dot,

qc = −
∑

i

Cid Vi ⇒ φdot, N =
qdot, N − qc

Cdot

. (2.5)

The gate charge represents the charge that would like to reside on the quantum

dot in the classical limit if charge wasn’t quantized.

The chemical potential of the quantum dot depends on the density of single-

particle states and is thereby different in the classical and quantum limit of Coulomb

blockade. Correspondingly, we find different expressions for the electrochemical
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potential of a quantum dot in either limit,

µcdot, N = −e φdot, N = (N−N0)
e2

Cdot

−
∑

i

Cid

Cdot

eVi ,

µqdot, N = EN − e φdot, N = EN + (N−N0)
e2

Cdot

−
∑

i

Cid

Cdot

eVi .

(2.6)

The labels ‘cdot’ and ‘qdot’ refer to the expressions in the classical and the quantum

limit, respectively. EN is the energy of the N th single-particle level on the quantum

dot.

We call the difference between electrochemical potentials of consecutive charge

states of the quantum dot the single-electron addition energy Eadd. It is given by

Eadd, N = µdot, N − µdot, N−1 ⇒
E

(cdot)
add, N =

e2

Cdot

E
(qdot)
add, N = ∆Elevel, N +

e2

Cdot

,

(2.7)

where ∆Elevel, N = EN−EN−1 is the single-particle level spacing, which is negligible

in the classical limit. The addition energy in the classical limit is given by the

charging energy (2.1) and independent of the number of electrons on the dot – at

least within the constant interaction model. In the quantum limit, the addition

energy is further increased by the single-particle energy level spacing.

We can ask how much change in gate voltage is needed to promote an additional

electron onto the dot. This experimentally measurable quantity is called the single-

electron addition gate voltage ∆V
(add)
g of the gate g and determined by

µdot, N(Vg + ∆V (add)
g ) = µdot, N−1(Vg) ⇒ Cgd

Cdot

e∆V (add)
g = Eadd . (2.8)

Clearly, the addition gate voltage has to be scaled by the ratio between the gate-

dot capacitance Cgd and the total dot capacitance Cdot in order to be converted

to the generic quantum dot energy scale. We call this capacitance ratio the gate
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efficiency of the particular gate (and dot),

αg =
Cgd

Cdot

. (2.9)

Some of the electrostatic properties of a quantum dot are plotted in Fig. ??ore

details and the derivations of the above equations can be found in the literature

(Kouwenhoven et al. 1997, for example).

2.1.6 Tunneling rates

In this section we turn to the actual electron tunneling process of a quantum dot.

The tunneling rate Γ of a tunnel junction is defined as the number of electrons

tunneling across the barrier per time interval. Consequently, it is directly propor-

tional to the tunneling current I. We distinguish between tunneling onto and off

the quantum dot, Γon/off =
Ion/off

−e
. The tunneling rates depends on the properties

of the tunnel junction, such as the height and width of the barrier. These prop-

erties are summarized in the tunneling resistance RT . The tunneling rates also

depend on the availability of occupied states on one side of the barrier and empty

states on the other. If the impedance of the external circuit is small, as realized

in the experiments, the electrons tunnel elastically across the barrier and an occu-

pied and an empty states must align in energy. Consequently, the density of states

and the occupation of these states on either side of the tunnel junction becomes

relevant. We assume a constant and continuous density of states in the metal

leads. The electron states in the leads are occupied according to the Fermi-Dirac

distribution

f(ε) =
1

1 + eβε
, (2.10)
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Figure 2.3: Electrostatic properties of a quantum dot at T = 0. The electrostatic

potential and the electrochemical potential of the quantum dot are plotted from

Eqs. (2.4) and (2.6). The quantum dot occupation is defined as −qdot/e. Adding

another electron to the requires the addition gate voltage as calculated in Eq. (2.8).

Upon tunneling of an electron, the electrostatic potential of the dot jumps by the

charging energy (2.1) over the electron charge. At the same time, the addition

energy jumps by addition energy (2.7).
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where β = 1/kBT is the inverse temperature and ε = E−µ is the energy E of the

electron state under consideration, measured with respect to the electrochemical

potential µ. On the other side of the tunnel junction, the description of the quan-

tum dot depends on whether we are in the classical and in the quantum limit, as

discussed in Sec. 2.1.4. The two limits are analyzed separately below.

Tunneling rates in the quantum limit, ∆Elevel � kBT . In the quantum

limit, the density of states of the quantum dot reflects its discrete single-particle

level structure. The state of the quantum dot is denoted by the occupation of each

single-particle level. Correspondingly, tunneling occurs into and out of individual

levels and we consider the tunneling process of a single quantum level first. As-

suming that the level is empty, tunneling onto it occurs if the level is aligned with

an occupied state in the lead. Since the electron occupation probability in the

lead is distributed by the Fermi-Dirac function (2.10), the tunneling rate onto the

level is given by the Fermi-Dirac distribution of the lead at the energy of the level,

f(Elevel−µlead). Similarly, if the level is occupied, tunneling into the lead occurs

if there is an empty final state available and the tunneling rate off the quantum

level is given by 1 − f(Elevel−µlead). Denoting the energy difference between the

quantum level and the electrochemical potential of the lead by ∆E = Elevel−µlead,

we find

Γ
(level)
on (∆E) = Γlevel f(∆E)

Γ
(level)
off (∆E) = Γlevel [1− f(∆E)] = Γlevel f(−∆E) .

(2.11)

Note that the tunneling rates obey the bias symmetry, Γ
(level)
on (∆E) = Γ

(level)
off (−∆E).

The tunneling rates on and off the quantum dot are obtained by summing

over the respective tunneling rates of all its single-particle levels and taking an

ensemble average weighted by the grand canonical distribution function of the
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quantum dot, as shown in the literature (Beenakker 1991). At low temperature

the tunneling rate of a single level is sufficient for our description: Under the

conditions of the quantum limit, at most one single-particle level of the quantum

dot falls within the thermal width of the Fermi-Dirac distribution of the lead

and potentially contributes to tunneling (van Houten et al. 1992, 2005). In the

electronic ground state of the quantum dot in the quantum limit, all energy levels

below the electrochemical potential of the dot are filled while all energy levels above

it are empty. Correspondingly, this relevant level is located at the electrochemical

potential of the quantum dot, so that ∆E = µdot − µlead.

The amplitude of the tunneling rates (2.11)

Γlevel ≡ Γqdot =
1

e2RT

hνlevel =
1

e2RT

∆Elevel (2.12)

are independent of ∆E. The quantity νlevel = 1
2
vF /L is the attempt frequency of

the level, where vF is the Fermi velocity of the particle, and L is the size of the

quantum dot. Classically, the attempt frequency describes how often a particle

on the level impinges on the barrier of the dot. Its relation to the single-particle

energy level spacing is easily derived in the “particle in a 1D box” model (at high

occupation N � 1). Notice that the sum of the two tunneling rates

Γ(level)
on (∆E) + Γ

(level)
off (∆E) = Γlevel (2.13)

is independent of ∆E.

From Eq. (2.12) it is apparent that the condition of small intrinsic broadening,

hΓlevel � ∆Elevel, is equivalent to the previously stated requirement (2.3) of large

tunnel barriers for Coulomb blockade.

Tunneling rates in the classical limit, kBT � ∆Elevel. In the classical limit,

the density of single-particle states on the quantum dot is continuous. Conse-
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quently, the electron occupation on the quantum dot also follows the Fermi-Dirac

distribution (2.10), just like in the lead. As a result, there are multiple single-

particle states that could participated in tunneling, and we need to add up all

their contributions. For example, to calculate the tunneling rate onto a classical

dot, we need to evaluate the overlap between empty states on the dot, which are

distributed by 1− f(E−µdot), and occupied electron states on the lead, which are

distributed by f(E−µlead). Correspondingly, the tunneling rates onto and off in

the classical regime are given by

Γ(cdot)
on =

1

e2RT

∞∫
−∞

dE [1− f(E−µdot)] f(E−µlead) =
1

e2RT

−∆E

1− eβ∆E

Γ
(cdot)
off =

1

e2RT

∞∫
−∞

dE f(E−µdot) [1− f(E−µlead)] =
1

e2RT

∆E

1− e−β∆E
.

(2.14)

Just like in the quantum limit, ∆E is defined as the electrochemical potential

difference between the dot and the lead, ∆E = µdot−µlead. The calculation of the

above integrals over products of Fermi-Dirac functions is detailed in the literature

(Ingold and Nazarov 1992). Both tunneling rates are positive definite for all ∆E.

For convenience of notation, we define the dimensionless function g as

g(∆E) =
1

2

−β ∆E

1− eβ ∆E
, (2.15)

and rewrite the tunneling rates (2.14) in terms of this function as

Γ
(cdot)
on = Γcdot g(∆E)

Γ
(cdot)
off = Γcdot g(−∆E)

with Γcdot =
2 kBT

e2RT

. (2.16)

In this notation, the tunneling rates for classical dots appear similar in structure

to the ones for quantum dots, Eq. (2.11). The detailed functional form, however,

is quite different. In particular, the relation equivalent to Eq. (2.13) does not hold

in the classical limit. The tunneling rates (2.16) are plotted in Fig. 2.4.
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Figure 2.4: Tunneling rates Γ
(cdot)
on (∆E) and Γ

(cdot)
off (∆E) in the classical limit

of Coulomb blockade as a function of the difference between the electrochemical

potentials of the quantum dot and the lead, ∆E = µdot−µlead, normalized by kBT .

The tunneling rates are derived in Eq. (2.16) and plotted in units of Γcdot =
2 kBT

e2RT

.
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Given the amplitude of the tunneling rates in the classical limit, Eq. (2.16),

small intrinsic broadening, hΓcdot � kBT , implies one of the two requirements for

Coulomb blockade, Eq. (2.3).

2.1.7 Kinetic Equation for Occupation Probabilities

With the knowledge of the tunneling rates on and off the dot, we address some

aspects of the state of the quantum dot and the change of state in response to

changes in the environment, such as external perturbations. This description is

important for experiment, as it allows us to describe the interaction between a

quantum dot and our microscope. In Sec. 2.2.2, we use these results to describe the

response of quantum dot to a biased AFM tip that is oscillating near the quantum

dot and derive the resulting measurement signal in our local force detector.

In this section we introduce the kinetic equation for the state of quantum dots,

which is also known as rate equation or Master equation. An underlying assumption

of the kinetic equation is that any change of the state of the quantum dot can only

depend on its current state. In stochastics, this “no memory” condition is called

Markov property (Bharucha-Reid 1997, Papoulis and Pillai 2002). Since the state

of a quantum dot is described differently in the classical and the quantum limit,

we need two separate treatments in the two regimes. Fortunately, the two cases

unify into one simplified description under well-fulfilled conditions.

In the following, we first discuss in some detail the solution to the kinetic

equation in the classical regime, where the state of the quantum dot is described

by the total number of electrons on the dot. From the kinetic equation, we derive

the stationary state of the quantum dot in terms of the tunneling rates. The

parallel derivation in the quantum limit is just as easy, but tedious and lengthy in
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notation, because we have to account for each single-particle state and the change

of it individually. For this reason, we don’t detail the equations here, but comment

on a simplification that is pragmatically motivated and applicable to the classical

and quantum limit. This simplification is detailed at the end.

Kinetic equation in the classical regime, kBT � ∆Elevel. As pointed out

in Sec. 2.1.4, in the classical regime, the state of the quantum dot is specified by

the total number of electrons on the dot. Denoting the probability to find the

dot occupied with N electrons (and no more than N electrons) by pN , its kinetic

description follows the rate equation,

dpN

dt
= pN+1 ΓN+1→N + pN−1 ΓN−1→N − pN(ΓN→N+1 + ΓN→N−1) . (2.17)

Since electrons tunnel only one at a time (apart from cotunneling and other higher

order processes, which we ignore here), only charge states differing by one electron

are directly connected. The tunneling rate ΓN+1→N contains the rates of all tun-

neling processes that change the charge state of the dot from N+1 to N electrons.

Accounting for all leads i that are coupled to the dot via tunnel junctions,

ΓN→N+1 =
∑
jcts i

Γon, i, N ΓN→N−1 =
∑
jcts i

Γoff, i, N . (2.18)

For the equilibrium occupancy of the dot, the stationary solution
dpN

dt
=0 to the

kinetic equation is satisfied by the detailed balance condition,

pN+1 ΓN+1→N = pN ΓN→N+1 . (2.19)

It turns out that this is also the only non-trivial stationary solution. Essentially, the

detailed balance requires that the current onto the dot is compensated by an equal
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current off the dot. This recursion relation allows us to express all probabilities

pN in terms of one probability pNref
through

pN =


pNref

N∏
n=Nref+1

Γn−1→n

Γn→n−1

N > Nref ,

pNref

Nref∏
n=N

Γn+1→n

Γn→n+1

N < Nref .

(2.20)

The single remaining undetermined probability pNref
is fixed by the normalization

condition

1 =
∞∑

n=−∞

pn . (2.21)

These relations (2.20) and (2.21) determine the equilibrium distribution {pN} of

the charge states N of a quantum dot in the classical regime in terms of the

tunneling rates (2.16).

Kinetic equation in the quantum limit, kBT � ∆Elevel. In the quantum

limit, it is not enough to consider the total number of electrons on the dot to

describe its state. Instead, we need to account for the possible occupation of each

single-particle level. Correspondingly, tunneling into or out of each single-particle

state has to be considered for the rate equation in the quantum limit, before taking

an ensemble average. The kinetic equation for the change of state of the dot in

the quantum limit is straight-forward, but lengthy to write down. For details, see

the literature (Beenakker 1991).

Instead of detailing the full kinetic equation, we point out a pragmatic sim-

plification: As touched upon in Sec. 2.1.6, almost all states have fixed occupation

and there is realistically at most one single-particle level that participates in tun-

neling2. This is a result of the actual condition of the quantum limit, where the

2This conditions breaks down, of course, if a large bias is applied across the
dot, if the quantum dot is irradiated with high-energy photons, etc.
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separation of single particle levels is much larger than the thermal width of the

Fermi-Dirac distribution of electrons in the lead. If only one single-particle state

participates in tunneling, the state of the quantum dot can only change between

two possible configurations: (1) The relevant state is occupied, or (2) the relevant

state is empty. The kinetic equation for this binary phase space of quantum dot

states is simple and easy to write down, as given in Eq. (2.25). This simplification

of the kinetic equation is derived in the classical limit below, but it is also valid in

the quantum limit, by virtue of the argument presented here.

Practical simplifications and unified kinetic equation. Since the charg-

ing energy is the largest energy scale in the system, different charge states of the

quantum dot are well separated in energy. Consequently, under any given gat-

ing conditions, only one or at most two neighboring charge states are practically

relevant for its description.

This situation implies that the tunneling rates leading away from either of

the these two charge configurations are small (or equal to zero in the theoretical

extreme), while the tunneling rates leading towards either charge configuration

are large in comparison. Naming the two relevant charge states N and N +1, we

formally require

Γn−1→n � Γn→n−1 if n > N+1

Γn→n+1 � Γn+1→n if n < N
(2.22)

as the minimum necessary conditions for the simplifications below. Indeed, looking

at the tunneling rates in the classical limit, Fig. 2.4, the rates onto and off the dot

are only similar near µdot = µlead (denoted as ∆E = 0). At ∆E ≥ EC � kBT

we find Γ
(cdot)
on (∆E) � Γ

(cdot)
off (∆E) and similarly Γ

(cdot)
on (∆E) � Γ

(cdot)
off (∆E) at

∆E ≤ −EC � −kBT , as needed for Eq. (2.22).
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As a result of the conditions (2.22), we find (by design) for our occupation

probabilities

pn ≈ 0 ∀n /∈ {N, N+1} (2.23)

from the detailed balance equation (2.19) and

pN = 1− pN+1 (2.24)

by normalization (2.21). Under these conditions, the kinetic equation (2.17) for

the probability of occupying the dot with N+1 electrons simplifies to

dpN+1

dt
= (1− pN+1) Γon − pN+1 Γoff , (2.25)

where we have used the intuitive shorthand notation Γon = ΓN→N+1 and Γoff =

ΓN+1→N for the tunneling rates between the two relevant charge states. This

simplified kinetic equation is also valid in the quantum limit, as argued above.

We will use this kinetic equation in Sec. 2.2.2 to calculate the response of a

quantum dot when it is driven out of equilibrium.

2.1.8 Coupled quantum dots

The unusual electronic properties of quantum dots make them interesting building

blocks for circuits, where single-electron control is needed. Several quantum dots

can be arranged in a network to perform a more complex function. For example,

several quantum dots can be strung in series to form a turnstile or a single-electron

pump (Pothier et al. 1991, Kouwenhoven et al. 1991, 1992, Keller et al. 1999).

When two quantum dots are connected by a tunnel barrier, we call these two dots

coupled. An elementary circuit of a coupled double dot system, where the gate

charge of each dot can be tuned independently, is shown in Fig. 2.5. The tunnel
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Figure 2.5: Schematic circuit layout of a typical double dot system with two

independent gates, each coupling to only one quantum dot. The tunnel barrier that

couples the two quantum dots is characterized by an interdot tunneling rate Γm

and a mutual dot capacitance Cm. Each quantum dot couples to a separate charge

reservoir (labeled source and drain). The charge reservoirs set the electrostatic

potential reference for their respective dot and provide charges to tunnel on or off

their dot as needed. For a stability diagram with sharp triple points, as shown in

Fig. 2.6(a), the source and drain contacts have to be shorted (zero bias).
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barrier that couples the two quantum dots is characterized by an interdot tunneling

rate Γm and a mutual capacitance Cm. In this circuit, each quantum dot couples

to a separate charge reservoir, which sets the reference electrochemical potential

for the respective dots and provides or accepts electrons to tunnel onto or off the

dot. This circuit is useful to explore the basic properties of coupled quantum dots

and the effects that one quantum dot has onto another.

The Stability Diagram. As the term suggests, in a coupled quantum dot sys-

tem, the state of a quantum dot also depends on the state of other, coupled dots. A

useful representation of the charge state of two dots in a coupled double dot system

as a function of their gate voltages is the stability diagram (Pothier et al. 1992).

Figure 2.6(a) shows a typical stability diagram of a coupled double dot system.

Due to its appearance, the stability diagram is sometimes also called honeycomb

diagram. In this plot, each dot has a separate gate that doesn’t couple to the other

dot, as illustrated schematically in Fig. 2.5. In the stability diagram, the stable

charge state of the double dot system at any given combination of gate voltages Vg1

and Vg2 is labeled by (N1, N2), where N1 and N2 represent the number of electrons

on dot #1 and #2, respectively. Different charge states of the double dot sys-

tem are separated by single-electron charging events of either dot, as depicted by

black lines. The zig-zag shape of these single-electron charging lines is due to the

coupling between the dots. Figure 2.6(b) shows the same stability diagram in the

absence of coupling, Γm → 0 and Cm → 0. In this case, we find quadruple points

where 4 different charge states of the double dot system meet. In the presence

of coupling between the two quantum dots, these quadruple points split into two

separate triple points. In other words, the coupling creates an avoided crossing of

the single-electron charging lines at their intersection, near the quadruple points.
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(a) Stability diagram of a coupled double dot system.

(b) Stability diagram of two non-interacting quantum dots.

Figure 2.6: Stability diagrams of a double dot system with and without coupling.

Both diagrams assume that the gate voltages Vg1 and Vg2 couple only to their re-

spective dots, as illustrated in Fig. 2.5. The labels (N1, N2) denote the equilibrium

occupation of electrons on dot #1 and #2, respectively, up to an offset. The

coupled dot diagram reduces to the non-interacting case in the limit of vanishing

coupling, Γm → 0 and Cm → 0. For sharp triple points, as shown in Fig. 2.6(a),

the source and drain contacts have to be at the same potential (zero bias).
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Possible Origins of the Line Splitting. As discussed above, the avoided cross-

ings in the stability diagram are a sign of interaction between the two quantum

dots whose single-electron charging lines intersect. In the metaphor of artificial

atoms, we could say that the two quantum dots show signs of forming a molecule.

The splitting of the charging lines can be either due to an elevated interdot tunnel

coupling Γm (covalent molecular bond) or a large mutual capacitance Cm (ionic

molecular bond) between the quantum dots (Waugh et al. 1996, Livermore et al.

1996). Since the mechanism that causes the line splitting is somewhat different in

either case, we comment on both possibilities separately.

Capacitively coupled double dots. Capacitively coupled quantum dots are

conceptually easier to treat than tunnel-coupled dots, as it is a purely classical

effect consistent with the requirements for Coulomb blockade phenomena. The

splitting of single-electron charging lines due to capacitive coupling is well described

within the orthodox theory. It assumes, though, that the interdot tunnel coupling

is small, Γm → 0 or equivalently 1/Γm ∝ R
(m)
T � h/2e2.

The mechanism that creates the avoided crossings by means of a mutual dot

capacitance works as follows3: When an electron tunnels onto a quantum dot,

its electrostatic potential jumps by −e/Cdot. If the dot is capacitively coupled to

another dot, this change won’t go unnoticed by the other. The jump in electrostatic

potential induces a gate charge of −eCm/Cdot on the other dot. In this way the

mutual dot capacitance makes the other dot part of its electrostatic environment.

3The detailed functional form of the three expressions in this intuitive explana-
tion is only accurate as long as the mutual dot capacitance is not too large. There

is a correction factor of (1− C2
m

C1 C2
)−1 to all three terms that becomes relevant when

the coupling capacitance becomes large, Cm → Cdot. We omit this correction in
this paragraph to keep the expressions simple and short. For more details, see
Appendix A.1.
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Effectively, the capacitively coupled dots gate each other with an interdot gating

efficiency Cm/Cdot. The induced gate charge due to the electron tunneling onto the

first dot needs to be compensated for by the gate on the second dot. Consequently,

this gate voltage must increase further in order to induce an electron onto the other

dot. This compensative gating appears as splitting of the single-electron charging

lines in the images.

Tunnel-coupled double dots. The interdot tunnel coupling Γm increases when

the tunnel barrier R
(m)
T ∝ 1/Γm between the dots is lowered. As a result, the wave

function of electrons may extend across the barrier onto the other dot. When the

ground state energies of the two dots line up (at the intersection of two charging

lines), the double dot system can lower its energy by mixing the electronic states

of the two dots. This mixing or entanglement of states breaks the degeneracy and

lowers the energy of the coupled double dot system compared to the sum of the

isolated dot energies. This mechanism causes the single-electron charging lines to

split (Waugh et al. 1995, Livermore et al. 1996). At the same time, we relax one of

the two conditions for the formation of quantum dots, Eq. (2.3), and the orthodox

theory breaks down.

In the extreme limit of very large tunnel coupling (R
(m)
T ≈ h/2e2), the two

dots join into one larger dot. Then the orthodox theory is applicable again, pro-

vided that the combined dot is well isolated. In this extreme limit, the mutual

capacitance between the two dots is shorted out and has no longer any influence.

Unified description of quantum dot interactions: Coupling impedance.

Before finishing the section on coupled quantum dots, we want to bring forward

and briefly discuss an idea for a unified description of the two coupling mecha-
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nisms discussed above. This idea is phenomenological in nature and based on the

equivalent circuit model of a tunnel junction, Fig. 2.1, applied to the interdot bar-

rier. The contributions from the tunnel coupling Γm ∝ 1/R
(m)
T and the mutual dot

capacitance Cm to the line splitting could be accounted for in terms of a coupling

impedance

Zm = R
(m)
T ‖ (iωCm)−1 =

R
(m)
T

1 + iωCmR
(m)
T

. (2.26)

Both limiting cases of dominant interdot tunneling (Cm → 0) and purely capacitive

coupling (R
(m)
T → ∞) are included in the description. This concept of a coupling

impedance is most useful in the mixed coupling regime, though.

The frequency parameter appearing in the expression (2.26) should be deter-

mined by the electrostatic coupling energy, ECm = ~ω, which is given in Eq. (A.3)

in Appendix A.1 and derived in the literature (Ruzin et al. 1992, Dixon 1998,

van der Wiel et al. 2003). This results in the expression

ωCm = −2π
e2

h

1

1− C1C2/C2
m

(2.27)

to appear in the denominator of Eq. (2.26), where C1 and C2 are the total capaci-

tances of the two coupled quantum dots.

Checking the strong coupling limit, we find that in either strong coupling case4,

R
(m)
T → 0 or Cm →

√
C1C2, the coupling impedance (2.26) vanishes, Zm → 0. The

fact that both weak and both strong coupling limits reproduce the expected result

for the proposed coupling impedance gives us confidence in the validity of this

concept of a unified, phenomenological description of the interdot coupling.

4Note that the interdot capacitance is constrained by the total dot capacitances,
Cm ≤ C1 and Cm ≤ C2. Consequently, zero coupling impedance can only be
achieved capacitively if Cm = C1 = C2.
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2.2 Cantilever Dynamics

In this section we turn to our measurement tool, the atomic force microscope

(AFM). The cantilever is at the heart of the AFM. It is a mobile, microscopic

detector that senses forces acting on the tip. Modeling the cantilever as a simple

harmonic oscillator, we can treat it classically: With our cantilever parameters

(Table 3.1) and a typical resonance amplitude of 1 nm, there a literally billions of

harmonic oscillator quanta excited in the cantilever.

The first part of this section reviews the basic cantilever dynamics under the

influence of different external forces. Since classical harmonic resonators are cov-

ered extensively in many textbooks, most results will be stated for later reference

without detailed derivations. In the second part we combine the description of the

AFM and quantum dots and detail a theory of interaction in linear response.

2.2.1 The Damped Harmonic Oscillator

A damped harmonic oscillator is characterized by three intrinsic parameters – its

effective mass m, damping coefficient γ, and spring constant k – and follows the

dynamic equation

m
d2z

dt2
+ γ

dz

dt
+ k (z−z0) = Fext(z, t) . (2.28)

The value of the static deflection z0 depends on the origin of the coordinate system.

Experimentally, z0 is the static tip height above the sample surface (as set by the

scan tube extension). Fext(z, t) is an external force that may depend on both tip

position z and time t. It includes any force that we deliberately apply to the tip

or cantilever, for example, the actuation force to drive the cantilever on resonance,

and the forces originating from the sample, which we try to resolve. The tip
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deflection ∆z = z−z0 is the readout signal in the experiment, which may have a

static (dc) and an oscillating (ac) component.

From an experimental point of view, the AFM cantilever is more readily de-

scribed in terms of a related set of parameters – the resonance frequency of its

free, undamped motion ω0 =
√

k/m, the spring constant k, and the quality factor

of the resonance Q = mω0/γ, whose inverse measures the full width at half power

of the resonance peak, ∆ωFWHP = γ/m. In terms of these intrinsic parameters

{ω0, Q, k}, the equation of motion reads

d2z

dt2
+

ω0

Q

dz

dt
+ ω2

0 (z−z0) =
ω2

0

k
Fext(z, t) . (2.29)

The effects of several different forces on the cantilever are discussed below.

Briefly, time-independent forces that are constant or linear in z are simple

to treat. Constant forces create an equilibrium deflection and dc-force gradients

change the spring constant, thus shifting the resonance frequency. In effect, they

map back onto the free oscillation problem with altered parameters. Higher order

dc-force terms will not be treated in this chapter. Non-linear effects and the Duffing

oscillator are treated in the literature (Minorsky 1962, Hayashi 1985, Nayfeh and

Mook 1979, Hagedorn and Stadler 1988). Non-linearities can be avoided experi-

mentally by limiting the cantilever oscillations and deflections to small amplitudes.

For external forces that don’t depend on the spatial coordinate z, i.e., purely

time-dependent forces, the superposition principle allows us to consider each force

term separately. In particular, we can Fourier decompose any time-dependent force

and consider contributions from different frequencies separately. In the end, the

oscillator acts like the sum of the solutions due to the individual (z-independent)

forces. For high-Q cantilevers, the amplitude response is sharply peaked about the

cantilever resonance, and for small force amplitudes only frequencies near reso-
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nance will be relevant. Additionally, the use of filters and lock-in amplifiers in our

experiments enables us to look at the response at specific frequencies and thereby

permits to delineate between different frequency contributions.

Damped, free oscillations: Fext(z, t) = 0. In the absence of external forces,

the cantilever motion follows

z(t) = z0 + zm e−t/τ cos(ωrest + φm) . (2.30)

The amplitude zm and phase φm of the oscillation are determined by the initial

conditions5. This so-called homogenous solution of the differential equation (2.28)

describes resonant oscillations of the cantilever about its equilibrium deflection z0

that decay exponentially due to damping. As the oscillations decay, the cantilever

approaches the static deflection z0. The time constant of the exponential decay,

commonly also called ring-down time,

τ =
2m

γ
=

2Q

ω0

(2.31)

scales linearly with the quality factor. The damped free resonance frequency

ωres = ω0

√
1− 1

4Q2

Q�1−−−→ ω0

(
1− 1

8Q2

)
. (2.32)

is shifted from the undamped resonance frequency ω0. For our cantilevers with

high quality factors in vacuum, this shift in resonance frequency due to damping

is extremely small, about 1 ppb (part per billion) of the undamped resonance

5If the initial deflection z(0) and its time derivative ż(0) are given at time t = 0,
the parameters zm and φm follow from

zm cos(φm) = z(0)− z0 and zm sin(φm) =
τ ż(0) + z(0)− z0

ωres τ
.
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frequency. Hence, in the following we won’t differentiate between the ‘damped’

and ‘undamped’ resonance any longer and use ω0 and ωres interchangeably.

The relevance of this solution to the homogeneous differential equation is that

every solution6 to Eq. (2.28) contains an additive term of the form (2.30). If the

excitation force or the resonance frequency changes (as we scan across the surface

or change some experimental parameter, for example), the transient towards a new

stationary amplitude is described by Eq. (2.30) with a transient time (2.31). For

high cantilever quality factors (as in our vacuum system) this transient time can

be significant and mandates slow scan speed for amplitude images.

Time-independent external force Fext(z, t) = Fdc(z). Any static force that

doesn’t vanish at the static deflection z0 of the cantilever, Fdc(z0) 6= 0, changes the

static deflection from z0 to a new equilibrium deflection value zeq given by

zeq = z0 +
Fdc(zeq)

k
. (2.33)

Notice that this equation is implicit in zeq, as the new equilibrium deflection de-

pends on the functional form of the static force Fdc(z).

If the cantilever oscillation is small in amplitude, non-linear terms of the force

are negligible and we can expand the force about the equilibrium deflection zeq,

Fdc(z) = Fdc(zeq) +
Fdc

dz

∣∣∣∣
z=zeq

(z−zeq) + o(z−zeq)
2 , (2.34)

and the problem can be mapped back onto a free, damped oscillation

m
d2z

dt2
+ γ

dz

dt
+

(
k − dFdc

dz

∣∣∣∣
zeq

)
(z−zeq) = 0 (2.35)

6Mathematically, this statement requires a linear differential equation and,
hence, a force law that contains only constant or linear terms in z−z0. Since we
limit the cantilever to small oscillation amplitudes in the experiment, non-linear
force terms are typically negligible and the statement remains valid.
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as described in Eq. (2.28), but with a new equilibrium deflection zeq as given in Eq.

