
 

 

FUNCTIONAL BLUEPRINTS: 

 A DYNAMICAL APPROACH TO STRUCTURE REPRESENTATION 

 

 

 

 

 

 

 

A Thesis 

Presented to the Faculty of the Graduate School 

of Cornell University 

In Partial Fulfillment of the Requirements for the Degree of 

Master of Science 

 

 

 

 

 

 

by 

Nicolas Sebastian Estevez 

January 2007 



 

 

 

 

 

 

 

 

 

 

 

 

© 2007 Nicolas Sebastian Estevez 



 

ABSTRACT 

 

In engineering design, form has traditionally been specified explicitly using blueprints. 

This thesis explores an alternate way of specifying form built on interactions between 

dynamical systems. This alternate form specification is based on ideas from natural 

development. Inspired by termite nest building behavior, dynamic developmental 

systems are proposed as an alternate method to produce and represent structure 

designs, which when compared to the conventional blueprint method are a more robust 

form specification method, more adaptive, and even able to self-repair. 

 Developmental systems are uses here as a method of form specification and an 

evolutionary algorithm is the method of design chosen to explore the capabilities of 

these developmental systems. Evolutionary algorithms have already been widely 

studied and proven to be an effective method of finding solutions to tough problems, 

and in this work they are simply a validated tool being used. 

 The experiments included in this work use developmental systems with high 

degrees of system-environment interaction and show the importance of a subtle and 

often overlooked difference between two similar kinds of systems. An important 

distinction is being made between systems which both use feedback from the 

environment. 

 These systems are referred to as the reactive system and the interactive system. 

The reactive systems simply use environment feedback during their development, 

whereas the interactive systems not only use environmental feedback but actually 

form a two-way dynamic feedback cycle WITH the environment. Our control 

experiments are the systems with one-way feedback which have a system-environment 

interaction level where the system uses information from the environment during its 

development but does not affect the environment’s dynamics. Our experiment systems 
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use dynamic feedback, which allows them to affect the dynamics of the environment 

while simultaneously the environment reacts to this stimulus, forming a two-way 

feedback loop which makes the system more situated in the environment. The 

experiments in this thesis used the evolutionary algorithms to search for systems 

which fulfilled the desired effect on the environment. In this case this effect is to build 

a structure that causes the average temperature in the environment to come as close as 

possible to a target temperature, which is specified at the beginning of the 

evolutionary run. 

 Both types of systems were evolved using evolutionary algorithms and those 

systems which used dynamic environmental feedback consistently displayed better 

performance. 



  

 
iii

BIOGRAPHICAL SKETCH 

Nicolás S. Estévez Montero was born in Sacramento, California on March 22nd, 1981. 

During this time his parents, originally from Chile, were both working on their 

graduate school degrees at UC Davis. At the age of two his family moved back to 

Venezuela and by the time he was seven years old his family had moved to Puerto 

Rico. There he finished elementary school and attended high school, except for the 

10th grade, which was done in Ithaca, NY at IHS. After that he attended the 

University of Puerto Rico, Mayaguez, graduating magna cum laude in 2004. Since 

then he has been studying at the Sibley School of Mechanical and Aerospace 

Engineering at Cornell University. He defended this thesis in August 2006. 



  

 
iv

 

 

 

 

 

 

 

 

 

 

To my loving family 

 L. Antonio, Mireya, Marcel, Claudio, and little Nicolas Hans 



  

 
v

ACKNOWLEDGMENTS 

 

I would like to thank the Alfred P. Sloan Foundation and the National Action Council 

for Minorities in Engineering (NACME), Inc. for their financial support during my 

time at Cornell. 

 Thanks to Hod Lipson for serving as my advisor, for his guidance, his wisdom, 

and especially for his patience in helping me find a research topic that we could work 

on together. My thanks also go to Nicholas Calderone for being a member of my 

committee, for his invaluable input on social insects and his willingness to have long 

idea generating discussions about the research. A great deal of my gratitude is 

extended to the members of the Cornell Computational Synthesis Lab group, for their 

great input at our group meeting discussions, input for earlier drafts of this work, 

technical help at the lab and also for their friendship. 

 I must thank Marcia Sawyer, our graduate program coordinator and mom away 

from home, for having all the answers and solving any administrative problems with 

amazing speed and efficiency, giving me a sense of security throughout my time at 

Cornell that I am very grateful for.  

 Also thanks to all my friends here in Ithaca, particularly to the graduate 

students from the M&AE department and all the Puerto Rican graduate students I have 

met here at Cornell. Special thanks to Justin Atchison who’s help in the final stages of 

this thesis has proven invaluable to its completion. 

 And of course thanks go to my loving family for all their counsel and support, 

and for literally always being near, for some financial support, and for a lot of moral 

support. 

 



  

 
vi

TABLE OF CONTENTS 

 

1 Introduction          1 

1.1  New Representation        3 

1.2  Developmental Systems        4 

1.3  System-Environment Interaction       5 

1.4  Hypothesis         8 

1.5  Experimental Approach        8 

1.6  Structure of this Thesis        9 

 

2 Experiment and Physics      11 

2.1  Environment Groundwork     11 

2.2  Constrains and the Scenario     12 

2.3  Matter and Physics      14 

 

3 The Systems: Rules and Representation    16 

3.1  Agent and Rules       16 

3.2  Interpreting the Rules      17 

3.3  Fitness Function       20 

3.4  Two Test Types       21 

3.5  Interactive Dynamics Index     22 

 

4 Evolution        24 

4.1  Hill Climber Algorithms      24 

4.2  Evaluation Hierarchies      25 

4.3  Control and Experiment Systems     27 

4.4  Walkthrough of Fitness Evaluation    28 

 

5 Results        33 

5.1  Reactive vs. Interactive      33 

5.2  Generalist and Specialists     38 

5.3  Genotypes       42 

5.4  Phenotypes       47 

 

6 Different Scenarios       50 

6.1 The Circle Scenario       50 

6.2 The Valley Scenario      54  

6.3 The Vertical-Bar Scenario     58 

 

7 System Self-Repair       62  

7.1 Self-Repair        62 

 

 

 



  

 
vii

8 Conclusion        66 

8.1  Nature and Stigmergy      67 

8.2  Future Work       68 

 

Appendix         71 

 

References        78 



  

 
viii

LIST OF FIGURES 

 

1.0.1 Termite mounds of Amitermes Meridionalis       3 

1.3.1 Levels of  system-environment interaction       7 

 

2.1.1 Screenshot of environment       12 

2.3.1 Sunrays diagram        15 

 

3.2.1 Rule diagram         18 

3.2.2 Graphic example of action site selection     19 

3.5.1 Interactive Dynamics Index       23 

 

4.3.1 Fitness Evaluation for Agent in a Control Run: Reactive System  27 

4.3.2 Fitness Evaluation for Agent in a Experiment Run: Interactive System 28 

4.4.1 Arrows indicating the direction of the sunrays    29 

4.4.2 Genome of interactive system with fitness of 68.89    29 

4.4.3 Example of first test        30 

4.4.4 Example of second test       31 

4.4.5 Example of third test        32 

 

