

FUNCTIONAL BLUEPRINTS:

 A DYNAMICAL APPROACH TO STRUCTURE REPRESENTATION

A Thesis

Presented to the Faculty of the Graduate School

of Cornell University

In Partial Fulfillment of the Requirements for the Degree of

Master of Science

by

Nicolas Sebastian Estevez

January 2007

© 2007 Nicolas Sebastian Estevez

ABSTRACT

In engineering design, form has traditionally been specified explicitly using blueprints.

This thesis explores an alternate way of specifying form built on interactions between

dynamical systems. This alternate form specification is based on ideas from natural

development. Inspired by termite nest building behavior, dynamic developmental

systems are proposed as an alternate method to produce and represent structure

designs, which when compared to the conventional blueprint method are a more robust

form specification method, more adaptive, and even able to self-repair.

 Developmental systems are uses here as a method of form specification and an

evolutionary algorithm is the method of design chosen to explore the capabilities of

these developmental systems. Evolutionary algorithms have already been widely

studied and proven to be an effective method of finding solutions to tough problems,

and in this work they are simply a validated tool being used.

 The experiments included in this work use developmental systems with high

degrees of system-environment interaction and show the importance of a subtle and

often overlooked difference between two similar kinds of systems. An important

distinction is being made between systems which both use feedback from the

environment.

 These systems are referred to as the reactive system and the interactive system.

The reactive systems simply use environment feedback during their development,

whereas the interactive systems not only use environmental feedback but actually

form a two-way dynamic feedback cycle WITH the environment. Our control

experiments are the systems with one-way feedback which have a system-environment

interaction level where the system uses information from the environment during its

development but does not affect the environment’s dynamics. Our experiment systems

ii

use dynamic feedback, which allows them to affect the dynamics of the environment

while simultaneously the environment reacts to this stimulus, forming a two-way

feedback loop which makes the system more situated in the environment. The

experiments in this thesis used the evolutionary algorithms to search for systems

which fulfilled the desired effect on the environment. In this case this effect is to build

a structure that causes the average temperature in the environment to come as close as

possible to a target temperature, which is specified at the beginning of the

evolutionary run.

 Both types of systems were evolved using evolutionary algorithms and those

systems which used dynamic environmental feedback consistently displayed better

performance.

iii

BIOGRAPHICAL SKETCH

Nicolás S. Estévez Montero was born in Sacramento, California on March 22nd, 1981.

During this time his parents, originally from Chile, were both working on their

graduate school degrees at UC Davis. At the age of two his family moved back to

Venezuela and by the time he was seven years old his family had moved to Puerto

Rico. There he finished elementary school and attended high school, except for the

10th grade, which was done in Ithaca, NY at IHS. After that he attended the

University of Puerto Rico, Mayaguez, graduating magna cum laude in 2004. Since

then he has been studying at the Sibley School of Mechanical and Aerospace

Engineering at Cornell University. He defended this thesis in August 2006.

iv

To my loving family

 L. Antonio, Mireya, Marcel, Claudio, and little Nicolas Hans

v

ACKNOWLEDGMENTS

I would like to thank the Alfred P. Sloan Foundation and the National Action Council

for Minorities in Engineering (NACME), Inc. for their financial support during my

time at Cornell.

 Thanks to Hod Lipson for serving as my advisor, for his guidance, his wisdom,

and especially for his patience in helping me find a research topic that we could work

on together. My thanks also go to Nicholas Calderone for being a member of my

committee, for his invaluable input on social insects and his willingness to have long

idea generating discussions about the research. A great deal of my gratitude is

extended to the members of the Cornell Computational Synthesis Lab group, for their

great input at our group meeting discussions, input for earlier drafts of this work,

technical help at the lab and also for their friendship.

 I must thank Marcia Sawyer, our graduate program coordinator and mom away

from home, for having all the answers and solving any administrative problems with

amazing speed and efficiency, giving me a sense of security throughout my time at

Cornell that I am very grateful for.

 Also thanks to all my friends here in Ithaca, particularly to the graduate

students from the M&AE department and all the Puerto Rican graduate students I have

met here at Cornell. Special thanks to Justin Atchison who’s help in the final stages of

this thesis has proven invaluable to its completion.

 And of course thanks go to my loving family for all their counsel and support,

and for literally always being near, for some financial support, and for a lot of moral

support.

vi

TABLE OF CONTENTS

1 Introduction 1

1.1 New Representation 3

1.2 Developmental Systems 4

1.3 System-Environment Interaction 5

1.4 Hypothesis 8

1.5 Experimental Approach 8

1.6 Structure of this Thesis 9

2 Experiment and Physics 11

2.1 Environment Groundwork 11

2.2 Constrains and the Scenario 12

2.3 Matter and Physics 14

3 The Systems: Rules and Representation 16

3.1 Agent and Rules 16

3.2 Interpreting the Rules 17

3.3 Fitness Function 20

3.4 Two Test Types 21

3.5 Interactive Dynamics Index 22

4 Evolution 24

4.1 Hill Climber Algorithms 24

4.2 Evaluation Hierarchies 25

4.3 Control and Experiment Systems 27

4.4 Walkthrough of Fitness Evaluation 28

5 Results 33

5.1 Reactive vs. Interactive 33

5.2 Generalist and Specialists 38

5.3 Genotypes 42

5.4 Phenotypes 47

6 Different Scenarios 50

6.1 The Circle Scenario 50

6.2 The Valley Scenario 54

6.3 The Vertical-Bar Scenario 58

7 System Self-Repair 62

7.1 Self-Repair 62

vii

8 Conclusion 66

8.1 Nature and Stigmergy 67

8.2 Future Work 68

Appendix 71

References 78

viii

LIST OF FIGURES

1.0.1 Termite mounds of Amitermes Meridionalis 3

1.3.1 Levels of system-environment interaction 7

2.1.1 Screenshot of environment 12

2.3.1 Sunrays diagram 15

3.2.1 Rule diagram 18

3.2.2 Graphic example of action site selection 19

3.5.1 Interactive Dynamics Index 23

4.3.1 Fitness Evaluation for Agent in a Control Run: Reactive System 27

4.3.2 Fitness Evaluation for Agent in a Experiment Run: Interactive System 28

4.4.1 Arrows indicating the direction of the sunrays 29

4.4.2 Genome of interactive system with fitness of 68.89 29

4.4.3 Example of first test 30

4.4.4 Example of second test 31

4.4.5 Example of third test 32

5.1.1 Hill Climber Runs with one rule 35

5.1.2 Hill Climber Runs with two rules 36

5.1.3 Breakdown of fitness values in evolved systems with one rule 37

5.1.4 Breakdown of fitness values in evolved systems with two rules 38

5.2.1 Generalists vs. Specialists for systems with one rule 39

5.2.2 Generalists vs. Specialists for systems with two rules 41

5.3.1 Evolved genomes of reactive systems with 1 rule 43

5.3.2 Evolved genomes of interactive systems with 1 rule 44

5.3.3 Evolved genomes of reactive systems with 2 rules 45

5.3.4 Evolved genomes of interactive systems with 2 rules 46

5.4.1 Evolved phenotypes of reactive systems with 1 rule 47

5.4.2 Evolved phenotypes of interactive systems with 1 rule 48

5.4.3 Evolved phenotypes of reactive systems with 2 rules 49

5.4.4 Evolved phenotypes of interactive systems with 2 rules 49

6.1.1 Starting condition for circle scenario 50

6.1.2 Circle fitness results 51

6.1.3 Circle final genomes 52

6.1.4 Circle final Phenotypes 53

6.2.1 Starting condition for valley scenario 54

6.2.2 Valley fitness results 55

6.2.3 Valley final genomes 56

6.2.4 Valley final Phenotypes 57

6.3.1 Starting condition for vertical-bar scenario 58

ix

6.3.2 Vertical-bar fitness results 59

6.3.3 Vertical-bar final genomes 60

6.3.4 Vertical-bar final Phenotypes 61

7.1.1 Self-Repair Test 1 63

7.1.2 Self-Repair Test 2 64

7.1.3 Self-Repair Test 3 65

1

CHAPTER 1

INTRODUCTION

 Termite mounds vary in size and shape according to the species of their

builders, but their uniformity throughout a stable environment is striking.

When, however, a species has a wide range over several different ecological

zones then differences in mound architecture will be apparent when one zone

is compared to another. (Harris, 35)

In nature termites build their own housing without using either blueprints or a complex

thought process, yet their nest’s structure shows great complexity, adaptability, and

consistent functionality.

 In engineering, designs are represented as blueprints which geometrically specify

final structure. When such a structure is designed to perform a function, the complex

design process takes into account expected environmental conditions and outputs a

design that is optimized to work under these conditions. Once a design is final,

structures built from a blueprint will only work optimally as long as its environment is

the one for which it was designed, showing a performance drop as variation in the

environmental conditions increases from the original design parameters. The blueprint

approach to design requires considerable human effort and knowledge to produce a

blueprint for a single design. Having structures that perform the same function under

different environmental conditions would require an individual design for each

environmental variation. Furthermore, a blueprint requires further effort independent

of its conception to plan and execute its construction

2

 This comparison between the biological approach to form specification and the

engineering approach makes apparent that a better understanding of how termites

build such complex and adaptive structures should be pursued.

 Termite nest building behavior is affected by the environment, termites adapt their

building patterns to fit their desired function over different environments. Using

simple rules one can consistently build structures which perform a desired function

even under varying environmental conditions. Considering the complexity of a

termite, having thousands of them work together in unison to build these relatively

large structures with such uniformity in it functions is yet another amazing wonder

brought to us by evolution. The nest is the result of the activity of such a large number

of individuals that individual variation is cancelled and the nest stands as the

expression of population behavior (Emerson). It is thought that the complexity of a

termites nest lies with the rich interaction between nest-system and environment.

 Nature uses DNA as representation, evolution as the designer, and development as

the builder agent. Every organism in nature is a developmental system with different

levels of system-environment interaction; however, most organisms display high

levels of system-environment interaction within our standards. And its is not just

organisms, a termite nest can also be seen as a system composed of raw materials and

thousands of termites which act as one system that develops within an environment.

Developmental systems, such as termite nests, hold the answer to robust design

representation. Proof that developmental systems are a successful method of

representation is quite abundant in nature, which begs the question: How can we, as

engineers and scientist, exploit developmental systems to build structures with

functions that we desire consistently over a wide range of environmental conditions.

3

Dennis Haugen, www.insectimages.org Barbara Strnadova, http://godofinsects.com

Figure 1.0.1 Termite mounds of Amitermes Meridionalis (Australia), these slab

shaped nests are always constructed oriented North-South in their length-wise

direction. Left: View along North-South direction. Right: Picture taken along the

East-West direction.