(2.33) and an effective spring constant that is shifted by the spatial force gradient,

keff = k − dFdc

dz

∣∣∣∣
z=zeq

. (2.36)

Correspondingly, the undamped resonance frequency shifts to a new value

ω̃0 =

√
keff

m
= ω0

√
keff

k
' ω0

(
1− 1

2k

dFdc

dz

∣∣∣∣
zeq

)
. (2.37)

This relation is compactly expressed as a relative frequency shift,

∆ω0

ω0

' − 1

2k

dFdc

dz

∣∣∣∣
zeq

, (2.38)

where ∆ω0 = ω̃0 − ω0 is the absolute frequency shift. The width of the resonance

∆ωFWHP = γ/m remains unchanged, but the quality factor changes to

Q̃ =
mω̃0

γ
=

ω̃0

∆ωFWHP

= Q
ω̃0

ω0

= Q

√
keff

k
. (2.39)

It is important to note that this change in quality factor does not correspond to

a change in dissipation. The quality factor is the ratio of the energy stored in the

resonator to the energy dissipated in one oscillation cycle, i.e., 1/Q measures the

fractional energy loss per cycle. While the absolute energy loss remains constant,

the energy stored in the cantilever 1
2
kz2

max changes with a shift in spring constant

(2.36) due to force gradient, creating a change in the quality factor.

Periodic driving force with constant force amplitude: Fext(z, t) = Fω cos(ωt).

The steady state response of the damped harmonic oscillator to a harmonic driving

force is to oscillate at the same frequency ω as the driving force with a phase lag,

z(t) = z0 + zω cos(ωt− θω) . (2.40)
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The amplitude and phase of the oscillation generally depend on the driving fre-

quency. For a constant force amplitude Fω one finds

zω =
Fω

k

ω2
0√

(ω2
0 − ω2)

2
+ (ωω0/Q)2

ω→ω0−−−→ Fω

k
Q

tan(θω) =
1

Q

ω ω0

ω2
0 − ω2

ω→ω0−−−→ 1

2Q

ω0

ω0 − ω
.

(2.41)

A plot of the oscillation amplitude zω as a function of the driving frequency ω is

termed resonance curve of the oscillator (provided that Q > 1
2
). Figure 2.7 plots

the amplitude resonance curve and the phase response of the oscillator, as given

in Eq. (2.41). The resonance curve directly measures the cantilever resonance

frequency ω0 and its quality factor Q, as indicated in Fig. 2.7. From this common

representation of the phase lag θω, it is only incompletely determined (modulo π

as opposed to 2π). The phase lag is fully specified by

sin(θω) =
zωωγ

Fω

=
1

Q

ω

ω0

kzω

Fω

and cos(θω) =

(
1− ω2

ω2
0

)
kzω

Fω

(2.42)

or by giving the sign of either sin(θω) or cos(θω) in addition to tan(θω). The

oscillation amplitude on resonance7

zω0 =
Fω0

k
Q (2.43)

7The true resonance frequency – defined as the maximum of the resonance curve
Eq. (2.40) – is located at

ωmax = ω0

√
1− 1

2Q2

Q�1−−−→ ω0

(
1− 1

4Q2

)
with an amplitude response

zωmax =
zω0√

1− 1
4Q2

Q�1−−−→ zω0

(
1 +

1

8Q2

)
.

For large quality factors as in our experiments, these corrections are extremely
small, though, about 1 part per billion (see Table 3.1).
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Figure 2.7: Amplitude resonance curve and phase response of a harmonic oscilla-

tor. The amplitude and phase are calculated from Eq. (2.41), assuming Q = 100.

The location of the maximum of the resonance curve gives the resonance frequency

of the oscillator. The width of the resonance frequency (at an amplitude
zω0√

2
) de-

termines the inverse quality factor 1/Q, as shown. On resonance, the oscillator

responds with a 90◦ phase lag with respect to the driving force. The phase changes

sensitively with driving frequency near resonance.
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is amplified by the quality factor Q (compared to a corresponding dc deflection

signal). Similarly, the phase θω is most sensitive on resonance, changing from zero

phase lag at low frequencies to π at high frequencies with θω0 = π/2 on resonance.

Most of the phase change happens within the frequency range ω0±γ/2m = ω0(1±

1/2Q), and is determined by the quality factor Q, too.

Static and harmonic force: Fext(z, t) = Fdc(z) + Fω cos(ωt). If a static force

is applied in addition to a periodic driving force with constant force amplitude, we

can apply the previous two cases sequentially. First, the static force Fdc(z) changes

the equilibrium tip position from z0 to zeq and shifts the resonance frequency to ω̃0

according to Eqs. (2.33,2.38), independently of any purely time-dependent force.

Hence, the problem is mapped back to an ac-driven resonator as treated in the

previous paragraph, but with different parameters {ω̃0, Q̃, keff} and equilibrium

position zeq. In effect, the amplitude resonance curve and the phase response

retain their shape, but are centered about the shifted resonance frequency ω̃0,

zω =
Fω

k

ω2
0√

(ω̃2
0 − ω2)

2
+ (ωω0/Q)2

and tan(θω) =
1

Q

ω ω0

ω̃2
0 − ω2

(2.44)

This can be verified by substituting the shifted parameters {ω̃0, Q̃, keff} as given

in Eqs. (2.36, 2.37, 2.39) in the resonance curve (2.41) and using the invariants

k/ω2
0 = keff/ω̃2

0 = m and ω0/Q = ω̃0/Q̃ = γ/m = ∆ωFWHP.

Periodic driving force with force gradient: Fext(z, t) = Fω(z) cos(ωt). The

situation becomes more complicated if the force amplitude changes as a function

of z. As usual we assume a small oscillation amplitude about the equilibrium

deflection and Taylor expand the force amplitude,

Fω(z) = Fω(z0) +
dFω

dz

∣∣∣∣
z=z0

(z−z0) + o(z−z0)
2 . (2.45)
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The constant term in the expansion, Fω(z0) cos(ωt), excites oscillations at the drive

frequency ω, as described in the previous paragraph. The force gradient term in the

expansion couples in higher harmonics, as do higher order terms in the expansion.

The steady state amplitude response to Eq. (2.45) is of the form

z(t) = z0 +
∞∑

m=1

zmω cos(mωt− θmω) . (2.46)

The amplitude and phase of the fundamental oscillation, zω and θω, respectively,

are solely due to the constant force amplitude term and were already calculated

above in Eq. (2.41). From the linear term in the expansion (2.45), we obtain a

recursion relation for the oscillation amplitudes of the harmonics,

zmω =
z(m−1)ω

k

dFω

dz

∣∣∣∣
z0

ω2
0√

(ω2
0 −m2ω2)2 + (ω0 mω/Q)2

for m ≥ 2 . (2.47)

This recursion is only useful in the linear approximation of the force amplitude, Eq.

(2.45). For the full expansion, this recursion relation gives the correct amplitude

only for the 1st harmonic, m=2, as the nth order expansion term starts contributing

at the nth harmonic. Hence, for the amplitude of the 2nd harmonic, z3ω, the 2nd

order amplitude
d2Fω

dz2

∣∣∣∣
z0

also contributes.

It is worthwhile noting that the amplitude of every harmonic contains the

amplitude of the fundamental as a prefactor, zmω ∝ zω ∀m ≥ 1.

Summary. Modeling the AFM cantilever as a classical damped harmonic oscil-

lator, we have discussed the cantilever response to several external forces:

• A static force of constant amplitude changes equilibrium deflection of the

tip, Eq. (2.33).

• Force gradients of a static force dFdc/dz cause the spring constant and reso-

nance frequency to shift, Eqs. (2.36) and (2.38).
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• A periodic driving force of constant amplitude Fω cos(ωt) sets the cantilever

into oscillations about the equilibrium deflection at the driving frequency,

Eq. (2.40). The amplitude response depends on the ratio of the driving

frequency to the resonance frequency, ω/ω0, and peaks on resonance, Eq.

(2.41). The phase lag of the oscillations with respect to the driving force

changes sensitively near resonance.

• Spatially varying amplitudes of a periodic driving force couple in higher

harmonics of the driving frequency, Eq. (2.46).

• Free, damped oscillations in the absence of external forces decay exponen-

tially with time, Eq. (2.30). The time constant for amplitude decay scales

linearly with the quality factor, Eq. (2.31). This solution is relevant even

in the presence of external forces, particularly for high-Q cantilevers, as it

sets a time scale for any present oscillation to disappear, once it is no longer

excited, for example, after a change in driving frequency.

2.2.2 The Single-Electron Tunneling Force

In this section we analyze how quantum dots interact with the microscope. In

particular, we ask how single-electron charging effects are resolved. The microscope

adds two important components to the system: The biased AFM tip and the

cantilever. The biased AFM tip acts as a local, mobile gate on the sample. The

AFM cantilever is our microscopic force detector.

The experiment is setup in the following way: We park the biased AFM tip near

the quantum dot and set it mechanically into oscillation. The tip oscillations gate

the quantum dot with an ac electric field. If the quantum dot is near resonance
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with the Fermi energy of the lead, the oscillating AFM tip may push an electron

on and off the quantum dot periodically – depending on the transparency of the

tunnel barrier, up to once on and off per tip oscillation cycle. By quantum dot

physics (Sec. 2.1.5), the electrostatic potential of the quantum dot (2.4) jumps by

an amount EC = e2/Cdot each time an electron tunnels. This abrupt change in

electrostatic potential is sensed by our force detector, the AFM cantilever. Stated

more generally, the cantilever resolves the response of the quantum dot to the

periodic perturbations created by the AFM tip.

Previewing the results briefly here, the response of the quantum dot to an ac-

gate and the ensuing cantilever measurement signal show some common features

of driven feedback systems. Electron tunneling on and off the quantum dot as

a dynamic response to an ac-driving gate occurs at a phase lag. As one might

expect intuitively, the phase lag depends on how the driving frequency compares

to tunneling rate of electrons, ω/Γ. This phase lag results in an in-phase and an

out-of-phase component of the force on the AFM cantilever, which is of the form

F ∝ 1 + iω/Γ

1 + (ω/Γ)2
(2.48)

and gives rise to a resonance frequency shift of the cantilever and additional power

dissipation.

In the following we derive in detail the response of the quantum dot to the

oscillating AFM tip and the resulting feedback on the cantilever that is measured.

We derive these two parts in the opposite order:

• First, we examine the electrostatic force from a quantum dot due to a tun-

neling electron. This is a basic exercise in capacitance network theory. We

derive a general expression, but keep the notation simple and exemplify the
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situation on a single electron box with two gates. This example realistically

models a gold nanoparticle that is linked to a carbon nanotube and gated by

the AFM tip and the degenerately doped wafer (backgate), as discussed in

Chap. 6.

• Second, we evaluate the dynamic response of the quantum dot to a periodi-

cally varying gate, such as the oscillating AFM tip. Here we solve the kinetic

equation governing the dot occupancy when the electrochemical potential of

the dot is driven into oscillations. Since the tunneling rates that enter the

kinetic equation are different in the classical and quantum limits, we treat

the two regimes separately.

• For later reference, we combine the findings from the two sections in a short

summary and recapitulate relevant equations.

To make the derivation more tangible, we quickly introduce a simple but repre-

sentative model of the experiment that exemplifies the situation discussed below:

Figure 2.8 shows a quantum dot in a single-electron box geometry with two gates

and its equivalent circuit. The two gates in our experiment are the AFM tip and

the degenerately doped silicon wafer. The lead sets an electrochemical potential

reference for the quantum dot and provides charges to tunnel on and off the dot

as needed. It also serves as reference voltage and is thereby our ground plane.

Including the quantum dot, there are 4 conductors in the system. From an elec-

trostatic point of view, these conductors form a capacitive network. Accounting

for the capacitance to the lead as a self-capacitance to GND, the network can be

described by a 3 × 3 capacitance matrix and a gate charge of the quantum dot

given by Eq. (5.2). The sole purpose of this model here is to provide a specific
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(a) Schematic of a quantum dot with tun-

nel contact, gate, and tip.

(b) Equivalent circuit diagram of

Fig. 2.8(a).

Figure 2.8: Simple model of a quantum dot device in the AFM. The dot is shown

in a single-electron box geometry with two gates, the AFM tip and the backgate.
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setup that illustrates the potentially abstract derivation below.

The force due to single-electron tunneling

We start from a general quantum dot circuit that can couple to several charge leads

and have multiple gates. From an electrostatic point of view, the quantum dot,

the leads, and the gates are conductors that form a capacitive network (Jackson

1999, van der Wiel et al. 2003). In such a network, the electrostatic force acting

on the AFM tip is capacitive and given by8

Fcap =
∑
i,j

1

2

dc̄ij

dz
Vi Vj =

∑
i<j

1

2

dCij

dz
(Vi − Vj)

2 , (2.49)

where c̄ij are the elements of the capacitance matrix, Vi and Vj are the electrostatic

potentials on the conductors i and j, and Cij is their mutual capacitance. z is the

vertical separation between the tip and the quantum dot.

We isolate the electrostatic force from the quantum dot on the tip by collecting

all terms linear in its electrostatic potential, Vdot, and obtain

F
(dot)
cap = −

∑
i6=dot

dCdot,i

dz
Vi Vdot

=
dqc

dz
Vdot .

(2.50)

In the 2nd line, we have compactly rewritten the force in terms of the gate charge

or control charge of the quantum dot,

qc = −
∑
i6=dot

Cdot,i Vi . (2.51)

It represents the charge that would reside on the dot in the classical limit if charge

wasn’t quantized and expresses the cumulative gating effect of all conductors that

are capacitively coupled to the dot.

8It is a subtle and remarkable fact that the force (2.49) on a conductor in a
general capacitive network is independent of whether any conductor is a voltage
or a charge node, or what the distribution of voltage and charge nodes is.
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To evaluate the force due to single-electron tunneling, we find the electrostatic

potential of the quantum dot9 from Eq. (2.5) as

Vdot =
qdot − qc

Cdot

, (2.52)

where qdot is the charge on the dot, qc is the gate charge (2.51), and Cdot is the

total capacitance of the quantum dot,

Cdot =
∑
i6=dot

Cdot,i , (2.53)

which determines the charging energy EC of the quantum dot.

To calculate the force due to single electron tunneling, we assume that N

electrons are fixed on the dot and only the (N+1)th electron may tunnel on or off

the dot. If ℘ is the probability that the (N+1)th electron resides on the quantum

dot, then the total charge on the dot is

qdot = −℘ e− (N−N0) e , (2.54)

where the offset N0 was defined in Eq. (2.4) and −e is the electron charge.

When combining Eqs. (2.50), (2.52), (2.54), we omit all force terms that remain

constant when an electron is tunneling between the quantum dot the the lead. This

way we isolate the force acting on the tip due to single-electron tunneling. It is

given by

Fe− = −dqc

dz

e

Cdot

℘ (2.55)

and correlates directly with the probability ℘ of an extra electron occupying the

dot. This result is quite intuitive:
−e

Cdot

is the jump in electrostatic potential of the

9From a capacitance matrix point of view, Eq. (2.52) immediately follows from

qdot =
∑

i

c̄dot,i Vi =
∑
i6=dot

Cdot,i (Vdot − Vi) = Cdot Vdot + qc .

.
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quantum dot when an electron tunnels onto the dot,
dqc

dz

−e

Cdot

is the accompanying

force on the cantilever, and ℘ is the probability that the tunneling event happens.

In the following section we evaluate exactly this probability for our experiments.

Dynamic response of a quantum dot to an oscillating gate

In this section we use the kinetic equation (2.25) to calculate the response of the

quantum dot to an oscillating gate. In our experiment, we use the biased AFM

tip to create this time-dependent gating. The AFM tip is an unusual gate in that

it can change the gate charge of the quantum dot (2.51) in 2 different ways – by

its voltage Vtip or by its position ~r = (x, y, z) via the tip-dot capacitance Ctd(~r).

We use the 2nd mechanism here. In our experiment, we set the biased AFM tip

into oscillation nearby a quantum dot. The tip oscillations are described by (Sec.

2.2.1)

z(t) = z0 + zω e−iωt . (2.56)

As a consequence of the resonating, biased tip nearby, the electrochemical po-

tential of the quantum dot oscillates synchronously with the tip. With respect to

the electrochemical potential of the lead it is given by

∆E = µdot − µlead = ∆Edc + ∆Eω e−iωt , (2.57)

where the static part, ∆Edc, is set by the electrostatic environment of the dot and

can be changed by dc gate voltages. The oscillating part is solely due to the tip
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resonating near the dot and given by10

∆Eω =
e

Cdot

dqc

dz
zω . (2.58)

If the electrochemical potential of the quantum dot is near resonance with the

electrochemical potential of the lead, ∆Edc < ∆Eω, then the mechanical oscilla-

tions of the tip may push an electron on and off the dot periodically. The dynamic

response of the quantum dot to the changing electrochemical potential is governed

by the kinetic equation (2.25),

d℘

dt
= −℘ Γoff + (1− ℘) Γon

= −℘ (Γoff + Γon) + Γon ,

(2.59)

where ℘ is the probability of the extra electron residing on the dot. Γon and Γoff

are the tunneling rates on and off the dot, respectively. They are different in

the classical and the quantum regime, as discussed in Sec. 2.1.6. We treat each

regime separately below and solve the kinetic equation for ℘ in linear response to

an oscillating gate (2.57) below.

Dynamic response of a quantum dot in the quantum limit, ∆Elevel � kBT .

In the quantum limit, the electron tunneling rates on and off the dot are given by

Eq. (2.11). Together with the relation (2.13), we find for the kinetic equation

(2.59)

1

Γqdot

d℘

dt
= −℘ + f(∆E) , (2.60)

where f is the Fermi-Dirac distribution, Eq. (2.10), and ∆E is the misalignment

of the electrochemical potentials, ∆E = µdot − µlead. From this equation we im-

10Note that an oscillating electrochemical potential of the quantum dot as in
Eq. (2.57) can also be created by an ac voltage on a gate. In this case, Eq. (2.58)

has to be replaced by ∆Eω = eCdot,iV
(ω)
i /Cdot, where V

(ω)
i is the peak amplitude

of the ac-voltage on the gate i.
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mediately see that the equilibrium occupancy,
d℘

dt
= 0, of the charge state is given

by the Fermi-Dirac distribution,

℘eq = f(∆E) . (2.61)

To evaluate to quantum dot’s response to a time-varying gate, Eq. (2.57), we

expand the Fermi-Dirac function about the static misalignment ∆Edc,

f(∆E) ≈ f(∆Edc) + f ′(∆Edc) ·∆Eω e−iωt , (2.62)

and retain only terms up to linear order, assuming that ∆Eω is small, ∆Eω � kBT .

With this linear expansion, the kinetic equation (2.60) becomes

1

Γqdot

d℘

dt
= −℘ + f(∆Edc) + f ′(∆Edc) ·∆Eω e−iωt (2.63)

in linear response and is solved11 by the ansatz

℘(t) = ℘dc + ℘ω e−i(ωt−φω) . (2.64)

The coefficients of the solution are given by

℘dc = f(∆Edc) and ℘ω eiφω =
f ′(∆Edc) ∆Eω

1− iω/Γqdot

. (2.65)

Rewriting Eq. (2.64) using Eq. (2.56), we can express the single-electron tunneling

response in terms of the cantilever motion,

℘(t) = ℘dc + ℘ω eiφω
z(t)− z0

zω

. (2.66)

11We restrict ourselves to the steady-state solution of the linear differential equa-
tion (2.63). The full solution

℘(t) = ℘dc + ℘ωe−i(ωt−φω) + ℘decay e−t/τ

contains an additional transient term, which decays exponentially with a time con-
stant τ = 1/Γqdot. The transient amplitude ℘decay is fixed by the initial conditions.
Experimentally, we find that the electrons readily tunnel on and off our CNT
dots on the time scale of our cantilever oscillations, ω0 < Γqdot. Since we average
over many tip oscillations when recording data, this decay term is experimentally
irrelevant, as tavg � 2π/ω0 > 1/Γqdot = τ .
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For the single-electron tunneling force on the AFM cantilever, Eq. (2.55), this

solution implies

F
(qdot)

e− = −dqc

dz

e

Cdot

f ′(∆Edc) ∆Eω

1− iω/Γqdot

z − z0

zω

, (2.67)

where we omitted the constant term due to the average dot occupation ℘dc. In-

serting the amplitude of oscillation of the dot’s electrochemical potential, ∆Eω,

from Eq. (2.58), we obtain

F
(qdot)

e− = −
(

dqc

dz

e

Cdot

)2
f ′(∆Edc)

1− iω/Γqdot

(z−z0) . (2.68)

We analyze the experimental implications of this force further in the summary of

this section (see page 59). In the meantime, we derive the dynamic single-electron

tunneling force in the classical limit.

Dynamic response of a quantum dot in the classical limit, kBT � ∆Elevel.

In completely parallel treatment to the quantum limit above, we start from the

tunneling rates on and off a classical dot, as given in Eq. (2.14). Using their

compact notation (2.16) in terms of the dimensionless function g, which is defined

in Eq. (2.15), the kinetic equation (2.59) reads for classical dots

1

Γcdot

d℘

dt
= −℘ {g(∆E) + g(−∆E)}+ g(∆E) . (2.69)

Although not immediately obvious, the stationary solution,
d℘

dt
= 0, to this equa-

tion is given by the Fermi-Dirac distribution,

℘eq =
g(∆E)

g(∆E) + g(−∆E)
≡ f(∆E) , (2.70)

just like in the quantum limit, Eq. (2.61).
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To solve the kinetic equation (2.69) in linear response, we Taylor expand the

two functions

g(∆E) ≈ g(∆Edc) + g′(∆Edc) ·∆Eω e−iωt

g̃(∆E) = g(∆E) + g(−∆E) ≈ g̃(∆Edc) + g̃′(∆Edc) ·∆Eω e−iωt .
(2.71)

and use these approximations in the kinetic equation (2.69). This gives

1

Γcdot

d℘

dt
= −℘

{
g̃dc + g̃ω e−iωt

}
+ gdc + gω e−iωt , (2.72)

with coefficients

gdc = g(∆Edc) ,

gω = g′(∆Edc) ∆Eω ,

g̃dc = g(∆Edc) + g(−∆Edc) = 1
2
β ∆Edc coth

(
1
2
β ∆Edc

)
,

g̃ω = g̃′(∆Edc) ∆Eω = [g′(∆Edc)− g′(−∆Edc)] ∆Eω .

(2.73)

Comparing the master equation for quantum dots and classical dots, Eqs. (2.63)

and (2.72), respectively, classical dots have an additional, qualitatively different

term ℘ g̃ω e−iωt that arises from the absence of relation (2.13) in the classical limit.

This term excites higher order harmonics of the oscillation even in linear response.

The steady-state solution to Eq. (2.72) is given by

℘(t) = ℘dc +
∞∑

n=1

℘nω e−i(nωt−φnω) (2.74)

with amplitudes ℘nω and phases φnω to be determined. For the static and the

fundamental term we find

℘dc =
gdc

g̃dc

=
1

1 + eβ ∆Edc
= f(∆Edc)

℘ω eiφω =
gω − g̃ω℘dc

g̃dc − iω/Γcdot

=
f ′(∆Edc) ∆Eω

1− iω/g̃dcΓcdot

.

(2.75)

The amplitudes and phases of higher harmonics are easily extracted from Eq.

(2.72), as well, but for accurate results, corresponding higher order terms in the

expansion (2.71) must also be taken into account.
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From the response of the quantum dot to an oscillating gate, as expressed

in Eqs. (2.74) and (2.75), we can calculate the force on the cantilever due to

single-electron tunneling (2.55) in the classical regime. The ω-component of the

single-electron force can be written in terms of its cause, the cantilever oscillations

z−z0 = zω e−iωt, as

F
(cdot)

e− = − dqc

dz

e

Cdot

f ′(∆Edc) ∆Eω

1− iω/g̃dcΓcdot

z − z0

zω

. (2.76)

Using the expression for the amplitude of the dot’s electrochemical potential os-

cillations, Eq. (2.58), we rewrite the single-electron tunneling force as

F
(cdot)

e− = −
(

dqc

dz

e

Cdot

)2
f ′(∆Edc)

1− iω/g̃dcΓcdot

(z−z0) . (2.77)

The time delay between the cantilever motion and the electron tunneling response

gives rise to an in-phase and out-of-phase component of the force, corresponding

to a resonance frequency shift and additional energy dissipation, respectively, from

single-electron tunneling. The details are discussed in the summary below.

Note in Eq. (2.76) that besides the derivative of the Fermi-Dirac distribution,

the dimensionless parameter g̃dc is also a function of the static misalignment be-

tween the electrochemical potentials of the dot and the lead, ∆Edc. This misalign-

ment is set (and changed) by the equilibrium tip position z0, the dc gate voltages

{Vi}, and the amount of charge on the dot. Limiting expansions of the functional

form (2.73) show that g̃dc varies quadratically at small misalignments and increases

linearly at large misalignments,

g̃dc →

 1 +
(β ∆Edc)

2

12
if |β ∆Edc| � 1 ,

1
2
|β ∆Edc| if |β ∆Edc| � 1 .

(2.78)

Its minimum value is g̃dc = 1, which occurs only on resonance, ∆Edc = 0.
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The fact that g̃dc only appears as a factor to Γcdot suggests the view that the

effective tunneling rate in the classical limit is Γ = g̃dc Γcdot, where g̃dc describes

the dependence on the gate voltages, tip position, and charge state of the quantum

dot and Γcdot carries the inherent properties of the tunnel barrier, such as its height

and width.

Summary. While the classical and the quantum limit were treated separately

due to the dot’s different tunneling rates in the two limits, the final expressions

for the single-electron tunneling force, Eqs. (2.68) and (2.76), look very similar in

both limits. Unifying both equations in one common result, the force exerted on

the cantilever by single-electron tunneling is given by

Fe− = −
(

dqc

dz

e

Cdot

)2
f ′(∆Edc)

1− iω/Γ
(z−z0) , (2.79)

The only difference between the single-electron force in the quantum and the clas-

sical limit is the tunneling rate Γ. Its formula in both limits is summarized in Table

2.1. The single-electron force (2.79) has an in-phase and out-of-phase component,

which give rise to a resonance frequency shift and an additional dissipation term,

respectively. This is more clearly seen after rewriting the force (2.79) in the general

form

Fe− = −δk

(
1 +

iω

Γ

)
(z−z0)

= −δk (z−z0) − δγ
dz

dt
.

(2.80)

The change in spring constant due to single-electron tunneling is given by

δk =

(
dqc

dz

e

Cdot

)2
f ′(∆Edc)

1 + (ω/Γ)2
(2.81)

with a corresponding resonance frequency shift and energy dissipation term

δω0

ω0

=
δk

2k
and δγ = −δk

Γ
. (2.82)
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Table 2.1: Tunneling rate Γ of a quantum dot in the classical and quantum limit.

In the quantum limit, Γ is independent of the gate voltage or tip position and

fully described by the properties of the barrier. Inherently, this is a consequence

of Eq. (2.13). In the classical limit, Γ has an explicit dependence on the gate

voltages and the tip position, which is described by the dimensionless parameter

g̃dc. Its formula above is a near-resonance expansion, ∆Edc � kBT , as relevant

in the experiment. For the exact expression and an off-resonance expansion, see

Eqs. (2.73) and (2.78). The properties of the tunnel barrier in the classical limit

are encoded in Γcdot.

Coulomb blockade regime tunneling rate Γ

quantum limit:

kBT � ∆Elevel

Γ = Γqdot Γqdot =
hνlevel

e2RT

=
∆Elevel

e2RT

classical limit:

kBT � ∆Elevel

Γ = g̃dc Γcdot

Γcdot =
2 kBT

e2 RT

g̃dc ≈ 1 +
1

12

(
∆Edc

kBT

)2
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Notice that the resonance frequency always shifts towards lower values, while the

dissipation only increases due to single-electron tunneling. The evolution of these

two terms with drive frequency ω and tunneling rate Γ is shown in Fig. 2.9.

The quality factor Q of the cantilever, whose inverse measures the relative

energy loss per oscillation cycle, has a contribution from the in-phase and the out-

of-phase component of the single electron force (2.79). The in-phase component

(or frequency shift) reduces the total energy stored in the cantilever; the out-of-

phase component increases the amount of energy dissipated per cycle. Hence, both

contributions increase the loss,

δ

(
1

Q

)
=

ω0

k
δγ − 1

Q

δω0

ω0

= −δk

k

[
ω0

Γ
+

1

2Q

]
.

(2.83)

The in-phase term (due to the resonance frequency shift) is negligibly small, typi-

cally a few parts per billion (ppb), as δω0/ω0 < 10−4 due to single-electron tunnel-

ing and 1/Q < 10−4 in our experiments. The out-of-phase term depends on ω0/Γ

and can be significant.

Similarly, the tip oscillation amplitude also has a contribution from the in-

phase and the out-of-phase component of the single-electron tunneling force. For

a resonantly driven cantilever, Eq. (2.43), the relative change in tip amplitude due

to single-electron tunneling is given by

δzω0

zω0

= −δγ

γ
− δω0

ω0

=
δk

k

(
Q

ω0

Γ
− 1

2

)
,

(2.84)

where we assume a constant ac-force amplitude Fω. The first term in parentheses

is the dissipation term that arises from the out-of-phase component of the single-

electron force (2.79). The second term is due to the in-phase contribution. In our
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Figure 2.9: Evolution of the frequency shift and dissipation signal due to single-

electron tunneling with the ratio of driving frequency ω to tunneling rate Γ. Both

quantities are normalized by their maximum change. Since the cantilever resonance

frequency shift is negative, we take the normalizing δω0,max as its most negative

value, δω0,max ≤ δω0 ≤ 0. The frequency shift signal varies as δω0 ∝
1

1 + (ω/Γ)2

and the dissipation signal as δγ ∝ ω/Γ

1 + (ω/Γ)2
.
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samples, the in-phase term is too small to be observed in the amplitude signal.

As a consequence, the tip oscillation amplitude resolves the dissipation due to

tunneling and is complementary to the resonance frequency shift measurement, as

discussed in Sec. 6.6.

2.2.3 Power dissipation due to single-electron tunneling

The previous section derived the single-electron tunneling force and described the

resulting signal on the cantilever fully. In this section we derive only the dissipation

signal due to single-electron tunneling on an alternative route. This path gives

additional physical insight into the dissipation mechanism and explicitly evaluates

some other useful quantities.

The approach in this section is based on enforcing energy conservation: If elec-

trons dissipate energy in the tunneling process, this energy has to be supplied by

some source in the system. Given the experimental setup, the only candidate in

the system with a steady energy input is the AFM cantilever. Consequently, we

require that the power dissipated by single-electron tunneling be exactly compen-

sated for by the AFM cantilever. In turn, this implies that single-electron tunneling

is visible as extra “damping” or “friction” on the cantilever.

This section proceeds in the following steps: First, we derive the power dissi-

pation due to single-electron tunneling. Here we correlate the electron tunneling

current on and off the quantum dot with the ac-drive signal. A phase lag be-

tween the two results in steady dissipation of energy. This part requires separate

treatment in the classical and quantum limit. To avoid any repeat analysis, we

heavily borrow the solution to the kinetic equation from the previous section. To

balance this dissipation due to single-electron tunneling, we calculate the power
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dissipation in the cantilever and how it is reflected in the cantilever parameters. In

a summary we compare the two powers and confirm consistency with the results

from the previous section.