5.1.1 Hill Climber Runs with one rule      35 

5.1.2 Hill Climber Runs with two rules      36 

5.1.3 Breakdown of fitness values in evolved systems with one rule  37 

5.1.4 Breakdown of fitness values in evolved systems with two rules  38 

5.2.1 Generalists vs. Specialists for systems with one rule    39 

5.2.2 Generalists vs. Specialists for systems with two rules   41 

5.3.1 Evolved genomes of reactive systems with 1 rule    43 

5.3.2 Evolved genomes of interactive systems with 1 rule    44 

5.3.3 Evolved genomes of reactive systems with 2 rules    45 

5.3.4 Evolved genomes of interactive systems with 2 rules   46 

5.4.1 Evolved phenotypes of reactive systems with 1 rule    47 

5.4.2 Evolved phenotypes of interactive systems with 1 rule    48 

5.4.3 Evolved phenotypes of reactive systems with 2 rules   49 

5.4.4 Evolved phenotypes of interactive systems with 2 rules    49 

 

6.1.1 Starting condition for circle scenario      50 

6.1.2 Circle fitness results        51 

6.1.3 Circle final genomes        52 

6.1.4 Circle final Phenotypes       53 

6.2.1 Starting condition for valley scenario      54 

6.2.2 Valley fitness results        55 

6.2.3 Valley final genomes        56 

6.2.4 Valley final Phenotypes       57 

6.3.1 Starting condition for vertical-bar scenario     58 



  

 
ix

6.3.2 Vertical-bar fitness results       59 

6.3.3 Vertical-bar final genomes       60 

6.3.4 Vertical-bar final Phenotypes       61 

 

 

7.1.1 Self-Repair Test 1        63 

7.1.2 Self-Repair Test 2        64 

7.1.3 Self-Repair Test 3        65 



1 

CHAPTER 1 

 

INTRODUCTION 

 

 

 Termite mounds vary in size and shape according to the species of their 

builders, but their uniformity throughout a stable environment is striking. 

When, however, a species has a wide range over several different ecological 

zones then differences in mound architecture will be apparent when one zone 

is compared to another. (Harris, 35) 

 

In nature termites build their own housing without using either blueprints or a complex 

thought process, yet their nest’s structure shows great complexity, adaptability, and 

consistent functionality. 

 In engineering, designs are represented as blueprints which geometrically specify 

final structure. When such a structure is designed to perform a function, the complex 

design process takes into account expected environmental conditions and outputs a 

design that is optimized to work under these conditions. Once a design is final, 

structures built from a blueprint will only work optimally as long as its environment is 

the one for which it was designed, showing a performance drop as variation in the 

environmental conditions increases from the original design parameters. The blueprint 

approach to design requires considerable human effort and knowledge to produce a 

blueprint for a single design. Having structures that perform the same function under 

different environmental conditions would require an individual design for each 

environmental variation. Furthermore, a blueprint requires further effort independent 

of its conception to plan and execute its construction 
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 This comparison between the biological approach to form specification and the 

engineering approach makes apparent that a better understanding of how termites 

build such complex and adaptive structures should be pursued. 

 Termite nest building behavior is affected by the environment, termites adapt their 

building patterns to fit their desired function over different environments. Using 

simple rules one can consistently build structures which perform a desired function 

even under varying environmental conditions. Considering the complexity of a 

termite, having thousands of them work together in unison to build these relatively 

large structures with such uniformity in it functions is yet another amazing wonder 

brought to us by evolution. The nest is the result of the activity of such a large number 

of individuals that individual variation is cancelled and the nest stands as the 

expression of population behavior (Emerson). It is thought that the complexity of a 

termites nest lies with the rich interaction between nest-system and environment. 

 Nature uses DNA as representation, evolution as the designer, and development as 

the builder agent. Every organism in nature is a developmental system with different 

levels of system-environment interaction; however, most organisms display high 

levels of system-environment interaction within our standards. And its is not just 

organisms, a termite nest can also be seen as a system composed of raw materials and 

thousands of termites which act as one system that develops within an environment. 

Developmental systems, such as termite nests, hold the answer to robust design 

representation. Proof that developmental systems are a successful method of 

representation is quite abundant in nature, which begs the question: How can we, as 

engineers and scientist, exploit developmental systems to build structures with 

functions that we desire consistently over a wide range of environmental conditions. 
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Dennis Haugen, www.insectimages.org Barbara Strnadova, http://godofinsects.com 

Figure 1.0.1 Termite mounds of Amitermes Meridionalis (Australia), these slab 

shaped nests are always constructed oriented North-South in their length-wise 

direction. Left: View along North-South direction. Right: Picture taken along the 

East-West direction. 

 

1.1 Developmental Representation 

 

In order to tap into the potential benefits that developmental systems offer an alternate 

way of representing designs is needed. A good way to go is with Lindenmayer 

Systems, or L-Systems, which were originally created to explain the growth pattern of 

plants (Francu). L-Systems are a formal representation of rule-based developmental 

systems (Lindenmayer). In order to develop, these systems need to be in an 

environment on which their rules are executed. These rules or axioms prompt the 

development of the system by effecting the placing/removal of materials or agent 

movement depending on current conditions. With simple rules and agents acting on 

local interactions, complexity comes from the system-environment interaction 

(Nagpal, Kondacs, and Chang). If these rules are properly designed or evolved they 

result in a functional structure being constructed over a wide range of environmental 

conditions. Given the adaptive behavior of many organisms in nature it could be 
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possible that with a better understanding of rule based systems we could design very 

robust systems, or evolve them using evolutionary algorithms as was done for this 

thesis. Environmental conditions are already present in the real world at the sites 

where functional structures are needed. The structures can be represented within the 

rules of a developmental system which when activated in an environment build said 

desired structures. Of course, unlike blueprints, the desired structure has no specified 

shape, but does have a desired function that it will perform by adjusting its 

developmental path based on environmental conditions. Aside from having superior 

robustness, developmental systems also offer the added advantage of including 

information on how to build the structures, this eliminates the considerable planning 

effort required in order to realize structures specified by blueprint. A strong drive for 

researchers in developmental systems is the possibility of using these systems for 

automated assembly. 

 

1.2 Developmental Systems  

 

In biology, development is centered on construction and self-organization. It is the 

production of a complex form and from a single cell. Early on the process is driven by 

embryogenesis (Wolpert). Morphogenesis also plays a large role of development and 

is the study of change in form (Bard). Both in biology and in computer science this 

study often focuses on system-environment interaction during development and on 

degrees of embodiment through perturbatory channels (Kumar and Bentley). 

 Once an environment is selected a system must be devised and tailored to work in 

that environment (Prusinkiewicz and Lindenmayer). In order for a system to work in 

an environment it must be able to manipulate that environment in some way and in 

some cases sense feedback from the environment. Feedback from the environment can 
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be in the form of temperature, spatial surroundings, chemical gradients, 

electromagnetic fields, and in the case of computer systems any properties present in 

the environment can be made available to the system. 

 Although in most cases, as part of the simulation, virtual systems are given 

properties which correspond to real world physical properties and virtual sensors are 

often given similar capabilities to their real world counterparts (Bongard and Lipson; 

Hornby and Pollack 1041–1048). The experiments included in this work were done in 

virtual environments and with software driven systems. These systems have sensor 

channels and are able to manipulate the environment. Because a system is at its core a 

set of rules and an interpreting agent, it is with these two components that the systems’ 

behavior and environment interaction are manifested. A rule at its most fundamental 

level is simply a sensor state paired with an action and the agent is able to sense the 

environment for conditions specified by the rules and take the corresponding actions. 

