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Saturn’s E ring : Saturn’s tenuous E ring has a double-banded vertical structure,

with the density of particles depleted in the equatorial plane of the rings near

Enceladus’ orbit. We have conducted numerical simulations, supported by order-

of-magnitude analytical calculations, to investigate how particles behave in the

vicinity of Enceladus’ orbit to form the observed vertical structure. We also show

that the the radial double-layered Gaussian core of the E-ring [Hedman et al.,

2012] is formed entirely due to gravity. Saturn’s gravity, including its J2, J4 and

J6, and effects of Enceladus are considered. The other nearby moons of Saturn

are included, though our results show that they have negligible effect over the

∼ 200-yr integration. We follow the orbits of particles ejected near Enceladus’

southern pole with speeds ranging between ∼ 0.8 to 2 times the nominal escape

speed at the moon’s surface (for an isolated spherical moon). We find that the

combination of gravitational deceleration on launch plus the first few subsequent

encounters with the moon causes many particles starting with ’escapable’ velocities

(just enough to escape gravitational influence) to assume an orbital inclination cor-

responding to a maximum height of 4rE (rE = radius of Enceladus), which gives

rise to the double-layered structure. We present the short-term (1-2 days) and

longer-term (∼ 200-yr) dynamics of particles in Enceladus’ vicinity. We argue

that non-gravitational forces have little influence in the initial dynamics and for-

mation of radial Gaussian core.



Ultrafaint rings : Recent Cassini images identified three tenuous rings [Hedman

et al., 2009a] along the orbits of Methone, Anthe and Pallene, three small moons

whose orbits nest between those of Mimas and Enceladus. A continuous inclined

ring lies along Pallene’s orbit, whereas the other two satellites are constrained

within arcs of limited longitudinal extents. Two of the moons, Anthe and Methone,

are in strong resonances with Mimas, whereas Pallene is in a weak near-resonance

with Enceladus. We investigate the longitudinal confinement of material along

the orbits of the three small satellites. Anthe, Methone and Pallene along with

six nearby major moons of Saturn were included in numerical simulations of par-

ticles ejected from the surfaces of these three small moons. 1000 particles were

integrated with a range of initial velocities from 1 - 2 m/s from the surface of

the moon in all directions with respect to the moons. The particles’ trajectories

were integrated for 22 years. Our simulations show that differences between the

first-order resonances of Anthe and Methone, and the third-order near-resonance

of Pallene, may explain the confinement of material in formal cases and the lack

of confinement in the Pallene ring. We confirm and identify the resonances.
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CHAPTER 1

SATURN’S FAINT RINGS

Saturn’s rings have been a source of amazement since Galileo discovered them in

1610. Their existence as flat rings was established only in 1655 by Christiaan

Huygens. In 1675, Giovanni Cassini determined that these rings contained at least

one gap amidst them. In 1787, Laplace further suggested that the rings were com-

posed of a large number of solid ringlets. It took until 1859 before the notion that

the ring was made out of small particles (rather than being solid) became the ac-

cepted theory [Maxwell, 1859]; this was observationally confirmed by Keeler [1895].

Several space missions explored the ring bearer, Saturn, the nearby satellites and

the rings themselves. Since 2004 the Cassini spacecraft has provided a plethora

of information about Saturn’s ring system. Previous knowledge from the Pioneer

and Voyager missions has been confirmed and much more has been established.

Ground-based observations, along with Hubble telescope images, have added to

ring data. Table 1 summarizes the various missions attempted.

Mission Launch date Arrival date Type

Pioneer 11 Apr, 1973 Sep, 1979 Flyby
Voyager 1 Sep, 1977 Nov, 1980 Flyby
Voyager 2 Aug, 1977 Aug, 1981 Flyby

Cassini Oct, 1997 July, 2004 Orbiter

Table 1.1: Various missions to Saturn

Cassini is the only spacecraft to orbit Saturn. Different sensors (see ”Space Science

Reviews” issue on Cassini’s instrumentation, Volume 114, Numbers 1-4, Septem-

ber 2004) on the spacecraft collect data at various wavelengths and transmit them
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to ground-based receiving stations. The findings of the Cassini’s first four years in

orbit are compiled in the book, ”Saturn from Cassini-Huygens” [Dougherty et al.,

2009].

Figure 1.1: Top: A mosaic of images taken on September 15, 2006, while Cassini
was in the shadow of Saturn (image PIA08329; these numbers identify a NASA
press release image). In this geometry, the small particles that mostly comprise
the faint rings forward-scatter light very efficiently, so these normally faint rings
appear especially bright. Bottom: The brightness of the rings as a function of radial
distance from Saturn for a constant phase angle of 178.5o as observed through the
camera’s clear filter (central wavelength of 635 nm); Saturn (radius of 60,330 km)
would lie just off the left side of this diagram. Brightness is plotted in terms of the
quantity normal I/F, which is proportional to the fraction of the incoming solar
radiation scattered into the camera by the material [Horányi et al., 2009]. For rings
of low optical depth, the back-scattered I/F is also similar to the normal optical
depth of the ring. Dotted lines are the radial positions of prominent Saturnian
moons, while the dashed lines show the inner and outer extend of the bright A, B
and C rings of Saturn.

The main rings, A, B and C, have been under the spotlight because of their

easier visibility. This chapter will instead survey the fainter rings of Saturn [Burns
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et al., 2001, Horányi et al., 2009]. These include: the D ring, the F ring, the

Janus/Epimetheus ring, the G ring, the Methone ring arc, the Anthe ring arc,

the E ring, the Pallene ring and the Phoebe ring; the positions of these are found

in Fig 1.1 (bottom). The main rings also have some dust, primarily the ’spokes’

found in the B ring. Since collisions are virtually non-existent in faint rings, the

constituent particles act as individual satellites of Saturn. However, most of the

faint rings are linked with one or several Saturnian moons, either through resonance

[Hedman et al., 2007b], ”shepherding” [Murray et al., 2005] or sometimes even

feeding them [Porco et al., 2006]. Particles (primarily less than 100 microns in

size) in these faint rings interact with the neighboring moons. In addition, owing

to their small particle sizes, the faint rings exhibit extremely interesting dynamics

and structure due to the wide range of forces these particles are subjected to,

including gravitational, electromagnetic and radiation forces. Also, a knowledge of

the distribution of such particles helps to plan safer routes for present and future

spacecraft. Figure 1.1 gives a bird’s-eye view of all the faint rings of Saturn and

Table 1.2 briefly summarizes the rings under consideration.

1.1 The D ring

The D ring is the innermost of all the rings of Saturn and, being very near to

Saturn, resides in the region where the planetary magnetic field is more important

than elsewhere within the ring system [Hedman et al., 2007a, 2011]. The D ring

is also close to a newly discovered radiation belt [Krimigis et al., 2005]. Hence,

particles in the D ring are subject to an extreme environment.

Figure 1.2 compares the views of the D ring as seen by Voyager 1 and 25 years
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Name Normal Optical
Depth

Related
Moons

Radial lo-
cation(km)

D ring 10−4 − 10−3 65,000-
74,500

Maxwell Gap ringlet 10−4 87,420
B ring spokes 10−2 − 10−1 100,000-

117,500
Huygens Gap ringlet 10−4 117,490
Charming ringlet 10−3 119,940
Encke Gap ringlets 10−3 Pan 133,490-

133,720
Roche Division 10−4 136,800-

139,500
F ring 10−2 − 10−1 Prometheus/

Pandora
139,500-
141,000

J/E ring 10−7 Janus/
Epimetheus

151,450

G ring 10−6 Mimas 165,000-
175,000

Methone Ring Arc 10−7 Mimas 194,230
Anthe Ring Arc 10−7 Mimas 197,650
Pallene ring 10−7 Enceladus 212,280
E ring 10−5 (Peak) Enceladus 180,000-

700,000
Phoebe Ring 10−7 − 10−8 Phoebe 4,000,000-

13,000,000

Table 1.2: Various faint rings of Saturn and their properties (Table 16.1, p. 513,
in Horányi et al. [2009] and Verbiscer et al. [2009])

later by Cassini. Three bright sub-rings, called D68, D72 and D73 were visible in

Voyager’s observations [Showalter, 1996]. However, D72, which was brighter in the

Voyager image, appears to be broader and fainter in the Cassini image. Its center

of light has also shifted substantially inwards, relative to the other D-ring features

[Hedman et al., 2007a, 2011]. These are some of the largest secular changes in the

entire Saturn ring system observed so far. There is also a possibility that the D72

feature has completely vanished and what we see in the Cassini image is a new

entity altogether. The photometric properties of the diffuse material interior to
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Figure 1.2: D ring (Left) Voyager 1 image (34946.50) taken at a phase angle of 156o.
The three brightest bands were called D68, D72 and D73. The horizontal black line
is a data drop-out. (Right) The same region imaged by Cassini (W1500088644),
at a phase angle of 171o; an over-exposed Saturn fills the image’s left half [Hedman
et al., 2007a].

D72 are consistent with a population of small particles. These grains may have

been derived from D72 and then spiralled inward towards the planet under the

influence of Poynting-Robertson or other drag forces [Burns et al., 2001]. The

Cassini data also indicate that the peaks of all three sub-rings have moved from

the previously reported Voyager observations. The shifts are +70, -150 and +120

km, respectively. All three ringlets have, therefore, apparently moved relative to

each other during the last twenty-five years.

Voyager observations also detected a diffuse sheet of material between D68 and

D73, which has quasi-sinusoidal brightness variations with a typical wavelength of

∼ 500 km. Cassini images show the same but with the periodic brightness oscilla-

tions much more muted. The region surrounding D73 is more complex. Between

D73 and the inner C ring lies a sheet of material with a series of dips, or notches.

The ∼ 30-km pattern can be understood as produced by vertical corrugations in

the ring material. Figure 2.33 shows how changes in the local slope of a warped
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ring lead to differences in the amount of material seen along different lines of sight.

This explains the observations in the outer part of the D ring [Hedman et al.,

2007a].

Figure 1.3: A vertical corrugation in a diaphanous ring can give rise to brightness
variations. The diagonal lines correspond to lines of sight through the corrugated
ring. The gray-scale at the bottom shows the ring’s total optical depth and bright-
ness as they would be seen by an observer [Hedman et al., 2007a].

The most remarkable thing about this periodic structure is that it is not a static

feature, but has instead undergone significant evolution over the last decade. This

can be explained assuming that it was initially a flat inclined sheet that is under-

going spiral winding [Hedman et al., 2007a, 2011] due to the planet’s oblateness.

Finally, if this process is extrapolated backward in time to unwind the spiral, it

suggests that the ring was flat in June 1983 at which time some type of disruption

occurred across the D ring. Hedman et al. [2007a, 2011] suggest that a comet-cloud

might have collided with the inner ring system.

1.2 The F ring

Discovered by Pioneer 11 [Gehrels et al., 1980], the F ring is Saturn’s outermost

narrow ring and its most active ring; it changes on a time-scale of hours [Murray

et al., 2008]. The ring is located 3000 km beyond the outer edge of the A ring and
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is just a few hundred kilometers wide. The ring seems to be comprised of three to

four separate, but possibly intertwined, strands of material [Charnoz et al., 2005,

Charnoz, 2009, Murray et al., 2008, Beurle et al., 2010], confined radially by two

nearby small satellites, Prometheus and Pandora (Figs. 1.4 - 1.6), which orbit

interior and exterior to it [Colwell et al., 2009].

Figure 1.4: The F ring being shepherded by Prometheus and Pandora as shown in
Cassini image PIA07712.

If the distance of the moon from the ring is taken as x, it can be proven that the

moon initiates a wave of wavelength λ = 3πx [Dermott, 1981] (Fig. 1.6). Thus

the perturbations of Prometheus, and also those of the smaller and more distant

Pandora, are imprinted on the F ring [Kolvoord et al., 1990, Colwell et al., 2009].

Showalter and Burns [1982], Borderies and Goldreich [1983], Kolvoord et al. [1990]

and Murray and Giuliatti-Winter [1996] have shown that the moon creates peri-

odic features via simple gravitational pulls. The perturbing effect of Prometheus

also seems to introduce channels through the F ring and a ”streamer” - a line of
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Figure 1.5: Multi-banded F ring with the braided structure (Image PIA06143).
Prometheus is shown to the left.

Figure 1.6: Schematic showing the perturbing effect on a narrow ring by two small
satellites as viewed in the frame of each satellite.

particles that link the ring to the satellite. The moon makes regular forays into

the inner dusty edge of the F ring with each 14.7 hours orbit around Saturn [Mur-

ray et al., 2005]. Beurle et al. [2010] and Murray et al. [2008] show that when

Prometheus encounters the ring at its apoapsis, its gravitational attraction creates

kinks and knots in the F ring as the moon ’steals’ material from it, leaving a dark

channel in the inner part of the ring. Since Prometheus orbits Saturn more rapidly

than the material in the F ring, each new channel is carved about 3.2 degrees (the

synodic drift during one orbit) in front of the previous one. The periodic spacing
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of these features fits the wavelength prediction of λ = 3πx. Beurle et al. [2010] and

Murray et al. [2008] further suggested that small unseen moons orbiting within the

F Ring are continually passing through its narrow core, because of the perturba-

tions from Prometheus.

Another interesting structure in the F ring is its spirally wound geometry (Fig.

1.7). Charnoz [2009] shows that dissipative physical collisions of kilometer-size

moonlets (or clumps) with the F-ring core is a viable and efficient mechanism for

producing spirals and jets, provided that massive moonlets are embedded in the

F-ring core [Murray et al., 2008, Beurle et al., 2010] and that they are impacted

by loose clumps orbiting in the F-ring region. They also show that coefficients of

restitution as low as ∼0.1 are needed to reproduce the radial extent of the visible

spirals and jets, suggesting that collisions are very dissipative in the F-ring region.

Figure 1.7: Spiral of the F ring running around Saturn (image PIA07717). This
shows more than the full circumference of the ring, straightened out to make
features visible.
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1.3 The G ring

The G ring is a very thin, faint ring about halfway between the F ring and the

inner edge of the E ring (Fig. 1.1). Cassini obtained its most comprehensive view

of the G ring in Sep 2006 revealing a localized brightness enhancement near the

ring’s inner edge around 167,500 km from Saturn’s center (Fig. 1.8). This feature

extends across ∼ 60o in longitude and has a radial full width at half-maximum of

∼250 km, much less than the ∼6000 km radial extent of the entire G ring. More

images have demonstrated that it is a persistent feature of the ring. Hedman et al.

[2007b, 2010] found the half-km diameter moonlet Aegaeon in this arc, that is held

in place by a 7:6 co-rotation eccentricity resonance with Mimas. The particles in

the arc are also in the same resonance with Mimas [Hedman et al., 2007b, 2010],

producing a longitudinally confined structure ∼ 60o wide.

During one of Cassini’s passages a strong, ∼ 50% depletion in the energetic elec-

trons was detected (Fig. 1.9). Such a deep depletion was not present in previous

passages near the G ring [van Allen, 1983], implying that the absorption was due

to large particles trapped in the arc [Hedman et al., 2007b]. The G-ring’s absorp-

tion is displaced radially (Fig. 1.9) [Thomsen and van Allen, 1980, Roussos et al.,

2007]. The magnitude of the absorption indicates that the arc contains a total

mass between 108 and 1010 kg, equivalent to a 100-meter-wide ice-rock moonlet

[Hedman et al., 2007b]. Given the breadth of the absorption feature observed,

and the fact that the cross-section of this object is much less than the total cross-

section of large particles computed by van Allen [1987], it is unlikely that Aegaeon

is the only absorbing object in the G-ring arc. Hence other particles between 1

and 100 m in diameter reside in the arc, with the rest of the G ring consisting of

dust released from within the arc [Hedman et al., 2007b].
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Figure 1.8: Images of the G-ring arc obtained by Cassini (N1537362584 through
N1537431998 at phase angle 162.5o and ring opening angle of 10o, radial resolution
of 15 km/pixel). Images were obtained on 19 September 2006 at 12:37, 13:11,
13:44 and 14:18 UTC (from top to bottom). A bright arc moves from right to left
through the field of view [Hedman et al., 2007b].

The G ring’s radial structure can be explained by dust released by micro-meteoroid

impacts into Aegaeon and other source bodies within the arc which then drifts

outward from the arc because of interaction with Saturn’s magnetosphere (whose

plasma corotates with Saturn’s magnetic field, i.e., more rapidly than the orbital

motion of the G ring’s particles [Burns et al., 2001]). These tiny ejecta are steadily

eroded away by further impacts and dispersed outward by plasma drag. Over the

course of thousands of years, the ring gradually loses mass, which is replenished
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Figure 1.9: (Top) The charged-particle flux detected during Cassini’s passage over
the arc region. The radial scale here corresponds to the equatorial distance of
the unperturbed magnetic field lines that threaded Cassini at the time of the
observation [Hedman et al., 2007b]. (Bottom) Average (offset-subtracted) radial
brightness profiles of the G ring at different longitudes relative to the arc’s peak.
The profiles through the arc (gray) and elsewhere (black) are essentially identi-
cal outside 168,000 km, whereas the arc is the sharp peak at 167,500 km in the
gray profile. The absorption feature’s radial width is comparable to the visible
arc’s. The 3000-km radial offset between the two signatures may be caused by
magnetospheric effects [Hedman et al., 2007b].

by further impacts into Aegaeon.

1.4 The Janus/Epimetheus ring

Figure 1.10 shows the faint dust ring present around the region occupied by the

orbits of the co-orbital satellites Janus and Epimetheus. The ring has a radial

extent of about 5,000 km. Williams and Murray [2011] describe an analytical model

for the evolution of ring particles that are co-orbital with the two larger bodies.

They show numerically and analytically that the ring associated with Janus and

Epimetheus must be continually fed with material, probably by meteoroid impacts

on the two satellites.
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Figure 1.10: The outer faint rings seen back-illuminated by the Sun, showing the
Janus/Epimetheus and Pallene rings (Image PIA08322).

1.5 The Anthe and Methone arcs and Pallene ring

Cassini images identified tenuous arcs [Hedman et al., 2009a] along the orbits of

Methone and Anthe and a ring surrounding the orbit of Pallene. The resonances of

Anthe and Methone with Mimas are first-order, which may explain the longitudinal

confinement of material in the Anthe and Methone arcs [Cooper et al., 2008, Spitale

et al., 2006]. We analyze these arcs in Ch. 4, where the images of these features

and subsequent analysis will be found. Figure 1.10 also shows a faint dust ring

sharing Pallene’s orbit. The ring has a radial extent of about ∼100 km at medium

phase angles and about ∼2500 km at higher phases [Hedman et al., 2009a]. As we

discuss in Ch. 4, Pallene is near a third-order resonance with Enceladus.
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1.6 The E ring

Saturn’s tenuous E ring commences abruptly at 3 Saturn radii, to peak sharply

near the orbit of the satellite Enceladus (at about 4 Saturn radii), orbiting between

Mimas and Tethys (Fig. 1.11); it then spreads out thinly to beyond 8 Saturn radii

[Horányi et al., 2009]. A narrow distribution of slightly non-spherical particles of

radius 1.0 (±0.3) µm provides a good fit to the ground-based and spacecraft imag-

ing observations [Showalter et al., 1991]. In-situ detectors (Horányi et al. [2009]; S.

Kempf, private communications, 2011; Hedman et al. [2012]) implicate more small

particles. This highly peculiar size distribution clearly indicates that the ring does

not originate from collisional or disruptive processes, and is therefore unlike any

other ring. Hence, strong credence can be given to the possibility that the ring

is associated with Enceladus and that it is the material ejected from Enceladus

[Baum et al., 1981, Porco et al., 2006].

Figure 1.11: Mean edge-on brightness profile of the E ring in March 1980. Orbital
radii of the A ring, Mimas, Enceladus, Tethys, Dione, and Rhea are included
[Baum et al., 1981].

Earlier images taken by the Voyager space probe revealed that Enceladus’ surface

is icy; somewhat cratered and complex [Smith et al., 1982]. Cassini flybys detected

a faint localized atmosphere around Enceladus distorting Saturn’s magnetic field
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lines [Dougherty et al., 2006]. Data have also confirmed a surface dominated by

water, with simple organics and carbon-dioxide along with fractures seen across the

satellite’s southern hemisphere [Porco et al., 2006, Brown et al., 2006]. Flybys also

revealed that the southern polar regions are generally free of impact craters, and

therefore recently resurfaced [Porco et al., 2006]. But several prominent, ∼130 km

long fractures, called ”tiger stripes,” were seen in the neighborhood of the South

pole. This and subsequent encounters produced confirming evidence of plumes

of water vapor and small ice particles spewing from the South pole [Porco et al.,

2006, Hedman et al., 2009b]. These images show that many narrow jets of fine

icy particles emanate from the south polar terrain (SPT) and feed large plumes

towering over the south polar region by at least 435 km [Porco et al., 2006](Fig.

1.12). The interior of the SPT is characterized by a complex network of cross-

cutting fractures. The ISS broadband spectra of the surface indicate the presence

of pure water ice particles with a characteristic size of a few microns. Enceladus’

bright surface is thought to be a direct outcome of a covering of fine-grained snow

that has fallen out of the plume, then accumulated over time as a result of impact

comminution by high-velocity E-ring particles [Porco et al., 2006]. Observing these

plumes at high, rather than low, phase angles indicates that they consist of fine,

forward-scattering particles [Porco et al., 2006, Hedman et al., 2009b].

Having accepted that these plumes feed the E ring, we come to the dynamics of

the ring particles. The ring’s side view (Fig. 1.13) shows a faint grey line running

through the equatorial plane, indicating a double-layered structure, in which fewer

particles lie at the equator than on either side. This thesis suggests a possible

explanation for the origin of this double-banded structure (Ch. 2).
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Figure 1.12: Plumes of ice particles and water vapor emanating from the South
pole of Enceladus (top: image PIA07758 bottom: image PIA11688). These images
are rotated slightly relative to one another.

In addition to Saturn’s gravity field (including its oblateness) and nearby moons,

electromagnetic forces, plasma drag, and solar radiation pressure also play a role

in the evolution of the small ring particles [Horanyi et al., 1992]. Over long times,

these non-gravitational forces cause the micron-sized particles to spread signifi-

cantly radially. Highly eccentric orbits allow collisions with nearby moons and

produce further ejecta [Hamilton and Burns, 1994]. Juhász and Horányi [2004]

analyticaly explored the seasonal variations in the density and spatial distribution

of dust in Saturn’s E ring. Using Cassini data, Horányi et al. [2008] further inves-

tigated the radial extent of the E ring. The Gaussian core of the double-layered

ring extends radially about 30,000 km around Enceladus [Hedman et al., 2012].
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Figure 1.13: Edge-on view of Saturn’s E ring at a phase angle of 105o showing the
double-layered vertical structure (Image PIA07803). The faint grey line bifurcating
the ring at the equatorial plane (z ∼ 0, 205,000 km to 250,000 km) indicates a
relative scarcity of particles in the equatorial region. The vertical distance between
the two layers is about ∼ 2000 km. See Fig. 2.1.

