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The Cassini spacecraft, which entered orbit around Saturn in 2004, has provided

a wealth of observations at resolutions and geometries unavailable from Earth,

thereby expanding our knowledge of the Saturnian system. In this work, I study

both Saturn’s extensive ring system and one of its moons, Hyperion.

Previous Voyager and ground-based work had shown that Hyperion, unlike

nearly all inner satellites of the giant planets, rotates asynchronously and about

a non-principal axis, as a result of strongly-varying tides from Saturn. Modeling

done by Wisdom et al. (1984) showed that Hyperion’s rotation was also chang-

ing in a chaotic fashion over timescales of several months, making it difficult

to predict the moon’s past and future orientation from only the Voyager flyby.

However, in 2005, Cassini performed three close flybys of Hyperion within the

Lyapunov timescale. Not only did this let me construct a model of Hyperion’s

spin state covering much of 2005, it offered clues to Hyperion’s interior struc-

ture. Because the effect of Saturn’s tidal torques on Hyperion’s spin depend on

Hyperion’s internal structure, I could rule out some internal structures if they

could not reproduce the changes in spin state in 2005. In particular, a uniform-

density model produces a poor fit to observations, as do models in which the

principal axes of rotation align with those expected from Hyperion’s shape. Hy-

perion’s lack of apparent in-body precession in 2005 suggests either an unlikely

coincidence or that an actual principal axis of rotation is closely aligned with



the spin axis.

With regard to studies of Saturn’s rings, Cassini’s orbit about Saturn not

only permits many more stellar occultations of the rings to be observed than

can be seen from Earth, but allow for solar occultations of the rings, a geome-

try impossible to achieve from Earth. Both the actual resolution of the Visible-

Infrared Mapping Spectrometer (VIMS) instrument and the resolution gained

from translating the star’s apparent motion behind the rings into angular reso-

lution permit the diffraction of sunlight or starlight by ring particles to be ob-

served, thus giving information about the size distribution of ring particles in

certain areas of the rings. In this work, I measure both the minimum particle

size of the A and C Rings, as well as the outermost edge of the B Ring, and the

slopes of regions in the outer A Ring, C Ring, Cassini Division and outer B Ring.

I find that the C Ring contains particles down to 4.1+3.1
−1.3 mm in radius, with a

particle-size distribution that can be modeled as a power law with a differential

power-law index of ∼ 3.0. The outer edge of the B Ring likewise contains parti-

cles down to a radius of several millimeters, and has a relatively steep power-

law index of ∼ 3.4, making it quite different from other studies of other areas of

this ring (but rather like the outer edge of the A Ring). I was also able to confirm

a shallow ∼ 2.8 power-law index for the ring particles in the Cassini Division.

For the A Ring, I report only an upper limit on the minimum particle size

of 0.6 mm for the inner and mid-A Ring, and a minimum particle size of 3-7

mm in radius in the outer parts of the A Ring. I confirm the power-law index of

2.9 to 3.0 in the outer A Ring, and discover that in the very outermost portions

of the ring, the trans-Keeler region, the power-law index steepens to ∼ 3.4 or

even steeper. I also discovered that the effect of the A Ring’s self gravity wakes

– temporary aggregates of ring particles in to 50-100 m structures – makes a



noticeable difference in any attempt to model the ring’s particle-size distribution

in the inner and mid A Ring, but that wakes appear to play little role near the

edges of the two gaps in the A Ring, and at the A Ring’s outer edge.
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CHAPTER 1

INTRODUCTION TO RING PARTICLE SIZES

1.1 Overview

Saturn’s Main Rings are one of the most spectacular features of the Solar System.

The Main Rings are composed of particles with a wide range of sizes, all orbiting

the planet, and composed of mostly water ice, with impurities that act to color

and darken the rings (Nicholson et al., 2008). Because the ring particles range in

size over several orders of magnitude, no one technique can be used to measure

the complete particle-size distribution. As a result, the work of defining the

properties of ring particles includes observations using a variety of techniques

and at a variety of wavelengths.

We speak of Saturn’s Rings, especially the bright Main Rings as an aggregate

region, but the rings are traditionally broken into a number of units based on

observed boundaries in optical depth and color. The Main Rings themselves

are defined as the A, B and C Rings, and the Cassini Division. I will briefly

outline the regions, with their most notable features. For more details on the

rings themselves, I suggest reviewing Saturn from Cassini-Huygens, chapters 13

through 15. The basic ‘geography’ of the rings is shown in Figure 1.1.

Cassini
Division

A RingB Ring F RingC RingD Ring

Figure 1.1: A to-scale diagram of Saturn’s rings, with major regions la-
beled and gaps and ringlets drawn on (but unlabeled).
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Saturn’s C Ring extends from 74,658 to 92,000 km from the planet’s center.

Interior to the C Ring is only the tenuous D Ring, which I will not be discussing

here. The C Ring is mostly optically thin (having an optical depth of less than

unity), with various curious structures in optical depth that are not fully under-

stood. The C Ring also hosts several gaps in it. The Colombo Gap, in the inner

C Ring, is a 150 kilometer-wide gap at the 0:1 resonance with Saturn’s moon,

Titan – the location where the orbital period of ring particles equals the orbital

precession period of Titan – and includes the Titan Ringlet, a 25-km dense ec-

centric ringlet that maintains a constant orientation relative to Titan. In the outer

C Ring, there is a series of three gaps – the Maxwell, Bond and Dawes Gaps –

the inner two of which also contain non-circular ringlets. Finally, just interior to

the boundary between the C and B Rings, is a mostly-featureless, increasingly

dense region known as the C Ring ramp.

The B Ring extends from 92,000 to 117,580 km, and is the most massive and

optically thickest part of the ring system, so much so that many places in the

central B Ring appear opaque. It has a complex internal structure, with sev-

eral distinct sub-regions, that is not fully understood, with the ring’s own self-

gravity likely contributing to the structure. The outer edge of the B Ring is de-

fined by the inner edge of the Huygens Gap, which occurs at the 2:1 resonance

with Saturn’s moon, Mimas. There are no gaps within the B Ring.

The Cassini Division is another optically thin region that extends from the

Huygens Gap to the Cassini Division ramp, or from 117,580 to 122,170 km.

In many ways, the Cassini Division and C Ring are analogous. Within the

Cassini Division, there are many gaps – the Huygens, Herschel, Russell, Jef-

freys, Kuiper, Laplace, Bessel and Barnard Gaps. The Huygens, Herschel and
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Laplace Gaps contain dense non-circular ringlets that take their name from their

gaps. Finally, like the C Ring, the outer Cassini Division – beyond the Barnard

Gap – has a ramp of increasing optical depth just interior to the A Ring.

The A Ring is denser than the C Ring and Cassini Division, but much less

opaque than the B Ring. It extends from 122,170 to 136,775 km, making it the

outermost of the Main Rings. Unlike the B Ring, the A Ring is mostly smoothly

varying in optical depth, with the dominant features being density and bending

waves driven by Saturn’s moons. The A Ring has an optical depth which is de-

pendent on viewing geometry, due to the ring’s self-gravity arranging the larger

particles into roughly linear ’self-gravity wakes’. The outer A Ring contains two

gaps, the Encke and Keeler Gaps, both kept open by 10 kilometer-sized moons,

Pan and Daphnis, which orbit within the ring system.

Finally, though it is not part of the Main Rings, the F Ring at 140,180 km

is addressed briefly in this work, as it is a sort of ‘intermediate form’ between

the denser Main Rings and the diffuse, dusty rings. The F Ring has a core of

dense material, with a diffuse halo of dust-sized grains surrounding it, and two

moons, Pandora and Prometheus, which may act to confine the core (and create

structure that is beyond the scope of this work).

1.2 Radio and Submillimeter Observations

A major constraint on the size distribution of ring particles comes from looking

at which wavelengths of light the rings are capable of interacting with. While

the rings both reflect sunlight and ‘Saturn-shine’ and emit thermally in the mid

to far-infrared, ring particles are poor at emitting light with a wavelength that is
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of the order of their radius or longer. Thus, observations of the rings’ emission

at sub-millimeter to centimeter wavelengths provide an estimate of the amount

of dust, sand and pebble-sized grains within the ring, and constrain the size of

the smallest ring particles.

Modeling such data depends not only on the ring particle sizes – particles

significantly smaller than the wavelengths observed will not strongly emit, re-

flect or absorb – but also the optical properties (and hence, composition) of the

ring particles, which also sets the ability to see the rings in emission/absorption

versus reflection/scattering. The most comprehensive models using exclusively

Earth-based data concluded that the majority of the rings’ cross-sectional area

was provided by ring particles smaller than one meter, but larger than one mil-

limeter, and likely made largely of water ice (with metallic iron fitting the data

but considered less likely due to abundance arguments) (Cuzzi and Pollack,

1978; Cuzzi et al., 1980). Cuzzi et al. (1980) note that their conclusions are not

that such large or small ring particles do not exist, but that they are not the dom-

inant source of opacity. Further radar work has concluded that much of the A

and B rings are made of decimeter or meter-sized particles of water ice that can

interact with the 12.6 cm radio waves sent from Earth, and that the C Ring and

Cassini Division may contain a larger fraction of centimeter and smaller-sized

particles to explain the difficulty in observing them in 12.6 cm radio reflection

(Nicholson et al., 2005).

With the advent of spacecraft-based observations, scientists have been able

to not only rely on passive and reflectivity measurements of the rings at long

wavelengths, but to perform absorption and scattering experiments using the

spacecraft as a radio source and the Deep Space Network antennae on Earth as
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the receivers. The spacecraft would transmit radio waves as it travelled behind

the rings from Earth’s perspective, and the resulting signal could be analyzed.

The Voyager 1 spacecraft performed this experiment once as part of its flyby in

1980, and the Cassini spacecraft has been performing regular radio occultations

as part of its ongoing mission since its arrival in the Saturn system in 2004.

As both Voyager and Cassini transmit at several wavelengths – 3.6 and 13 cm

for Voyager, and 0.94, 3.6 and 13 cm for Cassini – the simplest thing to examine is

the differential optical depth with respect to wavelength. Particles smaller than

about one-third of the wavelength of the signal are effectively transparent, as a

result, the factor of ∼ 3 for Voyager or ∼ 14 for Cassini can provide an estimate

of what fraction of ring surface area is transparent to longer-wavelength radio

waves, providing an estimate of the particle surface area (and thus, number den-

sity) between two radius bins. Furthermore, a comparison between the short-

est radio wavelength and optical depth measurements in the visible, infrared

or ultraviolet can offer the fraction of ring material smaller than the shortest-

wavelength radio on board the spacecraft.

When comparing between optical depth data sets, care must be taken to al-

low for the effects of scattering. When light interacts with a sheet of ring parti-

cles, a portion of it is absorbed, a portion is diffracted at a range of angles, and

the rest is transmitted. Depending on the wavelength, size of the ring particles,

and properties of the appropriate receiver, the diffracted light may or may not

be seen. Thus, the observed optical depth, τ, is

τ =

∫
Q (a, λ) πa2n (a) da, (1.1)

where n (a) is the differential size distribution of particles of radius a and Q is
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the extinction efficiency of particles of this radius, and is between 0 (for particles

much smaller than the observation wavelength) and 2 (for particles much larger

than the observation wavelength). Papers such as French and Nicholson (2000)

also define a Qocc – the extinction efficiency of an occultation – which is not

only dependent on the size of particles relative to the wavelength, but also the

properties of the detector (specifically if it can distinguish diffracted light).

In the case of measuring the radio optical depth, the monochromatic, directly

transmitted signal can often be cleanly separated from the scattered signal ei-

ther because it is removed from the beam, or by the scattered signal having

a Doppler shift induced by interacting with the ring particles. Thus, optical

depths within the rings, as measured by radio occultations, are usually extinc-

tion optical depths (Qocc = 2). The smaller diffraction angles of UV/Visible/IR

radiation mean that diffracted light is usually indistinguishable from the trans-

mitted light, so the absorption optical depth (Qocc = 1, also called the geometric

optical depth) is measured. The intermediate cases – where Qocc is between 1

and 2 – are of the most interest in determining n (r).

The diffraction lobe can also be measured more directly for larger particles.

The theory of this work was discussed first by Marouf et al. (1982), and I will

only briefly allude to it here. As the beam is diffracted by ring particles, it is

Doppler-shifted by the ring’s orbital velocity. This separates the diffracted sig-

nal from the direct signal when the signal is analyzed spectrally. The average

diffracted signal can be inverted to regain an angular scattering function for a

given ring region. As the transmitter’s beam is not infinitely well-collimated,

particles that scatter at angles larger than the beam half-width will appear to

scatter isotropically within the beam without changing the shape of the diffrac-
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tion lobe. Thus, particles smaller than a minimum size (approximately 1m for

the 3-4 meter diameter antennae used by Voyager and Cassini) determined by

this angle must be measured by the optical depth method mentioned above, or

by other experiments.

The analysis of the Voyager radio occultation was initiated by Marouf et al.

(1983), with Zebker et al. (1985) presenting a more detailed model that better

accounted for the finite thickness of the rings. Zebker et al. (1985) were able

to measure eight regions of the ring – the middle C ring, the C Ring ramp, the

Cassini Division ramp, three zones in the mid-A Ring and the trans-Encke A

Ring. The same basic properties of the ring particle-size distribution appear in

all these regions. As Zebker et al. (1985) had only two measurements of optical

depth (plus the inversions of the scattering function), they elected to model the

particle-size distribution for particles smaller than 1 meter as a truncated power

law, written as

n (r) = n0a−q amin ≤ r ≤ amax, (1.2)

where the entire particle-size distribution is parameterized by amin, amax, n0, and

q. For particles smaller than one meter, the particle-size distribution appears

roughly inverse-cubic (q ≈ 3), but direct inversion shows a steepening at a par-

ticle size of 3-10 meters, where the distribution goes from a power-law index of

3 to 4 − 5 or even larger, representing a de-facto cutoff. Furthermore, all ring

regions show a greater optical depth at 3.6 cm than at 13 cm, indicating some

ring particles down to ≈ 1 centimeter in size.

Marouf et al. (1983) and Zebker et al. (1985) were able to convert the radio

optical depth measurements, and the inversions, into a estimate of the power-
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law index by assuming a truncated power-law particle-size distribution with a

minimum cutoff of 1 cm. Zebker et al. (1985) chose to fix amin at 1 cm due to

their limited sensitivity to smaller particles, and amax at 1 m (the point at which

Marouf et al.’s inversions could take over). They chose n0 such that the power

law plus the inversions would lead to the correct total optical depth of the ring

region. Thus, they transformed a differential optical depth into a unique power-

law index, q. From this, they derived a power-law index of 3.0-3.1 for the C ring

regions, a steepening power law from 2.7 to 3.03 for the A Ring, and a single

measurement of an index of 2.79 for the Cassini Division ramp.

The Cassini radio occultation experiments had many improvements over

their Voyager counterpart: Voyager had passed through when the rings were

relatively edge-on to Earth (about a 6◦ opening angle), while Cassini arrived

when the rings were relatively open (over 20◦ opening angle). Cassini also could

transmit at three wavelengths to Voyager’s two. In addition to the smaller par-

ticles the 0.94 cm Ka-band signal was sensitive to, having three optical depth

measurements breaks the degeneracy between the power-law index and mini-

mum particle size that meant the Voyager RSS (Radio Science Subsystem) team

had to assume a lower size cutoff. Finally, Cassini’s insertion into Saturnian

orbit meant that the experiment could be repeated, including under differing

geometries both for better signal-to-noise and to sample ring regions of varying

optical depth. Preliminary results from differential optical depths were pre-

sented by Marouf et al. (2008), and included in the ‘Ring Particle Composition

and Size Distribution’ chapter of Saturn from Cassini (Cuzzi et al., 2009). To date,

no inversions of the Cassini radio occultations have been published.

Marouf et al. (2008) report a slightly higher power-law index of q = 3.2 in
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the C Ring than in the previous Voyager result, with a robust minimum par-

ticle radius of 4mm in the mid C Ring. The more open geometries permitted

observation of all but the densest part of the B Ring (the ‘core’, also called B3).

The innermost B ring (B1) looks much like the C Ring ramp, with a minimum

particle size of 4mm, and a power-law index of 3-3.1. The regions bordering B3

(called B2 and B4) appear to either have a very shallow power-law index of less

than 2.7 or contain no free ring particles smaller than half a meter – both regions

yield negligible optical depth increases at shorter wavelengths. In the Cassini

Division, Marouf et al. (2008) report an increasing maximum particle size with

radius, but no new results on the power-law index or minimum particle size.

Within the A Ring, Marouf et al. (2008) report a power law steepening from 2.7

to as high as 3.2, increasing with distance from Saturn. The shallow power law

in the inner and mid A Ring make it difficult to estimate the minimum particle

radius, as explained in the previous paragraph, but Marouf et al. (2008) report

a minimum particle size of 20 cm in the inner A ring and a minimum particle

size of 4-5 mm in the steeper trans-Encke region where the smallest particles are

easier to see.

1.3 Photometry and Spectroscopy

The differential optical depth measurements mentioned in Section 1.2 can be

extended to shorter wavelengths, though this requires some cross-calibration of

instruments. French and Nicholson (2000) note that the Voyager photopolarime-

ter (PPS) occultation of the star δ Scorpii (δ Sco), done in the ultraviolet (∼ 270

nm) is mostly comparable in geometric optical depth to the geometric optical

depth calculated from the RSS occultation at 3.6 cm, with a scaling factor of 0.9
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required in the A Ring, implying that in most regions of the ring, there is an in-

significant ring surface area due to free particles smaller than a few centimeters

in size.

The phase function of the rings can also tell us something of the particle size,

as grains of the order of microns or tens of microns (dust-sized grains) forward-

scatter light strongly in visible and near-infrared light, while macroscopic ring

particles do not. These measurements have been done by both Voyager and

Cassini, as the viewing geometry from Earth covers only very low phase an-

gles. Doyle et al. (1989) and Dones et al. (1993) were able to show that the A

and B Rings were mostly dust-free using phase functions derived from Voyager

images. Cooke (1991) produced similar results in the C Ring, though their phase

function had an element of forward-scattering that they attributed to either free

dust-sized grains within the C Ring or surface roughness on larger ring parti-

cles.

While Cassini observations have identified a few narrow ringlets within the

Main Rings (Hedman et al., 2007b, 2010a) and the D Ring (Hedman et al., 2007a)

that contain dust-sized grains, and the transitory ‘spokes’ of the B Ring show a

phase function consistent with dust grains (Mitchell et al., 2006), the majority of

the Main Rings show a phase function that is strongly backscattering, indicating

macroscopic particles. The depths of the water ice bands in the near-infrared re-

flectance spectra suggest grain sizes of a few tens of microns (Nicholson et al.,

2008; Filacchione et al., 2012, 2013), but these are interpreted as referring to re-

golith grains on the surfaces of much larger ring particles.
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1.4 Stellar Occultations

Before Cassini arrived at Saturn, data from stellar occultations of the rings were

of limited use for deriving ring particle sizes. Voyager did observe an occul-

tation of δ Sco using the PPS and UVS instruments at near-UV wavelengths.

In addition, the 1989 occultation of 28 Sagitarii (28 Sgr) was observed from a

number of Earth-based observatories in the visible and near-infrared.

The Voyager PPS observations were analyzed for the effects of the largest

ring particles statistically. The occultation was observed at a time resolution of

10 ms, which translated to a spatial resolution of 100 m at the rings. If ring par-

ticles existed on that size scale, they would reveal themselves in the structure of

the point-to-point variation of the occultation counts. A certain amount of vari-

ation would be expected from photon-counting statistics, quantified by the sta-

tistical variance σph =
√

N, where N is the mean photon count rate, but a larger

variance than expected from counting noise would be produced if the ring parti-

cles were large enough that the presence of individual large ring particles could

effect the transmission from sample to sample. Showalter and Nicholson (1990)

were able to show that, in fact, regions of the ring did show extra variance that

suggested the presence of meter to decameter sized ring particles. However, this

work was done before the presence of the self-gravity wakes of the A Ring and

the more complex aggregates of the B Ring were theorized, though Showalter

and Nicholson did note the possibility of aggregates in the A Ring as a caveat

to their work. As a result, it seems likely that Showalter and Nicholson’s results

were influenced, if not dominated, by aggregates, at least for the A and B Rings.

They observed an effective ring particle size of . 1.1 − 2.8 meters in the C Ring

and . 1.1 − 4.5 m in the Cassini Division, regions which are not dense enough
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to form such aggregates, confirming the presence of meter-sized ring particles

(and the relative lack of larger ring particles).

French and Nicholson (2000) used a different method to analyze the 28 Sgr

data obtained from the Lick Observatory at 0.9 µm, the McDonald Observa-

tory at 2.1 µm, and the Palomar Observatory at 3.9 µm. Like the radio oc-

cultations discussed in Section 1.2, Earth-based stellar occultations are sensi-

tive to the effects of diffraction as electromagnetic radiation shines through the

rings. However, a star that emits incoherent broad-spectrum ultraviolet, visi-

ble and/or near-infrared light is quite a different source than a coherent radio

source emitting narrow-spectrum radio waves, and the instruments required to

detect such light are quite different. The Doppler effect method used to sep-

arate diffracted radio waves from those directly transmitted is useless, as both

the stellar spectrum and the photometric filters used at the telescopes are far too

broad to separate a Doppler-shifted diffraction lobe on top of the transmitted

light. Furthermore, the wavelengths involved mean that the relevant angular

scales are quite different – a meter-sized ring particle will diffract 13 cm radio

waves by a substantial ten milliradians (or ∼ 30′), while the same ring particle

will diffract near-infrared light by about a microradian, four orders of magni-

tude smaller. Thankfully, the same effect that shrinks diffraction angles also

acts on the receiver’s angular resolution: an optical telescope can often resolve

sources to ten-microradian precision (or ∼ 2′′). However, French and Nichol-

son (2000) did not attempt to resolve the diffracted signal directly, due to the

effect of time-variable atmospheric seeing. Instead, they examined optical data

derived from aperture photometry.

While some evidence of diffracted light could be seen in the raw occulta-
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tion data – the presence of ‘overshoots’ or ‘horns’ where starlight scattered from

nearby ring material would make it appear as if the star had brightened above

100% transmission as it passed through a gap – the diffracted light was indistin-

guishable from the directly transmitted light in most of the data set. Thus, the

occultation was modeled by using a difference in optical depth measurements.

The Voyager PPS occultation was used to produce a geometric normal optical

depth profile of the rings, which allowed the directly transmitted light to be es-

timated, and thus separated from the diffracted light. Given the geometry of the

occultation and the wavelengths and aperture sizes used to observe it, a model

of scattered light could be created for a given particle-size distribution and this

model could be fit to the data. French and Nicholson (2000) chose to model the

ring as five regions – the C Ring, B Ring, Cassini Division, inner-to-mid A Ring,

and trans-Keeler A Ring – each with a truncated power-law size distribution, as

described in the previous section.

French and Nicholson (2000) noted that the C Ring showed a comparatively

larger fraction of surface area in small particles, and set their power-law index

to 3.1 and their particle size range from 1cm to 10 m to best fit the levels of

scattered light seen. They noted that this did not fit all their data – particularly

the 0.9 µm observations taken at Lick Observatory – and suggested that the C

Ring may not have a uniform power-law index across the entire ring. In the

B Ring, they found a similar shallow power law and paucity of small particles

that would later be observed by Cassini RSS, and fit a model with a power-law

index of 2.75 and a particle size range of 30 cm to 20 m. As in the Cassini RSS

data, the B Ring core proved to be too opaque to produce useful results. The

relative narrowness of the Cassini Division limited the conclusions to be drawn

there, but French and Nicholson (2000) found a power-law index of 2.75 and a
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minimum particle size of 1n mm fit best, and chose a maximum particle size of

20 m to match the nearby A Ring, noting that this number is not well constrained

by their data.

As in the radio-science experiments, French and Nicholson (2000) noted that

the shallow power law of the inner to mid A Ring makes it difficult to con-

strain the smallest particles, though in their case, they required both a shallow

index (2.75) and a large minimum particle radius (30 cm), and found that a max-

imum particle size of 20m is necessary to reproduce some of the fine structure

seen in the scattered light profile; the larger the particles, the smaller the angles

they scatter light into, so the less ‘smeared out’ their scattering profile is. For

the outer A Ring, they found a somewhat steeper power law (2.9) and a much

smaller minimum particle size (1 cm), though they noted again that the three

data sets used did not agree well. Generally speaking, the results inferred so far

from the Cassini RSS occultations compare quite well with those from French

and Nicholson (2000).

1.5 Direct Imaging

While the average-sized ring particles have not been resolved, even in

spacecraft-based imaging observations, the effects of the largest individual ring

particles can be seen within the A and B Rings. It could even be argued that

the resolved moons Pan (with a mean radius of ∼14 km) and Daphnis (with a

mean radius of ∼ 4 km), that orbit within gaps in the A Ring, are the largest ‘ring

particles’.

Ring particles smaller than Daphnis are unable to clear an entire gap in
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the rings, but their gravity still perturbs the ring material around them. The

first four such objects were spotted in very high resolution Cassini images ob-

tained during the spacecraft’s insertion into Saturn orbit (Tiscareno et al., 2006)

as paired lighter ‘streaks’ in the A Ring, several kilometers long and with the

leading streak displaced hundreds of meters inward from the trailing streak.

Though Cassini did not resolve the actual moonlets responsible, theoretical

work (Spahn et al., 2000; Seiß et al., 2005) had suggested that this pattern was

what one would expect from a large ring particle perturbing smaller ring par-

ticles by its own gravity, forming density enhancements and depletions shaped

much like the blades of a propeller. Many additional ‘propeller moonlets’ or

‘propellers’ have been subsequently seen in more modest resolution images

(Sremčević et al., 2007; Tiscareno et al., 2008), including several relatively large

‘giant propellers’ in the region between the Encke and Keeler gaps (Tiscareno

et al., 2010a).

While the actual sizes of these ‘propeller moonlets’ is uncertain, due to pho-

tometric effects beyond the scope of this dissertation, it is generally agreed that

such features are caused by ring particles in the tens to hundreds of meter size

regime (Tiscareno et al., 2006), possibly as large as 1 km (Tiscareno et al., 2010a).

Tiscareno et al. (2008) made an attempt to fit the observed ‘propeller moonlets’

(as well as Pan and Daphnis) to the particle-size distribution in the A Ring, and

noted that, given the number of ‘propellers’ observed in the A Ring, it fit with

Zebker et al. (1985)’s assertion that the particle-size distribution of the A Ring

steepens greatly at particle sizes larger than ∼10 m.
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1.6 Theory

Theory has offered some explanation as to why the rings have a clear trunca-

tion in their particle-size distribution. Longaretti (1989) modeled the processes

of accretion and disruption of ring particles orbiting within the ring, and no-

ticed that, above a certain ring particle radius, collisions between ring particles

becomes increasingly disruptive, eroding the largest particles, and suggested

similar processes might account for the lower cutoff. Following up on that

work, Bodrova et al. (2012) predicted, based on adhesion versus disruption rates

in a collisional system with many differently-sized particles, such as the rings,

that the smallest particles will selectively stick to the largest particles, such that

a sharp break in the free-floating particle-size distribution will form, with all

smaller particles spending the majority of their time adhered to larger ring par-

ticles. Bodrova et al. (2012) predicted, using the ring surface densities measured

by Cassini and dynamical estimates of relative velocities within the rings, a min-

imum particle size of centimeters in less dense or more disturbed regions, up to

tens of centimeters in the inner A and B rings.