 

1.3 System-Environment Interaction 

 

When talking about system-environment interaction one must be very keenly aware 

that there are varying degrees of system-environment interaction and what those 

different levels mean. 

 System-environment interaction is heavily studied even outside developmental 

systems. Environmental feedback and evolutionary algorithms can be combined to 

generate adaptive behavior in locomotive systems (Almássy and Vinkhuyzen 419-424; 

Bongard and Lipson 169- 176; Mahdavi and Bentley 248-255; Pfeifer and Iida 48–54; 

Quick et al.). Even though none of these works are about developmental systems they 

do support the use of evolutionary algorithms linked with environmental feedback. 
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However the following classification system was thought up concerning 

developmental systems only. 

The lowest level of system-environment interaction defined here is the explicit 

level in which the final shape is pre-specified as is the case with blueprints. No 

interaction occurs between the system and the environment that would alter the final 

result of the systems form. This level is not included among developmental systems 

because in a blueprint the system does not develop, it just gets built, independently of 

the environment. For a system, being situated in the environment by itself entails that 

the systems’ actions will affect the environment. 

 At the ballistic level the system develops without any kind of feedback from the 

environment and no knowledge of it, affecting the environment but not being affected 

by it. An example of this level of system-environment interaction would be a system 

operating with an open-loop controller that takes no input and does not make any 

adjustments to it behavior. As developmental systems they already offer advantages 

over conventional blueprints as a method of form specification (Rieffel and Pollack). 

 At a reactive level we have systems that have knowledge of their environment and 

use that information in their development using feedback during their development but 

not really affecting environment dynamics. An example of this level of interaction 

would be a closed-loop controller. Even though this controller uses feedback during 

operation it is mostly just aware of the direct effects of its own actions and is not 

aware of changes in environment dynamics and much less able to reach to them, such 

a case would occur when the system develops on a timescale that is much faster than 

the environment dynamics so the system is not aware of these dynamics, or in cases 

were the environment is not dynamic (Bentley and Clack 118-127; Eggenberger 205-

213; Hemberg and O'Reilly). At this level of system-environment interaction the 

system is already able to adjust its developmental path to suit different environments. 
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However during its developmental stage the system would not be able to exploit the 

dynamics of its own interaction with the environment. 

 At the interactive level a system uses dynamic environmental feedback it then 

becomes very highly situated in the environment. This system is then able to exploit 

the dynamics of system-environment interaction (Nagpal). During its developmental 

stage, like in all levels of system-environment interaction, the system perturbs the 

environment through its actions. Since at this level the system is highly situated the 

environmental dynamics can affect the behavior and development of the system. This 

mutual perturbation allows the agent to be aware of the effect that its own 

development has in the environment and therefore use environmental dynamics to its 

favor. In essence the system is using dynamic environmental feedback by constantly 

updating its knowledge of the environment and reevaluating its actions in each 

execution. The interactive level is only possible to achieve when the timescale of the 

environment dynamics is faster or comparable to the time scale of the system’s 

development. Systems with identical rules of behavior could potentially fall under the 

reactive or interactive levels of system-environment interaction based solely on a 

difference in timescales. 

 

 
Figure 1.3.1 Levels of System-Environment interaction showing perturbation as a 

straight arrow and feedback as green curved arrows. 

 

 



8 

 

 

1.4 Hypothesis 

 

The hypothesis of this thesis states that when developmental systems with an 

interactive level of system-environment interaction have the same performance as 

systems with a reactive level of system-environment interaction when compared for 

robustness as a method of representing structures. This robustness comes from being 

better able to adapt their building pattern for different environmental conditions such 

that their performance is averaged over multiple environmental tests. 

 The experiments in this thesis are evolutionary runs of interactive systems and 

reactive systems. In both cases the system are given the same task to fulfill and are 

tested under the same environmental conditions. 

 Another set of experiments was done to test the self-repair capabilities of the 

evolved systems. This set of results is discussed in chapter 7. 

 

1.5 Experimental Approach 

 

The concepts being explored in this work are relevant for any structure that needs to 

perform any function. However these are very broad concepts and the following 

clarification should be taken into consideration while reading the rest of this work. 

The uses of the words “structure” and “function” in the context of the experiments and 

discussions in this thesis will at times refer specifically to static structures whose 

function is to maintain a specific temperature. 

 The experiments included in this work where designed to find out if constructional 

processes that use dynamic environmental feedback are more robust than those that 
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use non-dynamic environmental feedback. Under the given level system this is a 

comparison of Reactive vs. Interactive systems. Previous work has been done 

comparing Ballistic vs. Reactive systems (Hornby 569-587) although this terminology 

was not used. These experiments are all evolutionary runs using a hill climber 

evolutionary algorithm. 

 Our results show that structures built using developmental systems can perform 

their intended functions over a range of environmental conditions. This is because a 

developmental system does not explicitly define the final structure, but through the 

execution of its rules using dynamic environmental feedback will adapt its building 

patterns so that the final structure will perform its functions. Therefore under different 

environmental conditions the final shape will vary so that the function does not.  

 In this thesis we set out to both point out the sometimes disregarded difference 

between interactive systems, which use dynamic two-way environmental feedback, 

versus reactive systems, which use one-way environmental feedback, and the 

advantages that interactive systems have over reactive systems. 

 

1.6 Structure of this Thesis 

 

This thesis is broken down into 8 chapters. These next three Chapters, following the 

introduction, explain the work that was done as well as the experimental procedure. 

They are broken down as follows: 

 

- Environment and Physics: Experimental setup concerning simulation and 

simulated physics dynamics 

- The Systems: Rules and Representation: Description of the reactive and 

interactive developmental systems conceived for this work. 
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- Evolution:  Hill climber used and the structure of a fitness evaluation. 

 

Chapter 5 goes over the main experimental results, which concerns the hypothesis of 

this thesis. Further results are presented in chapters 6 and 7. While the conclusion and 

some closing thoughts are within the final chapter of this thesis. 
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CHAPTER 2 

 

Environment and Physics 

 

When exploring subtle differences between levels of system-environment interaction it 

becomes critical to have well defined systems and environments. This chapter will 

describe the environment that was used in all the experiments discussed in this thesis 

along with an explanation of the systems that were tested, including how rules are 

represented and how the agent executes them. 

 A developmental system cannot materialize itself without an environment to 

embody it in much the same way as software cannot manifest itself without hardware 

to run it (Kumar and Bentley). A system can be defined as a set of rules without an 

environment, but an environment is required in order for these rules to develop. Just to 

make sense of what the rules mean there needs to be a medium in which these rules 

are designed to work in. Therefore it is logical to define the environment first because 

regardless of whether or not it was the chicken or the egg it is clear that the dirt, 

oxygen, and sun came before them all. In order to understand the system one must first 

understand the environment in which the system is to be situated. 

 

2.1  Environment Groundwork 

 

The environment in which our system will be situated in is a two-dimensional square 

grid composed of square cells. Each square cell has a floating-point temperature value. 