1.1 Developmental Representation

In order to tap into the potential benefits that developmental systems offer an alternate

way of representing designs is needed. A good way to go is with Lindenmayer

Systems, or L-Systems, which were originally created to explain the growth pattern of

plants (Francu). L-Systems are a formal representation of rule-based developmental

systems (Lindenmayer). In order to develop, these systems need to be in an

environment on which their rules are executed. These rules or axioms prompt the

development of the system by effecting the placing/removal of materials or agent

movement depending on current conditions. With simple rules and agents acting on

local interactions, complexity comes from the system-environment interaction

(Nagpal, Kondacs, and Chang). If these rules are properly designed or evolved they

result in a functional structure being constructed over a wide range of environmental

conditions. Given the adaptive behavior of many organisms in nature it could be

4

possible that with a better understanding of rule based systems we could design very

robust systems, or evolve them using evolutionary algorithms as was done for this

thesis. Environmental conditions are already present in the real world at the sites

where functional structures are needed. The structures can be represented within the

rules of a developmental system which when activated in an environment build said

desired structures. Of course, unlike blueprints, the desired structure has no specified

shape, but does have a desired function that it will perform by adjusting its

developmental path based on environmental conditions. Aside from having superior

robustness, developmental systems also offer the added advantage of including

information on how to build the structures, this eliminates the considerable planning

effort required in order to realize structures specified by blueprint. A strong drive for

researchers in developmental systems is the possibility of using these systems for

automated assembly.

1.2 Developmental Systems

In biology, development is centered on construction and self-organization. It is the

production of a complex form and from a single cell. Early on the process is driven by

embryogenesis (Wolpert). Morphogenesis also plays a large role of development and

is the study of change in form (Bard). Both in biology and in computer science this

study often focuses on system-environment interaction during development and on

degrees of embodiment through perturbatory channels (Kumar and Bentley).

 Once an environment is selected a system must be devised and tailored to work in

that environment (Prusinkiewicz and Lindenmayer). In order for a system to work in

an environment it must be able to manipulate that environment in some way and in

some cases sense feedback from the environment. Feedback from the environment can

5

be in the form of temperature, spatial surroundings, chemical gradients,

electromagnetic fields, and in the case of computer systems any properties present in

the environment can be made available to the system.

 Although in most cases, as part of the simulation, virtual systems are given

properties which correspond to real world physical properties and virtual sensors are

often given similar capabilities to their real world counterparts (Bongard and Lipson;

Hornby and Pollack 1041–1048). The experiments included in this work were done in

virtual environments and with software driven systems. These systems have sensor

channels and are able to manipulate the environment. Because a system is at its core a

set of rules and an interpreting agent, it is with these two components that the systems’

behavior and environment interaction are manifested. A rule at its most fundamental

level is simply a sensor state paired with an action and the agent is able to sense the

environment for conditions specified by the rules and take the corresponding actions.

1.3 System-Environment Interaction

When talking about system-environment interaction one must be very keenly aware

that there are varying degrees of system-environment interaction and what those

different levels mean.

 System-environment interaction is heavily studied even outside developmental

systems. Environmental feedback and evolutionary algorithms can be combined to

generate adaptive behavior in locomotive systems (Almássy and Vinkhuyzen 419-424;

Bongard and Lipson 169- 176; Mahdavi and Bentley 248-255; Pfeifer and Iida 48–54;

Quick et al.). Even though none of these works are about developmental systems they

do support the use of evolutionary algorithms linked with environmental feedback.

6

However the following classification system was thought up concerning

developmental systems only.

The lowest level of system-environment interaction defined here is the explicit

level in which the final shape is pre-specified as is the case with blueprints. No

interaction occurs between the system and the environment that would alter the final

result of the systems form. This level is not included among developmental systems

because in a blueprint the system does not develop, it just gets built, independently of

the environment. For a system, being situated in the environment by itself entails that

the systems’ actions will affect the environment.

 At the ballistic level the system develops without any kind of feedback from the

environment and no knowledge of it, affecting the environment but not being affected

by it. An example of this level of system-environment interaction would be a system

operating with an open-loop controller that takes no input and does not make any

adjustments to it behavior. As developmental systems they already offer advantages

over conventional blueprints as a method of form specification (Rieffel and Pollack).

 At a reactive level we have systems that have knowledge of their environment and

use that information in their development using feedback during their development but

not really affecting environment dynamics. An example of this level of interaction

would be a closed-loop controller. Even though this controller uses feedback during

operation it is mostly just aware of the direct effects of its own actions and is not

aware of changes in environment dynamics and much less able to reach to them, such

a case would occur when the system develops on a timescale that is much faster than

the environment dynamics so the system is not aware of these dynamics, or in cases

were the environment is not dynamic (Bentley and Clack 118-127; Eggenberger 205-

213; Hemberg and O'Reilly). At this level of system-environment interaction the

system is already able to adjust its developmental path to suit different environments.

7

However during its developmental stage the system would not be able to exploit the

dynamics of its own interaction with the environment.

 At the interactive level a system uses dynamic environmental feedback it then

becomes very highly situated in the environment. This system is then able to exploit

the dynamics of system-environment interaction (Nagpal). During its developmental

stage, like in all levels of system-environment interaction, the system perturbs the

environment through its actions. Since at this level the system is highly situated the

environmental dynamics can affect the behavior and development of the system. This

mutual perturbation allows the agent to be aware of the effect that its own

development has in the environment and therefore use environmental dynamics to its

favor. In essence the system is using dynamic environmental feedback by constantly

updating its knowledge of the environment and reevaluating its actions in each

execution. The interactive level is only possible to achieve when the timescale of the

environment dynamics is faster or comparable to the time scale of the system’s

development. Systems with identical rules of behavior could potentially fall under the

reactive or interactive levels of system-environment interaction based solely on a

difference in timescales.

Figure 1.3.1 Levels of System-Environment interaction showing perturbation as a

straight arrow and feedback as green curved arrows.

8

1.4 Hypothesis

The hypothesis of this thesis states that when developmental systems with an

interactive level of system-environment interaction have the same performance as

systems with a reactive level of system-environment interaction when compared for

robustness as a method of representing structures. This robustness comes from being

better able to adapt their building pattern for different environmental conditions such

that their performance is averaged over multiple environmental tests.

 The experiments in this thesis are evolutionary runs of interactive systems and

reactive systems. In both cases the system are given the same task to fulfill and are

tested under the same environmental conditions.

 Another set of experiments was done to test the self-repair capabilities of the

evolved systems. This set of results is discussed in chapter 7.

1.5 Experimental Approach

The concepts being explored in this work are relevant for any structure that needs to

perform any function. However these are very broad concepts and the following

clarification should be taken into consideration while reading the rest of this work.

The uses of the words “structure” and “function” in the context of the experiments and

discussions in this thesis will at times refer specifically to static structures whose

function is to maintain a specific temperature.

 The experiments included in this work where designed to find out if constructional

processes that use dynamic environmental feedback are more robust than those that

9

use non-dynamic environmental feedback. Under the given level system this is a

comparison of Reactive vs. Interactive systems. Previous work has been done

comparing Ballistic vs. Reactive systems (Hornby 569-587) although this terminology

was not used. These experiments are all evolutionary runs using a hill climber

evolutionary algorithm.

 Our results show that structures built using developmental systems can perform

their intended functions over a range of environmental conditions. This is because a

developmental system does not explicitly define the final structure, but through the

execution of its rules using dynamic environmental feedback will adapt its building

patterns so that the final structure will perform its functions. Therefore under different

environmental conditions the final shape will vary so that the function does not.

 In this thesis we set out to both point out the sometimes disregarded difference

between interactive systems, which use dynamic two-way environmental feedback,

versus reactive systems, which use one-way environmental feedback, and the

advantages that interactive systems have over reactive systems.

1.6 Structure of this Thesis

This thesis is broken down into 8 chapters. These next three Chapters, following the

introduction, explain the work that was done as well as the experimental procedure.

They are broken down as follows:

- Environment and Physics: Experimental setup concerning simulation and

simulated physics dynamics

- The Systems: Rules and Representation: Description of the reactive and

interactive developmental systems conceived for this work.

10

- Evolution: Hill climber used and the structure of a fitness evaluation.

Chapter 5 goes over the main experimental results, which concerns the hypothesis of

this thesis. Further results are presented in chapters 6 and 7. While the conclusion and

some closing thoughts are within the final chapter of this thesis.

11

CHAPTER 2

Environment and Physics

When exploring subtle differences between levels of system-environment interaction it

becomes critical to have well defined systems and environments. This chapter will

describe the environment that was used in all the experiments discussed in this thesis

along with an explanation of the systems that were tested, including how rules are

represented and how the agent executes them.

 A developmental system cannot materialize itself without an environment to

embody it in much the same way as software cannot manifest itself without hardware

to run it (Kumar and Bentley). A system can be defined as a set of rules without an

environment, but an environment is required in order for these rules to develop. Just to

make sense of what the rules mean there needs to be a medium in which these rules

are designed to work in. Therefore it is logical to define the environment first because

regardless of whether or not it was the chicken or the egg it is clear that the dirt,

oxygen, and sun came before them all. In order to understand the system one must first

understand the environment in which the system is to be situated.

2.1 Environment Groundwork

The environment in which our system will be situated in is a two-dimensional square

grid composed of square cells. Each square cell has a floating-point temperature value.

The temperature of a cell determines the color of that cell, going through the following

color sequence, black-blue-cyan-yellow-red, starting at zero for black and one-

hundred degree units being red. Temperatures are allowed to go outside this range but

12

they are displayed as the color for the nearest defined value. Red for values above one-

hundred and black for values below zero. However temperatures stay within the range

of zero to a hundred in most relevant cases, therefore the color gradient is kept

constant to ease comparison between results. These are an arbitrary values being

called temperature they do not correspond to any real-world units like degrees Celsius

or Fahrenheit but, because is it being pictured and treated as temperature, they will be

referred to as degrees or degree units.

Figure 2.1.1 Screenshot of environment showing the initial conditions of matter

that is referred to as the “hill” and one of the initials conditions for temperature.

2.2 Constraints and the Scenario

Cells have two possible matter states. The two matter states are solid cells and gas

cells (or empty cells). The arrangement of cell states around the environment and their

interaction with the physics determine the temperature distribution. The fitness of a

system is calculated based on cell temperatures.

13

 These core components are used together to build a rough representation of the

environment in which a termite would built its mound, as per the inspiration of this

project. Our simplified version of this environment includes a static sun and ground

with air above it. In this environment our system is able to change matter states in the

cells in order to build a structure, dig a hole, or in some cases both. Due to the sunray-

matter interaction, these redistributions or matter caused by the system will in turn

affect the temperature gradient throughout the environment. And in turn the

temperature values among all the cells at the end of each test will determine the fitness

value for that agent.

 Our experimental area can be seen as a two-dimensional slice of a real world

environment showing a side view of this environment. The bottom area on the

environment grid is occupied by solid cells which represent the ground and have the

shape of a rounded hill on its top boundary. Its sides and bottom boundaries are at the

boundaries of our environment. The point being to picture that the ground would

continue beyond these environment boundaries and we are just looking and a small

piece of a larger world.

 In the upper area of the grid above this “hill” there are gas cells or empty cells

which represent air or the atmosphere. In keeping with the picture of this being a side

view the sunrays always originate from the top of the environment sunrays always run

parallel to each other but their overall angle is determined by a input value for that

function. In order to avoid having the sunray code indefinitely raise the temperature of

the whole environment two rows were made into “heat sinks”. The top row, which

represents the sky, is reset to zero degree units after every execution of the sunray

code. The bottom row is also reset but always at fifty degrees. Both the sunray code

and the row temperature reset code are contained within the function that applies the

constraints on the environment.