Power dissipation due to single-electron tunneling. The experimental setup

in this section is identical to the setup in the previous section. Briefly, a biased

AFM tip is resonating near a quantum dot. The motion of the AFM tip gener-

ates an ac electric field at the quantum dot, and its electrochemical potential is

oscillating in synch with the AFM tip,

∆E = µdot − µlead = ∆Edc + ∆Eω cos(ωt) . (2.85)

As a consequence of this time-varying perturbation, an electron may tunnel on and

off the quantum dot if the electrochemical potentials of the dot and the lead are

close to resonance. This changes the occupation probability ℘ of the quantum dot

over time. In solving the kinetic equation (2.59), we found in the quantum limit

of Coulomb blockade a solution of the form

℘(t) = ℘dc + ℘ω cos(ωt− φω) . (2.86)

The associated electron current is given by

I = −e
d℘

dt
⇒ Iω = e ℘ω ω sin(ωt− φω) (2.87)

across the tunnel barrier. The energy dissipated in a tunneling event is the dif-

ference in electrochemical potential between the quantum dot and the lead at the

moment of tunneling. In a circuit picture, the power dissipated by this tunneling

current is determined by the “voltage” across the tunnel barrier at the time of

tunneling,

P = 〈Vjct · I〉time . (2.88)
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The effective voltage across the tunnel barrier is given by the misalignment between

the electrochemical potentials of the dot and the lead,

Vjct =
µdot − µlead

−e
=

∆E

−e
=

∆Edc + ∆Eω cos(ωt)

−e
. (2.89)

Consequently, the average12 power dissipated by single-electron tunneling is

Pω =

〈
∆E

−e
· Iω

〉
time

= ω ∆Eω ℘ω
sin(φω)

2
. (2.90)

Clearly, any phase 0 < φω < 180◦ will cause energy to be dissipated in the tunneling

process. For a perfectly transparent tunnel barrier, there is no phase lag, φω = 0,

and no power is dissipated, Pω = 0, as predicted by Eq. (2.90).

In the classical limit, the solution to the kinetic equation (2.59) also contains

higher harmonics and is of the form

℘(t) = ℘dc +
∞∑

n=1

℘nω cos(nωt− φnω) . (2.91)

The associated electron tunneling current across the tunnel barrier has the higher

harmonics, as well,

I = −e
d℘

dt
= e

∞∑
n=1

℘nω nω sin(nωt− φnω) =
∞∑

n=1

Inω , (2.92)

but the dissipated power remains the same, because the electrochemical potential

oscillates only at the fundamental. Restated in mathematical terms, the power

Pnω due to the harmonic Inω in current is

Pnω = −1
e
〈∆E · Inω〉time

= −∆Eω ℘nω nω 〈cos(ωt) sin(nωt− φnω)〉time

= −∆Eω ℘nω nω
〈

sin((n+1)ωt−φnω) − sin((n−1)ωt−φnω)
2

〉
time

.

(2.93)

12Use

cos(α) sin(β) =
sin(α+β)− sin(α−β)

2
and 〈sin(2ωt− φω)〉time = 0 .
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Clearly, the time average in the last line of Eq. (2.93) vanishes unless n = ±1. We

conclude that the total power dissipated by single-electron tunneling is

P = Pω = ω ∆Eω ℘ω
sin(φω)

2
(2.94)

in both the classical and quantum regime of Coulomb blockade. All that remains

to do now is to evaluate ℘ω sin(φω) in the classical and quantum limit, which we

quote from Sec. 2.2.2.

Power dissipation in the quantum limit, ∆Elevel � kBT . From the solution

of the kinetic equation in the quantum limit, Eq. (2.65), we find

℘ω sin(φω) = f ′(∆Edc) ∆Eω
ω/Γqdot

1 + (ω/Γqdot)2
. (2.95)

From this solution we evaluate the power dissipated (2.94) to be

Pqdot = −ω f ′(∆Edc) ∆E 2
ω

2

ω/Γqdot

1 + (ω/Γqdot)2

= −1

2
ω z2

ω

(
dqc

dz

e

Cdot

)2

f ′(∆Edc)
ω/Γqdot

1 + (ω/Γqdot)2
,

(2.96)

where we used Eq. (2.58) to eliminate ∆Eω in the 2nd line. We analyze and

comment on this expression further in the summary section, after we state the

corresponding relation in the classical limit.

Power dissipation in the classical limit, kBT � ∆Elevel. In the classical

limit, the solution to the kinetic equation was given by Eq. (2.75) and reads

℘ω sin(φω) = f ′(∆Edc) ∆Eω
ω/g̃dcΓcdot

1 + (ω/g̃dcΓcdot)2
. (2.97)

This leads to a power dissipation of

Pcdot = −ω f ′(∆Edc) ∆E 2
ω

2

ω/g̃dcΓcdot

1 + (ω/g̃dcΓcdot)2

= −1

2
ω z2

ω

(
dqc

dz

e

Cdot

)2

f ′(∆Edc)
ω/g̃dcΓcdot

1 + (ω/g̃dcΓcdot)2
.

(2.98)

In the 2nd line, we used Eq. (2.58) to eliminate ∆Eω.
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Power dissipation of the cantilever. If a damped harmonic oscillator is driven

by a periodic force Fac(t) = Fω cos(ωt), its power dissipation is given by

Pcantilever(t) = −dz(t)

dt
· Fac(t) = ωzω sin(ωt + θω) · Fω cos(ωt)

=
1

2
Fωzωω [sin(2ωt + θω) + sin(θω)] ,

(2.99)

where we used Eq. (2.40) for the motion z(t) of the harmonic oscillator in response

to the ac driving force. Averaging the power dissipation over one oscillation period

τosc = 2π/ω, we find

〈Pcantilever〉 2π
ω

=

∫ 2π
ω

0

dt

2π/ω
Pcantilever(t)

=
1

2
Fωzωω sin(θω) =

1

2
z2

ω ω2 γ =
k z2

ω

2

1

Q

ω2

ω0

.

(2.100)

Expectedly, the oscillator’s average power dissipation is directly proportional to

the damping coefficient γ or the inverse of the quality factor 1/Q. In the 2nd line

we used the phase relation (2.42).

The power dissipation due to different damping mechanisms adds cumulatively.

Consequently, any additional damping, as reflected by a change δγ > 0, results in

additional power dissipation,

δPcantilever =
1

2
z2

ω ω2 δγ , (2.101)

and vice versa.

Summary. The power dissipation due to single-electron tunneling, which was

derived separately in the quantum and the classical limit, Eqs. (2.96) and (2.98),

can be formulated in one expression as

P = −1

2
ω z2

ω

(
dqc

dz

e

Cdot

)2

f ′(∆Edc)
ω/Γ

1 + (ω/Γ)2
. (2.102)

The only difference between the classical and the quantum limit lies in the tun-

neling rate Γ, as detailed in Table 2.1. This power dissipation is solely due to the
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out-of-phase component of the single-electron force, as can be verified from Eqs.

(2.81) and (2.82),

P = −1

2
kz2

ω

δk

k

ω2

Γ
=

1

2
z2

ω ω2 δγ . (2.103)

This expression already relates the dissipation due to single-electron tunneling to

experimentally accessible quantities of the coupled resonator, our AFM cantilever.

The last relation verifies Eq. (2.101) and thereby confirms that the force calculation

from the previous section and the power derivation in this section agree.

In the two limits of a transparent and an opaque dot we find from Eq. (2.102)

P ω�Γ−−−→ −1

2
z2

ω

(
dqc

dz

e

Cdot

)2

f ′(∆Edc)
ω2

Γ

P ω�Γ−−−→ −1

2
z2

ω

(
dqc

dz

e

Cdot

)2

f ′(∆Edc) Γ ,

(2.104)

respectively. Clearly, the power dissipation ultimately approaches 0 in either limit.

This is intuitively clear: In the transparent limit, the electron tunnels instantly

as soon as it is energetically favorable, and no energy is dissipated in the process.

In the opaque limit, the tunneling rate is so slow that the half-period of the tip

oscillation, during which it is energetically favorable for an electron to tunnel,

passes by and tunneling never occurs. The maximum power dissipation occurs in

the intermediate regime, at ω = Γ, where the driving frequency equals the electron

tunneling rate,

P ω≈Γ−−→ −1

2
ω z2

ω

(
dqc

dz

e

Cdot

)2

f ′(∆Edc)

[
1

2
− 1

4

(
1− ω

Γ

)2]
. (2.105)

This was in principle already illustrated in Fig. 2.9 in the previous section.



CHAPTER 3

INSTRUMENTATION

An atomic force microscope (AFM) or scanning force microscope is a powerful tool

that was invented only 20 years ago (Binnig et al. 1986). Its principles of operation

were introduced in Sec. 1.2. Today AFMs are widely used owing to several reasons.

The AFM’s combination of high resolution (standardly below 1 nm in z under

ambient conditions) and ease of operation is difficult to match. There are many

commercial table-top AFMs available that are ready to use with a minimum of

training, experience, and maintenance. Since forces are ubiquitous in nature, the

force sensing scheme is applicable to many samples. It provides a real-space map

of the sample forces, and typically little or no post-processing of images is needed.

An AFM can operate under many external conditions, including ambient, liquid,

and vacuum. It is a versatile instrument that can be run in many different ways,

each of which may relate to different properties of the sample. Even within a

certain mode of operation, there are typically multiple signal channels that can

be recorded simultaneously. Beyond imaging, it can also be (ab)used invasively to

modify the sample or locally deposit certain chemicals.

Mounting an AFM into a cryostat and cooling it to cryogenic temperatures

brings unique opportunities and challenges for this technique. Low temperatures

often set samples in a different, more basic regime of behavior, as thermally acti-

vated processes are frozen out. Furthermore, the sensitivity of the AFM, which is

often thermally limited at room temperature, increases as the thermal noise in the

cantilever is reduced. Lower Johnson-Nyquist noise in cold electronic parts may

contribute further to the instrument’s noise performance. Cryogenic temperatures

also imply vacuum operation and much higher cantilever quality factors than un-

69
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der ambient conditions, improving the AFM’s force sensitivity further. At the

same time, we sacrifice some of the ease of operation and fast sample turn-around

times. This is also reflected in the fact that there is no well-established and widely

used commercial low-temperature AFM available yet. Lastly, some common im-

plementations of essential AFM components are not suitable for low-temperature

operation.

In this chapter we detail some aspects of our specific home-built low-temperature

atomic force microscope (LT-AFM). Further information on this instrument can

be found in previous graduate students’ theses (McCormick 1998, Woodside 2001).

3.1 The Low-Temperature Atomic Force Microscope

Our home-built AFM head is mounted in a commercial bottom-loading one-shot

3He cryostat (by Janis Research Company) with base temperature Tbase = 0.3 K

(Richardson and Smith 1988, Pobell 1996). The AFM controller (SPM 1000),

high-voltage amplifiers (HVA 900), and the software interface were made by RHK

Technologies. The RHK SPM 1000 unit controls the scanning and the coarse

sample translation hardware. For the scan tube, we use additional high-voltage

amplifiers (HVA 900), which bias the 5 piezo electrodes in the range ±520 V.

Vibration isolation. The cryostat mounting features several stages of vibration

isolation to mechanically decouple the AFM from the environment. Three massive

concrete pillars stand at 120◦ angle with respect to each other upon 5 layers of

alternating rubber and steel plates. On each pillar’s top, a passive air piston lifts a

corner of the triangular air table. The air table is filled with lead bricks to increase

its weight. The cryostat is mounted from the air table. Within the inner vacuum
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Figure 3.1: Vibration isolation stages of our low-temperature atomic force mi-

croscope. The left image shows the 3 concrete pillars (black) with air pistons that

support the heavy air table (green) and the cryostat insert. The right image shows

the inside of the inner vacuum chamber of the cryostat. The AFM cage (bottom

center) is suspended from three long springs. The yellow tape measure in the right

image gives a sense of scale.
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chamber of the cryostat, the home-built AFM head is suspended from 3 long, soft

springs. The photographs in Fig. 3.1 give an impression of our LT-AFM setup in

the lab. The vacuum pump line is mechanically isolated from the cryostat through

a bellow system.

AFM head. Our sample translation system is based on a Besocke style slip-stick

walker (Besocke 1987). It enables the sample positioning underneath the tip in

(x, y) and the coarse tip-sample approach in z. The walker has a translation range

of 3 mm in (x, y) and a ramp size of 0.03 inches in z. It rests on 3 piezo tubes,

as shown in Fig. 3.2. When walking, the piezos are biased in a saw-tooth voltage

profile with a fixed time delay in between each voltage spike. The voltage on the

walker piezo electrodes is limited to ±100 V.

Three capacitance sensors allow us to monitor the sample position in the (x, y)

plane. A copper band on the circumference of the sample holder is ac-voltage

biased at 4 V and 4 kHz. The 3 readout plates are located at 120◦ angle with

respect to each other. Each plate is coupled to a current amplifier followed by

a lock-in amplifier chip. The electronic readout circuitry is detailed elsewhere

(McCormick 1998).

We use a custom-made 4-inch long piezo tube to scan the tip above the sample

surface. The 5 scan piezo electrodes are biased over a range of ±520 V. The

combination of this unusually long piezo scan tube and a very high bias voltage

range allows us to maintain a large scan size even at low temperatures. At T =4 K

the scan size is still larger than 30 µm × 30 µm. The downside of such a long

scan tube is the correspondingly long mechanical path length between tip and

sample, causing the mechanical eigenmodes of the scan system to appear at lower

frequencies.
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Figure 3.2: Schematic of the home-built LT-AFM head (from Woodside 2001).
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The tip holder contains a piezoelectric bimorph actuator underneath the can-

tilever substrate. It enables us to drive the tip into oscillations at a constant

ac-force amplitude, as needed for dissipation measurements (Sec. 6.4).

3.2 Piezo-resistive Cantilevers

Most room-temperature AFMs use an optical readout of forces acting on the tip.

Keeping the optics aligned (either in the reflecting laser beam detection geometry

or using a fiber interferometer (Rugar et al. 1988, 1989, Albrecht et al. 1992))

despite thermal contraction can be challenging in a cryogenic setup. Our force

detection mechanism is all-electronic and relies on commercial piezo-resistive can-

tilevers (Park Scientific, ThermoMicroscopes, Veeco TM Microscopes). The can-

tilever has two legs of piezo-resisitve material that join at the end, where the tip

is mounted, like a split diving board geometry. Some typical parameters of these

cantilevers are listed in Table 3.1. The force detection scheme works as follows:

A force acting on the tip causes the cantilever to flex. The resulting cantilever

deflection ∆z = z − zeq follows from Hooke’s law,

F = −k ∆z . (3.1)

In response to the mechanical deflection of the cantilever, the piezo-resistive legs

of the cantilever change their resistance, Rlever = Rlever(∆z). For typical tip de-

flections of 1 nm to a few nm, the relative change of piezo resistance is quite small

(see piezo sensitivity in Table 3.1). We use a Wheatstone bridge to convert the

relative resistance change of the cantilever into a differential voltage output. The

Wheatstone bridge operates at cryogenic temperatures. Its schematic circuit dia-

gram is shown in Fig. 3.3. The battery and its series resistor Rlimit set the current
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Table 3.1: Properties of the commercial piezo-resistive cantilevers.

Quantity Symbol Typical Value or Range

spring constant k 1− 3 N/m

resonance frequency ω0/2π 20− 70 kHz

quality factor Q 15, 000− 50, 000

resonance width
∆ωFWHP

2π
=

ω0

2πQ
0.8− 1.6 Hz

deflection sensitivity
∆R/R

∆z
2×10−6/nm (T = 4.2 K)

piezo resistance Rlever 2 kΩ

tip angle near apex φtip ±12◦

Figure 3.3: Schematic of the Wheatstone bridge detection circuit.
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level through the actual bridge. For better signal-to-noise ratio, the current across

the bridge should be large. At the same time, resistive heating of the cantilever re-

quires the bridge current to be small to maintain a low temperature. The reference

resistor Rref must be matched to the cantilever resistance Rlever under experimental

conditions. Note that the resistance of the piezo material changes with tempera-

ture and magnetic field1.

The differential voltage output from the Wheatstone bridge can be amplified

electronically and subsequently filtered and processed. We use coax and twin-ax

(a twisted pair with a coax shield) cables throughout to shield the deflection signal

from electronic noise.

The tip is metallized with a thin layer of Titanium by e-gun evaporation. We

deposit 25 nm Ti at ±25◦ with respect to the tip normal, giving a 10-15 nm film.

During evaporation a small blade acts as a shadow mask to cover the area between

the two contact pads on the cantilever substrate. This prevents shorting the piezo

resistor by the Ti film. To bias the tip, the entire Wheatstone bridge is lifted to a

voltage Vtip above ground (GND).

3.3 Cantilever Calibration

The spring constant of the cantilever is defined as the proportionality constant be-

tween a small static force acting on the tip and the resulting cantilever deflection,

Eq. (3.1). It measures the stiffness of the cantilever and can be obtained experi-

mentally in several ways (Hutter and Bechhoefer 1993, Cleveland et al. 1993, Sader

1A surprise finding was that the resistance of our metal thin-film resistors in-
creases steadily with decreasing temperature, typically by about 1% between room
temperature and T = 4.2 K. The piezo-resistive cantilever resistance changes non-
monotonically, often with a single minimum between 77 K and 4.2 K.
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et al. 1995, 1999, Levy and Maaloum 2002, Burnham et al. 2003, Proksch et al.

2004).

We calibrate the spring constant from the thermal noise spectrum of the can-

tilever. A typical example spectrum is shown in Fig. 3.4. This technique is still

applicable to our LT-AFM cantilevers operating at cryogenic temperatures, as the

condition for the validity of the equipartition theorem, kBT � ~ω0, is always met

in our system, T � 4 µK.

An advantage of this technique is that it is non-invasive and non-destructive to

the cantilever and tip. It is easy to carry out with the existing experimental setup

and yields the complete set of intrinsic cantilever parameters, the spring constant

k, the free resonance frequency ω0, and the quality factor Q, simultaneously.

Briefly, at high enough temperatures the equipartition theorem mandates

1

2
k 〈∆z(t)2〉 =

1

2
kBT ⇒ k = kBT / 〈∆z(t)2〉 . (3.2)

The problem reduces to measuring the mean square oscillation amplitude 〈∆z(t)2〉

due to thermal excitations reliably. As there are other source of noise in the system,

for example, mechanical vibrations from the environment, electronic instrument

noise, and 1/f noise, measuring the oscillation amplitude is not a good approach.

Instead, we record the spectral density of the cantilever oscillations, S∆z(ω). Per

definition, the spectral density or power spectrum is the Fourier transform of the

corresponding autocorrelation function; so, inversely,

〈∆z(t) ·∆z(t+τ)〉 =

∞∫
−∞

dω

2π
S∆z(ω) e−iωτ . (3.3)

Since the cantilever deflection ∆z is real-valued, ∆z∗(t)=∆z(t), its spectral density

is real-valued and an even function of frequency, S∆z(−ω) = S∆z(ω). In this case
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Figure 3.4: Thermal noise spectrum of the AFM cantilever, recorded at T = 77 K.
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the integral (3.3) can be rewritten as2

〈∆z(t) ·∆z(t+τ)〉 = 2

∞∫
0

dω

2π
S∆z(ω) cos(ωτ) if ∆z is real. (3.4)

Setting τ = 0, we find that the desired mean square oscillation amplitude is given

by twice the area under the thermal resonance peak in the spectral density, after

subtracting the flat background noise. As it is unlikely that other noise sources

are peaked about the resonance frequency of the cantilever, this isolates the con-

tribution from thermal noise excitations. In combination with the equipartition

theorem, Eq. (3.2), this allows us to determine the spring constant k of the can-

tilever.

The cantilever resonance frequency is given by the location of the peak of the

spectral density. The quality factor is the ratio of the resonance frequency to the

Lorentzian peak width of the spectral density, as can be seen from the following

argument: The spectral density of the response is related to the spectral density

of the excitation source by the Green’s function G(ω) as

S∆z(ω) = |G(ω)|2 SF (ω) . (3.5)

The Green’s function for the damped harmonic oscillator is given by

G(ω) =
1

k

ω2
0

(ω2
0 − ω2)− i ωω0/Q

. (3.6)

A thermal white noise source has the spectral density of excitation (Heer 1972)

S
(thermal)
F = 2γ ~ω0

(
1

e~ω0/kBT − 1
+

1

2

)
~ω0�kBT−−−−−−→ 2γ kBT = 2

k

ω0

1

Q
kBT .

(3.7)

2 Experimentally, in the spirit of Eq. (3.4), the spectral density is sometimes
defined as 2S∆z(ω). In our treatment, we will retain the definition (3.3) and carry
along all necessary factors of 2. Having said this, one should cautiously check the
definition of the output of one’s spectrum analyzer. While checking the convention
of our SR785, for example, we found an inconsistency in simple unit conversions.
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So, the spectral density of thermal fluctuations in the cantilever deflection is

S
(thermal)
∆z (ω) = 2

kBT

k

ω0

Q

ω2
0

(ω2
0 − ω2)2 + (ωω0/Q)2

. (3.8)

Note that the spectral density is an even function of frequency, S
(thermal)
∆z (−ω) =

S
(thermal)
∆z (ω). Consequently, the resonance peak at ω0 is mirrored at −ω0.

In the limit of small damping, Q � 1, the resonance is very sharp and the

cantilever oscillation amplitude is only appreciable near either resonance peak; for

the peak at ω ≈ ±ω0, we approximate ω2
0 −ω2 = (ω0 + ω)(ω0−ω) ≈ 2ω0 (ω0∓ω),

respectively, and find that

S
(thermal)
∆z,±ω0-peak(ω) ≈ 2

kBT

k

ω0/Q

4 (ω ∓ ω0)2 + (ω0/Q)2
. (3.9)

The total spectral density is the sum of the contributions from the two peaks, which

is an even function of ω again. Each peak has the form of a Lorentz function,

L(x) = L0 +
1

2π

[
4A

W

4 (x− x0)2 + W 2

]
. (3.10)

The factor 1/2π outside the brackets accounts for the corresponding integration

factor in the inverse Fourier transform, Eq. (3.3). Extracting the center of the

Lorentz peak x0, the full-width half maximum W , the area A under either peak,

and the offset L0 as fitting parameters on the measured spectral density gives

the resonance frequency ω0, the resonance width ∆ωFWHP = ω0/Q, half the mean

square displacement kBT/2k, and the flat background noise, respectively.

When measuring the spectral density of thermal noise fluctuation of the can-

tilever deflection, the measurement line width should be much finer than the so-

called equivalent noise bandwidth, while the frequency span of the measurement

should exceed it. For a white noise source, the equivalent noise bandwidth is given
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by (Ott 1988)

Bnoise =

∞∫
0

dω

2π

∣∣∣∣ G(ω)

G(ω0)

∣∣∣∣2 . (3.11)

For the resonant cantilever, this equates to Bnoise = ω0/4Q, which is typically

0.3− 0.5 Hz for our cantilevers.

To convert the spectral density of thermal tip oscillations from a spectrum an-

alyzer output into proper units (nm2/Hz), we need to calibrate the piezo deflection

sensitivity of the cantilever. Note that it changes with temperature and the man-

ufacturer quoted value is only roughly approximate. For this purpose, we collect

force-distance curves, i.e., we record the dc-deflection of the cantilever as the scan

tube extents in z until it pushes the tip slightly into the surface. This procedure in

turn requires calibration of the scan tube extension, which we perform on a known

height standard.

3.4 Detection Limit and Noise Considerations

Noise is always present in any experimental system and arises from different intrin-

sic and avoidable sources. Intrinsic noise often originates from random processes

(for example, thermal fluctuations), and it is impossible to predict the exact noise

amplitude at any given moment. Nonetheless, we can make reliable statistical

statements and predict the average noise level. Correspondingly, the method of

averaging the signal, in particular the time scales3 involved in data taking, is rele-

vant to the quality of data, as measured by the signal to noise ratio.

When sampling with a bandwidth B, the minimum force4 that can be detected

3The leap from statistical ensemble average to time average is subtle in theory
and subject to several conditions. We content ourselves with the assumption that
the ergodic hypothesis is applicable.

4We define the limit of sensitivity as unity signal-to-noise ratio, S/N = 1.
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by the cantilever is limited by5 (Heer 1972)

Fnoise =

√
2 S

(noise)
F B ≥

√
4 k kBT B

ω0 Q
, (3.12)

where the last term evaluates the thermal noise contribution, Eq. (3.7). The most

common strategy to reduce the force noise in the cantilever (and thereby increase

the ultimate force sensitivity of the AFM) is to reduce the cantilever spring con-

stant. Ultrasoft cantilevers with spring constants below k ≈ 10−5 N/m have been

fabricated and force sensitivities down to 3 aN/
√

Hz at T = 4.2 K have been mea-

sured (Stowe et al. 1997, Stipe et al. 2001, Jenkins et al. 2004). The corresponding

noise in the cantilever rms-amplitude for our resonant measurement is given by

∆znoise =

√
2 S

(noise)
∆z (ω0) B ≥

√
4 Q kBT B

ω0 k
. (3.13)

Note that in the thermal noise limit, the equivalent noise bandwidth (3.11) formally

reproduces the rms-amplitude (3.13) from the equipartition theorem, Eq. (3.2).

Consequently, as our measurement bandwidth is larger than that, we sample most

of the thermal noise response of the cantilever in our experiments.

For a typical piezo-resistive cantilever, Table 3.1, the above thermal noise limits

evaluate to √
2 S

(thermal)
F ≈ 200

aN√
Hz

×
√

T

4.2 K√
2 S

(thermal)
∆z (ω0) ≈ 3.0

pm√
Hz

×
√

T

4.2 K

(3.14)

for the cantilever force and deflection, respectively.

Equation (3.12) predicts the amount of thermal noise in the cantilever force and

thereby establishes the ultimate limit of sensitivity of the AFM. The actual sen-

sitivity, however, is determined by the cumulative effect of all noise contributions

5The factor of 2 in front of the noise power spectrum arises from the same
factor in front of the integral (3.4) and is sometimes absorbed in the definition of
the spectral density (Albrecht et al. 1991). See also footnote 2.
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present in the system. As the cantilever deflection signal is detected, transferred,

and processed, other sources of noise enter the signal path. To achieve the ultimate

sensitivity, their cumulative effect has to remain well below the intrinsic noise of

the cantilever.

An unavoidable source of noise is electronic instrument noise, whose most rele-

vant contribution along the signal processing chain is the 1st amplification stage6.

We use a home-made low-noise differential amplifier (McCormick 1998). The am-

plifier is special in several ways. To name just a few of its features: It offers a high

voltage gain with a flat transfer characteristic from audio frequencies down to dc,

G(ω)≈6000 ∀ω<2π×100 kHz. It has a large dynamic output range of ±30V and

a good common mode rejection ratio (CMRR). The amplifier operates at room

temperature with a measured spectral noise density of

√
2 S

(ampl)
V ≈ 0.7 nV/

√
Hz

at the input (McCormick 1998). Among other design criteria, to achieve such a

low noise power at room temperature, we use 2×5 low-noise JFETs in parallel at

the heart of the amplifier, which were hand-picked for their superior characteristics

(and to match each other). In comparison, according to our detection scheme (see

circuit diagram in Fig. 3.3), the thermal noise in the cantilever deflection (3.13)

produces a voltage signal√
2 S

(thermal)
∆V (ω) =

Ibridge

2
Rlever

(
∆R/R

∆z

)√
2 S

(thermal)
∆z (ω) (3.15)

at the output of the Wheatstone bridge. Under usual experimental conditions

(Ibridge ≈ 100 µA), a typical cantilever (Table 3.1) produces thermal fluctuations

of

√
2 S

(thermal)
∆V (ω0) ≈ 0.6 nV/

√
Hz×

√
T/4.2 K at the input of the amplifier. Evi-

dently, the electronic instrument noise of the 1st stage amplifier (operating at room

6After the signal has been amplified, the downstream noise is hopefully small
in comparison and doesn’t affect the signal-to-noise ratio any longer.
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temperature) matches the thermal noise from the cantilever at about T = 5.7 K.

To be limited by thermal cantilever noise at lower temperatures, it is necessary

reduce the electronic noise of the amplifier further. The main source of electronic

instrument noise in our amplifier is Johnson-Nyquist noise (Johnson 1928, Nyquist

1928). It arises from thermal noise fluctuations in dissipative circuit elements.

The spectral density of Johnson-Nyquist voltage noise originating from an ohmic

resistance R is given by (Heer 1972, Papoulis and Pillai 2002)

S
(thermal)
V (R) = 2R kBT . (3.16)

Evidently, the Johnson-Nyquist noise of electronic components can be greatly re-

duced by operating at a lower temperature. Implementing a cold amplifier located

inside the inner vacuum chamber of the cryostat for the 1st amplification stage

would decrease the electronic instrument noise notably. Further considerations

need to go into the design of low-temperature electronics. In particular, many

common Silicon-based electronic chips freeze out under cryogenic conditions and

are not suitable for low temperature operation. A popular version of a cold am-

plifier is based on high-electron mobility transistors (HEMTs).

The Johnson-Nyquist noise analysis is directly applicable to our detection

scheme: A cantilever deflection ∆z is transduced into a resistance change ∆R

by the piezo-resistive cantilever legs. The Wheatstone bridge turns this resistance

change into a differential voltage readout ∆V by comparing the cantilever piezo

resistance Rlever = R
(0)
lever + ∆R to a matched reference resistor Rref ≈ R

(0)
lever as

depicted in Fig. 3.3. From Eq. (3.16) we predict a voltage noise figure of√
2 S

(bridge)
∆V =

√
4Rbridge kBT ≈ 0.8

nV√
Hz

×
√

T

4.2 K
, (3.17)

at the Wheatstone bridge output due to the detection scheme, where Rbridge is
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the Thévenin equivalent resistance of the bridge circuit (Horowitz and Hill 1989).

Hence, the electronic noise figure of our detection scheme is comparable to the

noise from thermal cantilever vibrations at the same temperature and the home-

built amplifier electronic noise. Notice that the thermal cantilever noise readout

depends on the bridge current, Eq. (3.15), in contrast to the electronic detection

and amplification noise. It can be adjusted slightly with respect to the other noise

sources if needed – for example, when calibrating the cantilever by thermal noise

detection, Sec. 3.3.

The above discussion considers several noise sources and evaluates their effect

on the cantilever deflection and oscillation amplitude signal. A similar noise analy-

sis can be done for the cantilever resonance frequency, as discussed in the literature

(Albrecht et al. 1991).

3.5 Resonant Loop and Signal Readout

The quality factor of our cantilevers operating in (cryo-pumped) vacuum is very

high. Correspondingly, our resonance peak is very narrow, ∆ωFWHP/2π ≈ 1 Hz.

In comparison, the overall change in resonance frequency within an image exceeds

the resonance width many times. If the cantilever was driven at a fixed frequency,

as common in many room temperature AFMs operating under ambient conditions

or in liquids (with much lower Q-factor), the amplitude of cantilever oscillation

would vanish in large parts of the image. To maintain a good amplitude response

signal, the ac-driving force needs to follow the cantilever resonance frequency.

In our setup we use a phase-locked loop to keep the driving force on reso-

nance, as schematically depicted in Fig. 3.5. The tip deflection signal is amplified

(home-built low-noise amplifier) and band-pass filtered (Krohn-Hite 3382) appro-
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Figure 3.5: AFM resonant loop and output signal channels.
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priately. After branching off the output channels for amplitude (EG&G 124A)

and frequency (Agilent 53131A-010) readout, the signal is sent through a tunable

phase shifter with constant amplitude output (home-built). The phase shifter’s

output is a TTL square wave at the same frequency as its input signal, i.e., the

cantilever resonance frequency. The TTL square wave voltage is divided down to

an appropriate amplitude and then used to drive a bimorph piezo actuator inside

the tip holder, which mechanically sets the cantilever in motion. The cantilever can

also be actuated capacitively through the sample, for example, by an ac-voltage

on the extended backgate. This 2nd actuation scheme would not permit extracting

dissipation information from the cantilever amplitude, however, as Q-degradation

measurements require that the cantilever be driven at a constant ac-force ampli-

tude. The driving force here scales with the backgate-tip capacitance derivative,

though, which varies across the sample, Fω0 =
dCtg(~r)

dz
∆V

(dc)
tg V (ω0)

g . For resonance

frequency measurements, either actuation scheme can be used.