We can certainly see the effect of small particles covering the rings’ exposed

surfaces. The spectra of the rings observed by Cassini-VIMS show water ice

absorption features that resemble those of ∼ 30 micron sized ice grains, with

colorants that darken and redden the rings’ spectra relative to pure water ice

(Nicholson et al., 2008). Modeling suggests that the rings are covered in grains

with sizes of of 5-100 µm (Filacchione et al., 2012). Morishima et al. (2012), work-

ing with CIRS data, was able to extend the spectral modeling of ring regolith

into the mid-infrared, and suggested the regolith’s particle sizes extended to

the range of centimeter sized particles. Thus, we see exactly the sort of regolith
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predicted by Bodrova et al.: a wide range of particle sizes, up to the size of the

smallest free-floating particles.

1.7 State of Knowledge Prior to This Work

The general consensus before I began my work was that the Main Rings of Sat-

urn could be modeled by a truncated power-law size distribution. The B Ring

and inner and middle A Ring were best represented by a power-law index of

∼ 2.75 and a relatively narrow particle size range of ∼ 30 cm to 10-20 m. Out-

side of the Encke Gap, the A Ring had a steeper distribution of q = 2.9-3.2 and

smaller particles that extended into the difficult-to-measure size range below 1

cm. The C Ring, likewise, had a relatively steep particle-size distribution of q =

3.0-3.2 and a particle size range of 4 mm to 5-10 m. The Cassini Division, due to

its narrowness, complex internal structure and low optical depth, was the least

well studied. It seemed to show the same shallow (q = 2.75) power-law index

as the neighboring A and B Rings, but a particle size range that extended down

to centimeter sized particles and up to 5-20 meter sized particles.

A summary of our understanding of the rings’ size distribution circa 2008 is

shown in Figures 1.2 and 1.3. Note that there is a generally consistent picture

of the power-law index over the rings, but the minimum particle size is not

well-constrained in the C Ring and trans-Encke A Ring, and is almost totally

unknown in the Cassini Division.

After a brief discussion of a separate project on Hyperion’s rotation (Chapter

2, originally published in Celestial Mechanics and Dynamical Astronomy in 2011),

this work will examine the use of occultations in the near-infrared as observed
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Figure 1.2: A plot of the estimated power-law index of various regions of
Saturn’s rings using Voyager RSS (red, (Zebker et al., 1985)),
Cassini RSS (green, (Marouf et al., 2008)) and Earth-based stel-
lar occultation (blue, (French and Nicholson, 2000)), with dia-
monds marking endpoints of line segments indicating the re-
gions modeled. Dashed lines mark the boundaries of various
ring regions (the C Ring, B Ring, Cassini Division and A Ring).
The general trends are that the C Ring and trans-Encke A Ring
particles have a steep (q > 3) power-law index, while the rest
of the ring system has a more shallow power-law index. As
French and Nicholson (2000) used the Voyager estimates as a
starting place for their work, close agreement may not be sur-
prising.

by the Cassini spacecraft to expand this picture of the Main Rings and the parti-

cles that make them up. This dissertation will cover work on solar occultations

(Chapter 3, previously published in Icarus in 2013) and work on stellar occulta-

tions (Chapter 4, in preparation for submission to Icarus).
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Figure 1.3: A plot of the estimated minimum particle sizes of various re-
gions of Saturn’s rings using Cassini RSS (green, (Marouf et al.,
2008)) and Earth-based stellar occultation (blue, (French and
Nicholson, 2000)), with diamonds marking endpoints of line
segments indicating the regions modeled. Dashed lines mark
the boundaries of various ring regions (the C Ring, B Ring,
Cassini Division and A Ring). Note that the inner A and B rings
have minimum particle sizes on the order of decimeters, while
the C Ring and trans-Encke A ring particles have minimum
sizes in the millimeter range. The Cassini Division is almost to-
tally unconstrained, though French and Nicholson (2000) note
they require millimeter-sized particles to best fit their data. The
assumed minimum particle size of 1 cm used by Voyager RSS
(red dotted line) is also shown.
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CHAPTER 2

ROTATIONAL MODELING OF HYPERION. HARBISON, R. A., THOMAS,

P. C., & NICHOLSON, P. D., CELESTIAL MECHANICS AND DYNAMICAL

ASTRONOMY, VOLUME 110, ISSUE 01, 2011.

2.1 Introduction

Since the Voyager era, the Saturnian moon Hyperion has been known obser-

vationally to be a non-synchronous rotator. Wisdom et al. (1984) theoretically

showed that given Hyperion’s large resonantly-forced eccentricity and the non-

spherical shape observed by Voyager, the satellite couldn’t rotate synchronously

and would most likely be in a tumbling state. Large portions of the phase space

for its spin state, including many of the low-order spin-orbit resonances, would

be chaotic with short (several orbits) Lyapunov timescales.

Despite this, several attempts have been made to model the spin of the moon

over short time periods, to determine if the moon’s spin state was consistent

with that of a homogenous body of its shape. Klavetter (1989) was the first; us-

ing ground-based photometry and the Voyager images, he was able to produce

fits consistent with a homogenous body, though the limited dimensionality of

the data meant he could not guarantee that he had found a unique solution.

Starting from the high-resolution Voyager images, Black et al. (1995) were able

to model the low-resolution photometry obtained over 18 days prior to the en-

counter.

The Cassini spacecraft, in orbit around Saturn, made three close passes by

Hyperion in 2005. For each fly-by, an instantaneous spin state and partial shape
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model were obtained (Thomas et al., 2007). Hyperion’s rotational rate was ob-

served to be between 72 and 75◦ day−1 (for comparison, Hyperion’s orbital mean

motion is 16.94◦ day−1) and the spin vector was neither constant in space nor

within the body. Perturbations to Cassini’s orbit indicated Hyperion’s mean

density to be a surprisingly low 544±50 kg m−3, implying a porosity of at least

42±6 %, assuming pure water ice (Thomas et al., 2007).

Using these three high-resolution passes in 2005, we will search for possible

fits of the moments of inertia ratios within the errors set by the shape model.

Furthermore, given the porosity of Hyperion, a search for better fits, allowing

for the principal axes to vary from those derived from a shape model, will also

be done to look for possible large-scale inhomogeneities caused by voidspace or

regions of solid ice.

2.2 Data

From the current shape model (Thomas et al., 2007), and assuming a homoge-

nous interior, we obtain dimensionless moments of inertia A = 0.314 ± 0.010,

B = 0.474 ± 0.008, and C = 0.542 ± 0.008 in units of M 〈R〉2, where M is the mass

of Hyperion and 〈R〉 is mean radius (135 ± 4 km). This gives A/C = 0.58 ± 0.03

and B/C = 0.87 ± 0.03.

Tables 2.1 and 2.2 give data previously presented in Black et al. (1995) and

Thomas et al. (2007), as well as 2007 observations first presented in this paper,

but obtained by the same methods as used in Thomas et al. (2007). Osculating

orbital elements for Hyperion were obtained from JPL’s HORIZONS database,

and were calculated via numerical integration with initial conditions taken from
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ωA ωB ωC

Date e $ M θ0 φ0 ψ0 / |ω| |ω| / |ω| |ω|

2005-06-10 0.115 105◦ 295◦ 0.004 1.441 0.427 0.890 0.067 0.451 4.433
2005-08-16 0.115 102◦ 342◦ 1.885 2.118 1.180 0.907 0.162 0.389 4.255
2005-09-25 0.113 99◦ 303◦ 2.989 1.685 1.641 0.902 0.133 0.411 4.255

Table 2.1: Initial conditions of the orbit and spin at the mid-point of each
fly-by. The values of e,$ and M were used to derive the distance
to Saturn (r) and the true anomaly, f . θ, φ and ψ are the calcu-
lated Euler angles describing the change of coordinates from the
Saturn-centric coordinate system (used to find the influence of
torques from Saturn) to the body-centric principal-axis coordi-
nate system (see Section 2.3 and Black et al. (1995)), and the ω’s
are the angular velocity (in units of orbital frequency) about each
of the shape-determined principal axes.

Date ωA/ |ω| ωB/ |ω| ωC/ |ω| ωx ωy ωz |ω| (◦ d−1) σω(◦)
1981-08-23 0.986 0.160 -0.049 -2.457 -2.501 2.409 72±3 10
2005-06-10 0.890 0.067 0.451 3.399 -1.511 2.411 75±1 2
2005-08-16 0.907 0.162 0.389 3.026 1.909 2.303 72±1 4
2005-09-25 0.902 0.133 0.411 1.151 2.018 3.565 72±1 10
2007-02-16 0.749 0.080 0.659 -3.797 1.905 0.250 72±1 10

Table 2.2: Rotation state observed during all close flybys of Hyperion, in-
cluding results presented in Thomas et al. (2007) and Black et al.
(1995). Angular velocity measured both in the body-centric
frame and in the xyz quasi-inertial coordinate frame, with z as
the direction of Saturn’s pole, x as the direction from Saturn to-
wards Hyperion’s pericenter at the time of the observation, and
y chosen to form a right-handed coordinate system. All results
in the ABC frame, save the 1981 data, were calculated with the
current shape model; the 1981 data are taken directly from Black
et al. (1995), and used the Voyager-era shape model. The total
spin frequency (in units of orbital frequency) is also noted, with
estimates on the error, as is the error in position of the spin axis
in inertia space (in degrees).
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Jacobson (1996).

Some things are readily apparent from the measured instantaneous spin

states. During all five close fly-bys, Hyperion was observed in a similar state,

that of non-principal axis rotation with a spin axis closest to the long shape axis

(presumably corresponding to the A principal axis), and 4.2 to 4.4 times faster

than synchronous. The three 2005 observations show the same in-body loca-

tion of the spin axis within errors, though it has moved between 1981, 2005 and

2007. Rotation about the A axis would be dynamically stable when it comes to

free-body rotation, but under dissipation and without strong forcing, the rota-

tion should shift to the minimum energy state about the C axis. Indeed, this is

what most natural satellites show. However, Black et al. (1995) did perform

long-term (∼ 106 orbit) integrations, showing that the near-A-axis rotational

state seen in 1981 (and 2005, and 2007) was not unusual for Hyperion. A sim-

ilar quasi-stability was seen in rotational models of Prometheus and Pandora

done by Melnikov and Shevchenko (2008), where even chaotic solutions to the

moons’ rotation have a preferred orientation.

Movement of the spin axis in inertial space is also evident, and obvious

even on the 40 to 70 day timescale between the 2005 fly-bys. Again, unlike the

minimum-energy Cassini state occupied by more regular satellites, Hyperion’s

spin axis is not confined to near the orbit normal (here, the z axis). Black et al.

(1995)’s models showed the expected forced nutation and precession about the

orbit normal with a 300-day period, as well as a shorter 10-20 day precession

about the A axis, and the 100-day span between the 2005 observations would

easily show these motions.
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2.3 Dynamical Modeling

The model used to calculate the rotation is a six-dimensional system of differ-

ential equations, with three coordinates tracking the angular orientation of Hy-

perion in space, and three tracking the angular velocity of Hyperion’s spin. The

full system of equations of motion, taken from Black et al. (1995), is:

θ̇E =
ωA sinψE + ωB cosψE

sin φE
(2.1)

φ̇E = ωA cosψE − ωB sinψE (2.2)

ψ̇E = ωC − θ̇E cos φE (2.3)

ω̇A =
B −C

A

(
ωBωC −

3βγ
r3

)
(2.4)

ω̇B =
C − A

B

(
ωAωC −

3αγ
r3

)
(2.5)

ω̇C =
A − B

C

(
ωAωB −

3αβ
r3

)
. (2.6)

We use the conventional Euler angles (θE, φE, ψE) to specify angular posi-

tion of Hyperion’s principal axes, which were computed from the current shape

model and the assumption of constant density, relative to the xyz axes. Because

the Euler angles have a singularity when sin φ approaches 0, a transformation to

Wisdom’s alternate angular coordinates (a set of angles where the third rotation

is about the y axis, rather than the z axis used in conventional Euler angles) is

made when |sin φE | ≤ 10−6 and we return to the conventional Euler angles when

|cos φW | ≤ 10−6.(Wisdom et al., 1984) The transforms are:

tan θW =
cos θE sinψE + sin θE cos φE cosψE

cos θE cos φE cosψE − sin θE sinψE
(2.7)
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tan φW = sin φE cosψE (2.8)

tanψW =
− sin φE sinψE

cos φE
(2.9)

tan θE =
cos θW sinψW + sin θW sin φW cosψW

cos θW sin φW cosψE − sin θW sinψW
(2.10)

tan φE =
1

cos φW cosψW
(2.11)

tanψE =
− cos φW sinψW

sin φW
. (2.12)

Unlike previous work (Wisdom et al., 1984; Black et al., 1995; Melnikov and

Shevchenko, 2008), instead of using the derivatives of Euler angles with respect

to time as our measure of angular velocity (and thus using equations for the

second derivatives of Euler angles to compute the changes in angular velocity),

we use the instantaneous angular velocities about the principal axes, ωA, ωB

and ωC. This reduces the number of coordinate changes should the problem

approach the singular situation of sin φ = 0, and eliminates the need to convert

derivatives of Euler angles into a more physically intuitive coordinate system

for display.

The variables α, β, and γ in Eqs. 1-6 are the direction cosines from the princi-

pal axes to the instantaneous direction of Saturn, defined as (Black et al., 1995)

α = cos (θE − f ) cosψE − sin (θE − f ) cos φE sinψE (2.13)

= cos (θW − f ) cosψW − sin (θW − f ) sin φW sinψW (2.14)

β = cos (θE − f ) sin (−ψE) − sin (θE − f ) cos φE cosψE (2.15)

= sin (θW − f ) cos φW (2.16)

γ = sin (θE − f ) sin φE (2.17)

= cos (θW − f ) sinψW + sin (θW − f ) sin φW cosψW , (2.18)
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where f is the true anomaly of Hyperion in its orbit. A, B and C are the

values of the shape-derived moments of inertia, and r is the distance between

Hyperion and Saturn (in units of a = 1). Time is measured in units of PHyp = 2π,

so that the orbital angular velocity, n = 1, and the spin angular velocities are

thus measured in multiples of n. In physical units, PHyp = 21.43 days and a =

1.484 ×106 km, or 24.6 Saturn radii.

The orbit of Hyperion is modeled as a static (non-precessing) ellipse about a

spherical planet in the equatorial plane. Hyperion’s orbital inclination is small,

and it is sufficiently far from Saturn that its apsidal precessional period due to

Saturn’s oblateness – the pericenter moves 6◦ between June and September 2005

– is long compared to the spin, orbital and Lyapunov timescales. Hyperion is

in a 3:4 orbital resonance with Titan, which forces additional variations in its

eccentricity and longitude of pericenter (Peale, 1999), but the 18.8 year varia-

tion in eccentricity (Duriez and Vienne, 1997) again occurs over a much longer

timescale than our integrations of its spin state.

The integration of the system of equations (1-6), as well as Hyperion’s or-

bital position and velocity was performed using a fourth-order Runge-Kutta

algorithm. The initial conditions, which are presented in Table 2.1, are set by

the observations during one of the close fly-bys of Hyperion by Cassini. Ini-

tially, the middle observation was used, and the integration was performed in

two directions. However, further data analysis showed that the first (June) ob-

servation had the lowest uncertainty in spin axis direction and this datum was

settled upon as the initial conditions for all runs mentioned in this text. At each

step, the orbital position and velocity were calculated using Newton’s Laws and

substituted into the rotational equations to calculate the torques from Saturn.
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Step size was chosen as a compromise between speed of integration and

accuracy, and was varied between runs – integrations which need not be com-

pared to data used a step size of π/400 (1/800th of an orbit, or approximately

1/160th of a rotation), while integrations fitted to the three Cassini observations

were subdivided into 5000 steps between June and August (or a step size of

6.28×10−4 of an orbit), and another 5000 steps between August and September

(or a step size of 3.78×10−4 of an orbit) . Tests using larger and smaller step sizes

produced comparable results, with steps a quarter, a half and double the length

not producing quantifiably different (within the output precision) results, while

steps four times as long showed less than one part in 104 difference in spin rate

over 100 days.

Figure 2.1: Relative differences in rates and principal axis orientations ω
and θ as functions of time (in days), starting from a differ-
ence of 10−12 (machine double precision). The behavior for the
first 700 days is roughly exponential, as expected for a chaotic
system, with similar Lyapunov exponents, producing a mean
exponential-growth timescale of 61.4 ± 3.6 days.

As a test of our integration code and in order to find the Lyapunov timescale,
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the inputs were perturbed by one part in 1012 and four integrations offset in

different directions in parameter-space from a fifth were compared for a pe-

riod of 800 days. The difference in Euler angles and angular velocities between

one such run and the ’reference’ integration are plotted versus time in Fig. 2.1,

where they show a good fit to the chaotic behavior expected, growing exponen-

tially with respect to time (and appearing linear in the semi-log plot). Fitting the

slope of the divergence between solutions with respect to time to an exponen-

tial function returns a Lyapunov time of 61.4 ± 3.6 days. While this timescale

is slightly longer than that reported by Wisdom et al. (1984), who assumed a

near-synchronous initial state, they do show that dynamical models cannot be

expected to be predictive over a period of more than a few months.

The first run of the model started from the June 2005 (Day 161) fly-by, and

extrapolated Hyperion’s rotation forward (and backward) in time. The reported

error of the spin axis’s position is 2◦ in the June 2005 measurement, as seen in

Table 2.2. Given the measured Lyapunov timescale, the error in the predicted

spin axis direction should grow to 6◦ at the time of the August fly-by and 11◦ in

September. Both of these numbers are larger than the uncertainties in the obser-

vations, but not significantly so, making it possible to compare the observations

with the model’s results as long as the effects of the chaos are kept in mind.

The results, shown by the magnitude of the spin and the decomposition of

the spin along the shape model’s axes, are plotted versus time in Fig. 2.2. Note

that the spin rate predicted by the model fits the September 2005 (day 268) da-

tum quite well, though it is noticeably different than the August 2005 (day 228)

observation. However, the position of the spin axis within the body – as seen in

the decomposition of the spin rate into its A, B, and C components – does not
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Figure 2.2: Model of the spin rate and position of the spin axis in body-
centric coordinates – using as measures the component of spin
around each principal axis – starting from the June 2005 obser-
vation and progressing forward for approximately 140 days,
using the Thomas et al. (2007) values for A, B, and C. All three
observations are marked as points on the graph. Note the pre-
dicted period of about 16 days in ωB and ωC and 8 days in ωA,
and the near-identical values of the three observations com-
pared to the large variations in ωB and ωC predicted by the
integration.

match the observations well. It is observed to stay relatively fixed, while the

model predicts it to precess about the A axis, with a period of about 16 days.

This was also seen by Black et al. (1995), who calculated a theoretical free pre-

cession period of 15.2 days. This motion can better be seen in a polar plot, such

as Fig. 2.3.

Fig. 2.3 depicts the positions of the spin poles observed during all close fly-

bys of Hyperion, in addition to the trace of the pole position from the simulation
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Figure 2.3: A projection of the spin axis into a body-centric coordinate
frame, with a pole at the shape-defined A (long) axis of the
body, and the x axis set by the shape-defined C (short) axis.
Observations are marked with stars, while the projected 100-
day path of the spin pole within the body, as plotted in Fig. 2.2,
is marked with a black line – the period is roughly 16 days.

shown in Fig. 2.2. Note that the free precession is about the A axis, as one would

expect for an ellipsoid that is nearly a prolate spheroid. The torques from Saturn

do not change the general behavior on this timescale. Also note how far the 2007

point is from the no-torque-equilibrium point of either A-axis or C-axis rotation,

confirming that Hyperion is in a state of non-principal axis rotation.

Fig. 2.4 unfolds the simulation trajectory plotted in Fig. 2.3 and plots it and

the spin rate with respect to time. Though the error is large in the latitude of the

spin axis, the measured latitudes are consistent with the model. However, this

plot shows vividly the 180◦ discrepancy in the longitude of the September 2005
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Figure 2.4: Fig. 2.3 unfolded in time, and plotted in units of body-centric
latitude and longitude (with the A axis as the pole and the A-
C meridian marking 0 degrees longitude) and spin rate. Note
that the observations (stars) show that the latitude is consistent
with the shape-derived model (line), but not the longitude.

point, and∼ 120◦ in August of 2005. This suggests that the assumption that Hy-

perion is a uniform-density body whose mass distribution can be derived from

the shape model should be examined further, to see if an acceptable solution

can be found within the errors of the observations and shape model.

2.4 Varying the Initial Conditions and Moment Ratios

The rotational pole of Hyperion was observed to move less than 10◦ with respect

to the surface between the three 2005 flybys (Fig. 2.3). But the spin axis should

be freely precessing around the A axis as it rotates, as shown in the model. Two
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explanations for this make dynamical sense: either the spin axis is closer to the

true A axis, making the amplitude of precession less than observational error, or

that the three observations happen to be separated by roughly integer multiples

of the precessional period. The precessional period is affected by the moments

of inertia, the rotation rate, and the offset between the spin axis and axis of

precession, while the position of the spin axis relative to the principal axis will

affect the amplitude of precession.

In this section, we explore the parameter space, varying the spin axis, spin

rate and moment of inertia ratios, to see which solutions consistent with the

estimated error bars might bring the spin axis back to the same position at each

close fly-by of Cassini. We assume fixed locations of the principal axes based on

the Thomas et al. (2007) shape model with a homogenous interior.

Two sets of model integrations were done, one in which only the spin axis

was allowed to vary within the estimated errors in the data, and one in which

only the moments of inertia were allowed to vary. To quickly sample a multi-

dimensional parameter space, a random value was chosen for each parameter,

using a Gaussian distribution with the nominal value as the mean and the esti-

mated observational or modeling error as the standard deviation. The set of 100

results for the variation in the moments of inertia (or more properly, their ratios,

A/C and B/C) can be seen in Fig. 2.5, and the 100 results for the variations in

position and magnitude of the June 2005 spin vector can be seen in Fig. 2.6.

The nominal model rotates primarily about the A-axis. This is unusual for

a rotating body in general, as it is a higher-energy state compared to rotation

about the C-axis, and should not persist for long periods. However, this was

also the state observed by Voyager 2.2. Varying the moments of inertia (Fig. 2.5)
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Figure 2.5: Model of the position of the spin axis and magnitude of Hype-
rion’s spin in body-centric coordinates, starting from the June
2005 point and progressing forward in time for 107 days. All
three Cassini observations are marked as asterisks on the plot.
The moments of inertia were given random Gaussian errors of
σ=0.027 for A/C and B/C, while the initial spin state was held
as observed. The principal effect of changing the moments of
inertia seems to be a variation in the precessional period (as
seen in the phase shift in the rotation about the B and C axes),
with some variation in the amplitude of the periodic oscilla-
tions. 100 trajectories are plotted.

does not seem to change this rotational state. However, it does have the desired

effect on the precessional period, changing it to produce possible returns to the

June location of the spin pole during the other fly-bys. Changing the initial

spin state within observational errors (Fig. 2.6) produces an effect of similar

magnitude. The primary effect here is of moving the spin axis towards or away

from the axis of precession, with a corresponding change in the amplitude of

precession about the A axis and the wobble towards and away from the A axis.

33



Figure 2.6: Model of the position of the spin axis and magnitude of Hype-
rion’s spin in body-centric coordinates, starting from the June
2005 point and progressing forward in time for approximately
107 days. All three Cassini observations are marked as aster-
isks on the plot. The spin magnitude was given a random
Gaussian error of σ = 0.047n (1◦ per day). The error in spin
direction was given a random Gaussian error of σ=2◦. The mo-
ments of inertia were held constant at the ones derived from
the shape model. 100 trajectories are plotted.

Although all three measurements of ωA, ωB and ωC appear to be within the

ranges of our solutions, two or three-dimensional cuts through parameter space

such as these do not tell the whole story. While Figs. 2.5 and 2.6 shows that

the individual components of the spin vector in August and September can be

reached within their uncertainties from the June measurement, it does not an-

swer the question of whether the full six-dimensional spin states are recovered.

We will address better methods to examine this issue in the next section.
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2.5 Limits on the Moments of Inertia

As the model demonstrates, Hyperion’s spin axis has two motions within the

body on 100-day timescales – a small ’wobble’ in the spin axis towards and away

from the A axis, and a precession of the spin axis around the A axis, with the

precession being the larger motion. Black et al. (1995) give an exact expression

for the spin axis’s free precessional period in their Eq. 8, but, given the near-

equality of B and C, the assumption of a prolate spheroid should produce a

reasonable approximation. The precessional period of the spin axis within the

body, given ωrot = 2π
Prot

, for a prolate spheroid is (Fowles and Cassiday, 1999):

Pp =
C̄

C̄ − A
Prot

cos δ
(2.19)

where δ ≈ 30◦ is the angle between the spin axis and the A axis, and C̄ is

the geometric mean of the B and C moments. Note that this is distinct from

the forced precession of Hyperon’s spin axis in inertial space due to the mean

torque from Saturn, whose period is on the order of 200-300 days (Black et al.,

1995).

If we re-write this equation in terms of the moment of inertia ratios, rather

than their individual values, we get

Pp =

√
B/C

√
B/C − A/C

Prot

cos δ
(2.20)

or

B/C =
(A/C)2(

1 − Prot
Pp cos δ

)2 . (2.21)
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From this expression, and assuming that δ ≈ 28◦ (from Fig. 2.4) and an

average rotational frequency of 4.5n, the expected precessional period for the

nominal moments of inertia derived from the shape model is 15.1 days. This

compares well to the precession seen in the model, and agrees almost exactly

with Black et al. (1995)’s more precise calculation. Given a tweaked precessional

period – say, one for which small integer multiples were equal to the intervals

between successive fly-bys of 40 and 67 days – one could work backward to de-

termine a function of B/C versus A/C that would produce that period. Should

such a solution exist, this would neatly solve the matter of whether Hyperion’s

spin axis could have been observed at the same position during all three 2005

fly-bys.

In reality, of course, this is a simplification. Hyperion’s triaxial shape means

that the above calculation is but an approximation to reality, and there are other

factors not considered here – Hyperion’s instantaneous spin rate is changing

and the pole is wobbling within the body. But this gives a conceptual idea of

what dominates the fitting process.

In order to do a more detailed analysis, we divided the A/C and B/C pa-

rameter space into a 30 by 30 grid centered on the shape-model’s estimate and

scaled so the search space was six σ by six σ (or 0.18 by 0.18), and integrated

each curve from the June 2005 observation forward to August 2005 and Septem-

ber 2005. The resulting spin state were then compared to the observations by the

function

χ2 =
∑ ∣∣∣~ω − ~ω0

∣∣∣2
3 |ω|2 σ2

ω

+

3 −
(
~A · ~A0

2
+ ~B · ~B0

2
+ ~C · ~C0

2
)

3σ2
θ

. (2.22)
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where ~A, ~B and ~C are the principal axis vectors as predicted from the model,

~ω is the vector composed of ωA, ωB, and ωC, predicted from the model, and

~ω0, ~A0, ~B0 and ~C0 are those observed. σω and σθ represent the angular errors

in the spin axis and body orientation, respectively. The χ2 is summed over all

observations excluding the initial conditions of the integration. In this case, that

means summing the August and September 2005 observations, but not those

from June 2005.