14

2.3 Matter and Physics

The differences between the two possible matter states in cells drive the dynamics of

the environment because the physics interactions totally depend on matter state. Solid

cells stop sunrays and absorb heat from them while empty cells do not directly interact

with sunrays and the heat transfer coefficient between cells depends on what the states

of the cells are.

 A physics time-step updates the temperature in each cell by applying a conduction

equation with its four neighboring cells. Therefore, the temperature of each cell is

updated using the difference in temperature with its neighboring cells and a

conduction coefficient. There are three possible conduction coefficients. One for each

of the following cell boundary types: Solid-Solid, Gas-Gas, and Solid-Gas (same as

Gas-Solid). These values are specified in a symmetric look-up symmetric matrix used

by the conduction code [appendix B].

 Sunrays in this environment behave in a simplified way from their real-life

namesakes. They travel in a straight line and collide with solid objects. Upon any

collision a sunray is fully absorbed and the cell which stopped it experiences a

temperature increase whose value is a pre-specified constant for added simplicity.

15

Figure 2.3.1 Sunrays with slope of 1 descending on example arbitrary structure.

Solid cells that stop rays are shown in red. Small green squares at the top

indicate the direction of sunrays.

16

CHAPTER 3

The Systems: Rules and Representation

Now that the environment has been defined, the system can also be described and

understood. The word system, as it applies to this work, refers to an entity that

develops by following a set of rules and has mechanism that applies those rules to the

environment. Within an experiment the system would be the structure of solids blocks

which develops following a set of rules. A particular instance of the system is called

an individual. An individual is a specific rule set and can be evaluated to be assigned a

fitness value. The rules are like the genotype of an individual and the resulting

developing structure is the corresponding phenotype.

3.1 Agent and Rules

An agent is though of as being the executioner of rules. As a comparison to real life,

the system could be a building that is constructed by a programmable robot, while an

individual would the resulting building from a specific set of construction rules. Now

if one would two models of this robotic system and given each its own set of rules

then one would have two different genotypes, which when put to work could each be

given it own fitness value. But if you were to program both robots identically then you

would not build two individuals but two instances of the same individual, which then

has only one fitness value.

 During system development the agent works in steps or iterations. In each step the

agent scans the whole environment looking for allowed action sites. Action sites are

cells in which rules can be evaluated an executed. Action sites cannot exist within

17

solid cells, only empty cells. However the agent can only evaluate the rules in those

empty cells which are adjacent to solid cells, which would be the surface of the solid

structure. This behavior was designed to mimic how termites would build their

mounds by crawling around the surface and laying or removing material. Although in

the experiments the agent can scan the entire surface and then decide to take one

action at a time, always choosing based on the rules.

3.2 Interpreting the Rules

A rule is made up of five genes. The genes are numerical values that define the

behavior of the interpreting agent and thus the behavior individual. They are referred

to as genes because the rules are the genotypes of our individuals. Like their biological

namesakes these genes contain the information that defines an individual’s

development.

 The first two genes are sensor genes and the last three genes specify an action [see

figure 3.2.1]. As the agent scans the surface of the structure, evaluating each action

site, it senses two parameters that it uses to decide in what cell it will execute an

action. The first is the mean temperature of the eight cells that surround it. Next it

senses the matter density of those same eight cells by taking the number of solid cells

and dividing it by eight. This fraction is normalized to one-hundred, therefore having

eight solid cells around it means a density of 100 and zero density would result if the

agent where floating in mid-air, which never happens because sites in mid-air are not

evaluated. The third value is a vector that points in the hottest direction of the local

temperature gradient in the same eight cells.

18

Figure 3.2.1 Rules have mixed representation. The first two genes are floating

point values between 0 and 100. Out of the other three genes one is binary,

another one is floating point from 0 to 360, and the last gene is also binary but

with the values negative one and one.

 The following is a graphical description that’s equivalent to the method that the

agent uses to select a cell as an action site. First the agent plots the two sensor genes of

each rule in a two dimensional space, having one point per rule. Second, the agent

takes the value of mean temperature and the value for matter density at each potential

site and plots them, in turn, in the same two-dimensional space with the sensor gene

points. As the agent checks allowable cells or action sites it ads the distances from the

cell’s sensor point to all the rule points as a total distance. It then selects the cell

whose mean temperature and matter density sensor data has the smallest total distance

to the rules, because this is determined as the best match for the rule set.

19

Figure 3.2.2: Graphic example of action site selection for individual with four

rules. Figure shows distance measures for two cells at different environment

locations. The cell at coordinates (x1, y1) is a better match that the cell at

coordinates (x2, y2) because its total distances to the rule points is shorter.

 The action taken by an agent is determined by the last three genes in each of the

rules. Once and action site is selected by the agent the action to be taken is determined

by combining all the rules by a sum of weights. As seen in figure 3.2.1 the last three

genes of a rule define the action to be take and how. The first action gene is a binary

gene that can have a value of 0 and 1. If the value is 0 the rule favors the remove

action. And if the value is 1 the rule favors the deposit action. The word favor is used

because a rule never acts alone. This is because of the sum of weights method being

used. When an action site is selected by agent using the distance method describe in

20

figure 3.2.2, the inverse of the distances to each rule are saved as normalized weights.

Therefore, the rules whose points are the closest to the sensor data point will have

more weight in the actual action taken. When deciding whether or not the action will

be remove or deposit the agent round the weighted average such that if this value is

above or equal to 0.5 the action taken is deposit (turns an empty cell into a solid cell)

and for values below 0.5 the action taken is remove (turns an solid cell into a empty

cell).

 The last two genes determine how the action taken is performed. The angle gene

indicates, as it name suggests, at which angle the action is to be taken. This angle

determines which of the eight surrounding blocks is going to be tried first. If the

action taken is deposit and the block tried first is already solid then the agent tried the

next block over in either the clockwise or counter-clockwise direction. This is

determined by the last gene, called direction, which is also binary genes but with be

values 1 and -1. For the angle genes the sum of weight adds up the vector from the

rules. The vector for a rule is at the angle of that rule’s angle gene and the length is

determined by the weight. For the direction genes the agent simply checks the sign of

the weight average and uses that value.

3.3 Fitness Function

The fitness function used for this research checks the absolute temperature difference

that each cell has with the given target temperature and then averages this value.

Having this value be zero would be a perfect score with the fitness becoming worse as

this average distance becomes larger. In order to have an ascending fitness function

the average difference calculated is then multiplied by two, for no other reason than to

increase resolution and scale fitness to one-hundred, and subtracted from one-hundred.

21

So a perfect fitness would be 100, meaning that all cells are at exactly the target

temperature, and then is goes down from there.

3.4 Two Test Types

When dealing with a hypothesis that considers the effect of a particular difference

between two systems one needs to test this using experimental data and one will

certainly be required to conduct two types of experiments. One set is presented as the

control data (reactive) and the other as the experimental data (interactive). Here

follows the descriptions of these two kinds of experiments.

 The control runs correspond to the system that uses feedback but does not affect

the dynamics of the environment. For these experiments the environment is set at the

initials conditions. And the system is run for a given number of steps WITHOUT

running the physics after each step. This means that while the system develops there

are no updates on the temperature values in the environment. Once the system is

finished the physics are run until stability and the fitness of the structure is evaluated.

 The experiment runs are the ones in which the system is using two-way feedback

affecting the dynamics of the environment while the environment behaves like a

separate system which is also reacting to feedback given by the systems actions. For

these experiments the environment is set at the same initials conditions as for the

control experiment. The system is run for the same given number of steps but now this

is done while running the physics after each step. This means that while the system

develops the physics are being update and the temperature values in the environment

will change due to the changes being made by the system. Once these cycles are done

the physics are already at stability and the fitness of the structure is evaluated.

22

 In both these test types the fitness will be solely based on the final structure.

Although it is very import in both cases how the system arrives at the final structure,

given the same final structure is reacted under the different tests, it will yield the same

fitness. It is important to remember that the claim of the work does not ask whether

one type of system can find a better path to a given goal, but whether one type of

system can build better structures.

3.5 Interactive Dynamics Index

 Because the relation of timescales between the system and the environment is what

determines whether a system is reactive or interactive a metric needs to be defined in

order to categorize these systems. Indeed there is a continuous scale from a fully

reactive system to a fully interactive system.

 A fully reactive system (control systems in this work) is a system that develops in

a relatively static environment, meaning that the system development is instantaneous

and from the systems point of the system the environment IS static. On the opposite

end of the spectrum are fully interactive systems (experimental systems in this work) a

system that is constantly developing in an environment that is in steady-state, meaning

system development is so slow that after each system step the environment reaches

steady-state before the system takes the sensor input for the next step.

 An interactive dynamics index (I.D.I.) is proposed that goes from zero to one.

Fully reactive systems are considered completely non-interactive so they correspond

to zero dynamic interactivity, while fully interactive systems would have an index

value of one. In computer simulations it is possible to create and classify fully reactive

and fully interactive systems.

23

 In practical real-world systems it would be impossible to devise a system with

exactly zero or one dynamic interactivity due to the required speed of development,

infinitely fast or infinitely slow. However, one must be able to determine if a given

system is reactive or interactive. Where is the midpoint or system response time

boundary where a system changes from being reactive to interactive?

 By specifying an environment steady-state tolerance one is able to experimentally

find a system response time where the system barely allows the environment to reach

steady-state according to that tolerance, call this Tss. A system is then considered to be

interactive if its response time is one-quarter or greater this value. If this value is

called Tb and then a plot of -log
2
(1-t)*T

b
 is made, one will note that the system

response time value of Tb on the y-axis will correspond to an I.D.I. value of 0.5 on the

x-axis. This plot maps response times on the y-axis from zero to infinity to the

Interactive Dynamic Index on the x-axis from 0 to 1, Figure 3.5.1. The previously

found Tss value will also always to correspond to and index of 0.9375.

0 0.2 0.4 0.6 0.8 1
0

5

10

15

Tb

Tss

Interactive Dynamics Index

S
ys
te
m
 R
e
s
po
n
s
e
 T
im
e

(s
e
c
o
n
d
s
)

Interactive Dynamics Index example plot for Tss=8 seconds

Figure 3.5.1 Interactive Dynamics Index example plot.

24

CHAPTER 4

EVOLUTION

The system optimization method used to test the developmental systems described in

the previous chapter are Evolutionary algorithms (or EA’s). These algorithms use

concepts from evolution like natural selection, genetic representation, mutation,

fitness in order to find the best solution to a problem.

 Evolutionary algorithms have been widely used in research and design due to their

ability to find solutions to hard problems (Koza). For this work it is especially fitting

to use EA’s as an experimental tool device since the developmental systems being

used are nature inspired structure representations and an evolutionary algorithm is a

nature inspired design method.

 The evolutionary algorithm used in this thesis was a hill climber. A hill climber

algorithm evolves a population by trying out random mutations and only keeping them

if they are beneficial.

4.1 Hill Climber Algorithms

Hill climber evolutionary algorithms are classically used with a population of only one

individual. The alternative of running a larger population is called the parallel hill

climber and is equivalent as running several single populations runs since the

individuals do not interact with each other.