3.6 Summary

In this chapter we have discussed several aspects of how to implement and operate

an AFM at low-temperatures, with particular focus on our home-built system.

Our force detection scheme using piezo-resistive cantilevers has been outlined and

a common calibration procedure based on thermal noise fluctuations explained,

yielding the full set of intrinsic cantilever parameters. We have addressed several

sources of noise and evaluated fundamental noise limits for the cantilever deflection.

Operationally, we run our AFM resonantly in a phase-locked loop. This mode

offers two obvious signal channels: the tip oscillation amplitude and the cantilever

resonance frequency, which are used in our experiments in Chap. 5 and 6.



CHAPTER 4

DEVICE FABRICATION

This section details several aspects of the sample fabrication. There are types of 2

samples investigated in this thesis: Carbon nanotube (CNT) electronic devices and

gold nanoparticles that are chemically attached to a CNT by a linker molecule. In

both samples, the CNT is embedded in a field-effect transistor (FET) geometry,

where the CNT is directly contacted by two metal contacts, commonly called source

and drain, and capacitively coupled to a 3rd electrode, called gate. A schematic of

such a CNT-FET is shown in Fig. 4.1. First we discuss the fabrication of CNTs

into a FET device, which mainly involves standard nanofabrication techniques and

CNT growth. In the latter section we comment on how to link gold nanoparticles

to a CNT and the related chemistry.

4.1 Carbon Nanotube Device Fabrication

In this section we outline the steps involved in making CNT electronic devices.

Before going into specific details, we start out with an overview over the principal

steps in the fabrication procedure:

Figure 4.1: Schematic of a carbon nanotube in the field-effect transistor geometry.

88
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1. We start from a degenerately doped silicon wafer with a thermal oxide of

desired thickness. In a 1st lithographic process, we define alignment marks

for later lithography steps on the wafer.

2. In a 2nd lithography step, we write the catalyst islands into a layer of resist.

3. After catalyst deposition and lift-off, we grow CNTs by chemical vapor de-

position (CVD) in a furnace.

4. The source and drain contacts to the CNT devices are lithographically pat-

terned, followed by metal evaporation and lift-off.

5. All CNT devices are probed electrically. The chip is mounted in a chip carrier

and selected CNT devices are wire bonded for LT-AFM measurements.

For most processing steps, multiple tools are available to choose from and a large

number of process variations exist. I first make some general remarks on several

processing steps, where I frequently voice my personal opinion on some fabrication

aspects. This is intended to motivate our choices at different stages in the device

fabrication process. Afterwards we introduce some specific requirements for our

LT-AFM samples and discuss how they can be implemented. To summarize, we

give a more detailed sequence of processing steps at the end of this section, as it

was employed in making the samples for Chap. 5.

Thermal oxide. Silicon wafers with a thermal oxide of any thickness are readily

available commercially. Unfortunately, the thermal oxide quality of many com-

mercial wafers varies from mediocre to poor. For higher quality thermal SiO2, we

often grow the oxide ourselves in a CMOS furnace. Particular care should be taken

of cleanliness. Before the oxide growth, we subject the wafers to an RCA clean,
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followed by a buffered oxide etch, which removes the native oxide from the wafers.

For 100 nm or thicker SiO2, we use a wet growth process (Pierret 1996).

The reason for our concern over the thermal oxide quality is that the SiO2 serves

as gate dielectric to the degenerately doped Si wafer, which is conducting even

at cryogenic temperatures and commonly referred to as backgate. The backgate

extends under all devices on the chip and gates all of them simultaneously. A

poor thermal oxide breaks down more easily – at high applied gate voltages or

during wire bonding – and causes ohmic conduction across the dielectric (called

gate leakage) afterwards.

Alignment marks. In the first lithography step, we expose a series of alignment

marks on the wafer. These include global alignment marks on the periphery of the

wafer and a set of alignment marks for each chip on the wafer, which are best placed

in the 4 corners of each chip. For convenience of orienting ourselves on the wafer

later and finding the alignment marks in an optical or scanning electron microscope

(SEM), we write along some optical locators, both globally on the wafer and within

each chip. In this step we also write a local array of specific shapes on each chip,

which allows us to precisely locate the CNTs on the sample surface, as explained

later in the “special needs” section. Since the alignment marks must survive the

high furnace temperatures during CNT growth pristinely, we etch them into the

substrate. For e-beam lithography, at least 1 µm deep marks provide sufficient

topographic contrast in the SEM, so that the automatic alignment algorithm of

our e-beam writer works reliably, even at low beam current, as needed for the

source and drain electrode exposure. For steep side walls, we use dry etches only.

First we transfer the marks and locators into the thermal oxide with a standard
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reactive ion etch using fluoroform (CHF3). Once we reach the bottom of the oxide,

we proceed with a Bosch deep etch process into the silicon. The shape of alignment

marks is specific to the lithography tool(s) to be used later. On the Leica VB6

HR and the Leica EBMF 10.5 e-beam lithography tools, square marks with a 4 µm

side have worked well for us. If applicable, bonding pads to the backgate may also

conveniently be written and deep etched along in this step.

CNT synthesis. We grow our CNTs on chip by chemical vapor deposition (Kong

et al. 1998). This process involves flowing some carbon-containing gas (or vapor)

over the catalyst particles on the sample surface at a high temperature. The cat-

alyst particles help decompose the carbon-containing gas, and CNTs grow out

of them. There is a vast number of CVD recipes for CNT growth available to-

day, with variations in catalyst materials and other add-on ingredients, different

carbon-containing gases and vapors, carrier gas composition, flow rates, growth

temperature, etc. (Dai 2000, 2001, 2002). In this research, all CNTs are grown

from nonahydrate ferric nitrate (Fe(NO3)3 · 9 H2O) as catalyst material. For our

LT-AFM samples, we avoid other catalyst ingredients. Methane (CH4) or ethylene

(C2H4) are our preferred choice of carbon source for CNT growth. We use argon

(Ar) as carrier gas and a small coflow of hydrogen (H2). Our growth tempera-

ture varies between T = 700 − 900 ◦C, depending on the recipe. Just to mention

some alternatives, CNTs can also be synthesized using other methods, for example,

HiPCO or laser ablation, as discussed in the literature (Terrones 2004, Baddour

and Briens 2005, Awasthi et al. 2005).

Lithography. Among the different lithography tools available, we have cho-

sen an all e-beam process, for reasons explained later in this section. The cat-
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alyst islands are designed as 2 µm × 2 µm squares and exposed into a single thin

layer of Poly(methyl methacrylate) (PMMA). In principle, this exposure could be

done in photolithography, as it doesn’t require precise alignment or small feature

size. Some catalyst solvents (like methanol) tend to dissolve photoresist, but not

PMMA, though. For the lift-off process of the source and drain contacts, we use

a bilayer of e-beam resists. Over time I have come to prefer the combination of

495/950 PMMA1 over a copolymer/495 PMMA bilayer with our e-beam writers.

In the last lithography step, we skip the descum after resist development, as an

oxygen plasma also etches the (partly exposed) CNTs readily.

Metal contacts. In the last lithography step of our fabrication outline above,

we define the source and drain contacts to the CNTs. Palladium (Pd) is used as

contact material to the CNT devices in Chap. 5. After the lithographic exposure

and development of the electrode mask, a 50 nm film of Pd (without any adhesion

layer) is e-gun evaporated and slowly lifted off in Acetone. No sonication is used to

assist lift-off. The CNT devices in Chap. 6 are contacted by gold (Au) leads with

a chromium (Cr) adhesion layer. Here we thermally evaporated 3 nm Cr followed

by 35 nm Au.

Special LT-AFM sample needs. For experiments in the LT-AFM, some un-

common sample features are desirable:

• For purely operational convenience, the wire bonds to the sample should stay

far away from the device regions; if possible, outside the range of the walker.

1The number before PMMA denotes the molecular weight of the resist in kilo
Daltons (kDa). Per definition, a Dalton is the weight of a hydrogen atom. It is
very similar to the weight of one atomic mass unit; sometimes they are set equal.
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This way the AFM cantilever cannot break by running into wire bonds or

contact wires during coarse approach of the sample surface.

• To avoid tall features in the sample topography near the scan area, we prefer

a thin layer of small catalyst particles in the catalyst islands.

• A small capacitance between the AFM tip and the source and drain contacts

reduces the electrostatic background signal in the measurement.

The 1st requirement is easily fulfilled: We push the bonding pads far out to the

periphery of the chip. If the increasing resistance of the leads is problematic, we

can increase the width and thickness of the metal strips between the bonding pads

and the device contacts. To keep the catalyst islands small, we deposit catalyst

particles from a very dilute solution of catalyst only, avoiding alumina particles and

other add-on ingredients. Alternatively, one could also evaporate a thin layer of

catalyst material (iron in our case) instead. To accommodate the last requirement,

we do two things: (i) We only use relatively long CNTs for our devices2. This way

the AFM tip gets away from the contacts. (ii) We design the source and drain

contacts with a small footprint near the scan region. The correspondingly small

surface area of the contacts gives a small capacitance to the AFM tip. In order to

make the area of the contacts as small as possible, we need to locate every CNT

to be connected and design a separate mask for each device, which is exposed in

e-beam lithography. In order to locate the exact position of the CNTs on the

surface, we need some unique features of known position nearby each CNT. For

this purpose, we write an array of easily recognizable shapes on the surface, which

2All CNT devices in this research are longer than 7 µm. In the meantime, new
CNT growth recipes (Huang et al. 2003a,b, Kim et al. 2002) have enabled the CVD
growth of much longer CNTs.
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Figure 4.2: Our choice of 4 elementary shapes for a local mark array.

has a fixed location with respect to the alignment marks. These shapes can be

exposed and transferred together with the alignment marks. The details of our

particular choices of shapes and their arrangement in an array are outlined in the

following paragraph. With this array, we can image the grown CNTs on the sample

surface, find their position relative to these shapes, and design an electrode mask

for each tube.

Local mark array. The local array of easily recognizable shapes allows us to

locate the CNTs on the sample surface and design an electrode mask for each CNT

with small surface area near the device. We have selected 4 different elementary

shapes, which are shown in Fig. 4.2. The center of each shape should be easy to

find, as edges are unreliable in lithography and etching. For practical reasons, it is

convenient to have at least one elementary shape that cannot be mapped onto itself

or any other shape by 90◦ rotations. It gives a sense of (up/down and right/left)

orientation of the chip within an image of the sample surface. Among our shapes

in Fig. 4.2, the right-most one serves this purpose.

We arrange these 4 shapes in an array, where any square containing at least 4

shapes has a unique location within the array. Specifically, the 14 × 14 array we

used is shown in Fig. 4.3. For clarity, the array is not drawn to scale. For our

CNT devices, we make the shapes 1 µm wide and tall with a 10 µm center-to-center

separation on the wafer.
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Figure 4.3: Local mark array that is used to locate the CNTs on the sample

surface post growth. The 14 × 14 array arranges the 4 different shapes (Fig. 4.2)

such that any 2 × 2 square is unique within the array. The array is not depicted

true to scale. On the CNT chips, individual shapes are 1 µm on the side and spaced

10 µm center-to-center.
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Sequence of fabrication steps. Now that we have gone into some detail on

fabrication aspects and motivated our choices, we briefly run through the actual

sequence of relevant steps once: We start from a degenerately doped silicon wafer

terminated by a thermal oxide, which was either home-grown or bought commer-

cially. In the first lithography step, we expose all features that give a sense of

location and orientation: These are global alignment marks for the wafer, sets

of alignment marks for each chip on the wafer, adequate optical locators, and a

array of small shapes (local marks) on each chip, whose location is known with

respect to the chip alignment marks. Additionally, we also expose the wire bond-

ing pads to the backgate on each chip. All these features are written into a thick

layer of PMMA in a single exposure, developed, and descummed, followed by a

SiO2 plasma etch (using CHF3) and subsequent Si deep etch (Bosch process). In

a second e-beam exposure, we use the global wafer alignment marks to expose

2 µm × 2 µm squares at select locations within the local mark array into a thin

resist layer. After the exposure, the wafer is cut into smaller chips (5 mm× 5 mm)

in a dicing saw. The resist is developed and descummed, then catalyst is deposited

(either from solution or by evaporation) and lifted-off on each chip individually,

leaving behind small islands of catalyst particles. CNTs are grown in a furnace

by chemical vapor deposition. After growth, we use an AFM to locate the tubes

with respect to the local mark array on the chip. Two topographic AFM images

of CNTs after growth are shown in Fig. 4.4. A thin catalyst island is visible as a

bright square in the middle of both images. The etched shapes of the mark array

appear dark on the top and the bottom of the images. A CNT is seen as thin

bright line emerging from the catalyst island. Knowing the tube’s location with

respect to 4 shapes in the mark array determines its location on the chip and allows
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Figure 4.4: Topographic AFM images of CNTs on the patterned substrate.

us to design a mask with source and drain electrodes specifically tailored to the

selected CNT. The electrode masks are written into a PMMA bilayer using e-beam

lithography. After developing the electrodes, we evaporate the contact metal, fol-

lowed by lift-off in Acetone. At this point the CNT is in an FET geometry. A

few optical microscope images, shown in Fig. 4.5, give an impression of a typical

e-beam chip made by the above fabrication sequence. The bright yellow areas are

covered by gold. The Si/SiO2 substrate appears differently colored in each image

because of different microscope objectives used. In the right-most optical image,

which is zoomed in furthest, the array of etched local marks is visible as black

points. Some topographic AFM images of CNT devices are shown in Fig. 4.6.

Once a chip is made, we measure the conductance of each CNT device as a

Figure 4.5: Optical microscope images of an e-beam chip.
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Figure 4.6: Topographic AFM images of CNTs with source and drain contacts.

To make the CNT visible in the 2D color plots, we increase the image contrast by

limiting the range of the height scale to a few nanometers. The much taller metal

electrodes reach beyond this range, though, and seem flat in the 2D images. Their

actual size ratio is illustrated in the 3D topographic AFM image in Fig. 1.2. The

CNTs and the electrodes appear wider than they are due to the size and shape of

the AFM tip.
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Figure 4.7: Chemical structure of the linker molecule between the CNT and a

gold nanoparticle.

function of the backgate voltage at room temperature. Some exemplary transport

traces are shown in Fig. 1.3 in Chap. 1. From the transport trace we determine

whether the contacted CNT is metallic or semiconducting. The maximum device

conductance gives us an idea about the contact resistance of each device. Promising

CNT device candidates are electrically probed in a cryogenic probe station at

T ≤ 10 K. Afterwards, the chip is glued onto a home-made chip carrier with silver

epoxy. Selected CNT devices (and the backgate) are wire bonded to the chip

carrier. Care should be taken that the wires connecting the chip don’t stick out

too high, but stay low and come in at a sharp angle with respect to the substrate

near the sample wire bonds. Tall wires may interfere with the AFM tip or the tip

holder.

4.2 Gold Nanoparticle Attachment to a Carbon Nanotube

For the experiments described in Chap. 6, we use gold nanoparticles that are

chemically linked to a CNT by an organic molecule. The chemical structure of

the molecule used to link a gold nanoparticle and a CNT is depicted in Fig. 4.7.

Essentially, the molecule consists of a pyrenyl group and a thiol that are connected

by an organic chain. The –CO–NH– piece within the otherwise alkane chain is a

remnant of the reaction chemistry in the synthesis of the molecule. The aromatic
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pyrene (left end in Fig. 4.7) interacts strongly with the sidewalls of CNTs via π-

stacking, as known from studies on graphite and CNTs. It adsorbs onto the surface

of CNTs in organic solvents and is stable against desorption in aqueous solution

(Chen et al. 2001). The thiol (right end in Fig. 4.7) is known to form a covalent

bond with gold.

For the gold nanoparticle attachment, we start from a CNT device in the FET

geometry, as described in Sec. 4.1. The source and drain contacts to the CNT for

our samples in Chap. 6 are patterned by photolithography. We select CNTs with

fairly flat backgate response in their transport characteristic. Since this is the only

requirements on the CNTs, we are free to choose very long CNTs for this sample3

so as to be able to get away from the CNT device contacts.

The CNT attachment scheme is adopted from Chen et al. (2001). It proceeds

in the following three steps: (1) synthesize the linker molecule, (2) synthesize the

gold nanoparticles, and (3) link the nanoparticles to the CNT. We briefly comment

on each step below.

Linker molecule chemistry. The linker molecule is synthesized from two com-

ponents: 1-pyrenebutanoic acid, succinimidyl ester and cysteamine. We freshly

dissolve pyrenebutyric acid succinimidyl ester in dimethylformamide (DMF) to

make a 0.08M solution. We also prepare a fresh 0.1M solution of cysteamine in

DMF. We mix 0.3 ml of each solution in a microreactive vial and stir it in the dark

for 2.5 hours. Afterwards, we dilute the product solution further with 10 ml DMF

for later incubation of the CNT devices.

3In recent years, new CVD recipes have enabled the growth of extremely long
CNTs (Huang et al. 2003a,b); up to 4 mm long CNTs have been reported (Zheng
et al. 2004).
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Gold nanoparticle synthesis. There are multiple ways to synthesize monodis-

perse gold colloids (Frens 1973, Slot and Geuze 1985, Brust et al. 1994, 1995,

Bradley 1994). In principle, we reduce Au3+ ions using citrate: We let 25 µmol

of HAuCl4 and 200 µmol of Na3-citrate react in 100 ml deionized water following

Frens (1973). This ratio of reactants yields gold nanoparticles with a diameter

of 12 nm. We centrifuge the gold colloid solution at 5000 rpm for 5 minutes to

remove any gold aggregates. Only the clear, burgundy-colored solution is used in

the following step. We infer the size distribution of the gold nanoparticles after the

attachment process from their height in high-resolution topographic AFM images.

Attachment procedure. Before starting the actual attachment chemistry, we

prepare the CNT-FET chip by outgassing it in a heated vacuum jar at 55 ◦C for

5 hours, followed by a 20-minute anneal at 400 ◦C under Argon flow in a furnace.

Immediately afterwards, the CNT chip is soaked for 1 hour in the linker molecule

solution (from step 1). The chip is thoroughly rinsed in DMF to wash off any

excess molecules and dried in a pure nitrogen environment. It is then dipped

for 60 seconds in the just centrifuged gold colloid solution, thoroughly rinsed in

deionized water, and dried in pure nitrogen.

This linking of gold nanoparticles is highly specific, as the pyrene attaches

selectively to the CNT over the substrate. Figure 4.8 shows topographic AFM

images (recorded at room temperature) of CNT samples subjected to the above

procedure. Clearly, the functionalized gold nanoparticles preferably link to the

CNT. Only a few nanoparticles are found on the substrate away from the tube.
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Figure 4.8: Topographic AFM images of gold nanoparticles attached to a CNT.

The CNTs appear as thin bright line across the middle of each image. The gold

nanoparticles (12 nm in diameter) are visible as white circles. Both the gold

nanoparticles and the CNT appear wider in the images due to the size of the

AFM tip. Most gold nanoparticles are located on top of or right next to the CNT.

Only few of them are found on the SiO2 substrate away from the tube.



CHAPTER 5

FREQUENCY SHIFT IMAGING OF SINGLE-ELECTRON

CHARGING IN SEMICONDUCTING CARBON NANOTUBES AT

T = 4.2 K

Carbon Nanotubes are an amazing material with unusual properties. Electroni-

cally, they are truly one-dimensional (1D) conductors or semiconductors, depend-

ing on the crystal structure. As the length of a CNT device is reduced, finite size

effects are expected to occur, as the CNT enters the regime of Coulomb blockade

and single-electron charging effects. This has been observed in low-temperature

transport measurements (Tans et al. 1997, Bockrath et al. 1997, 1999). Figure 5.1

shows a low-temperature transport trace of a short, semiconducting CNT device.

The conductance of this short device clearly shows multiple, quite evenly spaced

peaks with zero conductance in between them. These so-called Coulomb oscilla-

tions in the conductance of the CNT device are a result of Coulomb blockade in

an effectively zero-dimensional (0D) system. As the length of a CNT device (as

measured by the distance between the source and drain contacts) increases, the

separation between these Coulomb oscillations is expected to decrease. At some

Figure 5.1: Coulomb oscillations in the low-temperature conductance of a short

CNT device.

103
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Figure 5.2: Electronic transport trace of a 8 µm long semiconducting CNT at

T = 4.2 K.

tube length the peaks overlap, and ultimately (once kBT � EC ∝ 1/LCNT) the 1D

character of a long CNT device should become apparent in the transport trace.

Experimentally, however, we find a different situation realized. Figure 5.2 shows

a transport trace of a 8 µm long, semiconducting CNT device at T = 4.2 K. Overall,

this electron transport characteristic looks rather messy. While we observe non-

zero conductance at backgate voltages V g ≤ −1.8 V, the device does not turn on

monotonically. We still observe many peaks in the conductance. The peaks appear

not quite evenly spaced, and we could make out several periods. In short, this is

not the transport signal we expect from a clean 1D system.

This type of transport characteristic is expected, though, if there is disorder in

the system. The term disorder summarizes a variety of unpredictable and random

potential fluctuations that are caused by the environment of the device and will

be present in most real systems. For example, disorder in our CNT device can

be due to imperfections and defects in the substrate, fixed charges on the sample

surface, adsorbates on the CNT, etc. In effect, disorder creates a non-uniform

potential energy landscape that is felt by the charge carriers on the CNT and

superimposes itself on the band structure of the nanotube. This is illustrated



105

Figure 5.3: Non-flat conduction band edge of a CNT due to the disorder potential.

At low temperature and low carrier density the CNT acts like a chain of quantum

dots.

schematically in Fig. 5.3. The cartoon depicts the electrostatic potential seen by

electrons on the CNT along the length of the tube. The shaded areas represent

filled electron states in the conduction band of the tube. To move across the

device, a conduction electrons has to overcome the barriers in the potential energy

landscape along the conduction band bottom. As suggested by Fig. 5.3, disorder

tends to be particularly visible at low carrier density, where the free electrons on

the tube cannot collectively compensate for the effects of disorder.

To investigate these non-uniform potential variations and its effects on the elec-

tronic properties of a CNT, we need a spatially sensitive tool, such as a scanning

probe microscope. Previous scanning probe studies of the electronic properties of

CNTs at cryogenic temperatures include Scanning Gate Microscopy on metallic

CNTs (Woodside 2001, Woodside and McEuen 2002), where single-electron charg-

ing effects were observed. Using the same technique, Coulomb blockade phenom-

ena have also been observed in another 1D conductor, silicon nanowires (Bleszynski

2006). Quantum dots in two-dimensional electron gases (2DEGs) that were de-

fined electrostatically or by etching have also been investigated by the scanning

gate technique (Pioda et al. 2004, Fallahi et al. 2005, Kicin et al. 2005).

In this chapter we make use of the local force probe capabilities of the AFM

cantilever to explore single-electron charging effects in semiconducting CNTs at low
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carrier density. In particular, we use the resonance frequency ω0 of the cantilever

as a sensitive measure of the electrostatic interactions between the AFM tip and

the sample. We start by estimating the size of the resonance frequency shift that

we can expect from single-electron tunneling on and off a quantum dot in the CNT.

Summarizing Eqs. (2.81) and (2.82), the relative shift of the cantilever resonance

frequency due to single-electron tunneling on and off a quantum dot in response

to the nearby oscillating AFM tip is given by

δω0

ω0

=
1

2k

(
dqc

dz

e

Cdot

)2
f ′(∆Edc)

1 + (ω/Γ)2
. (5.1)

From a rough estimate, −dqc

dz
≈ dCtd

dz
Vtip ≈ ε0 Vtip, Cdot ≈ 10 aF, ω = ω0 < Γ, and

f ′(0) =
−1

4kBT
, we expect at T = 4.2 K a resonance frequency shift on the order

of δω0/2π ≈ −1 Hz for our cantilevers (Table 3.1). This shift is easily resolved

by a commercial frequency counter1. To validate this prediction experimentally,

we record several traces of the cantilever resonance frequency as the AFM tip

oscillates above a semiconducting CNT and the backgate voltage induces carriers

on the tube. A few example traces are shown in Fig. 5.4. A single trace collected

at a tip height of z0 = 100 nm is seen in Fig. 5.4(a). There are 4 distinct dips in

the cantilever resonance frequency below the otherwise slowly varying background.

Their size is, indeed, as estimated from Eq. (5.1). We attribute these dips to single-

electron charging events of a quantum dot that is in close proximity of the AFM

tip. The background envelope of the cantilever resonance frequency arises from

the capacitive backgate-tip interaction. In Fig. 5.4(b) we show several traces of

the cantilever resonance frequency at different tip heights. In each trace, 12 dips

are visible in the cantilever resonance frequency due to different single-electron

1We typically achieve a frequency resolution of about ∆ωnoise/2π≈ 0.05 Hz in
our measurements.
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(a) Cantilever resonance frequency at z0 =100 nm and T = 4.2 K.

(b) Cantilever resonance frequency traces at T = 4.2 K.

Figure 5.4: Cantilever resonance frequency shift due to single-electron tunneling.
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charging events. At the largest tip height, z0 = 153 nm, the dips are barely visible.

As the tip gets closer to the CNT, the dips in the cantilever resonance frequency

get first deeper and ultimately also broader. The peak broadening can be reduced

by decreasing the cantilever oscillation amplitude, which we intentionally kept

constant for all tip heights in this plot.

Evidently, single-electron charging events of quantum dots in CNTs are clearly

resolved in the cantilever resonance frequency. Now we can use the versatile capa-

bilities of the AFM to image these single-electron charging events in various ways

and examine the properties of the underlying quantum dots. This chapter takes

the following path:

We first track the dips seen in Fig. 5.4 in space (Sec. 5.1). To do so, we record

the cantilever resonance frequency as a function of tip position on a square grid,

where the AFM tip has the same height above the sample surface at each point

on the grid. We call such a 2D map of the cantilever resonance frequency a spatial

frequency shift image. Such spatial images allow us to locate individual quantum

dots on the CNT. We can also count the number of quantum dots along the CNT

and get an idea about their size. Once we know where the quantum dots are lo-

cated, we can address and study them individually, one at a time.

In Sec. 5.2 we combine the spatial resolution of the AFM with the gating capabili-

ties of the backgate or tip voltage. Any 2D map of single-electron charging events

in the cantilever resonance frequency as a function of a gate voltage and the tip

position (along some fixed direction) we call a spectroscopic frequency shift image

or just frequency shift spectrum of one or multiple quantum dots.

Replacing the one remaining spatial dimension of a spectrum, we track the single-

electron charging events as a function of the voltages applied to our two gates –
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the extended backgate and the AFM tip – as exemplified at the end of Sec. 5.2.

To distinguish between the different images involving gate voltage, we sometimes

label them intuitively Vg-x spectra and Vg-Vtip spectra of quantum dots.

Multi-dot Vg-x spectra enable us to extract the backgate coupling and the size

of quantum dots (Sec. 5.3). We find that the mutual capacitance between the

extended backgate and a CNT quantum dot scales linearly with the length of the

quantum dot section of the CNT.

In the Vg-x spectra we observe the systematic charging of the quantum dots along

the CNT over a large range of gate voltage (Sec. 5.4). Effectively, a quantum dot

spectrum encodes the charge addition spectrum. The evolution of the spectrum

in gate voltage reflects the underlying potential energy landscape as experienced

by the carriers on the CNT. As a consequence, the charging spectrum mirrors the

band structure of the semiconducting CNT (Sec. 5.6). Furthermore, the disorder

potential is encoded in the evolution of each charging spectrum (Sec. 5.5).

At the intersection between the charging lines from neighboring quantum dots we

frequently observe avoided crossings. These are analyzed in Sec. 5.7.

Up to this point, the size of the dips in the cantilever resonance frequency has

not been used, only their positions in space and gate voltage. In Sec. 5.8 we an-

alyze the information contained in the magnitude of frequency shift and extract

the charging energy of a quantum dot from it.

The advantages of the frequency shift technique have been apparent throughout

this chapter, but were rarely mentioned explicitly. In the last section of this chap-

ter (Sec. 5.9) we explore some distinct benefits of the technique. We analyze spatial

images collected from a CNT without source or drain contact and draw conclusions

on the number of contacts needed for our measurement.
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Figure 5.5: Spatial frequency shift images of quantum dots in semiconducting

carbon nanotubes.

5.1 Spatial frequency shift images

A spatial frequency shift image is a map of the cantilever resonance frequency

as a function of the biased tip position in the (x, y)-plane parallel to the sample

surface. Spatial frequency shift images of quantum dots in CNTs are very useful.

They allow us to find the quantum dots along the CNT, which we need in order to

study them individually. When locating a quantum dot, we rely on the signature

of single-electron tunneling on and off the quantum dot in the resonance frequency

of the AFM cantilever, as described by Eq. (5.1).

Figure 5.5 shows two spatial frequency shift images of sections of a semicon-

ducting CNT. The resonance frequency of the cantilever is encoded in the color

scale, as shown on the right. A semiconducting CNT runs horizontally across each

image. It is responsible for the wide, bright (yellow) line in the smooth electro-

static background. Single-electron charging events of quantum dots are visible as

closed dark contours. A quantum dot is located at the center of each set of concen-

tric contours. Small quantum dots have (almost) circular single-electron charging

rings. Larger dots extend over a longer 1D segment of the CNT and have more

oval single-electron charging contours. Since their charging energy is less, larger

quantum dots also have more finely spaced single-electron charging contours than
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small quantum dots.

Since it is not immediately obvious, we explicitly establish the relationship

between the dark concentric contours in the spatial frequency shift images (Fig.

5.5) and the dips in the resonance frequency as a function of backgate voltage (Fig.

5.4). Both figures show a reduced cantilever resonance frequency at single-electron

charging events of a quantum dot. The way charge is induced on the quantum dot,

however, is different. In the 1D traces, we induce charges on the quantum dot by

means of the voltage Vg on the backgate. In the spatial images, we use the biased

AFM tip as a mobile, local gate. Changing the tip position ~r modifies the tip-dot

capacitance Ctd(~r) and thereby induces charge on the quantum dot.

A unified description of both mechanisms is available in terms of a cumulative

gate charge of the quantum dot, as defined in Eq. (2.5) or (2.51). The gate charge

accounts for all electrostatic gating mechanisms of the quantum dot. Experimen-

tally, the only two gates in the system2 are the extended backgate and the mobile

AFM tip, so

− qc = Cgd Vg + Ctd(~r) Vtip . (5.2)

Cgd is the backgate-dot capacitance and Vtip is the voltage applied to the AFM tip.

The voltages on the extended backgate and the AFM tip are Vg and Vtip, respec-

tively. Clearly, the gate charge is a function of the backgate voltage, the tip voltage,

and the tip location as externally adjustable parameters, qc = qc(Vg, Vtip, ~r).