Kempf et al. [2008, 2010] studied the dynamics of E-ring particles just as they

leave Enceladus using dust impact data and simulations under gravitational and

non-gravitational forces. Their simulations show that particles with sizes greater

than 0.7µm can escape to the E ring only if their initial speeds are higher than 207

m/sec. Tiny particles are scarcely affected by the moon’s gravity but instead are

dragged by Saturn’s rotating magnetic field. The effective escape speed of a jet

particle depends on its size as well as location [Kempf et al., 2010]. Kempf et al.

[2010] also describe the gradual loss of the imprint of the plume in the long-term

dynamical evolution of E-ring grains. The short-term and moderate-term dynam-

ics of E-ring particles near Enceladus’ orbit under gravitational forces are further

explored in Ch. 2.
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1.7 Phoebe Ring

The Phoebe ring is a tenuous disk of material just interior to Phoebe’s orbit at 215

Saturn radii [Verbiscer et al., 2009]. Observations [Verbiscer et al., 2009] indicate

that the ring extends inwards from ∼ 200 Saturn radii and calculations suggest

that it halts at the orbit of Iapetus at 59 Saturn radii [Tamayo et al., 2011].

Since it is symmetric about Saturn’s heliocentric plane, the ring is tilted 27o from

Saturn’s equatorial plane and the other rings. Phoebe’s orbit is retrograde and

inclined 5o with respect to Saturn’s orbit plane, and its resulting vertical excursions

above and below the ring plane agree closely with the ring’s observed thickness at

Phoebe’s distance of ∼40 Saturnian radii. Repeated impacts on Phoebe, from

interplanetary particle populations, may keep the ring populated with material.

Ring particles smaller than centimetres in size slowly migrate inward, with many

of them ultimately striking the dark leading face of Iapetus [Burns et al., 1996,

Verbiscer et al., 2009, Tamayo et al., 2011].

1.8 Further Thoughts

The survey of Saturn’s more notable faint rings in this chapter gives a glimpse of

the striking dynamics that these rings undergo and play host to. The D ring shows

significant change in its exterior part. The G ring arc is an outcome of a resonance

with Mimas. The F ring owes a lot to the two shepherd moons, especially to

Prometheus, for creating its structure and dynamics. The E ring is unique in its

double-layered structure and vast extent. These rings will continue to marvel and

surprise observers and modelers as more features are uncovered in the future.
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The following chapters will concentrate on the structures in the immediate vicinity

of E-ring (Ch. 2), and the dynamics of particles associated with the arcs of Anthe

and Methone and the Pallene ring (Ch. 4).
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CHAPTER 2

A SHORT HISTORY OF PARTICLES LAUNCHED FROM

ENCELADUS INTO SATURN’S E RING

2.1 Introduction

In Cassini and ground-based images, Saturn’s E ring first appears at 3RS (RS

= 1 Saturn radius = 60,330 km), peaks sharply near the orbit of the satellite

Enceladus (about 4 RS), and slowly fades into the background at about 8 RS. A

narrow size distribution of particles, having a typical radius 1.0±0.3 µm, provided

the best fit to the pre-Cassini data [Showalter et al., 1991]. This peculiar size

distribution indicates that the ring particles do not originate from collisional or

disruptive processes, and are unlike most other rings.

Instruments on Cassini, like the dust detector (CDA) and the radio and plasma

wave science instrument(RPWS), provided data on the size distribution of E ring

particles greater than a micron [Kurth et al., 2006, Kempf et al., 2008]. The bright-

ness variations of images obtained by the Cassini imaging science subsystem (ISS)

allow, by scattering theory a determination of the particle sizes. They indicate,

for smaller particles (about half a micron to a micron); a distribution of particle

size using scattering images Hedman et al. [2012].

Even prior to Cassini observations, many believed that particles ejected from

Enceladus populated the E ring [Baum et al., 1981]. Images from the Voyager

space probes revealed that Enceladus’ surface is complex with some youthful areas

[Smith et al., 1982]. Very high-phase-angle images were taken in November 2005

specifically to examine the region over the South pole [Porco et al., 2006]. Several
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prominent, almost 130-km long fractures, called ’tiger stripes’ were seen near the

South pole [Porco et al., 2006] in Cassini flybys. These images provided striking

evidence of many narrow jets of fine icy particles emanating from the South polar

terrain (SPT) in various directions to supply a much bigger, fainter plume towering

over the South polar region by at least 435 km [Porco et al., 2006]. Eight hot-spots

have been located as the primary sources of these jets [Spitale and Porco, 2007].

Most grains are ejected from these spots at speeds much smaller than Enceladus’

escape speed of 240 m/s [Hedman et al., 2007b]. Models have been proposed on how

these grains are formed in the vents that feed these cracks from beneath [Schmidt

et al., 2008, Ingersoll and Ewald, 2011, Kieffer et al., 2009, Postberg et al., 2011].

They have also suggested extreme geologic youth for the SPT. The VIMS spectra

too indicates the presence of pure water ice with a characteristic size for plume

particles of a few microns [Hedman et al., 2007b].

Figure 2.1: Edge-on view of Saturn’s E ring showing double-layered vertical struc-
ture at a phase angle of 105o. The faint grey line bifurcating the ring at the
equatorial plane (z ∼ 0) indicates a relative scarcity of particles in the equatorial
region. The vertical distance between the two layers is about ∼ 2000 km [Hedman
et al., 2012]. Same as Fig. 1.13.

Cassini images presented herein show that the spatial density of the E-ring

particles is not maximum at the ring’s equatorial plane (Fig. 2.2). Rather, it

attains its maximum density ∼1000 km above and below Enceladus’ orbital plane,

forming a double-layered structure (Fig. 2.1). This dip (∼ few percent from the
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Figure 2.2: Top: Number of particles as detected by the Radio and Plasma Wave
Science Instrument (RPWS) in the vertical direction off the E ring [Kurth et al.,
2006]. The curve is a gaussian fit to the impact rate data. The dip at the equatorial
plane is apparent. Bottom: Surface area/volume as obtained from the edge-on
image of the E ring showing a dip at the equatorial plane (Fig. 2.1). Lorentzian
and Gaussian fits are shown, making the dip apparent [Hedman et al., 2012]. The
dip is almost twice the size of Enceladus’ Hill radius, rH (∼1000 km).
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Figure 2.3: Edge-on views of the E ring derived from the Rev 024 E130MAP
observations. The top image shows the ring’s observed brightness as a function of
radius ρ and z, while the bottom image shows the onion-peeled data (as explained
below), which represent the local brightness density as a function of ρ and z. For
clarity, the vertical scale is enhanced by a factor of ∼3 relative to the horizontal
axis. Both images use a cyclic stretch (where the displayed brightness equals
the intrinsic ring brightness modulo some number) in order to illustrate both the
brighter and fainter parts of the ring. A faint dip in brightness near the midplane
can be seen near the core of the ring around 240,000 km from Saturn center. Also
note that the ring’s peak brightness seems to occur at slightly positive values of
z outside 240,000 km and slightly negative values of z inside 240,000 km in the
onion-peeled image [Hedman et al., 2012].
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peak) is apparent in the density profile obtained from the image (Bottom: Fig.

2.2). A similar observation was made by the RPWS instrument, which measured

the dust-impact rate while moving vertically through the ring plane (Top: Fig. 2.2)

[Kurth et al., 2006]. The distance between the two layers is approximately twice

Enceladus’ Hill’s radius. Hill’s radius (rH) is the sphere of gravitational influence

of the moon (versus that of Saturn’s gravity), and for Enceladus, is about 4 times

its physical radius (rE),

rH = aE

(
ME

3MS

)1/3

= 3.8rE, (2.1)

where aE is moon’s semi-major axis, ME is moon’s mass and MS is Saturn’s mass.

The dynamics of the E ring has been investigated by many authors. Horanyi

et al. [1992] described the evolution of particles from Enceladus under the effect of

Saturn’s gravity including its oblateness, electromagnetic forces and solar radiation

pressure. They found that micron-sized particles spread significantly radially. Mo-

tivated in part by this study (well before the Cassini flyby), Hamilton and Burns

[1994] suggested that highly eccentric orbits introduced high-speed collisions that

produced further ejecta to provide a continuing source for ring material. Possible

seasonal variations in the density and spatial distributions of dust in Saturn’s E

ring were also explored by Juhász and Horányi [2004]. The radial extent of the

E ring was further investigated using Cassini data [Horányi et al., 2008]. In an

analysis of the E-ring images Hedman et al. [2012] find that the gaussian core

(’halo’) of the double-layered ring radially extends about 30,000 km (Fig. 2.3).

Kempf et al. [2008, 2010] studied the dynamics of E-ring particles just as they

leave Enceladus using dust impact data and simulations under gravitational and

non-gravitational forces (electromagnetic and radiation forces). Their simulations

show that particles with sizes greater than 0.7µm can escape to the E ring only if
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the initial speed is higher than 222 m/sec, which produces a minimum inclination

of 0.2o. Also, tiny particles are not only affected by this moon’s gravity, but also

dragged by Saturn’s rotating magnetic field. Hence, the effective escape speed of

a jet particle depends on its size as well as its launch location. They show that for

sizes greater than 5 µm non-gravitational forces are negligible. It is also critical to

note that in these studies [Kempf et al., 2008, 2010] the cut-off speeds (minimum

speed required for launch to escape collision with the moon) are very similar for

sizes 0.5 µm to 5 µm. The authors go on to describe the gradual disappearance of

the imprint of the plume in the long-term dynamical evolution of E-ring grains. We

show in this work how gravitation alone is capable to produce the double layered

structure, hence making the need of non-gravitation force to explain this structure

unnecessary.

It is worthwhile to contrast the E-ring’s double-layered structure against Jupiter’s

gossamer rings. The latter have a curious rectangular structure with the top and

bottom of the ring brighter than the interior, giving it a double-layered structure

too [Burns et al., 1999, Ockert-Bell et al., 1999]. The maximum thickness of the

gossamer rings from the central planet’s equatorial plane is the same as the height

of their corresponding source satellites, Amalthea and Thebe. If the particles are

on approximately circular orbits with semimajor axes and inclination equal to, or

smaller than, the satellites’ but randomly oriented nodes, the double-layered rect-

angular structure can be explained. Such an array of particles (presumably starting

from the surface of the ring-moons and evolved inwards due to Poynting-Robertson

drag [Burns et al., 1984], and nodes recessed due to Saturn’s oblateness), will be

concentrated (and hence be preferentially seen) as they are the slowest at the top

and bottom of their epicyclic vertical oscillations. The case of E ring is different in
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two ways. Firstly, Enceladus is not inclined significantly and the vertical extent of

the E ring goes way beyond the vertical oscillation of Endeladus. Secondly, Ence-

ladus is much bigger and massive than Jupiter’s moons and hence we expect to see

more effect of Enceladus in the E ring. We will see in the subsequent analysis how

the double layer of E ring is fundamentally different from that of Gossamer ring.

In this study, we concentrate on the structure of the E ring near Enceladus un-

der gravitational forces, including Saturn’s oblateness and other nearby moons.

Electromagnetic forces have not been included to isolate the effect of gravity. In

fact, we will show in our simulations and analysis that gravitational forces alone

can explain the double-layered vertical and radial core structure near the moon.

Though the sizes of the particles have a significant effect on cut-off speeds [Kempf

et al., 2008, 2010], the double layer is a result of gravitational effects, i.e., the first

few close encounters with the moon. The short-term ( 1-2 days) and longer-term

(∼200 yrs) evolution will be discussed to explain the E-ring’s equilibrium form. We

aim at providing a deeper understanding into the formation of the double-layered

structure in the E ring near Enceladus’ orbit, by detailing the fundamental role

Saturn’s and Enceladus’ gravities play in the initial life span of the particles.

The organization of this chapter follows: in the next section we present the nu-

merical set-up and initial conditions employed for our simulations. In section 3 we

outline some of the analytical arguments that provide relevant time scales. Sec-

tion 4 presents the analysis of particles for shorter time-scales (1-2 days) whereas

section 5 considers longer time-scales (∼ 200 yrs). We present the model of E-ring

core in section 6 and summarize our results and conclusions in section 7.
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2.2 Numerical Setup

Simulations presented here were carried out using the SWIFT multi-body integra-

tor [Levison and Duncan, 1994b]. In a Saturn-centric coordinate system, Enceladus

moves on a nearly circular orbit. In most of our simulations particles are emitted

from the South polar region, normal to the surface of the moon, with a uniform

speed distribution from 0.8vesc to 1.9vesc, where vesc is the nominal escape veloc-

ity (see immediately below for definition) at the surface of Enceladus. Anything

below 0.8vesc collides with the moon in its first orbit and is uninteresting for our

studies. Similarly, anything above 1.9vesc escapes to space far way from our region

of interest around Enceladus, and is not included in our simulations. We define a

nominal escape velocity, vesc, as the escape speed needed from an isolated spherical

moon; it is given by

vesc =

√
2GME

rE
, (2.2)

where G is the gravitational constant, ME is Enceladus’ mass and rE is Enceladus’

radius. The nominal escape velocity for Enceladus is 240 m/s. Notice that parti-

cles in the Saturnian system may still be able to escape Enceladus’ gravitational

field at velocities lower than vesc depending on the direction of launch and loca-

tion [Dobrovolskis and Burns, 1980]. We also define the cutoff velocity (vcutoff ) as

the minimum speed of launch, normal to the surface, required to escape collision

with the moon in the first few orbits of the particle. In some of our simulations,

a Gaussian probability distribution was used instead of uniform distribution for

velocities of particles launched perpendicular to the surface. We will give details

in later sections.

A particle’s launch velocity as seen from Saturn is the vector sum of the velocity
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of Enceladus plus some velocity in the normal (vN), radial (vR) and tangential

direction (vT ) to the orbital plane. We also carried out some simulations with an

additional velocity added along radial and tangential directions to the moon’s orbit

ranging between −0.5vesc to 0.5vesc. Negative velocities mean directions opposite

to the tangential motion of the moon and radially inward components. In most

simulations we launch 10000 particles normal to the surface from near the South

pole, all at once. Particles are terminated if they return to the surface of the moon.

The system is evolved for ∼200 years. Units are chosen to keep G = 1. The

time unit (T) is 1 Earth day and the unit of length (L) is the orbital distance from

Saturn’s center to Enceladus’ center, aE. This scaling gives the unit of mass (M)

as M = L3G−1T−2 = 2.70702 × 1025 kg. Table 4.1 lists the various units used in

the simulations.

2.3 Time Scales

We will now discuss the time-scales over which the orbital properties of E-ring

particles evolve in the Saturn-Enceladus system. These range from Enceladus’

orbital period around Saturn to the time of collision of particles with the moon.

The percentage of particles that avoid impacting into Enceladus, as a function

of time, is shown in Fig. 2.4. These particles were started from the South pole

(details in the caption of Fig. 2.4). At time 0 the percentage of particles remaining

is 100%. We see a sharp drop (within 1-2 day) in the number of particles, followed

by a slow decay. There are, thus, two primary time scales in the system - the shorter

initial transient-state time-scale and the longer equilibrium-state time-scale. The
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Parameter SI units SWIFT units
Unit of mass 1 kg 2.71× 1025 kg
Unit of length 1 m 2.38× 108 m
Unit of time 1 sec 8.64× 104 sec
Gravitational constant (G) 6.67× 10−11 Nm2/kg2 1
Mass of Saturn (MS) 5.68× 1026 kg 21.00
Mass of Enceladus (ME) 1.08× 1020 kg 3.99× 10−6

Radius of Saturn (RS) 6.0268× 107 m 0.25323
Semimajor axis of Enceladus’
orbit (aE)

2.38× 108 m 1

Radius of Enceladus (rE) 2.5× 105 m 1.05× 10−3

Orbital velocity of Enceladus
(vorb)

1.26× 104 m/s 4.58

Nominal escape velocity from
Enceladus (vesc)

240 m/s 0.087

Hill radius of Enceladus (rH ) 9.49× 105 m 3.99× 10−3

Saturn’s gravity dipolar coeffi-
cient (J2)

0.016298 0.016298

Saturn’s gravity quadrupole co-
efficient (J4)

−0.000915 −0.000915

Table 2.1: Physical properties in terms of SI and SWIFT units [Murray and Der-
mott, 1999, pp.∼526-538].

time scale of the initial drop from 100% to 60% corresponds to the order of orbital

period of Enceladus around Saturn (1.37 days). Since all the particles start from

the moon’s surface, they are under the strong influence of the moon’s gravity to

begin with. All the particles that do not exceed the cutoff speed collide with the

moon within less than one orbital period. This cutoff speed (speed just enough to

escape a collision with the moon on return which depends on direction and position

of launch) for the case of Enceladus-Saturn system is 1.34vesc (for particles launched

normally from the South pole). Fig. 2.5 shows the time at which particles collide

for a given start velocity from the South pole. The graph ends abruptly at 1.34vesc

showing that particles with initial velocity greater than the cutoff value escape

the moon’s gravitational field to join the E ring. The time scale associated with

this graph is about half the moon’s orbital period around Saturn. This shows
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Figure 2.4: Percentage of 10000 test particles surviving as a function of time (left
- linear scale, right - semi-log scale), starting from Enceladus’ South pole, with
their velocities uniformly distributed between 0.9 - 1.9 times vesc, where vesc is the
nominal escape speed from the surface of an isolated moon. These particles have
evolved under the gravitation of Saturn (J2 and J4 included) and Enceladus.

that particles lacking enough speed are eliminated quickly, never going into an

independent orbit around Saturn. Kempf et al. [2010] also arrive at the same

conclusion stating that the slow particles emanating from the moon collide after

one orbit.

The second characteristic time for the dynamics of E-ring particles, shown in

Fig. 2.4, is the ring’s decay time, due to a typical E-ring particles colliding with

the moon once they escape the initial transient phase. This decay appears to be a

classical exponential loss. In the real model of the ring, if no other processes (e.g.,

non-gravitational forces) intervened, this time would correspond to the interval

over which particles are supplied to the E ring by the observed plumes, if the ring

is to remain in a steady state. From Fig. 2.4, the population of the ring particles

fall to half of the particles left after initial phase in ∼ 50 years. This collision time

matches well with the following particle-in-a-box argument: if we imagine a torus
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Figure 2.5: Time at which particles collide for a given initial speed launched normal
from the South pole. The cutoff value is 1.34vesc.

around Saturn produced by the sweeping of space by Enceladus and calculate the

time it takes for the satellite to completely traverse the entire torus, we can get

an average time scale for collisions of ring particles with the moon. The volume of

the torus is the orbital circumference multiplied by Enceladus’ cross-sectional area.

The orbit circumference is 2πa, where a is Enceladus’ semi-major axis. The height

is a× total inclination of the particle and the width is the radial speed × half an

orbit period. The sweeping rate is πR2
m× radial speed. Following this idea, the

expected time scale for sweeping up particles on crossing orbits can be calculated

as

Tcoll = π
√
sin2im + sin2itp

(
a

Rm

)2 Ur
U
Torb, (2.3)

where im and itp are the orbital inclinations of the moon and the test particle, re-

spectively, and a, Rm, and Torb are the semimajor axis, radius, and orbital period

of the moon (Hamilton and Burns, 1994). U is the random speed of the particle

with respect to the moon, and Ur is the radial (with respect to a line through the

center of the planet) component of this velocity; Ur/U should be about 0.5 for
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particles that are on orbits similar to that of Enceladus. Using this, we estimate a

collision-timescale for the particles with the moon. Using im ≈ 0, itp ≈ vN
vorb

we find

Tcoll ∼ 100 years. So in a century about half the particles near the moon collide

with it, as seen in Fig. 2.4. Presumably, the visible ring does not decay because it

is fed continuously by the plumes.

Other significant time-scales in the system are the precession time-scale of test

particles and the time-scale of close encounters with the moon. We can estimate

the typical time for close encounters of the particles with the moon using the above

formula if we employ rH (Hill radius of Enceladus) instead of RE (Enceladus’ ra-

dius). This assumes that close encounters occur only when a particle comes inside

Enceladus’ Hill sphere. This gives Tenc ∼ 7 years.

Saturn’s oblateness causes particles’ nodes to precess at a rate

dΩ

dt
= −3

2
n0J2

(
RS

aE

)2

, (2.4)

[Murray and Dermott, 1999], where Ω is the longitude of nodes, n0 is the mean

motion of test particles and RS is Saturn’s radius. From Table 4.1, for Enceladus

Ω̇ = 8.3 × 10−8 rad/sec. Thus, the orbit of a typical test particle near Enceladus

will precess by 2π radians in ∼ 2.34 years. However, here we are interested in the

differential precession of the particle with respect to the precession of Enceladus’

orbit. This is because we wish to calculate how long it takes for the orbit of particles

starting from Enceladus to drift away from the moon’s orbit. Differentiating the

above equation, we have

4Ω̇

Ω̇
= −7

2

4a
a
. (2.5)

We will see in a later section that a close encounter with the moon introduces

a typical change in semimajor axis of the order of 4a
a

= 0.02, corresponding to
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Figure 2.6: Vertical normal optical depth of the E ring as a function of radial
distance [Nicholson et al., 1996].

4Ω̇ ≈ 5.8× 10−9 rad/sec. Therefore, an orbit of a typical test particle will differ-

entially precess with respect to the moon by 2π radian in ∼ 34 years. Over this

time the vertical structure becomes azimuthally symmetric.

The last of the time-scales significant for our analysis is the time during which

the E ring was formed or fed to an equilibrium state. An upper limit on this

can be calculated approximately if we assume that the entire E ring is fed by the

South pole plumes of Enceladus and that collision with the moon is the only loss

mechanism. Other loss mechanisms (e.g., non-gravitational forces causing particles

to move to ”safe” orbits, or the sublimation/ sputtering of ring particles) would

require more time to supply the current ring. We claim that the time in which a

typical particle collides with the moon is of the order 100 years. Hence, if collisions

with the moon are the only sink of the particles in the E ring, the time it would

have taken for the whole E ring to emanate out of Enceladus should also be around

100 years. We show a calculation here to justify this claim.
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Fig. 2.6 shows the normal optical depth profile of E ring. Assuming that the E

ring extends from 2× 108 m (R1) to 5× 108 m (R2) from Saturn, we can estimate

an average optical depth τ of the order of ∼ 0.1 × 10−6 [Nicholson et al., 1996].