 The hill climber algorithm used here is of the single population variety. The initial

individual was randomly generated. Random mutation was used to generate a new

individual that was then evaluated and if this individual scored a higher fitness than its

25

single parent then it would replace the parent and the cycle would continue. This cycle

would repeat itself for each fitness evaluation.

4.2 Evaluation Hierarchies

The following is a listing of the components of a fitness evaluation organized by

hierarchy. Components of components are listed in parentheses next to the names.

Fitness Evaluation (Tests)

A fitness evaluation is composed of three different tests in which the variant is the

angle of the incoming sunrays. Each test runs for a given number of simulation steps,

at the end of which the fitness of that test is evaluated. The fitness assigned to the

agent is the average fitness of the three test runs.

Test (agent actions, environment updates):

For each test, the environment is initialized with the same matter pattern every time

and a given temperature distribution that corresponds to the steady-state conditions for

each of the 3 possible sun angles. The number of simulation steps in a test determines

how many agent actions a system is allowed before it is stopped and evaluated.

Environment updates are also performed within a test but their use varies between the

control runs and the experimental runs.

Agent Action:

An agent action or step consists of scanning all valid action sites. These actions sites

are the cells where the agents can exist (empty cells with adjacent solid cells). In each

of those evaluated cell the agent senses the average temperature and matter of the

26

eight cells that surround that cell and using this data and its rules the agent chooses the

location where it will perform an action and execute the rules.

Environment Update (conduction physics, apply constraints):

And environment step updates the temperature values that change as a result of the

agent’s actions. Each environment step is broken down into a conduction physics

update and the enforcement of the constraints.

Conduction Physics:

A physics time-step updates temperature in each cell by applying the basic conduction

equation with its four neighboring cells. The temperature of each cell is updated using

the difference in temperature with its neighboring cells and a conduction coefficient.

The conduction coefficient is dependent upon the matter state of the cell and its

neighbors. These coefficients are stored in a symmetric two-by-two matrix. As

mentioned before there are three heat transfer coefficients. One for each of the

following cell boundary types: Solid-Solid, Gas-Gas, and Solid-Gas (same as Gas-

Solid).

Apply Constraints:

The apply constraints function contains the sunray code which scans the environment

area with rays that emerge from the top of the grid angled at a specified slope. Sunrays

stop when they hit a solid cell and the temperature of the cells which stop sunrays is

increased by a fixed amount in an approximation to how the sun would heat up terrain.

This function also sets the temperature of the top row of cells to zero degree units and

the bottom row to 50 degree units. These rows act as heatsinks to the sunrays.

27

4.3 Control and Experiment Systems

There are two kinds of runs that where done with the hill climber algorithm, the

control experiments with one-way feedback and the two-way feedback runs. The

fitness evalution for each type of run has one of the following structures of several

nested for-loops.

Fitness Evaluation for Agent in a Control Run: Reactive System

- Different Environmental Conditions (3 sun angles)

{

- Test (128 cycles)

{

 - Agent Action (1 Agent step per cycle)

}

- Environment Update (4096 steps or until stability)

{

 - Conduction Physics

 - Apply Constraints (Sunrays and boundary conditions)

}

- Evaluate Fitness

}

Figure 4.3.1 In control runs the agent would perform all its agent action steps

without any environment updates. Following that, the environment update would

run until stability followed by a call to the fitness evaluator.

28

Fitness Evaluation for Agent in a Experiment Run: Interactive System

- Different Environmental Conditions (3 sun angles)

{

 - Test (128 cycles)

 {

 - Agent Action (1 Agent step per cycle)

 - Environment Update (64 steps or until stability)

 {

 - Conduction Physics

 - Apply Constraints (Sunrays and boundary conditions)

 }

 }

 - Evaluate Fitness

}

Figure 4.3.2 In experiment runs the only variation is that environment updates

are run after each agent action step so the agent is aware of the effects of it

actions and is able to use dynamic environmental feedback.

4.4 Walkthrough of Fitness Evaluation

As seen in section 4.3, a full fitness evaluation for both types of runs consists of 3

tests, which in turn consist of 128 Agent Actions. The 3 tests are evaluated separately

but the agent’s fitness is the average of the 3 tests. The difference between the two is

when the environment updates occur.

 The following is a walkthrough of one full fitness evaluation. There are three sets

of animation frames corresponding to each of the three tests. The variable in the tests

is only the angle of the sunrays and the same 3 angles or tests are done throughout all

the experiments in this work and are the following.

29

Test 1

Test 2

Test 3

Figure 4.4.1 Arrows indicating the direction of the sunrays in each on the three

tests. The green squares overlaid on top of the arrows match the arrangements

drawn at the top on the environment display during each test.

 The genome of the individual whose development is shown in the following

walkthrough is shown on Figure 4.4.2

Mean Temp. Mean Density Action Angle Direction

12.7226 41.7744 1 187.653 -1

Figure 4.4.2 Genome of Interactive System with Fitness of 68.8917, best

performance found among Interactive systems with 1 rule in all 20 runs.

30

0 Steps

16 Steps

32 Steps

48 Steps

64 Steps

80 Steps

96 Steps

112 Steps

128 Steps

Figure 4.4.3 Example of 1
st
 test: Development of best system found in the

interactive runs for one rule. This test has the sun shinning directly down. Note

how the structure formed acts as a parasol creating shadow on the entire left

side. This has a cooling effect that leaves most of the environment blue or cyan.

Cyan represents the target temperature of 50 degree units. A key difference

between this and the other two tests is that because the sun is shining straight

down as soon as the structure climbs up it cools immediately. This happened

because as the structure grows taller it is getting closer to the heat sink but not

incurring any extra heat because no sunrays will hit the side of the tower. This

effect makes the tower a purely cooling element making the cold seeking agent

hang around the top without expanding to the side until it saturates the area.

31

0 Steps

16 Steps

32 Steps

48 Steps

64 Steps

80 Steps

96 Steps

112 Steps

128 Steps

Figure 4.4.4 Example of 2
nd

 test: Development of same system described for

previous figure but for test condition number two in which the sunrays are

angled at a slope of two. An interesting effect caused by the sun angle is that the

growing structure catches more heat and initially heats up the left side of the

environment. This shift in gradient seems to be the reason of why the agent

moves across the top of the environment more quickly creating a longer roof

which consequently is compensating for the angle of the sun.

32

0 Steps

16 Steps

32 Steps

48 Steps

64 Steps

80 Steps

96 Steps

112 Steps

128 Steps

Figure 4.4.5 Example of 3
rd

 test: Development of same system as previous two

figures but for test condition number three in which the sunrays are angled at a

slope of one or 45 degrees. The same effect of heating the left-side is created by

the sun but hotter. The agent takes the approach of going up the side and then

across. In this case the agent does it much faster and covers the whole top with

steps to spare. At this point the agent would have probably kept going to the right

shadowing more area but it hit the edge of the environment. A good direction to

go would have been down creating more shadow to cool of the really hot stop of

the right side. However no agent was ever able to do this and it is probable that

the representation was not rich enough to allow such behavior as it would mean

to seek out the warm zone. A switch in strategy would need to be triggered and

the agent cannot do this.

33

CHAPTER 5

RESULTS

The main experimental results of this thesis involve the comparison between systems

with a reactive level of system-environment interaction and systems with an

interactive level of system-environment interaction. Our hypothesis states that

interactive systems and reactive systems are able to achieve the same level of

robustness to environment variation. And the question stated by this hypothesis is

whether or not the increased system-environment interaction really allows the design

of systems with better performance and more robustness to environmental variables?

 The results shown in this chapter include graphs of fitness for evolutionary runs,

figures of evolved genotypes, and figure of evolved phenotypes.

5.1 Reactive vs. Interactive

The following figures directly address the hypothesis. They show a comparison

between runs done with systems that were similar in every way except for having

different levels of system-environment interaction.

 The experimental data disproves the hypothesis. Systems using dynamic

environmental feedback showed an increase in fitness performance and system

robustness in building functional structures under different environmental conditions.

As mentioned before, a full fitness evaluation in these experiments actually involves

three calls of the fitness function because the systems are tested three times under

different environments. Therefore the fitness given to an individual is really the

average fitness of three tests, which rewards generalists over specialists. A break down

34

of the three fitness values was also plotted to see how these systems where performing

in each test, see Figures 5.1.3 and 5.1.4. The term generalist is being used here for the

systems that are evolved using the three different tests. This means that these systems

have to optimize for three different conditions at the same time, compromising

performance in each individual condition in order to achieve a higher global fitness.

The breakdown plots show the fitness trends for each individual test over the course of

evolution. The behavior of all the different kinds of test showed some consistent

trends that raised more questions.

 It is interesting to note that these figures, including those in section 5.2, where

made and seen by the author in about the same other as they are presented here.

35

0 500 1000 1500
54

56

58

60

62

64

66

68
Hill Climber Runs with 1 Rule

Evaluations

F
it
n
e
s
s

Reactive

Interactive

Figure 5.1.1 Averaged from 16 runs and including error bars. Systems with an

Interactive Level of system-environment interaction are indeed able to achieve a

higher fitness performance when comparing systems that use just one rule. T-test

significance = 0.0269

36

0 500 1000 1500
54

56

58

60

62

64

66

68
Hill Climber Runs with 2 Rules

Evaluations

F
it
n
e
s
s

Reactive

Interactive

Figure 5.1.2 Averaged from 16 runs and including error bars. When comparing

systems that use two rules, systems with an Interactive Level of system-

environment interaction also show an increase in fitness performance. T-test

significance = 0.2352

Once the breakdown of the fitness values was plotted it became apparent that the

fitness in test one was being consistently sacrificed in other to increase the fitness in

tests two and three. Such consistent behavior should have an explanation and a closer

look needed to be taken. This prompted new experiments to be run. These new

experiments are discussed in the next section.

37

0 500 1000 1500
52

54

56

58

60

62

64

66

68

70

72

Evaluations

F
it
n
e
s
s

Reactive System with 1 rule

main

test1

test2

test3

0 500 1000 1500
52

54

56

58

60

62

64

66

68

70

72
Interactive System with 1 rule

F
it
n
e
s
s

Evaluations

Figure 5.1.3 Breakdown of fitness values in evolved systems with one rule. Note

how results in test one were sacrificed in other to increase fitness in tests two and

three. The main line is the average fitness of the three tests.

It was strange to find out that in every case systems using one rule out performed

systems using two or more rules. It was expected that more rules would allow better

systems to evolve. It is possible that the case for this was the execution style chosen

for multiple rules, explained in section 3.2. Even with more evaluations, the more

rules a system was given, the lower it would top out in fitness. It is also possible that

the environment was not complex enough to give an advantage to more complex

systems. If this was the case then having more complexity would just create a

disadvantage to the system as the evolutionary algorithm would have a harder time

evolving the increased amount of parameters.

38

0 500 1000 1500
52

54

56

58

60

62

64

66

68

70

72

Evaluations

F
it
n
e
s
s

Reactive system with 2 rules

main

test1

test2

test3

0 500 1000 1500
52

54

56

58

60

62

64

66

68

70

72
Interactive system with 2 rules

F
it
n
e
s
s

Evaluations

Figure 5.1.4 Breakdown of fitness values in evolved systems with two rules. Again

fitness of test one is sacrificed in other to increase fitness in tests two and three.