When the tip moves along a concentric contour in the spatial image, the gate

2The source and drain contacts also have some capacitance to the dots on the
CNT, particularly for dots near the contact. Their contribution does not appear
in Eq. (5.2), as we use the device contacts as our reference potential, Vs = Vd = 0.
Even during scanning gate images, where we put a small bias across the CNT,
their contribution is negligible. Gating by single-electron charging of other nearby
quantum dots through interdot capacitive coupling is discussed separately in Sec.
5.7.
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charge is maintained constant. When the tip moves perpendicular to these con-

tours, the gate charge changes. As a consequence, the electrostatic potential of the

quantum dot also changes, Eq. (2.5). At each dark ring the gate charge is such

that two charge states of the quantum dot are degenerate. When the tip crosses a

dark line, it causes an electron to tunnel on or off the quantum dot, depending on

the sign of the tip voltage and the direction of tip motion (towards or away from

the dot). Correspondingly, we could count the number of electrons on the dot (up

to some fixed offset), which is unchanged in between the dark rings.

Besides locating the center of quantum dots, the information in a spatial image

can give us an estimate of the size of our quantum dots. A simple upper bound

is established from twice the center-to-center distance between neighboring dots.

More elaborate algorithms can yield tighter bounds on the dot sizes from the

spatial images. We won’t expand on details here, as a different kind of scan allows

us to calculate the exact size of our quantum dots. This scan is introduced in

the following section. A method to extract the size of quantum dots from it is

discussed in Sec. 5.3.

5.2 Spectroscopic frequency shift images

With the notion of a gate charge (5.2), there are clearly other 2D maps of the

cantilever resonance frequency that exhibit single-electron charging. Instead of

adjusting the gate charge (5.2) by means of the tip location, we can also use a gate

voltage as an alternative experimental knob. There are some advantages to using

a gate voltage: It can cover a large range of gate charges, and the gate charge

varies linearly with gate voltage, which makes the quantitative analysis of the data

simpler.
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In this section we introduce 2D scans with variable gate voltage. For the 2

scan variables, we may choose to increment a gate voltage on one image axis and

scan the tip location (along some fixed curve, for example, along the CNT) on the

other image axis, retaining one spatial dimension in the image. Alternatively, we

can independently vary the voltages on 2 gates, in our case the extended backgate

and the AFM tip, to create a 2D scan of the cantilever resonance frequency. We

call either such 2D image on one or more quantum dots a spectroscopic image or

in short spectrum of the dot(s). Both types of spectra provide useful information

about the quantum dot(s), and we explore them separately below.

Vg-x spectra of quantum dots. We start with spectra of mixed variables,

i.e., a spatial dimension and a gate voltage (or energetic dimension). Figure 5.6

shows a Vg-x frequency shift spectrum of a relatively small quantum dot in a

semiconducting CNT. The backgate voltage increases along the y-axis, ranging

from Vg = 1.4 V at the bottom to Vg = 5.8 V at the top. Along the x-axis the tip

scans 100 nm above a short section of the CNT. The cantilever resonance frequency

is shown in color. A number of separate scans was stitched together in this figure.

Many single-electron charging events are visible as humps3 in this 2D image.

Along these humps, the gate charge (5.2) is constant and fixes the state of the

underlying quantum dot at a transition between two charge states, N and N + 1,

so that an electron can repeatedly tunnel on and off the quantum dot. Here N

and N + 1 denote the number of electrons on the quantum dot. In between these

charging humps, the dot is in Coulomb blockade and the number of electrons on

3The humps indicate a negative voltage on the AFM tip, Vtip < 0V . With a
positive tip voltage we would observe single-electron charging lines in the shape of
slumps.



114

Figure 5.6: Large charge addition spectrum of a small quantum dot in a CNT.

The gate voltage increases along the y-axis from Vg = 1.4 V at the bottom to

Vg = 5.8 V at the top. Along the x-axis, the tip scans above a short section of a

CNT at a height of z0 = 100 nm. The top edge of the image is 1 µm.
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the quantum dot is constant. At the apex of each hump the tip is closest to the

dot, i.e., right above the dot in our scan.

Besides the center of the quantum dot along the spatial scan axis, we can

readout the separation between two charging events along the gate voltage axis

in a spectrum. We call the difference in gate voltage between two consecutive

single-electron charging events the single-electron addition gate voltage of the cor-

responding gate and dot. The addition gate voltage was already introduced in

Sec. 2.1.5 and evaluated in Eq. (2.8). With this notion in mind, we can think

of our quantum dot spectrum as an addition energy diagram. To readout actual

addition energies that are intrinsic to the quantum dot, the y-axis still needs to be

scaled by the gate efficiency αg = Cgd/Cdot. We will discuss later in this chapter

how we can measure the backgate-dot capacitance Cgd (Sec. 5.3) and the total dot

capacitance Cdot (Sec. 5.8). For the time being, we accept arbitrary units on our

addition energy axis.

The first obvious question to be asked about a spectrum is how the addition

gate voltage of the quantum dot evolves as we induce electrons one by one on the

dot. Figure 5.7 shows the evolution of the addition backgate voltage of the small

quantum dot in Fig. 5.6, whose charging humps are conspicuously visible in the

spectrum. (There is another, larger quantum dot visible in the same spectrum, just

left of this dot.) For the first 25 electrons resolved on this dot, the addition backgate

voltage evolves with a fairly constant average of ∆V
(add)
g = 98 mV and a standard

deviation of 10 mV. At high electron number, N −Noffset > 30, corresponding

to backgate voltages Vg > 4.2 V, the average moves to higher addition backgate

voltages, for unknown reasons. The variations in the addition backgate voltage are

an indication of the limits of the constant interaction model, which was introduced
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Figure 5.7: Evolution of the addition backgate voltage of a quantum dot in a

semiconducting CNT. A charging spectrum of this quantum dot is shown in Fig.

5.6. Multiple overlapping lines are readouts from different images. The electron

count N along the x-axis is only accurate up to an offset Noffset.
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in Sec. 2.1.5. The data in Fig. 5.7 illustrates that the charging process of our

quantum dot is a complex many-particle problem, and the assumption of a constant

total capacitance is a simplification of the real situation.

It is also worth noting that we don’t observe any systematic, repeating pattern

in the addition backgate voltage. In particular, we don’t find 4-fold shell filling,

as has been seen in open CNT quantum dots (Liang et al. 2002, Moriyama et al.

2005, Sapmaz et al. 2005), or an even-odd symmetry, as has been seen in closed

CNT quantum dots (Cobden and Nygard 2002, Jarillo-Herrero et al. 2004). This is

not too surprising in a long semiconducting CNT. In fact, the absence of a regular

charging pattern is more common than not in most experiments. Its presence and

absence has even been observed in different sections of the same CNT (Sapmaz

et al. 2006).

Vg-Vtip frequency shift spectra of quantum dots. In this paragraph we go

one step further and replace the one remaining spatial dimension in the 2D scan by

a second gate voltage. Figure 5.8 shows the single-electron charging of a quantum

dot as a function of the backgate voltage and the tip voltage. In this scan the

AFM tip is resonating at a height of z0 = 100 nm above the center of a quantum

dot. The single-electron charging events appear as straight dark lines in the image,

along which the gate charge (5.2) is constant. The slope of this line determines the

ratio of gate capacitances, which is identical to the ratio of their gate efficiencies,

− dVtip

dVg

=
Cgd

Ctd(~r)
=

αgd

αtd(~r)
. (5.3)

The gate efficiency of gate i on dot d is defined as αid = Cid/Cdot. It is important

to remember that the tip-dot capacitance (and thereby the tip’s gate efficiency)

depends on the the tip location ~r (including the tip height), and so does this
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Figure 5.8: Frequency shift charging spectrum of a quantum dot in a semicon-

ducting CNT as a function of the voltages applied to two gates, the extended

backgate and the AFM tip. The tip is parked 100 nm above the center of the

quantum dot. The cold plate temperature is T = 1 K during this scan. Four

single-electron charging events are visible as parallel dark lines, whose slope deter-

mines the ratio of the gate-dot capacitances of the two gates, Eq. (5.3). At this

tip height, the AFM tip is clearly a weaker gate than the extended backgate.
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Figure 5.9: Frequency shift spectra of a chain of 4 quantum dots.

ratio. From the slope of the lines in Fig. 5.8 we find a ratio Cgd/Ctd = 4 at a

tip height z0 = 100 nm above the dot. This measurement confirms the general

observation that the extended backgate underneath the thermal oxide is more

efficient at inducing charges on the quantum dot than the AFM tip, at least at our

typical tip heights.

5.3 Capacitance Scaling

By increasing the spatial scan range of the AFM tip along the CNT, we extend

the single-electron charging spectra to multiple quantum dots. In this section

we analyze such multi-dot spectra quantitatively and characterize the backgate

coupling and size of the quantum dots.

Figure 5.9 shows the spectra of 4 neighboring quantum dots along a section

of a semiconducting CNT. Each quantum dot is labeled by a number above the

image. From a multi-dot spectrum of quantum dots in a CNT, like Fig. 5.9, we

can infer two pieces of information about the quantum dots:

1. The separation of single-electron charging lines for each dot along the gate

voltage axis. This is the addition gate voltage ∆V
(add)
g , which was introduced

in Sec. 2.1.5 and 5.2. In the classical limit, the addition backgate voltage is
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inversely proportional to the electrostatic capacitance between the backgate

and the quantum dot, Eq. (2.8), and e = Cgd ∆V
(add)
g . This relation allows

us to extract the backgate-dot capacitance Cgd for each dot.

2. The center-to-center distance between neighboring dots along the x-axis,

which contains information about the size of the quantum dots.

The separation between neighboring dots alone is not enough to extract the size of

the quantum dots, for the following reason: If we have a chain of n quantum dots

and denote their size by Li, there are (n−1) center-to-center distances 1
2
(Li +Li+1)

of neighboring dots. These (n−1) quantities are not enough to determine the n

quantum dot sizes. We always end up one necessary piece of information short.

More information about the dot size can be obtained in the following way:

Modeling the extended backgate and the CNT as a plane and a cylinder (Dressel-

haus et al. 1996, Yao et al. 2001), the capacitance Cgd between the backgate and

a CNT piece of length L is predicted to follow the relation

Cgd

L
=

2πεε0

ln(4t/d)
, (5.4)

where d is the diameter of the CNT, t is the distance between the backgate and the

CNT, i.e., the thermal oxide thickness, ε0 =8.854× 10−12 F/m is the permittivity

of free space, ε is the relative dielectric constant of the medium they are placed in.

By assuming capacitance scaling between 2 out of the n dots, we obtain the

additional piece of information needed to calculate the size of all quantum dots.

Afterwards, we can verify our assumption of capacitance scaling on the remaining

(n−2) center-to-center distances.

This procedure is carried out on the 4 quantum dots in Fig. 5.9. The results

of the analysis are summarized in Table 5.1. The capacitance of these 4 quantum
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Table 5.1: Backgate-dot capacitance scaling from a chain of 4 quantum dots in

a semiconducting CNT, as shown in Fig. 5.9.

Quantity dot 1 dot 2 dot 3 dot 4

addition backgate voltage ∆V
(add)
g 50 mV 98 mV 14 mV 36 mV

backgate-dot capacitance Cgd 3.2 aF 1.6 aF 11.4 aF 4.4 aF

dot size L 210 nm 105 nm 750 nm 290 nm

dots indeed scales with the dot size. We find a common scaling law of Cgd/L =

1.5 aF/100nm.

To compare our experimental result with theory, Eq. (5.4), we note that the

diameter of our CNT is d = 1.4 nm. The thermal SiO2 is t = 200 nm thick in

our device. To account for the thermal oxide (ε≈ 3.9) underneath the CNT and

vacuum (ε=1) above the CNT, we assume an average dielectric constant of ε≈2,

as used in the literature (Yao et al. 2001). From these parameters we predict a

scaling law of Cgd/L = 1.75 aF/100nm, in good agreement with the experimental

finding.

From the confirmed scaling law and the agreement between the experiment and

the simple model, we are confident that we resolve all the quantum dots along the

CNT.

5.4 Large spectra of multiple nanotube quantum dots

In this section we investigate a multi-dot spectrum of a larger section of a semicon-

ducting CNT with a sizeable backgate voltage range and analyze common features

of the single-electron charging events. Figure 5.10 shows the frequency shift spec-
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trum of a 3 µm section of a semiconducting CNT at T = 4.2 K. The entire CNT

device is 8 µm long. The end of the right metal contact to the CNT is located at

x ≈ 0 µm, near the right edge of the plot.

Several features are prominently visible in this CNT spectrum: Many single-

electron charging humps appear in the top half of the image, at backgate voltages

Vg ≥ 2 V. In the bottom half, certainly below Vg = 1 V, no charging events are

visible in the spectrum, except at the far right of the scan, near the contact. This

arrangement of charging events mirrors the band structure of our semiconducting

CNT: At the bottom of the image, the electrochemical potential of the CNT is in

the band gap of the tube. Since our Palladium metal contacts have a larger work

function than the CNT, a p-type quantum dot forms near the contact (Park and

McEuen 2001). The last few holes on this p-dot are visible at the bottom right of

the spectrum. This work function difference is also responsible for the formation

of a Schottky-barrier at the contact on the n-side of the band gap (Martel et al.

2001, Heinze et al. 2002). The Schottky-barrier can limit the charge injection into

the conduction band. This is thought to be the major reason for the often poor

conduction of semiconducting CNTs in the n-regime. A transport plot of the CNT

device conductance vs. the backgate voltage at T = 4.2 K, Fig. 5.11, indeed shows

no n-type conduction on this semiconducting CNT. Up to the maximum backgate

voltage of Vg = 6.5 V that we have applied, we don’t measure an electron current

between the source and drain contact of the tube, certainly not within the gate

range of our n-type spectrum, Fig. 5.10. Observing single-electron charging along

the CNT nonetheless underlines one benefit of our local force detection scheme:

It enables us to measure electron transport phenomena even in the absence of

long-range device conductance. We will expand on this point in Sec. 5.9.
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Figure 5.10: Charge addition spectrum of a 3 µm section of a semiconducting

CNT. One metal contact starts at the right edge of the image, at about x=0. The

left contact to the CNT is several microns away.
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Figure 5.11: Electronic transport trace of the CNT in Fig. 5.10 at T = 4.2 K.

5.5 Disorder potential

As we have just discussed, the spectrum of the semiconducting CNT maps out

the tube’s band structure. Naturally, the question arises why we observe quantum

dots, as opposed to electrons delocalized in the conduction band.

To offer an answer to this question, we need to consider the entire sample,

which includes the CNT and its vicinity. The substrate and other surroundings

can have a visible influence on the carrier distribution on the CNT near the band

gap: As the electrochemical potential of the CNT enters the conduction band,

the first few conduction electrons are induced on the tube. In this regime of

low carrier density, the electron distribution on the CNT is very sensitive to the

electrostatic environment of the tube. Spatial variations of the external potential

superimpose themselves on the CNT’s band structure and modify the flat bottom of

the conduction band non-uniformly. Effectively, they may create a rough potential

energy landscape for the electrons on the CNT. As a result, the tube electronically

breaks up into segments, which act as a chain of quantum dots. This situation is

illustrated in Fig. 5.3. To move across the CNT device, a conduction electrons has

to overcome the barriers in the potential energy landscape.
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Local variations in the potential energy landscape can arise from many sources:

Imperfections of the substrate are an obvious candidate. It is well known that

there are many charge traps in SiO2, particularly near the SiO2/Si interface (Kooi

1967, Nishi 1971). Depending on whether these traps are occupied or not, they

can create local variations of the electrostatic potential. Another source can be

charged residues on the surface that are left behind from the device fabrication.

They modify the electrostatic environment of the CNT similarly to the charge

traps in the oxide. If the biased AFM tip comes into contact with the surface,

charges may be left behind that don’t diffuse away at cryogenic temperatures. To

make a long story short, there are numerous sources in the environment of our

CNT devices that can create a non-uniform electrostatic potential landscape in

unpredictable ways. All possible such contributions are commonly summarized in

the term disorder potential.

At every backgate voltage, the distribution of quantum dots in our CNT charg-

ing spectrum shows a snapshot of the disorder potential at the given electrochem-

ical potential of the CNT. Looking at the evolution of single-electron charging

events with backgate voltage can give us clues about the underlying potential en-

ergy landscape, i.e., how the disorder potential develops in energy. We can indeed

extract such information from our CNT spectrum, Fig. 5.10. First we examine the

evolution of single-electron charging events qualitatively, before we comment on a

quantitative analysis.

Qualitative evolution of the disorder potential. Starting from the right

in Fig. 5.10 (nearest the contact), we see many charging humps near the band

gap. A high-resolution image of this region is shown in Fig. 5.12. The apexes of
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Figure 5.12: Spectrum of quantum dots near the lead in n-regime.
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these charging events near the conduction band bottom don’t align exactly, which

indicates that there are multiple very small quantum dots present in this area,

with correspondingly large addition backgate voltages. At Vg ≈ 3.3 V a regular set

of single-electron charging humps emerges. Apparently, at this backgate voltage

several tiny dots join into one larger dot. The apexes of its charging humps align

and their spacing is quite constant.

The conspicuous quantum dot at x ≈ −1.5 µm with a large addition backgate

voltage is quite stable. Its tunnel barriers on both sides appear to be fairly tall, as

the extended spectrum of this dot over a larger backgate voltage range in Fig. 5.6

proves.

In between these two dots, nothing particular seems discernible in our CNT

spectrum, Fig. 5.10. A careful scan, as seen in Fig. 5.13(a), however, reveals a large

quantum dot with very fine addition backgate voltage4. Figure 5.13(b) explicitly

overlays the single-electron addition spectra of the 3 quantum dots visible in Fig.

5.13(a). This dot is so large that we count ∼ 8 electrons tunneling onto the dot

for every electron tunneling onto the small dot on its left, in total at least 134

electrons on the dot by the time the backgate voltage reaches Vg = 4 V.

Neighboring on the left of the small dot is a medium-sized quantum dot with

an interesting evolution of its single-electron charging humps. As seen in the big

CNT spectrum, Fig. 5.10, and more clearly in Fig. 5.14, the charging events of this

quantum dot are regularly spaced and their apexes line up well, until the backgate

voltage reaches Vg = 3 V. At this point, the apex of the charging events moves

about 65 nm to the left and the spacing between the charging events decreases by

approximately 18 mV. Apparently, this quantum dot increases in size by expanding

4Note that a careful scan at lower backgate voltages, where we indicated the
band gap of the CNT, does not reveal single-electron charging events.
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(a) High-resolution spectrum of

quantum dots in a semiconducting

CNT. Vg ranges from 3.5 V to 4 V.

(b) Spectrum of Fig. 5.13(a) with

single-electron charging lines from

3 dots overlayed (green, blue, red).

Figure 5.13: High-resolution spectrum of large CNT quantum dot.

Figure 5.14: Spectrum of a CNT quantum dot expanding in size. The left and

the middle image are 2 different scans that capture this growth in size. The right

image overlays the interesting charging spectrum on the middle image. A center

line of the dot is shown in the left and the right image. See also Fig. 5.15(a).
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to the left at Vg = 3 V. The high-resolution spectrum below, Fig. 5.15(a), also

shows this change very clearly.

Further left in the spectrum we find a number of similarly sized quantum dots

near the conduction band bottom, which unify into a very large joint dot quite

quickly. Figure 5.15 shows two high-resolution spectra of this area.

A plot of the single-electron addition backgate voltages from the 4 quantum

dots discussed above is shown in Fig. 5.16. The colors are consistent with with

the overlayed spectra in Fig. 5.13(b). The right-most quantum dot, which was

discussed first above, is not visible in Fig. 5.13(a). We only plot its addition

backgate voltage once the many small dots have unified into a larger quantum

dot with aligned apexes of charging humps. None of the 4 quantum dots exhibits

a repeating pattern in its addition backgate voltage, in particular no 4-fold or

alternating pattern. The increase in size of the left-most quantum dot of these 4

is visible in Fig. 5.16 as a jump of its addition backgate voltage to a lower value

at Vg = 3 V.

Quantitative bounds on the disorder potential. The qualitative analysis of

the evolution of the single-electron charging events with backgate voltage above

gave considerable information about the potential energy landscape, as it is ex-

perienced by the first few electrons in the conduction band of the CNT. There is

also a quantitative relationship, which we explore in the following. An alternative

derivation of the relevant relation, Eq. (5.7), and some additional details are given

in Appendix A.2.

Reading out the single-electron addition backgate voltages of quantum dots

continuously, as shown for 4 dots in Fig. 5.16, is essentially an electron counting
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(a) 1.8 µm, 2.5 V ≤ Vg ≤ 3.5 V.

(b) 1.6 µm, 1.7 V ≤ Vg ≤ 2.7 V.

Figure 5.15: High-resolution CNT spectra in the n-regime. The spectra cover

part of the top of Fig. 5.10. The conspicuous charging spectrum on the right of the

images can serve as a feature to align the spectra along the x-axis. In the lower

image, Fig. 5.15(b), instrument drift (piezo creep) caused the charging spectra to

slowly bend to the left with increasing backgate voltage. A more patient operator

than myself could have easily avoided this artifact.
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Figure 5.16: Evolution of the addition backgate voltage of 4 neighboring quantum

dots in a semiconducting CNT. The data originates from the same dots as in Fig.

5.9 and Table 5.1. Multiple lines of the same color indicate readouts from different

images on the same dot.
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experiment on each dot. Figure 5.17 replots the data in Fig. 5.16 as the number

of single-electron charging events that was counted at or below a given backgate

voltage. Due to the Pauli exclusion principle, the number of electrons is intimately

related to the energy of the highest occupied single-particle state. In other words,

the electron density can tell us what range of single-particle levels is occupied

above the conduction band bottom. Fixing the electrochemical potential, which is

constant along the CNT, we can resolve the bottom of the conduction band and

its spatial variations, as depicted in the above cartoon, Fig. 5.3. The bottom of

the conduction band gives a direct image of the underlying disorder potential. In

the following, we first outline the relationship between the electron density and

the electrochemical potential for CNTs in the classical limit. This relationship is

then applied to the data from the 4 quantum dots shown in Fig. 5.17.

The low-energy electronic dispersion relation of a CNT (Ajiki and Ando 1993)

is given by5

ECNT(k) = ±

√(
Egap

2

)2

+ (~k vF )2

≈ ±
(

Egap

2
+

(~k vF )2

Egap

+ o(k4)

)
.

(5.5)

Egap is the band gap of the semiconducting CNT6, as calculated in Eq. (A.15),

vF is the Fermi velocity of the charge carriers, Eq. (A.16), and 2π~ is Planck’s

constant. ECNT = 0 is fixed in the middle of the band gap; the conduction band

of the CNT is located at single-particle energies ECNT ≥ 1
2
Egap, the valence band

at ECNT ≤ −1
2
Egap. The carrier momentum k is offset such that k = 0 gives the

minimum of the conduction band and the maximum of the valence band. The

5Notice that the functional form of this dispersion relation is the same as the
dispersion of a relativistic particle, E(p) =

√
(m0c2)2 + (pc)2. This is the origin of

the analogy between Dirac-Fermions and electrons in CNTs.
6Egap = 0 gives the dispersion relation of the lowest subband of a metallic CNT.

Its electrons are equivalent to massless Dirac-Fermions.
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Figure 5.17: Single-electron counting experiment. The y-axis plots the number

of single-electron charging events below the backgate voltage on the x-axis. The

data was obtained from the n-type spectrum, Fig. 5.10, but it really is a different

representation of the data in Fig. 5.16. The color of data points in this plot and

Fig. 5.16 corresponds to the same quantum dot. Notice the change of slope in the

green trace at Vg = 3 V, where the single-electron addition backgate voltage of this

dot jumps to a lower value.



134

expansion makes is clear that the dispersion relation is quadratic near the bottom

of the conduction band and the top of the valence band (Saito et al. 1998), just

like for free particles. This permits us to use the free electron approximation at

low carrier density, where the carriers in the CNT have an effective mass

m∗ = ~2

∣∣∣∣∂2E

∂k2

∣∣∣∣−1

k=0

=
Egap

2v2
F

. (5.6)

We only need to account for the 4-fold shell structure in CNTs (Liang et al. 2002,

Moriyama et al. 2005, Sapmaz et al. 2005), which arises from the spin degeneracy

and the 2-fold orbital degeneracy of electronic states in CNTs.

Spin-degenerate particles that can move freely in one direction but are tightly

confined in the other two spatial dimensions (1D conductor) obey the relation

n1D = 2kF /π (Kittel 2005) between the particle density n1D and the Fermi mo-

mentum kF at T = 0. Including the additional 2-fold orbital degeneracy, we find

for semiconducting CNTs at low carrier density nscCNT

nscCNT =
4kF

π
=

4

π~
√

2m∗(EF − E0) for EF ≥ E0 , (5.7)

where the right-hand side results from the quadratic dispersion relation. EF is

the electrochemical potential of the CNT, E0 is the energy of the conduction band

bottom. An alternative derivation of this formula is given in Appendix A.2. The

only free parameter in this equation is the effective electron mass m∗. For our

semiconducting CNT of diameter dCNT = 1.4 nm, we predict m∗ = 0.067 me from

theory, Eq. (A.17).

To make Eq. (5.7) useful for our analysis of quantum dots in semiconducting

CNTs, we assume that the electrons on a quantum dot are delocalized over the

size of the dot. Then the carrier density is uniform along each dot and given by

the number of conduction electrons on the quantum dot divided by the length of
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the CNT section where the quantum dot forms, n
(dot)
scCNT = Ndot/Ldot. The size

Ldot of each dot is calculated in Sec. 5.3 below for our 4 quantum dots, see Table

5.1. The number of electrons on each dot Ndot is taken as the number of single

electron charging humps in the spectrum below the given gate voltage. With this

information, Eq. (5.7) allows us to calculate the energy range of occupied single-

particle levels, EF − E0.

An example readout from our 4 dots at Vg = 3.95 V is shown in Fig. 5.18. This

plot puts our experimental observations well into context: Despite the reasonably

high backgate voltage, the single-particle energy is only little above the conduction

band bottom of the CNT. Clearly, we are still very near the conduction band

bottom, which explains the sensitivity to the electrostatic environment and the

persistence of the quantum dots at the applied backgate voltages. The variations

of the conduction band bottom are also not huge, but all within a few meV.

Unfortunately, our data that provides Fig. 5.18 can only give lower bounds on

EF − E0 for the following reason: While we are confident that we count electrons

without missing any charging events on the way, we cannot guarantee that we

resolve the very first electron or even the first few electrons on each dot. In

fact, as the electrochemical potential of the CNT gets close to the band gap, the

frequency shift signal loses contrast7. Consequently, our count of single-electron

charging events is only a lower bound to the actual number of electrons on each

dot. This lower bound propagates to a lower bound on the electron density n
(dot)
scCNT

and a lower bound on the energy range EF −E0 of occupied single-particle states.

7We attribute this loss of contrast to a lack of charge injection from the leads
due to the Schottky barriers at the CNT contacts, whose size increases near the
band gap. As illustrated in Fig. 2.9, the frequency shift signal due to single-electron
tunneling is greatly reduced as the quantum dot turns opaque and gets isolated
from its charge reservoir.
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Figure 5.18: Lower bound on the range EF −E0 of occupied single-particle states

in the conduction band, calculated classically from the counted number of single-

electron charging events on the quantum dots. The energy of the highest occupied

single-particle state is set to 0. The shaded area shows the filled conduction electron

states at Vg = 3.95 V. The bottom of the conduction band may actually be lower

than shown, as the number of electrons can exceed the count of single-electron

charging events if we didn’t resolve the first electron tunneling onto each quantum

dot. The width of the tunnel barriers is unknown from our measurement and

depicted as 10 nm wide. The dashed tunnel barriers inside the right-most quantum

dot, centered at x ≈ −0.67 µm, illustrate symbolically that there appear to be

several not-too-high barriers near the band bottom, as seen in the spectrum, Fig.

5.10. The location and number of these (dashed) barriers is arbitrary and not a

result of the calculation. The height of the tallest barrier among them reaches the

energy where we see a single dot emerge in the data.
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Consequently, the bottom of the CNT’s conduction band may be further below

the Fermi energy than depicted in Fig. 5.18.

With a more complete quantum dot spectrum that includes the entire band

gap and parts of the conduction and valence band of the CNT, as shown in Fig.

5.20 below, we can also establish an upper bound on EF − E0, in the following

way: Since the addition backgate voltage is quite constant (at Vg < 3 V) for all

4 dots, we can project the number of electrons on the dot, assuming that the

electrochemical potential emerges from the band gap into the conduction band

at lower backgate voltages than where we resolve the first charging events. Once

this projection of the conduction band bottom reaches backgate voltages where

we resolve hole charging on the quantum dots (in the valence band), we certainly

project an upper bound to the number of electrons on the quantum dots in the

conduction band. Since Eq. (5.7) is monotonic, this upper bound on the electron

carrier density gives an upper bound to EF − E0 for filled electron states in the

conduction band.

5.6 Combined n- and p-type spectrum

Similarly to the n-type spectrum of single-electron charging when the electrochem-

ical potential of the CNT moves into the tube’s conduction band, we can also pull

the CNT’s electrochemical potential to the p-side of the band gap by means of neg-

ative backgate voltages and take a spectrum of single-hole charging in the CNT

valence band, Fig. 5.19.

When comparing the n- and p-type spectra, a slight subtlety arises, though,

that needs to be addressed: To maintain good signal contrast, we have to avoid

the region of similar backgate and tip voltage. In other words, we need to use a
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Figure 5.19: p-type charge addition spectrum of CNT quantum dots.
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different tip voltage on either side of the band gap8. The tip, however, gates the

CNT, too, and the same backgate voltage doesn’t reproduce the same dot state as

before if the tip voltage has changed. A suitable quantity to describe the effective

gating, particularly when both tip and backgate voltage are changed, is the gate

charge (5.2). To stay with gate voltage units, we define an effective gate voltage

by dividing the gate charge by the backgate-dot capacitance,

V (eff)
g = − qc

Cgd

= Vg +
Ctd

Cgd

Vtip . (5.8)

Practically, this means that the backgate voltage is offset by some amount to

account for a change in tip voltage. The exact amount, however, scales with the

tip-dot capacitance and depends on the tip position and the dot. As we are most

interested in the charge addition spectra, i.e., comparison between the apex of the

charging humps or dips, we really care mostly about the tip-dot capacitances when

the tip is nearest each dot, i.e., right above its center. For a rough estimate and

comparison between the two spectra or with the transport plot, the capacitance

ratio can be approximated by a constant, Ctd/Cgd ≈ 0.25 for our tip height of

z0 = 100 nm, as obtained from Fig. 5.8. Since both the tip-dot capacitance and

backgate-dot capacitance scale roughly linearly with the size of the dot (see Sec.

5.3), their ratio is expected to be constant. For the two large spectra shown

above, the n-type spectrum, Fig. 5.10, was taken at Vtip = −1.5 V, so we need

to subtract 0.375 V from its back gate voltage scale. The p-type spectrum, Fig.

5.19, was recorded at Vtip = +1.5 V, and adding 0.375 V to the back gate voltage

scale makes it comparable to similarly treated spectra and transport traces (in the

8The fact that our tip voltage changes sign is also visible in the spectra. In
our n-type spectra, recorded at a negative tip voltage, the single-electron charging
lines appear as humps. The positive tip voltage in the p-type spectra turns the
charging lines into slumps instead.



140

absence of the tip). At the end of this procedure, the single-electron charging lines

of the p-dot near the contact, which are visible in both images, fall almost on top

of each other. Figure 5.20 shows the combined spectrum of Figs. 5.10 and 5.19.