The temperature of a cell determines the color of that cell, going through the following 

color sequence, black-blue-cyan-yellow-red, starting at zero for black and one-

hundred degree units being red. Temperatures are allowed to go outside this range but 
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they are displayed as the color for the nearest defined value. Red for values above one-

hundred and black for values below zero. However temperatures stay within the range 

of zero to a hundred in most relevant cases, therefore the color gradient is kept 

constant to ease comparison between results. These are an arbitrary values being 

called temperature they do not correspond to any real-world units like degrees Celsius 

or Fahrenheit but, because is it being pictured and treated as temperature, they will be 

referred to as degrees or degree units.  

 

 
Figure 2.1.1 Screenshot of environment showing the initial conditions of matter 

that is referred to as the “hill” and one of the initials conditions for temperature. 

 

2.2 Constraints and the Scenario 

 

Cells have two possible matter states. The two matter states are solid cells and gas 

cells (or empty cells). The arrangement of cell states around the environment and their 

interaction with the physics determine the temperature distribution. The fitness of a 

system is calculated based on cell temperatures. 
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 These core components are used together to build a rough representation of the 

environment in which a termite would built its mound, as per the inspiration of this 

project. Our simplified version of this environment includes a static sun and ground 

with air above it. In this environment our system is able to change matter states in the 

cells in order to build a structure, dig a hole, or in some cases both. Due to the sunray-

matter interaction, these redistributions or matter caused by the system will in turn 

affect the temperature gradient throughout the environment. And in turn the 

temperature values among all the cells at the end of each test will determine the fitness 

value for that agent. 

 Our experimental area can be seen as a two-dimensional slice of a real world 

environment showing a side view of this environment. The bottom area on the 

environment grid is occupied by solid cells which represent the ground and have the 

shape of a rounded hill on its top boundary. Its sides and bottom boundaries are at the 

boundaries of our environment. The point being to picture that the ground would 

continue beyond these environment boundaries and we are just looking and a small 

piece of a larger world. 

  In the upper area of the grid above this “hill” there are gas cells or empty cells 

which represent air or the atmosphere. In keeping with the picture of this being a side 

view the sunrays always originate from the top of the environment sunrays always run 

parallel to each other but their overall angle is determined by a input value for that 

function. In order to avoid having the sunray code indefinitely raise the temperature of 

the whole environment two rows were made into “heat sinks”. The top row, which 

represents the sky, is reset to zero degree units after every execution of the sunray 

code. The bottom row is also reset but always at fifty degrees. Both the sunray code 

and the row temperature reset code are contained within the function that applies the 

constraints on the environment. 
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2.3 Matter and Physics 

 

The differences between the two possible matter states in cells drive the dynamics of 

the environment because the physics interactions totally depend on matter state. Solid 

cells stop sunrays and absorb heat from them while empty cells do not directly interact 

with sunrays and the heat transfer coefficient between cells depends on what the states 

of the cells are. 

 A physics time-step updates the temperature in each cell by applying a conduction 

equation with its four neighboring cells. Therefore, the temperature of each cell is 

updated using the difference in temperature with its neighboring cells and a 

conduction coefficient.  There are three possible conduction coefficients. One for each 

of the following cell boundary types: Solid-Solid, Gas-Gas, and Solid-Gas (same as 

Gas-Solid). These values are specified in a symmetric look-up symmetric matrix used 

by the conduction code [appendix B].  

 Sunrays in this environment behave in a simplified way from their real-life 

namesakes. They travel in a straight line and collide with solid objects. Upon any 

collision a sunray is fully absorbed and the cell which stopped it experiences a 

temperature increase whose value is a pre-specified constant for added simplicity. 
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Figure 2.3.1 Sunrays with slope of 1 descending on example arbitrary structure. 

Solid cells that stop rays are shown in red.  Small green squares at the top 

indicate the direction of sunrays. 
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CHAPTER 3 

 

The Systems: Rules and Representation 

 

Now that the environment has been defined, the system can also be described and 

understood. The word system, as it applies to this work, refers to an entity that 

develops by following a set of rules and has mechanism that applies those rules to the 

environment. Within an experiment the system would be the structure of solids blocks 

which develops following a set of rules. A particular instance of the system is called 

an individual. An individual is a specific rule set and can be evaluated to be assigned a 

fitness value. The rules are like the genotype of an individual and the resulting 

developing structure is the corresponding phenotype. 

 

3.1 Agent and Rules 

 

An agent is though of as being the executioner of rules. As a comparison to real life, 

the system could be a building that is constructed by a programmable robot, while an 

individual would the resulting building from a specific set of construction rules. Now 

if one would two models of this robotic system and given each its own set of rules 

then one would have two different genotypes, which when put to work could each be 

given it own fitness value. But if you were to program both robots identically then you 

would not build two individuals but two instances of the same individual, which then 

has only one fitness value. 

 During system development the agent works in steps or iterations. In each step the 

agent scans the whole  environment looking for allowed action sites. Action sites are 

cells in which rules can be evaluated an executed. Action sites cannot exist within 
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solid cells, only empty cells. However the agent can only evaluate the rules in those 

empty cells which are adjacent to solid cells, which would be the surface of the solid 

structure. This behavior was designed to mimic how termites would build their 

mounds by crawling around the surface and laying or removing material. Although in 

the experiments the agent can scan the entire surface and then decide to take one 

action at a time, always choosing based on the rules. 

 

3.2 Interpreting the Rules 

 

A rule is made up of five genes. The genes are numerical values that define the 

behavior of the interpreting agent and thus the behavior individual. They are referred 

to as genes because the rules are the genotypes of our individuals. Like their biological 

namesakes these genes contain the information that defines an individual’s 

development. 

  The first two genes are sensor genes and the last three genes specify an action [see 

figure 3.2.1]. As the agent scans the surface of the structure, evaluating each action 

site, it senses two parameters that it uses to decide in what cell it will execute an 

action. The first is the mean temperature of the eight cells that surround it. Next it 

senses the matter density of those same eight cells by taking the number of solid cells 

and dividing it by eight. This fraction is normalized to one-hundred, therefore having 

eight solid cells around it means a density of 100 and zero density would result if the 

agent where floating in mid-air, which never happens because sites in mid-air are not 

evaluated. The third value is a vector that points in the hottest direction of the local 

temperature gradient in the same eight cells. 
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Figure 3.2.1 Rules have mixed representation. The first two genes are floating 

point values between 0 and 100. Out of the other three genes one is binary, 

another one is floating point from 0 to 360, and the last gene is also binary but 

with the values negative one and one. 

 

 The following is a graphical description that’s equivalent to the method that the 

agent uses to select a cell as an action site. First the agent plots the two sensor genes of 

each rule in a two dimensional space, having one point per rule. Second, the agent 

takes the value of mean temperature and the value for matter density at each potential 

site and plots them, in turn, in the same two-dimensional space with the sensor gene 

points. As the agent checks allowable cells or action sites it ads the distances from the 

cell’s sensor point to all the rule points as a total distance. It then selects the cell 

whose mean temperature and matter density sensor data has the smallest total distance 

to the rules, because this is determined as the best match for the rule set.  
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Figure 3.2.2: Graphic example of action site selection for individual with four 

rules. Figure shows distance measures for two cells at different environment 

locations. The cell at coordinates (x1, y1) is a better match that the cell at 

coordinates (x2, y2) because its total distances to the rule points is shorter. 