The main line is the average fitness of the three tests.

5.2 Generalists and Specialists

This new set of experiments evolved systems that will be referred to as the specialists.

These systems were evolved using the same hill climber algorithm as the generalists,

original runs. Definitions for these are as follows.

 Generalists Systems are evolved to simultaneously optimize for three different

environmental conditions. Specialists Systems are evolved only on one environmental

condition. Consequently the specialists systems were independently run on the same

three conditions as the generalist systems. The following plots again show the results

seen in section 5.1 for the breakdown of fitness by test in the evolved systems but

39

sorted by test and not sorted by run. For Figures 5.2.1 and 5.2.2 the legend

abbreviations mean the following:

Re. Spec. – Reactive Specialists

Int. Spec. – Interactive Specialists

Re. Gen. – Reactive Generalists

Int. Gen. – Interactive Generalists

0 500 1000 1500
52

54

56

58

60

62

64

66

68

70

72

74

F
it
n
e
s
s

Evaluations

Test 1

Re. Spec.

Int. Spec.

Re. Gen.

Int. Gen.

0 500 1000 1500
52

54

56

58

60

62

64

66

68

70

72

74
Generalists vs. Specialists for systems with 1 rule

F
it
n
e
s
s

Evaluations

Test 2

0 500 1000 1500
52

54

56

58

60

62

64

66

68

70

72

74

F
it
n
e
s
s

Evaluations

Test 3
Figure 5.2.1 each line represents data from 16 evolutions runs. The generalist

data was all taken from the same 16 runs but the specialist data is from three

different sets of 16 evolutionary runs.

The new test data, specialists systems, is represented as the lighter graphs. Since these

systems where evolved specifically for each test it could be assumed that they

symbolize the top performance we could expect from the generalist system. In Figure

40

5.2.1, which is for systems using one rule and shows results for both Reactive and

Interactive systems, we see this as mostly true. In only one case does the generalist

system manage to reach the level of one of the specialists and that case was for the

Interactive system in test number 2. However note the error bars on the Interactive

Specialist runs for test number 2. These errors are quite wide suggesting that in many

case the runs would reach a much higher fitness and in other cases get stuck at much

lower fitness.

 A very important observation from Figure 5.2.1 is that although the hypothesis is

supported by previous data plots, the comparison of the performance in different tests

side by side of the generalists interactive and generalist reactive systems shows

furthermore that the interactive system are able to consistently create better structure

in all three different environmental conditions. The hypothesis states that interactive

systems can display more robustness and Figure 5.2.1 shows this quite clearly.

Furthermore in the specialist cases, which do not account for any robustness, the

difference in performance between interactive systems and reactive systems is much

less noticeable and in fact favors the reactive systems in two out of three tests.

 When the hypothesis was formulated it was thought that the interactive systems

would always out perform reactive systems. But it seems that although interactive

systems are indeed more adaptive and show more robust behavior. When it comes to

specializing for a single environmental condition is it easier to evolve reactive systems

than interactive ones. Even though reactive systems can win this battle it is by a small

margin and not in every case.

 In Figure 5.2.2 the same results are shown but for systems with two rules. These

results are actually quite erratic and do not show many consistent trends. The most

marked feature from these plots concerns the generalist data. This feature is the level

41

of smoothness compared with the one rule plots. This supports a previous thought that

the two rule systems are less evolvable than the one rule systems.

 This figure does show some very interesting oddities, such as the generalist system

out performing the specialist in tests 2 and 3. How is this possible? Maybe the

specialist systems found it too easy to get stuck at a local maximum when using 2

rules. This maybe was not the case for the generalist system because they had more

information to work with or to nudge them out of a local maximum.

0 500 1000 1500
52

54

56

58

60

62

64

66

68

70

72

74

F
it
n
e
s
s

Evaluations

Test 1

Re. Spec.

Int. Spec.

Re. Gen.

Int. Gen.

0 500 1000 1500
52

54

56

58

60

62

64

66

68

70

72

74
Generalists vs. Specialists for systems with 2 rules

F
it
n
e
s
s

Evaluations

Test 2

0 500 1000 1500
52

54

56

58

60

62

64

66

68

70

72

74

F
it
n
e
s
s

Evaluations

Test 3
Figure 5.2.2 each line represents data from 16 evolutions runs. The generalist

data was all taken from the same 16 runs but the specialist data is from three

different sets of 16 evolutionary runs.

42

5.3 Genotypes

A look was taken at the genotypes in order to explore trends in the evolved rules. For

the single rule genome plots each dot in the plot contains six types of data within it,

the five genes plus the fitness for that genome. Table 5.3 contains a list of the

information included in the genotype plots and how they are represented.

 Trends show a definite link between the sensor genes and the fitness. All the high

fitness agents are located at low temperature meaning the agent would be seeking out

the cool. The density does not seem to be as strong a factor as temperature but the

fitness still favors densities below 50, which indicates that the agent would not favor

building in dense areas and would tend to favor branching out away from the solid

mass.

 The following list describes the elements represented in Figures 5.3.1 thru 5.3.4.

These figures show the final genome from the four different runs.

Mean Temperature - X-Axis

Mean Density - Y-Axis

Action - Cross = 1, Circle = 0

Angle - Line that extends out from dot

Direction - Notch at end of angle line

Fitness - Red = High, Blue = Low

43

0 10 20 30 40 50 60 70 80 90 100

0

10

20

30

40

50

60

70

80

90

100

Mean Temperature

M
e
a
n
 D
e
n
s
it
y

Final Genomes for Reactive runs with 1 Rules

Figure 5.3.1 Evolved genomes of reactive Systems with 1 rule

It is interesting to note that in both the reactive and interactive systems with one rule

the evolution concentrated in the low temperature and medium to low areas of density,

yet the interactive system achieved high fitness. I both cases all the high fitness

individuals are “builders”, meaning that their action genes is one and all they can do is

build solid blocks. The few runs that got stuck in lower fitness areas are all “diggers”

at higher values of temperature and density. This means that they were probably stuck

at some local peak that required several simultaneous mutations in the right direction

in order to jump out of this “bad solution”.

44

0 10 20 30 40 50 60 70 80 90 100

0

10

20

30

40

50

60

70

80

90

100

Mean Temperature

M
e
a
n
 D
e
n
s
it
y

Final Genomes for Interactive runs with 1 Rules

Figure 5.3.2 Evolved genomes of interactive systems with 1 rule

45

0 10 20 30 40 50 60 70 80 90 100

0

10

20

30

40

50

60

70

80

90

100

Mean Temperature

M
e
a
n
 D
e
n
s
it
y

Final Genomes for Reactive runs with 2 Rules

Figure 5.3.3 Evolved genomes of reactive systems with 2 rules

 In the case of reactive systems with 2 rules the evolutionary algorithm was not

able to find the optimal solutions as consistently as with the one rule systems. It seems

that within the representation the high fitness zone it still within the same zone as with

the agent with one rules but in the genomes would be to have both rules be near the

same zone and be both builders. Again the same conclusion regarding the

representation used for systems with multiple rules can be stated. The representation

46

simply could not take advantage of the extra rules, and in fact having more rules just

hurt the evolutionary process.

 For the interactive systems that used two rules, there was a noticeable difference

regarding the fitness in their results. Somehow the interactive systems were able to

better seek out the favorable genomes, although they also managed to have worse

fitness failures.

0 10 20 30 40 50 60 70 80 90 100

0

10

20

30

40

50

60

70

80

90

100

Mean Temperature

M
e
a
n
 D
e
n
s
it
y

Final Genomes for Interactive runs with 2 Rules

Figure 5.3.4 Evolved genomes of interactive System with 2 rules

47

In the two rules systems the reactive level was a lot more consistent at finding medium

range fitness while the interactive system would have more runs end with good and

bad fitness values while spending much less time at the middle.

5.4 Phenotypes

The Phenotypes in the systems used in these experiments are the resulting structures

that emerge from their development, which is guided by their genotypes. From the

genotype plots that were discussed in the previous section it is already know that the

system that evolved a digging behavior scored lower fitness than the builders. In these

figured the final state of all the runs of a type were averaged for each test. The darker

areas represent the block which tended to be solid more often at the end of runs.

Test 1 Test 2 Test 3

Figure 5.4.1 Evolved phenotypes of reactive systems with 1 rule

48

Test 1 Test 2 Test 3

Figure 5.4.2 Evolved phenotypes of interactive systems with 1 rule

 The most notable feature in these figures is that most builder systems evolved into

the canopy strategy. This strategy consists of building a relatively thin column in order

to get to the top of the environment and then build sideways to create shade. This

strategy has a cooling effect as the sun stopping cells are very close to the zero degree

heat sink so they do not warm up.

 It is quite probable that the problem present was too simple or the environment not

rich enough for the different systems to evolve different strategies that where just as

good. It seems that for the conditions presented and the rules used the canopy strategy

was the overall winner no matter what system was evolving. In chapter 6 this issue is

explored further and experiments are shown where the interactive and reactive system

use completely different strategies yet achieve comparable fitness values. Also

experiments are shown where there is virtually no difference between the interactive

and reactive results. The variation in these experiments is only in the initial conditions

presented to the individual. The physics remain the same.

49

Test 1 Test 2 Test 3

Figure 5.4.3 Evolved phenotypes of reactive systems with 2 rules

Test 1 Test 2 Test 3

Figure 5.4.4 Evolved phenotypes of interactive systems with 2 rules

 The systems run of all types that used digging agents do not seem to have any

overall pattern, but diggers evolved within the same type of run do tend to have the

same pattern. For example the interactive system with one rule only evolved diggers

that would make holes at both sides of the hill. While the system with 2 rules would

tend to just dig down in no particular way and then expand the hole sideways at the

bottom, like a reverse canopy strategy.

50

CHAPTER 6

DIFFERENT SCENARIOS

This chapter showcases six further experiments done with three different initial

conditions and for both reactive and interactive system. These experiment where done

to find out whether or not our two systems would behave differently from each other

under these new arbitrary initial conditions. This study was prompted from the

phenotype results in our main set of experiments.

6.1 The Circle Scenario

The starting condition for this scenario was a circle of solid cells with radius of 8-cells

just below the center of the environment surrounded by empty cells.

Figure 6.1.1 Diagram showing the starting conditions for the circle scenario.

Grey shows solid cells and white show empty cells.

51

0 500 1000 1500
35

40

45

50

55

60

65

70

75

80

85
 Reactive Results for circle runs

F
it
n
e
s
s

Evaluations

0 500 1000 1500
35

40

45

50

55

60

65

70

75

80

85
Interactive Results for circle runs

Evaluations

F
it
n
e
s
s

main

test1

test2

test3

Figure 6.1.2 Circle Fitness Results: Plots of the reactive and interactive run for

the circle scenario. Results are almost identical between reactive and interactive.

Yet both have overall high fitness values compared with every other scenario

run.

