Innovations in Effective Harvest Management

Tom Kilcer
Cornell Cooperative Extension In Rensselaer County
What Quality Reaches the Cow’s Mouth

- **When** you harvest
- **How long** it takes from start to finish
- The **quality lost in** harvest/fermentation
When You Start Harvest: Quality Window Opens

- When Alfalfa is 15 – 16 inches
- Cut Grass
- When Alfalfa is 23 – 24 inches
- Cut Alfalfa-Grass Mix
- When Alfalfa is 30 inches
- Cut Alfalfa
How Long Does it Take to Harvest?

- Alfalfa

<table>
<thead>
<tr>
<th>Harvest Interval</th>
<th>NDF</th>
<th>NDF</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 day</td>
<td>.50</td>
<td>.50</td>
</tr>
</tbody>
</table>

- May 1
- May 15
- June 1
100 Cows, Cumulative Loss Each Day Harvest is Delayed

5 day delay = $8,000
Biology of Drying Forages

Initial Phase

Intermediate Phase

Conditioning

Final Phase

Dry Hay

Time

Moisture

80%

20%
Axial moisture movement

Stomatal openings

65-70%
Stomate = Lungs of the Plant
35% of alfalfa stem moisture exits through the leaf (Harris & Tulberg, 1980)

Legumes 10X more stomata than Grass

Sunlight – they stay open -shading closes Stomata
Physics of Moisture Loss

or

What Helps or Hurts Drying

Rotz et al. 1987
Swath Sunlight

3 X more sunlight
2nd Cut Grass Swath Core Temp

Swath Air & Swath Temp

Date/Time

11:35 AM
12:35 PM
1:35 PM
2:35 PM
3:35 PM
4:35 PM
5:35 PM
6:35 PM
7:35 PM
8:35 PM
9:35 PM
10:35 PM

Narrow
Wide
Density had greater impact on drying than Conditioning, Mixing or Turning Swath. Wright et al. 1997
Swath density decreases moisture removal

5.5X More Dense
Drying Reduced

10 – 100X

Harris & Tullberg 1980

No Sun

Stomata Closed
Wide swath

Field Results?
12 ft mower opened to wide swath = 8 ft. 66% of cutterbar width
Width Matters More Than Conditioning – Alfalfa- Swath Not Moved

% Moisture Lost

- 2 hour

NHC40% NHC59% NHC73% NHC83% SB 94%

12.00%
10.00%
8.00%
6.00%
4.00%
Width Matters More than Conditioning – Grass – Swath Not Moved

% Dry Matter

1 hour

NH 40%
NH 59%
Diskmow 65%
NH 73%
NH 83%
Sidebar 94%
Moisture Removal Rate/Hour

% Moisture removed/hr

<table>
<thead>
<tr>
<th>Method</th>
<th>Rate/Hour</th>
</tr>
</thead>
<tbody>
<tr>
<td>Traditional Narrow</td>
<td>0.50%</td>
</tr>
<tr>
<td>Wide Swath</td>
<td>1.00%</td>
</tr>
<tr>
<td>Wide/H&S merged</td>
<td>1.50%</td>
</tr>
<tr>
<td></td>
<td>2.00%</td>
</tr>
<tr>
<td></td>
<td>2.50%</td>
</tr>
<tr>
<td></td>
<td>3.00%</td>
</tr>
</tbody>
</table>

14.9 hrs.
7.4 hrs.
4.9 hrs.
<table>
<thead>
<tr>
<th></th>
<th>16</th>
<th>17</th>
<th>18</th>
<th>19</th>
<th>20</th>
<th>21</th>
<th>22</th>
</tr>
</thead>
<tbody>
<tr>
<td>May</td>
<td></td>
<td></td>
<td></td>
<td>19</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>23</td>
<td>24</td>
<td></td>
<td></td>
<td></td>
<td>28</td>
<td></td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>31</td>
<td>25</td>
<td></td>
<td></td>
<td>27</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>June</td>
<td>30</td>
<td>31</td>
<td></td>
<td>8</td>
<td></td>
<td>10</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>7</td>
<td>9</td>
<td>11</td>
<td></td>
<td>12</td>
<td></td>
</tr>
</tbody>
</table>
What Quality Reaches the Cow’s Mouth