 

 The action taken by an agent is determined by the last three genes in each of the 

rules. Once and action site is selected by the agent the action to be taken is determined 

by combining all the rules by a sum of weights. As seen in figure 3.2.1 the last three 

genes of a rule define the action to be take and how. The first action gene is a binary 

gene that can have a value of 0 and 1. If the value is 0 the rule favors the remove 

action. And if the value is 1 the rule favors the deposit action. The word favor is used 

because a rule never acts alone. This is because of the sum of weights method being 

used. When an action site is selected by agent using the distance method describe in 
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figure 3.2.2, the inverse of the distances to each rule are saved as normalized weights. 

Therefore, the rules whose points are the closest to the sensor data point will have 

more weight in the actual action taken. When deciding whether or not the action will 

be remove or deposit the agent round the weighted average such that if this value is 

above or equal to 0.5 the action taken is deposit (turns an empty cell into a solid cell) 

and for values below 0.5 the action taken is remove (turns an solid cell into a empty 

cell). 

 The last two genes determine how the action taken is performed. The angle gene 

indicates, as it name suggests, at which angle the action is to be taken. This angle 

determines which of the eight surrounding blocks is going to be tried first.  If the 

action taken is deposit and the block tried first is already solid then the agent tried the 

next block over in either the clockwise or counter-clockwise direction. This is 

determined by the last gene, called direction, which is also binary genes but with be 

values 1 and -1. For the angle genes the sum of weight adds up the vector from the 

rules. The vector for a rule is at the angle of that rule’s angle gene and the length is 

determined by the weight. For the direction genes the agent simply checks the sign of 

the weight average and uses that value. 

 

3.3 Fitness Function   

 

The fitness function used for this research checks the absolute temperature difference 

that each cell has with the given target temperature and then averages this value. 

Having this value be zero would be a perfect score with the fitness becoming worse as 

this average distance becomes larger. In order to have an ascending fitness function 

the average difference calculated is then multiplied by two, for no other reason than to 

increase resolution and scale fitness to one-hundred, and subtracted from one-hundred. 
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So a perfect fitness would be 100, meaning that all cells are at exactly the target 

temperature, and then is goes down from there. 

 

3.4 Two Test Types 

 

When dealing with a hypothesis that considers the effect of a particular difference 

between two systems one needs to test this using experimental data and one will 

certainly be required to conduct two types of experiments. One set is presented as the 

control data (reactive) and the other as the experimental data (interactive). Here 

follows the descriptions of these two kinds of experiments. 

 The control runs correspond to the system that uses feedback but does not affect 

the dynamics of the environment. For these experiments the environment is set at the 

initials conditions. And the system is run for a given number of steps WITHOUT 

running the physics after each step. This means that while the system develops there 

are no updates on the temperature values in the environment. Once the system is 

finished the physics are run until stability and the fitness of the structure is evaluated. 

 The experiment runs are the ones in which the system is using two-way feedback 

affecting the dynamics of the environment while the environment behaves like a 

separate system which is also reacting to feedback given by the systems actions. For 

these experiments the environment is set at the same initials conditions as for the 

control experiment. The system is run for the same given number of steps but now this 

is done while running the physics after each step. This means that while the system 

develops the physics are being update and the temperature values in the environment 

will change due to the changes being made by the system. Once these cycles are done 

the physics are already at stability and the fitness of the structure is evaluated. 
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 In both these test types the fitness will be solely based on the final structure. 

Although it is very import in both cases how the system arrives at the final structure, 

given the same final structure is reacted under the different tests, it will yield the same 

fitness. It is important to remember that the claim of the work does not ask whether 

one type of system can find a better path to a given goal, but whether one type of 

system can build better structures. 

 

3.5 Interactive Dynamics Index 

 

 Because the relation of timescales between the system and the environment is what 

determines whether a system is reactive or interactive a metric needs to be defined in 

order to categorize these systems. Indeed there is a continuous scale from a fully 

reactive system to a fully interactive system. 

 A fully reactive system (control systems in this work) is a system that develops in 

a relatively static environment, meaning that the system development is instantaneous 

and from the systems point of the system the environment IS static. On the opposite 

end of the spectrum are fully interactive systems (experimental systems in this work) a 

system that is constantly developing in an environment that is in steady-state, meaning 

system development is so slow that after each system step the environment reaches 

steady-state before the system takes the sensor input for the next step.  

 An interactive dynamics index (I.D.I.) is proposed that goes from zero to one. 

Fully reactive systems are considered completely non-interactive so they correspond 

to zero dynamic interactivity, while fully interactive systems would have an index 

value of one. In computer simulations it is possible to create and classify fully reactive 

and fully interactive systems. 
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 In practical real-world systems it would be impossible to devise a system with 

exactly zero or one dynamic interactivity due to the required speed of development, 

infinitely fast or infinitely slow. However, one must be able to determine if a given 

system is reactive or interactive. Where is the midpoint or system response time 

boundary where a system changes from being reactive to interactive? 

 By specifying an environment steady-state tolerance one is able to experimentally 

find a system response time where the system barely allows the environment to reach 

steady-state according to that tolerance, call this Tss. A system is then considered to be 

interactive if its response time is one-quarter or greater this value. If this value is 

called Tb and then a plot of -log
2
(1-t)*T

b
 is made, one will note that the system 

response time value of Tb on the y-axis will correspond to an I.D.I. value of 0.5 on the 

x-axis. This plot maps response times on the y-axis from zero to infinity to the 

Interactive Dynamic Index on the x-axis from 0 to 1, Figure 3.5.1. The previously 

found Tss value will also always to correspond to and index of 0.9375. 
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Figure 3.5.1 Interactive Dynamics Index example plot. 
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CHAPTER 4 

 

EVOLUTION 

 

The system optimization method used to test the developmental systems described in 

the previous chapter are Evolutionary algorithms (or EA’s). These algorithms use 

concepts from evolution like natural selection, genetic representation, mutation,  

fitness in order to find the best solution to a problem. 

 Evolutionary algorithms have been widely used in research and design due to their 

ability to find solutions to hard problems (Koza). For this work it is especially fitting 

to use EA’s as an experimental tool device since the developmental systems being 

used are nature inspired structure representations and an evolutionary algorithm is a 

nature inspired design method. 

 The evolutionary algorithm used in this thesis was a hill climber. A hill climber 

algorithm evolves a population by trying out random mutations and only keeping them 

if they are beneficial. 

 

4.1 Hill Climber Algorithms 

 

Hill climber evolutionary algorithms are classically used with a population of only one 

individual. The alternative of running a larger population is called the parallel hill 

climber and is equivalent as running several single populations runs since the 

individuals do not interact with each other. 

 The hill climber algorithm used here is of the single population variety. The initial 

individual was randomly generated. Random mutation was used to generate a new 

individual that was then evaluated and if this individual scored a higher fitness than its 
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single parent then it would replace the parent and the cycle would continue. This cycle 

would repeat itself for each fitness evaluation. 

 

4.2 Evaluation Hierarchies 

 

The following is a listing of the components of a fitness evaluation organized by 

hierarchy. Components of components are listed in parentheses next to the names. 

 

Fitness Evaluation (Tests) 

A fitness evaluation is composed of three different tests in which the variant is the 

angle of the incoming sunrays. Each test runs for a given number of simulation steps, 

at the end of which the fitness of that test is evaluated. The fitness assigned to the 

agent is the average fitness of the three test runs.  