Now we can accurately compare the spectra of different regions with each other

and with electronic transport data, Fig. 5.11. The CNT device conducts only at

the very bottom of the spectrum, at backgate voltages of V
(eff)
g < −1.3 V in Fig.

5.20. At this voltage, the quantum dots on the CNT have already acquired quite a

few charges. There are also signs of quantum dots merging into larger ones, even

though some dots appear still quite distinctly. Most of the spectrum, though, is

taken under conditions where the tube does not conduct. This is a great benefit

of our local force probe technique, which is further explored in Sec. 5.9.

Tracking the charging lines in this combined spectrum carefully, the size of the

bandgap appears to be ∆V
(gap)
g ≈ 1 V in backgate voltage. In the simplest version,

this gate voltage difference should reproduce the bandgap of the semiconducting

CNT9. There are a number of effects that can make the bandgap appear larger in

backgate voltage, though. Even away from the metal leads, the backgate efficiency

is still smaller than 1. We may also not resolve all single-electron charging events

close to the band edge. The loss of contrast in the single-electron frequency shift

signal near the bandgap on the n-side was already addressed in Sec. 5.5 on the

disorder potential. A potential cause might be the increasing size of the Schot-

tky barriers and correspondingly insufficient charge injection from the leads as

the CNT’s electrochemical potential approaches the conduction band edge. From

theory we predict Egap = 0.51 eV for this dCNT = 1.4 nm nanotube by Eq. (A.15).

9Away from the contacts, the backgate is the most efficient gate, Cgd/Cdot / 1.
Furthermore, only the chemical potential of the CNT is relevant as the electron gas
is incompressible while the CNT’s electrochemical potential µ is in the bandgap,
dn/dµ = 0. This justifies the relation Egap = eCgd∆V

(gap)
g /Cdot / e∆V

(gap)
g .
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Figure 5.20: Combined n-type & p-type spectrum of a long semiconducting CNT.
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5.7 Interdot Coupling

In this section we zoom into the frequency shift images of quantum dots in semi-

conducting CNTs and examine the degeneracy points, where the charging lines

from two quantum dots intersect.

In natural systems, ground state degeneracies (other than spin degeneracy) are

a rare occurrence. Nature finds many ways to break such degeneracies10. Often

only small perturbations are needed to lift the degeneracy and create an avoided

crossing at the degeneracy point. These small perturbations typically arise from

interactions between the many-body constituents of the system. In the spirit of

this general trend, we will look for avoided crossings at the intersection of single-

electron charging lines from different quantum dots and attribute the splitting to

interactions between the two dots.

5.7.1 Avoided crossings in multi-dot spectra

Figure 5.21 shows a spatial frequency shift image of a part of a semiconducting

CNT and two careful scans of smaller areas within this image. In these smaller im-

ages, many avoided crossings are clearly visible at the intersection of single-electron

charging rings of neighboring quantum dots. Instead of following their usual round

or elliptical shape, the charging lines pick up another line at an intersection and

divert from their contour. While we frequently observe avoided crossings in fine

10The Jahn-Teller theorem (Jahn and Teller 1937) is a prominent formulation
of this observation in the context of (natural) atoms forming molecules. It proves
group-theoretically that all molecular configurations are unstable to an orbitally
degenerate electronic ground state, except for the linear chain of atoms. In other
words, any molecule with a degenerate electronic ground state (except the linear
chain of atoms) will undergo conformational changes (for example, distortions) to
form a configuration of lower symmetry. Thereby, it will break the degeneracy and
lower its ground state energy.
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Figure 5.21: Spatial frequency shift images with avoided crossings.

scans over small areas, the ones shown are on the extreme side. The same avoided

crossings are also visible in the charge addition spectra of these dots, as shown

in Fig. 5.22. In the two zoomed-in charging spectra shown, the usually smooth

single-electron charging humps conspicuously display a zig-zag pattern.

These avoided crossings are a sign of coupling between the two quantum dots

whose single-electron charging lines intersect. In the metaphor of artificial atoms,

we could say that the two quantum dots show signs of forming a molecule. As

discussed in Sec. 2.1.8, the splitting of the charging lines can be either due to

an elevated interdot tunnel coupling Γm (covalent molecular bond) or a large mu-

tual capacitance Cm (ionic molecular bond) between the quantum dots (Waugh

et al. 1996, Livermore et al. 1996). Both possibilities are described by a coupling

impedance Zm between the two dots, Eq. (2.26). First we discuss a model of two

coupled quantum dots in the LT-AFM so as to clarify our measurement. After-

wards we quantitatively extract the coupling from the observed line splitting in

the spectra.

5.7.2 Description of the avoided crossings in Vg-x spectra

From the splitting of the charging lines we can extract quantitative information

about the interdot coupling strength. Our spectral images, Fig. 5.22, are essentially

an unusual representation of the stability diagram (Pothier et al. 1992) of a coupled

double dot system. The double dot stability diagram was introduced and discussed
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Figure 5.22: Frequency shift spectra with avoided crossings.
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in Sec. 2.1.8. An example is shown in Fig. 2.6(a), where the charge state of the

double dot is displayed as a function of two gate voltages, Vg1 and Vg2. We could

collect a similar stability diagram in our system by sweeping the backgate and tip

voltage (as in Fig. 5.8) with the tip placed near a degeneracy point of two coupled

quantum dots. Since our backgate couples well to all quantum dots, however, and

since the AFM tip must couple reasonably to both dots so as to resolve charging on

both dots in its resonance frequency shift, this measurement scheme is unfavorable

for our setup.

In our unusual stability diagram, Fig. 5.22, in contrast, we use a spatial di-

mension, the tip location, along the x-axis to tune the relative strength of the

two tip-dot capacitances. Along the y-axis we vary the voltage on the extended

backgate, which couples to both quantum dots simultaneously. The situation in

our experiment is depicted schematically in Fig. 5.23. The two quantum dots

#1 and #2 are mutually coupled by the tunnel barrier between them. The two

contacts (labeled “source” and “drain”) are grounded and act as tunnel-coupled

charge reservoirs for the dots. Their sole purpose in this model is to set an elec-

trochemical reference potential for the two quantum dots and to permit tunneling

of electrons onto or off each dot. Both gates, the backgate and the AFM tip,

couple to both quantum dots via the capacitances Cgd1, Cgd2 and Ctd1(~r), Ctd2(~r),

respectively. The backgate-dot capacitances Cgd1 and Cgd2 vary only weakly with

tip position and can be regarded as fixed. At our typical tip heights, the AFM tip

is a much less efficient gate than the extended backgate, Cgd > Ctd. Hence, we use

the backgate voltage to sweep the electrochemical potential of the dots. But since

the backgate couples to both dots simultaneously, a sweep of the backgate voltage

alone could only record a 1-dimensional cut of a large phase space of the double
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Figure 5.23: Model of two mutually coupled quantum dots in the LT-AFM. Each

quantum dot is tunnel-coupled to a charge reservoir, labeled source and drain. The

extended backgate and the AFM tip act as gates on both dots. The two tip-dot

capacitances vary with tip position.
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dot system. For this reason the tip serves an important function: By moving the

tip over a little, we can change the gating conditions slightly – gate one dot a little

more and the other a little less than before (as measured by their respective gate

charges (5.2)) – and allow the backgate to sweep the electrochemical potentials of

the dots under slightly different electrostatic conditions. This way we can access a

2-dimensional plot of the coupled double dot phase space. This 2-dimensional Vg-x

scan of the coupled double dot phase space gives our tilted version of the double

dot stability diagram. A schematic adaptation is shown in Fig. 5.24(a).

5.7.3 Quantitative analysis of the line splitting

For the quantitative analysis of the line splitting we assume that the two quantum

dots are capacitively coupled, but it is implicitly understood that this coupling

could be due to capacitive and/or tunnel coupling. In this sense, the mutual

dot capacitance extracted below really quantifies the magnitude of the coupling

impedance, |Zm|.

From the Vg-x stability diagram, as schematically shown in Fig. 5.24(a), we

can extract 4 relevant quantities:

• The addition gate voltage for each dot, ∆Vg1 and ∆Vg2, defined as the amount

of gate voltage needed to promote one more electron onto one dot without

changing the charge on the other dot. This is the same quantity we have

already evaluated for several dots previously in Sec. 5.3 in the absence of

interdot coupling.

• The amount of gate voltage needed to compensate for the induced gate charge

when the other (coupled) dot has acquired one more electron. In general,
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it may be different for each of the two coupled dots, depending on its gate

efficiency and its charging energy. We will call them ∆V
(m)
g1 and ∆V

(m)
g2 for

dot #1 and #2, respectively. This quantity describes how well the two dots

are coupled and is related to the interdot coupling strength.

Figure 5.24(b) shows how all 4 voltages are extracted from a double dot spectrum.

A definition of these voltages in terms of the electrochemical potentials of the dots

is given in Eq. (A.4) in Appendix A.1.

In the classical limit, kBT � ∆Elevel, we can calculate the interdot gating

efficiencies Cm/Cdot#1 and Cm/Cdot#2 of capacitively coupled dots from these 4

backgate voltage differences, using the formula

Cm =
∆V

(m)
g2

∆Vg2

Cdot#1 =
∆V

(m)
g1

∆Vg1

Cdot#2 . (5.9)

A derivation of this relation is given in Appendix A.1. This equation also produces

the ratio of the charging energies of the two capacitively coupled dots.

As an example analysis, we take a readout of the 4 voltage differences needed

from the spectrum in Fig. 5.24(c) and find ∆Vg1 = 25.4 mV and ∆Vg2 = 29.3 mV for

the direct addition backgate voltages of the two dots. Within the image resolution

of 1.95 mV/pixel for the backgate voltage in Fig. 5.24(c), the amount of splitting is

the same for both dots, ∆V
(m)
g1 = ∆V

(m)
g2 = 7.8 mV. Under the assumption of weak

interdot tunnel coupling, these values correspond to interdot gating efficiencies of

Cm/Cdot#1 = 0.27 and Cm/Cdot#2 = 0.31.

Although we have analyzed the line splitting under the hypothesis of dominant

capacitive coupling, we stress that the coupling could be either due to tunnel

or capacitive coupling (or both). A convenient quantity that accounts for both

possibilities is the coupling impedance Zm that was proposed in Sec. 2.1.8. From
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(a) Schematic charge stability diagram

in the Vg-x spectrum form. The labels

(Nl, Nr) denote the equilibrium occupa-

tion of electrons on the left and right

dot, each up to an offset.

(b) How to determine ∆Vg1, ∆Vg2,

∆V
(m)
g1 , and ∆V

(m)
g2 from the charge sta-

bility diagram.

(c) Experimental charge stability dia-

gram in the Vg-x spectrum form.

(d) Same spectrum as Fig. 5.24(c),

but with charge stability diagram

partly overlaid (to guide the eye).

Figure 5.24: Charge stability diagram in the Vg-x spectrum of two coupled quan-

tum dots in a CNT.
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the numerical analysis above we can infer its magnitude. In the capacitive coupling

limit, the magnitude of the coupling impedance is the reciprocal of Eq. (2.27),

|Zm| =
h

e2

1

2π

(
Cdot#1 Cdot#2

C2
m

− 1

)
. (5.10)

Hence, we reexpress the coupling as |Zm| = 1.75
h

e2
for the dot analyzed above.

Not every pair of quantum dots that we have taken images of shows as strong

avoided crossings at the intersection of their charging lines. The calculated num-

bers above are among the strongest coupling we have observed and are not typical.

In some cases, the splitting (if present) is below our resolution. To estimate our

resolution limit for this measurement, we take Fig. 5.24(c) as an example and con-

sider the following information: Our step size in backgate voltage is 1.95 mV per

pixel along the y-axis. With the above backgate addition energies of the two dots

in the spectrum we reach the digitization limit of the image at C
(min)
m /Cdot ≈ 0.07.

Correspondingly, any coupling impedance |Zm| > 30
h

e2
cannot be resolved in this

image even under optimum conditions. For the sharpest charging lines in the im-

age we could confidently resolve a splitting of only one pixel. On average the

single-electron charging lines in Fig. 5.24(c) are 2 points wide along the Vg-axis.

In our experience, an avoided crossing similar to the width of the lines in an image

is well visible and sufficient to measure the line splitting. With this standard, the

minimum detectable gating efficiency in Fig. 5.24(c) is typically Cm/Cdot ≈ 0.13,

corresponding to a coupling impedance |Zm| ≈ 10
h

e2
. Clearly, the lower detection

limit on the capacitance ratio also depend on the charging energy of the dots in the

image. Taking Fig. 5.13(a) as another example, the small dot (with the smallest

total dot capacitance) on the left of the image has an addition backgate voltage

of ∆V
(add)
g = 98 mV. On the scale of the width of its charging lines (about 6 mV)

we don’t observe any splitting in the image. By Eq. (5.9), the image resolution
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bounds Cm/Cdot < 0.06 for the large dot to the right of the small dot and its

coupling capacitance to the small dot. For these two dots we infer |Zm| > 10
h

e2

from Eq. (5.10).

5.8 Charging Energy from the Frequency Shift Amplitude11

Summarizing our approach in all previous sections of this chapter, we have used

the signature of single-electron tunneling in the cantilever resonance frequency to

identify where charging events occur in space and gate voltage. Some features

of these charging curves or the relation between several such curves enabled us to

extract qualitative and quantitative information about the quantum dots and their

electrostatic environment. In this section we return to our starting equation (5.1)

for frequency shift microscopy and analyze the information contained in the actual

amount of frequency shift due to single-electron tunneling. Our goal is to extract

the charging energy EC of a quantum dot, or equivalently its total capacitance

Cdot.

To extract the charging energy of a quantum dot from the resonance frequency

shift due to single-electron tunneling, we return to the individual traces of the

cantilever resonance frequency vs. backgate voltage. Figure 5.25 shows several

such traces, where the AFM tip is resonating at different tip heights above the

same quantum dot. These traces are equivalent to cuts through a Vg-x charging

spectrum (Fig. 5.6) at fixed tip location or cuts at constant tip voltage in a Vg-Vtip

spectrum (Fig. 5.8). Instead of encoding it in the color scale of a 2D scan, these 1D

traces make the actual amount of resonance frequency shift clearly visible. Each

11Part of this section was published in Zhu, Brink, and McEuen, Appl. Phys.
Lett. 87, 242102 (2005).
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Figure 5.25: Frequency shift traces of the AFM cantilever from a CNT quantum

dot versus backgate voltage. In each trace the AFM tip is resonating at a different

height above the center of the same dot. The tip height is labeled in the same color

next to each trace. Single-electron charging events in the frequency shift signal are

observed as dips on the smooth background. The sequence of black arrows marks

the same charging event N → N+1 of the quantum dot at different tip heights.
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dip in the cantilever resonance frequency below the smooth background is due to

single-electron charging of the quantum dot underneath the resonating AFM tip.

To isolate the charging energy from any of the dips in the resonance frequency,

we need to evaluate two terms that appear in Eq. (5.1): The spatial derivative of

the gate charge with respect to tip height,
dqc

dz
, and the factor

f ′(Edc)

1 + (ω/Γ)2
that

carries the dependence on the backgate voltage and the electron life time on the

quantum dot. We address these two terms in this order in the following.

Spatial derivative of the gate charge, dqc/dz. To evaluate how the gate

charge qc varies with the tip height z0 above the quantum dot, we look at the

evolution of the single-electron charging dips with tip height. In Fig. 5.25 we see

that the dips corresponding to the same charging event (as marked by arrows)

move towards lower backgate voltage as the height of the (positively biased) AFM

tip is reduced. For small changes ∆z0 in tip height, their shift ∆V
(∆z0)
g in backgate

voltage follows from12

dqc

dz0

= Cgd
dVg

dz0

. (5.12)

From the sequence of charging dips in Fig. 5.25 we obtain the ratio
∆V

(z0)
g

∆z0

≈ dVg

dz0

on the right hand side in Eq. (5.12). The backgate-dot capacitance is obtained from

the separation of charging dips at constant tip height. In the classical limit, the

gate charge of neighboring charging events differs by e, so that e = Cgd ∆V
(add)
g ,

12This relation is an application of the general equation

−
(

∂qc

∂z0

)
Vg,Vtip

=

(
∂qc

∂Vg

)
z0,Vtip

(
∂Vg

∂z0

)
qc,Vtip

(5.11)

for a function qc =qc(Vg, Vtip, z0) and its inverse Vg =Vg(qc, Vtip, z0). In this notation
the subscripts outside the parentheses are kept constant during the derivative
inside.
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where ∆V
(add)
g is the backgate voltage difference between the two neighboring

charging events at constant tip height. From the data in Fig. 5.25, we extract a

backgate-dot capacitance Cgd = 1.02 aF with a standard deviation of 1% across the

different tip heights and no systematic trend within z0 = 50−100 nm. This justifies

experimentally the assumption that Cgd is independent of tip position under our

operating conditions, as required for some measurements in this chapter13. A plot

of dqc/dz obtained in this way is shown in Fig. 5.26. The red line fits a power law

to the extracted dqc/dz data points.

Charging energy from the frequency shift signal in the transparent limit,

ω � Γ. In the limit of a transparent quantum dot, the electron tunneling time

on and off the dot is irrelevant. Electrons tunnel instantly on the time scale of

the cantilever resonance, and the factor
1

1 + (ω/Γ)2
drops out of Eq. (5.1). In

this limit we simply integrate out the derivative of the Fermi-Dirac distribution on

the right-hand side of Eq. (5.1), which describes the shape of the single-electron

tunneling dip. The area in the single-electron charging dip of the relative cantilever

frequency shift is determined by

− e
Cgd

Cdot

∞∫
−∞

δω0

ω0

dVg =
1

2k

(
dqc

dz

e

Cdot

)2

if ω � Γ . (5.13)

The factor in front of the integral converts backgate voltage to electrostatic energy

of the dot, d(∆Edc) = e dqc/Cdot = −eCgd dVg/Cdot. The area of the single-electron

charging dip in the frequency shift signal allows us to determine the charging energy

13We implicitly assume this condition in the following paragraph, for example:
When integrating out the right-hand side of Eq. (5.1) to obtain Eqs. (5.13) and
(5.14), dqc/dz is assumed to be independent of the backgate voltage, which requires
that Cgd is independent of the tip height, see Eq. (5.2). Another example is the
analysis of coupled quantum dots in Sec. 5.7 – see footnote 1 in Appendix A.1.
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Figure 5.26: Spatial derivative of the gate charge, dqc/dz, extracted from tip

height dependent frequency shift vs. backgate traces on a quantum dot (Fig. 5.25).
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of the dot,

EC =
e2

Cdot

= −2k

(
dqc

dz

)−2

eCgd

∞∫
−∞

δω0

ω0

dVg if ω � Γ . (5.14)

Knowing the cantilever spring constant k = 1.7 N/m (from cantilever calibra-

tion, Sec. 3.3), the gate charge derivative dqc/dz at different tip heights, Fig. 5.26,

and the backgate-dot capacitance Cgd = 1.02 aF from above, we can numerically

integrate the area in any of the arrowed single-electron dips in Fig. 5.25. This

gives a charging energy of EC = 47 meV from Eq. (5.14), which corresponds to a

total dot capacitance of Cdot = 3.4 aF. The charging energies that we calculate

from the marked dips in different traces in Fig. 5.25 are all identical, as is shown

in Fig. 5.27. Here we plot the area in the single-electron charging dip at different

tip heights versus the square of the gate charge derivative at the same tip height.

According to Eq. (5.14), they are related linearly with a slope of
EC

2k eCgd

. Clearly,

the data points in Fig. 5.27 indeed lie on a line that goes through the origin of

the coordinate system, confirming the prediction of Eq. (5.14) and the value of the

charging energy from the marked dip in all traces in Fig. 5.25.

We remark that the quantum dot we have chosen for the above analysis is the

p-dot that forms at the metal contact as the CNT’s electrochemical potential enters

the bandgap from the valence band. This dot is visible in the bottom right corner

of the spectrum in Fig. 5.10. It allows us to estimate how big the capacitance to

the lead can become if the dot is placed right next to it. We find an upper bound

of Clead ≤ Cdot − Cgd − Ctd ≈ 2 aF for this dot. Given the very close proximity to

the lead, this coupling seems reasonable.

We are confident that our disorder-induced quantum dots in semiconducting

CNTs are fairly transparent on the scale of our driving frequency at the cantilever
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Figure 5.27: Charging energy of a quantum dot derived from the amount of

cantilever frequency shift due to single-electron charging. The data points (black

squares) obtained from different tip heights predict the same charging energy EC

and confirm the linear relationship between the area in the single-electron charging

dips of the cantilever resonance frequency and the square of the spatial derivative

of the gate charge, as predicted by Eq. (5.14).
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resonance, as we observe a strong frequency shift signal in our measurements. As

graphed in Fig. 2.9, the amount of frequency shift due to single-electron tunneling

is greatly reduced when the tunneling rate of the quantum dot gets larger than

the driving frequency. For the sake of completeness of the described method of

extracting the charging energy, we extend the analysis to non-transparent dots in

Appendix A.3.

5.9 Isolated Carbon Nanotubes

Not all CNTs on the chip were connected by source and drain contacts. In this

section we explore spatial images from an isolated CNT with no leads attached.

This particular CNT was attractive for the measurement as there was no catalyst

island near either end of the tube; it was just lying on its own on the SiO2 surface14.

With the lack of source and drain contacts, we were unable to perform transport

measurements on this CNT and could not determine whether it was a metallic or

semiconducting CNT. Despite this uncertainty, the data from the isolated CNT

illustrates some benefits of frequency shift microscopy as an experimental technique

very clearly. These results are also relevant to contacted CNTs and other samples.

Figure 5.28 shows spatial frequency shift images of an isolated CNT at different

backgate voltages. The tip height above the substrate is z0 = 83 nm in all images.

The scans in Fig. 5.28 cover almost the full length of the isolated CNT. Although

this CNT does not have any leads attached, we clearly observe single-electron

charging rings from quantum dots on the tube. At first sight, this observation

might seem surprising: Since the isolated CNT doesn’t couple to any charge reser-

14This CNT may still have grown from an Fe nanoparticle that was left on the
surface during catalyst lift-off.
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(a) Vg = −2.3 V. (b) Vg = −1.7 V. (c) Vg = −1.1 V.

Figure 5.28: Spatial frequency shift images of a CNT without contacts. The

voltage on the extended backgate is shown under each figure. All images scan the

same 0.5 µm× 1 µm area.
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voirs, a gate voltage cannot induce charges on the CNT, and the total number of

electrons on the CNT is fixed. At a second thought, the underlying mechanism

for the observation becomes clear: Single-electron charging of quantum dots on an

isolated tube is possible by changing the charge density locally underneath the tip

at the cost of other tube locations. In other words, the electrons on the CNT are

redistributed between different quantum dots depending on the tip location. This

observation conveys a useful feature of our frequency shift measurements: Our

measurement requires only local electron motion, i.e., a local current, to detect

single-electron charging. For CNTs with leads this implies that the charge of a

tunneling electron does not necessarily have to come all the way from the source

or drain contact. In fact, this aspect of frequency shift microscopy has enabled us

to study semiconducting CNTs when transport across the CNT device was absent,

for example, in the n-regime.

Even though single-electron tunneling is possible without any contact if the

CNT is not too short, rearranging a fixed total number of electrons on the tube

can only access a limited range of charge states on the quantum dots. To record a

large charge addition spectrum such as Fig. 5.6, the CNT must couple to an infinite

charge reservoir. At the same time it is also clear that a single charge reservoir

– i.e., a single metal contact – is sufficient for the frequency shift measurement.

A second lead, as we had available in our CNT-FETs and necessary for transport

measurements or scanning gate microscopy, is not required to perform frequency

shift measurements.

The need for none or only one contact expands the range of interesting samples

to investigate with frequency shift microscopy greatly. It can also significantly

simplify the fabrication process for many samples. As an example, Chap. 6 explores
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gold nanoparticles that are chemically linked to a single charge reservoir. This is

just one sample that benefits from the single contact geometry.

5.10 Conclusions

In the experiments presented in this chapter, we have visualized the formation of

quantum dots in a long semiconducting CNT. We have attributed these quantum

dots to the effects of disorder on the nanotube at low carrier density. Spatially

addressing one quantum dot at a time by our low-temperature atomic force mi-

croscope, we have extracted their size and backgate coupling and found a common

scaling law among them. We have demonstrated how to extract the charging en-

ergy of a quantum dot from the resonance frequency shift of the AFM cantilever.

Interaction between neighboring quantum dots has been observed and analyzed.

Monitoring spatially how charge is induced on the semiconducting CNT by the

backgate voltage, we found the bandstructure of the CNT imposed on the poten-

tial energy landscape seen by carriers on the CNT. Relying on measurements by

our local force probe, we have resolved charging events even in the absence of de-

vice conduction. We have furthermore extracted information about the underlying

disorder from the charging pattern of the quantum dots in backgate voltage and

space.

These measurements have demonstrated the power of our local force probe

technique. In particular, we have found that only local electron motion is needed

to resolve and characterize the quantum dots. This observation has enabled us

to resolve the charging properties also on the n-side, where no device conduction

was observed and opens the door to a variety of other samples, one of which is

discussed in the following chapter.



CHAPTER 6

SINGLE-ELECTRON CHARGING OF GOLD NANOPARTICLES

LINKED TO A CARBON NANOTUBE AT T = 77 K

In this chapter we investigate single-electron charging of gold nanoparticles that

are attached to a CNT by a linker molecule (Fig. 4.7). The gold nanoparticles are

12 nm in diameter and expected to show Coulomb blockade behavior even at liquid

nitrogen temperature, T = 77 K, as predicted by numerical finite element simula-

tions. The CNT serves as a lead or charge reservoir for the gold nanoparticle.

CNTs are an obvious choice for this purpose, because they are small and don’t in-

terfere with the scanning probe measurement topographically. Furthermore, their

small size implies that the mutual capacitance between the CNT and the gold

nanoparticle is relatively small, certainly in comparison to microfabricated metal

leads. This last consideration is important as we retain the ability to gate the gold

nanoparticles by the backgate and the AFM tip with good efficiency.

Using our force-sensing AFM cantilever as a a mobile, local detector allows us to

investigate the gold nanoparticles in a single-contact geometry. The independence

of our scanning force probe measurement from transport across the quantum dot,

which would require two contacts to each nanoparticle, was discussed in some detail

in Sec. 5.9. This single-contact geometry alleviates many fabrication issues with

wiring up nanoscale objects with two contacts. Very innovative methods have been

devised to make two leads with nanometer separation (Reed et al. 1997, Morpurgo

et al. 1999, Park et al. 1999, Zhang et al. 2003, Tomfohr et al. 2005, De Poortere

et al. 2006, Guo et al. 2006, for example). Nonetheless, the fabrication in any of

these clever schemes is challenging. Furthermore, it is impossible to make truly

identical junctions on the nanometer scale, at least at this point in time. The single-

162
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contact geometry may be advantageous in these respects: Their fabrication is much

simpler and requiring only one contact improves the chances for reproducibility.

Lastly, this chapter also introduces another signal channel of our scanning

force technique: The tip oscillation amplitude. As illustrated in the schematic

of our experimental setup, Fig. 3.5, the tip oscillation amplitude can be recorded

simultaneously with the cantilever resonance frequency. Single-electron charging

events can also be visible in the tip amplitude signal. A reduction of the tip

oscillation amplitude zω during single-electron charging events is due to dissipation

in the tunneling process. At the cantilever resonance frequency ω0 it is given by

δzω0 =
Fω0

k
δQ , (6.1)

where Fω0 is the (constant) amplitude of the resonant ac-driving force, k is the

spring constant of the cantilever, and Q its quality factor. Changes in the spring

constant due to single-electron charging are too small to be observed in the tip

oscillation amplitude. Operationally, we fix the ac-force amplitude by driving the

cantilever mechanically through a bimorph piezo element underneath the cantilever

substrate in the AFM tip holder1. The instrument setup for this measurement

mode is depicted in Fig. 3.5.

We start this chapter with electron transport and scanning gate measurements

on the CNT device, so as to exclude the possibility of quantum dots on the CNT

(Sec. 6.1). Spatial images of a CNT device that has gold nanoparticles linked to it

are shown in Sec. 6.2. We use these spatial images to locate gold nanoparticles that

are coupled to the CNT for the following experiments. In Sec. 6.3 we quantitatively

1This mode of operation is different from some setups for electrostatic force
microscopy (EFM), where the cantilever is excited capacitively via the sample.
The frequency shift signal is the same in either setup, but the amplitude signal
can be different.
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extract the capacitive couplings and the charging energy of the gold nanoparticles

from the tip amplitude data, using mostly similar methods as discussed in Chap.

5. The predictions of Eq. (6.1) for the tip oscillation amplitude signal are experi-

mentally validated in Sec. 6.4. This measurement confirms that the tip oscillation

amplitude measures the dissipation in the single-electron tunneling process. We

analyze the tip amplitude data quantitatively in Sec. 6.5. With the aid of the

capacitive couplings (Sec. 6.3), we extract the tunnel resistance of the junction

between the gold nanoparticle and the CNT. Complementing the amplitude signal

with resonance frequency shift data provides a more straight-forward path to the

tunnel coupling of the gold nanoparticles, as discussed and employed in Sec. 6.6.

In Sec. 6.7 we turn the tables and use the gold nanoparticles to interrogate the

CNT. We discuss how to measure the voltage profile of a CNT by means of the

linked gold nanoparticles and apply this technique to looped CNT. In a time-tested

fashion, the chapter concludes with conclusions.

6.1 Transport and Scanning Gate Measurements of the CNT devices

In the light of Chap. 5 and the existence of quantum dots in CNTs at T = 4.2 K,

we first validate experimentally that the CNT used here doesn’t show any signs of

Coulomb blockade at T = 77 K. Figure 6.1 shows the T = 77 K transport trace of

the CNT device imaged in Fig. 6.2. Clearly, the source-drain conductance of the

CNT shows no sign of Coulomb oscillations – for comparison, see Figs. 5.1 and 5.2.

This proves that the CNT is acting as a metal lead for the gold nanoparticles.

To further exclude the possibility of quantum dots on the CNT, we do extensive

Scanning Gate Microscopy (SGM) measurements on each CNT device, where we

record the source-drain conductance as a function of the biased tip position. Each
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Figure 6.1: Electron transport trace of a CNT device functionalized with gold

nanoparticles, recorded at T = 77 K.

SGM image is recorded together with an amplitude image during the same scan.

While the amplitude images exhibit single-electron charging rings abundantly (see

Sec. 6.2), the simultaneous SGM images are completely featureless. This charac-

terization of the CNT is carried out fully on all devices used in this chapter. None

of the CNTs shows any sign of Coulomb blockade.

We conclude that any single-electron charging events observed under our op-

erational conditions cannot be due to the CNT. This finding is consistent with

previous studies of charging effects in CNTs (Tans et al. 1997, Bockrath et al.

1999, Woodside 2001, for example).

6.2 Spatial amplitude images of gold nanoparticles

As mentioned in the introduction and touched upon at the end of Sec. 2.2.2, single-

electron charging events can alter the tip oscillation amplitude. In this section we

take the experimental approach and look for signs of tunneling events in spatial

amplitude images. A spatial amplitude image records the tip oscillation amplitude

as a function of the biased AFM tip position on a square grid of fixed tip height

above the sample surface.
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Figure 6.2 shows several spatial images of a CNT with gold nanoparticles linked

to it. Each of the 17 high-resolution images in the stitched sequence is recorded

at a tip height of z0 = 60nm and T = 77 K. The sequence covers the entire

length of the CNT between its source and drain contact. The color scale in these

images encodes the tip oscillation amplitude at the cantilever resonance frequency.