From Equation 2.21, we would expect that curves of constant precessional

period will be parabolas in A/C versus B/C space. Given the modest uncer-

tainties in the measurements, the parabolas of equal precessional period should

be picked out strongly in A/C versus B/C space, with those that produce near-

integer periods of precession between the pairs of observation producing low

χ2 valleys, and those that have half-integer periods between one or both pairs

producing high χ2 peaks.

The results, smoothed by a median filter and plotted as a contour plot of A/C

versus B/C can be seen in Fig. 2.7. There is a local minimum near the shape-

derived values of the moments of inertia with a reduced χ2 (with 10 degrees of

freedom) of 80. As mentioned above, the precessional period at the local mini-

mum near the shape-derived moments of inertia has a period of approximately

15.1 days. Remembering that the later two fly-bys in 2005 were 67 and 107 days

from the first fly-by, this yields intervals of 4.4 and 7.0 periods between flybys.

There is a similarly-deep minimum at A/C ≈ 0.61; B/C ≈ 0.80, as well as

other noteworthy minima in the lower-right quadrant of the figure. The local

minimum at A/C= 0.61, B/C=0.80 gives a precessional period of 18.0 days, giv-

ing intervals of 3.7 and 5.9 periods between the first and subsequent flybys.
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Figure 2.7: The χ2 of the observed rotation states in August and September
2005 given the rotation state in June 2005 as a function of A/C
and B/C. Lighter color indicates lower values of χ2, and the star
in the center of the diagram marks moments derived from the
shape model. For reference, the plot is 6 times larger than the
estimated errors in A/C and B/C. The model was smoothed
with a median filter to eliminate spurious results. Parabolas
are lines of theoretical constant precessional period, plotted at
semi-regular intervals.

As expected from Eq. 2.21, areas of good and bad fits follow curved shapes,

though not quite the predicted parabolas (plotted in white in Fig. 2.7). Both

solutions mentioned above yield a near integer-number of precessional periods

between June and September, but a non-integer between June and August. In-

tegrating the position of the spin axis at these minima confirms that there are a

whole number of cycles of precession between the first and last fly-bys.

The more detailed integration does correspond with our naive expectation

that the best-fit models would be ones where precession returns the spin axis to

the same position during each fly-by. However, the parameter search did not
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produce a solution that would return the location of the August 2005 spin axis

relative to the surface to its June location. Our integrations held the June 2005

spin vector fixed as the initial conditions; allowing this to vary might produce

better fits, but the exponential growth in the spin axis uncertainty due to chaos

rapidly overwhelms any plausible initial error. On the other hand, we must con-

sider the possibility that merely adjusting the moments of inertia is not enough

to produce a good fit to the data.

2.6 Variations in Orientation of the Principal Axes

Our nominal model assumes a homogenous Hyperion to calculate the moments

of inertia, which are then used in the rotation model to evolve the spin states be-

tween flybys. While the models in Fig. 2.7 relax the assumption of homogeneity,

we have still assumed that the principal axes lie along the long and short sym-

metry axes of the shape model. However, that need not be the case.

Hyperion is known to have a large degree of voidspace (Thomas et al., 2007),

which indicates that it is a mix of solid material, most likely an ice mixture at

densities around 1000 kg m−3, and empty space. While a simple inhomogenous

density model (for example, a density increase towards the center) might result

in a change in the moment ratios without a change in the principal axes from

a homogenous model, an asymmetric distribution of voidspace would produce

changes in both.

In order to simulate an offset from the shape model axes, a second set of Eu-

ler angles was specified and then the long and short shape-model axes and the

spin axes were rotated through these angles. This represents a shift in the true
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principal axes from the ones derived from the shape model. These angles were

selected to be within 45 degrees of the (0,0,0) triplet of angles that specified that

the shape axes were identical to the principal axes. The differential equations

were then integrated starting from the June 2005 body orientation and instanta-

neous spin state, and the transformation was then done in reverse to compare

the final spin state and body orientation to the right ascension and declination

observations of the shape and spin axes.

While the Euler angles cannot be visualized as a physical location of the

principal axes in space without a conversion, as offsets in right ascension and

declination might be, they are easier to sample in a uniform manner. This gives

a 3-dimensional phase space within which to search for the best fit to the data.

For ease of display, the minimum of each 2D sub-space is plotted in Figs. 2.8,

2.9 and 2.10, with the χ2 calculated as specified in Equation 2.22.

As Figs. 2.8, 2.9 and 2.10 show, there is a large minimum in phase space that

is located some tens of degrees from the principal axes derived from the shape

model, near θ′ = 40◦, φ′ = 20◦, ψ′ = 10◦. This is deeper than the minima seen in

Fig. 2.7, with a reduced χ2 of 57, significantly less than the ∼ 80 when only the

moment of inertia ratios were adjusted.

Using the position of the principal axes after the rotation from the shape

axes, we can reproject Figs. 2.8, 2.9 and 2.10 to a more physically-meaningful

coordinate system. This was done in Fig. 2.11, which plots the location of the

A axis (i.e., the minimum moment of inertia) in terms of the body-centric co-

ordinate system used previously in Fig. 2.3, where the pole of the plot is the

shape-derived A axis, and 0◦ longitude is the location of the shape-derived C

axis. Here the location of the deep minimum, indicating the best fit of the actual

40



Figure 2.8: The χ2 of the observed rotation states in August and September
2005 given the rotation state in June 2005 as a function of the
Euler principal-axis-offset angles θ and φ, and minimized along
ψ. The star in the center of the diagram marks the principal axis
locations derived from the shape model, and lighter shading
indicates a lower reduced χ2. The model was smoothed with
a median filter to eliminate spurious results, which raised the
plotted χ2 in local minima.

A axis, seems to be very near the location of the spin pole observed in 2005,

some 30◦ from the shape-derived a axis. This is what one would expect in order

to minimize in-body precession without relying on specific moment ratios to

make the intervals between flybys match the precessional period.

2.7 Conclusions

At the time of the Cassini fly-bys in 2005, Hyperion was found in a state of

non-principal axis rotation, with the spin axis nearly coincident with the long
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Figure 2.9: The χ2 of the observed rotation states in August and September
2005 given the rotation state in June 2005 as a function of the
Euler principal-axis-offset angles θ and ψ, and minimized along
φ. The star in the center of the diagram marks the principal axis
locations derived from the shape model, and lighter shading
indicates a lower reduced χ2. The model was smoothed with
a median filter to eliminate spurious results, which raised the
plotted χ2 in local minima.

shape axis and a spin period 4.2 to 4.5 times synchronous, similar to what was

observed during the Voyager flyby, and again by Cassini in 2007. Modeling

suggests that this state is in fact more stable than a near-synchronous rotational

state (Black et al., 1995). In-body precession of the spin axis should be observed,

but it is not.

It is possible to adjust the moments of inertia such that the precessional pe-

riod becomes the correct value to return the spin axis to the same position within

the body for two of the flybys, but not all three. However, Hyperion’s large frac-

tion of voidspace (revealed by its low bulk density) suggests a possible alternate

42



Figure 2.10: The χ2 of the observed rotation states in August and Septem-
ber 2005 given the rotation state in June 2005 as a function
of the Euler principal-axis-offset angles ψ and φ, and mini-
mized along θ. The star in the center of the diagram marks the
principal axis locations derived from the shape model, and
lighter shading indicates a lower reduced χ2. The model was
smoothed with a median filter to eliminate spurious results,
which raised the plotted χ2 in local minima.

explanation: that the satellite’s shape may not necessarily reflect the interior

mass distribution, and, thus, correctly predict the principal axes of inertia. We

have shown by trying alternate principal axes and moment-of-inertia ratios that

a better fit is available after the principal axes are rotated ∼30◦ with respect to

the shape model’s axes, such that the A axis was, in fact, close to the spin axis

position in 2005.

Thus, we conclude that it is unlikely that the assumption of homogeneity

is valid for Hyperion and, furthermore, that the long and short axes of the

shape model are not accurate guides to the principal axes of inertia. A five-
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Figure 2.11: The data from Figs. 2.8 to 2.10, reprojected to show the loca-
tion of the A axis, relative to the shape-derived a axis (90◦ lat-
itude) and c axis (0◦ latitude, 0◦ longitude). The stars with er-
ror bars marks the location of the spin axes, seen in 1981 (left-
most), 2005 (center cluster) and 2007 (right). Note the deep
minima from Figs. 2.8 through 2.10 place the preferred loca-
tion of the A axis almost directly beneath the location of the
spin pole in 2005.

dimensional combinational model – one in with both the axis positions and

moment-of-inertia ratios are varied – could probably return a better fit (as mea-

sured by reduced χ2) than either the two-dimensional or three-dimensional

models shown in Figs. 2.7 through 2.11. Given that our best three-dimensional

model has a reduced χ2 of 57, rather than the near-unity expected for an ex-

cellent fit, there is room for improvement. However, such a model may not be

justifiable by the limited amount of available data (essentially the orientation

and spin states at only three epochs), and Hyperion’s short Lyapunov time.
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CHAPTER 3

THE SMALLEST PARTICLES IN SATURN’S A AND C RINGS.

HARBISON, R. A., NICHOLSON, P. D. & HEDMAN, M. M. ICARUS,

VOLUME 226, ISSUE 2, 2013.

3.1 Introduction

The vast majority of particles that make up Saturn’s main rings cannot be seen

individually, but as an aggregate they become one of the most striking objects in

the Solar System. From past observations, we know that the ring particles come

in various sizes.

The Voyager radio science experiment used radio occultations at 3.6 and 13

cm to probe the ring particles by two methods. Direct inversion of the radio

signal forward-scattered by meter-sized particles produced a size distribution

showing a sharp drop-off above a radius of ∼5 m, while the differential opti-

cal depth measured between the two bands used in the occultation allowed a

power-law to be fit between particle radii of 1 m and 1 cm (Marouf et al., 1983;

Zebker et al., 1985). However, the Voyager radio science experiment was insen-

sitive to particles smaller than 1 cm; smaller ring particles do not absorb even

the shorter 3.6-cm radio waves from Voyager.

French and Nicholson (2000) used the 28 Sagittarii (28 Sgr) stellar occulta-

tion, as observed from Earth in July, 1989 at wavelengths between 1 and 4 µm,

to look for light forward-scattered by ring particles. Unlike the monochromatic

radio-science experiments, they could not separate forward-scattered light from

light directly transmitted through the rings. However, the differing range and
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acceptance angle between this and the Voyager PPS stellar occultation allowed

a gross measurement of forward-scattering. This measurement could then be

modeled with a truncated power-law. The 28 Sgr occultation, like Voyager, had

limited sensitivity to particles under 1 centimeter, but for a different reason: the

scattering angles of such small material was larger than the photometric aper-

ture size, so could not be measured.

Previous radio occultation and stellar occultation experiments were thus

most sensitive to particles in the centimeter to meter range. This situation

changed with the arrival of the Cassini spacecraft at Saturn in 2004. As Sat-

urn was near its northern winter solstice in 2004, the rings were more open than

when Voyager observed them, reducing the effective optical depth as seen from

Earth and increasing the signal-to-noise for occultations by dense rings. In ad-

dition to the 3.6 and 13 cm radio bands, Cassini can also transmit at 1.3 cm. Not

only does a shorter wavelength probe smaller particle sizes, but three measure-

ments of the optical depth at different wavelengths allow for more exact models

to constrain both the effective minimum particle size and effective power-law

index. The C ring minimum particle size was estimated at 4 mm, while the data

for the A ring suggest a larger minimum particle size (Marouf et al., 2008). A

fuller discussion of these results can be found in Cuzzi et al. (2009).

While some micrometer-sized particles have been seen within the main

rings, they are either found in transient spoke features (D’Aversa et al., 2010;

Mitchell et al., 2013), probably dislodged from the surfaces of larger ring par-

ticles (Mitchell et al., 2006), or are confined to narrow, diffuse regions of the

rings such as the Encke Gap ringlets (Hedman et al., 2007b) and the ‘Charming

Ringlet’ in the Laplace Gap (Hedman et al., 2010a). Differential optical depth,
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phase-function, and microwave emissivity measurements all show that very lit-

tle dust persists within the main rings on a large scale in both space and time

(Dones et al., 1993; French and Nicholson, 2000; Spilker et al., 2005). Theoreti-

cal work by Bodrova et al. (2012) also has shown that, under unperturbed main

ring conditions, particles smaller than a few centimeters will adhere onto larger

ring particles.

When Cassini entered Saturn orbit in 2004, its wide range of orbital geome-

tries not only allowed for multiple radio and (space-based) stellar occultations,

but also permitted the first solar occultations by the rings to be observed. The

Visual and Infrared Mapping Spectrometer (VIMS) onboard Cassini can accept

light through a special solar port, which has the attenuation needed to safely

observe the Sun with the VIMS detector array. Given the 0.5 milliradian pixel

size of VIMS and its near infrared (0.9 to 5.2 microns) spectral range, the VIMS

data are most sensitive to the previously-unsampled size regime of 100 microns

to a few millimeters.

In this work, we will use the VIMS solar occultations to examine this ne-

glected regime, with the goal of setting an effective minimum radius on the ring

particle size distribution in different regions. Following a description of the

VIMS solar port and the data taken during solar occultations, we will present

our method for reducing the solar port data and separating the component of

light scattered at small angles from the direct solar image. Once this component

is separated, it can be compared to a model of particle diffraction to estimate

an effective minimum particle size for the C ring. This model is then refined to

account for the self-gravity wakes and higher optical depths observed within

the A ring – which violate several simplifying assumptions made at first – and
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applied to that ring.

3.2 Data

3.2.1 Basic Processing

As of February 2010, Cassini had observed eleven solar occultations of the rings:

see Tables 3.1 and 3.2 for a list. The procedure for observing solar occultations

involves taking a series of 12 pixel by 12 pixel (6 x 6 milliradians) multispec-

tral images of the area of the sky around the Sun using the VIMS solar port,

which has an attenuation on the order of 105. The instrument’s visible channel

is turned off, as the visible-light spectra, even through the solar port, saturate

within a few milliradians of the Sun. Thus, data obtained through the solar

port have a wavelength coverage of 0.9 to 5.2 µm. A single VIMS ‘cube’ of two

spatial and one spectral dimensions is constructed pixel by pixel, using a 2D

scanning mirror. Each pixel has an exposure time of 40 ms, and approximately

5 cubes of 144 pixels each are obtained for every minute of the occultation. Each

occultation data set is thus a time series of cubes – one temporal dimension, two

spatial, and one spectral. For full details of the VIMS instrument, see Brown

et al. (2004).

The onboard VIMS signal processing electronics perform automatic back-

ground subtraction. At the end of each line of 12 pixels, VIMS takes a spectrum

of the thermal background signal by closing off the spectrometer from outside

light and taking a measurement. Four measurements of this dark spectrum are

averaged together, then subtracted from the last four lines of pixels taken. As
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a result, each cube has a slightly uneven background subtraction, as there is

some shot-noise variance even after averaging over four measurements. In most

cases, these three background spectra are within a data number (DN) or two of

one another1, but a cosmic ray can hit the detector during a background mea-

surement, producing an artificially high background in one or more spectral

channels.

In order to correct this, the background was re-added to the signal, returning

the data to its raw form, and then the median of the three dark current spectra

recorded for each cube was used as the background instead. The slight tempera-

ture change when Cassini moves into the rings’ shadow lowers the dark current

by approximately 2 DN. Hence the dark background subtracted is slightly de-

pendent on the position of Cassini, so further time-averaging of the background

was not done.

The cubes showing the unocculted Sun were used as a reference to define

transmission of the rings, and all measurements are reported either in units of

transmission or in ’raw’ data numbers (DN), rather than absolute flux. The

position of the Sun within the image varied by well under a single pixel in each

occultation, making any variable response due to a slightly different beam path

within the solar port or the spectrometer minimal.

1Raw VIMS spectra represent photo-electron counts, but are returned in scaled integer form
as Data Numbers. The instrumental gain was set such that the detector read noise is ≈ 1 DN, or
∼ 300 electrons.
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3.2.2 Instrumental Effects

The VIMS solar port is designed to attenuate the Sun enough to make it safe to

observe with the VIMS instrument. However, the optics that do this also pro-

duce abundant stray light within the instrument. As a result, in addition to the

normal solar image that can be fit to a two-dimensional Gaussian point-spread

function (PSF), there is also a diffuse component that extends at least 6 solar di-

ameters from the Sun (Figure 3.1). To first order, this diffuse component is flat

over the 12 by 12 pixel images. At approximately 1/10th of the peak of the solar

signal, the diffuse signal is ∼ 10 times larger than the flux within the nominal

solar image when integrated over the entire cube (Figure 3.2). In addition, the

diffuse component is spectrally different from the direct component, being dis-

tinctly ‘redder’. This greatly complicates any attempt to look for scattered light

from millimeter-sized ring particles, but a method to exploit the stray light will

be discussed in Section 3.5.2.

Figure 3.1: Contrast-reversed images of the Sun at 2.40µm though the
VIMS solar port – both unstretched (left) and stretched (right)
by displaying the square root of the DN value of each pixel.
The greyscale is such that 0 DN is ’white’, and the peak solar
signal is ’black’. To first order, the diffuse background is flat,
but when stretched, the nonuniform features become clear.
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Figure 3.2: Plot of the peak direct recorded signal (solid) and mean dif-
fuse signal (dotted, magnified by 10 times) per pixel in the
images taken of the Sun outside the rings on the Rev. 55 oc-
cultation. Peak values were measured by a Gaussian fit, and
were recorded in units of DN per pixel. Note that the signals
have different spectral shapes, and that, in a 12 by 12 VIMS
cube, the total diffuse signal is about an order of magnitude
larger than the direct signal. Triangles mark the locations of
the edges of VIMS’s order-sorting filters (which ensure only
the listed wavelengths of light are measured by rejecting higher
order signals from the diffraction grating), where the data be-
come unreliable, while the vertical dotted lines mark spectral
channels known for increased noise in calibration images.
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3.2.3 Data Selection

Of the eleven solar occultations taken before equinox in 2009 and observed by

VIMS, nine cover the A ring, and six extend into the C ring. The A ring occulta-

tions (Table 3.1) are mixed between nearly-radial occultations for which the Sun

passed behind all of the rings (and then behind Saturn itself), and chord occulta-

tions for which the Sun passed behind one of the ansae, giving two ‘cuts’ across

the outer rings. For the A ring, both the radial and chord occultations sample

nearly uniformly in the radial direction as well as sampling only a limited range

of longitude (. 5◦).

The six occultations clearly covering the C Ring (Table 3.2) are also a mix of

chord occultations and radial occultations. As all of the chord occultations ’turn

around’ in the C ring, the data here have variable radial sampling, with the

inner parts of the occultation (near the turnaround point) sampled more finely

than outer parts.

All data are not equal: the quality of the data is related to the opening angle

of the ring. For the A ring, occultations done later in the mission are almost

opaque due to the low opening angle of the rings. The C ring has the opposite

problem; the large opening angles at the beginning of the mission meant that

most of the sunlight is transmitted without interacting with the ring at all. Dif-

ferent occultations also had different number of cubes covering each area of the

ring: the more cubes, the more data available.
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Rev. Date Ring Open. Ave. Number Ave.
Angle (◦) Long. (◦) of Cubes Trans.

9 08 Jun. 2005 (R) 21.45 78 47 0.348
43 24 Apr. 2007(E) 12.77 297 70 0.270
55 03 Jan. 2008 (I) 9.00 61 37 0.201
55 03 Jan. 2008 (E) 9.00 143 37 0.041
59 20 Feb. 2008 (R) 8.27 108 18 0.109
62 23 Mar. 2008 (I) 7.79 41 15 0.099
62 23 Mar. 2008 (E) 7.79 150 17 0.025
65 20 Apr. 2008 (I) 7.36 45 16 0.099
65 20 Apr. 2008 (E) 7.36 143 18 0.019
66 30 Apr. 2008 (I) 7.21 46 16 0.098
66 30 Apr. 2008 (E) 7.21 142 18 0.023
85 17 Sept. 2008 (I) 5.05 47 7 0.044
85 17 Sept. 2008 (E) 5.05 136 8 0.011
90 24 Oct. 2008 (I) 4.49 50 7 0.037
90 24 Oct. 2008 (E) 4.49 133 7 0.008

Table 3.1: Observations of solar occultations covering the A ring. Included
is the date, the opening angle of the rings relative to the Sun at
the time of occultation, the average longitude (φ) of the observed
place in the ring plane (measured relative to the sun-planet line),
the number of cubes that clearly cover the A ring, and the aver-
age transmission measured. Each occultation is marked as ei-
ther a nearly-radial cut across the rings (R), or as the ingress (I)
or egress (E) half of a chordal cut across the ring ansa.

3.2.4 Transmission Spectra

Transmission spectra of the main rings can be produced by summing the cubes

over their spatial dimensions and normalizing to the solar spectrum as mea-

sured outside of the A ring. This offers a high signal-to-noise spectrum of the

ring’s transmission properties in the near infrared, given the brightness of the

Sun. Combining repeated measurements at slightly different locations in the

ring (sampled as the occultation progressed), we can increase signal-to-noise

further at the expense of spatial resolution. This gives a transmission spectrum

with errors between 0.005 and 0.022 (in units of transmission).

53



Rev. Date Ring Open. Number Ave. Min.
Angle (◦) of Cubes Trans Dist (Mm)

9 08 Jun. 2005 (R) 21.45 65 0.781 –
11 15 Jul. 2005 (R) 21.07 81 0.776 –
59 20 Feb. 2008 (R) 8.27 51 0.498 –
62 23 Mar. 2008 (C) 7.79 145 0.628 68.375
65 20 Apr. 2008 (C) 7.36 94 0.497 74.529
66 30 Apr. 2008 (C) 7.21 84 0.520 83.844

Table 3.2: Observations of solar occultations covering the C ring. Included
is the date, the opening angle of the rings relative to the Sun at
the time of occultation, the number of cubes that clearly cover
the C ring, and the average transmission measured. Each occul-
tation is marked as either a nearly-radial cut across the rings (R),
or a chordal cut across the rings (C), in which case the minimum
distance into the C ring that the chordal cut extends is listed in
the last column. Note that while the Rev. 62 and 65 chordal
occultations cover most of the C Ring, the Rev. 66 chordal occul-
tation only samples the outer half.

In Figure 3.3, we plot mean transmission spectra of the three main rings and

the F Ring. The spectra were constructed by fitting a gaussian curve to the image

of the Sun in each wavelength, then taking the integral over that curve to find

the total flux at that wavelength. Then an ‘average’ spectrum for each area of

the ring was produced by taking the mean over each cube ‘on’ the rings, and

normalizing to a solar spectrum obtained by taking the mean of cubes outside

of the ring system.

The main rings’ transmission spectra show no obvious bands, and are re-

markably flat in the region of 2 to 4 microns (the region from 4 to 5 microns

is not plotted due to a much lower signal-to-noise ratio). This is in marked

contrast to the reflection spectra of the main rings, which show strong water ice

bands in this region (see Nicholson et al. (2008) for a fuller discussion of the

rings’ reflectance spectra). This indicates that the vast majority of ring particles
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are so large as to be opaque in the near infrared.

However, not all regions of Saturn’s rings behave in this matter. Free ring

particles in the tens of microns (or smaller) size range do show prominent fea-

tures in transmission, as is seen in our mean F Ring spectrum (Figure 3.3), and

described by Hedman et al. (2011) in transmission spectra of the F Ring taken

during stellar occultations. Most visible in F Ring spectra is a strong increase

in transmission at ∼ 2.9 µm due to the Christensen effect: the optical proper-

ties of water ice at this wavelength minimize absorption and internal reflection.

(Hedman et al., 2011; Vahidinia et al., 2011)

Other features, such as the peaks and dips near the order-sorting filters, are

likely artifacts due to a lack of signal. However, the slight ‘blue’ slope around

1 to 1.5 microns may be a real measure of ring properties and will be discussed

later in this chapter.

3.3 Transmission Spectra Analysis

Hedman et al. (2011) introduce the variable ρ to measure the ratio in optical

depth in and out of the 2.9 µm feature in stellar occultations. In order to avoid

contamination from reflected sunlight in addition to the transmitted starlight,

they define ρ as the ratio of optical depths at 2.9 and 3.2 µm, as the rings are

dark in reflection at both wavelengths. As solar occultations focus entirely on

the dark sides of ring particles, the choice of a reference wavelength out of the

2.9 µm feature is less constrained. We define ρ2.5 as
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ρ2.5 =
τ2.9

τ2.5
, (3.1)

or the ratio between the optical depth of the 2.9 micron band (defined as the

integrated optical depth from 2.82 to 2.93 µm) and the optical depth at 2.5 mi-

crons (defined as the integrated optical depth from 2.45 to 2.56 µm), with optical

depths found in the conventional way, from the transmission, T = exp τ/µ. 2.5

µm was chosen as a reference wavelength based on the high signal-to-noise in

this region of the solar spectrum as measured by VIMS.

Figure 3.4 plots the composite spectra of the A, C and F rings from the Rev.

9 solar occultation in terms of the optical depth normalized to the optical depth

at 2.5 µm. In Figure 3.4, the 2.9 µm peak in the F Ring transmission spectrum

is seen as a dip, while the A and C ring spectra continue to appear flat. The

measurements of ρ2.5 from six solar occultations (Revs. 9, 43, 55, 59, 62 and 65)

are included in Table 3.3. From the table, the F ring shows a ρ2.5 of between 0.77

and 0.86, with a mean value of 0.82 ± 0.03. The A and C rings, however, yield

values consistent with unity.