 

Test (agent actions, environment updates): 

For each test, the environment is initialized with the same matter pattern every time 

and a given temperature distribution that corresponds to the steady-state conditions for 

each of the 3 possible sun angles. The number of simulation steps in a test determines 

how many agent actions a system is allowed before it is stopped and evaluated. 

Environment updates are also performed within a test but their use varies between the 

control runs and the experimental runs. 

 

Agent Action:  

An agent action or step consists of scanning all valid action sites. These actions sites 

are the cells where the agents can exist (empty cells with adjacent solid cells). In each 

of those evaluated cell the agent senses the average temperature and matter of the 
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eight cells that surround that cell and using this data and its rules the agent chooses the 

location where it will perform an action and execute the rules. 

 

Environment Update (conduction physics, apply constraints): 

And environment step updates the temperature values that change as a result of the 

agent’s actions. Each environment step is broken down into a conduction physics 

update and the enforcement of the constraints. 

 

Conduction Physics: 

A physics time-step updates temperature in each cell by applying the basic conduction 

equation with its four neighboring cells. The temperature of each cell is updated using 

the difference in temperature with its neighboring cells and a conduction coefficient. 

The conduction coefficient is dependent upon the matter state of the cell and its 

neighbors. These coefficients are stored in a symmetric two-by-two matrix. As 

mentioned before there are three heat transfer coefficients. One for each of the 

following cell boundary types: Solid-Solid, Gas-Gas, and Solid-Gas (same as Gas-

Solid). 

Apply Constraints: 

The  apply constraints function contains the sunray code which scans the environment 

area with rays that emerge from the top of the grid angled at a specified slope. Sunrays 

stop when they hit a solid cell and the temperature of the cells which stop sunrays is 

increased by a fixed amount in an approximation to how the sun would heat up terrain. 

This function also sets the temperature of the top row of cells to zero degree units and 

the bottom row to 50 degree units. These rows act as heatsinks to the sunrays. 
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4.3 Control and Experiment Systems 

There are two kinds of runs that where done with the hill climber algorithm, the 

control experiments with one-way feedback and the two-way feedback runs. The 

fitness evalution for each type of run has one of the following structures of several 

nested for-loops. 

 

Fitness Evaluation for Agent in a Control Run: Reactive System 

 

- Different Environmental Conditions (3 sun angles) 

{ 

- Test (128 cycles) 

{ 

 - Agent Action (1 Agent step per cycle) 

} 

- Environment Update (4096 steps or until stability) 

{ 

 - Conduction Physics 

 - Apply Constraints (Sunrays and boundary conditions) 

} 

- Evaluate Fitness 

} 

 

Figure 4.3.1 In control runs the agent would perform all its agent action steps 

without any environment updates. Following that, the environment update would 

run until stability followed by a call to the fitness evaluator. 
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Fitness Evaluation for Agent in a Experiment Run: Interactive System 

 

- Different Environmental Conditions (3 sun angles) 

{ 

 - Test (128 cycles) 

 { 

  - Agent Action (1 Agent step per cycle) 

  - Environment Update (64 steps or until stability) 

  { 

   - Conduction Physics 

   - Apply Constraints (Sunrays and boundary conditions) 

  } 

 } 

 - Evaluate Fitness 

} 

 

Figure 4.3.2  In experiment runs the only variation is that environment updates 

are run after each agent action step so the agent is aware of the effects of it 

actions and is able to use dynamic environmental feedback. 

 

4.4 Walkthrough of Fitness Evaluation 

 

As seen in section 4.3, a full fitness evaluation for both types of runs consists of 3 

tests, which in turn consist of 128 Agent Actions. The 3 tests are evaluated separately 

but the agent’s fitness is the average of the 3 tests. The difference between the two is 

when the environment updates occur. 

 The following is a walkthrough of one full fitness evaluation. There are three sets 

of animation frames corresponding to each of the three tests. The variable in the tests 

is only the angle of the sunrays and the same 3 angles or tests are done throughout all 

the experiments in this work and are the following. 
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Test 1 

 
Test 2 

 
Test 3 

Figure 4.4.1 Arrows indicating the direction of the sunrays in each on the three 

tests. The green squares overlaid on top of the arrows match the arrangements 

drawn at the top on the environment display during each test. 

 

 The genome of the individual whose development is shown in the following 

walkthrough is shown on Figure 4.4.2 

 

Mean Temp. Mean Density  Action Angle Direction 

12.7226 41.7744  1 187.653 -1 

Figure 4.4.2 Genome of Interactive System with Fitness of 68.8917, best 

performance found among Interactive systems with 1 rule in all 20 runs. 
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Figure 4.4.3 Example of 1
st
 test: Development of best system found in the 

interactive runs for one rule. This test has the sun shinning directly down. Note 

how the structure formed acts as a parasol creating shadow on the entire left 

side. This has a cooling effect that leaves most of the environment blue or cyan. 

Cyan represents the target temperature of 50 degree units. A key difference 

between this and the other two tests is that because the sun is shining straight 

down as soon as the structure climbs up it cools immediately. This happened 

because as the structure grows taller it is getting closer to the heat sink but not 

incurring any extra heat because no sunrays will hit the side of the tower. This 

effect makes the tower a purely cooling element making the cold seeking agent 

hang around the top without expanding to the side until it saturates the area. 
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Figure 4.4.4 Example of 2
nd

 test: Development of same system described for 

previous figure but for test condition number two in which the sunrays are 

angled at a slope of two. An interesting effect caused by the sun angle is that the 

growing structure catches more heat and initially heats up the left side of the 

environment. This shift in gradient seems to be the reason of why the agent 

moves across the top of the environment more quickly creating a longer roof 

which consequently is compensating for the angle of the sun.  
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0 Steps 

 
16 Steps 

 
32 Steps 

 
48 Steps 

 
64 Steps 

 
80 Steps 

 
96 Steps 

 
112 Steps 

 
128 Steps 

Figure 4.4.5 Example of 3
rd

 test: Development of same system as previous two 

figures but for test condition number three in which the sunrays are angled at a 

slope of one or 45 degrees. The same effect of heating the left-side is created by 

the sun but hotter. The agent takes the approach of going up the side and then 

across. In this case the agent does it much faster and covers the whole top with 

steps to spare. At this point the agent would have probably kept going to the right 

shadowing more area but it hit the edge of the environment. A good direction to 

go would have been down creating more shadow to cool of the really hot stop of 

the right side. However no agent was ever able to do this and it is probable that 

the representation was not rich enough to allow such behavior as it would mean 

to seek out the warm zone. A switch in strategy would need to be triggered and 

the agent cannot do this. 
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CHAPTER 5 

 

RESULTS 

 

The main experimental results of this thesis involve the comparison between systems 

with a reactive level of system-environment interaction and systems with an 

interactive level of system-environment interaction. Our hypothesis states that 

interactive systems and reactive systems are able to achieve the same level of 

robustness to environment variation. And the question stated by this hypothesis is 

whether or not the increased system-environment interaction really allows the design 

of systems with better performance and more robustness to environmental variables? 

 The results shown in this chapter include graphs of fitness for evolutionary runs, 

figures of evolved genotypes, and figure of evolved phenotypes. 