For comparison, the three AFM images in the inset show large area scans of the

entire CNT device. The CNT appears as a dark line in the frequency shift (top)

and amplitude (middle) inset images, which were also taken at liquid-nitrogen

temperature. The tube is bright in the topographic height image (bottom inset),

which was recorded in tapping mode at room temperature. This topographic

image also clearly shows the gold nanoparticles as even brighter dots and the

metal contacts at the left and right edge of the scan.

Looking at the sequence of low-temperature high-resolution images, there are

many sets of concentric rings (and some single rings) visible along the CNT. It is

noteworthy that

• all rings are circular (without elliptical distortions),

• there are gaps along the CNT without any rings, i.e., some sets of concentric

rings don’t have an immediate neighbor to the left and to the right,

• sometimes the centers of two nearby sets of concentric rings (or just individual

non-concentric rings) are at the same location along the CNT, but offset

perpendicular to the tube, and

• at a few spots, the centers of three nearby (non-concentric) rings don’t lie on

a line but at the corners of a small triangle.



167

F
ig

u
re

6
.2

:
S
p
at

ia
l

im
ag

es
of

go
ld

n
an

op
ar

ti
cl

es
at

ta
ch

ed
to

a
C

N
T

.
T

h
e

se
q
u
en

ce
of

st
it

ch
ed

im
ag

es
d
ep

ic
ts

th
e

ti
p

os
ci

ll
at

io
n

am
p
li
tu

d
e

al
on

g
th

e
C

N
T

at
T

=
77

K
.

In
al

l
co

n
st

it
u
en

t
im

ag
es

,
th

e
vo

lt
ag

e
on

th
e

b
ac

k
ga

te
is

V
g

=
−

2
V

,
th

e

ti
p

vo
lt

ag
e

is
V

ti
p

=
+

3
V

,
an

d
th

e
ti

p
sc

an
s

at
a

h
ei

gh
t

of
z 0

=
60

n
m

ab
ov

e
th

e
su

rf
ac

e.
S
et

s
of

co
n
ce

n
tr

ic
d
ar

k
ri

n
gs

ar
e

w
el

l
v
is

ib
le

at
m

an
y

lo
ca

ti
on

s
in

cl
os

e
p
ro

x
im

it
y

of
th

e
C

N
T

.
T

h
e

th
re

e
in

se
t

im
ag

es
sh

ow
la

rg
e

ar
ea

sc
an

s
of

th
e

sa
m

e
C

N
T

d
ev

ic
e.

T
h
e

to
p

tw
o

in
se

ts
ar

e
lo

w
-t

em
p
er

at
u
re

,
n
on

-c
on

ta
ct

im
ag

es
of

th
e

ca
n
ti

le
ve

r
re

so
n
an

ce
fr

eq
u
en

cy
sh

if
t

an
d

th
e

ti
p

os
ci

ll
at

io
n

am
p
li
tu

d
e,

as
la

b
el

ed
.

T
h
e

b
ot

to
m

in
se

t
im

ag
e

is
a

ta
p
p
in

g
m

o
d
e

to
p
og

ra
p
h
ic

A
F
M

im
ag

e
re

co
rd

ed
at

ro
om

te
m

p
er

at
u
re

.
T

h
e

d
ev

ic
e

co
n
ta

ct
s

ar
e

cl
ea

rl
y

v
is

ib
le

on
th

e
le

ft
an

d
ri

gh
t

of
th

is
im

ag
e.



168

We attribute each dark ring to a single-electron charging event of a gold nanopar-

ticle (or a cluster of nanoparticles) at the center of the ring. The fact that these

rings appear dark shows that the amplitude change is due to energy dissipation

in the single-electron tunneling process, as analyzed in Appendix A.4. We also

remark that the 4 observations made above stand in contrast to the concentric

contours that were observed in spatial images of CNT devices in Chap. 5. Com-

pare to the images in Fig. 5.5, for example. Even though we have already excluded

charging effects on the CNT in Sec. 6.1 these findings provides further evidence

that the charging events don’t occur on the CNT.

The main benefit of visualizing single-electron tunneling in spatial images, how-

ever, is to locate gold nanoparticles that are coupled to the CNT. Once we know

their location, we can move the AFM tip near them and investigate their proper-

ties one at a time. The following sections illustrate different such measurements

on individual gold nanoparticles.

6.3 Capacitive couplings of the gold nanoparticles

We first characterize the electrostatic properties of the gold nanoparticles. In

particular, we extract the gate-nanoparticle capacitances and the charging energy

of the nanoparticles. These capacitances allow us to bound the mutual CNT-

nanoparticle capacitance of the tunnel barrier created by the linker molecule be-

tween the two. The procedure here is very similar to the steps followed for quantum

dots in CNTs, as discussed in Chap. 5. Only the charging energy is measured dif-

ferently.

To extract its capacitances, we park the biased AFM tip above the gold nanopar-

ticle to be characterized. We sweep the backgate voltage while monitoring the
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amplitude of the resonating cantilever. A few such amplitude traces, recorded at

different tip voltages, are shown in Fig. 6.3. Single-electron charging of the gold

nanoparticle is visible as dips in the resonant amplitude below the smooth back-

ground. The single-electron tunneling dips move to lower gate voltages when the

tip voltage is increased, as shown by the set of arrows, which tracks one charging

event of the gold nanoparticle. The other dips move over by the same amount.

Effectively, the traces taken at different tip voltages are translated horizontally

with respect to each other. The vertical offset between traces is added manually

for clarity.

From the separation of two subsequent charging dips within one trace, which we

introduced as addition backgate voltage ∆V
(add)
g in Chap. 5, we find the backgate-

nanoparticle mutual capacitance by

Cg−Au = e/∆V (add)
g . (6.2)

This relation follows from Eq. (2.8) in the classical limit. From the traces in Fig.

6.3 we find Cg−Au = 0.33aF, independent of the tip voltage.

To measure the mutual capacitance between the gold nanoparticle and the AFM

tip, Ctip−Au, we can sweep the tip voltage and determine the separation between

neighboring charging events, as we’ve just done for the backgate. Instead, we will

compute the tip-nanoparticle capacitance from the shift of a charging event in

backgate voltage that results from changing the tip voltage. As detailed for CNT

quantum dots in Eq. (5.3), the same charging event moves by

∆V (∆Vtip)
g = −Ctip−Au

Cg−Au

∆Vtip (6.3)

in backgate voltage if the tip voltage is changed by ∆Vtip. From the shift between

traces of different tip voltage in Fig. 6.3 we find Ctip−Au = 0.18 aF.
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Figure 6.3: Tip oscillation amplitude vs. backgate voltage while the tip is parked

straight above a gold nanoparticle at a height z0 = 60 nm. The three traces

correspond to different voltages on the AFM tip, as labeled. For clarity, the traces

are offset vertically with respect to each other. For one single-electron charging

event, the corresponding dips are marked by an arrow on each trace.
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At T = 77 K we extract the charging energy EC = e2/CAu of a gold nanoparticle

from the width of the charging dips, which is thermally limited and determined by

(Grabert and Devoret 1992)

Cg−Au

CAu

e∆V (width)
g = 4kBT . (6.4)

From the width of dips in Fig. 6.3 we find a charging energy EC = 106 meV or

equivalently a total nanoparticle capacitance CAu = 1.5 aF.

We would also like to characterize the coupling between the gold nanoparti-

cle and the CNT. Their mutual capacitance is difficult to measure on our samples.

We can, however, calculate an upper bound on their coupling capacitance CCNT−Au

from the other capacitances extracted above. Since the total nanoparticle capaci-

tance is the sum of the mutual capacitance to all other conductors, Eq. (2.53), we

obtain an upper bound from

CCNT−Au ≤ CAu − Cg−Au − Ctip−Au . (6.5)

If the nanoparticle is far away from both CNT contacts, we think that this bound is

close to the actual value of CCNT−Au. From the previously calculated capacitances,

we find CCNT−Au ≤ 1 aF for the capacitance of the tunnel barrier to the CNT of

this gold nanoparticle.

By recording multiple tip oscillation amplitude traces as a function of backgate

voltage at different AFM tip heights z0 above the dot (not shown), we can measure

the change of gate charge qc on the gold nanoparticle as a function of tip height.

This method was discussed and used in Sec. 5.8, as illustrated in Figs. 5.25 and

5.26. For small changes in tip height, ∆z0, the single-electron charging event moves

by

∆V (∆z0)
g =

1

Cg−Au

dqc

dz0

∆z0 (6.6)
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in backgate voltage. This relation is a reformulation of Eq. (5.12) and derived from

Eq. (5.11). At z0 = 60 nm and Vtip = 1 V, we find for the above gold nanoparticle

a gate charge derivative of −dqc

dz
= 7.3× 10−12 C

m
= 0.045

e

nm
.

Comparing the above capacitances with measurements of other gold nanopar-

ticles on the same and another CNT on the same chip, we find that the above

couplings are a little on the small side, but still typical. The ratios of capacitances

are representative. Table 6.1 summarizes the capacitances measured on other gold

nanoparticles on the same chip.

6.4 Measuring energy dissipation due to single-electron tunneling

As mentioned in the introduction, the tip amplitude change due to single-electron

charging arises from energy dissipation in the tunneling process. Before analyzing

the amplitude signal based on this assumption, as encoded in Eq. (6.1), we validate

it experimentally.

For this purpose, we compare the tip oscillation amplitude (and its change)

to direct measurements of the cantilever quality factor. Specifically, we do the

following experiment: We select a gold nanoparticle from a spatial image and park

the biased AFM tip right above it. First, we record the tip oscillation amplitude zω0

as we sweep the backgate voltage and induce charges on the nanoparticle. In this

part the ac-driving force follows the cantilever resonance frequency. Then we fix the

backgate voltage and sweep the frequency of the ac-driving force. By monitoring

the tip oscillation amplitude, we record a resonance curve of the cantilever. The

width of the resonance curve ∆ωFWHP = ω0/Q is a direct measure of the quality

factor Q, where the resonance frequency ω0 is the location of the maximum of the

resonance curve. We record such a resonance curve at several different backgate
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Table 6.1: Electrostatic capacitances of gold nanoparticles that are chemically

linked to a CNT by an organic molecule. All measurements were performed at

a tip height of z0 = 60 nm. The first three data columns were obtained by Eqs.

(6.2), (6.3), (6.4), respectively; the remaining three columns were inferred from the

previous three.

particle No. Cg−Au
Ctip−Au

Cg−Au

Cg−Au

CAu

Ctip−Au CAu EC =
e2

CAu

particle #04 0.46 aF 0.50 0.22 0.23 aF 2.1 aF 76 meV

particle #06 0.40 aF 0.56 0.26 0.22 aF 1.52 aF 105 meV

particle #12 0.46 aF 0.54 0.25 aF

particle #20 0.33 aF 0.55 0.22 0.18 aF 1.5 aF 106 meV

particle #22 0.39 aF 0.59 0.23 0.23 aF 1.69 aF 95 meV

particle #23 0.46 aF 0.50 > 0.22 0.23 aF < 2.1 aF > 76 meV
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voltages and extract the quality factor.

The result of this experiment on two gold nanoparticles is shown in Fig. 6.4.

The red trace in both graphs shows the tip oscillation amplitude as a function of

backgate voltage. Multiple single-electron charging events are visible as dips in

the amplitude signal. The independently measured quality factors are shown as

blue squares in both graphs and connected by straight lines. In each graph, we use

one data point to divide the measured tip amplitude by the quality factor so as

to extract the proportionality factor
Fω0

k
between the two. This fixes the relation

between the scales on the left and the right coordinate axes in Fig. 6.4.

The tip oscillation amplitude and the cantilever quality factor clearly track

each other closely. We have collected similar tip amplitude traces and direct Q

measurements on a total of 5 gold nanoparticles that are linked to a CNT. All

of them confirm the proportionality between the reduced tip amplitude and the

change in the cantilever quality factor.

This measurement verifies the origin of the single-electron charging signal in

the top oscillation amplitude experimentally and confirms the validity of Eq. (6.1).

In the following two sections we analyze this dissipation signal in the tip ampli-

tude to extract the tunnel coupling between the gold nanoparticle and the CNT

quantitatively.

6.5 Electron Tunneling Rate across the Junction

In this section we investigate the information contained in the dissipation signal

due to single-electron tunneling. In particular, we extract the tunneling rate Γ of

the tunnel junction between the gold nanoparticle and the CNT from the relative

change of the tip oscillation amplitude. For the analysis in this section we also
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Figure 6.4: Tip oscillation amplitude zω0 and cantilever quality Q factor in com-

parison. The data in these two plots was collected on different gold nanoparticles.

The quality factor was directly measured from the width of the cantilever reso-

nance curve at each data point. The resonant tip amplitude clearly follows the

cantilever quality factor, as predicted by Eq. (6.1).
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rely on the capacitive couplings of the gold nanoparticle from Sec. 6.3 and the

cantilever parameters as calibrated in Sec. 3.3.

Accounting for the dissipation term δγ and neglecting the in-phase component

of the single-electron force, the relative amplitude change from electron tunneling

(2.84) is given by

δzω0

zω0

≈ −δγ

γ
=

δk

k
Q

ω0

Γ

=
Q

k

(
dqc

dz

e

Cdot

)2

f ′(∆Edc)
ω0/Γ

1 + (ω0/Γ)2
,

(6.7)

where we used δγ and δk from Eqs. (2.82) and (2.81). Not surprisingly, the amount

of dissipation measured in the tip amplitude is influenced by the following three

factors: (1) the intrinsic cantilever parameters k, Q, and ω0, (2) the electrostatic

properties of the gold nanoparticles, which we abbreviate by

δk(ω0�Γ) =

(
dqc

dz

e

Cdot

)2

f ′(∆Edc) , (6.8)

and (3) the tunneling rate Γ between the gold nanoparticle and its charge reservoir,

the CNT. We evaluate the first two from separate measurements so as to infer the

tunneling rate from
δzω0

zω0

. If we know the cantilever parameters and δk(ω0�Γ), we

invert the quadratic equation (6.7) in ω0/Γ and find

ω0

Γ
=

Q

2c
±

√(
Q

2c

)2

− 1
Q�2c−−−→

(
Q

c

)±1

with c =
δzω0/zω0

δk(ω0�Γ)/k
. (6.9)

In taking the limit in Eq. (6.9) we caution that the condition Q � 2c is not always

satisfied; in particular, it is violated near ω0 ≈ Γ. The two solutions correspond

to the more transparent (ω0 < Γ) and the more opaque (ω0 > Γ) side of tunnel

coupling. The dissipation measurement by itself cannot distinguish between the

two roots, as illustrated in Fig. 2.9.

As an example, we demonstrate the above procedure on some typical mea-

surements on our gold nanoparticles. For the dissipation in the tip oscillation
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Table 6.2: Relative amplitude drop due to single-electron charging of gold

nanoparticles on resonance with the CNT. The data from particle #08 is shown in

the top graph of Fig. 6.4; data recorded on particle #15 is shown at the bottom.

particle dip at lowest Vg −→ dip at highest Vg

#08 -22% -14.5% -7% -10% -5%

#15 -29% -24% -14.5% -17.5% -16.5% -10% -13% -9.5%

amplitude, we analyze particle #08 and #15 as typical examples, whose data is

depicted in Fig. 6.4. Our readout of the relative change on all single-electron charg-

ing dips seen in the two plots are listed in Table 6.2. All amplitudes are evaluated

at the minimum of each single-electron tunneling dip. We find an average ampli-

tude change of -12% for particle #08 and -17% for particle #15. These values

are typical compared to all gold nanoparticles we have measured. Generally, most

single-electron charging events of gold nanoparticles that we have observed reduce

the amplitude by 10% to 20%. For the remaining analysis we assume a typical

amplitude reduction of δzω0/zω0 ≈ −15%.

From the capacitance and gate charge measurements described in Sec. 6.3, we

find typically CAu ≈ 2 aF and −dqc/dz = 0.045 e/nm. To calculate the prefac-

tor δk(ω0�Γ) from Eq. (6.8), we note that at the minimum of any single-electron

charging dip the electrochemical potentials of gold nanoparticle and the CNT lead

are in resonance at the minimum of each single-electron charging dip, ∆Edc = 0.

Correspondingly, the derivative of the Fermi-Dirac distribution is f ′(0) =
−1

4kBT
.

With this information we find δk(ω0�Γ) = −7.8 × 10−5 N/m for the electrostatics

of our gold nanoparticles. The spring constant k is measured by the cantilever
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calibration procedure, as explained in Sec. 3.3, and found to be k = 2.5 N/m at

T = 77 K for the lever used.

All together, we calculate a typical tunnel coupling of
ω0

Γ
= 0.14 or 7.0 for

our gold nanoparticles. From the expression for the tunneling rate in the classical

limit, Eq. (2.16), we reexpress the tunnel coupling ω0/Γ in terms of the tunneling

resistance RT of the tunnel barrier and find RT = 31 GΩ and RT = 1.5 TΩ for the

transparent (ω0 < Γ) and the opaque (ω0 > Γ) solution, respectively. Unfortu-

nately, the dissipation measurement by itself cannot tell us which of the two tunnel

couplings is accurate. For an unambiguous measurement of Γ or RT , we need to

combine the amplitude measurement with frequency shift data. This treatment is

discussed in the following section.

Out of curiosity, we evaluate the power that is dissipated by single-electron

tunneling from Eq. (2.102) or (2.103),

P = −1

2
kz2

ω0

ω0

Q

δzω0

zω0

. (6.10)

From the data of particles #08 and #15 in Fig. 6.4 and Table 6.2 we separately

find P = 20 aW for both of them2. It is remarkable that such a small energy

dissipation is easily resolvable, which underlines the sensitivity of this local force

probe technique.

6.6 Combination of Dissipation and Frequency Shift Measurements

The analysis of the tunnel coupling between the gold nanoparticles and the CNT,

as presented in the previous section, has a few weaknesses:

2The difference in δzω0/zω0 between the two nanoparticles is compensated for
by the different total tip oscillation amplitudes zω0 , see Fig. 6.4, which enters the
expression (6.10) for dissipated power quadratically.
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• In order to calculate the tunneling rate Γ from the reduced tip amplitude

alone, we rely on separate measurements of the charging energy and gate

charge derivative (Sec. 6.3), whose values enter the calculation quadratically,

Eq. (6.7).

• The cantilever spring constant k is also needed for the above calculation.

Since its value changes with temperature, there is some uncertainty in it.

• The solution for ω0/Γ is obtained from a quadratic equation, which varies

sensitively with the number input near ω0 ≈ Γ.

• From the quadratic equation in ω0/Γ we obtain two roots, and the dissipation

signal alone cannot distinguish which one is the correct solution.

In this section we complement the tip amplitude measurements with resonance

frequency shift measurements. The combination of both overcomes these problems.

We won’t introduce frequency shift measurements separately here, as they were

discussed extensively on quantum dots in CNTs (Chap. 5). The measurements in

this chapter are carried out in just the same way.

The frequency shift measurement overcomes the above problems, because it

measures δk/k in Eq. (6.7) directly. This measurement contains the quadratic de-

pendence on ω0/Γ, the capacitive couplings of the quantum dot, and the cantilever

spring constant. Combining Eqs. (2.84) and (2.82), we find

δzω0

zω0

=
δω0

ω0

(
2Q

ω0

Γ
− 1
)
≈ 2Q

δω0

Γ
(6.11)

Clearly, the ratio between the relative change in tip amplitude and cantilever

resonance frequency is a direct measure of the tunneling rate of the quantum dot

under investigation.
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Figure 6.5 shows the amplitude and frequency shift measurement from a gold

nanoparticle that is attached to a CNT. The two traces are measured simultane-

ously. Both the tip oscillation amplitude and the shift of the cantilever resonance

frequency show 5 dips over this gate voltage range, corresponding to single-electron

charging events of the gold nanoparticle underneath the AFM tip. The dips occur

at the same backgate voltages in both traces.

To illustrate the analysis, we readout the relative amplitude change and the

frequency shift from the traces in Fig. 6.5, as summarized in Table 6.3. The

cantilever resonance frequency during the measurement was ω0/2π ≈ 61200 Hz,

varying quadratically with backgate voltage from 61180 Hz to 61230 Hz over the

domain of the graph. The precise cantilever resonance frequency at the single-

electron charging dips are also listed in Table 6.3. From these numbers we calculate

the tunneling rates of the gold nanoparticle according to Eq. (6.11). The results

are shown in the last line of Table 6.3. These tunneling rates correspond to an

electron life time of τ = 1/Γ ≈ 1 µs on the gold nanoparticle.

The combined tip amplitude and cantilever frequency shift measurements show

unambiguously that ω0 < Γ in our sample. We feel that the variations of the

tunneling rate are larger than the uncertainties in this measurement. Correspond-

ingly, we attribute the fluctuations to actual changes of the tunneling rate from

one charging event to another.

Lastly, we compare the values of the tunneling rate obtained in this section,

where we combined amplitude and frequency shift measurements, to the ones in the

previous section, where we calculated ω0/Γ from the tip amplitude measurement,

the electrostatics of the quantum dot, and the cantilever parameters. From all

gold nanoparticles measured in both ways, we consistently derive larger values for
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Figure 6.5: Combined amplitude and frequency shift measurement on a gold

nanoparticle (particle #20). The tip is biased at Vtip = 1 V and resonating at a

height of z0 = 60 nm above the gold nanoparticle. The two traces are recorded

simultaneously. On the frequency shift trace, the quadratic background has been

removed. Over the depicted domain, the cantilever resonance frequency varies

monotonically between ω0/2π = 61180 Hz at Vg = −3 V and ω0/2π = 61230 Hz

at Vg = −0.8 V. Dips due to single-electron tunneling are clearly visible in both

traces and appear well aligned between the two traces.
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Table 6.3: Combined dissipation and frequency shift measurement on a gold

nanoparticle. The relative amplitude change δzω0/zω0 and the absolute frequency

shift δω0/2π are obtained from Fig. 6.5. The cantilever resonance frequency ω0/2π

is taken from the quadratic fit that has been subtracted from the measured can-

tilever resonance frequency to give the frequency shift trace in Fig. 6.5. We assume

a quality factor of Q = 34000 in the absence of single-electron tunneling, which is

a typical value for this cantilever (see Fig. 6.4).

particle #20 dip at lowest Vg −→ dip at highest Vg

δzω0/zω0 -6% -19% -20% -13.5% -9.5%

δω0/2π -0.16 Hz -0.36 Hz -0.36 Hz -0.43 Hz -0.15 Hz

ω0/2π 61186 Hz 61199 Hz 61209 Hz 61218 Hz 61227 Hz

ω0/Γ 0.34 0.47 0.5 0.29 0.56
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ω0/Γ from the combination of frequency shift and dissipation measurements. A

factor of 2 or 3 between the two results is not untypical. At the moment, we are

carefully investigating potential sources of systematic error.

As a final remark we note that combined frequency shift and dissipation mea-

surements of single-electron charging are only possible in a certain range of tunnel

couplings. While frequency shift measurements show strongest contrast in the

transparent coupling regime, ω0 � Γ, there is no dissipation signal in this limit,

as discussed at the end of Sec. 2.2.3. The strongest dissipation signal is observed

at ω0 = Γ, see Eq. (2.102), where the frequency shift has lost already half its con-

trast. This situation is illustrated in Fig. 2.9. As a necessary (but not sufficient)

condition for reasonable contrast in both signal channels, the dissipation in the tip

amplitude and the cantilever resonance frequency shift, the tunnel coupling must

fall into the regime

ω0 ≤ Γ � 2Qω0 . (6.12)

The upper bound is derived in Appendix A.4, Eq. (A.24). Depending also on the

operating temperature, the experimentally useful range is even smaller.

6.7 Gold nanoparticles as local potentiometers

The sensitivity of the single-electron tunneling signals to several external param-

eters suggests that the gold nanoparticles can be used as sensing devices. In this

section, we discuss the use of gold nanoparticles as potentiometers on a metal-

lic CNT3. By measuring the electrostatic potential of the CNT from several gold

3To name another potential sensing application that is not explored in this
thesis: Once the charging energy and the gate coupling of a nanoparticle have been
extracted (Sec. 6.3), the width of the single-electron charging peak can thereafter
serve as a thermometer of the electron temperature in the CNT.
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nanoparticles along the length of the tube, we record the voltage profile of a biased

CNT. This profile also yields the contact resistance to either lead independently.

The idea of the measurement is to use the the electrochemical potential of

the gold nanoparticle to probe the Fermi energy of the CNT. This measurement

relies on the linear dependence of the gold nanoparticle’s electrochemical potential

on the gate voltage, as given in Eq. (2.6). The proportionality constant is easily

extracted by a simple calibration procedure, as described below.

We first discuss the measurements necessary to extract the voltage of the CNT

at the attachment point of the gold nanoparticle from the single-electron charging

signal. Then we apply this sequence to a CNT that makes a loop and crosses itself.

This particular sample also permits comparison between the tube-to-tube electron

tunneling at the self-crossing point of the CNT and the resistance of the looped

section.

Measurement protocol. To measure the voltage drop at a particular location

of the CNT, we first take a spatial image of the vicinity and find a gold nanoparticle

on the CNT to be used as a potentiometer. Once we have selected a nanoparticle,

the experiment proceeds in the following steps:

1. Reference trace. After parking the AFM tip at a height z0 straight above

the chosen nanoparticle, we ground the source and drain contact of the CNT,

sweep the backgate voltage, and watch the single-electron charging events as

dips in the cantilever oscillation amplitude. We select a suitable reference

dip and note the location of its minimum as V
(ref)
g .

2. Calibration trace. To calibrate the potentiometer, we raise both contacts,

source and drain, to a voltage V0 above ground (GND), sweep the backgate
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voltage again, and record how far the reference dip has moved in backgate

voltage. We call the location of its minimum V
(cal)
g .

3. Measurement trace. For the actual measurement of the voltage drop, we

leave the source contact at V0 and ground the drain contact. Now the CNT

is biased. We sweep the backgate voltage again and readout the position of

the reference charging dip in backgate voltage, V
(sd)
g .

4. Consistency trace. As a consistency test, we ground the source contact

and bias the drain contact at V0. Now the CNT device has the opposite

bias. We sweep the backgate voltage and measure location of the reference

charging dip one last time, which we call V
(ds)
g .

We repeat the reference and calibration traces afterwards to guarantee stability.

Another spatial image ensures that the tip and the gold nanoparticle are still

aligned at the end of the measurement.

Figure 6.6 illustrates the measurement protocol schematically. In the measure-

ment trace (step 3), the voltage of the CNT at the location of the gold nanoparticle

attachment is given by

V
(step 3)
CNT−Au = V0

V
(sd)
g − V

(ref)
g

V
(cal)
g − V

(ref)
g

. (6.13)

Similarly, the voltage of the CNT at the location of the gold nanoparticle attach-

ment during the consistency trace (step 4) is

V
(step 4)
CNT−Au = V0

V
(ds)
g − V

(ref)
g

V
(cal)
g − V

(ref)
g

. (6.14)

Because of the highly symmetric way of biasing the source and drain contacts in

the 4 backgate voltage sweeps, the extracted gate voltages are related by

V (sd)
g − V (ref)

g + V (ds)
g − V (cal)

g = 0 . (6.15)
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Figure 6.6: Measurement protocol for using gold nanoparticles as potentiometers

on the CNT at the location of their attachment. The traces are hand-drawn for

illustration and not a result of a measurement. In each trace, the source and

drain contacts are biased as noted on the right. As a result, the single-electron

charging dips in the cantilever oscillation amplitude are translated horizontally.

The charging dip that was selected for the measurement is marked by a red arrow

in all 4 traces. By bias symmetry, the translation of the dip in the last trace can

be predicted by the previous 3 traces as ∆V
(ds)
g = ∆V

(cal)
g −∆V

(sd)
g , as indicated

by the grey arrows and reformulated in Eq. (6.15).
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In other words, this relation expresses that the minimum of the charging dip in the

measurement trace should be as far away from the minimum in the reference trace

as the minimum in the consistency trace is from the minimum in the calibration

trace. This is illustrated in the bottom trace of Fig. 6.6. As a result, the informa-

tion contained in the last trace (step 4) is redundant and serves as a consistency

check.

Voltage profile of a looped CNT. We apply the above measurement sequence

to several gold nanoparticles along a CNT to map out the voltage profile along

the tube. Figure 6.7 (top) shows a topographic AFM image (collected at room

temperature) of a CNT that has gold nanoparticles linked to it. The CNT is 35 µm

long and contains a 17 µm long loop. The overlayed arrows in the image point

towards the gold nanoparticles that we use to create a voltage profile. For each

gold nanoparticle, we collect the 4 backgate voltage sweeps discussed above. Using

Eqs. (6.13) and (6.14), we extract the magnitude of the voltage drop from the CNT

at the location of the gold nanoparticle attachment to the respectively grounded

lead. We normalize the voltage drop by our bias voltage V0 = 200 mV. Figure

6.7 (bottom) shows these normalized voltages plotted as a function of the location

of the gold nanoparticle along the CNT. The location of the gold nanoparticle is

measured from the topographic AFM image (Fig. 6.7 top) as the length of the

CNT section from the nanoparticle to one contact. Measured CNT voltages are

shown as black triangle for the measurement trace (step 3) and red squares for the

consistency trace (step 4). The two straight lines are fitted to the correspondingly

colored data points.

We measure a roughly linear decrease in voltage (from the bias point) with
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Figure 6.7: Gold nanoparticles as potentiometers on a looped CNT. The arrows

in the topographic AFM image (top figure) point towards gold nanoparticles that

are used as potentiometers on the CNT to measure the voltage profile (bottom

figure). The plotted CNT voltages are normalized by the bias voltage. The black

data points show the measured CNT voltage when the left contact is biased and the

right contact is grounded. The red data points show the CNT voltage measured

at opposite bias, when the right contact is biased and the left contact is grounded.

The two lines are fitted to the respectively colored data points.
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Figure 6.8: Circuit model of a looped CNT. Rleft, Rloop, and Rright are the resis-

tances of the respective CNT sections and proportional to the length of the section.

RT is the tunnel resistance of the CNT-CNT junction at the self-contact point.

the length of the tube. Evidently, the CNT is conducing ohmically. This is not

surprising given the length of 35µm, which expectedly exceeds the electron mean

free path in the CNT at T = 77 K. Both contact resistances are found to be small

compared to the total CNT resistance, as the fitted lines cross the location of the

CNT-lead contact points (x = 0 and x = 35 µm) close to 0 and 1. We also don’t

observe significant contributions to the device transport from CNT-CNT tunneling:

We model the self-looped CNT by an equivalent circuit shown in Fig. 6.8. The

CNT is represented by 3 resistors in series, corresponding to the section between

the left contact and the loop, the looped section, and the section between the loop

and the right contact. The two contact resistances are not explicitly accounted

for in Fig. 6.8, but they are easy to append as an additional resistance on either

end of the CNT. The coupling of the CNT to itself at the touching location is

included in this model as a tunnel junction. Electron tunneling at the self-contact

point of the CNT would bypass the looped section and thereby reduce the effective

resistivity of the looped section, as compared to the sections to the left and right

of the loop. Since we don’t measure a deviation from the straight line along the

loop (spanning x = 15.5 µm to 32.5 µm), we conclude that the resistance of the
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loop is small compared to the tunnel resistance, Rloop � RT .