- Wide Swath Makes a Difference!!
Sunshine Produced Dry Matter

Respiration lost Dry Matter

+50 - 20

+ 30 Net Gain
Sunshine Produced Dry Matter

- Shade or Nighttime
- Respiration lost Dry Matter

Net Loss -20
Relationship between overnight DM loss and minimum night temps

Knapp et al. 1973
Milk loss From Respiration in just 24 hours

16% - 30% of Dry Matter loss by Respiration

Sugar 7.72
Starch 3.5

Sugar 6.4
17.7% loss
Starch 2.9
17.1% loss
Wide swath

Sugar 8.10
Starch 3.075

Sugar 7.68
5% loss
Starch 3.2
4% gain!
Narrow Fresh Wide Fresh Narrow Wilt Wide Wilt

1st cut alfalfa 2nd cut grass 2nd cut alfalfa
Impact of Drying Time on Forage NPN

Table from Brady, 1960
Impact on Potential Milk/Ton

<table>
<thead>
<tr>
<th></th>
<th>1st Cut Alfalfa</th>
<th>2nd Cut Grass</th>
</tr>
</thead>
<tbody>
<tr>
<td>Narrow Fresh</td>
<td>2652 a</td>
<td>3513 a</td>
</tr>
<tr>
<td>Wide Fresh</td>
<td>2731 a</td>
<td>3606 a</td>
</tr>
<tr>
<td>Narrow Ferment</td>
<td>2279 b</td>
<td>3400 b</td>
</tr>
<tr>
<td>Wide Ferment</td>
<td>2574 a</td>
<td>3705 a</td>
</tr>
<tr>
<td>lbs potential Milk/ton</td>
<td>294.9</td>
<td>304.5</td>
</tr>
<tr>
<td>$/ton DM</td>
<td>$44.24</td>
<td>$45.68</td>
</tr>
</tbody>
</table>

275 Acres x 3 T DM/A x $40/T = $33,000
• Mowers are limiting factor: 50:9ft 200: 36
• Width matters most for hay silage or dry hay
• Conditioning works for dry hay, counter productive for silage
• You can get same-day hay silage
Wide Swath Has Huge Impact on Harvest System

- Chopper and Trucks ready when you start mowing
- Chopper running closer to capacity – greater field efficiency
- May need more trucks/wagons
- Bunk set up (Packing & Leveling) for more rapid fill
- Might have to switch from progressive wedge to flat fill
- Check particle size (non uniform feed to cutters)
Haylage

<table>
<thead>
<tr>
<th></th>
<th>Sealed Silo</th>
<th>Bunk Silo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Top</td>
<td>10 - 15 %</td>
<td>15 - 25%</td>
</tr>
<tr>
<td>Middle</td>
<td>30 - 40%</td>
<td></td>
</tr>
<tr>
<td>Bottom</td>
<td>40 – 50%</td>
<td></td>
</tr>
</tbody>
</table>

Note: Post Fermentation Screening makes particles stick together and appear on a larger screen than they actually are.
Impact on Dry Matter Intake
No Processing vs Sliced When Baled

Test 1

Test 2

Test 3
Baled vs Chopped, Impact on pH

Days after Ensiling:

- 0 days: Baled pH 5.6, Chopped pH 5.8
- 1 day: Baled pH 5.4, Chopped pH 5.6
- 3 days: Baled pH 5.2, Chopped pH 5.4
- 9 days: Baled pH 4.8, Chopped pH 5.2
- 60 days: Baled pH 4.4, Chopped pH 4.6
Corn Silage Harvest

Making the Most of What you Grow
Dry August

Start Checking Harvest Moisture at 1/4 milk line

Wet August

Start Checking Harvest Moisture at 1/2 milk line

41 Days After Tassel
The only accurate predictor of silage harvest is a DRY MATTER CHECK
Corn Silage

<table>
<thead>
<tr>
<th></th>
<th>Sealed Silo</th>
<th>Bunk Silo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Top</td>
<td>2 - 4 %</td>
<td>10 – 15%</td>
</tr>
<tr>
<td>Middle</td>
<td>40 – 50%</td>
<td></td>
</tr>
<tr>
<td>Bottom</td>
<td>40 – 50%</td>
<td></td>
</tr>
</tbody>
</table>

Only REAL Measurement of Effective Fiber!