Such a low optical depth implies that the ring has very few particles per unit vol-

ume. This validates the assumption that almost no collisions happen between the

particles (for τ << 1). The optical depth roughly equals the fraction of surface

area occupied by the ring particles. Further, we assume that the particles have

rpar = 10−6 m [Showalter et al., 1991]. In this scenario, the number of particles

per unit area, n, would be τ/(πr2
par) ∼ 105. This means that the total number of

particles in the ring, N , is π(R2
2 − R2

1)n ∼ 6 × 1022. Assuming each particle is a

sphere of radius 10−6 m, made of ice with density 103 kg/m3, we get the total mass

of the ring ∼ 2.5 × 108 kg. Porco et al. [2006] suggest that 0.04 kg/sec departs

Enceladus’ gravitational field from the plumes. This number is only 4% of the

suggested required escape rate [Juhász and Horányi, 2002]. But more recently,

Ingersoll and Ewald [2011] have claimed the mass of the ring to be (12±5.5)×108

kg. In this work, we use the rate calculated from the plumes after observations

[Porco et al., 2006]. Dividing the mass escape rate by the total mass gives the

time during which the ring has reached equilibrium, ∼ 100 years, or about the

lifetime of a particle to collide with the moon. This could indicate that the ring

is in dynamic equilibrium, with Enceladus acting as the dominant source and sink

of the particles that comprise the ring. Ingersoll and Ewald [2011] also calculate

the lifetime of particles as ∼ 8 yrs. Considering this claim and because the mass

escape rate we have used is uncertain, the time to supply the ring could vary by

an order of magnitude, weakening our conclusion. But, nevertheless, ∼ 100 yrs

can serve as the absolute upper limit on the time of feeding the ring.
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The prominent timescales calculated in this section are compiled in Table 2.2.

Process Timescale
Initial collision time ∼ 1 day
Close encounter with the moon ∼ 7 years
Differential precession of the orbit ∼ 34 years
Decay of the ring ∼ 100 years
Ring life (time to feed) ∼ 100 years

Table 2.2: Prominent timescales playing a role in the dynamics of E-ring particles
near the orbit of Enceladus.

2.4 Analysis of orbits for short time-scales

The motion of particles in Enceladus’ vicinity is complex. For a similar example

near other moons, see Dobrovolskis and Burns [1980], who show that the behavior

of ejecta from the satellites of Mars depends dramatically on the longitude of the

primary impact, as well as on the speed and direction of ejection. Kempf et al.

[2008, 2010] have described such orbits around Enceladus based on dust impact

data and simulations. They compute the distribution of particles around the moon

including gravitational and electromagnetic forces. Our studies are similar, except

that we determine that the E-ring’s double-layered structure and gaussian core

(Fig.2.1) result from gravitational effects alone. Thus we are treating all particles

as uncharged point masses in our simulations.

We first present the dynamics of E-ring particles emanating from the Southern

hemisphere of Enceladus during one day. These particles originate in the plumes

of water vapor and ice (dust) near the South pole of the moon [Porco et al., 2006].
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Most of these grains are ejected at speeds (mean speed of 106 m/s) much lower

than the nominal escape speed from Enceladus’ surface (240 m/s) [Porco et al.,

2006]. These particles move nearly vertically, perpendicular to the orbit plane, in

the gravitational field of Enceladus; the tidal field of Saturn does not affect the

motions in this direction, so close to the moon. It is, hence, natural to assume that

only the particles with relatively high speeds (near and above the escape speed),

escape the moon.

2.4.1 Trajectories from the South pole

Figure 2.7: The coordinate system used in the simulations. The coordinate system
XYZ (assumed intertial) is centered at Saturn (origin O), while x’y’z’ rotates with
the moon (at S) which orbits in the XY plane with a radius of aE; they are aligned
with XYZ when the moon passes through the X axis. We do our simulations in the
xyz coordinate system, which is centered at origin O but rotates with the moon.
At any general point of time, x points in the radially outward direction while y
points in the direction of motion of the moon.

We first start with particles that leave exactly at the South pole. We are par-

ticularly interested in the minimum velocities (’cutoff’ velocities) that permit a
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Figure 2.8: The velocity for inclined launch from South pole is determined by two
angles: θ, the longitude from the negative z axis in the tangential direction and φ,
the latitude from the negative z axis towards the outward radial direction.

particle to just escape the moon’s gravitational influence and thus join the general

E-ring population. We borrow the typical rotating reference frame (Figure 3.1) of

the circular restricted three-body problem (Saturn, Enceladus, particle) to analyze

the evolution of various orbits in the vicinity of Enceladus. In the rotating frame

(xyz), Saturn is at the origin and Enceladus lies at a unit distance along the x

axis (at t = 0, x and X are parallel). The x axis while rotating about the z axis,

points radially outward, and the y axis is in the tangential direction (as given by

the moon’s velocity). Since the moon’s rotation is tidally locked with its revolution

around Saturn, the moon’s spin will not complicate the initial conditions of launch

and subsequent collisions. For the present case, where the launch is only from

the South pole, the launch velocity’s direction is specified by two angles: θ, the

longitude from the negative z’ axis in the tangential direction and φ, the latitude

from the negative z’ axis towards the outward radial direction (Fig. 2.8).

Enceladus’ orbit has a negligible inclination (0.02o, Murray and Dermott [1999]).
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Hence, any initial vertical velocity of a test particle, ignoring the gravitational effect

of the moon, should cause a vertical excursion (we define h to be the hypothetical

height ignoring any interaction with the moon) of ∼ 18γrE, where γ = vN/vesc.

h ≈ ai = aE
vN
vorb
≈ 18γrE. (2.6)

The presence of Enceladus reduces the vertical excursion because every particle

must climb out through the satellite’s gravitational well, which slows them, giving

them a smaller, and the true, vertical excursion (h′). Thus higher velocities are

needed to reach a given vertical height than Eq. 2.6 prescribes. Conservation of

energy (in the inertial frame centered at Saturn) can be utilized to derive the effect

of initial slowing (assuming vertical launch from South pole and no significant x

or y displacement):

v2
N

2
+
n2
or

2
E

2
−G

 mS√
a2
E + r2

E

+
mE

rE

 = −n
2
or

2
E

2
−G

 mS√
a2
E + h′2

+
mE

h

 , (2.7)

where vN is the normal launch velocity from the South pole, no is the mean mo-

tion of Enceladus around Saturn and h′ is the maximum true vertical excursion.

The term
n2
or

2
E

2
is the particle’s kinetic energy, because of motion along the orbit;

this appears on both sides and gets cancelled. Introducing four (non-dimensional)

constants (µ = mE

mS
, β = h′

rE
, α = vesc

vorb
, δ = rE

aE
), we get
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Figure 2.9: Enceladus’ effect on the maximum vertical excursion of particles start-
ing from the South pole of Enceladus. Dots are the simulation results, whereas
the thin line is the theoretical prediction (Eq. 2.8). The curve starts to bend at
around the Hill radius of the moon (∼ 4rE).

γ =

√√√√(1− 1

β

)
+
δ2

α2
(1− µ)(β2 − 1) (2.8)

from Eq. 2.7.

For our situation µ = 2× 10−7, α = 0.019 and δ = 0.001. Figure 2.9 shows the

vertical excursions obtained using this expression (solid line) and verified against

the simulation results (dotted line). At higher velocities the orbits deviate in the

x-y plane due to the gravitational effect of Saturn and the theoretical and simula-

tion curves diverge slightly.

The bend in the plot at vN/vesc ∼ 1 happens when the second term in Eq. 2.8

overtakes the first. It occurs at values of h′ roughly equal to moon’s Hill radius,

rH . The close match of our simulation results to the analytical equation also shows

that particles on vertical paths remain practically vertical inside the Hill sphere.

Once they are outside, we start to see deviations from the analytical result as the
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tidal forces from Saturn become important. It is valuable to note that this result

is valid only for vertical launch from the South pole. We will see quantitatively

similar behavior for other initial conditions in the next section.

We will now describe the path of a typical test particle. This particle is launched

vertically from the South pole, normal to the surface with a velocity of 1.4vesc. Fig-

ure 2.10 shows the two-dimensional projection of the orbit onto xz and yz planes,

as seen from Enceladus. Naturally, the particle slows down as it withdraws from

Enceladus. On its return, it may possibly experience a close encounter with the

moon. Such close approaches (departure and return) give gravitational kicks and

specify the initial conditions on particles that enter the E ring and thus dictate the

ring’s vertical extent. The x-z projection (Fig. 2.10a) shows that, upon returning,

the particle has experienced an outward radial drift. But more important is the

y-z projection (Fig. 2.10b) which demonstrates that the close encounter occurs

behind the moon and thus should increase the particle’s energy (as in a gravity

assist, Burns [1976]). The fact that the encounter happens orbitally behind the

moon occurs because the particle’s orbital period is slightly more than the moon’s

orbital period, owing to the extra energy that the particles start with relative to

the moon; the semi-major axis and hence the orbital period are, accordingly, in-

creased by this interaction.

Figure 2.11 shows the same event, but now as viewed in terms of dynamically sig-

nificant quantities. We have plotted the instantaneous osculating semi-major axis

and inclination (i.e., the orbital elements derived from the particle’s radius and

velocity vectors if the moon suddenly vanished) versus time in Fig 2.11a,b. It is

clear that the inclination, which would have remained constant in the absence of
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Figure 2.10: The 3-D trajectory for half a Saturnian orbit of a test particle as seen
from a frame attached to Enceladus, with xyz defined in Fig. 3.1. The initial launch
velocity is 1.4vesc. Since the close encounter occurs behind the moving moon,
net energy is gained Burns [1976]. Left: radial-vertical cut. Right: tangential-
vertical cut. Positive x corresponds to the radial outward direction and positive
y corresponds to the direction of Enceladus’ tangential velocity. The motion is a
simple linear oscillator (epicycle) in z until the particle re-encounters Enceladus
after a half-orbit of Saturn.
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Figure 2.11: The effect of moon’s presence on particles starting from the moon’s
South pole with a normal velocity of 1.4vesc (Fig. 2.10). Notice how the osculat-
ing inclination and vertical speed decrease for this particle but the total energy
increases due to the close encounter. Thin lines show the case with Enceladus
absent while darker lines include the moon’s effect. The units are given in Table
4.1.
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the moon (Enceladus), decreases due to the gravitational deceleration caused by

the moon. Enceladus’ orbital period is 1.37 days, and so re-encounter happens at

0.69 days, just after half the period because of the slightly longer orbital periods of

particles starting with ’extra’ energy. As the particle returns, it gains vertical ve-

locity and, hence, the osculating inclination increases. However, once the particle

passes the moon, its inclination starts to decrease again due to slowing down. The

point to note here is that the subsequent drop in inclination is more than the gain

in inclination during the encounter. This produces a particle with a much lower

inclination than expected for launch velocities in the absence of the moon. Over-

all, the massive moon slows down the particle’s vertical movement and reduces its

final inclination. Effectively, the moon damps the signatures of the initial launch

velocity, and re-sets it to a new velocity after the close encounter.

Figure 2.11(c) provides the particle’s vertical speed as a function of time. Without

the moon present (thin line), the vertical motion is a simple harmonic epicyclic

oscillation. The effect of the moon’s presence (dark lines) decreases the vertical

velocity and thus the osculating inclination. The particle’s orbital period around

Saturn also changes. This simply corresponds to the increase in semi-major axis.

Fig. 2.11(d) shows how the total kinetic energy varies. The second encounter is

critical; it increases the kinetic energy due to the ”back-side” close encounter, as

also shown by the growth in semi-major axis. After the close encounter, the kinetic

energy oscillates, as it does for any particle on any elliptical path (cf. the vis-viva

equation). Hence, these close encounters reduce the inclination but increase the

overall energy and the semi-major axis of the test particle. If the particle has

enough initial speed to escape, it feeds the E ring. It may eventually return and

collide with the moon according to the probabilities of collisions on a longer time
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scale.

Further, we can demonstrate that this ’cutoff’ particle will avoid the moon us-

ing Kepler’s third law. Let’s consider the particle launched from the South pole

almost vertically down in Fig. 2.12. We show the radial distance of this particle,

its vertical height and its semi-major axis with respect to time. We also show,

using solid vertical lines, the instances when the particle is at the equatorial plane.

The particle is launched with a relative velocity of 1.34vesc in the vertically down

direction.

We start with an estimate of the change in the particle’s orbital period. Since

T ∝ a
3
2 , where T is the orbital period, we have

4T =
3T

2a
4a. (2.9)

From Fig. 2.12 we see that, before undergoing the first close encounter, the change

of semi-major axis is given by 4a
a
∼ 0.0002, whereas after the second encounter the

same ratio changes to 4a
a
∼ 0.02. Using these two values, we get 4T ≈ 0.0003T

and ≈ 0.03T , respectively. Hence, the first time (after a little more than (i.e.,

0.635) half the orbit period of Enceladus) when the test particle crosses the equa-

torial plane, it is about πaE
4T
T
∼ 2rE away from the moon, and hence misses the

moon. In simulations we notice the particle just missing the moon. This can be

seen in the top plot of Fig. 2.12. After this first close encounter when the particle

approaches the moon again, it is about πaE
4T
T
∼ 200rE distance (i.e., after 1.306

days) away from moon. In simulations we see a distance of ∼ 100rE (Fig. 2.12
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Figure 2.12: Radial distance between the moon and particle, vertical distance and
semimajor axis for a particle launched from the South pole vertically down with
a relative speed of 1.34vesc. The solid vertical lines show the instances when the
particle is at the equatorial plane. Some areas are blown up to show them clearly.
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top).

Let us now explore the effect of different launch speeds. We start with a per-

fectly normal launch with θ (longitude from the negative z axis along tangential

direction) and φ (co-latitude from the negative z axis towards the outward radial

direction) equal to zero. We observe that all the launches below 1.34 vesc fall back

upon the moon within the first orbit, most of them colliding in first half of the

orbit. Anything above that speed undergoes a close encounter, is scattered and

proceeds to join the E ring, as seen in Fig. 2.13. The inclination vs time plot (Fig.

2.13 top) shows that the particle with initial launch velocity of 1.2 vesc returns and

collides. Figure 2.13 (bottom) provides the two-dimensional projection (onto yz

plane) of these orbits where the close encounters occur behind the moving moon,

and hence increase the energy of the particle. Fig. 2.13 (bottom) also shows the

moon’s gravitational focusing effect (towards the end of the trajectory the moon

attracts particles passing close to the surface). The particle whose velocity is

slightly less than 1.34 vesc grazes just past the surface and collides. The vertical

elevations of these trajectories are determined by the formula in Eq. 2.8.

We now introduce tangential speeds to the projectiles by inclining them along

the tangential direction (Enceladus’ path). We keep φ zero throughout. Figure

2.14a shows the cutoff speeds for different angles of projection along the tangential

direction. Even for a non-normal launch, we define cutoff speed as the minimum

speed below which all the particles launched from the same position and with the

same θ and φ collide with the moon. We can similarly introduce radial velocities

(Fig. 2.14b). We observe that introducing a component of tangential, or radial

velocity, reduces the cutoff velocities. This happens because these components
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Figure 2.13: Escapes occur at speeds above 1.34 vesc for normal launches from the
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change the orbital period considerably. Hence, such particles miss the moon when

they return to the equatorial plane.

When launched in the direction of the moon’s motion, an additional velocity

(v||) is gained in the direction of motion, which directly affects the orbital period

of the grains. The Gauss’ perturbation equations [Burns, 1976] give

dT

dv||
= 6πa

5
2
Eµ
− 3

2v, (2.10)

where T is the orbital period and v is the particle’s speed, which is ∼ vorb. Because

T = 2π
√

a3

µ
and v =

√
µ
a
, we obtain

4T
T

= 3
4v||
v
. (2.11)

We can see these effects again from a simulation with a test particle launched

from the Southern hemisphere as shown in Fig. 2.15. Now, for v|| ∼ vesc, after

substituting the values (
4v||
v
∼ 0.02), we get 4T

T
≈ 0.06. This means that when

the particle next crosses the equatorial plane, it is πaE
4T
T
≈ 400rE away from the

moon, and hence misses it. We see a lower separation (100 RE) in our simulations

due to the effect of vertical velocity and the geometry of the launch. But these

numbers still serve as an upper limit. The effect of radial velocity is different as

follows: an additional radial velocity is perpendicular to the orbital velocity, hence

the change in velocity is
√
v2 + v2

⊥ − v ∼ 0.0002v, for v⊥ = vesc. This will make

the particle miss by T4v
2
≈ 3rE. The possibility of an immediate close encounter

is much higher here.
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Figure 2.14: The values associated with each curve (in units of vesc) are the corre-
sponding cut-off velocities for launches from the South pole with different tangen-
tial and radial angles. All the particles in the plots graze past the moon’s surface.
Left: the cut-off speed decreases as the tangential component increases (we se-
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direction. This increases the particle’s orbital energy, semi-major axis, and orbital
period.

49



Figure 2.15: Distance between moon and particle (radial distance), vertical dis-
tance and semimajor axis for a particle launched from the southern hemisphere
from position (60o,900) with a cutoff velocity of ∼ 0.8vesc in the tangential direc-
tion and ∼ 0.5vesc in vertically down direction. The vertical lines are the times
when the particle passes through the equatorial plane.
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2.4.2 The fundamental role of Enceladus

Before describing the trajectories that start from other positions in the southern

hemisphere, let us look at Enceladus’ fundamental role in the early dynamics of E-

ring particles. As we have seen in the previous section, Enceladus, apart from being

the source of all these grains, plays an important role in the time evolution of the

particles. We illustrate this by considering the case where particles are launched

normal to the surface at the South pole all at once with speeds 1.4 - 1.5 vesc.

Recall that an orbit of a typical test particle differentially precesses with respect

to the moon by 2π radian in ∼ 34 years (for ∆a
a
∼ 0.02) and the time between

close encounters was calculated to be ∼ 7 years in the previous section. Figure

2.16 displays the vertical height plotted versus azimuthal launch angle (angle in

the orbital plane from the reference X axis), for two time instants - after 1 year

(dark dots) and 10 years (light dots). The sinusoidal shape (dark dots) signifies

an inclined ring, which subsequently smears out to generate an axially symmetric

cylinder. The 10-year snapshot shows the smearing effect, though it is still not

completely axially symmetric. The fact that the time-scale for close encounters is

less than the time of differential precession has an important consequence. The

’inclined ring’ does not wait for 34 years to get smeared out because of differential

precession. Instead, close encounters of the particles with the moon play an equally

important, if not more important, role than the differential precession time-scale,

in making the ring homogeneous.

In reality, the plumes from Enceladus are continuously putting particles all

around the orbit. Effectively, the moon’s motion continually re-positions the line

of nodes for the orbits of the various particles and thus brings axial symmetry to
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Figure 2.16: Vertical height plotted vs azimuthal angle (longitude in the ring plane
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Particles were started simultaneously from the South pole all at once with speeds
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’ring’ to smear out such that it moves towards becoming an axially symmetric
cylinder. The light dots show the intermediate stage to the axially symmetric
state. The sinusoidal shape after the original 1-year data signifies an inclined ring,
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√
µ/aE.
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the system within an orbital period (and makes the previous argument a heuristic

exercise). The vertical motion of these particles, when away from Enceladus, is

approximately that of a simple harmonic oscillator. In the absence of a moon, once

given the initial vertical velocity, these particles will forever oscillate in the z direc-

tion. The moon plays three roles. Firstly, since the particles start near the moon,

they are slowed as they escape and the elevations (or inclinations) reached by these

particles are less than in the ’free’ case (with no moon), as described in the last

sub-section. Secondly, the moon acts as a mixer and agitator because of its close

encounters with many particles. In the absence of a moon, the bunch of particles

starting from the South pole of the moon have very similar initial conditions and

hence will stay very close to each other. The moon gives ’random’ energies to these

simple harmonic oscillators due to close encounters, thereby mixing their phases.

The end result is a more homogeneous ring in which the signatures of the initial

velocities are wiped out. The fact that there is a continuous outflow of particles

from the moon all around the orbit of Enceladus hastens the axial homogenization

within one orbit (except for particles briefly trapped around Enceladus).

The third and final role of the moon is to act as an absorber of the ring material.

Since the moon moves through the ring, it sweeps up particles on its way.

2.4.3 Trajectories from the southern hemisphere

We now delve into the significance and the role of the initial launch positions. To

do this, we present results about the dynamics of particles emanating from differ-

ent positions on Enceladus’ southern hemisphere. The paths are similar to what

happens for the launch from the South pole. We start the particles normal to the

53



Figure 2.17: Positions in the southern hemisphere of Enceladus are given by a pair
of angles, the co-latitude (as measured from the South pole) and the longitude (as
measured from the x axis, which is the radial outward direction from Enceladus’
orbit). The vertical upward, z axis points into the paper. Saturn lies in the negative
x direction. For example, (15,30) denotes 15o co-latitude from the South pole and
30o longitude from the radially outward direction.

surface at all positions. We do not study the effect of launches tilted relative to the

surface as we did for the South pole. But slightly inclined particles should have

dynamics similar to particles with normal launch from nearby positions. What re-

ally matters is the direction and magnitude of a particle’s absolute velocity vector;

these depend on launch positions and launch angles. The positions on the south-

ern hemisphere are denoted by co-latitudes (as measured from the South pole)

and longitudes (as measured from the y axis; i.e., from the direction of Enceladus’

velocity vector); see Fig. 2.17.

While launching the particles normal to the surface, we increase the particle’s

speed until the ’cutoff’ value is reached. Again, the ’cutoff velocity’ refers to the

minimum speed below which all the particles collide immediately (i.e., within an
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orbital period) with the moon, and above which all the particles join the E ring.

We assume that the velocity distribution of the particles in the plume (i.e., be-

fore launch) peaks around a slow mean with only a small tail escaping the moon’s

gravitational field [Porco et al., 2006, Hedman et al., 2009b]. In such a model,

the particles with speeds just above the cutoff values are the most abundant in

the ring, and generate the ring’s prominent features. We, henceforth, talk about

the particles with these cutoff values, corresponding to different positions on the

moon’s surface. We find that higher-velocity particles are less susceptible to the

effects of close encounters with the moon and reach much higher vertical heights,

because with greater speeds, they get further from the moon and experience less

of its gravitational effects. We will elaborate on this subtle, but important, point

in the following paragraphs and, further, when we present the overall model of the

E-ring’s core, near Enceladus’ orbit.