Other experimental methods have been used to spatially probe the voltage

profile of CNTs, including scanning probe techniques. We briefly comment on

three: Kelvin Probe Force Microscopy (KFM), Electrostatic Force Microscopy

(EFM), and Scanning Voltage Probe Microscopy. In KFM (Nonnenmacher et al.

1991, 1992) the tip bias is adjusted until the tip-sample force is zeroed out. In

plotting this tip bias as a function of tip position one obtains a surface potential

map. This technique is useful, but can be challenging to implement and operate

stably (Jacobs et al. 1999). EFM is technically and operationally easier to perform.

As the name suggests, it spatially maps the electrostatic force between the tip and

the sample. Extracting voltages quantitatively requires post-processing of images,

though, with a separate procedure to remove the background signal (Bachtold

et al. 2000). Scanning Voltage Probe (Yaish et al. 2004) employs the AFM tip

as movable ohmic probe in a three-terminal transport measurement. It requires

physical contact with the device and can be mechanically invasive. Each of these

techniques has its own advantages and challenges. The downside of the voltage

profile measurement by gold nanoparticle is that it is slow – we collect a spatial

image and 4 backgate voltage sweeps for each point along the CNT. It also requires

low temperatures for our gold nanoparticles to be in the Coulomb blockade regime.

On the bright side, though, it is nice in its simplicity and ease of measurement.

The CNT voltage at the location of the nanoparticle is obtained straight-forwardly

from the shifts in single-electron charging events without complex data processing.

In some sense, the gold nanoparticles are quantum dot probes that are integrated

into the CNT sample.
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6.8 Conclusions

We have measured single-electron charging of gold nanoparticles that are chemi-

cally linked to a CNT by an organic molecule at T = 77 K. Transport measure-

ments, scanning gate microscopy, and the shape and spatial distribution of the

single-electron charging events in spatial images have shown unambiguously that

these charging events are not due to quantum dots in the CNT. We have used

our LT-AFM to address the gold nanoparticles individually and extracted their

electrostatic gate couplings and charging energy. Analyzing the tip oscillation am-

plitude as a signal channel, we have experimentally verified that it measures the

power dissipation associated with single-electron tunneling. We have extracted the

tunnel coupling of the gold nanoparticles to the nanotube, both from (1) the elec-

trostatic and the dissipation measurements and (2) the dissipation and frequency

shift measurements. Comparing both methods, we have obtained similar, but not

identical results. At the end we have demonstrated how the gold nanoparticles can

be used as sensing devices to obtain information about the CNT. We have used

them as potentiometers on the CNT and measured a voltage profile of a looped

CNT, where we have found a roughly linear increase in the voltage drop from the

biased contact, small contact resistance on both ends of the nanotube, and negligi-

ble tube-to-tube tunneling at the self-contact point in comparison to the resistance

of the 17 µm long CNT loop at T = 77 K.

The combination of dissipation and frequency shift measurements has proven

very fruitful. The two signals are in many ways complementary, as they relate

to the out-of-phase and in-phase component of the single-electron tunneling force

(2.79). As a result, we have been able to characterize the static properties of the

quantum dots and the dynamic process of electron tunneling.
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From a broader viewpoint, all these measurements have demonstrated the util-

ity of our local force probe technique on a sample in a single-contact geometry.

The need for only one charge reservoir makes this kind of measurement interesting

for many other nanoscale samples. In fact, most non-designed nanoscale structures

would benefit from the local nature of our measurement, combined with the spatial

resolution of the AFM.



CHAPTER 7

CONCLUSIONS

We have measured Coulomb blockade phenomena and single-electron charging ef-

fects by low-temperature scanning force microscopy in two samples: Long semicon-

ducting carbon nanotubes and gold nanoparticles attached to a carbon nanotube

by an organic linker molecule.

We have observed disorder-induced quantum dots along long semiconducting

carbon nanotubes at low carrier density. Addressing these quantum dots spatially

one by one using the force microscope, we have characterized their electrostatic

properties, including their gate couplings, charging energy, and interdot coupling.

Resolving spatially how charge is induced on the nanotube by a gate, we have ob-

served an imprint of the carbon nanotube’s band structure on our single-electron

charge addition spectra and drawn conclusions about the underlying disorder po-

tential.

In our gold nanoparticle sample, we have combined frequency shift and dissi-

pation measurements of our local force probe and thereby accessed the in-phase

and the out-of-phase component of the single-electron tunneling force. Beyond the

electrostatic properties of the gold nanoparticles, this combination has allow us to

extract their tunnel coupling to the carbon nanotube. We have also demonstrated

how the gold linked nanoparticles can be used as potentiometer on the carbon

nanotube and measured the voltage profile of a carbon nanotube with a loop.

The success of the the scanning probe measurements presented and the large

amount of information inferred about our nanoscale samples points towards many

exciting opportunities for the technique.
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Many nanoscale samples would benefit from the simplicity of the single-contact

geometry in our measurement. An simple extension of our gold nanoparticle ex-

periments is to reduce the quantum dot size further, for example, with a single-

molecule metal coordination complex. At this size scale, the charging energy may

be large enough so that the measurement could even become room-temperature

compatible.

The idea of imaging the electron density within a quantum dot has been dis-

cussion for a while. Even thoughts of locally perturbing the electron wavefunction

in a few-electron quantum dot and spatially resolving its consequences, such as a

change in the probability distribution, have been brought forward. This proposal

is interesting, and our force probe scheme – being truly local – would have much

to contribute. At the same time, the requirements on the instrument sensitivity,

resolution, and stability are beyond our team’s current capabilities.

While scanning gate measurements require device conduction and frequency

shift measurements are most suitable for quantum dots with fast tunneling, dissi-

pation measurements extend much further into the resistive regime and might give

a better direct view into charge motion in poor conductors, such as some organic

or biomolecules.

New materials could also profit from the versatility and spatial resolution of

the AFM. For example, resolving magnetotransport in single sheets (or very thin

layers) of graphite, where the biased AFM tip can also be used to locally perturb

the system, would be an interesting project.



APPENDIX A

EXTENDED ANALYSES, DERIVATIONS, AND

CALCULATION DETAILS

A.1 Mutual Capacitance of Coupled Quantum Dots

In this section, we derive the relation between the mutual capacitance of two

coupled quantum dots and the total dot capacitances, Eq. (5.9). This equation was

used to extract interdot gating efficiencies from the coupled dot spectra assuming

weak tunnel coupling. We restrict ourselves to the classical limit, kBT � ∆Elevel,

where the density of single-particle states of the dots is continuous.

The electrochemical potentials of the two coupled (classical) dots in the pres-

ence of the extended backgate is given by

µ1(N1, N2, Vg) =

(
N1 −

1

2

)
EC1 + N2 ECm −

Vg

e
(Cgd1 EC1 + Cgd2 ECm)

µ2(N1, N2, Vg) =

(
N2 −

1

2

)
EC2 + N1 ECm −

Vg

e
(Cgd2 EC2 + Cgd1 ECm) ,

(A.1)

where N1 and N2 are the number of electrons on dot #1 and dot #2, respectively.

The backgate is biased at a voltage Vg, which couples to the dots by the backgate-

dot capacitances Cgd1 and Cgd2. The interdot coupling capacitance of the tunnel

barrier between the two dots is Cm. EC1 and EC2 are the charging energies of dot

#1 and #2, respectively. ECm is the so-called electrostatic coupling energy of the

two dots.

A derivation of the electrochemical potentials can be found in the literature

(Ruzin et al. 1992, Dixon 1998, van der Wiel et al. 2003). Note that we use a

single extended gate that couples to both dots simultaneously; so we simplified

Vg1 = Vg2 ≡ Vg in (van der Wiel et al. 2003, Eqs. (5) and (6)). The charging
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energies of the two dots are given by

EC1 =
e2

C1

(
1

1− C2
m

C1 C2

)
and EC2 =

e2

C2

(
1

1− C2
m

C1 C2

)
, (A.2)

where we used the shorthand notation C1 = Cdot#1 and C2 = Cdot#2 for the total

dot capacitances. The electrostatic coupling energy is given by

ECm =
e2

Cm

(
1

C1 C2

C2
m
− 1

)
=

e2

C1 C2

Cm

(
1

1− C2
m

C1 C2

)
. (A.3)

The quantities ∆Vg1, ∆Vg2 and ∆V
(m)
g1 , ∆V

(m)
g2 as described in Fig. 5.24(b) are

defined by the equations

(1a) µ1(N1, N2, Vg) = µ1(N1+1, N2, Vg+∆Vg1)

(1b) µ1(N1, N2, Vg) = µ1(N1, N2+1, Vg+∆V
(m)
g1 )

(2a) µ2(N1, N2, Vg) = µ2(N1, N2+1, Vg+∆Vg2)

(2b) µ2(N1, N2, Vg) = µ2(N1+1, N2, Vg+∆V
(m)
g2 ) .

(A.4)

Using the expressions for the electrochemical potentials, Eq. (A.1), these definitions

are rewritten as

(1a) EC1 = 1
e
∆Vg1 (Cgd1 EC1 + Cgd2 ECm)

(1b) ECm = 1
e
∆V

(m)
g1 (Cgd1 EC1 + Cgd2 ECm)

(2a) EC2 = 1
e
∆Vg2 (Cgd2 EC2 + Cgd1 ECm)

(2b) ECm = 1
e
∆V

(m)
g2 (Cgd2 EC2 + Cgd1 ECm) .

(A.5)

Notice that the terms in parentheses are identical in lines (1a) and (1b); the same

is true for lines (2a) and (2b). Taking the ratio of each pair of equations gives

ECm =
∆V

(m)
g1

∆Vg1

EC1 =
∆V

(m)
g2

∆Vg2

EC2 . (A.6)

Using the expressions for the charging energies, Eq. (A.2), and the electrostatic

coupling energy, Eq. (A.3), in Eq. (A.6) gives the relation between the mutual and
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the total dot capacitances

Cm =
∆V

(m)
g1

∆Vg1

C2 =
∆V

(m)
g2

∆Vg2

C1 . (A.7)

The above derivation is also valid in the presence of the AFM tip as an additional

gate, as depicted in Fig. 5.23. Formally, the electrochemical potentials of the

quantum dots (A.1) have two additional terms due to the tip (from direct and

indirect gating). But all 4 relevant quantities ∆Vg1, ∆Vg2, ∆V
(m)
g1 , and ∆V

(m)
g2

for the analysis are pure backgate voltage differences, each read out at a fixed tip

location (parallel to the y-axis in the spectrum) and at the same tip voltage. Under

these conditions, the tip contribution to the electrochemical potentials is the same

on the left and right hand side in all Eqs. (A.4). Consequently, Eqs. (A.5) remain

as stated in the presence of the tip, and all results are preserved1.

1 A more subtle requirement for the claim that the above derivation remains
unchanged in the presence of the tip is that the backgate-dot capacitances Cgd1

and Cgd2 must be independent of the tip location. In fact, the backgate-dot capac-
itances do have a weak dependence on the tip-dot separation, which can become
appreciable as the tip height is reduced. Within our CNT spectra, which are col-
lected at a constant tip height of typically z0 ≈ 100 nm above the substrate, we
find that this effect is negligible. Furthermore, we extract the 4 backgate voltage
differences from the spectra at the same tip position or at least in close proximity,
within a narrow band of tip positions.
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A.2 Density of States and Carrier Density of Carbon Nanotube Bands

In this section, we take another look at the density of states of semiconducting

CNTs and provide an alternative derivation of the relation between the carrier

density on a CNT and the energy of the highest filled single-particle state, Eq. 5.7.

To put everything into context, we start with the general framework that applies

to all crystalline solids, before we evaluate the relations specific to CNTs.

In general, the density of states D(E) can have contributions from multiple

bands, which add cumulatively,

D(E) =
∑
m

Dm(E) . (A.8)

Here m is an index that labels the contributions from the different bands. The

density of states of a band Dm(E) depends on the band’s dispersion relation Em(k)

and the dimensionality d of the system. Since the density of states is an extensive

quantity, it is commonly normalized by the system volume,

Dm(E) = (#degeneracies)

∫
FBZ

ddk

(2π)d
δ(E − Em(~k)) . (A.9)

The integral extends over the first Brillouin zone (FBZ) of the crystal lattice. The

spin-degeneracy of electronic states is the most typical degeneracy included in the

prefactor. In semiconducting CNTs, all bands are 4-fold degenerate (from spin-

and 2-fold orbital degeneracy). With our normalization, the number density of

carriers n is related to the density of states by

n =

∞∫
−∞

dE D(E) f(E)
T→0−−−→

EF∫
−∞

dE D(E) , (A.10)

where EF is the electrochemical potential of the system and f is the Fermi-Dirac

distribution. The contribution from any given band is isolated by replacing the

density of states under the integral by the density of states of that band.
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At low excitation energies, the density of states of the CNT bands that con-

tribute to conduction is universally given by (Mintmire and White 1998, White

and Mintmire 2005)2

D(CNT)
m (E) =


16

3π

1

dCNT

1

Egap

√
E2

E2 − (1
2
E

(m)
gap )2

if |E| > 1
2
E

(m)
gap

0 otherwise.

(A.11)

dCNT denotes the diameter of the CNT. For semiconducting CNTs, Egap is the

band gap of the tube and E
(m)
gap = |3m+1|Egap the energy gap of the subband with

index m. The energy is fixed such that E = 0 is in the middle of the band gap.

At E > 1
2
E

(m)
gap is the conduction subband, at E < −1

2
E

(m)
gap the valence subband.

The band index m ∈ {0,±1,±2,±3, ...} can be any integer. m = 0 gives the

lowest subband and the band gap of the semiconducting tube, Egap = E
(m=0)
gap .

The electron density in the conduction band of this 1st subband is

n
(m=0)

scCNT, e− =
16

3π

1

dCNT

√
E2

F − (1
2
Egap)2

E2
gap

for EF ≥ 1
2
Egap . (A.12)

When the CNT’s electrochemical potential is near the band edge, EF ≈ 1
2
Egap, we

can approximate E2
F − (1

2
Egap)

2 = (EF − 1
2
Egap)(EF + 1

2
Egap) ≈ (EF − 1

2
Egap)Egap

to simplify the term under the square root,

n
(m=0)

scCNT, e− =
16

3π

1

dCNT

√
EF − 1

2
Egap

Egap

for EF ' 1
2
Egap . (A.13)

In this regime of low carrier density, we reproduce the free electron approximation,

as used in Eq. 5.7,

n1D =
4

π~
√

2m∗(EF − E0) , (A.14)

2In contrast to our definition in Eq. (A.9), Mintmire and White normalize the
density of states by the volume of the first Brillouin zone. In 1D we return to our
normalization by multiplying their expression for the density of states by the factor
`FBZ/2π. For CNTs, the first Brillouin zone has a volume `FBZ = 4π2

3
√

3
dCNT/a2

C−C.
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where we used the common free electron notation: m∗ is the effective mass of

electrons in the CNT, and E0 is the energy of the conduction band bottom (if

E = 0 goes through the middle of the band gap, then E0 = 1
2
Egap).

The band gap of a semiconducting CNT is inversely proportional to the nan-

otube diameter dCNT (White et al. 1993, Dresselhaus et al. 1996) as

Egap = 2 Vppπ
aC−C

dCNT

=
4~vF

3dCNT

≈ 0.72 eV · nm

dCNT

, (A.15)

where Vppπ ≈ 2.5 eV is the tight-binding interaction integral (also called Slater-

Koster parameter) between the unsaturated p-orbitals from nearest neighbor car-

bon atoms3 that form the delocalized π-bonds, along which conduction occurs.

aC−C ≈ 0.144 nm is the covalent bond length between two carbon atoms. For our

dCNT = 1.4 nm semiconducting CNT we predict a band gap of Egap = 0.51 eV.

The magnitude of the Fermi velocity vF of carriers in a CNT is given by (White

and Mintmire 2005)

vF =
3

2~
Vppπ aC−C ≈ 8.2× 105 m/s . (A.16)

The effective mass or band mass of the low-energy charge carriers in a semicon-

ducting CNT, as derived in Eq. (5.6), is given by

m∗ =
Egap

2v2
F

=
2~

3vF dCNT

≈ 0.094 me

dCNT/nm
. (A.17)

For our semiconducting CNT of dCNT = 1.4 nm, we predict an effective electron

mass of m∗ = 0.067 me.

3In the graphite community, this tight-binding interaction integral is typically
denoted by γ0 and has a slightly larger value, γ0 = 3.13 eV. Its value for CNTs
varies among publications, typically in the range of 2.4− 2.8 eV.
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A.3 Charging Energy from Frequency Shift on Non-Transparent Dots

In this section we explore the effects of a finite tunneling rate Γ of a quantum

dot on the calculation of the charging energy, when it is derived from the amount

of cantilever frequency shift due to single-electron tunneling. This analysis was

already done for transparent quantum dots in Sec. 5.8, which resulted in Eq. (5.14).

For the sake of completeness of the introduced method, we extend the analysis to

non-transparent quantum dots here and discuss corrections to Eq. (5.14) that arise

from a non-zero electron life time τ ∝ 1/Γ on the quantum dot.

Restating our starting point for extracting the charging energy EC , the relative

shift of the cantilever resonance frequency due to single-electron tunneling was

given by

δω0

ω0

=
1

2k

(
dqc

dz

e

Cdot

)2
f ′(∆Edc)

1 + (ω/Γ)2
. (A.18)

The difference between quantum dots in the classical and the quantum limit is

encoded in the tunneling rate Γ, as given in Tab. 2.1. This relation was derived

in the theory chapter in Sec. 2.2.2. In the non-transparent case, ω �/ Γ, where

electrons have a non-zero life time on the quantum dot and don’t tunnel instantly

on the time scale of the driving frequency, the factor
1

1 + (ω/Γ)2
in Eq. A.18

becomes relevant. The calculation that accounts for its influence is different in the

quantum and classical limit (due to the different gate dependencies of the tunneling

rates Γ, see Tab. 2.1), so we treat them separately below.

Quantum limit, ∆Elevel � kBT . In the quantum limit, the correction to the

charging energy (5.14) due to a finite tunneling rate are straight-forward, as Γ is

a constant that is set by the properties of the tunnel barrier and independent of

the applied gate voltage. In comparison to our previous analysis in Sec. 5.8, we
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retain the constant factor
1

1 + (ω/Γqdot)2
on the right-hand side of Eq. (5.13). The

analysis proceeds exactly as outlined in Sec. 5.8, resulting in

EC

1 + (ω/Γqdot)2
= −2k

(
dqc

dz

)−2

eCgd

∞∫
−∞

δω0

ω0

dVg (A.19)

instead of Eq. (5.14). Clearly, the true charging energy is larger than the one

calculated from Eq. (5.14) if the tunneling rate of the quantum dot does not exceed

the cantilever resonance frequency significantly.

Classical limit, ∆Elevel � kBT . In the classical limit, the calculation away

from the transparent limit is slightly more involved, as Γ is a function of the

alignment between the electrochemical potentials of the quantum dot and the

charge reservoir, ∆Edc. Since Γ = g̃dc Γcdot varies with backgate voltage, the peak

shape of the single-electron tunneling dip is modified compared to its shape in the

transparent limit (and the quantum limit), which is described by the derivative

of the Fermi-Dirac distribution alone. In this case we have to redo the integra-

tion over backgate voltages in order to obtain the area in the frequency shift

dips, Eq. (5.13). Numerical integration allows us to calculate the correction factor
∞∫

−∞

−f ′(∆Edc)

1 + (ω/g̃dcΓcdot)2
d(∆Edc), at different tunneling rates of the dot. This cor-

rection factor needs to be multiplied to the right-hand side of Eq. (5.13) and the

left-hand sides of Eq. (5.14),

EC

∞∫
−∞

−f ′(∆Edc)

1 + (ω/g̃dcΓcdot)2
d(∆Edc) = −2k

(
dqc

dz

)−2

eCgd

∞∫
−∞

δω0

ω0

dVg . (A.20)

Both correction factors, applicable to the classical and the quantum limit, are

plotted in Fig. A.1 as a function of the ratio of the driving frequency to the tunnel-

ing rate, ω/Γ. In our experiments, the driving frequency is fixed at the cantilever

resonance frequency, ω = ω0.
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Figure A.1: Corrections to the charging energy due to a finite tunneling rate Γ

of a quantum dot. The correction factor plotted along the y-axis gives the ratio of

the charging energy when calculated assuming the transparent limit (ω � Γ) to

the actual charging energy,
E

(ω�Γ)
C

EC

. Consequently, the charging energy obtained

from Eq. (5.14) needs to be divided by this factor in order to account for a finite

tunneling rate. In the quantum limit, ∆Elevel � kBT , the correction factor is

given by
1

1 + (ω/Γqdot)2
. In the classical limit, ∆Elevel � kBT , the correction factor

departs from 1 slightly sooner. Its value is given by

∫ ∞

−∞

−f ′(∆Edc)

1 + (ω/g̃dcΓcdot)2
d(∆Edc),

where g̃dc =
1

2

∆Edc

kBT
coth

(
1

2

∆Edc

kBT

)
is the dimensionless parameter defined in

Eq. (2.73). In either limit, Eq. (5.14) underestimates the true charging energy if

electrons don’t tunnel on and off the dot instantaneously. The inset plot shows

the correction factors over a larger domain of ω/Γ.
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A.4 Effects of single-electron tunneling on the tip amplitude

This section of the appendix revisits the tip oscillation amplitude and its change

due to single-electron tunneling with a more detailed theoretical analysis. In

Sec. 6.4 we validated experimentally that the tip amplitude change during single-

electron charging events of our gold nanoparticles linked to a CNT is due to dis-

sipation in the electron tunneling process. As evaluated in Eq. (2.84), though,

the tip amplitude is also affected by the in-phase component of the single-electron

tunneling force (2.79), which we neglected previously based on the experimental

evidence. In this section we sketch a more theoretically minded approach to the

tip oscillation amplitude, where we include the (small) in-phase component in all

expressions.

Restating Eq. (2.43), the tip oscillation amplitude at the cantilever resonance

frequency ω0 is given by

zω0 =
Fω0

k
Q =

Fω0

γω0

, (A.21)

where Fω0 is the amplitude of the resonant ac-driving force, k is the cantilever

spring constant, γ is the damping coefficient of the cantilever, and Q its quality

factor. When the cantilever is driven with a constant ac-force amplitude, Fω0 =

const, any change in the tip amplitude correlates with a resonance frequency shift

δω0 or some additional energy dissipation mechanism δγ,

δzω0

zω0

= −δγ

γ
− δω0

ω0

. (A.22)

The single-electron tunneling force (2.79) and (2.80) can cause both, a resonance

frequency shift and increased dissipation, as given in Eq. (2.82). The dissipa-

tion term δγ is solely due to the out-of-phase component of the single-electron

force, and the resonance frequency shift δω0 is only due to its in-phase compo-
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nent. Rephrasing Eq. (2.82), which relates both components to the change in the

cantilever spring constant,

δω0

ω0

=
δk

2k
and

δγ

γ
= −δk

k
Q

ω0

Γ
, (A.23)

we realize that the two contributions have opposite sign4. As can be verified from

Eq. (2.81), the change in spring constant due to single-electron tunneling is always

negative, δk ≤ 0. This reduces the cantilever resonance frequency, δω0 ≤ 0, as

observed in Chap. 5, and increases the energy dissipation, δγ ≥ 0. Experimentally,

we find that the tip oscillation amplitude (at constant ac-driving force) is reduced

during single-electron tunneling, which provides theoretical evidence that the tip

amplitude resolves energy dissipation in the single-electron charging process.

We quickly evaluate numerically how large the in-phase contribution to our

tip amplitude is expected to be on the gold nanoparticles in Chap. 6. A back-

of-the-envelope estimate of the resonance frequency shift due to single-electron

tunneling, Eq. (5.1), using −dqc

dz
≈ dCtd

dz
Vtip ≈ ε0 Vtip, Cdot ≈ 2 aF, ω = ω0 ≈ Γ,

and f ′(0) =
−1

4kBT
, predicts

δω0

ω0

≈ −10−5 for gold nanoparticles at T = 77 K. This

change can be resolved in a resonance frequency measurement, but is impossible

to observe in our oscillation amplitude measurement. In fact, under typical oper-

ational conditions, this amplitude change is δzω0 < 1 pm and below the thermal

noise level even at the base temperature of our cryostat, T = 0.3 K. Consequently,

we are unable to measure the in-phase contribution of the single-electron force in

the tip amplitude.

The fact that we do observe the energy dissipation due to single-electron charg-

ing has already consequences on the tunneling rate Γ. In a fully transparent quan-

tum dot, Γ →∞, electrons tunnel instantly as soon as it is energetically favorable,

4The constants in both expressions, {k, ω0, γ, Q, Γ, zω0 , Fω0}, are all positive.
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and no energy is dissipated, as seen in Fig. 2.9. This realization is implicitly al-

ready expressed in the above discussion, and we make it explicit here. Since the

in-phase and out-of-phase component of the tunneling force affect the oscillation

amplitude with opposite sign, the magnitude of the dissipation term due to single-

electron tunneling must far exceed the corresponding magnitude of the frequency

shift term to be able to reduce the tip’s oscillation amplitude measurably. By Eqs.

(A.22) and (A.23), this requires

δγ

γ
� −δω0

ω0

⇔ ω0

Γ
� 1

2Q
(A.24)

as a necessary condition for observing energy dissipation due to single-electron

tunneling in the amplitude signal. We check this relation on our measured data in

Chap. 6 and find it well obeyed, 2Qω0/Γ ≈ 104 � 1.

An alternative quantity that is related to dissipation is the cantilever quality

factor Q = mω0/γ. Its reciprocal measures the relative energy loss per oscillation

cycle and thereby has a contribution from the in-phase and out-of-phase component

of the single-electron tunneling force5,

δQ

Q
= −δγ

γ
+

δω0

ω0

. (A.25)

Under the condition discussed above, Eq. (A.24), the change in the cantilever

quality factor due to single-electron tunneling is dominated by the dissipation

term. This implies that the reduction in the amplitude measurement is directly

proportional to the change in quality factor,

δzω0

Γ�2Qω0−−−−−→ Fω0

k
δQ . (A.26)

5The in-phase component of the single-electron force reduces the total energy
stored in the cantilever; the out-of-phase component increases the amount of energy
dissipated. The cantilever quality factor, which measures their ratio (up to a factor
of 2π), is modified by both, as expressed in Eq. (A.25).
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In other words, the change in tip oscillation amplitude is a direct measure of

the modification of the quality factor. This explains theoretically our observation

in Sec. 6.4 and derives Eq. (6.1). This relation provides a convenient means of

measuring the additional energy dissipation due to single-electron tunneling.

Even though the in-phase component has only negligible effect on the tip am-

plitude in our experiments on the gold nanoparticles, we provide a set of exact

equations below. Summarizing Eqs. (A.22) and (A.23), the relative change of the

tip oscillation amplitude due to single-electron tunneling is given by

δzω0

zω0

=
δk

k

(
Q

ω0

Γ
− 1

2

)
=

1

k

(
dqc

dz

e

Cdot

)2
f ′(∆Edc)

1 + (ω0/Γ)2

(
Q

ω0

Γ
− 1

2

)
,

(A.27)

where δk is given in Eq. (2.81). In the limit (A.24), this relation reduces to Eq.

(6.7) as used in Sec. 6.5. In solving the quadratic equation (A.27) for ω0/Γ, we

find

ω0

Γ
=

Q

2c
±

√(
Q

2c

)2

− 1− 1

2c

Q�2c�1−−−−−→
(

Q

c

)±1

with c =
δzω0/zω0

δk(ω0�Γ)/k
. (A.28)

The quantity δk(ω0�Γ) is defined in Eq. (6.8). The in-phase component of the

single-electron force makes the term
1

2c
appear under the square root, as seen in

comparison to Eq. (6.9). While the condition 2c � 1 is always fulfilled experimen-

tally by Eq. (A.24) if we observe an amplitude reduction at tunneling events, the

second condition Q � 2c for the limiting expansion is violated near ω0 ≈ Γ.

The power dissipation by single-electron tunneling can be calculated from Eq.

(2.102) or (2.103) and gives

Pω0 =
1

2
z2

ω0
ω2

0 δγ
2Qω0�Γ−−−−−→ −1

2
kz2

ω0

ω0

Q

δzω0

zω0

. (A.29)

The condition (A.24) for the limiting approximation is always satisfied if we observe

dissipation in the amplitude signal.
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The value of δk/k in Eq. (A.27) can be measured directly by the cantilever res-

onance frequency shift, as seen from Eq. (A.23) or (2.82). It contains the quadratic

dependence on ω0/Γ and the capacitive couplings of the quantum dot. This is most

obviously expressed in the ratio of the dissipation and the frequency shift due to

single-electron tunneling,

δγ

γ
=

δω0

ω0

(
−2Q

ω0

Γ

)
. (A.30)

For the relation between the amplitude reduction and the frequency shift due to

single-electron tunneling this implies

δzω0

zω0

=
δω0

ω0

(
2Q

ω0

Γ
− 1
)

2Qω0�Γ−−−−−→ 2Q
δω0

Γ
, (A.31)

as can be seen from Eq. (A.22) and (A.30). Clearly, the ratio between the relative

change in tip amplitude and cantilever resonance frequency is a direct measure of

the tunneling rate of the quantum dot under investigation, as analyzed on our gold

nanoparticles linked to a CNT in Sec. 6.6.



APPENDIX B

MORE IMAGES

This appendix presents a few more low-temperature scanning probe images. The

purpose of this image gallery is to give a few more examples and illustrations. We

also show some data that didn’t find its space earlier in the experimental chapters.

We start with a spatial frequency shift image that shows a ‘conventional’ elec-

trostatic potential map of a CNT device, Fig. B.1. This image was taken at a large

tip height and high scan speed, in contrast to the frequency shift images that show

single-electron charging of quantum dots in a CNT, Fig. B.2.

By applying a small source-drain bias across the CNT device and monitoring

the device conductance as a function of tip location, we collect a so-called Scanning

Gate Microscopy (SGM) image. When the CNT device is conducting, simultaneous

frequency shift and SGM images show single-electron charging at the same tip

location, as seen in Fig. B.3. The frequency shift image shows the electrostatic

sample features, such as the CNT and fixed charges on the sample surface, in

addition to the charging rings. Figures B.3a,b depict a single CNT quantum dot,

while Figs. B.3c,d show the signal from two neighboring dots.

Two high-resolution frequency shift spectra of a sizeable section of a CNT that

are stitched together are shown in Fig. B.4.

Figure B.1: Low temperature frequency shift image of a CNT device. The CNT

goes horizontally across the image with metal contacts at either end.
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Figure B.2: Spatial frequency shift images of quantum dots in semiconducting

carbon nanotubes.
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(a) Scanning gate image. (b) Frequency shift image.

(c) Scanning gate image. (d) Frequency shift image.

Figure B.3: Simultaneous scanning gate and frequency shift images of quantum

dots in a CNT. In the top two images, the scale bar applies to both images. The

sets of concentric rings in the conductance of the CNT device (SGM image) and

in the cantilever resonance frequency overlay perfectly between the left and right

images. The frequency shift image exhibits additional electrostatic features, such

as the CNT and fixed charges on the sample surface (bright spots at the top and

bottom of the image).
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Figure B.4: Multi-dot frequency shift spectra from a semiconducting CNT. The

tip voltage is Vtip = 1 V and the tip height is z0 = 100 nm in both scans.
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