Note: Post Fermentation Screening makes particles stick together and appear on a larger screen than they actually are.
WHAT IS CHEAPER? A SILO FULL OF SILAGE TOO FINE/CORASE OR A $250 FORAGE SCREEN SET?
Silage processing

• Generally agreed that processing at ¾” TLC and 1-3 mm increases starch availability and milk production.

• Roller clearance depends on silage maturity:
 “Start with a nickle, end with a dime.”

• Watch custom harvesters closely! Check kernels and cobs. Cobs should be “kibble” size, 95% of kernels crushed.

• Machine capacity is reduced by 25% or so, and power requirements increase by about 10%.
Processed or Not: Are the Kernels Clipped?

- $3 plastic dish pan or a pail
- Fill with water
- Dump in silage
- Swish around
- Pour off water with floating silage
- Kernels are left at the bottom
- Check for chipping vs whole kernels.
Whole Farm Impact

http://counties.cce.cornell.edu/agriculture/rensselaer/
Composition of Crop Harvested over Length of Stand

% Alfalfa

Years of Stand

1 2 3 4 5 6
How Your Rotation Choice Affects Cost/ton DM

Yrs. of Alfalfa

1 corn
2 corn
3 corn
4 corn
5 corn

39.5 41.5 43.5
Crop Plan Summary

<table>
<thead>
<tr>
<th>Crop</th>
<th>2003</th>
<th>2004</th>
<th>2005</th>
<th>2006</th>
<th>2007</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Corn</td>
<td>277</td>
<td>236</td>
<td>258</td>
<td>270</td>
<td>218</td>
</tr>
<tr>
<td>Corn Grain</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Corn Silage</td>
<td>277</td>
<td>236</td>
<td>258</td>
<td>270</td>
<td>218</td>
</tr>
<tr>
<td>Total Hay Crop</td>
<td>682</td>
<td>664</td>
<td>629</td>
<td>542</td>
<td>616</td>
</tr>
<tr>
<td>Mixed Hay</td>
<td>656</td>
<td>642</td>
<td>535</td>
<td>526</td>
<td>564</td>
</tr>
<tr>
<td>Grass Hay</td>
<td>26</td>
<td>22</td>
<td>94</td>
<td>15</td>
<td>52</td>
</tr>
<tr>
<td>New Seedings*</td>
<td>238</td>
<td>74</td>
<td>257</td>
<td>128</td>
<td>127</td>
</tr>
<tr>
<td>Idle/Other</td>
<td>43</td>
<td>103</td>
<td>115</td>
<td>191</td>
<td>169</td>
</tr>
<tr>
<td>Totals</td>
<td>1002</td>
<td>1002</td>
<td>1002</td>
<td>1002</td>
<td>1002</td>
</tr>
</tbody>
</table>

* Note: Acres of New Seedings are also included in the Hay acreages.

- 1002
- 191
- 809 cropped
- 15 cont. grass
- 794 rotated

Divide by 6 = 132 A seed

X 2 = 264 A corn

X 3 = 397 rot hay
Manure can **BUILD** rather than **MINE** nutrients

While saving on the fertilizer bill

<table>
<thead>
<tr>
<th>Field ID</th>
<th>Acres</th>
<th>Crop</th>
<th>Total N Required</th>
<th>Total P2O5 Required</th>
<th>Total K2O Required</th>
<th>Primary Rate</th>
<th>N Balance (lbs/acre)</th>
<th>P2O5 Balance (lbs/acre)</th>
<th>K2O Balance (lbs/acre)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T2323-22</td>
<td>9.9</td>
<td>COS2</td>
<td>67</td>
<td>60</td>
<td>60</td>
<td>9,000</td>
<td>22</td>
<td>15</td>
<td>98</td>
</tr>
<tr>
<td>T2323-25</td>
<td>8.9</td>
<td>COS2</td>
<td>67</td>
<td>45</td>
<td>60</td>
<td>9,000</td>
<td>22</td>
<td>30</td>
<td>98</td>
</tr>
<tr>
<td>T2323-26</td>
<td>5</td>
<td>COS2</td>
<td>67</td>
<td>60</td>
<td>60</td>
<td>12,000</td>
<td>51</td>
<td>40</td>
<td>150</td>
</tr>
<tr>
<td>T2323-27</td>
<td>24.2</td>
<td>COS2</td>
<td>67</td>
<td>60</td>
<td>60</td>
<td>0</td>
<td>-67</td>
<td>-60</td>
<td>-60</td>
</tr>
</tbody>
</table>