It seems that this scenario was able to evolve into much higher fitness values than all

the other scenarios, including the main experiments. Looking at the results it is quite

possible that the biggest factor in this was the empty space in the bottom of the

52

environment region. This area remained mostly undisturbed by the evolved

phenotypes, see Figure 6.1.4, and its temperature was always very close to 50 degrees

thanks to the bottom row always being at 50 degrees because of the constraints.

0 20 40 60 80 100

0

20

40

60

80

100

 Reactive genomes for circle runs

Mean Temperature

M
e
a
n
 D
e
n
s
it
y

0 20 40 60 80 100

0

20

40

60

80

100

Interactive genomes for circle runs

Mean Temperature

M
e
a
n
 D
e
n
s
it
y

Figure 6.1.3 Circle Final Genomes: Plots showing the genome distribution for the

circle scenario. Just as the fitness plots, both reactive and interactive runs show

near identical outcomes.

 These final genomes indicates that, for the circle scenario, the fitness landscape

was comparatively more evolvable than all the other scenarios seeing as how all the

runs ended in similar conditions with low temperature, low density, and all where

builders(no diggers). Also all scored high fitness values (all dark red). This is a

possibly smoother landscape with one dominant peak.

 With regards to the phenotypes the most notable difference is that the interactive

runs tend to have a noisier output with regards to final structures, probably due to the

dynamic effects on the temperature gradients during development whereas the reactive

individual dealt with smoother and static temperature gradients.

53

Test Reactive Interactive

1

2

3

Figure 6.1.4 Circle Phenotypes: Both reactive and interactive runs found the

same basic solution of trying to create a partial roof structure on the upper left

side of the environment.

54

6.2 The Valley Scenario

The starting condition for this scenario was a large solid block covering the lower 60%

of the environment area with a valley cut out of it at the center.

Figure 6.2.1 Diagram showing the starting conditions for the valley scenario.

Grey shows solid cells and white show empty cells.

In the valley scenario the interactive system was able to evolve into overall better

results, Figure 6.2.2, although these interactive runs tended to specialize for tests

number 2 and 3, whereas the reactive runs where not able to evolve much at all,

mostly settling after about 300 evaluations. Curiously enough the interactive runs

sacrificed test number 1 so much that it underperformed the reactive runs for that test.

55

0 500 1000 1500
35

40

45

50

55

60

65

70

75

80

85
 Reactive Results for valley runs

F
it
n
e
s
s

Evaluations

0 500 1000 1500
35

40

45

50

55

60

65

70

75

80

85
Interactive Results for valley runs

Evaluations

F
it
n
e
s
s

main

test1

test2

test3

Figure 6.2.2 Valley Fitness Results: Plots of the reactive and interactive run for

the valley scenario.

56

0 20 40 60 80 100

0

20

40

60

80

100

 Reactive genomes for valley runs

Mean Temperature

M
e
a
n
 D
e
n
s
it
y

0 20 40 60 80 100

0

20

40

60

80

100

Interactive genomes for valley runs

Mean Temperature

M
e
a
n
 D
e
n
s
it
y

Figure 6.2.3 Valley Final Genomes: Plots showing the genome distribution for the

valley scenario.

 These genomes plots seem to indicate that the reactive system where able to

evolve their best system only a couple of times while the other six runs where pretty

much misses. The opposite was the case of the interactive runs, where the evolution

got 6 hits and 2 misses. Meaning that most of the time it was able to evolve to its best

individuals.

 For the valley scenario the interactive system was better able to evolve good

systems.

 Phenotype wise the results are again similar in the sense that the reactive systems’

builders and diggers are similar to the interactive systems’ builders and diggers. The

difference being that the interactive system evolved builders more often, which

incidentally represent the “good” genomes for these runs.

57

Test Reactive Interactive

1

2

3

Figure 6.2.4 Valley Phenotypes

58

6.3 The Vertical-Bar Scenario

The starting condition for this scenario was the same hill type scenario from the main

experiments but with the addition of a high vertical-bar tower on the right side of the

hill.

Figure 6.3.1 Diagram showing the starting conditions for the valley scenario.

Grey shows solid cells and white show empty cells.

 This is the scenario that produced the most interesting results. Both types of runs,

reactive and interactive achieved on average about the same overall fitness. The

interesting part is that they used completely different strategies. The interactive

systems evolved in perhaps the most consistent manner that has been shown in any of

the runs presented here. In Figure 6.3.3 we see this as all of the genomes evolved form

a small cluster around a mean density of 20 and a mean temperature of 60. Also these

are all diggers and well it seems that, as always, no preference regarding angles or

direction (4
th

 and 5
th

 genes in a rule) can be observed.

59

0 500 1000 1500
35

40

45

50

55

60

65

70

75

80

85
 Reactive Results for vrtbar runs

F
it
n
e
s
s

Evaluations

0 500 1000 1500
35

40

45

50

55

60

65

70

75

80

85
Interactive Results for vrtbar runs

Evaluations

F
it
n
e
s
s

main

test1

test2

test3

Figure 6.3.2 Vertical-Bar Fitness Results: Plots of the reactive and interactive run

for the vertical bar scenario.

The fitness result for both cases was very close with no significant distinction between

the “main” fitness plots. Which is curious as the individual test result seem to have no

relation in their patterns. It is very rare that we had runs where the test favoring

patterns were different. It seems that the case is that the favored test depends mostly

60

on the scenario used. But these results show that it is also heavily affected by the

strategies used. This is a significant result because it breaks a previous pattern that

could not be conclusively explained.

0 20 40 60 80 100

0

20

40

60

80

100

 Reactive genomes for vrtbar runs

Mean Temperature

M
e
a
n
 D
e
n
s
it
y

0 20 40 60 80 100

0

20

40

60

80

100

Interactive genomes for vrtbar runs

Mean Temperature

M
e
a
n
 D
e
n
s
it
y

Figure 6.3.3 Vertical-Bar Final Genomes: Plots showing the genome distribution

for the vertical bar scenario.

The reactive run seemed to have various local peaks that it settled on, which is quite

the opposite from the interactive runs which have one dominant narrow peak. The

reactive peaks vary between diggers and builders but in the reactive runs there is one

dominant peak only that corresponds to diggers.

 In the interactive runs it is noticeable how the digging function shifts its focus with

the angle of the sun almost forming a wide hole along the direction of the sun starting

from just below the tip of the vertical-bar tower.

 The reactive systems however resorted most successfully to the canopy approach

but extending from the tower and not the up the left side as with the original

experiments shown in the previous chapter.

61

Test Reactive Interactive

1

2

3

Figure 6.3.4 Vertical-Bar Phenotypes: Note this is the only scenario were the

reactive and interactive systems consistently pursued different strategies.

It is not clear why this scenario was the only one to produce such results the feature

that makes this scenario stand out the most among all the other is that this is the only

left-right asymmetrical scenario.

62

CHAPTER 7

SYSTEM SELF-REPAIR

Perhaps one of the biggest advantages of using Interactive Systems as representation

of structural design is that they do not need to stop working, which can lead to

different outcomes. One outcome could be an ever growing structure, a design fit for

types of structures which need to meet ever growing demands or structures that need

to achieve partial functionality before they are finished. This could be the case when

trying to establish a functional remote facility that will receive its crew in growing

stages. This is not exclusive for remote facilities, but the specific advantages offered

make it more attractive in such cases when compared to conventional blueprint

methods. Also the word “remote” is being use loosely here and as it can be applied to

any case where there is considerable operations establishing cost. Another outcome,

which was further explored, is the possibility of a self-repairing system.

7.1 Self-Repair

 Consider a rule-based design evolved such that once the desired function is

achieved the agents or robots that built the structure could continue in a roaming

mode, simply because the feedback from the structure or environment is not

prompting build rules, while no spots that trigger build rules are found. In such a case

the agent would roam indefinitely, until its power source ran out or a low-power

trigger would signal a return to a charging station and then resume roaming as if the

construction was not finished because it has no finish trigger. Power source issues

aside, the robot-agents rules could be such that they roam indefinitely and, during the

63

roaming stage, if the agent were to run into an area of the structure that was damaged

it could perceive this as simply unfinished and then would go forth and fix the damage

before continuing its roaming.

 Such automated repair is simply just part of the representation and execution of

interactive system design. Of course an designer would probably be tempted to include

some sort of extreme damage trigger and sequence that could be included among the

rules of the systems to better allow them to promptly fix the damage, even going as far

as requesting help and having a clean-up stage before repair damage.

 Of course with a better understanding of system-environment interaction we might

end up realizing that it is not necessary to explicitly implement hard triggers and

sequenced protocols, as these aspects of behavior will be implicitly evolvable. The

following plots show the self-repair capabilities of the genome shown in Figure 4.4.2.

0 Steps

192 Steps

192 Steps (Damage Applied)

384 Steps (another 192 Steps)

Figure 7.1.1 Self-Repair in Test 1: Agent rebuilds the part of the structure

damage at step 192. It is not a exact rebuild but the principle is retained.

64

 In Figure 7.1.1, it can be seen how the agent rebuilds the column and part of the

canopy. It does not rebuild exactly the same thing but it still has the same idea. This is

reminiscent of regeneration which is a property that some biological developmental

systems have where a fully developed organism can replace lost parts (Wolpert et al.

236, 447-448).

0 Steps

192 Steps

192 Steps (Damage Applied)

384 Steps (another 192 Steps)

Figure 7.1.2 Self-Repair in Test 2: Agent is not able to completely repair the

previous structure but it does repair the canopy and recovers the temperature

profile (reduce loss of heat to sky using the canopy).

 In Figure 7.1.2, the fact that the agent does not recover the vertical column that

connects the canopy to the ground but it does recover the functionality by sort of

building down in that direction and even partially rebuilding the canopy seems to

65

slightly undermine the need for a vertical column, yet it is still rebuilt eventually after

working down from the canopy.

0 Steps

192 Steps

192 Steps (Damage Applied)

384 Steps (another 192 Steps)

Figure 7.1.3 Self-Repair in Test 3: Canopy is worked down to the remains of the

column.

 This case seems to fall in between the first two where, as in the first test, the

canopy is reconnected to the column and the canopy was worked down from the left-

side down to the column, as in the second test. The first test was the only one where

the vertical column was immediately worked up towards the canopy. And in tests 2

and 3 the canopy was built downwards from the left until at some point the vertical

column shoot up to meet it. Although in the second test the column did not have

enough time to connect.

66

CHAPTER 8

CONCLUSION

In this thesis it has been shown by experimental work that systems evolved using and

interactive level of system-environment interaction where able to build more

functional structures over different environmental conditions, showing a more robust

behavior. Increased adaptability is very important when designing systems that will

need to build structure in unforeseen environments or if one knows that the system is

going need to perform it duties over a wide range of environmental conditions.

 When working with developmental systems it is important to pay attention to the

level of system-environment interaction present, especially to identify the role that the

environment plays in the development of the system. In biology the important role of

the environment in the development of an organism is yet to become widely

recognized.