Figure 2.18 shows the contour of cutoff speeds for normal launch from different po-

sitions on Enceladus’ southern hemisphere. Around 3601 particles were launched

from the southern hemisphere within 60o co-latitude from the South pole (uni-

formly distributed over the area) with a mesh grid of 2o along co-latitude and 3o

along longitudes. The South pole corresponds to the position where the particle

needs the maximum speed to escape Enceladus’ gravitational attraction. As we

increase the co-latitude away from the South pole, the ’cutoff’ velocity decreases

and finally settles down to about 0.84vesc away from the pole. This has a significant

implication: vents near the pole need to push out particles at higher velocities if

they are to feed the E ring. As the co-latitude off the South pole increases, the

requirement decreases. We will see later in this section how some of the hot spots

in ”tiger stripes” are ’fortunate’ to be located away from the South pole. The
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Figure 2.18: Contours of cutoff speed (given in vesc) for normal launch from various
positions in the southern hemisphere of Enceladus out to 60o co-latitude. Notice
the peak at the pole and how it settles down to about 0.85vesc away from the
pole. The non-smoothness of the curves is a result of the grid structure, which was
plotted with a mesh of 2o along latitude and 3o along longitude (corresponding
to 3601 points). The concentric circles correspond to the co-latitudes of 1o, 20o,
30o, 40o, 50o and 60o, respectively. The positive x axis (radial outward) is upwards
(longitude = 0o) and positive y axis (direction of moon’s motion) is to the right
(longitude = 90o)in this and subsequent views.
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patterns in this and subsequent contours (Fig. 2.18 - 2.22) will be discussed in

some detail in a later subsection, where we will qualitatively explain these struc-

tures. Meanwhile, we can see similar contours for the eventual semi-major axis,

inclination, eccentricity and direction of drift in Fig. 2.19 - 2.22, respectively. For

details look at their captions.

Let us now venture into some of these trajectories. Figure 2.23 shows the tra-

jectories in the vertical and radial plane when particles are launched with ’cutoff’

speeds from different co-latitudes, at a fixed starting longitude of 10o. Notice how

the characters of these orbits gradually change when the co-latitudes are varied.

Also notice the complicated two-knoted nature versus single bends in some of these

orbits in both the vertical and horizontal planes. These patterns get reflected in

the contours in Figs. 2.18 - 2.22. We will closely examine these patterns in the next

subsection. These trajectories eventually settle into orbits around Saturn once the

particles escape the moon. Depending on their initial positions, the particles either

encounter the moon towards its leading side or its trailing side and hence either

gain or lose energy. In general, we can observe that, if the number of encounters is

odd the particle gains energy; but it will lose energy if the number of encounters

is even. This is because the first encounter almost always occurs on the back-side

(energy-increasing encounter). The ’cutoff’ speeds also decrease moving away from

the South pole as shown in Fig. 2.18.

Similarly the effect of launching from different longitudes from the surface of

the moon can be seen from Fig. 2.24; these correspond to a fixed co-latitude of

30o. We will elaborate on this effect in the next subsection.
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Figure 2.19: Contours of the eventual semi-major axis of orbits(given in unit of
aE) for normal launch from various positions in the southern hemisphere of Ence-
ladus out to 60o co-latitude. The non-smoothness of the curves is a result of the
grid structure, which was plotted with a mesh of 2o along latitude and 3o along
longitude (corresponding to 3601 points). The concentric circles correspond to the
co-latitudes of 1o, 20o, 30o, 40o, 50o and 60o, respectively. The positive x axis (ra-
dial outward) is upwards (longitude = 0o) and positive y axis (direction of moon’s
motion) is to the right (longitude = 90o). The patterns here are similar to the ones
seen in other contours.
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Figure 2.20: Contours of eventual inclination of orbits for normal launch from
various positions in the southern hemisphere of Enceladus out to 60o co-latitude.
The non-smoothness of the curves is a result of the grid structure, which was
plotted with a mesh of 2o along latitude and 3o along longitude (corresponding
to 3601 points). The concentric circles correspond to the co-latitudes of 1o, 20o,
30o, 40o, 50o and 60o, respectively. The positive x axis (radial outward) is upwards
(longitude = 0o) and positive y axis (direction of moon’s motion) is to the right
(longitude = 90o). The patterns here are similar to the ones seen in other contours.
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Figure 2.21: Contours of eventual eccentricities of orbits for normal launch from
various positions in the southern hemisphere of Enceladus out to 60o co-latitude.
The non-smoothness of the curves is a result of the grid structure, which was
plotted with a mesh of 2o along latitude and 3o along longitude (corresponding
to 3601 points). The concentric circles correspond to the co-latitudes of 1o, 20o,
30o, 40o, 50o and 60o, respectively. The positive x axis (radial outward) is upwards
(longitude = 0o) and positive y axis (direction of moon’s motion) is to the right
(longitude = 90o). The patterns here are similar to the ones seen in other contours.
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Figure 2.22: Contours of eventual direction of drift of particles for normal launch
from various positions in the southern hemisphere of Enceladus out to 60o co-
latitude. The non-smoothness of curve is a result of the grid structure, which was
plotted with a mesh of 2o along latitude and 3o along longitude (corresponding
to 3601 points). The concentric circles correspond to the co-latitudes of 1o, 20o,
30o, 40o, 50o and 60o, respectively. The positive x axis (radial outward) is upwards
(longitude = 0o) and positive y axis (direction of moon’s motion) is to the right
(longitude = 90o). The patterns here are similar to the ones seen in other contours.
The lighter color represents the trajectories that precess forward with respect to
the moon and the darker color represents the trajectories that precess backward.
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Figure 2.23: Effect of launch co-latitude on trajectories: The evolution of par-
ticles starting with the ’cutoff’ speed from different co-latitudes in the southern
hemisphere (for fixed longitudes of 100) - Top: vertical plane, Bottom: horizontal
plane. The horizontal axis is the azimuthal distance (in units of the moon’s ra-
dius). Notice how the orbits change their character with a gradual modification
in the co-latitude. These eventually settle into a sinusoidal motion in their orbits
around Saturn, drifting away from the moon, owing to different orbital periods.
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Launching particles normal to the surface with speeds slightly above cutoff

will make them settle into orbits with different orbital inclinations (Fig. 2.20).

Any particle on an inclined orbit will reach a maximum possible vertical height

of ∼ aEsin(i) away from the equatorial plane on each sides. Figure 2.25 shows

this vertical height attainable by a particle in units of Enceladus’ radius, plotted vs

time. This height is not the actual height of the particle at a general time but com-

puted from the osculating inclination and semi-major axis of the particles. Thus,

this is the height at which the vertical speed of the particle would be zero and they

would spend more time than anywhere else in their orbit. We launch them from

various co-latitudes (5o to 30o). In each of the plots, the curve for normal launch

(0o launch) from the South pole is shown for reference. The other lines correspond

to launches from various longitudes for the given co-latitude. It is apparent that as

the co-latitude increases, the inclinations attained by the cutoff particles decrease.

This has an interesting implication similar to the previous one: plumes originating

from the region away from the South pole will feed particles with lower inclinations

to the E ring. The oscillations in some of the curves correspond to the particles

which are still near Enceladus and get continuously perturbed by it.

However, the most interesting and surprising observation is the fact that most

of the particles settle at maximum vertical displacements of around 4rE. Particles

spend more of their orbital time at this height as their vertical speeds are zero at

this height. This phenomenon is clearly visible from the final maximum attainable

’heights’ for the various particles launched at different latitudes and longitudes as

shown in Fig. 2.25. This can explain the double-layered structure of the E ring
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Figure 2.24: Effect of launch longitude on trajectories: The evolution of par-
ticles starting with the ’cutoff’ speed from different longitudes in the southern
hemisphere (for fixed co-latitude of 300) - Top: vertical plane, Botton: horizon-
tal plane. The horizontal axis is the azimuthal distance (in units of the moon’s
radius). Notice how the orbits change their character with gradual modification
in the longitude. These eventually settle into a sinusoidal motion in their orbits
around Saturn, drifting away from the moon according to their orbital periods.
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Figure 2.25: The maximum possible instantaneous vertical displacement h (with
respect to equatorial plane) possible for a particle (= iaE) during its orbit around
Saturn, in units of Enceladus’ radius plotted vs time for co-latitudes: 5o, 10o, 15o,
20o, 25o and 30o. Various curves correspond to different launch longitudes (0o to
350o with spacing of 10o) for the given co-latitude. The oscillations are due to
close encounters with Enceladus. The particles spend a larger amount of their
orbital time at this height as their vertical speeds are zero there [Horanyi et al.,
1992]. In each of the panels, the history for vertical launch from the South pole is
shown for reference. The oscillations seen in the curves depend on how many close
encounters a particle undergoes before escaping the vicinity of the moon. One
critical observation is the fact that most of the particles settle at heights of about
4rE, irrespective of their cutoff speeds. This is likely to be the primary cause
of E-ring’s double-layered structure. This phenomenon is emplaced, essentially
immediately, within Enceladus’ orbital period.
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(see Figs. 2.1 and 2.2). Particles barely above the escape velocity (that are most

numerous among those that escape) attain this specific inclination which is mani-

fested as the double-layered structure of the E ring. The primary mechanism is the

change of energy in the initial launch and a few subsequent close encounters. In

this process the signatures of the initial velocities and launch locations are pretty

much lost, i.e., the initial velocity and launch cannot be inferred from the particle’s

current state in the ring. The launch positions of the particles decide the cutoff

velocity but the preferred inclination at which the particles settle is only fixed after

the close encounters. The fact that most of the particles, away from the South pole

settle at around this height (4rE) (see Fig. 2.25), which corresponds to half of the

distance between the two layers of E ring suggests that this mechanism produces

the structure. The contour of vertical amplitude at equilibrium for different longi-

tudes and co-latitudes can be seen in Fig. 2.26. We can see a ’bean-shaped’ region

around the South pole from which ’cutoff’ particles settle in orbits corresponding

to maximum heights equal to approximately the Hill radius of the moon.

We also investigate the effect of plumes being situated at a few selected spots

on the southern hemisphere [Spitale and Porco, 2007]. We plot the contour of

vertical amplitudes again with a finer mesh (1o in co-latitude and longitude) near

the South pole (Fig. 2.27(Top)). This time we superimpose the eight hot-spots of

plume activity as described in Spitale and Porco [2007]. This view, again, shows

the southern hemisphere with the moon’s velocity towards right and Saturn down.

Notice that we only consider normal launch and no tilt with respect to the surface.

It is interesting to note from the previous contour (Fig. 2.26) that from a circular

region just outside the 30o co-latitude circle, escape is relatively easier to form the
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Figure 2.26: Contour for the amplitude of vertical oscillations of particles in equilib-
rium, launched with cutoff velocities from different latitude and co-longitudes from
the southern hemisphere of Enceladus. Notice the ’bean-shaped’ region around
South pole where the escape is easier (lower cutoff velocities) and many of the
particles settle in orbits corresponding to maximum heights approximately equal
to the Hill radius of the moon.
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double layer. Unfortunately, no active plume spots reside in that circular region,

as described next.

The location for easy escape shown in these figures has little correspondence to

the ’tiger stripes’. Figure 2.27 (bottom) compares the actual image of the South

pole with the map produced. The concentric circles correspond to the 5o, 10o, 15o,

20o and 25o co-latitudes from the South pole. It is probably a coincidence that the

direction of the stripes matches the pattern produced with the map, but it is very

noticeable. Half of the active vents lie close to the spots of relatively easy escape.

In this sense the plumes are ”lucky” to be near spots where they can feed the ring

easily (with lowest speeds). We will present the ”actual” simulation of the ’real’

plumes in Sec. 6.

2.4.4 Patterns in the contours

The contours presented in the last section show some noteworthy patterns that we

will now explain. Looking at Figs. 2.18, 2.20, 2.21, 2.22 and 2.26, we see three

prominent patterns:

• P1: Near the circular pericenter, some slanted patterns run at a slight down-

ward incline from the horizontal direction,

• P2: Around the South pole bands emanate radially out, all around, and

• P3: At the pole a ∼ −45o (counter-clock wise) inclined pattern is present.

We describe them one by one here, concentrating on the initial conditions and

dynamical factors that relate to these structures.
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Figure 2.27: Top: The contours of vertical amplitudes that appears when a tighter
mesh (1o both in co-latitude and longitude) is used. Bottom: Easier escape occurs
in the following area: the outer circular edge corresponds to the 25o co-latitude
from the South pole. The black dots (top) and white dots (bottom) show the
positions of the eight ’real’ heaviest plume-activity spots [Spitale and Porco, 2007].
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In Fig. 2.28 we show the contour plots of the South pole for the cutoff speeds

for normal launch from the southern hemisphere. The four subplots show the situ-

ation for Enceladus at different semi-major axis (with associated physical variables

like orbital velocity and time period, etc., changing accordingly). To concentrate on

the outer bands we truncate the upper speed to 1.02vesc in each of these subplots.

The first natural thing to notice is that the further away the moon (Enceladus)

is from the central mass (Saturn), the contour becomes more uniform because the

range of cutoff speeds shrinks. This can be seen from the lower scales in each of

these subplots. When the moon is placed at 10 times the real semi-major axis

distance, we see the cutoff speeds are in a small range around 1vesc, which should

be intuitively equivalent to an isolated moon case. More importantly, we can see

that when the semi-major axis is half the real value, the outer bands approach

almost horizontal, while when the moon is at ten times the real semi-major axis,

they gradually change to vertical bands (corresponding to Pattern P1). There are

other features emanating at the South Pole which overlay the outer pattern, but

we will discuss them later.

When the moon is near the central body, tidal forces are most effective. Hence,

points on the moon’s surface are equivalent (in terms of cutoff speed from the

surface) in a horizontal direction (direction of motion of the moon, as seen on the

contour plots). Whereas when far away, tidal forces are relatively immaterial and

the direction becomes more important. As we can see in Fig. 2.28 (10a: ten times

the real semi-major axis) the forward end has higher cutoff speed than the back-

facing end, because particles launched from the back-end can fall off the moon

easily where as the particles starting from the front-facing end have to escape the
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Figure 2.28: Contours of cutoff speeds for normal launch from Enceladus at dif-
ferent semi-major axes. As usual, the moon moves to the right and the radial
outward direction is up, while we look directly at the South pole.
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Figure 2.29: These are plots of semi-major axis versus time for the particles starting
with cutoff speeds from different longitudes for a fixed co-latitude of 20o. The plots
are displaced by a small but equal amount to look at the changes in the orbital
patterns of the particles. The middle plot expands a small region from the left
plot. And the right is the further magnification of a small region from the middle
plot. A white band will appear when there has been a sudden change in the cutoff
speed or dynamics of close encounter. These bands appear all over and represent
the ridges we see as described in the second pattern (P2). The figure also shows a
’wedge’ at around 135o and 315o, corresponding to the third pattern (P3).

whole moon before falling off (for a backward escape, which is more common as

seen in the last section).

To account for the second pattern (P2) of bands emanating in all directions

from the South pole, we look at the initial dynamics of the orbits starting in the

South polar region. Figure 2.29 (left) shows the semi-major axis of various parti-

cles plotted against time, for first two orbital periods. These particles start with
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the cutoff speeds at the indicated longitude. The co-latitude is fixed at 20o. We

displace these orbits along the vertical axis slightly, to look at the gradual change

in the pattern that occurs in the orbits of these particles. We see some white

bands all over the longitudes. These correspond to the positions where the orbital

character changed suddenly with respect to its neighboring particles - because of

the change in the geometry of close encounters with the moon. These white gaps

correspond to what we see in the contour plots as bands emanating in all directions

from the South pole (P2). Furthermore, we see ’wedge’ shapes near 135o and 315o.

These correspond to the third pattern (P3) as we noted above. When we zoom

into these longitudes in Fig. 2.29 - middle and right, the pattern does not self

replicate itself at lower magnifications. This is a manifestation of the simple but

inherently non-linear problem we are dealing with.

If we repeat this exercise at other latitudes (Fig.2.30), similar patterns arise, es-

tablishing these white bands (change in the character of orbits) as the reason from

the second pattern (P2).

Finally, let’s investigate the third pattern in the contours (P3) - the one in the

vicinity of South pole. Figure 2.31 shows semi-major axis plotted against time for

particles starting with cutoff speed at different co-latitudes for a fixed longitude

(55o and 145o). We clearly see that at the lower co-latitudes the first encounter

takes more time for the orbits starting with longitude 145o. This corresponds to

the fact that in that direction (145o longitude), the cutoff speeds are higher as the

particle spends more time in its orbit before encountering the moon. This again

corresponds to type of close encounter these particles undergo with the moon,

based on their initial conditions and geometry. Also, it is noteworthy that these

73



Figure 2.30: Similar to Fig. 2.29, we see similar ’white band’ patterns at other
latitudes too. These correspond to the second pattern (P2) we listed in the start
of Sec. 2.4.4.
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Figure 2.31: Similar to the previous figures (Fig. 2.29 and 2.30), this plot shows
the variation in orbits along a fixed longitude when we change the co-latitude.
Particles starting near the pole at longitude of 145o take longer to encounter the
moon and hence have higher cutoff speeds, which gets manifested as the third
pattern (P3) we listed at the start of Sec. 2.4.4.
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Figure 2.32: Six different experiments with parameters of the system changed
(Left - normal, ten times Enceladus’ mass, one hundredth Saturn’s mass. Right -
Thousand times Enceladus’ spin, ten times Enceladus’ semi-major axis, two times
Endeladus’ radius). When the mass of Saturn is decreased by a factor of 100, the
pattern around the pole disappears.

plots have fewer ’white bands’ that were present in other launch comparisons (Fig.

2.29 and 2.30). This implies that the variation owing to longitudes is smoother

than the variation owing to co-latitudes.

The third pattern (P3) of slanted lines (corresponding to the longitude of 145o)

running across the plot, near the pole, is mainly because of Saturn’s presence. This

is seen in Fig. 2.32, which shows six different situations with physical parameters

of the system changed to see how the cutoff-speed contours change. When we

decrease the mass of Saturn by a factor of 100, the pattern changes drastically

around the pole. Further investigations are needed to pin down the exact source

of this peculiar pattern. This effect, as noted by Kempf et al. [2010], has been
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attributed to the dynamics of the particle in the rotating frame (of Enceladus).

2.5 Analysis of orbits for longer time

Here we consider the dynamics of E-ring particles over longer intervals (100-300

yrs). Particles from the South pole of Enceladus are started with velocities ranging

between 0.9-1.9 vesc, launched normally from the surface. In a few simulations we

give some lateral speeds too. Again, we do not consider any non-gravitational

forces, but only gravity and Saturn’s oblateness [Kempf et al., 2008, 2010]. We

investigate the time history of the orbital elements of these particles and comment

qualitatively about the particle spatial densities in the ring. We will also show

that gravitational forces may explain the radial spread of the gaussian core of the

E ring [Hedman et al., 2012].

2.5.1 Lifetime of particles

Figure 2.33 shows the survival rate of particles for a given initial speed of launch

(with initial velocities consisting of both normal (0.9-1.9 vesc), tangential and ra-

dial components (-0.5 to +0.5 vesc)). All components are randomly distributed

with speeds picked from a constant probability distribution. As the launch speed

increases, a greater fraction of particles survives. Figure 2.33 shows that the sur-

vival plateaus at about 1.4vesc approximately the same as the critical ’cutoff speed’

that was obtained previously. Two factors play roles here. First, once a particle

has speed above the ’cutoff speed’ it escapes to form the E-ring population. This

graph would have been a step function if the particles were launched purely normal
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Figure 2.33: Particles remaining after 200 years of evolution as a function of initial
launch speed from the South pole. In these simulations the initial velocity was also
given some tangential and radial components (see text).

to the surface at the South pole. The plot is continuous because of the radial and

tangential velocities given to the particles, which of course is more realistic. This

effect is produced because the particles’ orbital periods change due to the radial

and tangential components of velocities, which also affect the ’cutoff speeds’. Sec-

ond, the higher the particle’s speed, the greater are the chances that the particle

will remain away from the moon to avoid quick collisions. Though the particles

cross the orbital plane two times per orbit, the higher speeds remove the particles

from the moon’s Hill sphere and Saturn’s oblateness induces differential drift and

orbital period changes; thus, higher-speed particles are more likely to miss the

moon during ring-plane crossing during the first few opportunities. Also, gravita-

tional focussing is less effective at higher speeds. Hence, over longer time scales,

after the system is ”stirred”, collisions occur a probabilistic chance events, leading

to exponential decay (Fig. 2.4).

78



 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0  50  100  150  200  250  300

P
e
rc

e
n
ta

g
e
 o

f 
p
a
rt

ic
le

s
 s

u
rv

iv
in

g

Time of evolution (years)

Full Radius
Half Radius

1 by 1000th Radius

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0  50  100  150  200  250  300

P
e
rc

e
n
ta

g
e
 o

f 
p
a
rt

ic
le

s
 s

u
rv

iv
in

g

Time of evolution (years)

1

2

3

Uniform velocity distribution
Extra tangential velocity components

Normal velocity distribution

Figure 2.34: Top: Particles remaining as a function of time. The curves correspond
to the case of full radius, half radius and 1/1000th radius of Enceladus. The
initial transient drop associated with all of the curves occurs through immediate
re-collisions within the first few orbital periods. Bottom: Loss of particles for
three different initial conditions: Curve 1: Particles are initially launched normal
to the South pole with random speeds uniformly distributed between 0.9− 1.9vesc.
Curve 2: In addition to the conditions for curve 1, tangential and radial random
velocities are added, uniformly distributed between −0.5 to +0.5vesc. Curve 3:
These velocities are normally distributed about 1.4vesc with a standard deviation
of 0.3vesc, along with uniformly distributed tangential and radial velocities between
−0.5vesc to 0.5vesc. Subsequently all have exponential decay.

79



Figure 2.34 shows the result of simulations carried out for longer times for the

E-ring particles. In these particular simulations, we start with 1000 particles with

velocities varying between 0.9vesc to 1.9vesc, launched from the South pole normal

to the surface. We show the percentage of surviving particles as a function of

time. Curves 1, 2 and 3 correspond to the results, when the full radius of the

moon was assumed (the distinction among 1, 2 and 3 is explained in the caption).

Apart from that, we have results for the cases when we take half the radius and

one-thousandth of the radius. The renc/1000 case corresponds to the effect of a

point mass moon on the ring. A small drop in the plot is due to the finite, but

small, radius of the test moon.