If we assume the A and C rings are a mixture of F ring-like material, with a

ρ2.5 equal to the mean F ring value of 0.82, and ‘large ring particles’ with a ρ2.5

of 1, we can set a limit on the amount of dusty or F-ring-like material. From the

measured values of ρ2.5, we conclude that neither the A nor the C Ring shows

a significant difference from a flat spectrum. The A Ring can contain less than

5.5% (1 σ) by cross sectional area of F-ring-like material, while the C Ring can

contain less than 1.4% of F-ring-like material. From this, we can infer that free-

floating ice grains in the tens of microns size range, capable of producing the

Christiansen effect (Hedman et al., 2011), are quite rare within the main rings,
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Figure 3.3: Average transmission spectra of various regions of the rings as
measured during the Rev. 9 solar occultation. Large triangles
at the bottom of the plot mark the locations of VIMS’s order-
sorting filters (features at those locations are artifacts). Statisti-
cal error bars are not plotted for the A, B and C Ring spectra, as
they are smaller than the plotted symbol. The A, B and C rings
are also offset for clarity by the amounts indicated.

unlike within the F Ring.
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Figure 3.4: The data from Figure 3.3, replotted in units of optical depth and
normalized so that τ at 2.5 µm is unity. The F Ring (stars) shows
a marked decrease in optical depth at 2.9 µm due to the pres-
ence of free-floating water-ice grains tens of microns in size.
The A (triangles) and C (diamonds) Rings show no such fea-
ture at 2.9 µm, limiting the number of free-floating ring parti-
cles smaller than 100 µm. The region around 2.95µm, marked
by the large triangle at the plot’s bottom, was not plotted due
to the presence of one of VIMS’s order-sorting filters, as men-
tioned in the caption to Figure 3.2. The A, B and C rings are
also offset for clarity by the amounts indicated.
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Rev. ρ2.5 Rev. ρ2.5

F Ring A Ring
9 0.852 ± 0.004 9 0.9991 ± 0.0005
43 0.858 ± 0.002 43 0.9989 ± 0.0002
55 I 0.810 ± 0.008 55 I 0.9977 ± 0.0003
55 E 0.848 ± 0.008 65 I 1.0177 ± 0.0003
59 0.809 ± 0.017 Mean ρA = 1.003 ± 0.010
62 I 0.774 ± 0.009 C Ring
62 E 0.782 ± 0.017 9 0.9951 ± 0.0008
65 I 0.820 ± 0.014 59 1.0002 ± 0.0014
65 E 0.824 ± 0.008 62 0.9978 ± 0.0003
Mean ρF = 0.82 ± 0.03 65 1.0002 ± 0.0008

Mean ρC = 0.998 ± 0.002

Table 3.3: Measure of the optical depth ratios between 2.9 µm and 2.5µm,
as described by ρ2.5. Dusty water-ice rings, such as the F Ring,
show a decrease in optical depth at 2.9 µm, resulting in ρ2.5 < 1.
Errors in the mean values listed for ρ2.5 are calculated by taking
the standard deviation of the set of measurements.

3.4 Diffraction Theory

3.4.1 Introduction

While, in the previous sections, we rule out a significant population of parti-

cles smaller than 100 µm in the main rings due to the lack of an observable

Christiansen effect, somewhat larger particles can produce observable effects

by diffraction, while being opaque. The spatial data taken by VIMS become

useful to observe this diffracted signal.

To first order, sunlight diffracted by ring particles of radius a will scatter into

a cone of angular radius θ ' λ/2a. Given VIMS’s pixel size (0.5 milliradians)

(see Figure 3.5), the solar diameter at Saturn (≈ 1 milliradian) and operating

wavelengths (1 - 5 µm), VIMS should be able to best image diffracted light from
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ring particles with a radius of several millimeters and less:

θd '
λ

2a
' 1.0

λ/2µm
a/1mm

mrad. (3.2)

A full model of the diffraction of sunlight by ring particles will be presented

in the following section.

Encke
Gap

Keeler
Gap

VIMS
Solar Occultation
Observation FOV

Sun

1 mm scatter cone
(@ 2 microns)

300 micron 
scatter cone

(@ 2 microns)

Figure 3.5: Schematic diagram showing how the Sun would appear as it
passes through the outer A Ring. The diagram plots the size
of a VIMS pixel, the 12 by 12 VIMS image taken during a solar
occultation, and the Sun at Saturn during the 8 June 2005 so-
lar occultation. The estimated diffraction cones of a 1mm (light
gray) and 300 µm (medium gray) ring particle at 2 microns are
shown around the solar disk. The Encke Gap (325 km wide)
and Keeler Gap (40 km wide) at a typical Cassini-ring separa-
tion of 200,000 km are shown for scale.
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3.4.2 General Expression

The model of French and Nicholson (2000) was chosen as a representation of

forward scattering and absorption in a ring. French and Nicholson (2000) as-

sume a simple truncated power-law size distribution and, for further simplicity,

neglect any contribution from multiple scattering – which is a valid assumption

for τ/2µ . 1. We accept this for now, but in Section 3.6.3, we extend our analysis

to include multiple-scattering for higher optical depths. As higher-order scatter-

ing broadens the phase function, ignoring higher-order effects will, in general,

underestimate the minimum particle size. (French and Nicholson, 2000)

This model states that the flux incident on the detector from light scattered

by a uniform sheet of particles as a function of scattering angle, F (θ) is

F (θ) = F0
τ

4πµ
e−τ/µ 〈$0〉 P (θ) A, (3.3)

where F0 is the solar flux incident on the rings, µ is the cosine of the incidence

angle, 〈$0〉 is the single scattering albedo, assumed to be 0.5 for particles much

larger than the wavelength of light being studied2, A is the solid angle of the de-

tector (in this case, one VIMS pixel), and P (θ) is the mean phase function of the

diffracted light, normalized such that the integral over all solid angles is 4π (thus

the flux from scattered light integrated over all solid angles is F0τ/2µ exp (−τ/µ)).

P (θ) depends on the distribution of particle sizes assumed.

Note that the optical depth, τ, used in Equation 3.3 and for the rest of the pa-

per (unless otherwise noted) is the extinction optical depth, which, for particles

much larger than the wavelength of light, is twice that of the geometric optical

depth, τ = 2τgeo, where τgeo is typically used in optical and near-infrared studies
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of the rings, including French and Nicholson (2000).

For a full derivation of the model, please see Appendix A. We chose a trun-

cated power-law with particles between amin and amax in size, and with a power-

law index of −q. To speed computational time over many orders of magnitude,

we implement this in our code by two approximations valid over different an-

gular regimes: the medium-angle case and the large-angle case, which are de-

fined by the characteristic diffraction angle of the smallest particles in the size

distribution, θ2 = λ/2amin. These cases are also useful in understanding the be-

havior of the model.

The value of θ2 is unknown, because the minimum particle size is the quan-

tity we are trying to measure. Given that the size of one VIMS pixel – and

coincidentally the solar radius at 9 AU – is 0.5 milliradians on the sky, our data

will be most sensitive to diffraction by particles with x . 6000, where x = 2πa/λ.

At 2 microns wavelength, the corresponding particles have a radius of 2 mil-

limeters or less. Barring a much-lower-than-expected minimum size cutoff, the

large-angle scattering case will be most relevant, though we will include the

medium-angle case in our calculations to account for the possibility of free-

floating particles from ∼100 microns to ∼2 millimeters.

The large angle case, where the scattering angle, θ, is much larger than the

characteristic diffraction angle of the smallest particles (θ � θ2) has a phase

function of approximately

2For our purposes, we may ‘lump’ all light scattered at angles θ � θd in with the light ab-
sorbed by the particles, so that the absorption coefficient, Qabs ≈ 1. Since Qext = Qabs + Qsc ≈ 2 for
macroscopic particles, we have $0 = Qsc/Qext ≈ 0.5. By the same token, we exclude all reflected
light from the phase function, P̄ (θ). For further discussion on the importance of Q, we refer the
reader to Cuzzi (1985) and Roques et al. (1987).
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P (θ) ≈
4
πα

(sin θ)−3 x2−q
min

q − 2
, (3.4)

where the dimensionless size parameter xmin = 2πamin/λ and α is a normalization

factor given by

α =


ln amax

amin
q = 3

x3−q
max−x3−q

min
3−q q , 3

. (3.5)

The medium angle case, where θ is in between the characteristic diffraction

angle of the smallest and largest particles (θ2 � θ � θ1; θ1 = λ/2amax), has a phase

function of approximately

P (θ) ≈
4
α

(sin θ)q−5
J∞0 (q) , θ1 ≤ θ ≤ θ2. (3.6)

The J∞0 (q) in Equation 3.6 is shorthand for
∫ ∞

0
z2−qJ1 (z)2 dz, where J1 (z) is

a Bessel function of the first kind. J∞0 (q) is nearly constant over the range of

2 ≤ q ≤ 5, except when q approaches 2 or 5. Previous studies indicate that q is

between 2.7 and 3.1 within the main rings, giving J∞0 ≈ 0.5 (Zebker et al. 1985,

French and Nicholson 2000, Cuzzi et al. 2009).

At this point, we remind the reader that most of the light diffracted by

the centimeter to meter-sized particles which dominate the main rings at near-

infrared wavelengths is not detectable, since it is confined to angles much less

than the solar radius. Our only hope is to detect the ’tail’ of the scattering func-

tion, due primarily to millimeter and smaller sized particles, if they exist in

sufficient numbers.
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Finally, we note that for the large-angle case, the slope of P̄ (θ) is independent

of q, but the absolute level depends on q and xmin (or amin), while for the medium-

angle case, the slope of P̄ (θ) depends on q, but the absolute level depends only

weakly on q (via J∞0 ) or xmin (via α).

3.5 Spatial Data Analysis

3.5.1 Simple Attempts

Our goal is to detect and measure a faint ’halo’ of diffracted light around the

image of the occulted sun, in the presence of a much brighter background of

instrument-scattered light, and fit this by the method described in the previous

section. Our first approach was to attempt to create a template from the data of

the unocculted Sun as seen through the solar port to serve as our comparison

for cubes containing the occulted Sun. We selected cubes outside of the F ring or

inside the C ring to construct the template. As observations were structured to

give such windows on either side of solar occultations, these data were available

for all occultations. While the shape and spectrum of the diffuse background

does vary depending on where in the field the Sun is, based on solar calibrations

performed in flight, Cassini is a very stable platform for observations, and the

movements of the Sun within the field during any single occultation are much

smaller than a VIMS pixel. As a result, the diffuse background changes little

during an occultation, other than to scale with the total solar flux transmitted

by the rings.

Once we have a template, we can divide data cubes within the rings by that
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template. Given the tiny levels of diffracted signal expected, data cubes from

nearby radii in the rings were summed, creating composite data cubes for the

average A Ring between the radii of 122,000 and 133,000 km and for the average

C ring between 75,000 and 92,000 km. Due to previous results which showed

that the trans-Encke region of the A ring has a different particle size distribution

than the middle and inner A ring (French and Nicholson, 2000; Zebker et al.,

1985), all A ring cubes outside of the Encke Gap were omitted from the average.

Cubes near ring edges were also omitted. The number of cubes fitting these

criteria from each occultation are listed in Tables 3.1 and 3.2 above.

Figures 3.6 (the A ring, from Rev. 43) and 3.7 (the C ring, from Rev. 65)

show data from such ratio images, plotted in units of transmission (found by

dividing the composite image by the templates constructed for each occultation

using cubes containing an unocculted Sun). The data from the ratio cubes were

sorted by distance from the center of each pixel to the center of the Sun’s image,

and then binned in 0.25 milliradian (0.5 pixels) increments.

Due to the non-zero instrumental background of diffusely-scattered light,

transmission measurements can be recorded even far from the Sun itself, and

are not themselves a sign of diffraction from ring particles. Although at first

glance the transmission profiles are ‘flat’, closer inspection does show some ev-

idence for diffracted light. Figure 3.7 shows a significant increase of a fraction

of a percent in transmission at around 1 milliradian. If a similar peak is present

in Figure 3.6, it is invisible compared to the pixel-to-pixel variation (as seen in

the error bars, which mark the standard error). Also note that the innermost

datapoints (seen most clearly in Figure 3.6.c and Figure 3.7.b, but present in

others) show a significant decrease in transmission relative to the ’far-field’ mean
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Figure 3.6: A plot of the ratio of the composite A ring image from the Rev.
43 occultation to the template created from the same occulta-
tion versus angular separation from the Sun. Data are grouped
in 0.25 milliradian bins, and the error bars mark one standard
error of the mean for the binned data. The dotted line is an
average transmission for the area from 1 to 4 millradians from
the Sun. Each panel is a different wavelength – 1.2, 2.4 and 3.6
microns from top to bottom.

transmission measured from 1 to 4 milliradians (and plotted as a horizontal

line). These pixels are within the 0.5 milliradians that define the solar angular

radius as seen by VIMS, indicating that the transmission as measured by look-

ing directly at the Sun is lower than that measured from the diffusely-scattered

background, which is also produced by sunlight shining through the rings.

This apparent contradiction can be reconciled by remembering that when
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Figure 3.7: A plot of the ratio of the composite C ring image from the Rev.
65 occultation to the template created from the same occulta-
tion versus angular separation from the Sun. Data are grouped
in 0.25 milliradian bins, and the error bars mark one standard
error of the mean for the binned data. The dotted line is an
average transmission for the area from 1 to 4 millradians from
the Sun. Each panel is a different wavelength – 1.2, 2.4 and 3.6
microns from top to bottom. Error bars are not plotted for the
last two points, due to the paucity of data near the edge of the
image.
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sunlight is diffracted into a halo, it has to come from somewhere. The individual

pixels ‘on’ the Sun will show some additional attenuation due to light scattered

out of the beam. However a wider-angle measurement – like that of the stray

light scattered within the VIMS instrument – will collect both the direct and

scattered light. Were the Sun a point source and a VIMS pixel small enough to

exclude all scattered light, the difference in transmission would correspond to

a factor of two in optical depth. Since neither is the case here, the difference is

much more modest. However, this difference in transmission can be measured,

and, thus, can allow the amount of light diffracted at angles larger than a VIMS

pixel to be measured, even if a clear diffraction halo is not seen (as in the A

Ring measurements shown in Figure 3.6). This provides the concept behind our

second approach, which we will elaborate on in the next section.

3.5.2 Quantifying Transmission Differences

Let us construct a simple model for imaging the Sun with VIMS. The Sun is

not a point source, so even an unocculted Sun will take up several VIMS pixels.

For simplicity, we assume that the direct solar flux – that not scattered by the

solar port’s optics or diffracted outside the sun’s disc by small ring particles –

is confined to an area of Ns pixels, which can be measured from the unocculted

template we created in the previous section. When the Sun is behind the rings,

there is an additional halo of diffracted light from small particles (defined as

those capable of scattering light outside of the solar disc), covering N pixels.

This is shown in Figure 3.8.

Let the total direct (i.e., excluding that scattered within the VIMS solar port

68



Ns

N

Ns

Outside the rings Within the rings

Figure 3.8: Diagram showing our model for measuring light diffracted by
the rings. The Sun takes up a small number of VIMS pixels,
Ns. While behind the rings, N pixels (including the Ns pixels)
would show a small increase in flux from diffracted light. If
one were to coadd the image as a single measurement, the Sun
would appear to have a higher transmission (and, thus, a lower
optical depth) than if we were to only examine the Ns pixels
‘on’ the Sun. This difference in optical depths should be easier
to measure than attempting to measure the increase in signal
in one (or a few) of the N pixels, as it sums the entire effect of
light scattered outside the central Ns pixels.

optics) unocculted solar signal be S s, measured in DN per integration at a spe-

cific wavelength, λ. In addition, as mentioned in Section 3.2.2 and illustrated

in Figure 3.1, there is a diffusely-scattered background signal, spatially non-

uniform, denoted by

σob (x, y) = β (x, y) S s (3.7)
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which we assume scales in brightness with the direct solar signal, but is spec-

trally different than the direct signal S s (Figure 3.2). The total integrated signal

within the unocculted solar image (the Ns pixels that are ’on’ the Sun) can be

written schematically as

S 0 ≈ S s + Ns 〈σob〉 , (3.8)

where 〈σob〉 is a mean of σob (x, y). We can estimate the values of S s and 〈σob〉 by

fitting a two-dimensional Gaussian profile, plus a constant offset, to the central

part of the template image.

With the sun occulted by the rings, its total flux (direct plus diffracted) is

reduced by a factor T = e−τ/2µ. The total flux from the sun is thus TS s. A portion

of this flux has been diffracted by the rings at angles θ . θ2. We denote the

fraction of the full solar flux diffracted into the range θs ≤ θ ≤ θ2 by f , where θs

is the effective radius of the solar image in the VIMS cubes, or about 0.5 mrad.

Therefore, Ns ≈ πθ2
s . The diffracted flux is then f S s, which is assumed to be

spread uniformly over an area of N ≈ πθ2
2 pixels, centered on the solar image.

Three measured quantities are of interest in the cubes obtained during the

occultation:

1. the background signal outside the diffraction halo,

σrb (x, y) = TS sβ (x, y) = Tσob (x, y) ; (3.9)

2. the background signal within the halo (i.e., in the annulus described by

θs ≤ θ ≤ θ2), which has a mean value of

σrb′ (x, y) = Tσob (x, y) + f S s/N; (3.10)
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3. the total signal within the solar image (defined as the same area of Ns

pixels above) of

S r = (T − f ) S s + Ns 〈σrb′〉 (3.11)

or

S r = T (S s + Ns 〈σob〉) − f (1 − Ns/N) S s. (3.12)

Given that we can measure S 0 and 〈σob〉 by fitting a two-dimensional Gaus-

sian curve plus a constant to the data of the unocculted sun, as mentioned

above, the only remaining unknown is S s. We can use Equation 3.8 to rewrite

Equation 3.12 in terms of observables, rather than the unknown S s, and we can

normalize this by S 0 to get an effective transmission, Ts, measured only within

the solar image:

Ts = S r/S 0 = T − f (1 − Ns/N) (1 − Ns 〈σob〉 /S 0) . (3.13)

Note that all quantities in this expression, with the exception of f (which is

the measure of scattering by ‘small’ particles in the ring, and which it is our goal

to quantify), and N (which is set by θ2 and thus the size of the smallest particles)

can be directly measured from the data. If we estimate a minimum particle size

of amin ≈ 0.5 mm, this gives θ2 ≈ 2 mrad at 2 µm. Since θs ≈ 0.5 mrad, the

quantity Ns/N ≈ (θs/θ2)2 is 1/16. We can thus assume that 1 − Ns/N ≈ 1, and

solve Equation 3.13 for f :
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f ≈
T − Ts

1 − Ns 〈σob〉 /S 0
(3.14)

T is most readily obtained from Equation 3.9, using the measurements of the

instrument-scattered background. In reality, σrb (x, y) is spatially variable, so we

use a Gaussian plus a constant offset fit to occulted and unocculted cubes to

find the local mean background in each image. Then we obtain T by dividing

the constants of the two fits:

T =
〈σrb〉

〈σob〉
. (3.15)

Ts is also obtained by fitting offset gaussians to the occulted and unocculted

solar images and integrating over the solar disk:

Ts =

∫
F (x, y) dx dy∫
F0 (x, y) dx dy

. (3.16)

While gaussian curves are bounded at infinity, the constant background

needed to properly fit the images are not. We chose to assume the background

under the solar image covers an area equivalent to the ellipse described by the

fitted standard deviations of the gaussian function. This ‘footprint’ was cho-

sen instead of a circle of angular radius θs (or the angular radius of the Sun

at Saturn) to account for the distortion in the solar image: while the width of

the gaussian in the x direction matches the angular size of the Sun, the image

appears stretched in the z direction, as is clearly visible in Figure 3.1.

Effectively what these calculations do is to estimate f not from the diffracted

light itself, but via its removal from the direct solar flux. The advantage of this
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somewhat indirect method is that the diffracted light is spread over N pixels,

while the solar image covers only Ns pixels, where Ns/N � 1 for amin . 0.5

mm. A secondary benefit is that the derived value of f is almost independent

of the unknown quality N, so long as Ns/N � 1. Our first method (as explained

in the previous section and shown in Figures 3.6 and 3.7) amounts to trying to

measure the difference between the σ′rb/σrb ≈ 1 + f S s/ (NTσob), which dwarfs

the quantity of interest, f , by other factors, rather than measure it directly as we

do here.

French and Nicholson (2000) define a similar measure of the observed scat-

tered light, Qocc: the ratio of the observed optical depth, including some fraction

of scattering, to the geometric (or absorption) optical depth, as defined in their

Equation 15; τobs = Qoccτgeo. They define the total scattered flux measured in

their Equation 18, which can be written in our notation as

f ≈ (2 − Qocc)
τ

2µ
e−τ/µ (3.17)

As a test of concept, we can refer back to Figure 3.3, which plots the direct

solar signal (as measured by a Gaussian fit) in terms of transmission and as a

function of wavelength. We would expect that shorter-wavelength light would

have less light scattered at angles large enough to be removed from the direct

signal, producing a slightly blue slope as the redder regions of the spectrum

had some light removed. In a qualitative sense, this can be seen in Figure 3.3’s

spectrum of the C Ring (and possibly the A Ring): the region of the spectrum

blueward of ∼1.6 µm has slightly increased transmission than the rest of the

spectrum. We also would expect that this effect would be somewhat dependent

on optical depth – at low or high optical depths, such a signal would not be as
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prominent as the intermediate optical depths that contain enough material to

scatter, but not so much as to absorb the scattered light.

3.5.3 Measuring the Diffracted Light

Given the indications in Figures 3.6 and 3.7 that Ts is indeed slightly less than T ,

we can calculate f numerically as described in Section 3.5.2, by using a gaussian

fit to both the template and individual cubes to calculate Ts and T – and thus,

f , the fraction of light diffracted out of the solar image. As in the simple test

performed above, it was necessary to take the mean of f over the entire A or C

ring – with the same caveats of avoiding the trans-Encke region and the edges

of the ring – in order to achieve a satisfactory signal-to-noise level. In addition,

the data were binned by wavelength, taking the median of f over 10 channels,

with error bars calculated from the standard errors within each bin. Based on

those error bars, we focus on the region from 1.8 to 2.8 microns.

Note that this bins data far more than in the simple plots we did in Section

3.5.1. While Figures 3.6 and 3.7 were means over wide ring regions, as are these

measurements of f , here we bin ten adjacent wavelength channels as opposed to

examining a single channel, and reduce an entire 144-pixel image into a single

measurement (while in Figures 3.6 and 3.7 each bin contains roughly a half-

dozen points). Thus, we should expect a corresponding reduction of noise.

In order to predict f for a particular assumed size distribution, the model

described in Section 4.3 is used and integrated over an annulus centered on the

Sun. A circle of radius 0.5 milliradians (1 pixel) was chosen as the inner bound-

ary for the model’s integral. However, as a result of the optics, the data show
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a clearly elliptical image of the Sun, and our measurements of f (derived from

the Gaussian fits to the data) take the apparent ellipticity into account. The dis-

tortion from the optics that produced an elliptical solar image could introduce

a systematic difference between model and observation, but attempting to fit

the image with a circular solar image would also introduce or exclude light.

Without a better mapping of the distortions caused by the boresight optics, an

empirical measurement seems the best guess as defining the difference between

‘Sun’ and ‘sky’.

As the amount of scattered light drops off sharply with increasing angle, we

assume an outer radius of infinity. This introduces a negligible increase in the

modeled value of f for a given amin compared to what we measure. Thus, f

is simply an integral over the intensity function, as specified in Equation 4.3,

divided by the unocculted solar flux:

f =

∫
F (θ) dΩ/F0 =

τ

4πµ
e−τ/µ

∫ ∞

0.5mrad

∫ 2π

0
〈$0〉 P (θ) θdφdθ. (3.18)

As a test of robustness, we integrated a hypothetical C ring model of τ/µ =

0.5, q = 3.1, amax = 10m and several lower particle size cutoffs for varying in-

ner radii. The results are shown in Figure 3.9. Expanding the inner radius to

an unphysical two times the solar angular radius in the image can reduce the

minimum particle size by a factor of 2. Consequently, any plausible error in es-

timating the ‘correct’ annulus for the model would result in an overestimate of

the particle size (as it seems unlikely that the most appropriate annulus would

have an inner radius smaller than the solar radius).

The C Ring occultations yield three data sets (those from Revs. 9, 62, and 65)
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Figure 3.9: Plots of the fraction of scattered light expected from hypothet-
ical C ring models (τ/µ = 0.5, q = 3.1, amax = 10m, amin as listed)
versus the inner radius of the integral in terms of solar angular
radius at Saturn. While there is a clear dependence, varying the
inner radius by a factor of two can, at most, produce an effect
of a factor of two on inferred particle size.

which show a significant fraction of scattered light over the full spectral range

considered (2 to 2.8 microns), and one more (Rev. 59) which shows a significant

non-zero fraction of scattered light over part of this range. Table 3.2 includes

the mean transmissions (T ) and opening angles. The Rev. 11 occultation does

not give a significant detection; of the occultations, Rev. 11 has the highest back-

ground and it could be that statistical noise overwhelmed the signal.

Figure 3.10 shows our three positive (and one marginal) detections. As many

of the C Ring solar occultations are non-uniformly sampled by radius, direct
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comparisons between occultations may be misleading if there are variations in

particle size within the C Ring. There is a mix of nearly radial occultations (Revs.

9 and 11), which sample all parts of the C Ring evenly, and occultations that cut

across the ansae, which sample the innermost portions of the occultation more

heavily (Revs. 59, 62, and 65).

Given a model of the scattered light as discussed above and using values of

amax = 10 meters and q = 3.1(Zebker et al., 1985), the three positive detections

(Rev. 9, Rev. 62 and Rev. 65 occultations) yield a minimum particle size of be-

tween 0.2 and 2 cm. This range is of the same order as that derived by Marouf

et al. (2008) for the C Ring. The slightly lower signal in the Rev. 65 and 62 occul-

tations could indicate a slightly larger particle size cutoff in the inner portions

of the C ring, as these two occultations oversample the inner regions, but the

result is not at the 3σ level given the error bars, especially those of the Rev. 62

occultation.

The minimum particle size derived is somewhat dependent on the other

model parameters amax and q – a steeper power-law or a smaller maximum par-

ticle size will increase the fraction of optical depth in smaller particles, and in-

crease the amount of scattering at angles greater than θs. In our angular regime,

namely that of large-angle scattering, the strongest effect is with q: a steeper

power-law (larger q) implies more particles with sizes small enough to scatter

at the relevant angles. Consequently, for a given value of f , a steeper power-law

leads to a larger amin. amax has only a weak effect; a larger maximum size reduces

the number of particles per unit area for a given optical depth, slightly lowering

the minimum size for the same value of f . However, for q > 3, as has been pre-

viously derived for the C ring (Zebker et al., 1985), most of the cross-sectional
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Figure 3.10: Plots of the scattered light fraction, f , versus wavelength for
four C ring occultations – Rev. 9 (a), Rev. 59 (b), Rev. 62
(c), and Rev. 65 (d) – calculated using Equation 3.14. The
regularly-spaced arcs show models with amax = 10 m, q = 3.1,
and minimum particle sizes of 2, 5, 10, 20, 50, and 100 mm
(unlabeled). Note that Revs. 9, 62 and 65 show a significant
fraction of scattered light that corresponds to a minimum par-
ticle size between 2 and 20 mm, while the Rev. 59 occultation
only produces a marginal detection of diffracted light with a
minimum particle size larger than 5 mm.

78



area is in small particles, so a modest increase in the number of large particles

produces an inconsequential effect on scattering at this angular scale.

Figure 3.11 plots amin vs. q for the C ring. The function was calculated by

taking the scattering fraction from the Rev. 9, Rev. 62 and Rev. 65 occultations

(the three in which a clear positive detection was made) at a wavelength of

2.3 µm, and calculating the amin for a given q needed to produce the observed

scattered light. The line plotted in Figure 3.11 is then a mean of the values of

amin calculated from each of the three occultations. At q = 3.1, corresponding to

previous estimates of the C ring power-law index (Zebker et al., 1985; French

and Nicholson, 2000; Marouf et al., 2008), we find a value of amin = 4.1+3.8
−1.3 mm.