 One of the most important issues in pre-modern biology was the struggle

between the preformationist and epigenetic theories of development. The

preformationist view was that the adult organism was contained in the sperm

and that development was the growth and solidification of this miniature

being. The theory of epigenesis was that the organism was not yet formed in

the fertilized egg, but that it arose as a consequence of profound changes in

shape and form during the course of embryogenesis. It is usually said that the

epigenetic view decisively defeated preformationism. Yet it really

preformationism that has triumphed, for there is no essential difference

between the view that the organism is already formed in the fertilized egg and

67

the view that the complete blueprint of the organism and all information

necessary to specific it is contained there, a view that dominates modern

studies of development. (Lewontin, 5-6)

 The importance of looking closely at the system-environment interaction in system

that we work with goes beyond just achieving better performance and adaptability, it

is also about having a better understanding of the behavior of our experimental system

and seeing the importance of the role that the environment plays in system

development.

8.1 Nature and Stigmergy

This thesis work was introduced by talking about the role of nature in it inspiration.

However the work itself is about developmental theory and the terms systems,

environment, and development take on a more abstract shape as references to nature

and termites quickly become sparse. The discussion was kept away from termites and

nature to avoid confusion about its claims being made in relation to termites or social

insects. This is due to the focus of the work being more on engineering and computer

science related. However, it must be clear that the author always kept the concept of

termites close at hand in his mind when designing the experiments and writing the

programming code. The agents where referred to as termites and the structures were

referred to as mounds. The concept of stigmergy, a notion introduced to describe the

cooperative behavior in termites. Is very key to this work and describes and interactive

level of system-environment interaction among termites. The relation lies in that

stigmergy is defined as:

68

The indirect communication taking place among individual termites through

dynamically evolving features of a structure. (Bonabeau et al. 188-193)

The very notion of stigmergy is about cooperation between systems, a method of

cooperation only possible at an interactive level system of system-environment

interaction. This is because interactive systems are able to exploit changes in the

dynamics of the environment; this ability in termites is what drives their stigmergic

behavior and the inspiration for this work.

8.2 Future Work

The systems used in this work were designed as experiments to test a hypothesis. The

high amount of simplification done on our test systems left us without any basis to

make claims about the systems on which they where originally based on.

 Seeing as how this thesis works on concepts taken from biology but applies them

to engineering, it is logical to picture two direction in which this work could branch

out. Biologically focused work stemming from this thesis may involve creating more

complicated simulations to explore an learn more about termite behavior building

mound in three-dimensions and embedding more physical properties into the

environment such as basic fluid dynamics (Stam), mechanical properties to the

materials, and pheromones for the surface. Adding pheromones to otherwise random

simulations of ant movement has been shown to produce foraging patterns like those

of several species of ants in Deneubourg’s work. Perhaps giving the system more

complicated goals besides temperature, such as relative humidity or making more

complicated agents that behave differently as a factor of lighting, age/time, or

hunger/power. Such factors can greatly contribute to the nest’s overall structure as is

69

the case in Florida harvester ants (Tschinkel). A motivation to adding more realism to

the models is to evolve simulated systems that we could ultimately port to real systems

and use to build real-world structures. Using continuous systems in the simulation

would be part of that step toward a physical realization of our evolved systems.

 Further work expanding the quantitative metric presented as the Interactive

Dynamics Index to include and classify all the different levels of system environment

interaction mentioned in section 1.3 under one all-inclusive scale.

 If even the simple setup used for these experiments is able to show self-repair and

even when it wasn’t even evolved for it, then more work exploring the self-repair

capabilities of an interactive system must be explored. The ability to self-repair can be

integrated in a fitness function and some tweak could be made in the environment to

make self-repair especially worth while.

 There is also potential in combining these self-repair capabilities with 3D

printing technologies. Work is already being done in printing functional components

with solid freeform fabrication using computer 3D models as blueprints (Malone).

Such 3D-printers fitted with sensors and rules instead of conventional blueprints could

be the first to build real-life structures using functional blueprints. With added

mobility this technology could eventually become the platform for the robots

described in the self-repair scenario given in section 7.1. Already real-life reactive

developmental systems have been built (Werfel et al.) so interactive systems is the

next logical step.

 From an engineering point of view it would be of interest to design interactive

developmental systems tasked with solving real-world engineering problems starting

in areas where evolutionary algorithms are being used for design already.

 There is great potential in the current work being done involving real-world

systems designed for various tasks (Lipson and Pollack 974-978). In some cases the

70

systems are designed using evolutionary algorithms (Hornby and Pollack 223-246)

and in other cases their behavior is (Lipson et al. 11-18).

These concepts are potentially very useful for applications such as cooperation in

multiple-robot systems tasked with building adaptive structures in orbit, on other

planets, or even the orbits of other planets.

71

APPENDIX

//Main Code for single evaluation of reactive system

1

2

3

4

5

6

7

8

9

10

11

12

for (double m = 0; m <= 1; m += 0.5)

{

 model.Initialize(m);

 for (int i=0; i<lsim; i++)

 {

 model.ExecuteAgent(&individualgenome, agentsize);

 //model.Run(runsteps, m);

 }

 model.Run(runsteps0, m);

 RedrawViewsNow();

 model.AgentFitness(targettemp);

}

Walkthrough:

(line 1) Variable m used as input to indicate which test is being done. The ‘for-

loop’ run three times for m equal 0, 0.5, and 1, which are actually the

inverse values of the slope that the sunrays angles are going to be.

(line 3) model.Initialize(…) – Initializes the model and uses m as

input in order to set a specific temperature distribution.

(line 4) lsim indicates length of simulation how many agents step are done.

For every experiment discussed this was 128.

(line 6) model.ExecuteAgent(…) – Executes rules of specified

individual. Input are the genome with the rules and a varible that

specifies number of rules.

(line 7) Line used only for interactive system runs.

(line 9) Line used only for reactive system runs. Executes environment update,

agent never sees this. Only done for fitness evaluation.

(line 11) model.AgentFitness(…) – Call to fitness function. Input is

target temperature.

72

//Main Code for single evaluation of interactive system

1

2

3

4

5

6

7

8

9

10

11

12

for (double m = 0; m <= 1; m += 0.5)

{

 model.Initialize(m);

 for (int i=0; i<lsim; i++)

 {

 model.ExecuteAgent(&individualgenome, agentsize);

 model.Run(runsteps, m);

 }

 //model.Run(runsteps0, m);

 RedrawViewsNow();

 model.AgentFitness(targettemp);

}

Walkthrough:

(line 1) Variable m used as input to indicate which test is being done. The ‘for-

loop’ run three times for m equal 0, 0.5, and 1, which are actually the

inverse values of the slope that the sunrays angles are going to be.

(line 3) model.Initialize(…) – Initializes the model and uses m as

input in order to set a specific temperature distribution.

(line 4) lsim indicates length of simulation how many agents step are done.

For every experiment discussed this was 128.

(line 6) model.ExecuteAgent(…) – Executes rules of specified

individual. Input are the genome with the rules and a varible that

specifies number of rules.

(line 7) Line used only for interactive system runs. Executes environment

update and is call after every rule execution. This allows the agent to

use dynamic environmental feedback.

(line 9) Line used only for reactive system runs.

(line 11) model.AgentFitness(…) – Call to fitness function. Input is

target temperature.

73

//Code for ExecuteAgent(…) Part 1: Finding Action Site

for (int ix = 2; ix<nx-2; ix++)

{

 for (int iy = 2; iy<ny-2; iy++) //nested for-loops scan

environment

 {

 ax=ix; ay=iy;

 if (cell is empty)

 {

 if (cell has solid neighbors)

 {

//Collect sensor data

 double temp_avg = average temperature of 8 cells;

 double matt_avg = average density of 8 cells;

 double matt_gx=0;

 double matt_gy=0;

 double matt_angle;

 for (int i=-1; i<2; i++) {

 for (int j=-1; j<2; j++) {

 matt_gx += i*c(ax+i,ay+j).v;

 matt_gy += j*c(ax+i,ay+j).v;

 }

 }

 matt_angle = atan2(matt_gy, matt_gx) * 180 / pi;

//gradient

//check sensor data distance to rules

 double dist=0;

 for (int i=0; i<agentsize; i++)

 {

 dist += sqrt(

 pow((pAgent->rule[i].temp_mean - temp_avg),2) +

 pow((pAgent->rule[i].matter_mean - matt_avg),2));

 }

 if (dist < min_dist) //save current data

 {

 min_dist = dist;

 rx=ax;

 ry=ay;

 tangle = matt_angle;

 for (int i=0; i<agentsize; i++)

 {

 pAgent->rule[i].weight = 1/sqrt(

 pow((pAgent->rule[i].temp_mean -temp_avg),2)+

 pow((pAgent->rule[i].matter_mean -matt_avg),2));

 }

 }

 }

 }

 }

}

ax=rx; ay=ry; // coordinates for the action site saved

74

//Code for ExecuteAgent(…) Part 2: Combining Rules

//Once action site is selected the rules are combined

double rule_action = 0;

double rule_angle = 0;

double rule_angle_cos = 0;

double rule_angle_sin = 0;

double rule_dir = 0;

rn=0;

for (int i=0; i<agentsize; i++)

{

 rn += rule[i].weight; //rn = total weights of rules

}

for (int i=0; i<agentsize; i++)

{

 rule[i].weight /= rn; //using rn weight are normalized

//using weight all rules are added together

 rule[i].usecount += rule[i].weight;

 rule_action += rule[i].weight*rule[i].action;

//angles combined as vector components

 rule_angle_cos+= rule[i].weight*cos(rule[i].angle);

 rule_angle_sin+= rule[i].weight*sin(rule[i].angle);

 rule_dir += rule[i].weight*rule[i].dir;

}

//vectors components then are turn into angle for new rule

rule_angle = atan2(rule_angle_sin, rule_angle_cos);

//once a rule has been formed from the other it is executed

if (rule_action >= 0.5)

{

 Deposit(rule_angle + tangle, signval(rule_dir));

}

else if (rule_action < 0.5)

{

 Remove (rule_angle + tangle, signval(rule_dir));

}

75

//Code for Deposit(…);

int n = 0;

for (int i=0; i<8; i++) //repeats 8 times going through all neighbors

{

 double angle = angle_in +(45*i*dir); //offset and rotation

 if (cell chosen is empty)

 {

 make cell solid;

 n = 1;

 break;

 }

}

//if all cell surrouding home are solid then no action has been taken

at this point, so then home cell is turned solid

if (n == 0)

{

 make home cell solid;

}

//Code for Remove(…);

for (int i=0; i<8; i++) //repeats 8 times going through all neighbors

{

 double angle = angle_in +(45*i*dir); //offset and rotation

 if (cell chosen is solid)

 {

 make cell empty;

 n = 1;

 break;

 }

}

//action will always been taken because a home cell always has at

least one solid cell neighbor

76

//Code for Run(…) Part 1: Sunrays

double increment = 0.75; //sun heat intensity

double lres=0.25; //resolution of sunrays (only used when m is not 0)

if(m==0)

{

 for (int i=nx-1; i>=0; i--) { //sideway scan

 for (int j=ny-1; j>=0; j--) { //top to bottom scan

 if (top to bottom scan hits a solid cell) {

 cell_temp += increment;

 break;

 }

 }

 }

}

else if(m>0){

 m = 1/m;

 for(double b = -ny/m; b<nx; b+=lres){ //sideway scan

 for(int y=ny-1; y>0; y--){ //top to bottom scan

 int x = int (y/m + b); //x = ray location

 if(x hits a solid cell){

 cell_temp += increment*lres;

 break;