The transient decays in all three cases in Fig. 2.34. This corresponds to the

initial loss of particles, including those that do not escape and those that collide

with the moon during the first few encounters. The figure shows a dramatic drop

in the particles surviving once the radius is increased from 0.001rEnc to 0.5rEnc,

and even fewer survivors with the actual radius. Once the transient phase is over,

the remaining particles populate the gaussian core of E ring. Particle numbers still

decay, because a fraction continue to collide with the moon over a longer timescale

(the collision time scale with the moon ∼ 100 years; see Eq. 2.3). In reality,

particles are also lost out of the gaussian core because of non-gravitational forces

[Hamilton and Burns, 1994, Burns et al., 2001, Horányi et al., 2008]. Hence, if the

E ring is long-lived and maintains its present spatial density, then the South-pole

plumes at Enceladus must supply the material at a rate that balances this decay

and other losses to maintain any possible equilibrium. The interesting corollary

is that, though the ring core itself is presumably old, most particles in the ring

core are no more than 100-300 years old but are being continuously replaced by
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the newer ones introduced at the plumes [Burns et al., 2001]. This, obviously, as-

sumes that the only loss mechanism of E-ring particles is collisions with the moon;

this requires the minimum possible supply rate, and neglects the loss of particles

through non-gravitational evolution, sublimation, etc. [Burns et al., 2001] from

the system, as well as fragmentation of particles. Particles that come back and

collide with the moon, possibly at high relative velocity, provide impact ejecta,

and can supply new particles to the ring [Hamilton and Burns, 1994].

Figure 2.34 (Bottom) depicts the behavior of different initial velocity distribu-

tions. Curve 1 shows the percentage of surviving particles when the particles are

launched normally with initial speeds varying uniformly between 0.9vesc to 1.9vesc.

For curve 2, we add a tangential component of velocity uniformly distributed be-

tween −0.5vesc to 0.5vesc. Curve 3 shows the percentage of survivors when the

particles are launched with normally distributed (Gaussian) speeds of launch with

a mean 1.4vesc and a standard deviation of 0.3vesc, along with uniformly distributed

tangential and radial velocities between −0.5vesc to 0.5vesc. An initial tangential

velocity makes the transition state vanish. This is plausible and can be explained

as follows:

Imparting a tangential component of the velocity changes the particle’s orbital

period considerably. Hence these particles, which ultimately oscillate in the z di-

rection do not find the moon there to collide with, on the next pass through the

ring plane. This is different from those particles that are not given an additional

tangential velocity. Hence, if the initial speed is low, these particles are destined

to re-collide with the moon in the first encounter. Therefore, particles that have

a tangential component of the velocity will be more likely to feed the ring, as also
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seen in the analysis for briefer times. The other major result visible in this plot is

the fact that, after 100 years of evolution, curves 1, 2 and 3 become almost indis-

tinguishable. This implies that the close encounters with the moon modulate the

signatures of the initial velocity distribution of the particles in the ring. In other

words, the close encounters scatter particles until relative velocities are determined

by those encounters, rather than by the initial conditions [Gladman et al., 1996].

Figure 2.35: Particles remaining after 200 years of evolution for a given initial
launch velocity for the mass of moon 1/10th of the real moon. This figure is
similar to Fig. 2.34, except for the absence of the initial dramatic loss.

Let us now look into the effect of mass change of the moon on the dynamics.

We do the same simulation with the mass of the moon 1/10th of the actual value.

The first realization is the universal disappearance of the transient loss. The moon

has lost gravitational influence over the particles so that it is no longer able to

hold back particles during the first few encounters. Obviously the escape velocities

calculated for the new system are much smaller than the previous case.
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2.5.2 Effects of other moons

Other major satellites such as Mimas, Tethys, Dione, Rhea and Titan were incor-

porated into the system to see if they affect the evolution in any way. No visible

effect on the structure of the ring was observed due to them. They play a very

minor role in the precession of the particles’ orbits and no resonance effect is visible

in regions near Enceladus’ orbit [Burns and Gladman, 1998].

For an estimate, the acceleration due to Saturn’s gravity is GM
r2
∼ 0.67 m/s2 at

Enceladus’ orbit whereas Dione’s tidal effect is 2GMDio4r
r3

∼ 2.6× 10−9m/s2, where

4r is the radial distance between Dione’s and Enceladus’ orbit. The latter effect

is clearly negligible.

2.5.3 Effect of other forces

Apart from gravity, radiation pressure and electromagnetic forces play a very sig-

nificant roles in the evolution of the overall E ring. They become important for

any small (less than 1 µm) particles present in the ring [Burns et al., 2001]. For

comparison, Table 4.4 lists the accelerations produced by different forces on a 1-

micron-sized particle. It is clear that gravity is the prime-mover in ring dynamics.

Oblateness, electromagnetic and radiation forces become important in a longer

time-scale analysis (time ∼ 1/acceleration). Over shorter time-scales these forces

strongly depend on the size of the particles. However, the features near Enceladus’

orbit can be explained by gravitational forces alone. Gravity quickly (first few

orbits) defines the gaussian halo (the radial and vertical extent in the vicinity of

Enceladus) of the E ring. This chapter has analyzed the role of gravitational force
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Force Type Expression acceleration (m/s2)
Point mass gravity GM

r2
0.67

Oblateness GM
r2
J2

(
RS

r

)2
6.9× 10−4

Electromagnetic qB
m

(v + rω) 1.3× 10−4

Radiation 3J0QPr

4ρcd2srg
1.8× 10−5

Tidal (due to Dione) 2GMDio4r
R3 2.6× 10−7

Table 2.3: Accelerations produced by different forces on a micron-sized particle
in the E ring near Enceladus’ orbit. q is the charge on the particle (∼ 3 × 10−16

C, maximum possible charge on a 1-micron radius sphere for a given voltage), B
is Saturn’s magnetic field at distance r (3.6 × 10−7 Tesla), m is the mass of a
1-micron radius spherical particle (10−14 kg), v is Enceladus’ orbital velocity, ω is
Saturn’s spin (∼ 10−4 rad/sec), J0 is the unit-less radiation constant for the limit
of geometrical optics (1.36 × 103), QPr is the non-dimensional radiation pressure
coefficient (∼ 1), ρ is the particle’s density (assumed to be 1000 kg/m3), c is the
speed of light (∼ 3× 108 m/s ), ds is 9.6 (Saturn’s distance from Sun in AU), rg is
the radius of particle (1 micron), MDio is Dione’s mass, 4r is the radial distance
between Dione’s and Enceladus’ orbits (108 m) and R is the semi-major axis of
Dione (3.77 × 108 m). Electromagnetic and radiation forces increase strongly at
smaller particle sizes.

in the formation of gaussian halo of the double layer.

We did not consider any of these forces in our simulations of E ring core. Since,

as we have shown, the double-layer can be explained as a short-term phenomenon,

non-gravitational forces apparently have a limited role to play. They, however, are

relevant in the longer-term dynamics of the ring, particularly in radially expanding

the ring away from the gaussian core [Horányi et al., 2009, Kempf et al., 2010]. We

now show simulation results where the vertical and radial extents of the E ring, in

the immediate vicinity of Enceladus, are produced solely by gravitation.

84



-2500

-2000

-1500

-1000

-500

 0

 500

 1000

 1500

 2000

 2500

-300 -200 -100  0  100  200  300

Z
 a

x
is

 (
k
m

)

X axis (1000 km)

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

-2500 -2000 -1500 -1000 -500  0  500  1000  1500  2000  2500

P
e

rc
e

n
ta

g
e

 o
f 

p
a

rt
ic

le
s

Z axis (km)

Figure 2.36: Top: Side view of the simulated E-ring core after 1 year (see text for
details). The double-layer is apparent here. Bottom: The distribution of particles
in the vertical direction in the E-ring after 1 year of simulation. The separation
between the two peaks is ∼ 2000 km.
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2.6 A gravitational model of the E ring

Building upon the insights of the previous section, we now present a unified model

of the E-ring core. We combine together all the trajectories from the eight hot

spots [Spitale and Porco, 2007] from the southern hemisphere of Enceladus. The

particles were started simultaneously from the spots normal to the surface, all at

the same time. The velocity was uniformly distributed between 0.8vesc to 1.4vesc.

The evolution is for 1 year. To make the model real (i.e., to simulate continuous

emission from the plumes around the orbit), we rotate the trajectory of the parti-

cles proportional to the time of evolution. We also resample each orbit uniformly

in time (per day) to generate more particles with the same initial conditions but

lagged in time. This improves the overall density of the ring without affecting

the results. This whole sample of particles is the final E-ring core. The side view

of the final model is shown in Fig. 2.36 (Top). The double layer is apparent in

the model. It corresponds to a width of ∼ 2rH , similar to that measured in the

observed E ring (Fig. 2.2). The dense concentration at the sides arises because of

looking at the ring sideways at the edges [Horanyi et al., 1992]. Also notice that

the vertical scale is stretched for clarity.

The percentage of particles as a function of vertical height after 1 year is shown

in Fig. 2.36 (Bottom). The dip at the ring plane is apparent, and the distance

between the layers is about 2000 km, the same as the observations (Fig. 2.2). The

small time interval in which the structure is created indicates that gravitational

effects are enough to produce the structure. The simulations also produce the ra-

dial halo of the double-layered structure as shown in the onion-peel observations

[Hedman et al., 2012]. Figure 2.37 shows the radial excursion of the ring particles.

The particles have a radial extent of about 10,000 km, of the order of the E ring
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Figure 2.37: The radial distribution of particles in a 1-yr E-ring simulation. The
radial extent of the ring is about 10,000 km (inwards and outwards) from the orbit
of Enceladus (∼ 238,000 km). This is caused by the change in semimajor axis of
the particles in the first few close encounters with the moon (Fig. 2.11). There are
fewer particles at the radial position of the moon, because they collide with the
moon in the simulation. This dynamics happens quickly, all under gravitational
forces alone. The observed dip we see is due to the short simulation time.
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double-layered core [Hedman et al., 2012]. This suggests that the bulk of the E-

ring core is the result of a local gravitational effect. Further radial diffusion occurs

owing to other forces [Horányi et al., 2008, Kempf et al., 2010].

2.7 Conclusions

We have described how the particles in the E-ring core near Enceladus’ orbit evolve

over two sets of time-scales, a few orbits and ∼ 200 yrs. We conclude that

• The immediate vertical and radial structure of the E-ring core are outcomes

of a very small time-scale phenomenon - close encounters during the launch

in first few orbital periods.

• The launch velocities from the southern hemisphere in general (for normal

launch) causing the double-layered structure are of the order of 0.86 to 0.9

times the escape velocity.

• Gravity is the central player in the short-term structures seen in the E-ring

core.

• At longer time-scales (∼ 100 yr.), the ring core is replenished by the geysers

at Enceladus; typical particles have an age of about 100-300 years (upper

limit).
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CHAPTER 3

THE MATHEMATICS OF RESONANCE

In celestial mechanics an orbital resonance occurs when two orbiting bodies exert

regular, periodic gravitational influences on each other, because their orbital peri-

ods are close to a ratio of two small integers. Because Saturn’s rings extend across

more than 1RS, the orbital periods of ring particles range almost continuously

from ∼5 hr (D ring) to ∼14 hr (outer A ring), meaning that resonance phenomena

are ubiquitous across the Saturnian ring system. These resonances can be stable

or unstable: an unstable resonance will drive away particles and create gaps, while

a stable resonance can reinforce the configurations of moons and ring particles.

In this chapter we will derive the expressions for the disturbing function and other

quantities related to the phenomenon of resonance. The disturbing function is

the perturbing potential (i.e., its gradient equals a force or acceleration) causing a

mass’ orbit to deviate from a simple Keplerian orbit. We will express that poten-

tial as a function of the orbital elements of the two masses. We will follow Murray

and Dermott [1999] closely, but will elaborate on material that is not in that book.

3.1 The disturbing function

We start with a central planet of mass Mc. In our applications we usually have an

external satellite of mass m′ which perturbs an (internal) test particle of mass m,

both of which orbit the central (more massive) planet (Fig. 3.1). We develop the

expressions of the disturbing functions for each of the small masses.
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Figure 3.1: Three-body setup

Relative to an inertial coordinate system with origin O, we have
−→
Rc = the po-

sition vector of the central planet,
−→
R′ = the position vector of the exterior mass,

−→
R = the position vector of the interior mass,

−→
r′ = R′ −−→RC = the position vector

of the exterior mass relative to the central planet and −→r =
−→
R −−→RC = the position

vector of the interior planet relative to the central mass. The same terms without

the overhead arrows express the magnitude (length) of the corresponding vectors:

r′ =
√
x′2 + y′2 + z′2 (3.1)

and

r =
√
x2 + y2 + z2, (3.2)

where x, y, z are the coordinates of the internal mass with respect to the central

planet and x′, y′, z′ are the coordinates of the external mass with respect to the

central planet. The magnitude of the position vector of the exterior mass with

respect to the interior mass,
−→
r′ −−→r , is given by

|
−→
r′ −−→r | =

√
(x′ − x)2 + (y′ − y)2 + (z′ − z)2. (3.3)

Applying Newton’s gravitational law for the central, interior and exterior masses,
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the equations of motion are

−̈→
Rc = Gm

−→r
r3

+Gm′
−→
r′

r′3
, (3.4)

−̈→
R = Gm′

−→
r′ −−→r

(r′ − r)3
−GMc

−→r
r3
, (3.5)

and

−̈→
R′ = Gm

−→r −
−→
r′

(r − r′)3
−GMc

−→
r′

r′3
; (3.6)

overhead double dots represent second derivatives with respect to time and G is the

universal gravitational constant. Taking the differences of the suitable equations

above to find the equations of motion of the two masses with respect to the central

mass, we get

−̈→r +G(Mc +m)
−→r
r3

= Gm′
−→
r′ −−→r
|
−→
r′ −−→r |3

−Gm′
−→
r′

r′3
(3.7)

and

−̈→
r′ +G(Mc +m′)

−→
r′

r′3
= Gm

−→r −
−→
r′

|−→r −
−→
r′ |3
−Gm

−→r
r3
. (3.8)

The left-hand sides of the equations are just the classical two-body problem equa-

tion for each particle. The right-hand sides consist of the perturbation terms.

Converting the force terms into potentials, we have

−̈→r −∇U = ∇D, (3.9)

and

−̈→
r′ −∇′U ′ = ∇′D′, (3.10)

where the gradients ∇ and ∇′ are

∇ = î
∂

∂x
+ ĵ

∂

∂y
+ k̂

∂

∂z
, (3.11)

∇′ = î
∂

∂x′
+ ĵ

∂

∂y′
+ k̂

∂

∂z′
, (3.12)
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and the potentials are

U =
G(Mc +m)

r
, (3.13)

U ′ =
G(Mc +m′)

r′
, (3.14)

D =
Gm′

|
−→
r′ −−→r |

−Gm′
−→r .
−→
r′

r′3
(3.15)

and

D′ =
Gm

|
−→
r′ −−→r |

−Gm
−→r .
−→
r′

r3
. (3.16)

D and D′ are called the interior and exterior disturbing functions, respectively, and

are each composed of a ”direct” and an ”indirect” part. The terms containing dot

products are the indirect parts. They arise because the central planet experiences

accelerations due to each of the other two masses, which indirectly affect the two

smaller masses. This term is zero in the case when system’s center of mass is

chosen as the origin.

Introducing n = the mean motion (i.e., the average angular velocity) of the

unperturbed interior mass about the central mass, n′ = the mean motion of the

unperturbed exterior mass, a = the semimajor axis of the reference orbit (G(Mc +

m) = n2a3) of the internal mass, a′ = the semimajor axis of the reference orbit

(G(Mc +m′) = n′2a′3) of the exterior mass, α = a
a′

, µ = Gm and µ′ = Gm′ in the

equations and specifying the direct (RD), the exterior (RE) and the interior (RI)

parts of the disturbing function, we obtain

D =
µ′

a′
RD +

µ′

a′
αRE (3.17)

and

D′ =
µ

a′
RD +

µ

a′
1

α2
RI , (3.18)

RD =
a′

|
−→
r′ −−→r |

, (3.19)
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Figure 3.2: Orbital elements of an elliptical orbit around a central mass.

RE = −
(
r

a

)(
a′

r′

)2

cosψ, (3.20)

and

RI = −
(
r′

a′

)(
a

r

)2

cosψ, (3.21)

where ψ is the angle between the radius vectors (r and r′) of the two masses with

respect to the central mass, MC (Fig. 3.1).

We will use the Saturn-Mimas-Methone system to illustrate our formulation. The

ratio of the masses is 1013 : 106 : 1 (see Ch. 4). Clearly, Saturn and Mimas domi-

nate Methone and are hardly affected by its perturbations. Also the center of mass

of the system will lie almost at Saturn’s center. Hence, in our case, both RE and

RI are zero because we choose the center of mass of the system as the origin of

the coordinate system. We now outline the expansion of RD but, for full details,
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see Murray and Dermott [1999, pp. 228-233]. By the law of cosines,

|
−→
r′ −−→r |2 = r2 + r′2 − 2rr′cosψ. (3.22)

When expanding the disturbing function as a power series, the following identity,

which exploits the use of Legendre polynomials, is utilized

1

|
−→
r′ −−→r |

=
1

r′

[
1− 2

r

r′
cosψ +

(
r

r′

)2
]− 1

2

(3.23)

=
1

r′

[
1 +

r

r′
cosψ +

(
r

r′

)2
(

3cos2ψ − 1

2

)
+O

(
r

r′

)3
]

(3.24)

=
1

r′

∞∑
l=0

(
r

r′

)l
Pl(cosψ), (3.25)

where Pl(x) is the lth-order Legendre polynomial with argument cosψ. Notice that

the constant terms have been removed from the above expressions because when

they are part of a potential, they will not contribute any force as they do not

survive differentiation. Now we need to write the angle ψ in terms of the orbital

elements of the two masses, which will result in the final series expansion. That

is, we want

RD = µ′
∑

f(a, a′, e, e′, i, i′)cosφ, (3.26)

where

φ = j1λ
′ + j2λ+ j3$

′ + j4$ + j5ω
′ + j6ω, (3.27)

in which λ′ = the mean longitude of the exterior mass, λ = the mean longitude

of the interior mass, $′ = the longitude of pericenter of the exterior mass, $ =

the longitude of pericenter of the interior mass, ω′ = the argument of pericenter

of the exterior mass and ω = the argument of pericenter of the interior mass (see

Fig. 3.2), and the ji are integers such that

6∑
i=1

ji = 0. (3.28)
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This so-called d’Alembert relation follows from the azimuthal invariance of the

primary’s potential (since the perturbing potential cannot depend on the orienta-

tion of the coordinate system). By finding the exact form of the function f in Eq.

3.26, we can pick out the dominant (constant or slowly varying) terms and the

combination of angles that describes the resonance. The first step is to express the

angle ψ in terms of the orbital variables. By doing a Taylor expansion and using

Laplace coefficients [Izsak, 1963], we can write a series expansion of the disturb-

ing function [Murray and Dermott, 1999, pp. 233-248]. When the time periods

of the two masses are in a simple integer ratio of a:b, the order of the resonance

is defined as |a − b|. We need to retain all significant terms in the expansion for

numerical accuracy. As an example, the resonance between Enceladus and Pallene

is third-order and hence we need at least a third-order expansion. By contrast, in

the cases of Anthe-Mimas and Methone-Mimas, we can just keep the first-order

terms of the expansion because these resonances are first-order.

The terms in the disturbing function expansion are of three types - secular (D(sec)),

resonant (D(res)) and short-period (D(sho)):

RD = D(sec) +D(res) +D(sho). (3.29)

Any argument (the angular terms for sines and cosines) that does not involve

mean longitudes is constant or slowly varying and can give rise to secular terms

(i.e., long-period). Occasionally, the time-varying terms may be canceled due

to a commensurability between the two mean motions (or, equivalently, the two

corresponding orbital periods). We classify these arguments as resonant terms.

Because of the dependence on semimajor axis, these terms are localized while

secular terms represent global effects. Any other argument is classified as short-

period. These latter terms integrate to zero over longer times, according to the
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averaging principle [Murray and Dermott, 1999, p. 293]. That is, after averaging,

< RD >=< D(sec) > + < D(res) > . (3.30)

We now proceed to classify the types of resonances that occur in ring systems and

derive some analytical results.

3.2 Types of resonances related to Saturn’s rings

A central point mass induces a classical closed Keplerian ellipse for a particle

orbiting around it (disregarding the parabolic and hyperbolic open orbits). Gen-

erally, the central planets are oblate and thus other (higher order) perturbations

are present. These additional perturbations change the orbital shape. One can

consider the modification to the body’s orbit as being perturbed by oscillations

about the three directions - orbital, radial and vertical, like three simple harmonic

oscillators acting simultaneously. These three frequencies (the mean motion, n;

the radial frequency, κ; and the vertical frequency, ν) are given by Murray and

Dermott [1999, p. 268]:

n2 =
1

a

(
∂V

∂r

)
0

, (3.31)

κ2 =
3

a

(
∂V

∂r

)
0

+

(
∂2V

∂r2

)
0

, (3.32)

ν2 =
1

a

(
∂V

∂r

)
0

+
1

a2

(
∂2V

∂α2

)
0

, (3.33)

where a is the semimajor axis of the unperturbed orbit, α is the angle of the

particle’s position vector at a given instant from the equatorial plane (inclination

with the equatorial plane) and the subscript 0 denotes that the partial derivative

is evaluated at r = a and α = 0.
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The major geometric consequence of these oscillations is that the orbit, in gen-

eral, is no longer closed. The extent to which the rates of the radial and vertical

excursions (i.e., those due to the eccentricity and the inclination) differ from n is a

measure of the rate of change of the pericenter and the node, respectively. Hence,

$̇ = n− κ (3.34)

and

Ω̇ = n− ν. (3.35)

A perturbing satellite will, of course, introduce its own set of frequencies n′, κ′ and

ν ′, given by the same equations with a replaced by a′. The satellite’s potential can

be expanded in the same manner as the expansion presented in the last section.

For each argument in the expansion (the angular terms inside the cosines), the

pattern speed Ωp is defined as the angular frequency of a reference frame in which

this argument is stationary. In other words, it is the time derivative of the time-

dependent terms for a given argument. The general form of Ωp is [Murray and

Dermott, 1999, p. 482]

sΩp = sn′ + kκ′ + pν ′, (3.36)

which, using expressions equivalent to Eq. 3.34 and 3.35, becomes

sΩp = (s+ k + p)n′ − k$̇′ − pΩ̇′, (3.37)

where s, k, and p are integers and s is non-negative. This gives rise to three types

of resonances.