The C ring shows a robust value of amin somewhere between 0.3 and 1 cm for

values of q between 2.95 and 3.5.

Completing the same analysis on the A ring – shown in Figure 3.12 – shows

a significant fraction of scattered light in five occultations (Revs. 9, 43, 55, 59,

and 62) over the same wavelength range. Rev. 65 shows a partial detection over

some of the range. Note that comparing the far-field signal to the decrease in

signal, and binning by wavelength, produces a far clearer detection in Rev. 43

than seen in Figure 3.6. However, unlike the C ring, which is homogenous and

optically thin (τ/µ . 1), the A Ring is neither. Those complicating factors, self-

gravity wakes and the possibility of multiple scattering, are examined below

and our simple model modified appropriately.
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Figure 3.11: A plot of amin as a function of q in the C ring, assuming a max-
imum particle size amax = 10 m and for a wavelength of 2.3
µm. The dotted lines represent 1σ errors on the estimates,
combining both the differences between the calculated value
of amin from each occultation, and the errors of each occulta-
tion’s amin (calculated from the errors in f calculated from bin-
ning nearby wavelengths). The dashed line at q = 3.1 repre-
sent previous estimates of the power-law index for the C Ring.
(Zebker et al., 1985; French and Nicholson, 2000; Marouf et al.,
2008)
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Figure 3.12: Five A ring occultations – Rev. 9 (a), Rev. 43 (b), Rev. 55 (c),
Rev. 59 (d), and Rev. 62 (e) – compared with single-scattering
models (amax = 10 m, q = 2.9, and minimum particle sizes
from 0.1 mm to 10 cm) with minimum particle size listed, cal-
culated using Equation 3.14.
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3.6 The A Ring: Increased Optical Depth and Inhomogeneities

3.6.1 Introduction to Self-Gravity Wakes

Re-examining the assumptions made in the model described in Section 4.3, we

see that one stands out. The model assumes that the ring in question is made

up of a thick slab with a homogenous distribution of particles. However, the

A ring is not well described by this model. Observations show that the A ring

has an azimuthally-dependent optical depth, which varies by up to a factor of

a few depending on the longitude relative to the planet-to-star direction that

is sampled by the occultation (Colwell et al., 2006; Hedman et al., 2007c). The

accepted explanation for this variation, based on numerical simulations of this

ring, is the presence of self-gravity wakes (Salo, 1992).

Because the self-gravity wakes are long aggregates of particles with a charac-

teristic trailing orientation with respect to the radial direction, they change the

optical depth depending on the cross section they present to the beam of light,

which depends on the observed longitude with respect to the stellar direction, φ.

They also don’t show the simple 1/µ dependence of τ on opening angle, instead

following a more complicated relation.

Our next step in modeling ring scattering within the A ring is to account for

the wakes within the ring.
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3.6.2 Scattering with Opaque Wakes

Following Hedman et al. (2007c), we assume the A ring consists of a parallel

series of cylindrical wakes of characteristic width W, height H, spacing λ and

alignment φW measured relative to the radial direction. The wakes themselves

are opaque, but the interwake ‘gaps’ have a finite optical depth τG due to par-

ticles outside the wakes. Tiscareno et al. (2010b) show that this is not an exact

description of the wake behavior in dynamical simulations, but that this simple

model reproduces optical depth measurements for opening angles larger than

∼ 10◦. As none of the occultations we use for the A ring measurements are less

than ≈ 8◦, Hedman et al.’s wake model should be sufficient for our purposes.

We assume that the particles within the gaps form a homogenous layer so

that the same model used earlier applies within the gaps. If fW is the fractional

area of ring covered by the wakes as viewed by VIMS (which depends both on

the opening angle of the rings (B), and the longitude (φ), as well as the parame-

ters W, H, λ and φW), then the fraction of scattered light can be written as

f = (1 − fW (B, φ))
τG

4π sin B
e−τG/ sin B

∫
〈$0〉 P (θ) dΩ, (3.19)

where the integrand is calculated as before. Note that for fW = 0 (and τG, the

extinction optical depth of the interwake material, equal to τ), this equation

reduces to the simpler case used in the previous section.

A full derivation for fW is given by Hedman et al. (2007c), resulting in the

expression
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fW =

∣∣∣∣∣H sin (φ − φW)
λ tan B

∣∣∣∣∣
√

1 +

[
W tan B

H sin (φ − φW)

]2

. (3.20)

The values of φ, the longitude of the area sampled, and B are known for

each occultation and are listed in Table 3.1. φ changes slightly as the occultation

progresses, as none are totally radial occultations, but for the regions of the A

ring sampled, this change is small. Repeated stellar occultations suggest that τG

is between 0.3 and 0.6, H/λ is between 0.09 and 0.12, and W/λ is between 0.3 and

0.65 for the A ring (Nicholson and Hedman, 2010). Note that Nicholson and

Hedman’s values for optical depth (τg) correspond to absorption, so we have

used the equation τG = 2τg to derive values for extinction optical depths within

the gaps. These and other studies of A ring photometry show that the wakes

are oriented to have a peak transmission at φW ≈ 70◦ and 250◦ longitude (with

0◦ being the direction to the Sun (or star) from Saturn) (Nicholson and Hedman,

2010).

The effect of the wakes on f is not simple. While fW decreases the ring

area which provides the scattered signal, replacing τ by the much smaller τG

increases the amount of scattered light available when τ/µ > 1, which is usually

the case in solar occultations by the A Ring.

3.6.3 Effects of Multiple Scattering

Our first model assumed that all light interacts with a ring particle once and is

absorbed, (singly-)diffracted or transmitted. However, in reality the ring parti-

cles we are considering are far smaller than the thickness of the ring, so multi-

ple scattering is possible. For τ/2µ � 1, the contribution from light diffracted

84



more than once is small. However, even when we consider an expected normal

optical depth of 0.3 to 0.65 (the estimated extinction optical depth between self-

gravity wakes in Hedman et al. (2007c)), only the Rev. 9 occultation at B = 21.5◦

(and the lowest optical depth estimate of the gap material) satisfies τ/2µ < 1.

Zebker et al. (1985), in analyzing the low incidence Voyager radio occulta-

tions, developed a scheme for handling multiple scattering in a thin ring. They

treat the ring as N layers of optical depth τ1 = τ/N, where τ1 � 0.5, so that

within each layer, the single scattering approximation holds. This model allows

for multiple scattering (to degree N) by calculating the fraction of absorption,

scattering or transmission through each layer and treating it as a sum of terms

to produce the intensity function. The phase function for multiple scattering is

treated of a convolution of single scattering, as Zebker et al. (1985) do in their

Equation 7. In the notation used in this paper, we can write their equation as

Isca (θ)
F0

=

N∑
k=1

 N

k

 e−τ(N−k)/Nµ
[
I1 (θ)
F0

]k

, (3.21)

where I1 (θ) is the intensity distribution from single scattering within a layer of

ring, as calculated from Equation 4.3 (but without the solid angle that changes

an intensity into a flux), using τ1 as the optical depth. [I1]k represents the kth

convolution of I1 with itself, so each term of the sum represents the contribution

of kth order scattering to the whole, with an attenuation factor to account for

absorption by the N − k other layers, and a combinatoric factor
(

N
k

)
to account for

the k layers chosen from N to scatter photons. We can also re-write Equation 3.21

in terms of the phase function for single scattering, P (θ), to remove quantities

not dependent on θ, and to bring out the ‘hidden’ τ1 in the intensity distribution:
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Isca (θ)
I0

= e−τ/µ
N∑

k=1

 N

k


(
$0τ

4πNµ

)k

[P (θ)]k . (3.22)

N is an approximation for the number of particles (of the size doing the scatter-

ing) thick the ring is. As mentioned earlier, the Voyager radio occultation was

most sensitive to suprameter particles, with smaller particles sensed only as a

differential optical depth between the two wavelengths of radio waves transmit-

ted through the rings. As the rings are thin relative to meter-sized particles, even

when considering the slant-path at low incidence angles, Zebker et al. could as-

sume N was small and search for the value of N which best agreed with the

data. However, in the case of millimeter-sized particles, the rings are no longer

physically thin relative to the particle diameter, even at normal incidence angles.

Thus, rather than N being a few, it becomes on the order of a thousand.

If we let N become large, then the equation becomes

Isca (θ)
I0

= e−τ/µ
∞∑

k=1

1
k!

(
$0τ

4πµ

)k [
P̄ (θ)

]k
. (3.23)

We will be using this equation to include the effects of double- and triple-

particle scattering. Higher-order terms are small relative to these terms, so

were omitted. From Figure 3.13, we can see that double-particle scattering

produces the dominant effect at angles larger than the ∼ 0.5 milliradians that

marks the size of the solar image (and, thus, the minimum angle required to

remove light from the signal), confirmation of the necessity of accounting for

multiple-particle scattering. Conceptually, this can be explained as the more

times a photon is scattered, the broader the diffraction cone becomes. If little

light is being singly scattered at a certain angle, doubly scattered light will dom-

inate if the ring is optically thick enough. The decrease in intensity from single

and double-particle scattering to triple-particle scattering justifies our neglect of

86



higher-order terms.

Figure 3.13: Plot of the contributions of single (solid), double (dashed) and
triple (dotted) particle scattering to the total intensity (thick)
of the scattering versus diffraction angle for an optical depth
of τ/µ = 1, a wavelength of 2 µm, and a power-law particle-
size distribution of index q = 2.9, from 1 mm to 10 m. These
conditions are roughly analogous to the A Ring. Note that, in
fact, double-particle scattering dominates over single-particle
scattering at ∼1 milliradian where our observations are most
sensitive. Triple-particle scattering and higher-order terms
(not shown) make up a minor part of the scattering function.

3.6.4 Measuring Diffracted Light in the A Ring

Now that we have discussed the complicating effects of multiple-order scatter-

ing and self-gravity wakes, we can add them to the model. Note that the two
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effects to an extent work against each other: multiple-order scattering will in-

crease the amount of scattered light for a given optical depth, while self-gravity

wakes will lower the material available to scatter light, which will decrease the

scattered light in general (as well as add a longitude-dependent term). It is not

obvious which (if either) effect will dominate at the scales we are interested in

for this problem.

To model the A Ring, we had to choose parameters to represent the self-

gravity wakes. The wake dimensions of W/λ=0.5 and H/λ=0.1 were chosen as

representative parameters from the stellar occultation data discussed in Section

3.6.2. Individual values of τG for each cube were calculated based on those num-

bers and assuming T = (1 − fW) e−τG/2 sin B, with T being the calculated transmis-

sion in that cube and fW calculated from Equation 3.20.

As before, the values of f were averaged over the entire A ring, and binned

spectrally. Figure 3.14 shows the binned and rescaled measurements of f for five

occultations, with representative models. For a comparison, a wakeless model

using the full observed optical depth (but including multiple scattering), is also

shown in Figure 3.15.

Of the five clear positive detections mentioned in Section 3.5.3 the diffracted

light measurements were larger than we’d expect from models for the Rev. 59

and Rev. 62 occultations. Below amin ≈ 100 microns, the fraction of light removed

from the direct signal becomes nearly constant, as the models are no longer

dominated by the large-angle ‘tails’ of diffraction from the millimeter-sized and

larger particles in the ring. Rev. 62’s measurements only allow an upper limit

on amin to be set, rather than having a value that best agrees with the data, and

the data from Rev. 59 are inconsistent with the model entirely for the value of
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Figure 3.14: Five A ring occultations – Rev. 9 (a), Rev. 43 (b), Rev. 55 (c),
Rev. 59 (d), and Rev. 62 (e) – compared with models (amax = 10
m, q = 2.9, minimum particle sizes from 0.1 mm to 10 cm, self-
gravity wakes and multiple scattering included) with mini-
mum particle size listed.
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Figure 3.15: Five A ring occultations – Rev. 9 (a), Rev. 43 (b), Rev. 55 (c),
Rev. 59 (d), and Rev. 62 (e) – compared with models (amax = 10
m, q = 2.9, minimum particle sizes from 0.1 mm to 10 cm,
and multiple scattering included, but self-gravity wakes not
included) with the minimum particle size listed.
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q used. Omitting the effects of self-gravity wakes, as in Figure 3.15, changes

the minimum particle size corresponding to a given value of f , but still cannot

reproduce the Rev. 59 observations.

Figure 3.16: A plot of amin as a function of q in the A ring for a wavelength
of 2.3µm, assuming wake properties as listed in the body of
the text and a maximum particle size amax = 10 m. The func-
tion was calculated by taking the scattering fraction from the
Rev 9, 43, and 55 occultations, and calculating the amin for a
given q needed to produce the observed scattered light. A
mean was then taken of the three functions. The dotted lines
represent 1σ errors on the estimates, combining both the dif-
ferences between the calculated amins from each occultation,
and the errors of each occultation’s amin (calculated from the
errors in f calculated from binning nearby wavelengths). The
dashed lines at q = 2.75 and q = 2.9 represent previous esti-
mates of the power-law index for the A Ring. (Zebker et al.,
1985; French and Nicholson, 2000; Marouf et al., 2008)
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To better quantify our results, we again calculated the mean amin over the

three occultations (Revs. 9, 43 and 55) for which a clear detection (rather than

an upper bound) was observed, as a function of q from the fraction of scattered

light observed at 2.3 microns, just as we did for the C ring. The results are shown

in Figure 3.16. Using the diffraction model that accounts for both the effects of

self-gravity wakes on optical depth and double- and triple-particle scattering,

we infer that the minimum particle size is 0.56+0.35
−0.16 mm at a power-law index of

2.9, the index inferred by the Voyager Radio Science experiment (Zebker et al.,

1985). The shallower q = 2.75 power-law index observed by French and Nichol-

son (2000) lowers the minimum particle size to an upper limit of < 0.18 mm.

Including the Rev 59 and 62 occultations in the mean amin lowers these values

further to 0.38+0.27
−0.12 mm at q = 2.9, but cannot replicate all the observations using

q = 2.75.

Both the homogenous ring and wake model give a minimum particle size

somewhat smaller for expected values of q (between 2.7 and 3.0) than those

seen by the Cassini RSS measurements and French and Nicholson’s observation

of few sub-centimeter-sized particles in the 28 Sgr occultation (Marouf et al.,

2008; French and Nicholson, 2000). Zebker et al. (1985) note that the difference in

optical depth between that measured at λ=3.6 cm by Voyager and that measured

at 0.5 µm is large enough to suggest the existence of a substantial population

of sub-centimeter sized particles, but a significant difference in optical depth

between the 3.6 and 0.9 cm bands in the A Ring was not seen by Cassini RSS

occultations (Marouf et al., 2008), implying few particles in the centimeter size

range.

A major caveat to all of these studies is that none of them accounted for
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the effects of self-gravity wakes, though Zebker et al. (1985) and Marouf et al.

(2008) both included analysis of multiple scattering effects. French and Nichol-

son (2000) even notice what could have been a longitudinal asymmetry in opti-

cal depth in the A Ring between the δ Sco and 28 Scr optical depths, but, without

a model, chose to adopt a ’fudge factor’ to scale the two occultations as best they

could. A model of the A Ring that includes self-gravity wakes would lower the

expected differential optical depths between all wavelengths smaller than the

wake size, as a fraction of the optical depth would be caused by the wakes them-

selves, rather than the continuum of ring particles. Therefore, a wakeless model

would find larger minimum particle sizes for a given differential optical depth

than a model that included self-gravity wakes. It is also worth mentioning that

our (and others’) observations derive distributions for the material in-between

the wakes, which may be different in size distribution from the ring as a whole.

Using the three-occultation mean, our model requires < 12.1 % of the inter-

wake optical depth to be from particles smaller than 1 cm at q = 2.75, which

increases to 20.1+4.2
−1.2 % for q = 2.9. For typical interwake optical depths used ear-

lier (τG between 0.3 and 0.65 in extinction), this gives extinction optical depths

due to such small particles of between 0.03 and 0.16, within Zebker et al.’s range.

3.7 Conclusions

When analyzing the solar occultation data recorded by Cassini-VIMS, we ob-

served a small excess of forward-scattered light, once instrumental effects were

taken into account. We believe this to be due to diffraction by small particles

in the rings and have used it to estimate minimum particle sizes, assuming a
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power-law index, q, and maximum particle size from previous work (Zebker

et al., 1985; French and Nicholson, 2000; Marouf et al., 2008).

Among the three C Ring solar occultations in which a clear positive excess

was measured, a minimum particle size of 4.1+3.8
−1.3 mm is inferred for a canonical

value of q = 3.1. For a wider range of likely q values, the data still indicate a

minimum particle size between 3 and 10 mm. This is somewhat larger than the

amin ≈ 4 mm measured by Marouf et al. (2008) using the Cassini Radio Science

experiment, and it’s possible this could be due to a radial variation of minimum

particle size in the C Ring, as the chord occultations (Rev. 62 and 65) show a

larger minimum than the Rev. 9 radial occultation. Further work would be

required to confirm such a variation.

In the A Ring observations, multiple-particle scattering produces a non-

negligible effect due to the larger optical depths involved, and must be taken

into account to explain the larger-than-expected amount of scattered light seen.

The effects of the A Ring’s self-gravity wakes on the amount of scattering are

more complicated, but are clearly seen in optical depth measurements of the A

Ring from both these solar occultations and other data sets (such as stellar oc-

cultations). The shallow power-law indices of q = 2.75 found by French and

Nicholson (2000) and Marouf et al. (2008) require a very small amin of < 0.34

mm to explain our observations, even accounting for multiple scattering and

self-gravity wakes. Raising the power-law index to q = 2.9 as measured by the

Voyager radio occultations (Zebker et al., 1985) still requires particles of 0.56+0.35
−0.16

mm to explain the amount of scattered light measured by our solar occulta-

tion observations. These numbers appear to be inconsistent with estimates of a

lack of material smaller than one centimeter advanced by French and Nicholson
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(2000), but the shallow power-law and amount of material sequestered in self-

gravity wakes may mean the optical depth required in particles smaller than

10 mm could be as small as τ = 0.03 in extinction. This may render our data

consistent with this lack of optical depth variation with wavelength seen in ra-

dio occultations, especially when the effects of self-gravity wakes are taken into

account.

We were also able to constrain the fraction of free-floating ice grains smaller

than 100 µm in the A ring to be ≤ 5%, assuming a dust size distribution similar

to the F Ring. The fraction within the C ring was even smaller: ≤ 1.4%. Regard-

less of their minimum particle sizes, it is clear that the A and C Rings lack the

persistent icy dust that is a strong feature of the F Ring.
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CHAPTER 4

PARTICLE SIZES NEAR THE GAPS OF SATURN’S RINGS, HARBISON,

R. A. & NICHOLSON, P. D. IN PREP. FOR ICARUS

4.1 Introduction

The size distribution of particles within Saturn’s rings has been characterized

in the last few decades mostly through the diffraction and absorption through

occultations. Typical ring particles – with sizes in the centimeter, decimeter and

meter range – diffract at tiny angles in the visible and near infrared (from a

fraction of a milliradian down to tens of nanoradians). With the exception of

Harbison et al. (2013)’s work at the smallest end of the particle-size distribution,

this effect has not been observed spatially. However, both radio (Marouf et al.,

1983) and visible/near infrared(French and Nicholson, 2000) have observed the

effects projected into other dimensions of their data.

Specifically French and Nicholson (2000) observed the occultation of the star

28 Sagitarii (28 Sgr) by the rings from Earth in 1990. During the occultation,

French and Nicholson collected time series of 28 Sgr’s brightness as it crossed

through the rings, as well as background measurements of ring and planet

brightness to correct for those effects. Thus, they were able to produce a de-

tailed time series of ring optical depth, which could be converted into a radial

measurement based on the star’s apparent track across the rings. During these

observations, they observed that several gaps in the C and A Rings and Cassini

Division, as well as the regions immediately interior and exterior to the Main

Rings, had total fluxes above the baseline for the star, measured to be 5-10 %

larger than the unocculted stellar flux. They attribute this to starlight diffracted
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by nearby ring material at angles such that it appears to come from the empty

gap, and successfully model this using a simple truncated power-law particle

size-distribution and an assumption that each region of the rings (the A, B and

C rings, the Cassini Division and the trans-Encke A Ring) is uniform in particle

properties.

French and Nicholson’s work 2000, combined with the radio occultations

by Voyager (Marouf et al., 1983; Zebker et al., 1985) and Cassini (Marouf et al.,

2008) and near infrared solar occultations observed by Cassini (Harbison et al.,

2013), have given us a more complete picture of the particles within Saturn’s

rings. The varying wavelengths and geometries of these observations prove to

be complimentary in filling in different regimes of the particle-size distribution.

A fuller description of the work can be found in Cuzzi et al. (2009), but we will

give a brief overview here.

Direct inversion of radio occultations shows a strong break in particle radius

at 3-5 m (Marouf et al., 1983) in those regions of the rings measured, making

a power-law truncated at the meter scale a reasonable model. For the C Ring,

Zebker et al. (1985) and French and Nicholson (2000) agree on a power-law in-

dex in the centimeter and decimeter particle size regime of q ≈ 3.1, with Marouf

et al. (2008) preferring a slightly larger q ≈ 3.2, with errors of roughly 0.1 in both

papers. Both Marouf et al. (2008) and Harbison et al. (2013) agree on a minimum

particle size of about 4 mm. In the Cassini Division, the outer ramp is the main

region studied by radio occultation, but all three experiments agree on a power-

law index of about q ≈ 2.75 (Zebker et al., 1985; French and Nicholson, 2000;

Marouf et al., 2008). All three also agree that the power-law index within the

A Ring steepens as one looks outward, with estimates of the index outside the
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Encke Gap ranging from 2.9 (French and Nicholson, 2000) to 3.2 (Marouf et al.,

2008). Marouf et al. (2008) also estimates a minimum particle size of 4-5 mm in

the region outside the Encke Gap (Harbison et al.’s work does not extend to the

outer A Ring).

Since its insertion into Saturn orbit in 2004, the Cassini spacecraft has mea-

sured dozens of stellar occultations using several instruments. We will be focus-

ing on those observed in the near-infrared, using the Visible-Infrared Mapping

Spectrometer (VIMS). In these occultations, the increase in stellar flux is often

visible on inspection of the data, and even shows a ‘horned’ structure due to

the change in number and size of ring particles diffracting light that appears to

come from a certain location within the gap. Individual ringlets within gaps –

such as the Huygens, Herschel and Laplace Ringlets in the Cassini Division and

the Maxwell and Titan Ringlets in the C Ring – even produce their own horned

features surrounding them as separate from the gap edges.

In this chapter, we will be measuring and modeling these features using the

same truncated power-law particle size-distribution. While the particle sizes we

are sensitive to are in the same centimeter to decimeter range that has been well

covered, the angular and time resolution of Cassini’s occultations allows for a

study of regions of the rings that are only hundreds of kilometers wide, rather

than the wide swaths modeled in the radio science occultations, or the whole

ring regions used in the earthbound work, as well as examination of the ringlets.

As our measurements correspond to the middle of the truncated power-law size

distribution, we are most sensitive to the effective power-law index, but we also

discuss the effects of lower particle size cutoffs and what can be learned from

this data set.
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4.2 Data Collection

We are examining a collection of stellar occultations of Saturn’s Rings as ob-

served from the Cassini Spacecraft. The data were collected over four years by

VIMS. VIMS was operated in occultation mode, disabling the visible light de-

tectors. In addition, the infrared detectors were binned on board the spacecraft

from 256 channels to 32, spanning 0.9 to 5.2 microns. Sampling was done at

intervals from 20 to 80 milliseconds, determined by the brightness of the star in

the near infrared. For more information about VIMS occultation data sets, see

Hedman et al. (2007c) and Nicholson and Hedman (2010).

In total, Cassini has observed 74 stellar occultations of the rings as of late

2009. Not all are suitable for this work, as those with too little signal or baselines

that drifted strongly were not used. In total, 22 occultations were chosen, with

inclinations ranging from 74.19◦ (α Triangulum Australis) to 3.45◦ (o Ceti).

VIMS takes periodic ‘background’ measurements to monitor the dark cur-

rent and thermal background in the instrument, and these are subtracted auto-

matically from the data. We observe at 2.92 µm, where the rings are dark due

to the deep water-ice absorption band. Therefore we can assume that all signal

seen once the dark current is subtracted comes from attenuated starlight, rather

than the sunlit portions of the ring. We are able to use reconstructions of the

spacecraft’s path relative to Saturn and the rings during the occultation, and the

right ascension and declination of the star to reconstruct the radius and rela-

tive longitude where the starlight observed by VIMS crossed the ring plane and

interacted with the ring.

Rather than use absolute measurements of intensity, as we are uninterested
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in the absolute brightness of the star, we calibrate the occultation profile in terms

of transmission through the ring by measuring the brightness of the star in a

region known to be clear of ring material. As even the most stable occultations

have some drift, changing the baseline measurement of the mean Data Number

(DN) per integration for the unocculted star, different calibrations are used for

different ring regions. For the A Ring, a mean of 100 observations taken from

the Roche Division between the A and F Rings (but well clear of either) is used.

We do not use the Encke Gap, as it may not be wide enough to be free of the

scattered light we seek to measure. The C Ring and Cassini division use linear

trendlines as their baseline, with the C Ring’s drawn between the region interior

to the C ring and the middle of the Maxwell Gap, and the Cassini Division’s

drawn between the middle of the Laplace and Huygens gaps.

Visual inspection of these data shows that, even when correctly converted

into units of transmission, empty areas of the rings that are close to areas of ring

material often show apparent transmissions of greater than one, suggesting that

not only is all of the starlight making it through the empty area (as expected),

but additional light is being added, just as French and Nicholson (2000) ob-

served in their Earth-based occultation studies. Moreover, the morphology of

the occultation profile shows the same general shape of a sharp ‘horn’ at the

very edge of the gap, dropping rapidly away from the edge. For examples of

this phenomenon, see Figures 4.1 through 4.4.

Figure 4.1 shows the Maxwell Gap in the C Ring, with the dense Maxwell

Ringlet located in the middle of the gap. The low-optical depth regions of the

C Ring produce only a trace of ‘horns’, but, despite being nearly opaque, the

ringlet’s narrow (∼ 10 km) ‘horns’ are prominent. Figure 4.2 shows the Huy-
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Figure 4.1: Occultation plot showing transmission through the Maxwell
Gap in the outer C Ring as a function of radius (using the
Rev. 100 γ Crucis occultation at B = 62.4◦), and calibrated as
described in the text, with the bottom frame zoomed to bet-
ter show the slight variations from full transmission. Note the
clear ‘horns’ around the Maxwell Ringlet, and the suggestion
of a slight rise near both gap edges.

gens Gap in the Cassini Division, including the wide Huygens Ringlet and the

narrow Outer Huygens (or ‘Strange’) Ringlet. The ‘horns’ from the Huygens

Ringlet appear wider than both the ‘Strange’ Ringlet and the outer edge of the

gap, though perhaps narrower than that on the inner edge. This figure is an

excellent example of how these structures are not identical, suggesting the in-

formation about the nearby ring material can be derived. Also note how narrow

the ‘Strange’ Ringlet is, despite showing clear ‘horns’: for narrow features such

as this ringlet, the ‘horns’ may provide some of the only information about the

properties of the particles within it. Figure 4.4 shows the Keeler Gap and the
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Figure 4.2: Occultation plot showing transmission through the Huygens
Gap in the Cassini Division as a function of radius (using the
Rev. 100 γ Crucis occultation), and calibrated as described in
the text, with the bottom frame zoomed to better show the
slight variations from full transmission. Note the clear ‘horns’
around both ringlets and at both edges.

outer edge of the A Ring. The Keeler Gap has transmission above unity for its

entire width – seen relative to the large clear area outside the A Ring – show-

ing why we avoided narrow gaps in trying to normalize our occultations. The

Keeler Gap is also visibly asymmetric, indicating that the gap marks a change

in ring particles on either side.