 }

 }

 }

}

else if(m<0){

 m = 1/m;

 for(double b = 0; b<(nx-ny/m); b+=lres){ //sideway scan

 for(int y=ny; y>0; y--){ //top to bottom scan

 int x = int (y/m + b); //x = ray location

 if(x hits a solid cell) {

 cell_temp += increment*lres;

 break;

 }

 }

 }

}

77

//Code for Run(…) Part 2: conduction physics update

double coeffs [2][2];

 coeffs[solid][solid]=0.025;

 coeffs[solid][empty]=0.05;

 coeffs[empty][solid]=0.05;

 coeffs[empty][empty]=0.25;

for (int i=0; i<nx; i++) { // Temperature diffusion

 for (int j=0;j<ny; j++) {

 new_temp = old_temp +

 coeffs[home][neighbor1]*(neighbor1_Temp – home_Temp) +

 coeffs[home][neighbor2]*(neighbor2_Temp – home_Temp) +

 coeffs[home][neighbor3]*(neighbor3_Temp – home_Temp) +

 coeffs[home][neighbor4]*(neighbor4_Temp – home_Temp);

 }

}

//updates temperature by adding temperature differences scaled by

conduction coefficients which depends on both home and neighbors

matter states

//Code for AgentFitness(…)

int counter = 0;

double temp = 0;

//for-loops scan whole environment

for (int i=int(0.0*nx); i<int(1.0*nx); i++) {

 for (int j=int(0.0*ny);j<int(1.0*ny); j++) {

 counter++;

 //temp will be total temperature difference

 temp += fabs(targett – cell_temp);

 }

 }

}

fitness += 2*(50 - temp/gas);//3;

 }

78

REFERENCES

Almássy, Nikolaus P.W., Erik Vinkhuyzen. "Evolution of Adaptive Behavior in

Dynamic Environments." In Intelligent Automation and Soft Computing:

Trends in Research, Development and Applications. Ed. M. Jamashidi, C.C.

Nguyen, R. Lumia, and J. Yuh. Albuquerque, NM: TSI Press, 1994.

Bard, Jonathan B. L.. Morphogenesis: The Cellular and Molecular Processes of

Developmental Anatomy. UK: Cambridge University Press, 1992.

Bentley, Katie, and Chris Clack. "Morphological Plasticity: Environmentally Driven

Morphogenesis." ECAL (2005): 118-127.

Bentley, Peter J.. "Fractal Proteins." Genetic Programming and Evolvable Machines

5.1(2004): 71-101.

Bentley, Peter J., and Sanjeev Kumar. "Three Ways to Grow- Designs: A Comparison

of Evolved Embryogenies for a Design Problem." GECCO 1(1999): 35-43.

Bonabeau, Eric, et al. "Self-Organization in Social Insects." TREE 12.5(1997): 188-

193.

Bonabeau, Eric, Sylvain Guerin, Dominique Snyers, Pascale Kuntz, and Guy

Theraulaz. "Three-dimensional architectures grown by simple `stigmergic'

agents." BioSystems. 56(2000): 13-32.

Bongard, Joshua, and Hod Lipson. "Automated robot function recovery after

unanticipated failure or environmental change using a minimum of hardware

trials." Proceedings NASA/DoD Conference on Evolvable Hardware (2004):

169- 176.

Bongard, Josh C., and Rolf Pfeifer. "Evolving Complete Agents Using Artificial

Ontogeny." In Morpho-functional Machines: The New Species (Designing

Embodied Intelligence) Berlin: Springer-Verlag. (2003): 237-258.

Bongard, Joshua, and Hod Lipson. "Integrated Design, Deployment and Inference for

Robot Ecologies." Proceedings of Robosphere (2004)

Bongard, Josh C., and Rolf Pfeifer. "Repeated structure and dissociation of genotypic

and phenotypic complexity in artificial ontogeny." GECCO (2001): 829-836.

de Garis, Hugo. "Artificial Embryology: The Genetic Programming of an Artificial

Embryo." In Artificial Life III Workshop, Santa Fe, New Mexico, USA, June

1992.

79

Deneubourg, J. L., and S. Goss. "Collective Patterns and Decision Making." Ethology,

Ecology, and Evolution 1(1989): 295-311.

Deneubourg, J. L., S. Goss , N. Franks, and J. M. Pasteels. "The Blind Leading the

Blind: Modeling Chemically Mediated Army Ant Raid Patterns." Journal of

Insect Behavior. 2.5(1989): 719-725.

Eggenberger, Peter. "Evolving Morphologies of Simulated 3d Organisms Based on

Differential Gene Expression." 4th European Conference on Artificial Life

(1997): 205-213.

Emerson, Alfred E.. "Termite Nests–A Study of the Phylogeny of Behavior."

Ecological Monographs 8(1936): 247-284.

Francu, Andreea. "Plant Modeling." Andreea Francu's Home Page. 19 May 2006.

<http://andreea.francu.com/lgrammar/fractals.html>.

Harris, W. Victor. Termites; Their Recognition and Control. London: Longmans,

1961.

Hemberg, Martin, Una-May O'Reilly. "Extending Grammatical Evolution to Evolve

Digital Surfaces with Genr8." EuroGP (2004): 299-308.

Hornby, Gregory S.. "Functional Scalability through Generative Representations: the

Evolution of Table Designs." Environment and Planning B 31.4(2004): 569-

587.

Hornby, Gregory S., Hod Lipson, and Jordan B. Pollack. "Evolution of Generative

Design Systems for Modular Physical Robots." Proceedings IEEE

International Conference on Robotics and Automation 4(2001): 4146- 4151.

Hornby, Gregory S., and Jordan B. Pollack. "Body-Brain Co-evolution Using L-

systems as a Generative Encoding." GECCO (2001): 868-875.

Hornby, Gregory S., and Jordan B. Pollack. "Creating High-Level Components with a

Generative Representation for Body-Brain Evolution." Artificial Life

8.3(2002): 223-246.

Hornby, Gregory S., and Jordan B. Pollack. "Evolving Complete Agents Using

Artificial Ontogeny." Computers & Graphics 25(2001): 1041–1048.

Incropera, Frank, and David DeWitt. Fundamentals of Heat and Mass Transfer. 4th ed.

New York: John Wiley & Sons, 1996.

80

Koza, John R.. Genetic Programming: On the Programming of Computers by Natural

Selection. Cambridge, MA: MIT Press, 1992.

Kumar, Sanjeev. "Investigating Models of Development for the Construction of Shape

and Form." Doctoral Thesis, UCL (2004).

Kumar, Sanjeev, and Peter J. Bentley. Computational embryology: past, present and

future. In: Advances in evolutionary computing: theory and applications. New

York: Springer-Verlag, 2003.

Kumar, Sanjeev, and Peter J. Bentley. On Growth, Form and Computers. London:

Academic Press, 2003.

Lewontin, Richard. The Triple Helix. Cambridge, Massachusetts: Harvard University

Press, 2000.

Lindenmayer, A., and G. Rozenburg. Automata, Language, Development.

Amsterdam: The Netherlands: North-Holland, 1976.

Lipson, Hod. "Evolutionary Robotics and Open-Ended Design Automation."

Biomimetics: Biologically Inspired Technologies. Ed. Yoseph Bar-Cohen.

Boca Raton, FL: CRC Press, 2006.

Lipson, Hod, Joshua Bongard, Victor Zykov, and Evan Malone. "Evolutionary

Robotics for Legged Machines: From Simulation to Physical Reality."

Proceedings of the 9th Int. Conference on Intelligent Autonomous Systems.

(2006): 11-18.

Lipson, Hod, and Jordan B. Pollack. "Automatic Design and Manufacture of Artificial

Lifeforms." Nature 406(2000): 974-978.

Mahdavi, Siavash H., and Peter J. Bentley. "An Evolutionary Approach to Damage

Recovery of Robot Motion with Muscles." In 7th European Conference on

Artificial Life (2003): 248-255.

Malone, Evan. "Functional Freeform Fabrication for Physical Artificial Life."

Proceedings ALIFE 9 (2004): 100-105.

Mason, Zachary. "Programming with Stigmergy: Using Swarms for Construction."

ALIFE8 (2002): 371-374.

Miller, Julian F.. "Evolving a self-repairing, self-regulating French flag organism."

GECCO (2004).

81

Miller, Julian F.. "Evolving Developmental Programs for Adaptation, Morphogenesis,

and Self-Repair." Proceedings of the 7th European Conf. on Advances in

Artificial Life 2801(2003): 256-265.

Mitchell, Melanie. An Introduction to Genetic Algorithms. MIT Press, 1998.

Murata, S., H. Kurokawa, E. Yoshida, K. Tomita, and S. Kokaji. "A 3-D self-

reconfigurable structure." ICRA (1998): 432-439.

Nagpal, Radhika. "Programmable Self-Assembly using Biologically-Inspired

Multiagent Control." AAMAS (2002).

Nagpal, Radhika, Attila Kondacs, and Catherine Chang. "Programming Methodology

for Biologically-Inspired Self-Assembling Systems." AAAI Spring (2003).

Pfeifer, Rolf, and Fumiya Iida. "Morphological computation: Connecting body,brain

and environment." Japanese Scientific Monthly 58.2(2005): 48–54.

Prusinkiewicz, Przemyslaw, and Aristid Lindenmayer. The Algorithmic Beauty of

Plants. New York: Springer-Verlag, 1996.

Quick, Tom, Chrystopher L. Nehaniv, Kerstin Dautenhahn, and Graham Roberts.

"Evolving embodied genetic regulatory network-driven control systems."

ECAL. (2003):

Rieffel, John. "Evolutionary Fabrication: The Co-Evolution of Form and Formation."

Doctoral Thesis, Brandeis University (2006).

Rieffel, John, and Jordan B. Pollack."Automated Assembly as Situated Development:

 Using Artificial Ontogenies to Evolve Buildable 3D Objects." GECCO (2005):

99-106.

Rudge, Timothy, and Nic Geard. "Evolving Gene Regulatory Networks for Cellular

Morphogenesis." Recent Advances in Artificial Life. Ed. H. Abbass, T.

Bossamaier, and J. Wiles. Singapore: World Scientific Publishing, 2005.

Stam, Jos. "Real-Time Fluid Dynamics for Games." Proceedings of the Game

Developer Conference (2003).

Stanley, Kenneth O., and Risto Miikkulainen. "A Taxonomy for Artificial

Embryogeny." Artificial Life 9.2(2003): 93-130.

Tschinkel, Walter R.. "The nest architecture of the Florida harvester ant,

Pogonomyrmex badius." Journal of Insect Science 4:21(2004): 1-19.

82

Werfel, Justin, Yaneer Bar-Yamyz, Daniela Rus, and Radhika Nagpalz. "Distributed

Construction by Mobile Robots with Enhanced Building Blocks." Proceedings

IEEE International Conference on Robotics and Automation. (2006): 2787-

2794.

Wolpert, Lewis, Rosa Beddington, Thomas Jessell, Peter Lawrence, Elliot

Meyerowitz, and Jim Smith. Principles of Development. 2nd. New York:

Oxford University Press, 2002.