• Corotation Resonance: This occurs when the integer multiple of the dif-

ference between s and Ωp is zero, i.e.,

s(n− Ωp) = 0. (3.38)
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Substituting the value of sΩp from Eq. 3.37, we get

(s+ k + p)n′ − sn− k$̇′ − pΩ̇′ = 0. (3.39)

The integral of the left-hand side of this equation should be zero or near zero

for a corotation resonance. Integrating with respect to time and using the

definition for the mean longitude λ = nt + $, we get the expression for the

resonance argument of a corotation resonance,

ϕ = (s+ k + p)λ′ − sλ− k$′ − pΩ′. (3.40)

The above expression shows that the longitude of pericenter ($) and the

longitude of ascending node (Ω) of the perturbed particle are not involved

in corotation resonances. Since only the mean longitude appears, this would

imply (from the perturbation equations) that only the semi-major axis of the

perturbed particle would be affected by this resonance.

• Lindblad Resonance: This occurs when an integer multiple of n-Ωp is equal

to the natural frequency of radial oscillations of the perturbed particle, κ,

i.e.,

s(n− Ωp) = ±κ, (3.41)

where the upper and lower signs correspond to inner and outer Lindblad

resonances, respectively. Following the line of argument for a corotation

resonance, we can derive the resonance argument for a Lindblad resonance

as

ϕ = (s+ k + p)λ′ − (s∓ 1)λ− k$′ ∓$ − pΩ′. (3.42)

The Lindblad resonance has no terms related to the longitude of ascending

node (Ω) of the perturbed particle, implying that only semi-major axis and

eccentricity of the perturbed particle are affected by this resonance.
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• Vertical Resonance: This resonance occurs when the integer multiple of

n-Ωp is equal to the natural frequency of vertical oscillations of the perturbed

particle, ν, i.e.

s(n− Ωp) = ±sν, (3.43)

where the upper and lower signs correspond to inner and outer vertical res-

onances, respectively. Again, following a similar formulation to that before,

we can write the resonance argument for the vertical resonance as

ϕ = (s+ k + p)λ′ − (s∓ 1)λ− k$′ ∓ Ω− pΩ′. (3.44)

A vertical resonance affects both the semi-major axis and the inclination of

the perturbed particle.

3.3 Sample Calculations

We will now present a sample calculation using the expressions for the disturbing

functions provided in Murray and Dermott [1999, pp. 233-248]. Let us take the

case of the Methone-Mimas resonance. We must first determine the resonant terms

in the fourth-order expansion (to keep all the significant terms, a first-order expan-

sion should suffice but to make comparisons with higher-order terms we evaluate

some higher-order terms) of the disturbing function for the Methone-Mimas case

and then search for the terms where the resonance argument is librating (i.e., the

time-dependent term averages to 0). A resonance argument will be the combina-

tion of angles occurring inside the cosine term in the expansion such that j1λ
′+j2λ

is close to zero. When resonance occurs, these terms are either constant or librate

(i.e., oscillate) slightly around some constant value. This argument will identify

possible resonances and then we will compare the ”strength” of the resonance terms
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by ratios of the amplitude of the coefficients of the corresponding cosine terms.

In order to locate the possible resonances, we first take the ratio of the orbital

periods of Methone and Mimas.

TMethone

TMimas

=
1.009574 days

0.942423 days
= 1.0714 ≈ 15

14
. (3.45)

This hints at where to start to look for first-order resonances for this pair of

satellites. Accordingly, we search for all the terms of the form 15λMethone−14λMimas

in the expansion of the disturbing function (λi = mean longitude of ith moon). Keep

in mind that several terms are possible because additional slow-moving angles (e.g.,

Ω or $) are necessary in order to satisfy the d′Alembert rule (Eq. 3.28). This is

a case where the perturber (Mimas) is interior, so we have the expression of the

disturbing function as

RD =
∑

Sl cos(φl), (3.46)

where Sl is the strength of the lth term and φl is its corresponding argument. Table

3.1 gives all the arguments starting with 15λMethone−14λMimas for the fourth order

expansion.

To accurately simulate the orbits of any two moons that are involved in reso-

nance, we would require precise initial conditions for these bodies. So, instead of

numerically simulating the orbits, we take the time history of the two moons from

the respective NASA kernels [Acton, 1996], which are numerically integrated or-

bits of the system fitted to observations. Figure 3.3 plots these arguments against

time for 22 years. These diagrams show which arguments are, and which are not,

librating (i.e., oscillating about some fixed angle). We see four arguments that are
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15λMethone − 14λMimas −$Mimas

15λMethone − 14λMimas −$Methone

15λMethone − 14λMimas +$Methone − 2$Mimas

15λMethone − 14λMimas − 2$Methone +$Mimas

15λMethone − 14λMimas +$Mimas − 2ΩMimas

15λMethone − 14λMimas +$Methone − 2ΩMimas

15λMethone − 14λMimas −$Mimas − ΩMethone + ΩMimas

15λMethone − 14λMimas −$Mimas + ΩMethone − ΩMimas

15λMethone − 14λMimas +$Mimas − ΩMethone − ΩMimas

15λMethone − 14λMimas −$Methone − ΩMethone + ΩMimas

15λMethone − 14λMimas −$Methone + ΩMethone − ΩMimas

15λMethone − 14λMimas +$Methone − ΩMethone − ΩMimas

15λMethone − 14λMimas +$Mimas − 2ΩMethone

15λMethone − 14λMimas +$Methone − 2ΩMethone

Table 3.1: Various arguments of Methone-Mimas disturbing function that contain
15λMethone − 14λMimas.

librating in Fig. 3.3. We calculate the strengths (by calculating the corresponding

Sl of the four librating arguments) to ascertain the dominant resonance present.

Table 3.2 shows the resonance arguments with the corresponding leading terms giv-

ing expressions for their strengths and the associated numerical values (calculated

in units of specific energy (i.e., per unit mass), since these represent potentials per

unit mass).

The terms f27, f31, f35 and f36 are the strength coefficients as taken from Murray

Resonance argument Strength term Value
15λMethone − 14λMimas −$Mimas eMimasf27 9.56× 10−2

15λMethone − 14λMimas −$Methone eMethonef31 4.94× 10−4

15λMethone − 14λMimas +$Methone − 2$Mimas e2
MimaseMethonef35 2.17× 10−5

15λMethone − 14λMimas − 2$Methone +$Mimas eMimase
2
Methonef36 9.43× 10−8

Table 3.2: Various arguments of the Methone-Mimas disturbing function that
contain 15λMethone−14λMimas, their leading strength terms and the corresponding
values in energy per unit mass.
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Figure 3.3: Various arguments of the Methone-Mimas disturbing function starting
with 15λMethone − 14λMimas that satisfy the d’Alembert relation. The first four
arguments librate; their strengths are given in Table 3.2.

and Dermott [1999, pp. 539-556]. They are given by the following expressions

f27 =
1

2

[
−30b15

1/2 −
α

2
b14

3/2 − 2αb15
3/2 + b16

3/2

]
, (3.47)

f31 =
1

2

[
29b14

1/2 −
α

2
b13

3/2 − 2αb14
3/2 + b15

3/2

]
, (3.48)

f35 =
1

16

[
−29264− 913αδ + 33α2δ2 + α3δ3

]
b16

1/2, (3.49)

f36 =
1

16

[
20722 + 653αδ − 34α2δ2 − α3δ3

]
b14

1/2. (3.50)

In the above expressions, the Laplace coefficients are defined as

bis(α) =
1

π

∫ 2π

0

cosiψ

(1− 2αcosψ + α2)s
dψ, (3.51)

and δ is the differential operator following the rule

δbjs(α) = s
(
bj−1
s+1(α)− 2αbjs+1(α) + bj+1

s+1(α)
)
. (3.52)
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The value of the strength terms in Table 3.2 clearly shows that the resonance with

the argument 15λMethone−14λMimas−$Mimas, the corotation resonance of Methone

and Mimas, is the system’s most prominent one. The second strongest resonance,

the Lindblad resonance of Methone and Mimas, has an argument of 15λMethone −

14λMimas − $Methone. In next chapter, we identify and present the prominent

resonance arguments for the Anthe-Mimas and Pallene-Enceladus systems.

3.4 Pendulum Model

When a body is in an exact resonance, the sum of the time-dependent terms in

the argument is constant. But, in general, these arguments oscillate slightly about

their mean values and hence they librate, i.e., the body’s motion is similar to that

of a pendulum.

The argument of a general cosine term in an expansion is

φ = j1λ
′ + j2λ+ j3$

′ + j4$ + j5Ω′ + j6Ω. (3.53)

The averaged disturbing functions, with long-period terms integrated out, have

the general form [Murray and Dermott, 1999, p. 329]

< D >=
Gm′

a′

[
D(sec) + e|j4|e

′|j3|sin|j6|(i/2)sin|j5|(i′/2) [fd(α) + fe(α)] cosφ
]
,

(3.54)

and

< D′ >=
Gm

a

[
αD(sec) + e|j4|e

′|j3|sin|j6|(i/2)sin|j5|(i′/2) [αfd(α) + fi(α)] cosφ
]
,

(3.55)

103



where < D > is the averaged disturbing function for an internal resonance and

< D′ > is for an external resonance. D(sec) is given by

D(sec) =
1

8
(e2 + e′2)

(
2αD + α2D2

)
b0

1/2

+
1

4
ee′
(
2− 2αD − α2D2

)
b1

1/2cos($
′ −$)

−1

2

(
sin2(i/2) + sin2(i′/2)

)
αb1

3/2 + sin(i/2)sin(i′/2)αb1
3/2cos(Ω

′ − Ω).

The terms fe(α) and fi(α) (which contain the sum of various Laplace coefficients)

can be found in the Appendix of Murray and Dermott [1999, pp. 539-556]. We

will write the appropriate form when presenting our calculations later. When the

system is in a resonance, we expect the argument to be nearly constant. We are

interested in the time history of φ. Does it oscillate or drift? To find this history,

we take the time derivative of this and use the fact that λ = nt + ε, where ε =

$ − nτ is the mean longitude of epoch (τ is the time of pericenter passage along

the osculating orbit). Thus we get

φ̇ = j1(n′ + ε̇′) + j2(n+ ε̇) + j3$̇′ + j4$̇ + j5Ω̇′ + j6Ω̇ = 0. (3.56)

Neglecting all other angles except the first two (after substituting average angular

velocities in the resonance argument), we get the familiar-looking expression for

resonances which relates the angular velocities of two bodies in resonance as a ratio

of integers (j1 and j2).

j1n
′ + j2n ≈ 0. (3.57)

The above expression will correspond to a |j1|:|j2| resonance, and the order of the

resonance would be ||j1| − |j2||. Using Lagrange’s equations for the variation of

the orbital elements (considering only the lowest-order terms in e and i) [Murray

and Dermott, 1999, pp. 328-329], we have

ṅ = − 3

a2

∂D

∂λ
, (3.58)
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ė = − 1

na2e

∂D

∂$
, (3.59)

i̇ = − 1

na2sini

∂D

∂Ω
, (3.60)

$̇ =
1

na2e

∂D

∂e
+
sin(i/2)

na2

∂D

∂i
, (3.61)

Ω̇ =
1

na2sini

∂D

∂i
, (3.62)

ε̇ =
e

2na2

∂D

∂e
, (3.63)

we can substitute the values of the time derivatives of the angles in terms of the

disturbing function. In this way, we convert Eq 3.56 into a second-order differential

equation by differentiating again with respect to time.

All our results will be derived for an external resonance case (e.g., Pallene-

Enceladus). Murray and Dermott [1999, pp. 334-341] discuss internal resonances.

If we assume that the internal perturber’s angular values have second derivatives

equal to zero (this occurs because the bigger mass’s orbit is not disturbed signifi-

cantly by the smaller mass) and only the perturbed body (interior to the perturbing

moon) undergoes changes with respect to time, we get

φ̈ = j1ṅ
′ + j1ε̈

′ + j3$̈
′. (3.64)

We can calculate φ̈ in terms of the orbital parameters now.

ε̇′ = αe′2Cs +
1

2
α|j3|Cre′|j3|e|j4|sin|j6|(i/2)sin|j5|(i′/2)cosφ, (3.65)

$̇′ = 2αCs + α|j3|Cre′|j3|−2e|j4|sin|j6|(i/2)sin|j5|(i′/2)cosφ, (3.66)

and

ṅ′ = 3αj1Crn
′e′|j3|e|j4|sin|j6|(i/2)sin|j5|(i′/2)sinφ, (3.67)

where

Cs =
Gm

n′a′2a

1

8

[
2αD + α2D2

]
b0

1/2, (3.68)
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Cr =
mn′

Mcα
fd(α). (3.69)

Here fd(α) is a function as defined by Murray and Dermott [1999, pp. 539-556]

and will be evaluated for our specific case later in this chapter (Eq. 3.74). Differ-

entiating these first-order differential equations (Eq. 3.65 - 3.67) again, we get

ε̈′ = 2αe′ė′Cs+
1

2
α|j3|Cre′|j3|−1e|j4|sin|j6|(i/2)sin|j5|(i′/2)

[
|j3|ė′ − φ̇e′sinφ

]
, (3.70)

$̈′ = α|j3|Cre′|j3|−3e|j4|sin|j6|(i/2)sin|j5|(i′/2)
[
(|j3| − 2)ė′cosφ− φ̇e′sinφ

]
, (3.71)

and

n̈′ = 3αj1Crn
′e′|j3|−1e|j4|sin|j6|(i/2)sin|j5|(i′/2)

[
|j3|e′sinφφ̇+ e′cosφφ̇

]
. (3.72)

These equations can be substituted into Eq. 3.64 to get the pendulum model

equation for an exterior resonance. Let us now see a specific calculation for the

case presented by Methone and Mimas, where we use equations similar to the ones

derived above for the internal case [Murray and Dermott, 1999, pp. 334-341].

In the last section we identified prominent resonance arguments that librate for the

Methone-Mimas case. We now calculate the exact form of the pendulum equations

for the two resonances that are first-order. Let’s take the corotation resonance with

the argument

15λMethone − 14λMimas −$Mimas. (3.73)

For this case, j1 = 15, j2 = -14, j3 = 0, j4 = -1, j5 = 0 and j6 = 0. Also

fd(α) =
1

2
[−30− αδ] b15

1/2(α). (3.74)

We calculate Cr = −2.701 × 10−11 and Cs = −1.286 × 10−10. This gives the

second-order equation for φ as

φ̈ = 3Crj
2
1nMethoneeMimas

aMimas

aMethone

sinφ, (3.75)
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which implies an angular frequency for small librations (φ << 1) of

ωcorotation =

√
−3Crj2

1nMethoneeMimas
aMimas

aMethone

. (3.76)

Notice that Cr is negative in the above equation. On substituting values, the os-

cillation period is ∼460 days.

15λMethone−14λMimas−ϖMethone

1990 1995 2000 2005 2010 2015
−200

−100

0

100

200
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g

15λMethone−14λMimas−ϖMimas

1990 1995 2000 2005 2010 2015
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−100

0

100

200
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g

Figure 3.4: (a) The argument of the 15:14 Lindblad resonance for Methone and
Mimas. (b) The argument of the 15:14 outer corotation resonance for Methone
and Mimas. These plots are drawn from NASA kernels [Acton, 1996].

Figure 3.4(b) displays the same argument, where its period is seen to be about

∼550 days. A difference between idealization and reality is expected because of

higher-order terms which were neglected.

Further, the 15:14 Lindblad resonance argument is

15λMethone − 14λMimas −$Methone. (3.77)
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For this case j1 = 15, j2 = -14, j3 = -1, j4 = 0, j5 = 0 and j6 = 0. Also

fd(α) =
1

2
[29 + αD] b14

1/2, (3.78)

where d = 27, where we neglect higher order terms. We calculate that Cr =

2.69581× 10−11 and Cs = −1.28624× 10−10, so that the second-order differential

equation for φ is

φ̈ = 3Crj
2
1nMethoneeMethoneαsinφ+ j2

3Crα

[
−Crα|j3|sin(2φ)

2e2
Methone

− φ̇sinφ

eMethone

]
. (3.79)

This nonlinear equation can be solved numerically to identify its oscillations. We

evaluate the values of coefficients and then solve the following equation:

φ̈ = 1.25062× 10−16sinφ− 3.30795× 10−14sin(2φ)− 2.57214× 10−7φ̇sinφ, (3.80)

which has an oscillation period of 460 days, for an oscillation with an amplitude of

70o. Figure 3.4(a) displays the same argument from the simulations and its period

is about 550 days.

Following similar algebra for Anthe’s case we can calculate Cr = −2.113 × 10−11

and the libration period to be ∼ 720 days (using j1 = 11).

3.5 Libration width

The libration width is the distance that a body can be displaced from the exact

resonance and still display a pendulum-like motion. The same argument developed

in the previous section can now be used to determine this width. The total specific

energy (kinetic and potential per unit mass) of a body during its pendulum motion

can be written as [Murray and Dermott, 1999, p. 336]

E =
1

2
φ̇2 + 2ω2sin2φ

2
. (3.81)
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The constant E can be calculated as the maximum potential energy that the body

will have when at the extrema of its oscillation (φ̇ = 0 and φ = π). This gives

E = −6j2
1Crn

′e|j4|e′|j3|α = 2ω2. (3.82)

Substituting these values into Eq. 3.81 gives

φ̇ = ±
√

12j2
1 |Cr|n′e|j4|e′|j3|α cos

φ

2
. (3.83)

Differentiating Kepler’s law, we get

δa = −2

3

δn

n
a. (3.84)

Now, from Eq. 3.67 with the values substituted, we have

ṅ′ = 3j1Crn
′αe|j4|e′|j3|sinφ. (3.85)

This and Eq. 3.65 can be used to derive n′ as a function of φ which in turn can

be employed to arrive at

δn′ =
√

12|Cr|n′αe|j4|e′|j3|. (3.86)

Hence, using Eq. 3.84, we have

δa′max = ±
√

16

3

|Cr|αe|j4|e′|j3|
n′

a′. (3.87)

Substituting values, we find δa′max = 35.67 km for the Mimas-Methone corotation

resonance and δa′max = 2.51 km for the Lindblad resonance. Clearly the corotation

resonance has a larger amplitude and a higher stability range.

Again, following similar algebra for Anthe’s case we get the libration width of

Anthe-Mimas resonance near Anthe’s orbit to be about 34.52 km.
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3.6 Resonance-splitting

Finally, let us outline the procedure to determine the radial separation between

the locations of these two similar nearby resonances (slightly different resonance

arguments but with the same leading terms). This separation can be used to

address the stability of particles within a given resonance in the presence of another

neighboring resonance argument. We illustrate the process by using the case of the

corotation and Lindblad resonances of the Mimas-Methone system. Let particle

1 be in the 15:14 corotation resonance with Mimas; its relation for the exact

resonance will be

15n1 − 14nMimas − $̇Mimas = 0. (3.88)

For particle 2 (considered to be in the 15:14 Lindblad resonance with Mimas), a

similar expression is given by

15n2 − 14nMimas − $̇2 = 0. (3.89)

Taking the difference between the two equations, we have

n1 − n2 = ∆n = $̇Mimas − $̇2. (3.90)

Using Eq. 3.84, this can instead be expressed as

∆a =
2

45

aMimas

nMimas

($̇Mimas − $̇2) . (3.91)

For Methone’s example, from Eq. 3.91, ∆a is 3.29 km, indicating the two res-

onances are near one another. This potentially complicates the dynamics of the

particles in Methone’s arc, as they may switch from one resonance to another

following a slight perturbation. In Chapter 4 we will use the results developed

above to describe the dynamics of particles in the Methone and Anthe arcs and in

Pallene’s ring.
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CHAPTER 4

THE DYNAMICS OF RING ARCS FOR ANTHE, PALLENE AND

METHONE

4.1 Introduction

Images from the Cassini mission have revealed three dusty faint rings of Saturn

that lie along the orbits of three small Saturnian moons - Methone, Anthe and Pal-

lene [Hedman et al., 2009a]. The three moons have radii of 1−3 km. Table 4.1 lists

the physical and orbital properties of these three moons along with those of Mimas

and Enceladus. It is noteworthy that the moons Anthe and Methone have arcs

associated with them, while Pallene has a complete ring along its orbit (for dusty

particles). All three moons experience resonant or near-resonant perturbations

from nearby, bigger moons of Saturn. Mimas (semimajor axis of 3.08RS where

RS is Saturn’s radius) lies interior to all the satellites while Enceladus (3.95RS) is

exterior. Methone is in both a 15:14 Lindbad resonance [Spitale et al., 2006] and

a co-rotation resonance with Mimas [Hedman et al., 2009a]. Anthe is in a 11:10

co-rotation resonance with Mimas [Cooper et al., 2008]. Pallene was reported to

be in a 19:16 mixed resonance with Enceladus [Spitale et al., 2006]; however, we

show a slightly different near-resonance to be operating.

Burns et al. [1999, 1980] and Dobrovolskis and Burns [1980] have suggested how

faint rings may be generated off small moons with impact ejecta supplying ring

particles. Starting from a moon’s surface, slowly moving particles become trapped

into the arcs/rings, as first suggested for the Adams ring of Neptune by Goldreich

et al. [1986], who gave a resonance-stabilized theory for the location and extent
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of the arcs. Porco [1991] applied this model to Voyager data and identified the

43:42 corotation inclination resonance with Galatea as operative. Horanyi and

Porco [1993] further showed that a periodic perturbation changes the effective

mean motion, and this in turn displaces the arcs 0.2 km further away from the

moon Galatea and also modifies the location of the arc-confining resonances by a

comparable amount. Hanninen and Porco [1997] later demonstrated numerically

that the combination of the corotation-inclination resonance and an outer Lind-

blad resonance with Galatea would be able to confine particles for short times in

Neptune’s ring arcs. However, more recent telescopic observations have found that

the arcs’ continuing evolution is not consistent with the 43:42 corotation inclina-

tion resonance [Sicardy et al., 1999, de Pater et al., 2005]. Consequently, the Porco

[1991] model was reformulated by Namouni and Porco [2002] in terms of the 43:42

corotation eccentricity resonance, but required introducing the ring’s mass as a

free parameter.

Interesting dynamics are found for other confirmed faint rings discovered in the

Saturn system by Cassini: the G ring arc [Hedman et al., 2007b] and the Janus-

Epimetheus ring [Williams and Murray, 2011]. The Goldreich et al. [1986] model

applies more simply to the G ring, which has longitudinally localized material

along the orbit of its embedded moon Aegaeon [Hedman et al., 2007b, 2010] that

is trapped in a 7:6 co-rotation eccentricity resonance with Mimas. The Janus-

Epimetheus ring surrounds the orbits of the moons and is probably supplied by

meteoroid impacts into them [Williams and Murray, 2011]. The ultra-faint arcs in

this chapter are similar to the G ring, being constrained by the resonances they are

involved in. For Pallene though, there is no constrained arc, but the ring maybe

maintained inclined due to the resonance, as we will argue in the discussion. Cal-
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legari [2013] is also investigating the resonances that operate in this neighborhood.