 

5.1 Reactive vs. Interactive 

 

The following figures directly address the hypothesis. They show a comparison 

between runs done with systems that were similar in every way except for having 

different levels of system-environment interaction. 

 The experimental data disproves the hypothesis. Systems using dynamic 

environmental feedback showed an increase in fitness performance and system 

robustness in building functional structures under different environmental conditions. 

As mentioned before, a full fitness evaluation in these experiments actually involves 

three calls of the fitness function because the systems are tested three times under 

different environments. Therefore the fitness given to an individual is really the 

average fitness of three tests, which rewards generalists over specialists. A break down 
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of the three fitness values was also plotted to see how these systems where performing 

in each test, see Figures 5.1.3 and 5.1.4. The term generalist is being used here for the 

systems that are evolved using the three different tests. This means that these systems 

have to optimize for three different conditions at the same time, compromising 

performance in each individual condition in order to achieve a higher global fitness. 

The breakdown plots show the fitness trends for each individual test over the course of 

evolution. The behavior of all the different kinds of test showed some consistent 

trends that raised more questions. 

 It is interesting to note that these figures, including those in section 5.2, where 

made and seen by the author in about the same other as they are presented here. 
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Figure 5.1.1 Averaged from 16 runs and including error bars. Systems with an 

Interactive Level of system-environment interaction are indeed able to achieve a 

higher fitness performance when comparing systems that use just one rule. T-test 

significance = 0.0269 

 



 

36 

0 500 1000 1500
54

56

58

60

62

64

66

68
Hill Climber Runs with 2 Rules

Evaluations

F
it
n
e
s
s

 

 

Reactive

Interactive

 
Figure 5.1.2 Averaged from 16 runs and including error bars. When comparing 

systems that use two rules, systems with an Interactive Level of system-

environment interaction also show an increase in fitness performance. T-test 

significance = 0.2352 

 

Once the breakdown of the fitness values was plotted it became apparent that the 

fitness in test one was being consistently sacrificed in other to increase the fitness in 

tests two and three. Such consistent behavior should have an explanation and a closer 

look needed to be taken. This prompted new experiments to be run. These new 

experiments are discussed in the next section. 
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Figure 5.1.3 Breakdown of fitness values in evolved systems with one rule. Note 

how results in test one were sacrificed in other to increase fitness in tests two and 

three. The main line is the average fitness of the three tests. 

 

It was strange to find out that in every case systems using one rule out performed 

systems using two or more rules. It was expected that more rules would allow better 

systems to evolve. It is possible that the case for this was the execution style chosen 

for multiple rules, explained in section 3.2. Even with more evaluations, the more 

rules a system was given, the lower it would top out in fitness. It is also possible that 

the environment was not complex enough to give an advantage to more complex 

systems. If this was the case then having more complexity would just create a 

disadvantage to the system as the evolutionary algorithm would have a harder time 

evolving the increased amount of parameters. 
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Figure 5.1.4 Breakdown of fitness values in evolved systems with two rules. Again 

fitness of test one is sacrificed in other to increase fitness in tests two and three. 

The main line is the average fitness of the three tests. 

 

5.2 Generalists and Specialists 

 

This new set of experiments evolved systems that will be referred to as the specialists. 

These systems were evolved using the same hill climber algorithm as the generalists, 

original runs. Definitions for these are as follows.  

 Generalists Systems are evolved to simultaneously optimize for three different 

environmental conditions. Specialists Systems are evolved only on one environmental 

condition. Consequently the specialists systems were independently run on the same 

three conditions as the generalist systems. The following plots again show the results 

seen in section 5.1 for the breakdown of fitness by test in the evolved systems but 
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sorted by test and not sorted by run. For Figures 5.2.1 and 5.2.2 the legend 

abbreviations mean the following: 

Re. Spec. – Reactive Specialists 

Int. Spec. – Interactive Specialists 

Re. Gen. – Reactive Generalists 

Int. Gen. – Interactive Generalists 
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Figure 5.2.1 each line represents data from 16 evolutions runs. The generalist 

data was all taken from the same 16 runs but the specialist data is from three 

different sets of 16 evolutionary runs. 

 

The new test data, specialists systems, is represented as the lighter graphs. Since these 

systems where evolved specifically for each test it could be assumed that they 

symbolize the top performance we could expect from the generalist system. In Figure 
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5.2.1, which is for systems using one rule and shows results for both Reactive and 

Interactive systems, we see this as mostly true. In only one case does the generalist 

system manage to reach the level of one of the specialists and that case was for the 

Interactive system in test number 2. However note the error bars on the Interactive 

Specialist runs for test number 2. These errors are quite wide suggesting that in many 

case the runs would reach a much higher fitness and in other cases get stuck at much 

lower fitness. 

 A very important observation from Figure 5.2.1 is that although the hypothesis is 

supported by previous data plots, the comparison of the performance in different tests 

side by side of the generalists interactive and generalist reactive systems shows 

furthermore that the interactive system are able to consistently create better structure 

in all three different environmental conditions. The hypothesis states that interactive 

systems can display more robustness and Figure 5.2.1 shows this quite clearly. 

Furthermore in the specialist cases, which do not account for any robustness, the 

difference in performance between interactive systems and reactive systems is much 

less noticeable and in fact favors the reactive systems in two out of three tests. 

 When the hypothesis was formulated it was thought that the interactive systems 

would always out perform reactive systems. But it seems that although interactive 

systems are indeed more adaptive and show more robust behavior. When it comes to 

specializing for a single environmental condition is it easier to evolve reactive systems 

than interactive ones. Even though reactive systems can win this battle it is by a small 

margin and not in every case. 

 In Figure 5.2.2 the same results are shown but for systems with two rules. These 

results are actually quite erratic and do not show many consistent trends. The most 

marked feature from these plots concerns the generalist data. This feature is the level 
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of smoothness compared with the one rule plots. This supports a previous thought that 

the two rule systems are less evolvable than the one rule systems. 

 This figure does show some very interesting oddities, such as the generalist system 

out performing the specialist in tests 2 and 3. How is this possible? Maybe the 

specialist systems found it too easy to get stuck at a local maximum when using 2 

rules. This maybe was not the case for the generalist system because they had more 

information to work with or to nudge them out of a local maximum. 
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Figure 5.2.2 each line represents data from 16 evolutions runs. The generalist 

data was all taken from the same 16 runs but the specialist data is from three 

different sets of 16 evolutionary runs. 
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5.3 Genotypes 

 

A look was taken at the genotypes in order to explore trends in the evolved rules. For 

the single rule genome plots each dot in the plot contains six types of data within it, 

the five genes plus the fitness for that genome. Table 5.3 contains a list of the 

information included in the genotype plots and how they are represented. 

 Trends show a definite link between the sensor genes and the fitness. All the high 

fitness agents are located at low temperature meaning the agent would be seeking out 

the cool. The density does not seem to be as strong a factor as temperature but the 

fitness still favors densities below 50, which indicates that the agent would not favor 

building in dense areas and would tend to favor branching out away from the solid 

mass. 

 The following list describes the elements represented in Figures 5.3.1 thru 5.3.4. 

These figures show the final genome from the four different runs. 