These ‘horns’, like the ones shown, can be seen at the A Ring’s outer edge,

the Encke and Keeler Gaps (Figure 4.4) in the A Ring, the Herschel, Huygens

and Laplace Gaps (and around the Laplace, Herschel, Huygens and ‘Strange’

ringlets (Figure 4.2) ) in the Cassini Division, and around the Maxwell (Figure
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Figure 4.3: Occultation plot showing transmission through the Jeffreys
Gap in the Cassini Division as a function of radius (using the
Rev. 100 γ Crucis occultation), and calibrated as described in
the text, with the bottom frame zoomed to better show the
slight variations from full transmission. The inner edge shows
no horn, while the outer edge has a ‘horn’ visible over the outer
∼ 5 km of the gap. A probable cosmic ray near the outer edge
can also be seen, making a spike in transmission.

4.1) and Titan ringlets in the C Ring. The horns have differing widths, with

the ones in the A Ring extending tens of kilometers into the gap, gradually de-

clining, while the horns in the Huygens Gap appear very ‘peaky’ and quickly

decline by ∼ 5 kilometers into the gap, as seen in Figure 4.5. Intermittent or

less well shaped features can sometimes be seen in the smaller (Barnard, Bessel,

Jeffreys, and Russell) gaps in the Cassini Division, the outer edge of the B Ring,

and the edges of the Colombo, Maxwell and Bond Gaps, though due to small

scattered signal or the narrowness of the features, these are less well resolved.

g seen in Figure 4.3, showing the Jeffreys Gap: one edge shows no ‘horn’, while
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Figure 4.4: Occultation plot showing transmission the outer A Ring as a
function of radius (using the Rev. 100 γ Crucis occultation),
and calibrated as described in the text, with the bottom frame
zoomed to better show the slight variations from full transmis-
sion. Plot is centered on the outer A Ring and shows both the
Keeler Gap (left) and the A Ridge edge (right). Note the clear
‘horns’ at all three edges, and that the Keeler Gap is sufficiently
narrow that even the middle of the gap shows an excess of
light. The horn pattern in the Keeler Gap is also clearly asym-
metric despite both sides of the gap being similar in optical
depth, suggesting a change in particle properties on opposite
sides of the gap.

the other shows a weak and relatively narrow ‘horn’ (and a spurious transmis-

sion spike).

These horns are caused by light scattered from ring material in the regions

close to the gaps, as will be explained in the next section. The decline with

distance from the edge could be caused both by less ring material contributing

to the scattering (as the VIMS pixel only has an angular size of a fraction of a
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Figure 4.5: Closeup of an occultation plot showing transmission through
Saturn’s rings as a function of radius (using the Rev. 100 γ Cru-
cis occultation), comparing the outer edges of the Encke (top)
and Huygens (bottom) Gaps. Note that the Encke Gap’s ‘horn’
has a gradual decline over most of the plot, while the Huygens
Gap ‘horn’ (and that of the outer Huygens (‘Strange’) ringlet,
both are more peaky and narrower in appearance.

milliradian), or a phase function with less scattering at large-angles. Modeling

both the phase function of a population of ring particles and the scattered flux

observed given the phase function and geometry of the rings as seen by Cassini

will be discussed in the next section.

Astute readers may note that we observe these horns in the same gaps we

use for calibrating the data. Thus, our ‘unocculted’ starlight, if measured too

close to a ring edge, could include a small fraction of diffracted light, making

it brighter than the actual unocculted star. We chose to do this because long-

period drift in the ‘baseline’ signal (visible as slow shifts in mean DN in ‘clear’
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areas outside of the rings, as well as a difference between ‘outside’ and ‘inside’

(or ‘ingress’ and ‘egress’) measurements of stellar brightness) meant that a cal-

ibration well outside or inside the rings will only be useful to calibrate for the

outer A Ring or inner C Ring, respectively. We attempt to minimize the amount

of diffracted light inadvertently included by measuring ‘baseline’ levels only in

the middle of the widest gaps. As the strength of the ‘horns’ declines with dis-

tance, the middle of wide gaps (such as the Huygens Gap between the Huygens

Ringlet and the B Ring Edge, as shown in Figure 4.2), will have returned to the

baseline level. We can confirm this a priori with modeling (see Section 4.3.1).

4.3 Theory

4.3.1 Scattering Theory

The intensity of diffracted light depends on the angle from the incident beam,

with a characteristic scattering angle of θ ∼ λ/2a. Thus we should consider

the angular scales of the problem before delving into a detailed model. The

minimum angle observed is set by the sample spacing, and is on the order of

a microradian. The maximum angle can be set by the smaller of the gap size

or the pixel size. VIMS is operated in high-resolution mode, with rectangular

pixels of 0.25 by 0.5 milliradians. Gaps in the rings can range from tens to several

hundreds of kilometers. Observed from the distance of Cassini, typically half a

million kilometers from the rings; this gives us angles as large as several tenths

of a milliradians, comparable to the VIMS pixel size.

At 2.9 µm, microradians to tenths of miliradians correspond, by the charac-
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teristic diffraction angle, θ ∼ λ/2a, to ring particle radii from several millimeters

to ∼ 1 meter, with the most sensitivity to centimeter- and decimeter-sized ring

particles. As the ring particle-size distribution extends beyond this on the up-

per end (Zebker et al., 1985; French and Nicholson, 2000; Marouf et al., 2008),

and on the lower end in some regions of the rings (Harbison et al., 2013), our

observations most strongly constrain the slope of the particle-size distribution

(or the power-law index, q) between these limits.

Figure 4.6 shows both the scale of this experiment and previous occultation

work done in the infrared (red and orange shaded regions) and radio (magenta

line and shaded region). The fields of view, pixel sizes and wavelength ranges

of the Cassini ISS (green shaded area) are included for comparison. In this plot,

particle radius (a) is on the horizontal axis, and characteristic diffraction angle

(θ) on the vertical. Note that lines of equal wavelength cut diagonally from

upper-left to lower right, as θ = λ/2a.

Previous work using radio occultations, done by the Voyager and Cassini

RSS teams (Zebker et al., 1985; Marouf et al., 2008), could measure ring parti-

cles from ∼ 1 m to tens of meters size range (magenta shaded region), using

the Doppler shift imparted by the rings to separate the scattered signal from

the direct – thus, there were few limits placed on the angular resolution. Ra-

dio occultations were also used to measure the rings’ differential optical depth

(Zebker et al., 1985; Marouf et al., 2008), but as this is not a matter of forward-

scattering, the magenta horizontal line marking the particle radii observed is

near the top of the plot.

The Earth-based occultation of 28 Sgr (orange region) covered smaller par-

ticles (from ∼ 1 cm to tens of meters) than the radio occultations, due to its

107



Figure 4.6: A plot of the various diffraction experiments for measuring
particle size, in terms of particle radius versus characteristic
scattering angle, θ = λ/2a. In this parameter space, when plot-
ted on a log-log plot, the characteristic diffraction angle at a
given wavelength makes lines slanting from upper left to lower
right. The Voyager (Zebker et al., 1985) and Cassini (Marouf
et al., 2008) radio occultations; the 28 Sgr (French and Nichol-
son, 2000) stellar occultation and VIMS solar occultations are
included, as are several angular scales relevant to this work
(the angular width of a gap in the rings, and the angular dis-
tance a star moves between VIMS samples during an occulta-
tion). Finally, the scales of Cassini’s Imaging Science Subsys-
tem (ISS) field of view and pixels are included for comparison.
Despite all work being in the radio and infrared, the differing
angular scales cover a size range from hundreds of microns to
tens of meters. See the text for more details.
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shorter wavelength, despite being limited by the angular size of the aperture (3

arcseconds, or 15 micro radians) the starlight was collected in. Previous work

using solar occupations observed by VIMS (Harbison et al., 2013) (upper red

shaded region), though it used similar wavelengths to the 28 Sgr occultation,

had a larger aperture (images were 6 miliradians across), so was sensitive to

particles down to ∼ 100 µm in radius. However, the VIMS pixel (and the fact

the Sun is not a point source in VIMS) limited their sensitivity to particles larger

than ∼ 1 cm.

In this work (lower red shaded region), our ’aperture’ is the VIMS pixel,

making our upper limit on particle radius the same as Harbison et al.’s lower

limit. The apparent angular size of the particular gap in the rings as seen from

Cassini during the occultation also limits our sensitivity to small ring particles;

a typical large gap (such as the Encke or Huygens Gaps) as seen by Cassini

is marked with a black dashed line, and is comparable to a VIMS pixel. Our

own upper limit on particle size is dependent on the angular distance the star

appears to move between data points, and a typical value is set as the lower

limit of the chart. While the shaded area extends to particle sizes of several

meters, we would consider this an optimistic estimate, as those ring particles’

scattered light would appear in only a few data-points.

To model the observed scattered light, we assume a thin homogenous ring

where multiple-order scattering effects are not present, so can use the model

outlined in previous work. French and Nicholson (2000) and Harbison et al.

(2013) include a more detailed discussion of calculating the phase function and

deriving the angle-dependent intensity, including approximations to make the

problem more tractable for integration over a broad particle-size range. We will
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summarize here.

Given a power-law size distribution of particles sized between amin and amax

and differential power-law index q (i.e. dn ∝ a−q da), the single-scattering phase

function is

P (θ) =
4
α

sinq−5 θ

∫ zmax

zmin

z2−qJ1 (z)2 dz (4.1)

where x = 2πa/λ, z = x sin θ and the dimensionless normalization parameter α is

α =


ln amax

amin
q = 3

x3−q
max−x3−q

min
3−q q , 3

(4.2)

P is normalized so that
∮

P dΩ = 4π. This model has singularities at q = 2 and

5, but given that previous work finds that q ≈ 3 (Zebker et al., 1985; French and

Nicholson, 2000; Marouf et al., 2008), that should not pose a problem. The scat-

tered light flux in a given observation is then calculated from the phase function

by the equation

F = F0
τ

4πµ
e−τ/µ 〈$0〉

∫
P (θ) dΩ, (4.3)

where F0 is the incident flux, τ is the extinction optical depth (and typically

twice the geometric optical depth for macroscopic particles), µ = sin B (where B

is the incident angle of the starlight on the rings), and 〈$0〉 is the mean single-

scattering albedo (0.5 for macroscopic particles).

Equation 4.1 is computationally expensive to integrate due to the Bessel

function and the order of magnitude range between the integral’s limits, and can

be approximated in three angular regimes (the small, medium and large-angle
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scattering regimes) bounded by the minimum characteristic diffraction angle,

θ1 = 0.5λ/amax, and the maximum characteristic diffraction angle, θ2 = 0.5λ/amin.

For the near-infrared (λ ∼ 3µm) and particles ranging from meter-sized down

to millimeters, this gives us a minimum characteristic diffraction angle in the

microradians and a maximum characteristic diffraction angle in the tenths of

milliradians, meaning that, unlike in the case of solar occultations (Harbison

et al., 2013), medium-angle scattering will be most prominent, with possible

contributions from large-angle scattering, especially if a|min . 1 cm. small-angle

scattering (i.e. θ < θ1) may be relevant in calculating the height of the ‘horns’,

but should not be relevant for most data.

In the medium-angle case (i.e., θ1 � θ � θ2) , the dominant sources of scat-

tered light at a given angle are those particles whose size corresponds to the

characteristic diffraction angle at that radius. Approximating the integral in

Equation 4.1 gives

P (θ) ≈
4
α

(sin θ)q−5
J∞0 (q) , (4.4)

where J∞0 (q) is equal to the integral
∫ ∞

0
z2−qJ1 (z)2 dz, which is nearly constant

over the range of 2 ≤ q ≤ 5, except when q approaches 2 or 5. While the bounds

of the particle-size distribution are included in calculating α, they have only a

weak effect on the value of P, provided that q ∼ 3. q is the dominant factor

defining the particle-size distribution that controls P in this size regime.

If we choose amax and amin based on previous studies, then only one parame-

ter (q, the power-law index) need be fitted at each edge. This assumption should

be tested in high optical depth regions (such as much of the A and B rings)

where aggregates exist that would fall outside a normal power-law size distri-
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bution (Salo, 1992), but for optically thin regions such as the Cassini Division or

C ring, where the ring is expected to remain relatively uniform, it should be a

good assumption.

In the large-angle case (i.e., θ > θ2), the phase function is set mostly by the

tails of the smallest particles’ diffraction cones. Thus amin (in the form of xmin)

becomes an important term, as we can see in the approximation

P (θ) ≈
4
πα

(sin θ)−3 x2−q
min

q − 2
, θ > θ2. (4.5)

Similarly, in the small-angle case, the phase function is dominated by the

largest particles with the narrowest diffraction cones, and amax (or xmax) becomes

the critical factor, as shown in

P (θ) ≈
1
α

x5−q
max

5 − q
, θ < θ1. (4.6)

In the case of solar occultations observed by VIMS, large-angle scattering

dominates and the amount of scattering observed best constrains amin (Harbi-

son et al., 2013), whereas radio scattering experiments are in the small-angle

regime and best constrain amax at several meters (as the mean scattering angles

are much smaller than the beam size at the centimeter wavelengths used in ra-

dio occultations).
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4.3.2 Occultation Geometry

In order to transform a function giving the intensity of diffracted light at a given

angle into a measure of the flux received by VIMS, we need to integrate over

the VIMS field of view filled with ring material, all at various angles, θ, from

the source star. Thus, we need to know how much of the nearby ring VIMS is

seeing as its optics follow the star into the gap.

We calculated the geometry of the observations from the SPICE kernels and

the reconstructed position of Cassini at the time of the observations, as de-

scribed in the previous section. From this reconstruction, we know that the

Cassini spacecraft is at distance rC from the center of the planet, and inertial

longitude λC, and latitude, B′. The star’s position in the sky – specifically the

star’s declination relative to Saturn’s equator, B, and its longitude, λ? are also

known. We are also able to calculate the set of radii r and longitudes λ mark-

ing the star’s projected position on the ring plane, as seen by Cassini. As VIMS

stellar occultations are, in part, the best constraint on the locations of ring edges

and ringlets, and have revealed that some ringlets have complex non-circular

behavior (Hedman et al., 2010b), we measure the position of a ring edge, re,

based on where the transmission goes from below to above 1. This finds the

local boundary of the ring material, without requiring a general model of the

ring edge or ringlet’s position.

We can then use a coordinate system centered on Saturn, with the planet’s

ring plane defining z = 0 (and the north pole defining the z axis) and the lon-

gitude of the star marking the positive x axis. Figure 4.7 shows the occultation

geometry in this coordinate system. The star is in the direction defined by the

normal vector (cos B, 0, sin B), the spacecraft is at (rC cos φC cos B′, rC sin φC cos B′,
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Figure 4.7: Diagram showing occultation geometry, with a top (a) and side
(b) view, in a coordinate system where the ring plane defines
the plane z = 0 (with North in the positive-z direction), and the
direction to the star in that plane defines the positive-x axis.
Cassini’s position (black hexagon), Cassini’s line of sight (gray
arrow), the location where Cassini’s line of sight to the star
crosses the ring plane (gray star), and a ring edge (black circle
in the top plot) are all marked, as are the angles defining these
locations. The axes of the sky-plane coordinates to determine
projected angular distances in VIMS field of view are shown as
dotted lines.
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rC sin B′) where φC is the longitude of Cassini relative to the star. The ring edge

near the occultation track across the rings is then at (re cos φe, re sin φe, 0), where

φe is again measured from the stellar direction’s projection into the ring plane.

Even though many edges are non-circular, for such small pieces of the rings, a

circular edge is a good approximation. The projected location of the star on the

ring plane for each observation is then written as (xn, yn, 0).

In order to observe the ring edge as seen by Cassini in projection, which

we need to calculate angular distances from the star, we need to transform the

coordinate system from the Saturnocentric one to a Cassini-centric one that will

give us the view in the sky-plane, and, thus, angular positions of any point

relative to any other point on Cassini’s ‘sky’. We assume that the star is centered

in VIMS’s field of view, and that the angles of interest (which are well under a

milliradian) allow a ‘flat’ coordinate system to be used instead of a spherical

one. We place the star at (0,0) in the sky ‘plane’, and define axes f and g such

that the g axis is in the x-z plane (one with a fixed y coordinate), perpendicular

to the direction towards the star, and the f axis is parallel to the y axis. In Figure

4.7, we show the new f and g axes as dashed lines (in the top frame, the f axis

would be projected down to the line-of-sight to the star; in the bottom frame,

the g axis would be coming straight out of the page).

Thus, the coordinate transform (a translation, then a rotation about the y/ f

axis by B) is

f = y − yn (4.7)

g = z cos B − (x − xn) sin B (4.8)

115



where the coordinates (xn, yn) mark the instantaneous stellar position projected

onto the ring plane. The ring edge becomes in this coordinate system

fe = re sin φe − rC sin φC cos B′ (4.9)

ge = −re cos φe sin B − rC sin B′ cos B + rC cos φC cos B′ sin B (4.10)

The location of the edge closest to the origin of the f − g coordinate system

(or the projected location of the star on the ring plane as seen by Cassini) can

be found by minimizing
√

f 2 + g2 (or
(

f 2 + g2
)
, which has a location in the same

minimum for real values of f and g).

The derivative is

∂
(

f 2
e + g2

e

)
2∂φe

= fe
∂ fe

∂φe
+ ge

∂ge

∂φe
= 0, (4.11)

or

0 = 0.5re sin 2φe cos2 B − rn sin φn cos φe + rn cos φn sin φe cos B′ sin B. (4.12)

This can be directly (if tediously) solved for φe, but it’s easier to make the

assumption that the difference between (rn, φn) and (re, φe) is small and re = rn+∆r

and φe = φn+∆φ, where ∆r and ∆φ are both small (∆r � re; ∆φ � 1). In particular,

the last assumption means that cos ∆φ ≈ 1 and sin ∆φ ≈ ∆φ, so the sums of angles

become

sin (φn + ∆φ) = sin φn + ∆φ cos φn (4.13)
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cos (φn + ∆φ) = cos φn − ∆φ sin φn. (4.14)

The coordinates of the edge near the star then become

fe = rn∆φ cos φn + ∆r sin φn (4.15)

ge = sin B (rn∆φ sin φn − ∆r cos φn) . (4.16)

From this, we learn that the minimum distance from the origin (the star) to

the ring edge is

ρ =
∆r sin B√

cos2 φn + sin2 B sin2 φn

(4.17)

The angle ρ subtends on Cassini’s sky is θe ≈ ρ/∆, where ∆ is the distance

from Cassini to the observation location.

The actual Cassini VIMS pixel is a rectangle of 0.5 by 0.25 milliradians. We

approximate the Cassini VIMS pixel as a circular aperture θa = 0.2 mrad in ra-

dius, as this will take up the same area on the sky as the actual 0.5 × 0.25 mrad

pixel. We assume that the star is located in the center of the pixel (as its exact

position within the pixel is not known) and that the ring edge is a linear feature

that can be parameterized in the polar (θ-ψ) coordinate system as θ sinψ = θe.

If we integrate the scattering function over the pixel, we should return the ex-

pected flux measured for a given set of ring properties. Equation 4.3 becomes

F = F0
τ

4πµ
e−τ/µ

∫ π

0

∫ θa

θe/ sinψ
〈$0〉 P (θ) θ dθ dψ (4.18)
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which we can evaluate by the methods mentioned Section 4.3.1, assuming that

the scattering properties of the ring are uniform over the VIMS aperture. Should

we wish to include multiple edges in our model, the scattered flux from each

edge may be summed. If we wish to model a ringlet with a finite width (two

edges at r1 and r2), we can calculate two minimum angles, θe1 and θe2, and de-

scribe the ringlet as bounded by θ sinψ = θe1 and θ sinψ = θe2, and integrate over

the area filled by ringlet material. In fact, mathematically this is equivalent to

the difference between two integrals: thus, if r1 is the near edge and r2 the far

edge to the star, the flux from the ringlet is the same as the flux from a ring

located at r1 and beyond minus the flux from a ring located at r2 and beyond.

4.4 Computation

Now that we have a model for the flux observed at each point in the light curve

(Equation 4.18), based on parameters of a given particle-size model (amin, amax,

q, τ) and the measured locations of rings or ringlets, we can produce a model

of transmission versus radius and then find the best fit to the data. Tests of the

model show roughly what we should expect when fitting the data.

A simple test of particle size is shown in Figure 4.8, where, instead of the full

model, a uniform distribution of particles of a single size is used. The effect of

having a sheet of material, rather than material at a single location changes the

function shape from the (J0z/z)2 of a single spherical ring particle, and smooths

over the peaks and troughs of the Bessel function. As expected, the larger the

particles, the narrower the ‘horns’ of the transmission. The effect of the aperture

we chose is also visible here; the 3-mm radius particles are diffracting a fair
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Figure 4.8: Plot of transmission (at λ = 2.9µm) versus distance from a ring
edge when Cassini is 500,000 km away, for a ring with τ/µ = 1
and made of uniform particles of a given radius, from a = 1
mm (red) to a = 3 dm (magenta). As expected, larger parti-
cles produce a narrower ‘horn’ around the gap, as they cannot
scatter light far from the ring edge. There is also a transition
between 3 mm and 1 cm sized particles when the diffraction
cone becomes smaller than the model’s aperture (θ = 0.2 milli-
radians is 100 km projected on the ring plane here); the shape
of the horn becomes more ‘peaky’ as less scattered light is lost
near the ring edge.

amount of light outside the aperture, while particles of 1 cm and bigger are

diffracting nearly all starlight within the VIMS aperture.

In Figure 4.9, we test the full model, using a fixed amin, amax and τ, and a

varying q. Steepening the power-law index places more small particles into

the ring relative to big particles, and having a similar effect as decreasing the

particle size did in Figure 4.8 – the horns get broader and less ‘peaky’.
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Figure 4.9: Plot of transmission versus distance from a ring edge when
Cassini is 500,000 km away, for a ringlet with τ/µ = 1 and parti-
cle radii ranging from 5 mm ≤ a ≤ 10 m with a power-law index
(q) from 2.5 (red) to 4.5 (magenta). A steeper power-law in-
dex produces a wider, less peaky horn than a shallow one. We
do not see the simple θq−5 dependence (distance corresponds
to angle from the gap edge) from Equation 4.4 because of the
changing area of ‘optically active’ ring material as the angular
distance between the star and the edge of the ring increases.

We test our ringlet geometry model in Figure 4.10, using a fixed optical depth

and particle-size distribution, but changing our semi-infinite ring to a ringlet of

a finite width. To first order, this acts as a scaling parameter on the ‘horns’: nar-

rower ringlets contain less material than broad ones, and have smaller horns.

Beyond about 50-100 km, increasing ringlet width has no effect on the diffrac-

tion seen; at that point, the angular distance between the far edge and the star is

too great to affect the diffraction seen in the gap. This also sets the limit of what

region of the rings this technique can sample for all gaps.
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Figure 4.10: Plot of transmission versus distance from the near ring edge
when Cassini is 500,000 km away, for a ringlet with τ/µ = 1
and particle radii ranging from 5 mm ≤ a ≤ 10 m, a power-law
index (q) of 3.0, and a width ranging from 1km to 100km. Nar-
row ringlets produce less scattering due to less area covered,
despite having the same particle distribution and surface den-
sity. Ring material further than 100 km from the edge falls
outside the VIMS aperture even when the star is at the edge
and does not influence the diffraction horn; a 100 km wide
ringlet is effectively the same as a semi-infinite ring. This also
identifies the limit of what is sampled by the model.

As we begin to fit our model to data, we must chose which parameters to

fix and which to leave free. Because, as shown in Figure 4.6, our technique is

limited to ring particles that are less than about a meter, and previous studies

(Zebker et al., 1985; French and Nicholson, 2000; Marouf et al., 2008) show an

effective upper cutoff in the particle size-distribution of 5 to 20 m, we choose to

fix amax = 10 m at all edges. Our models, as shown in Figure 4.9, indicate that

the power-law index q strongly affects the observed signal, so q is fitted for all
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edges.

The effect of amin is less clear. Since much of the scattered light is lost from

the VIMS aperture, the model is relatively insensitive to amin < 1 cm, as tested

by Figure 4.8’s weak horns for particles smaller than 1 cm. Previous studies

(Harbison et al., 2013) suggest a particle size cutoff in the millimeter regime for

the C and A Rings, so, for the moment, we choose to fix amin = 5 mm. However,

in Section 4.6, we will re-examine that assumption.

Finally, we can directly measure τ in broad regions of the rings, so for outer

and inner edges of gaps, τ is fixed at an extinction optical depth calculated

by measuring the observed optical depth and taking twice its value (note our

previous discussion on the difference between extinction and geometric opti-

cal depths). For ringlets, especially narrow ones, the measured τ may not be

the true geometric optical depth or representative of a ringlet with a complex

optical depth profile, so it is left as a free parameter. In addition, due to the Her-

schel Ringlet’s complicated optical depth profile, it was modeled as two adja-

cent ringlets. Gaps that have dusty ringlets, like the Encke Gap, were not mod-

eled in the occultations where these azimuthally-variable features are clearly

visible.

The measured error in the data, σ, was calculated based on the observed

point-to-point variation of starlight outside of the ring, leading to a χ2 statistic

of

χ2 =
1
σ2

∑
(Tobs. (r) − Tmodel (r))2 , (4.19)

where Tmodel (r) is the transmission calculated at each observation point, given
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the ring geometry, optical depth, and particle-size distribution model parame-

ters, and Tobs (r) is the observed transmission profile. The sum is taken over the

entire gap for purposes of finding the best fit model; however, this calculation

for χ2 may be too low for wide gaps (where observations near the middle of the

gap may contain little scattered light, such that Tobs. ≈ 1 for many models).

Cosmic ray hits, which can produce a single pixel ‘spike’ in the transmis-

sion, were removed from the set of observations to be fit by identifying all data

points that were more than 5σ away from an initial ‘guess’ model and were not

close to a gap or ringlet. This leaves some smaller cosmic rays that could affect

the fitting procedure, but are difficult to distinguish from an actual relatively

steep ‘horn’, but does remove the worst offenders. We also did not account for

baseline wander – variations in the baseline level of the star due to motion in

the field of view. As we do not use all gaps for normalization (as many gaps

are not narrow enough to be confident that any part is clear of scattered light),

there is the possibility that the ’actual’ baseline is smaller or larger than the

value we chosen. However, we do measure baselines from within the ring re-

gion we are studying (inside the C Ring and the Maxwell Gap (as far from the

edges and ringlet as possible) for C Ring gaps; between the Huygens Ringlet

and outer edge of the B ring and between the Laplace Ringlet and inner edge

of the Laplace Gap for Cassini Division gaps, and beyond the A Ring for outer

A ring gaps). We also can observe the baseline outside the rings for significant

wander on these distance scales (from our baseline measurements to the gaps

in question) and avoid using occultations where such can be seen.