After recalling some observational evidence for material associated with these three

moons, this chapter will describe the dynamical and structural features of the ring

associated with Pallene, and of the arcs associated with Methone and Anthe, as

observed by the Cassini spacecraft and as illuminated by our numerical simulations

and calculations. The next section presents the observations of the arcs and the

ring. In Sec. 3 we describe the numerical setup used for the integrations. Section 4

considers the resonances of the moons involved in some detail. We discuss the re-

sults in Sec. 5. In Sec. 6 we explore the conditions under which non-gravitational

forces are not important, suggesting that gravity explains the observed confine-

ment. Conclusions are presented in the last section.

Moon Mass Radius density a e i Orbital
period

(kg) (km) (kg/m3) (Rs) (deg) (days)
Mimas j3.85×

1019

r198 1184 m3.0751 m0.0202 m1.53F
m0.942

Methone r′ ∼
1013

r′ ∼ 3 88 s3.22 s0.0001 s0.007 s1.01

Anthe c ∼
1013

c ∼ 2 298 p3.28 p0.001 p0.1 p1.037

Pallene p′ ∼
5 ×
1013

p′ ∼ 2 1492 s3.52 s0.004 s0.181 s1.154

Enceladus j1.08×
1020

r252.1 1611 m3.9453 p0.0045F
m0.02 m1.370

Table 4.1: Physical and orbital properties of selected satellites of Saturn. A suffix
’F’ means the number given is the forced value. References: c - Cooper et al.
[2008], j - Jacobson et al. [2006], r - Roatsch et al. [2009], r’ - Roussos et al. [2006],
m - Murray and Dermott [1999] p - Porco et al. [2006], p’ - Porco [2007], s - Spitale
et al. [2006]
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4.2 Observations

Figure 4.1: (a) One of the images (N1572353098, phase angle 22.6o), that first
revealed the Anthe arc and the Methone arc. Anthe is marked with a black arrow
and Methone with a white arrow. The faint streaks surrounding these moons
are the Anthe and Methone arcs [Hedman et al., 2009a]. The range to Anthe is
2303167 km (a pixel is ∼ 13 km). (b) Nearly edge-on views of the Pallene ring:
N1514138009 (range to Pallene=166015 km; a pixel is∼ 10 km), phase angle of 87o,
ring opening angle of 0.26o. The Pallene ring is marked with white arrows. The
bright spot near the image center is Pallene. Orbital motion is from left to right
[Hedman et al., 2009a]. Images are produced after standard calibration and flat-
fielding and additional removal of a quadratic background. The image is rotated
so that Saturn’s north pole would point approximately up; the image brightness
has been stretched to bring out the subtle details. The horizontal banding is an
imaging artifact. The other bright dots are caused by stars and cosmic rays.

Figure 4.1a shows the arcs associated with Methone and Anthe [Hedman et al.,

2009a]; each extends only a finite range of longitudes surrounding the respective

moons. The observed longitudinal extents of the arcs are ∼ 20o for Anthe’s arc and

∼ 10o for Methone’s arc; these are less than the theoretically maximum possible

values (the length of each resonance well). Anthe is found to be librating within

its arc of material [Hedman et al., 2009a]. Figure 8 in Hedman et al. [2009a] shows

the radial width of Anthe’s arc to be a few hundred km. Methone’s arc has similar

radial width (personal communication, M. M. Hedman, 2010).

In contrast, Pallene’s ring appears continuous, in high-phase-angle images (im-
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plying small particles), while images at other phase angles (bigger particles) show

a denser arc near Pallene [Hedman et al., 2009a]. At high phase the Pallene

ring has a radial full-width at half-maximum of approximately 2500 km [Hedman

et al., 2009a]. But medium-phase images (personal communication, M. M. Hed-

man, 2012) find a radial width of ∼ 100 km. They also indicate that the ring is

extremely thin vertically, having an approximately Gaussian vertical profile with a

full-width at half-maximum of less than 50 km (much less than the ∼1300 km ver-

tical excursions of the moon from Saturn’s equatorial plane due to its inclination).

This implies that Pallene’s ring is inclined like the moon’s orbit, by about 0.2o.

This is surprising because we might expect the ring to become axially symmetric

due to the precession caused by Saturn’s oblateness (see Fig. 4.1b, Hedman et al.

[2009a]). In our calculations, we will assume a radial width of ∼ 200 km for the

ring and arcs. We investigate Pallene’s arc particles resonance with Enceladus

(confinement and inclination).

As discussed in Ch.1 (Fig. 1.10), the in-situ absorption signatures associated with

Methone’s arc [Roussos et al., 2008] indicate a 15o-long longitudnal arc with par-

ticles larger than a mm and with optical depth lower than ∼ 10−6. Higher-phase

images of Pallene [Hedman et al., 2009a] display a thin ring of smaller particles

around Saturn.

These observations give us some typical parameter values to work with in our

simulations of these arcs and ring. Pallene ring is clearly continuous for dusty

particles (from high-phase angle images), but it is not clear whether this is true

for larger particles (from mid and low-phase images).
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4.3 Numerical setup

Motivated by these observations, numerical simulations were carried out to under-

stand the dynamics of the arcs and ring associated with these small moons. For

initial conditions of the ring particles, we started them from the surfaces of their

respective moons. The initial speeds from the moon’s surface are chosen to be of

the order of its escape speed. The numerical integration package SWIFT [Levi-

son and Duncan, 1994a] was the prime mode of carrying out simulations where

close encounters and collisions were enabled. Our simulations are carried out with

Saturn considered as an inertial frame; this is valid because Enceladus’ mass is

10−7 of Saturn’s and because Saturn’s gravitational acceleration due to the Sun is

many orders of magnitude less than the accelerations of the particles that we study.

Impacts of interplanetary meteoroids onto a moon’s surface will eject material

[Burns et al., 2001]. Many particles will fall back on the moon as they are un-

able to overcome the moon’s gravitational pull. Particles with higher velocities (of

the order of escape speed of the moon), though lesser in number, can escape the

moon’s gravitational influence and supply the ring or arcs along the orbit of the

moon. Because they present a reasonably large cross-section to be hit by microm-

eteoroids and have little gravity to keep the impact ejecta from escaping, satellites

of 1-100 km in radius are thought to be ideal sources for supplying escaped ejecta

[Burns et al., 1999]. Since Anthe, Methone and Pallene are at the smaller end of

this distribution, they will test this ejection model. The velocity distribution of

this impact ejecta depends on the surface properties of the moon being hit and its

radial distance from Saturn [Burns et al., 1980]. Assuming this model to supply

particles, grains were started from the surface of the moons.
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In most of our simulations, particles with a range of speeds uniformly varying

between 1.0vesc to 1.1vesc (vesc is the escape speed from the surface of an isolated,

non-rotating spherical moon, which is 0.94 m/s for Methone, 1.15 m/s for Anthe

and 1.83 m/s for Pallene) were launched normal to the surface of the moons from

regularly spaced grids on the surface. Instead of directly integrating the orbits of

the moons, the NAIF kernels for these orbits [Acton, 1996] with previously inte-

grated orbits were used to improve accuracy and to better mimic the real situation.

The NAIF kernels (Table 4.2) contained orbit information for the interval 1/1/91

to 12/31/13, thus limiting our particle integrations to be 23 yrs. Within our inte-

grations, the unit of length is one Saturnian radius (RS = 60, 330 km), the unit of

time is 24 hrs and G = 1 (see Ch. 2). We, however, present results in ’mks’ units.

Simulations were carried out in the Saturnian inertial frame of reference, non-

rotating with Saturn at the origin. Saturn’s mass is 5.6851×1026 kg. The planet’s

gravity field includes the higher-order gravitational moments J2 = 0.016298 and

J4 = −0.000915 for RS = 60,330 km [Murray and Dermott, 1999]. Table 4.3

presents the properties of all other moons included in out short-term (23 years)

simulations.

Kernel Description
sat252s.bsp Mimas, Enceladus, Tethys, Dione, Rhea, Titan, Methone
sat281.bsp Pallene, Anthe

de418 Saturn Barycenter
naif0008.tls Kerner wrapper

saturn inertial.tk Saturn-o-centric inertial coordinate system

Table 4.2: Kernels used for the moons.

Massless test particles with velocities near or in excess of the escape speeds

at the surfaces of the moons may escape their gravitational pulls [Dobrovolskis

and Burns, 1980]. These particles will subsequently respond to the gravitational
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Name (NAIF id) Mass (kg) Radius (km) Semimajor axis (Rs)
Mimas (601) 3.85× 1019 198 3.0751

Enceladus (602) 1.08× 1020 252.1 3.9453
Tethys (603) 6.18× 1020 530 4.8835
Dione (604) 1.10× 1021 560 6.2555
Rhea (605) 2.31× 1021 764 3.7371
Titan (606) 1.35× 1023 2575 20.2531

Table 4.3: Properties of moons included in simulation [Murray and Dermott, 1999].

influence of Saturn and the other six moons - Mimas, Enceladus, Tethys, Dione,

Rhea, Titan. If a particle collides with a moon, it is removed from the simulation.

We assume that the particles in Anthe’s and Methone’s arcs and Pallene’s ring do

not affect each other. Non-gravitational forces are not included in our simulations,

but we anticipate them to play an important role over longer periods of time (see

Sec. 4.6).

4.4 Resonances inhabited by moons

Each of these three moons appears to be in some resonant relationship with ei-

ther Mimas or Enceladus [Spitale et al., 2006, Cooper et al., 2008, Hedman et al.,

2009a]. This can be seen by plotting the resonance arguments, which are linear

combinations of the orbital elements of the moons as derived from the kernels. We

also wish to explore other possible similar resonances. The orbital elements used

here are epicyclic or geometric elements [Renner and Sicardy, 2006] rather than

conventional osculating elements. Epicyclic or geometric elements use the concept

of ring streamlines, which are the flow paths of ring’s particles considered as a

fluid. These differ from the conventional osculating elements, which are the orbital

elements a particle would have if any small perturbation (such as oblateness) were

instantaneously removed. When the central body is oblate, the osculating elements
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of close-in orbits show significant short-period variations. The epicyclic elements,

by contrast, change only slowly on orbital time-scales, and thus are more suitable

to use when considering the orbits (with small eccentricities and inclinations) of

satellites or ring particles around an oblate planet.

Using the computed orbital elements of the moons, we identified the most promi-

nent resonance arguments. This search was done with the anticipation that the

particles starting from the moon’s surface with low relative speeds are likely to

be trapped in similar and nearby resonances. We plot the moon’s prominent res-

onance arguments for reference. For Pallene we determine that no resonance is

present, but rather only a slightly different near-resonance, contrary to a previous

report [Spitale et al., 2006]. In the following discussion, the strength of the res-

onance is measured by the absolute value of the terms multiplied in front of the

corresponding resonant terms in the disturbing function (see Ch. 3).

4.4.1 Anthe

Figure 4.2 shows the epicyclic elements of Anthe as functions of time. The mean

longitude (λ), argument of pericenter (ω) and longitude of pericenter ($) repre-

sent the residual values after linear background trends have been subtracted from

each of them. Constant values have also been subtracted from the longitudes in

order to give variations with means of zero (see Fig. 4.2). The de-trended mean

longitude for Anthe oscillates about its average value, suggesting the effects of a

possible mean-motion resonance.
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Figure 4.2: The epicyclic orbital elements of Anthe between 1991 and 2013. Here a
is the semi-major axis, e is the eccentricity, i is the inclination from Saturn’s equa-
torial plane, Ω is the longitude of ascending node, $ is the longitude of pericenter
and λ is the mean longitude of Anthe. Best-fit linear background trends have been
subtracted from all longitude profiles to identify oscillations around secular trends
for Ω, $ and λ.
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Figure 4.3: Search for possible resonance arguments of similar strengths with the
leading variable as 11λAnthe − 10λMimas. The figure shows the possible resonance
arguments plotted versus time. The vertical axis goes from −π to π.
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Figure 4.4: The resonance argument, 11λAnthe− 10λMimas−$Mimas, for the 11:10
corotation eccentricity resonance of Anthe with Mimas. It is clearly librating.

We search for possible resonance arguments of similar strengths with the lead-

ing variable as 11λAnthe − 10λMimas, where λi is the mean longitude of the ith

moon. Figure 4.3 shows possible resonance arguments plotted versus time. Two

arguments are constrained (one first-order and one third-order, see Ch. 3). Also,

notice that a few other arguments circulate fairly slowly while yet others circulate

rapidly. These slow circulations correspond to resonances that the particles in the

arcs could inhabit, depending on the energy of those particles. We will analyze

this further in the next subsection.

In agreement with Cooper et al. [2008], we verify that Anthe is in the 11:10 corota-

tion eccentricity resonance with Mimas. The resonance argument with maximum
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strength is

φ = 11λAnthe − 10λMimas −$Mimas; (4.1)

its history is plotted in Fig. 4.4. When the system was simulated with Mimas re-

moved, the oscillations in the semimajor axis disappeared and the above resonance

argument started to circulate. This clearly demonstrates that Anthe is indeed in

resonance with Mimas. The amplitude of the oscillation of the resonance argument

is 78o with a period of 2.08 years.

4.4.2 Methone

Figure 4.5 plots the epicyclic elements of Methone as a function of time. The

plotted mean longitude, longitude of pericenter and longitude of ascending node

again represent the residual values after linear background trends have been sub-

tracted from each of them. Once more we have subtracted constant values from

the longitudes in order to give approximately zero mean variability. Even though

the orbital elements again show the characteristic oscillations of resonance, the

situation in this case is less clear. Plots of all the resonance arguments of similar

strengths starting with 15λMethone−14λMimas are given in Fig. 4.6. Two first-order

and two third-order resonance (refer Ch. 3) arguments are librating. A few others

drift slowly while the remainder circulate furiously. In the next subsection, we

investigate in which resonance Methone’s arc particles reside.

Methone is found to be in two prominent first-order resonances with Mimas: the

15:14 corotation resonance with Mimas as well as the 15:14 outer Lindbad reso-

nance with Mimas. Figure 4.7 shows these resonance arguments of Methone with
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Figure 4.5: The epicyclic orbital elements of Methone between 1991 and 2013.
Here a is Methone’s semi-major axis, e is the eccentricity, i is the inclination from
Saturn’s equatorial plane, Ω is its longitude of ascending node, $ is its longitude
of pericenter and λ is its mean longitude. Best-fit linear background trends have
been subtracted from all longitude profiles for Ω, $ and λ.
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Figure 4.6: Search for possible resonance arguments of similar strengths with the
leading variable as 15λMethone−14λMimas. The figure shows the possible resonance
arguments plotted versus time. The vertical axis goes from −π to π.
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Figure 4.7: Two similar resonance arguments of Methone with Mimas. Top:
15λMethone − 14λMimas − $Methone, the 15:14 outer Lindbad resonance with Mi-
mas. Bottom: 15λMethone − 14λMimas − $Mimas, the 15:14 corotation resonance
with Mimas. Both are seen to librate.

126



Mimas. Figure 4.7 top plots the corotation resonance argument [Spitale et al.,

2006] which is:

φT = 15λMethone − 14λMimas −$Methone, (4.2)

and Fig. 4.7 bottom displays the outer Lindbad resonance argument [Hedman

et al., 2009a] which is:

φB = 15λMethone − 14λMimas −$Mimas. (4.3)

The associated resonant semimajor axes are separated by ∼ 3.29 km (as calculated

in the last section of Ch. 3). We expect the particles in Methone’s arc to have these

signatures of the resonances, and this turns out to be true as described in Section

5. The amplitude of each of the oscillations of the two resonance arguments is

∼ 70o and their periods are about 1.3 years. They are similar because the values

are primarily determined by the leading terms, which are the same for both.

4.4.3 Pallene

Figure 4.8 shows the histories of Pallene’s epicyclic elements. The mean longitude

(λ), longitude of pericenter ($) and longitude of ascending node (Ω) represent the

residual values after linear background trends have been subtracted from each of

them. Constant values have also been subtracted from the longitudes in order to

give zero means to the variation. The orbital elements are clearly constrained,

particularly Pallene’s inclination and its Ω. We will investigate these confinements

for the ring particles in the next subsection. Spitale et al. [2006] argue for a

possible 19:16 inner, mixed resonance with Enceladus (19λEnceladus − 16λPallene −

$Pallene − 2ΩPallene). We found this specific argument to be circulating and hence

conducted our own search. These differences could be because of different sources
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of orbit integrations. Figure 4.9 shows all possible resonance arguments of similar

strengths starting with the terms 19λEnceladus − 16λPallene. The closest we get is a

third-order near-resonance that circulates with a period of ∼20 yrs, and is weakly

bound. The coefficients of the disturbing functions corresponding to these near-

resonances have triple factors of the eccentricities and inclinations of Enceladus

and Pallene, and hence correspond to weak resonances.

Figure 4.10 shows the near-resonance argument that circulates most slowly,

given by:

φ = 19λEnceladus − 16λPallene −$Enceladus − 2ΩEnceladus. (4.4)

The evolution of the near-resonance argument contains a 60o oscillation with a

period of about 1.5 years superposed on a shallow linear trend of ∼20 o/yr. Thus,

this argument is circulating and hence is only a near-resonance, but all other nearby

arguments are circulating at much faster rates.

4.5 Particles in the arcs/ring

4.5.1 Extent of arcs/ring

As we have just shown, the dynamics of Anthe and Methone are governed by

first-order resonant interactions with Mimas while Pallene has a weak third-order

near-resonance with Enceladus. Particles in the arcs, that leave the moons’ sur-

faces at low relative speed, will likely be in the same, or nearby, resonances as their

parent moons. As a limiting case, we do not consider non-gravitational acceler-

ations on the particles in our simulations, meaning that our particles are larger
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Figure 4.8: The epicyclic orbital elements of Pallene between 1991 and 2013 derived
from the kernels (refer to Table 4.2). Here, a is the semi-major axis, e is the
eccentricity, and i is the inclination from Saturn’s equatorial plane. Best-fit linear
background trends have been subtracted from for the mean longitude (λ), longitude
of pericenter ($) and longitude of ascending node (Ω). The fuzzyness in several
of these curves is due to low-amplitude orbit-frequency changes in the epicyclic
elements.
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Figure 4.9: Searches for possible resonant arguments of similar strengths with the
leading variable as 19λEnceladus− 16λPallene. Ten possible resonance arguments are
plotted versus time.
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Figure 4.10: The ’near’ resonance argument of the 19:16 mixed resonance of Pallene
with Enceladus (19λEnceladus − 16λPallene −$Enceladus − 2ΩEnceladus).
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than several microns in size (e.g., Methone’s arc has at least some particles larger

than 1 mm [Roussos et al., 2008]). In Sec. 4.6 we discuss the situations under

which non-gravitational forces (electromagnetic, radiation forces) can be neglected

for the simulations considered in this work.

Other nearby moons (Tethys, Dione, Rhea and Titan) have insignificant effects

as we have verified by running the simulation with and without those moons, with

no change in the stability of the arcs/ring.
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Figure 4.11: Snapshot of the Saturnian ring-arc system on Dec 31, 2013 following
twenty three years of perturbations from nine Saturnian moons (Methone, Anthe,
Pallene, Mimas, Enceladus, Tethys, Dione, Rhea and Titan). On Jan 1, 1991, 972
particles (324 each) were projected normally with launch speeds 1-1.1 times the
formal escape speed from isolated spherical moons ( Anthe, Methone and Pallene),
uniformly distributed over the surface. The orbital distances along the three axes
are given in RS. The figure clearly shows arcs associated with Anthe and Methone
while Pallene sports a ring formed along its orbit around Saturn. The inclination
of the ring associated with Pallene is magnified for clarity by stretching the Z axis
(250 times). Two arcs of particles lie along the orbits of their respective moons -
Anthe and Methone.

Fig. 4.11 shows a snapshot of the system simulated for 23 years. In each of these

simulations, 324 particles were started from the surfaces of the three moons; these
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particles were launched uniformly from the surface (with a co-latitude grid spaced

10o, and a co-longitude grid spaced 20o apart), with velocities from vesc to 1.1vesc

(uniformly randomly distributed). The plot clearly illustrates that the Anthe and

Methone arcs are constrained for this period around the moons while the material

from Pallene forms a complete ring of material encircling Saturn. We recall that

the resonances of Methone and Anthe are first-order while Pallene’s near-resonance

is only third-order and hence much weaker. We compare the strength of resonance

in the next subsection. Since the arcs and ring particles are in similar resonances as

their parent moons (as we show next), it presumably explains why the former arcs

are constrained while Pallene’s ring is not. The third-order near-resonance has a

smaller potential well, making the confinement of particles less likely. We proceed

with detailed simulations and calculations of particles associated with Anthe and

Methone followed by Pallene’s case.

Figure 4.12 displays temporal snapshots of particles continuously emitted from

Anthe’s surface (with a period of 1/20 th of a day), from all over the surface. The

figure indicates clearly that the arc is constrained near Anthe as the maximum

azimuthal extent beyond Anthe is ∼ 10o on either side, in the 23 years of evolution

studied here. Similar analysis for Methone’s arc follows in Fig. 4.13. Different

concentrations of particles in the first subplot result from particles being at differ-

ent phases as a result of close encounter with the moon. With time, the particles

drift around the resonant region, but remain constrained by Mimas’ resonance.

This can be considered as the early parts of the evolution of the arcs, but conclu-

sively shows that they are indeed constrained after 23 yrs. For example, Fig. 4.14

(top) shows the vertical excursion of a particle started from Methone versus the
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Figure 4.12: The temporal snapshots of Anthe’s arc: The vertical height vs azimuth
for particles near Anthe started at (0,0) and followed to subsequent times with the
path sampled once per day. The arc is seen to be constrained within ∼ 10o, in
20 yrs. The non-uniformity of particles in the initial phases can be attributed to
stroboscopic effects as detailed in the text.
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Figure 4.13: The temporal snapshots of Methone’s arc: The vertical height vs
azimuth of particles near Methone started at (0,0) and followed to subsequent
times with path sampled once per day. The arc is seen to be constrained within
∼ 10o, in 20 yrs. The non-uniformity of particles in initial phases can be attributed
to stroboscopic effects as detailed in the text.
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azimuthal angle along Methone’s orbit with 20 data points plotted per day. This

orbit is drawn in the frame fixed at Methone at (0,0). The particle starts from

(0,0), moves to the right and then starts to move back to the left, all throughout

oscillating in the vertical direction. The same plot with 1 data point per day is

shown in Fig. 4.14 (middle). This also illustrates the libration but not all the

details of the vertical oscillations. A collection of particles launched from different

latitudes from Methone with 1 data point per day plotted is further shown in Fig.