For gaps with dense ringlets (the Huygens, Herschel, Laplace, Maxwell and

Colombo gaps), the routine MPFIT (Markwardt, 2009) was used to minimize the
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χ2 of a fit by adjusting qs for each edge and ringlet and τ for each ringlet. For

gaps without ringlets (the Encke, Keeler, Jeffreys, Russell, Barnard, Bessel, and

Dawes gaps and the outer edge of the A Ring), MPFIT proved intractable and

would return the input q without modification. Given the limited number of

parameters and the lack of a complicated phase-space, the q for each edge was

found by assuming a single minimum in χ2 in the parameter space and using a

downhill method to search over the one- or two-dimensional parameter space

of 2.2 ≤ q ≤ 4.8.

The Bond and Kuiper Gaps were not fit, due to the relative narrowness of

these gaps. The Jeffreys, Russell, Barnard and Bessel gaps were not always fit;

the goodness of fit of the best models for the Huygens, Herschel and Laplace

Gaps was used as a barometer for the quality of the data in the Cassini Divi-

sion, and only the higher quality data had all gaps (excluding the Kuiper, as

mentioned previously) fit.

Thus, we fit the following variations of our model to the corresponding

edges:

• A single parameter (q) model for the A Ring’s outer edge.

• A two-parameter model (qin, qout) model for the Encke, Keeler, Jeffreys,

Russell, Barnard, Bessel, and Dawes gaps.

• A four-parameter model (qin, qout, qringlet, τringlet) for the Colombo, Maxwell,

and Laplace gaps.

• A six-parameter model (qin, qout, qringlet1, τringlet1, qringlet2, τringlet2) for the Huy-

gens and Herschel Gaps (the Herschel Ringlet was treated as two adjacent

ringlets).
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4.5 Initial Results

4.5.1 A Ring

The edges used in the A Ring are those of the Encke and Keeler Gaps and the

outer edge of the A ring, giving a total of five radial samples of the power-law

index, q. Because gaps are only present in the outer regions of the A ring, the

inner and middle A ring are unfortunately not sampled. The A Ring was well

covered by occultations, enough that we chose to consider only those occulta-

tions with sin |B| ≥ 2/3. This limit was chosen due to possible effects of the A

Ring’s self-gravity wakes, linear aggregates of ring material tens of meters in

scale that invalidate our assumption of a homogenous ring (Salo, 1992). These

wakes have two effects: they complicate the calculation of the optical depth,

and they introduce an additional effect based on the longitude of the obser-

vation geometry (Colwell et al., 2006; Hedman et al., 2007c). These geometric

effects are minimized for very open occultations, where the wake orientation

has less effect.

Examples of fits to A Ring edges are shown in Figures 4.11 and 4.12. As can

be seen in these two figures, the ‘horns’, within the gaps are quite well described

by the model when the correct parameters are found.

The mean values of the best-fit q found in each occultation for both edges of

the Encke gap and the inner edge of the Keeler Gap are shown in Figure 4.13 and

listed in Table 4.1. These fits are consistent with a similar distribution of parti-

cles near all three edges, suggesting that the trans-Encke region and the region

immediately interior to the Encke Gap are similar. The Voyager RSS models
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Figure 4.11: Occultation plot centered on the Encke Gap (in the outer A
Ring), showing transmission as a function of radius (black
line) using the Rev. 100 γ Crucis occultation, and calibrated as
described in the text, with the best-fit model (plotted in red).
We fixed amax = 10 m and amin = 5 mm and fitted q at each
edge.

Edge/Ringlet q # Fits
A OER 3.48 ± 0.12 8
Kee OEG 3.47 ± 0.03 10
Kee IEG 2.97 ± 0.05 10
Enc OEG 3.02 ± 0.06 4
Enc IEG 2.89 ± 0.04 4

Table 4.1: Mean best-fit power-law index for A Ring gap edges, assum-
ing a particle-size distribution from 5 mm to 10 m. The number
of occultations used to calculate the mean is listed; occultations
that were poorly fitted (χ2 > 2 per degree of freedom) or were
at shallow inclination angles | sin B| < 2/3 were not included in
the means. Edges are labeled with IEG (inner edge of gap), OEG
(outer edge of gap) and OER (outer edge of ring).
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Figure 4.12: Occultation plot centered on the Keeler Gap (in the outer A
Ring), showing transmission as a function of radius (black
line) using the Rev. 100 γ Crucis occultation, and calibrated
as described in the text, with the best-fit model (plotted in
red). We fixed amax = 10 m and amin = 5 mm and fitted q at
each edge. The difference in power-law index on either side
of the gap is visible as asymmetry in both the data and model,
and even the middle of this narrow gap shows transmission
greater than unity.

(Zebker et al., 1985) show a trend of increasing power-law index with radius,

but the measurements of the trans-Encke region and the region immediately in-

terior to the Encke gap are consistent with the corresponding gap edges. The 28

Sgr models (French and Nicholson, 2000) of the outer A Ring (outside the Encke

Gap) are slightly too shallow (q = 2.9) to agree with our models.

The trans-Keeler region was too narrow to be sampled by previous ex-

periments, though there is photometric (Dones et al., 1993) and spectroscopic

(Nicholson et al., 2008) evidence that it is distinct from the rest of the A Ring, and
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Figure 4.13: Mean modeled power-law index of the A ring gaps and the
edge of the A ring, plotted versus mean radius of the gap
edges. Error bars are the 1σ scatter from the ensemble of
model results. Gaps are labeled with IEG (inner edge of gap),
OEG (outer edge of gap) and OER (outer edge of ring). Re-
sults from the Voyager RSS (red line (Zebker et al., 1985) )
and 28 Sgr (blue line (French and Nicholson, 2000)) occulta-
tions are included for comparison. Each panel covers a radial
range of 1000 km. An optical depth profile (derived from the
Rev. 100 γ Crucis occultation) of the outer A Ring (magenta
line, with axis on right) is included to show positions of edges
and the relative optical depth of the ring.

from the neighboring region between the Encke and Keeler Gaps. The asymme-

try between the particle size-distribution in trans-Keeler and neighboring re-

gions is even seen clearly in the data, such as in Figure 4.12. Our models show

a remarkably steep power-law index for the outer edge of the Keeler Gap and

the outer edge of the A Ring, clearly distinguishing this region from the rest of

the A Ring edges studied.
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The self gravity wakes make modeling this region difficult, as they vio-

late the assumption of a homogenous ring, especially at low inclination angles

where azimuthal variability becomes important. However, Lewis and Stewart

(2005) predicted that regular passes by the embedded satellites Pan and Daph-

nis would disrupt self-gravity wakes near the Keeler and Encke Gaps, exactly

the regions we are studying, making this small region of the A Ring less aggre-

gated and well-modeled without including the effects of wakes.

Introducing self-gravity wakes affects the number of ring particles interact-

ing with starlight. In a homogenous ring, the optical depth can be simply con-

verted to the fraction of filled cross-sectional area of the ring, which then can be

used to normalize a size distribution. However, in a wake-filled ring, some of

the absorption is due to opaque wakes made of ring particle aggregates, with

the remaining due to individual ring particles in the unresolved ‘gaps’ between

the wakes. Thus the measured optical depth is greater than the effective optical

depth that contributes the diffracted flux, by an amount that depends on wake

properties and observational geometry.

In our model of the A Ring edges, we do not fit for the optical depth of

free particles, so if our optical depth is incorrect, we will see the effects in q,

the only free parameter, or in a larger χ2, or both. Using Equation 4.3, we see

that optical depth should primarily be a scaling factor of the excess transmis-

sion, rather than affecting the shape. The distribution of scattered light reaches

a maximum at τ/µ = 1, with lower and higher optical depths producing less

scattering. Using a value of τ closer to µ than actually exists in the interwake

regions would cause the model to produce bigger horns, which would lead to

fitting a shallower power-law index than exists to bring the horns back down to
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those observed; the reverse would happen if a smaller optical depth was input.

Either way, the shape of the horns would be incorrect, resulting in a poorer fit.

As a test, we ran fits of the Keeler Gap using a self-gravity wake model de-

rived from Hedman et al. (2007c), as adapted for the solar occultation model in

Harbison et al. (2013). Wake widths and heights were taken from Nicholson and

Hedman (2010), allowing us to calculate the optical depth of interwake particles

based on the ring transmission we measured. As expected, this lowered the op-

tical depth in free particles able to diffract starlight at angles we can measure, as

approximately 30% of the ring area illuminated was covered in opaque wakes

too large to diffract light at these angles. Unlike the situation faced by Harbi-

son et al. (2013), the occultations resulted in very little difference in azimuth.

As expected for a dense ring (τ & 1), including self-gravity wakes steepened the

power-law distribution index even further to 4.17 ± 0.11 on the inner edge of the

Keeler Gap and 4.29 ± 0.08 on the outer edge of the Keeler Gap). While some

occultations are better fit by a model with wakes, other occultations were only

poorly-fit. The net effect seems to be that adding wakes produces no overall

improvement in our model fits.

Given Lewis and Stewart’s theories of wake disruption (2005), it may be that

the time since Daphnis’s last close approach may be a hidden factor in this:

the more time since Daphnis’s gravity perturbed the region, the more time self-

gravity wakes have to reform. However, given that the wakeless model pro-

duces a tight constraint on the power-law index across the occultations mea-

sured, and describes the data well overall, adding wakes to our model, espe-

cially at higher incidence angles, does not appear to be necessary to describe

the ring particle-size distribution. This may even extend to the edge of the A
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Ring, which also is well fit without including the effects of wakes, though it is

not mentioned in Lewis and Stewart’s work.

4.5.2 Cassini Division and B Ring Edge

Figure 4.14: Diagram showing the named gaps of the Cassini Division,
from the Huygens Gap at the inner edge of the Cassini Di-
vision to the Barnard and Bessel Gaps right before the Cassini
Division ramp (not shown) that marks the outer edge of the
Cassini Division. The Herschel and Laplace Gaps have obvi-
ous ringlets named for the gaps they are located in, while the
Huygens Gap has two obvious ringlets, the wide Huygens
Ringlet and the narrow outer Huygens/’Strange’ ringlet.

The gaps in the Cassini Division offer a broad coverage of the region from the

Huygens Gap at the inner edge out to the Barnard and Bessel Gaps, as shown

in the diagram in Figure 4.14. The one area sampled well by radio science, the

outer Cassini Division (or the Cassini Division ramp), lacks the gaps of the rest
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of this ring region; making our results complementary (but difficult to compare)

with RSS models. Because of the generally low optical depths in this region, we

also made an effort to include more of the low-incidence angle occultations,

giving anywhere from 2 to 23 cuts with good fits to include in our analysis.

Note that these low incidence angle occultation often showed diffuse ringlets in

some gaps, which had to be manually removed from the χ2 calculations.

Figure 4.15: Mean modeled power-law index of the Cassini Division ring
gaps, plotted versus mean radius of the gap edges. Error bars
are the 1σ error from the ensemble of model results, and gap
edges that failed to return multiple good (reduced χ2 of under
2) fits are omitted. Gaps are labeled with IEG (inner edge of
gap), OEG (outer edge of gap) and OER (outer edge of ring).
Results from the 28 Sgr (blue line, (French and Nicholson,
2000)) occultation are included for comparison. An optical
depth profile (derived from the Rev. 100 γ Crucis occultation)
of the Cassini Division (magenta line, with axis on right) is
included to show positions of edges and the relative optical
depth of the ring.
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Edge/Ringlet q τ # Fits
(if applicable)

Bar OEG 2.95 ± 0.19 7
Bar IEG 2.82 ± 0.07 7
Bes OEG 2.5 2
Bes IEG 3.5 ± 1.0 2
Lap OEG 3.30 ± 0.12 12
Lap Ring 2.67 ± 0.04 1.12 ± 0.07 12
Lap IEG 2.69 ± 0.10 12
Jef OEG 2.81 ± 0.02 12
Jef IEG 2.62 ± 0.07 12
Rus OEG 2.73 ± 0.05 13
Rus IEG 2.64 ± 0.08 13
Her OEG 2.47 ± 0.14 3
Her OER 2.82 ± 0.03 0.26 ± 0.01 5
Her IER 3.75 ± 0.32 0.40 ± 0.02 5
Her IEG 2.40 ± 0.08 5
Huy OEG 2.74 ± 0.04 23
Strange Ring 3.59 ± 0.12 0.66± 0.08 24
Huy Ring 3.54 ± 0.11 1.71± 0.14 24
B OER 3.13 ± 0.15 20

Table 4.2: Mean best-fit power-law index for Cassini Division gap edges
and ringlets (including the outer edge of the B Ring), assum-
ing a particle-size distribution from 5 mm to 10 m. The num-
ber of occultations used to calculate the mean is listed; occul-
tations that were poorly fitted (χ2 > 2 per degree of freedom)
were omitted. Mean fitted optical depths are listed for ringlets,
though this mean does not account for any variation in optical
depth between occultations. Gaps are labeled with IEG (inner
edge of gap), OEG (outer edge of gap), while ringlets and rings
are labeled with IER (inner edge of ringlet), OER (outer edge of
ring(let)), or Ring (entire ringlet).
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The inner edge of the Huygens Gap is also the outer edge of the B ring,

an area of the rings agitated by the 2:1 Mimas resonance, and with complex

structure visible in images (Spitale and Porco, 2010). We find that q = 3.13 ±

0.15 at the outer edge of the B Ring, which is much steeper than the 28 Sgr

value of 2.75 (French and Nicholson, 2000) for the entire B Ring. Removing low-

inclination (B < 30◦) occultations from the sample, to account for reduced signal

to noise due to the B Ring’s opacity, raises this to 3.65±0.2, even farther away

from the 28 Sgr value. It may be, like the trans-Keeler region, the outermost 100

km or so of the B Ring is not representative of the ring as a whole.

The extremely steep power-law indices of the Huygens Ringlet (q = 3.54±

0.11) and the outer Huygens Gap ringlet (colloquially known as the ‘Strange

Ringlet’, and yielding q = 3.59± 0.12) are quite striking compared to the q of 2.75

reported by French and Nicholson (2000), and also seen by us for other edges,

especially the outer edge of the Huygens Gap (q = 2.74 ± 0.04). The Huygens

Ringlet is well-separated from both gap edges, and the mean q includes a large

number (24) of occultation cuts, so we have little reason to doubt these results.

The Strange Ringlet, while narrower, still shows distinct horns that can be fitted.

Figure 4.16 shows a sample fit of the Huygens Gap, where the Strange Ringlet

has more visible horns than the model seems to reflect. This seems to hold true

for many occultations.

Most of the other Cassini Division gaps and ringlets produce a value of q

consistent with the French and Nicholson (2000) value of 2.75, extending from

the outer edge of the Huygens Gap to at least the inner edge of the Laplace Gap

and the Laplace Ringlet. The inner edge of the Herschel Ringlet is an anomaly

in this region, being both steeper than average and either poorly constrained or

134



Figure 4.16: Occultation plot showing transmission through the Huygens
Gap in the Cassini Division as a function of radius (black line
using the Rev. 94 ε Muscae occultation), and calibrated as de-
scribed in the text, with the best-fit model (with fixed amax = 10
m and amin = 5 mm and fitted q at each edge and fitted q and
τ for each ringlet) plotted in red. In this particular occulta-
tion, the inner edge has little scattered signal to fit, unlike the
γ Crucis occultation shown in Figure 4.2, but the clear effects
of both ringlets can be seen.

variable. As a reminder, we chose to model the Herschel Ringlet as two sepa-

rate regions, due to its distinct shape in occultations, as shown in Figure 4.17.

As a result, we have parameters for the inner and outer edges. It is possible that

the inner ringlet is simply too narrow to be easily modeled, or that the more

complex transmission profile of the Herschel Ringlet is poorly handled by sim-

ply assuming a ringlet with two uniform steps in optical depth, or, conversely,

that it could easily be handled as a simple uniform ringlet. A sample fit can be

seen in Figure 4.18 where, despite the asymmetry of the ringlet’s optical depth
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Figure 4.17: Occultation plot showing transmission through the Herschel
Gap in the Cassini Division as a function of radius (black line
using the Rev. 94 ε Muscae occultation), and calibrated as de-
scribed in the text. The complex transmission profile of the
Herschel Ringlet (from 118,235 to 118,265 km) is clearly visi-
ble.

profile (not shown), the horns appear mostly symmetric.

The outer edge of the Laplace Gap may have the same problem as the Her-

schel Ringlet’s inner edge: the gap between the outer edge of the Laplace Gap

and the outer edge of the Laplace Ringlet is extremely narrow, meaning the

‘horn’ visible from the outer edge is cut off by the ringlet and its own horns,

as can be seen in in Figure 4.19. The ringlet can be constrained by its inner

‘horn’ which is in the broad inner part of the gap. The inner edge of the Bessel

gap provides little help – it is steep, like the outer edge of the Laplace Gap, but

poorly constrained as the Bessel Gap is narrow. Finally, there may be a rise to-

136



Figure 4.18: Occultation plot showing transmission through the Herschel
Gap in the Cassini Division as a function of radius (black line
using the Rev. 94 ε Muscae occultation), and calibrated as de-
scribed in the text, with the best-fit model (with fixed amax = 10
m and amin = 5 mm and fitted q at each edge and two fitted qs
and τs for the ringlet) plotted in red. The asymmetry of the
optical depth of the Herschel Ringlet, echoed in the model, is
not seen in the horns surrounding it.

wards q = 3.0 as seen in the outer edge of the Bessel Gap and both edges of

the Barnard Gap, but this is barely significant. It is worth noting that Zebker

et al. (1985) and Marouf et al. (2008) report a q of 2.75 for the Cassini Division

ramp, exterior to the Barnard Gap, the same as the value reported by French

and Nicholson (2000) for the entire Cassini Division, and similar to the mean

seen here from the Huygens Gap to the Laplace Gap.

We also see a curious local pattern: the outer edges of the Herschel, Russell,

Jeffreys, and Barnard Gaps have slightly steeper power-law indices than their
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Figure 4.19: Occultation plot showing transmission through the Laplace
Gap in the Cassini Division as a function of radius (black line
using the Rev. 94 ε Muscae occultation), and calibrated as de-
scribed in the text, with the best-fit model (with fixed amax = 10
m and amin = 5 mm and fitted q at each edge and fitted q and τ
for the ringlet) plotted in red. The narrow outer region of the
gap is not well fit here, or in any occultation, while the inner
edge borders a mostly empty portion of the ring, so diffraction
effects are weak in open occultations.

inner edges. As these Cassini Division gaps show a pattern of the inner edge

being eccentric and outer edge being circular (Hedman et al., 2007c), this pattern

bears further study. Bodrova et al. (2012) calculate the minimum size of free ring

particles theoretically based on collisional models. Based on their modeling, in

regions where inter-particle collisional velocities increase, as one would expect

near an eccentric ring edge, the minimum free particle size would decrease.

While naively one would expect that adding small particles would steepen

the particle-size distribution, the particles freed would be smaller than the usual
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ring particles in the Cassini Division. Thus, Bodrova et al.’s model would pre-

dict no change in the power-law index of the existing particles, but a drop in

amin. Our modeling of the Cassini Division does not account for a changing amin

(but see Section 4.6), but we can look for changes indirectly by considering what

a larger or smaller amin than the effective amin in the ring region does to the fitted

power-law index q.

Consider the 1/α factor in the equation for intermediate-angle scattering,

Equation 4.4. The only place amin appears in this equation is buried in 1/α. A

larger amin results in a larger 1/α. A larger q also results in a larger 1/α. So, if

we assume that our fitting is sensitive to the magnitude of the ‘horns’ (and thus,

the value of 1/α) first and the shape (set by the sinq−5 θ term) second, an incorrect

value of amin may change the best fit q slightly. If we make amin too large, then

the best-fit q will be smaller than the one using the correct amin in order to get

the same value of α. This would produce the effect observed, i.e., perturbed

edges where ring regions we expect to find smaller particles show a shallower

power-law index than unperturbed edges.

4.5.3 C Ring

The gaps in the C ring, shown in Figure 4.20 with the rest of the C Ring structure,

sample a variety of regions: the Colombo Gap (Figure 4.22) occurs in the inner

C Ring, while the Maxwell (Figure 4.24) and Dawes Gaps occur in the outer

portions of the C Ring, with the latter just interior to the C Ring ramp. Fewer

occultations are available in the C Ring, especially covering the Colombo Gap,

as most chord occultations do not pass this close to the planet. The mean power-
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Figure 4.20: Diagram showing the named gaps of the C Ring, with the
Colombo Gap (CG) in the inner C Ring, and the Maxwell
(MG), Bond (G2) and Dawes (G3) Gaps just interior to the C
Ring ramp in the outer C Ring. The Colombo, Maxwell and
Bond Gaps all have ringlets within them.

law indices in this section are based on between six and thirteen occultations.

In addition, the C Ring has a wide range of optical depths, with the majority of

the ring being relatively low in optical depth, but several ringlets (the Titan and

Maxwell Ringlets) being nearly opaque, as can be seen in Figure 4.20.

In addition, the gaps in the C Ring are often less sharp than those in the

Cassini Division or A Ring, adding an extra source of error to our models. Both

the Maxwell and Dawes Gaps have a plateau (a region of the C Ring with en-

hanced optical depth) directly interior to the gap edge, and the Colombo Gap

has a second fuzzy ringlet (R2) almost at the edge. These structures make the C
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Edge/Ringlet q τ # Fits
(if applicable)

Daw OEG 2.92 ± 0.11 7
Daw IEG 2.70 ± 0.08 7
Max OEG 2.71 ± 0.19 5
Max Ring 3.32 ± 0.22 3.6 ± 1.8 6
Max IEG 2.55 ± 0.11 5
Col OEG 2.81 ± 0.27 4
Col Ring 3.61 ± 0.27 5.8 ± 1.4 5
Col IEG 3.42 ± 0.32 2

Table 4.3: Mean best-fit power-law index for C Ring gap edges, assum-
ing a particle-size distribution from 5 mm to 10 m. The number
of occultations used to calculate the mean is listed; occultations
that were poorly fitted (χ2 > 2 per degree of freedom) or were at
shallow inclination angles | sin B| < 2/3 were not included in the
means. Mean fitted optical depths are listed for ringlets, though
this mean does not account for any variation in optical depth
between occultations. Gaps are labeled with IEG (inner edge of
gap), OEG (outer edge of gap), while ringlets are labeled with
Ring (entire ringlet).

Ring gaps unexpectedly challenging to fit, as the model relies on having a rel-

atively uniform sheet of ring material, and unobstructed sampling of the light

close to the gap edges – as mentioned when fitting the Laplace Gap in the pre-

vious section, a ringlet too close to an edge can cover the edge’s horn pattern.

Because the best occultations for the nearly opaque ringlets are not neces-

sarily the best for the usually far more diffuse edges of the gaps, we checked

for effects of inclination on the gap edges. To check that, we split the set of

occultations into two groups, ‘high inclination’ (sin B > 2/3) and ‘lower inclina-

tion’ (sin B < 2/3) and compared the mean best-fit q of each subsample. With

the exception of the inner edge of the Colombo Gap (where limited data meant

that only a single lower inclination occultation fit existed), the results appear

consistent with no difference in the data. However, there does appear to be a
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Figure 4.21: Mean modeled power-law index of the C ring gaps and the
edge of the C ring, plotted versus mean radius of the gap
edges. Error bars are the 1σ error from the ensemble of model
results. Gaps are labeled with IEG (inner edge of gap) and
OEG (outer edge of gap). Results from the Voyager RSS (red
line, (Zebker et al., 1985)) and 28 Sgr (blue line, (French and
Nicholson, 2000)) occultations are included for comparison.
Each panel covers 5,000 km in radius. An optical depth pro-
file (derived from the Rev. 100 γ Crucis occultation) of the C
Ring (magenta line, with axis on right) is included to show
positions of edges and the relative optical depth of the ring.

possible systematic trend in which those gap edges with shallower power-law

indices show steeper indices with inclination, while those with steeper indices

show the opposite effect.

Despite these sources of error, both edges of the Colombo Gap have a power-

law index consistent with the values of q = 3.1 quoted for the entire C Ring in

the 28 Sgr occultation (French and Nicholson, 2000) and q = 3.11 for the mid-
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Figure 4.22: Occultation plot showing transmission through the Colombo
Gap in the C Ring as a function of radius (black line using the
Rev. 89 γ Crucis occultation), and calibrated as described in
the text, with the best-fit model (with fixed amax = 10 m and
amin = 5 mm and fitted q at each edge and fitted q and τ for the
ringlet) plotted in red. The peculiar ringlet-like structure on
the inner edge of the gap (R2 in Colwell et al. (2009)) is shown
well here.

C Ring in the Voyager radio occultation (Zebker et al., 1985), albeit with large

uncertainties. The Titan Ringlet in the Colombo Gap has a steeper power-law

than the gap’s inner edge and all but the steepest values of q reported for the C

Ring in previous studies. Given the sizes on the error bars, and the unusually

high τ of the Titan Ringlet, this is not a strong constraint on the average power-

law index of the particle-size distribution of the inner C ring.

The Maxwell and Dawes Gaps benefited from more data and are better con-

strained. The power-law index of the outer edge of the Dawes Gap, q = 2.92 ±
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Figure 4.23: Plot of the mean best-fit power-law index for the gap edges
(excluding the ringlets) of the C Ring, to check for trends with
inclination of the occultation. The mean of the ‘higher incli-
nation’ (sin B > 2/3) subsample of occultation fits was plotted
versus the ‘lower inclination’ subsample. Except for the inner
Colombo Gap edge (which is derived from few occultations),
the results are consistent with inclination of the occultation
having a statistically insignificant effect on the best-fit power-
law index of the edge. However, there is a slight trend that
does not reach levels of statistical significance.

0.11, agrees with the Voyager RSS model of the C Ring ramp (q = 3.05) (Zebker

et al., 1985). The Maxwell ringlet’s power-law index also agrees with the 28 Sgr

C Ring model value of q = 3.1(French and Nicholson, 2000). However, the other

three gap edges (the inner Dawes Gap edge and both Maxwell Gap edges) are

significantly shallower (q = 2.55 ± 0.11, 2.71 ± 0.19, and 2.70 ± 0.08) than the val-

ues determined from the 28 Sgr and Voyager RSS measurements of the middle

C Ring
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Figure 4.24: Occultation plot showing transmission through the Maxwelll
Gap in the C Ring as a function of radius (black line using the
Rev. 89 γ Crucis occultation), and calibrated as described in
the text, with the best-fit model (with fixed amax = 10 m and
amin = 5 mm and fitted q at each edge, and fitted q and τ for
the ringlet) plotted in red.