4.14 (bottom). In the top plot of Fig. 4.13, the patch missing below the moon can

be explained because of this stroboscopic effect.

By contrast, Pallene’s particles are not similarly confined, but fill the entire

orbit (Fig. 4.15). The sinusoidal distribution in (z, θ) of Pallene’s particles indi-

cates the ring’s inclination. We will calculate the spreading rate associated with

Pallene’s ring shortly and speculate on the age of Pallene’s ring.

We now investigate the resonance arguments of particles in the arcs surround-

ing Anthe and Methone. As expected, the particles are found to reside in the same

resonances as their respective parent moons. Figures 4.16 and 4.17 show the frac-

tion of particles versus the amplitudes of their resonance arguments. In Anthe’s

case, the spread of amplitudes produces a distribution of particles with two peaks

around the moon’s libration amplitude, one on each side, which forms an arc along

its orbit. The case of Methone-associated particles is more complicated just like

Methone’s, where the moon exhibits two resonances. Particles around Methone

are in a Lindblad resonance, and Fig. 4.17 (left) indicates that the resonance

arguments are librating, with the distribution peaked around that of Methone’s,
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Figure 4.14: Top: Vertical excursion of a particle started from Methone versus the
azimuthal angle (with respect to Methone) with 20 data points per day. Middle:
vertical excursion of a particle started from Methone versus the azimuthal angle
with 1 data point per day. Bottom: Vertical excursion of a 18 particles started
from Methone, with varying launch positions, versus the azimuthal angle with 1
data point per day. The pattern below (0,0) happens when the particles cross
the equatorial plane almost at the same time, because of similar orbital periods,
initially in the evolution. All these orbits are plotted for 190 days of evolution
after launch.
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Figure 4.15: The vertical height vs azimuth of 324 particles near Pallene, which
is located at (0,0), at subsequent times following launch from the surface. The
sinusoidal shape reflects ring’s inclination.
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Figure 4.16: Distribution of the libration amplitudes of the resonance argument
(φ = 11λPar− 10λMimas−$Mimas) of particles (subscript-Par) around Anthe after
23 years of integration. The vertical line locates Anthe’s libration amplitude.
About 50 percent of the ∼2600 particles launched get trapped in resonance. The
rest collide with the moon.
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Figure 4.17: Distribution of the libration amplitudes of the resonance arguments
(left: φ = 15λPar − 14λMimas − $Par, right: φ = 15λpar − 14λMimas − $Mimas)
of particles (subscript-Par) near Methone after 23 years of integration. The ver-
tical line locates Methone’s libration amplitude. About 70 percent of the ∼2600
particles launched get trapped in these resonances. The rest collide with the moon.

again with two peaks. Figure 4.17 (right) depicts the co-rotation resonance argu-

ment. This second possibility implies that most of the particles are constrained by

the co-rotation resonance as well. We caution the reader to not infer much from

the precise shapes of the distribution; as they may not be statistically significant.

Nevertheless, our simulations demonstrate conclusively that the debris launched

from Anthe and Methone are constrained by the same resonances that affect the

dynamics of the moons.

We can explain the bimodal nature of these distributions. Since every particle

is launched with some extra speed, its initial condition is slightly different from

that of the moon’s. So we see particles slightly away from the moon’s amplitude.

The two peaks correspond to the particles which start from the leading and trailing

halves of the moon and hence undergo a slow-down and a speed-up, respectively

while they escape the moon. Moreover, the double peaked nature is further facili-

tated by the fact that the moon removes particles from its path while librating, so

particles with amplitude similar to that of the moon get swept up [Tiscareno and
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Figure 4.18: Effect of launches at different longitudes from Methone’s surface: each
box shows the variation of azimuthal positions of a particle (with respect to the
moon) vs time (first few orbits) in the frame fixed at Methone. These particles are
launched from near Methone’s equator at different longitudes. The angles on the
lower horizontal axis are in degrees and correspond to starting from the leading
side of the moon if they lie between 0o and 180o, otherwise they start from the
trailing side. The leading side loses energy and hence its amplitude is less than
that of the trailing side particles.

Malhotra, 2009]. Figure 4.18 shows the different amplitudes for different launch

longitudes. We see these corresponding groups as two peaks around the moon in

Fig. 4.17. The story for Anthe is similar.

Figures 4.19 and 4.20 show the amplitudes of the resonance argument dis-

played vs the initial launch velocity with respect to the parent moon. Interestingly,

Methone’s resonance holds onto 70% of the particles while Anthe’s resonance has

only 50% of the particles constrained. Apart from the bimodal nature (as explained

before), the amplitudes of the resonance arguments do not depend significantly on

initial launch speed; this could be attributed to the loss of initial conditions which

occur during the first few close encounters with the moon, because all particles

start from the surface of the moon. Notice that particles near amplitude 1800 are

on the verge of circulation and they also do not show any dependence on the initial
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Figure 4.19: Distribution of the libration amplitude of the resonance arguments
(φ = 11λPar−10λMimas−$Mimas) of particles (subscript-Par) near Anthe vs initial
launch speed relative to Anthe after 23 years of integration. The horizontal line
shows Anthe’s amplitude.
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Figure 4.20: Distribution of the amplitude in the resonance argument ( (a)
φ = 15λPar − 14λMimas − $par (b) φ = 15λPar − 14λMimas − $Mimas) of parti-
cles (subscript-Par) near Methone vs initial launch speed relative to Methone after
23 years of integration. The horizontal lines depict Methone’s amplitude.
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relative velocity. The energies set by the first close encounter with the moons fix

their initial conditions; that later determines the particle’s fate, unless the initial

launch velocities are high enough as to be little perturbed by the moon.

Pallene’s ’near’-resonance is third-order, and hence much weaker than the oth-

ers which are first-order. In the absence of any resonant confinement, Pallene’s

ring will differentially precess by 360o under Saturn’s oblate gravity field and be-

come axially symmetric. This will happen over an interval t = 2π
4Ω̇

(see Chapter 3)

where

4Ω̇

Ω̇
= −7

2

4aP
aP

, (4.5)

which is ∼ 1000 yrs, using Ω̇ = 5.423 rad/yr. Similarly, the re-collision time (time

for a particle to collide with the moon) is 105 years [Hamilton and Burns, 1994,

Bierhaus et al., 2012], using a calculation similar to that for the E-ring particles

to collide with Enceladus (Ch. 2). These two times along with the fact that the

ring is observed to be inclined could mean that the ring was generated recently.

The very long time of collision and much smaller speeds rules out the possibility

that the particles are getting replenished by self-collision to maintain an inclined

ring [Hamilton and Burns, 1994]. The precessional shearing time of ∼ 1000 years,

hence, suggests that the particles are most probably very young.

We can further show that inclination of Pallene’s particles in its ring have lit-

tle effect from the ’near’-resonance with Enceladus. Figure 4.21 shows the relative

longitudes of nodes, ΩParticle − ΩPallene, plotted versus time. The top of the plot

shows the case in the presence of Enceladus and the lower without the moon.

Though there is a drift in the lower figure, the relative drift of the particle-clowd is

same in both the cases (∼6o in 23 years). Clearly, Enceladus ’near’-resonance has
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little effect in restraining the ring from drifting and becoming radially symmetric

(in short intervals). Note that the drift Ω̇ is ∼ 0.2o/ yr (as read from the top of

Fig. 4.21). This would make the ring axially symmetric in 1200 years, which is

similar to the rate Saturn’s oblateness spreads the ring (calculated as ∼ 1000 yr).

Hence, the ’near’-resonance with Enceladus cannot keep the particles constrained

near Pallene (unlike in the case of Anthe and Methone) and the ring probably is re-

cently made. Recall that Anthe and Methone are fully librating in their respective

resonances, while Pallene is not (Section 4.3). Since the arc and ring particles are

in similar resonances, as shown, this explains why the Anthe and Methone ejecta

remain constrained in arcs while Pallene’s do not.

4.5.2 Strength of resonances

To further verify the existence of these resonances and to test the theory of the

formation and confinement of arcs, in one simulation we started particles uniformly

all along the orbits of Anthe and Methone. The particle velocities were close to the

orbital velocity so that particles do not escape the resonant arcs immediately. They

were given velocities uniformly varying between vesc to 1.1vesc. Figures 4.22 and

4.23 show that the particles settle down and populate many lobes (as seen from

frames rotating with the mean motions of the respective moons). This clearly

shows the effect of resonance on particles lying in the moon’s orbit. It also shows

that particles in the current arcs of these two moons have energies similar to that

of the parent moon and likely come from the parent moon itself. Notice that these

arcs are not in equilibrium (instead they are librating) and hence show different
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Figure 4.21: Top: with Enceladus’ presence; Bottom: without Enceldaus’ presence.
The longitude of nodes of 324 Pallene’s ring particles with respect to Pallene’s
orbit plotted versus time. The presence of Enceladus clearly limits the relative
node drift.
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sizes and concentrations. Also, since the moon is present in only one of these arcs,

particles in other arcs do not get phase-mixed and hence show concentrations in a

particular phase. We do not intend to discuss the dynamics of the particles in the

different arcs in detail here, but this simple experiment shows that the resonance

is stable and the arc in observations is indeed a result of the resonance.

Figure 4.22: (a) A simulation (starting particles from Anthe’s surface and then
integrated for 23 yrs) shows particles that are trapped in one of the lobes of the
11:10 co-rotation resonances. (b) A simulation (starting particles all around the
moon’s orbit integrated for 23 yrs) shows that the particles are trapped in the
different lobes of the 11:10 co-rotation resonance. These arcs are not in equilibrium
(they are librating) and hence have variable lengths. The frames in both the cases
rotate with an angular speed of 347.35 o/day, the mean motion of Anthe. M stands
for Mimas, A identifies Anthe and S locates Saturn. The unit of length is RS.

The longitudinal extent of Anthe’s arc is consistent in terms of observations

and calculations. A 11:10 resonance produces 11 evenly-spaced stable spots about

which the material can be trapped (Fig. 4.22). Particles librating around these

stable points therefore can form an arc having at most an extent of 360o/11 = 33o.

The arc associated with Anthe is observed to be 20o long [Hedman et al., 2009a],

and hence is within the limits. Our simulations also generated arcs of longitudinal

length ∼ 10o (Fig. 4.12), well within the theoretical limits. Similarly, the 15:14

co-rotational eccentricity resonance of Methone’s arc particles with Mimas can be
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Figure 4.23: (a) A simulation (starting particles from Methone’s surface integrated
for 23 years) shows that particles are trapped in one of the lobes of the 15:14 co-
rotation and Lindblad resonance. (b) A simulation (starting particles all around
the moon’s orbit and then integrated for 23 years) shows particles that are trapped
in different lobes of the 15:14 co-rotation and Lindbad resonances. These arcs are
not in equilibrium (librating instead) and hence have variable lengths. The frame
in both the cases is rotating with an angular speed of 356.59 o/day, the mean
motion of Methone. M stands for Mimas, Me identifies Methone and S locates
Saturn. The unit of length is RS.

explained. The longitudinal extent of the Methone-arc (Fig. 4.23) is observed

to be 10o [Hedman et al., 2009a], significantly lower than the maximum possible

360o/15 = 24o. Our simulated numbers were also ∼ 10o (Fig. 4.13).

To estimate the velocity required to escape from the resonance, we experimented

by launching particles with various speeds from the moon’s equator. We illus-

trate Anthe’s case here: Figure 4.24 shows the resonance argument plotted versus

time. With lower starting speeds (1-2 m/s), particles remain confined and librate

around the stable center. If the velocity increases to 3 m/s, particles still oscillate

but with much higher amplitudes and longer periods. Velocities above 3 m/s leave

the stable lobe and circulate, being no longer confined within the original reso-

nance lobe. This justifies the choice of our initial speed range of (1 - 1.1)vesc as

a reasonable value in which most of the particles would be retained near the moon.
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Figure 4.24: Particles in Anthe’s arc remain trapped in resonances similar to those
that trap Anthe. Some of those with higher relative velocities go into circulation.
The plot shows the resonance amplitude of some of Anthe’s particles versus time
(in days). Particles with velocities 1-2 m/s remain confine around Anthe. The
critical velocity of breaking out of resonance is of the order of 2− 3 m/s.

The pendulum approximation [Murray and Dermott, 1999], as described in the pre-

vious chapter, permits estimates for the libration frequencies and widths, which can

be compared against the observed and numerically generated values. The observed

libration period (as calculated from the orbits of moons obtained from kernels) of

the co-rotation resonance of Methone-Mimas is 550 days while the calculated value

is 460 days (Ch. 3). For the Lindblad resonance, again, the observed value is 550

days and the calculated one is 460 days (Ch. 3). Similarly the calculated libration

period for Anthe’s co-rotation resonance is ∼ 720 days against the observed period

of ∼ 700 days. The libration width for Methone-Mimas resonances is 36 km for

the co-rotation case and 2.5 km for the Lindblad case (Chapter 3). Clearly, the

co-rotation resonance in Methone-Mimas case is more stable. The libration width

for Anthe’s co-rotation resonance was calculated to be ∼ 36 km.

We can also calculate of the time for the arcs to spread by 360o due to their
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differential precession. The observed radial extent is 50-200 km for Anthe’s arc.

Using the expressions similar to those of Pallene’s, we get a spreading time of 1-4

years. We showed in the simulations that the arc is maintained for at least 23

years. This implies that the particles are constrained. Similarly, for Methone’s

case, the observed radial extent is 50-200 km and the calculated spreading time is

1-4 years (Ch. 3). Again the resonance is powerful enough to restrain the particles.

4.6 Comments on non-gravitational forces

Apart from gravity, radiation pressure and electromagnetic forces should play sig-

nificant roles in the evolution of dust particles in Saturnian system. They become

important for small (∼ 1 µm) particles [Burns et al., 2001].

Table 4.4 shows the accelerations produced by different forces on a 1-micron-

sized particle, to make a quick comparison. The table makes it clear that gravity

is the prime-mover in the ring dynamics. Oblateness, electromagnetic and radia-

tion forces (to a lesser extent) become important in any longer time-scale analysis.

These forces strongly depend on the size of the particles. Tidal forces due to any

nearby moons are negligible. The variation of acceleration produced with respect

to the radius can be seen in Fig. 4.25. We will concentrate on the region from 3RS

to 4RS.

Let us now compare the effect of electromagnetic forces on the particles of micron

size near the orbits of the three moons. Following Hamilton [1993] and Schaffer

and Burns [1992] for the axisymmetric case, the effect of electromagnetic forces
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Force Type Expression acceleration (m/s2)
Point-mass gravity GM

r2
0.67

Oblateness GM
r2
J2

(
RS

r

)2
6.9× 10−4

Electromagnetic qB
m

(v + rω) 1.3× 10−4

Radiation 3J0QPr

4ρcd2srg
1.8× 10−5

Tidal (due to Dione) 2GMDio4r
R3 2.6× 10−7

Table 4.4: Accelerations produced by different forces on a micron-sized particle in
Saturn’s rings at a radial distance of 4RS. q is the charge on particle (∼ 5× 10−16

C, maximum possible charge on a 1-micron radius sphere using an electromagnetic
potential of -5 Volts [Hamilton, 1993]), B is Saturn’s magnetic field at a distance r
(3.6×10−7 Tesla), m is the mass of a 1-micron radius spherical particle (10−14 kg),
v is Enceladus’ orbital velocity, ω is Saturn’s spin (∼ 10−4 rad/sec), J0 is the solar
radiation flux at 1 AU from sun(1.36× 103 J/m2/sec), QPr is the non-dimensional
radiation pressure coefficient (∼ 1), ρ is the particle’s density (assumed to be 1000
kg/m3), c is the speed of light (∼ 3 × 108 m/s ), ds is 9.6 (Saturn’s distance in
AU), rg is the particle’s radius (1 micron), MDio is Dione’s mass, 4r is the radial
distance between Dione’s and Enceladus’ orbits (108 m) and R is the semi-major
axis of Dione’s orbit (3.77×108 m) . Notice that the electromagnetic and radiation
forces strongly depend on the size of the particles. For references to the numbers,
see Horanyi et al. [1992].

averaged over an orbit are

〈
da

dt

〉
= 0 (4.6)

and 〈
de

dt

〉
= −n

4

qg1,0R
3
pΩp

cµmg

e
√

1− e2sin2i× sin(2ω) (4.7)

where the variables (in SI units) are, angular orbital speed n is 2π
T×24×3600

rad/sec,

where T is particle’s orbital period in days, charge on particle q = 5 × 10−16

C (maximum charge on a 1 micron sized particle using a electromagnetic poten-

tial of -5 Volts), g1,0 = +0.2154 × 10−4 magnetic field coefficient with units of

gauss, Rp = 6.0330 × 107 m is radius of Saturn, Ωp = 1.69 × 10−4 rad/sec is the

spin of Saturn, c = 3 × 108 m/s is speed of light, µ = 3.794 × 1016Nm2/kg and
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Figure 4.25: The strength of some perturbation forces around Saturn for a totally
absorbing 1-µm dust grain charged to -5V. The electromagnetic force vanishes at
synchronous orbit where the grain’s velocity relative to the magnetic field is zero
[Burns et al., 2001].

mg = 4.2 × 10−15 kg is the mass of grain particle, assuming the particle to have

radius 1 micron with density 1000 kg/m3 [Hamilton, 1993].

Also the maximum radial distance, apocenter distance Q is (1+e)a, so the change

of this maximum distance dQ is

dQ = (1 + e)da+ ade = ade (4.8)

Hence using the units given,

dQ = 7.78× 102 × n

4
× ae
√

1− e2sin2i× sin(2ω)dt (4.9)

Table 4.5 lists this distance (dQ) for the prescribed time period of evolution (t),

where sin(2ω) is taken to be 1 for the maximum effect. Clearly, for small particles

electromagnetic forces become important.
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Moon a (RS) e i (deg) T (days) t dQ (km)
Methone 3.22 0.0001 0.007 1.010 25 yr 2.15
Anthe 3.28 0.001 0.1 1.037 25 yr 4.36 ×103

Pallene 3.52 0.004 0.181 1.154 25 yr 5.51 ×104

Enceladus 3.95 0.0045 0.02 1.370 300 yr 8.55 ×104

Table 4.5: Orbital properties of moons and the maximum radial distance a charged
particle moves due to electromagnetic forces.

Figure 4.26: Maximum possible radial excursion of particles (dQ) for a given time
period (t) near Methone’s orbit with varying size. For reference to the numbers
see table 4.3.
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The primary effect of the electromagnetic force is to change the orbital preces-

sion rate of the particles [Horanyi et al., 1992]. For non-zero inclinations, it is a

cyclic function of the argument of pericenter (ω), which should have a time aver-

age of zero for an orbiting particle. More importantly these effects are critically

dependent on the particle’s size (Fig. 4.26) as well as the charge and potential

on the grains. We also notice from our simulations that gravitation alone results

in the formation and confinement of the arcs. We, therefore, propose that the ef-

fect of non-gravitational forces is minimal in the formation of these arcs and ring.

Also, notice that the effect of electromagnetic forces on radial excursions will be

negligible for particles greater than 10 µm in radius.

4.7 Conclusions

Based on our numerical experiments,

1) Material leaving Methone and Anthe at low speeds (< 1-2 m/s) remains con-

fined in arcs surrounding the moons.

2) Anthe lies in the 11:10 first-order co-rotation resonance with Mimas [Cooper

et al., 2008], and particles launched at low speeds from Anthe reside in the same

resonance lobe (forming an arc), with varying amplitudes and libration periods of

around 2 - 2.5 years, comparable to that of Anthe itself.

3) Methone resides in a 15:14 first-order co-rotation resonance [Spitale et al., 2006]

as well as a Lindblad resonance with Mimas [Hedman et al., 2009a]. Particles

launched at lower speeds from Methone are also trapped in both types of reso-
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nances. The libration periods in this case are 1.5 - 2 years.

4) The third-order mixed resonance of Pallene particles with Enceladus is too

weak to confine them in longitude so material from Pallene is free to spread out

and form a complete ring. Particle lifetimes must be too short to allow sufficient

time (1000 years) for the longitudes of node to spread out.
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CHAPTER 5

FUTURE WORK

In this thesis we have investigated two topics related to the faint rings of Saturn:

the spatial motion of particles in the E ring and the arcs/ring associated with

Anthe, Methone and Pallene. Here are some possible extensions of this research

to answer additional questions:

• Further distinguish the role of different non-gravitational forces on the E-

ring’s structure: Our analysis was focused on crediting gravitational forces

as the primary reason for the double-layered structure of the E ring and

the radial Gaussian halo (Ch. 2). However, there are non-gravitational

forces like electromagnetic and radiation drag which play a crucial role in

the evolution of this ring (where the radii of particles are smaller than 1-

micron). These different forces have separate time scales for their dynamics

and one can further explore their individual roles. In longer-term simulations

of these rings, their role cannot be ignored and any long-term model need

to include their influence. Understanding the role of each force separately in

the structure and dynamics of the E-ring will be both interesting and useful

to further our understanding of the E ring.

• Consider other processes responsible for the loss of particles from the E ring :

The sole sink of particles in our simulations was collisions with the moon

Enceladus itself. We removed any particles from the simulation that collided

with the moon. In reality there will be losses out of the system due to various

reasons. First of all, the particles can break up and change their character

during their orbit [Hedman et al., 2011]. Moreover, in very long-term evolu-

tions, various non-gravitational forces can probably make the particles diffuse
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further away and leave the E-ring region. There can also be loss of particles

by sputtering [Alvarellos et al., 2005]. Exploration of these possibilities can

further enrich our E-ring model.

• Further and longer-term analysis of the Anthe and Methone arcs and Pal-

lene’s ring : Our simulations only evolve the arcs/rings for 23 years, the time

for which the NASA orbital kernels were available. A longer-term analysis of

this system can throw further light on the eventual fate and dynamics of these

ultra-faint arcs and rings. Such an analysis is important if we are to consider

whether our current, short-term study is relevant to the observed rings which

presumably contain constituents that are older than twenty three years. It

would also corroborate the resonances we have described in this thesis. In

longer-term simulations, non-gravitational forces would have to be taken into

account.

• Answer why Pallene’s ring is inclined in the first place: In this thesis we

have suggested how the inclination of Pallene’s ring might be maintained.

But it is a very curious fact that Pallene’s orbit is inclined in first place.

Understanding Pallene’s inclination and hence its ring along through a longer

integration can further throw light on this question.

• Trace the origin of particles in faint arcs/rings : We have proposed that the

particles in the arcs/rings originate from their respective moons. We assumed

them to have been started all over the surface of these moons. It would be

interesting to further investigate the origin of these particles and if there is

a directional bias according to their point of origin.
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