It could be that the C Ring ramp is different from the region directly interior

to it in particle-size distribution, just as the region is distinct in spectroscopy

and photometry (Nicholson et al., 2008), though Nicholson et al. (2008) also in-

clude the region between the Maxwell Gap and the start of the ramp itself as

part of the distinct ramp region. However, it could also suggest that, as in the

Cassini Division, the power-law is constant, but the minimum particle size is

varying: the Maxwell Ringlet is known to be eccentric and the Colombo Gap is

near a resonance with Titan, making these areas candidates for larger random

velocities, which Bodrova et al. (2012) predict would mean a smaller minimum

particle size.
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The Maxwell and Titan Ringlets both have power-law indices steeper than

the nearby gap edges. Given both ringlets are nearly opaque even in relatively

steep occultations, the optical depth can be tricky to constrain. Though our

model fits for optical depth of ringlets, it is possible that the optical depth and

power-law index are not completely independent. A larger optical depth (when

τ/µ > 1., as is always the case in these ringlets) paired with a steeper power-law

index could keep the maximum transmission of the resulting model ‘horns’ con-

stant, though it would change the shape. If the horns in these ringlets are pre-

dominantly caused by the optically-thinner outer portions of the ringlets, rather

than the nearly-opaque center, the optical depth that would best describe the

‘horns’ would be far lower than the expected optical depth given the ringlet’s

mean transmission (and the power-law index required to reproduce the horns,

shallower). This could also be a possible explanation for the steep power-law

indices of the Huygens and Strange Ringlets mentioned in the previous section.

Perhaps our abilities to understand the particle-size distribution of these opaque

ringlets is limited by our ability to account for their optical depth profiles.

And perhaps an equally interesting question, given the concerns that have

arisen in the Cassini Division and C ring fits, would be how good our assump-

tion is that our fits are relatively insensitive to the limits of the particle-size dis-

tribution (which justifies not fitting for the minimum particle size). We will

examine this assumption in the following section.
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4.6 Effects of Minimum Particle Size

In the previous section, we assume a particle-size distribution from 5 mm to

10 m. However, we have very little constraints on the minimum particle size.

Pre-Cassini work (Zebker et al., 1985; French and Nicholson, 2000) could put

very limited constraints on the minimum particle size of the trans-Encke A Ring

and the Cassini Division as ”smaller than 1 cm”. Work using the Cassini RSS

occultations (Marouf et al., 2008) suggests a minimum in the millimeter size

regime for the trans-Encke A ring as well.

French and Nicholson (2000) report a large (30 cm) minimum size cutoff for

the B Ring, while Marouf et al. (2008)’s work on the radio occultations report

that for all but the inner regions of the B ring, either the power-law index is very

shallow (∼ 2.5) or the minimum particle size is very large (>∼ 50 cm). The C Ring

has ‘small but uncertain’ values of amin from pre-Cassini results (Zebker et al.,

1985; French and Nicholson, 2000), while Marouf et al. (2008)’s work reports

a clear minimum particle size of 4 mm and Harbison et al. (2013) reports an

identical 4.1+3.8
−1.3 mm.

With the exception of the B ring, all the regions studied in this paper have

small (less than 1 cm) cutoffs, similar to the 5 mm assumed in the previous

section. However, it is worth examining our assumption that minimum particle

size can be only weakly constrained, and that an assumed value does not affect

the fitted power-law index, especially in light of the pattern observed in the

Cassini Division’s eccentric edges.

As we have mentioned previously, most of the scattering is in what we call

the ‘medium-angle scattering regime’, where the power at a given angle is most
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strongly affected by the intermediate-size particles, so the parameter that most

strongly affects the phase function is q, the power-law index, and α, a composite

parameter that depends on q (so also involves q). Simply put, q affects the angu-

lar distribution of diffracted light, while α only affects the amplitude. However,

α also depends on amin and amax: therefore different particle-size distributions

with the same q (but differentamin and amax) can be distinguished by their dif-

fering α. This requires having not only a good determination of the amplitude

of the diffracted light, but also a shape that lets us see the angular distribution.

This also requires a good measurement of the effective optical depth, τ, which

also affects the amplitude of the scattering.

Thus, in order to fit an amin (or amax) to the data, or even place limits on

possible amin, the models with similar amplitudes must have different enough

shapes (relative to the noise in the data) such that the fitting routine can be

distinguished between them. If all reasonable scattered-light models would be

indistinguishable under even good observing conditions, all we can do is pro-

duce a single parameter defining the particle-size distribution (in this case, q)

that creates the correct amount of scattered light.

For fitting amin, we only consider those occultation fits that have a low χ2 and

will ignore the ringlets (as there is more question of their correct optical depth).

We ignore the small gaps of the Cassini Division due to a lack of data points and

because they often do not show the clear ‘horns’ that we need, and low optical

depth regions like the inner edge of the Laplace Gap. We also ignore the C Ring,

due to the high scatter between different occultations in those gaps; as most of

the C Ring is either low optical depth regions or the dense, nearly opaque (and,

thus, with poorly-known τ) ringlets, the data are not high quality.
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Some of the effect of letting amin be a fitted parameter can be seen by simply

finding the best fit q and the χ2 at a ring edge in an occultation for a given

minimum particle size and varying the latter systematically, effectively creating

a function of q versus amin. This is best done at an isolated edge, as the model

parameters of each side of a narrow gap may not be able to be independently

fitted; the model of a gap such as the Keeler Gap has contributions from both

edges.

In the case of the A Ring and B Ring, the outer edges serve nicely – the

empty space between the Huygens Ringlet and the edge of the B Ring being

wide enough that assumptions about the Huygens Ringlet’s particle-size dis-

tribution do not influence the fitting procedure. The Encke Gap is also wide

enough to serve as a test, as shown in Figure 4.11, as both edges appear inde-

pendent of one another. In the Cassini Division, there are no truly wide gaps

without ringlets; our compromise was to use the outer edge of the Huygens

Gap and to fix the parameters of the ‘Strange Ringlet’ and assume this ringlet is

narrow enough that the amount of light it scatters affects only a few data points.

We did attempt the Keeler Gap: varying the amin and q of one edge while leaving

the other edge constant, but due to the lack of independence between the edges,

the results should be taken with a grain of salt.

Results are presented in Table 4.4 and Figure ??, with sample plots of the

best-fit power-law index as a function of minimum particle size shown in Fig-

ures 4.25 and 4.26.

Figure 4.25 shows a typical best-fit q versus amin function for the edge of a

ring with q & 3, in this case, the A Ring’s outer edge. For edges like this, there

is more total surface area in small particles per unit ring surface area than there
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Figure 4.25: Plot of mean best fit power-law index (q) over five occulta-
tions as a function of minimum particle size at the outer A
Ring edge. Dotted lines mark the one-sigma errors to the
mean, and the starred point includes the best-fit value from
the previous section (at a fixed amin = 5 mm, but for more oc-
cultations). The lower line (dashed) is the χ2 per degree of
freedom. The bump around 1 mm is an artifact of the ap-
proximations used. Note that the χ2 has a distinct minimum
around 6-7 mm, corresponding to a q of 3.75.

is in large particles. As a result, a small change in the minimum particle size

will produce a large change in the distribution, making it easy to distinguish

between models. We can see that a minimum which is either ‘too small’ or ‘too

large’ will increase the χ2. The lack of small particles in the ‘too large’ case to

scatter light at large-angles makes the fit poorer. In the case of a too small amin

however, the particle radii are small enough – as shown in Figure 4.8 – that it is

likely that light is being lost by being scattered outside the pixel, which lowers

the amplitude of the ‘horns’ for a given q and τ.
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Figure 4.26: Plot of mean best fit power-law index (q) over the two cuts of
the ε Muscae Rev. 94 occultation as a function of minimum
particle size at the Huygens gap outer edge in the Cassini Di-
vision. Dotted lines mark the one-sigma errors to the mean,
and the starred point includes the best-fit value from the pre-
vious section (at a fixed amin = 5 mm, but for more occulta-
tions). Parameters of the two ringlets in the Huygens gap and
the B Ring edge were fixed. The lower line (dashed) is the
χ2 per degree of freedom. The χ2 shows no strong minimum,
and a power-law index of ∼ 2.8 produces a good fit for all
minimum particle sizes smaller than 1 cm.

Figure 4.26, showing the best-fit q versus amin function for the outer edge of

the Huygens Gap, with a possible q . 3, looks quite different. The function

itself still shows the upward trend expected, but it is nearly flat for a value of

amin . 1 cm. There is more surface area in large particles per unit of surface

area than in small particles. This is reflected in the parameter α, which becomes

more strongly affected by amax at q < 3. Thus the effect of a small amin – light lost

because it is scattered outside the pixel, lowering the amplitude of the horns
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Edge/ mean q for mean best-fit q for mean best-fit No. of
Ringlet amin = 5mm 0.1 mm ≤ amin ≤ 1 m amin (mm) Occ. Cuts
A OER 3.48 ± 0.12 3.70+0.15

−0.13 5.8+2.6
−1.8 5

Kee OEG 3.47 ± 0.03 3.43 ± 0.06 5.8+1.2
−1.0 5

Kee IEG 2.97 ± 0.05 2.94 ± 0.03 6.9+1.4
−1.2 5

Enc OEG 3.02 ± 0.06 2.96+0.21
−0.02 3.3+8.7

−2.4 5
Enc IEG 2.89 ± 0.04 2.90+0.20

−0.05 4.8+12.6
−3.9 5

Huy OEG 2.74 ± 0.04 4.33+0.34
−1.51 132+346

−131 2
B OER 3.13 ± 0.15 3.38+0.23

−0.25 3.3+8.7
−2.4 5

Table 4.4: Values of the mean best-fit power-law index q and minimum
particle size amin for various edges, using a model that systemat-
ically varied amin from 0.1 mm to 1.0 m and found the best-fit q
for each occultation cut. The values of q listed in Tables 4.1 and
4.2 are included for comparison. With the exception of the outer
edge of the Huygens Gap, an assumption of amin = 5 mm pro-
duced satisfactory results, though ring regions with especially
steep power-law indices (such as the outer edges of the A and B
Ring) are especially sensitive to amin.

– is minimal and we can only constrain the upper bound of amin based on the

amount of light at larger angles.

All the gaps in the outer A Ring, listed in Table 4.4 and plotted in Figure 4.27

roughly agrees with previous studies of the trans-Encke region (Zebker et al.,

1985; French and Nicholson, 2000), producing a best-fit particle size of 3-7 mm.

It should also be noted that here, the inner edge of the Encke Gap agrees more

with the trans-Encke region than the varying attempts to measure the minimum

particle size in the inner and mid A Ring. (French and Nicholson, 2000; Marouf

et al., 2008; Harbison et al., 2013).

The Huygens Gap Edge (and the rest of the Cassini Division) does not have

that strong lower constraint, and places only a weak upper constraint on amin.

We find the best-fit value of amin as 13.2+34.6
−13.1 cm, with a corresponding q to match.

At best, we can note that the power-law index of the region outside the Huy-
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Figure 4.27: Mean modeled minimum particle size of the A ring gaps and
the edge of the A ring, plotted versus mean radius of the gap
edges. Error bars are the 1σ scatter from the ensemble of
model results. Gaps are labeled with IEG (inner edge of gap),
OEG (outer edge of gap) and OER (outer edge of ring). Re-
sults from the 28 Sgr (blue line (French and Nicholson, 2000))
occultation are included for comparison. Each panel covers a
radial range of 1000 km.

gens Gap is ∼ 2.8 if the minimum particle size is less than 1 cm, as French and

Nicholson (2000) report, with a steeper index if the cutoff is larger.

The B Ring edge disagrees with the French and Nicholson (2000) and Marouf

et al. (2008) results by around two orders of magnitude – 3mm in this work

versus ∼ 30 cm – but it is entirely possible that the high random velocities from

the 2:1 Mimas resonance in the region could free smaller particles, making the

particle-size distribution near the edge of the B Ring unrepresentative of regions

of the B Ring closer in to the planet.

153



4.7 Conclusions

The outer A ring has a very steep (> 3.4) power-law index outside of the Keeler

gap, and a shallower one (2.9 - 3.05) inside of the Keeler gap, in agreement with

previous studies of this region. We also find that the trans-Encke region has

ring particles that extend down to 3-7 mm in radius, slightly lower than the 1

cm reported by French and Nicholson (2000).

The Cassini Division has a shallow power-law index that makes it difficult

to see where the actual particle size cutoff is; the power-law index can be as

low as 2.8, consistent with previous work. The Cassini Division ringlets are

problematic to fit due to their complex optical depth profiles: while the Huygens

and ‘Strange Ringlets’ appear to have power-law indices steeper than the rest

of the Cassini Division, this could also be an effect of underestimating the role

the less optically-thick regions near the ringlet edge play. The B Ring edge has

ring particles down to one centimeter or smaller, just as the outer A Ring does,

and a steep power-law index of greater than 3, and possibly as high as 3.4. This

is different from previous work done on the interior of the B Ring, and may be

a result of the strong resonance creating the edge.

The C Ring is hard to fit due to low optical depth and nearly-opaque ringlets,

which suffer from the same ‘steeper than the neighboring ring’ problem that the

Huygens and ‘Strange’ ringlets do, suggesting a systematic problem in how we

model ringlets. The power-law index of the inner region of the C Ring is roughly

consistent with previous results of 3.0 to 3.1, but with large error bars of several

tenths. However, the outer region just interior to the C Ring ramp (including

the Maxwell and Dawes Gaps) has a shallower index of ∼2.7. The outermost
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C Ring power-law index value (the outer edge of the Dawes Gap) agrees quite

nicely with accepted values for the neighboring C Ring ramp.
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CHAPTER 5

CONCLUSIONS ON SATURNIAN RING PARTICLE SIZES

My studies of the infrared solar and stellar occultations confirmed a lot of

what previous studies reveal about Saturn’s rings, while presenting new data

on ring regions not as well studied.

Figure 5.1: Figure 1.2, showing the ring particle power-law index versus
radius from Saturn, with data from Chapter 4 added in black.
Stars mark average qs for individual edges, while triangles
mark averages of many edges’ average qs. The region of the
Cassini Division (from the outer edge of the Huygens gap to
the Barnard and Bessel gaps) was averaged over, as were the
region between the Maxwell and Dawes gap, and Encke and
Keeler gaps for better comparisons with past data sets, and er-
ror bars were omitted. A C-Ring average is also plotted as a
dot-dash line. For more details on those individual measure-
ments, see Chapter 4.

My results indicate the C Ring has a minimum particle size of ∼4mm, exactly

matching Marouf et al. (2008)’s result within errors. However, my estimates

of the power-law index using the edges of the Colombo, Maxwell and Dawes
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Figure 5.2: Figure 1.3, showing the minimum particle radius of the ring
particle-size distribution versus radius from Saturn, with data
from Chapters 3 and 4 added in black (and labeled). As strong
constraints on minimum particle size were not found in Chap-
ter 4’s analysis of the Cassini Division and C Ring (but con-
straints on the C Ring were found in Chapter 3), values of amin

from stellar occultations are not plotted in those regions.

gaps, and the Titan and Maxwell ringlets are both strongly radially variable

and, on average, shallower than previous work. It may be that the low optical

depth of the C Ring requires more edge-on occultations than I studied to better

characterize the low optical depth regions without such large error bars.

My work on the Cassini Division was able to replicate French and Nicholson

(2000)’s power-law index across the region containing gaps, as well as point to

the ringlets as potential deviations from this particle-size index. My work also

showed a systematic trend in the fitted power-law index that might be an ar-

tifact of dynamical interactions within the ring. Sadly, I was unable to answer

the question as to the Cassini Division’s smallest particles: the region is too nar-

row to study using solar occultations and the shallow power-law index makes
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constraints from stellar occultations weak. I did affirm French and Nicholson

(2000)’s result that the Cassini Division, like the C Ring and outer portions of

the A Ring, likely holds centimeter sized particles. I also showed that the outer

hundred kilometers of the B Ring may be quite different from other regions

studied, having a power-law index greater than 3, and a minimum particle size

that is smaller than the 20 to 30 centimeters reported by French and Nicholson

(2000) and Marouf et al. (2008).

For the A Ring, the solar-occultation data produced the startling discovery of

particles down to a fraction of a millimeter in radius, contradicting work in the

radio (Marouf et al., 2008) and French and Nicholson’s (2000) near-infrared oc-

cultation study, which set a minimum particle size of well above 10 cm. In truth,

the amount of scattered light I observed during A Ring solar occultations was

difficult to explain with the middle A Ring’s shallow power-law index as mea-

sured by these studies. I was the first to include self-gravity wakes within my

occultation models, accounting for extra sources of opacity beyond absorption

by single ring particles, as well as to show that this modeling could reproduce

the amount of scattered light seen in the inner and mid A Ring, but a model

including wakes was not necessary to replicate the Cassini-based stellar occul-

tation data in the outer A Ring. I confirmed the result from previous studies

(Zebker et al., 1985; French and Nicholson, 2000; Marouf et al., 2008) that the

trans-Encke region of the A Ring is distinct from the inner and mid A ring, in

having many centimeter-sized particles and a steeper power-law index. Fur-

thermore, I was able to focus on the narrow trans-Keeler region, showing that

it has an even steeper power-law index than the region between the Encke and

Keeler Gaps.

158



The apparent inconsistency between my and previous work (French and

Nicholson, 2000; Marouf et al., 2008) deserves further comment and perhaps

additional studies. Measuring the smallest particles within the A Ring is al-

ready a difficult problem because the observed power law is shallow enough

that relatively little surface area would be in these smaller particles. Thus, any

study would expect to see a small signal. French and Nicholson (2000) were lim-

ited to a lower particle-size limit by the width of the ring features used and by

their photometric aperture size (3 arc second). They could only model smaller

particles by using large amounts of radial data or by finding light removed from

the beam. While larger ring particles’ scattered light showed up in the relative

sharpness of small-scale optical depth features, the smallest particles’ detection

depended on knowing exactly how much light was scattered outside the aper-

ture. In addition, in the A Ring, French and Nicholson (2000) suffered from a

problem of their ’reference’ optical depth being incompatible with the 28 Sgr

data without using an ad hoc scaling factor. Marouf et al. (2008)’s work, like-

wise, is most sensitive to those ring particles that cover the most surface area

in the rings at sizes of several millimeters to around ten centimeters. While

using three bands permits the minimum particle size and power-law index to

be disentangled (with eventual direct inversion of the signal to better anchor

the size distribution at the large end), these two parameters are not totally non-

degenerate in differential optical depth space. Shallow power laws tend to have

very little differential optical depth at the 0.9 and 3.6 cm wavelengths the Cassini

RSS uses, regardless of the minimum particle size.

Both works could be improved by incorporating self gravity wakes into the

models. While the Voyager PPS occultation French and Nicholson (2000) use as

their optical depth reference to compare the 28 Sgr occultation data against is
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close in geometry, it is not identical. In addition, while the incidence angles are

closely matched, the relative longitudes were not, and it was not known at the

time that the rings were not azimuthally symmetric. The fudge factor of 0.9 that

French and Nicholson (2000) use to align the geometric optical depths obtained

from the 28 Sgr and Voyager PPS could be replaced by the expected difference

in transmission due to wake geometry. If this factor were lower, then that would

indicate that the 28 Sgr data had more light scattered over relatively wide an-

gles, which would imply smaller ring particles (or a steeper size distribution, or

both).

Looking at the occultation geometries (the δ Sco occultation was presented

in Showalter and Nicholson (1990), and the 28 Sgr occultation was presented in

French et al. (1993)), the δ Sco occurred at a slightly higher inclination (B = 28.7◦

versus B = 25.4◦ for 28 Sgr), but farther from the longitude where the wakes

appear most ’open’. A less considered effect is that the normal optical depth no

longer can be found by simply multiplying the observed optical depth by sin B,

as the wake visibility is also dependent on incidence angle. Using the Hedman

et al. (2007c) model, and assuming wake properties of H/λ = 0.1, W/λ = 0.5,

τG = 0.4 (in extinction), which are typical for the A Ring, I find that the poten-

tial ratio between the ’normal’ optical depth measured from the δ Sco and 28

Sgr occultations (ignoring wakes) would be between 0.88 and 1.01 depending

on the longitudes of the ring observed, with my best estimate as approximately

0.91. This is nicely comparable in magnitude to French and Nicholson’s ad hoc

assumption of 0.9, suggesting an explanation for their mysterious fudge factor,

but a difference of only a few percent in estimates of the geometric optical depth

of the A ring in this geometry would lead to differences in the particle-size dis-

tribution model that best fit the observations.
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In addition, both French and Nicholson (2000) and Marouf et al. (2008) as-

sume they can calculate the factor n0 in the size distribution by simply requir-

ing that the size distribution be such that the total surface area obscured by

all particles be the geometric optical depth. When one introduces self-gravity

wakes, that is simply not the case – the transmission is a weighted average of the

essentially-opaque weights, and the partially-opaque inter-wake regions con-

taining the free ring particles. However, only the free ring particles would be

observed as scattering light in the 28 Sgr occultation or producing a difference in

optical depth between 0.9 and 3.6 cm in radio-science experiments. For a given

set of parameters – a power-law index and minimum and maximum particle

size – a model where part of the geometric optical depth is derived from giant

aggregates like self-gravity wakes will have fewer free-floating centimeter-sized

particles (and, thus, less signal of their presence, be that signal scattered light at

the correct angles or differential optical depth at the correct wavelengths) than

a model that assumes a homogenous ring. Thus, one would expect a model that

lacked self-gravity wakes to yield a larger minimum particle size than one that

did have them, which is exactly what we see comparing the results of French

and Nicholson (2000) and Marouf et al. (2008) to this work.

The downside to the self-gravity wake model is that it requires additional

parameters to either specify the size and orientation of the wakes (to correctly

predict their orientation at a given viewing geometry) or the optical depth of the

gaps between the wakes. Thus, none of our studies of the particle-size distribu-

tion can be done completely independently; most require some use of outside

data – or at least outside analysis of the same data, as the best parameters of the

self-gravity wakes come from Cassini stellar occultations – to constrain param-

eters that are weakly constrained in a given data set.
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Because the A ring has strong self-gravity wakes with effects visible in many,

many Cassini and Earth-based data sets, I favor using a self-gravity wake model

unless it can be shown to make no difference from a simpler model or it proves

to be inappropriate (as it did when it could not reproduce scattered light at the

edges of the Encke Gap). Thus, future occultation-based analysis of the particle-

size distribution should include a self-gravity wake model as a standard ele-

ment of modeling the optical depth in the rings.
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APPENDIX A

PHASE FUNCTIONS: ORIGINALLY AN APPENDIX TO ”THE SMALLEST

PARTICLES IN SATURN’S A AND C RINGS”

For a single-size particle distribution, the forward-scattering, or diffraction,

phase function for light scattered at an angle θ is given by (Liou, 1980)

P (θ) =

[
2J1 (z)
sin θ

]2

, (A.1)

where we introduce the dimensionless variable z = 2πa sin θ/λ, a being the

radius of the particles and λ being the wavelength observed. J1 (z) is the

first-order Bessel function of the first kind. Integrating Equation A.1 over a

truncated power law distribution of particle sizes, dn/da = n0 (a/a0)−q, where

amin ≤ a ≤ amax and n0 and a0 are constants that can be folded into the value of τ,

we find

P (θ) =
4
α

sinq−5 θ

∫ zmax

zmin

z2−qJ1 (z)2 dz, (A.2)

where

α =


ln amax

amin
forq = 3

x3−q
max−x3−q

min
3−q forq , 3

(A.3)

The usual dimensionless size parameter x is defined by x = 2πa/λ, with sub-

scripts denoting the limiting values of a.

The mean phase function (Equation A.2) can be conveniently approximated

in different limiting cases, as the full function can be computationally expensive

to integrate. The limiting cases are set by the relevant angles in the problem,
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which are determined by the ratio of particle size to wavelength (as quantified

by x). Let the minimum characteristic diffraction angle – the angle where the

largest particles will be diffracting light – be θ1 = πx−1
max. Similarly, we define the

maximum characteristic diffraction angle (where the smallest particles will be

diffracting light) as θ2 = πx−1
min.

Two angles give us three cases to consider, but only two are of real interest

in this case. Small-angle diffraction – where the angles we observe at are all

smaller than θ1 – isn’t relevant here, as the upper boundary of the ring particle

size-distribution in the A and C Rings extends to 5m in radius (Zebker et al.,

1985), and at near infrared wavelengths (0.9 to 5.2 µm), this corresponds to a θ1

of tenths of microradians. Thus we either have a case of medium-angle diffrac-

tion (the angles we observe are between θ1 and θ2) or large-angle diffraction (all

angles observed are larger than θ2).

The value of θ2 is unknown, because the minimum particle size is the quan-

tity we are trying to measure. Given that the size of one VIMS pixel – and

coincidentally the solar radius at 9 AU – is 0.5 milliradians on the sky, our data

will be most sensitive to diffraction by particles with x . 6000, or, at 2 mi-

crons wavelength, particle sizes of 2 millimeters or less. Barring a much-lower-

than-expected minimum size cutoff, the large-angle scattering case will be most

relevant, though we will include the medium-angle case in our calculations to

account for the possibility of free-floating particles from ∼100 µm to ∼2 millime-

ters.

For the large-angle case, (i.e., θ � θ2), all particles are scattering most of

their light at angles smaller than those we can measure. Thus the bounds on the

integral of Equation A.2 are both much larger than unity. We can then use the
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approximation J1(z) ≈
√

2/πz cos(z − 3π/4), giving

P (θ) ≈
4
πα

(sin θ)−3 x2−q
min − x2−q

max

q − 2
. (A.4)

Because the particle-size distribution is very broad (remember we’re dealing

with particles with radii from millimeters to meters in size), we also know that

xmax � xmin, and both are very large. So, a further approximation is to drop the

x2−q
max term (which will be very small as long as q > 2), which leaves the simpler

expression

P (θ) ≈
4
πα

(sin θ)−3 x2−q
min

q − 2
. (A.5)

In the case of medium-angle diffraction (i.e., θ1 � θ � θ2), we again use

a broad particle-size distribution to approximate a phase function. Because of

this distribution and an angle (θ) that is between the minimum and maximum

characteristic diffraction angle, we are mostly sampling light neither from the

smallest nor the largest particles, but from medium-sized ring particles those

have that characteristic diffraction angles. Because θ is much smaller than the

maximum (θ2), we can assume that zmin = π sin θ/θ2 is much less than unity, and

because θ is much larger than the minimum (θ1), we can assume that zmax =

π sin θ/θ1 is much greater than unity. We can then approximate the integral in

Equation A.2, as covering the full range of positive values of z, from zero to

infinity, as most of the power is around z ≈ 1. This leads to a constant that is

only dependent on q, allowing the integral to be calculated once per q. Thus, we

have the approximation
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P (θ) ≈
4
α

(sin θ)q−5
J∞0 (q) , θ2 ≤ θ ≤ θ1. (A.6)

The J∞0 (q) in Equation A.6 is shorthand for
∫ ∞

0
z2−qJ1 (z)2 dz. It is nearly con-

stant over the range of 2 ≤ q ≤ 5, except when q approaches 2 or 5. Previ-

ous studies indicate that q is between 2.7 and 3.1 within the main rings, giving

J∞0 ≈ 0.5 (Zebker et al. 1985, French and Nicholson 2000, Cuzzi et al. 2009).
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