 

Mean Temperature - X-Axis 

Mean Density - Y-Axis 

Action - Cross = 1, Circle = 0 

Angle - Line that extends out from dot 

Direction - Notch at end of angle line 

Fitness - Red = High, Blue = Low 
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Figure 5.3.1 Evolved genomes of reactive Systems with 1 rule 

 

It is interesting to note that in both the reactive and interactive systems with one rule 

the evolution concentrated in the low temperature and medium to low areas of density, 

yet the interactive system achieved high fitness. I both cases all the high fitness 

individuals are “builders”, meaning that their action genes is one and all they can do is 

build solid blocks. The few runs that got stuck in lower fitness areas are all “diggers” 

at higher values of temperature and density. This means that they were probably stuck 

at some local peak that required several simultaneous mutations in the right direction 

in order to jump out of this “bad solution”. 
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Figure 5.3.2 Evolved genomes of interactive systems with 1 rule 
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Figure 5.3.3 Evolved genomes of reactive systems with 2 rules 

 

 

 In the case of reactive systems with 2 rules the evolutionary algorithm was not 

able to find the optimal solutions as consistently as with the one rule systems. It seems 

that within the representation the high fitness zone it still within the same zone as with 

the agent with one rules but in the genomes would be to have both rules be near the 

same zone and be both builders. Again the same conclusion regarding the 

representation used for systems with multiple rules can be stated. The representation 
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simply could not take advantage of the extra rules, and in fact having more rules just 

hurt the evolutionary process. 

 For the interactive systems that used two rules, there was a noticeable difference 

regarding the fitness in their results. Somehow the interactive systems were able to 

better seek out the favorable genomes, although they also managed to have worse 

fitness failures.  
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Figure 5.3.4 Evolved genomes of interactive System with 2 rules 
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In the two rules systems the reactive level was a lot more consistent at finding medium 

range fitness while the interactive system would have more runs end with good and 

bad fitness values while spending much less time at the middle. 

 

5.4 Phenotypes 

 

The Phenotypes in the systems used in these experiments are the resulting structures 

that emerge from their development, which is guided by their genotypes. From the 

genotype plots that were discussed in the previous section it is already know that the 

system that evolved a digging behavior scored lower fitness than the builders. In these 

figured the final state of all the runs of a type were averaged for each test. The darker 

areas represent the block which tended to be solid more often at the end of runs. 

 

  

   
Test 1 Test 2 Test 3 

Figure 5.4.1 Evolved phenotypes of reactive systems with 1 rule 
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Test 1 Test 2 Test 3 

Figure 5.4.2 Evolved phenotypes of interactive systems with 1 rule 

 

 

 

 The most notable feature in these figures is that most builder systems evolved into 

the canopy strategy. This strategy consists of building a relatively thin column in order 

to get to the top of the environment and then build sideways to create shade. This 

strategy has a cooling effect as the sun stopping cells are very close to the zero degree 

heat sink so they do not warm up. 

 It is quite probable that the problem present was too simple or the environment not 

rich enough for the different systems to evolve different strategies that where just as 

good. It seems that for the conditions presented and the rules used the canopy strategy 

was the overall winner no matter what system was evolving. In chapter 6 this issue is 

explored further and experiments are shown where the interactive and reactive system 

use completely different strategies yet achieve comparable fitness values. Also 

experiments are shown where there is virtually no difference between the interactive 

and reactive results. The variation in these experiments is only in the initial conditions 

presented to the individual. The physics remain the same. 
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Test 1 Test 2 Test 3 

Figure 5.4.3 Evolved phenotypes of reactive systems with 2 rules 

 

 

   
Test 1 Test 2 Test 3 

Figure 5.4.4 Evolved phenotypes of interactive systems with 2 rules 

 

 The systems run of all types that used digging agents do not seem to have any 

overall pattern, but diggers evolved within the same type of run do tend to have the 

same pattern. For example the interactive system with one rule only evolved diggers 

that would make holes at both sides of the hill. While the system with 2 rules would 

tend to just dig down in no particular way and then expand the hole sideways at the 

bottom, like a reverse canopy strategy. 
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CHAPTER 6 

 

DIFFERENT SCENARIOS 

 

This chapter showcases six further experiments done with three different initial 

conditions and for both reactive and interactive system. These experiment where done 

to find out whether or not our two systems would behave differently from each other 

under these new arbitrary initial conditions. This study was prompted from the 

phenotype results in our main set of experiments. 

 

6.1 The Circle Scenario 

 

The starting condition for this scenario was a circle of solid cells with radius of 8-cells 

just below the center of the environment surrounded by empty cells. 

 

 
Figure 6.1.1 Diagram showing the starting conditions for the circle scenario. 

Grey shows solid cells and white show empty cells. 
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Figure 6.1.2 Circle Fitness Results: Plots of the reactive and interactive run for 

the circle scenario. Results are almost identical between reactive and interactive. 

Yet both have overall high fitness values compared with every other scenario 

run. 

 

It seems that this scenario was able to evolve into much higher fitness values than all 

the other scenarios, including the main experiments. Looking at the results it is quite 

possible that the biggest factor in this was the empty space in the bottom of the 
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environment region. This area remained mostly undisturbed by the evolved 

phenotypes, see Figure 6.1.4, and its temperature was always very close to 50 degrees 

thanks to the bottom row always being at 50 degrees because of the constraints. 
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Figure 6.1.3 Circle Final Genomes: Plots showing the genome distribution for the 

circle scenario. Just as the fitness plots, both reactive and interactive runs show 

near identical outcomes. 
 

 

 These final genomes indicates that, for the circle scenario, the fitness landscape 

was comparatively more evolvable than all the other scenarios seeing as how all the 

runs ended in similar conditions with low temperature, low density, and all where 

builders(no diggers). Also all scored high fitness values (all dark red). This is a 

possibly smoother landscape with one dominant peak. 

 With regards to the phenotypes the most notable difference is that the interactive 

runs tend to have a noisier output with regards to final structures, probably due to the 

dynamic effects on the temperature gradients during development whereas the reactive 

individual dealt with smoother and static temperature gradients. 
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Test Reactive Interactive 

1 

 

 
 

 

 
 

2 

 

 
 

 

 
 

3 

 

 
 

 

 
 

Figure 6.1.4 Circle Phenotypes: Both reactive and interactive runs found the 

same basic solution of trying to create a partial roof structure on the upper left 

side of the environment.  
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6.2 The Valley Scenario 

 

The starting condition for this scenario was a large solid block covering the lower 60% 

of the environment area with a valley cut out of it at the center. 

 

 
Figure 6.2.1 Diagram showing the starting conditions for the valley scenario. 

Grey shows solid cells and white show empty cells. 

 

In the valley scenario the interactive system was able to evolve into overall better 

results, Figure 6.2.2, although these interactive runs tended to specialize for tests 

number 2 and 3, whereas the reactive runs where not able to evolve much at all, 

mostly settling after about 300 evaluations. Curiously enough the interactive runs 

sacrificed test number 1 so much that it underperformed the reactive runs for that test. 
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Figure 6.2.2 Valley Fitness Results: Plots of the reactive and interactive run for 

the valley scenario. 
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Figure 6.2.3 Valley Final Genomes: Plots showing the genome distribution for the 

valley scenario. 

 

 These genomes plots seem to indicate that the reactive system where able to 

evolve their best system only a couple of times while the other six runs where pretty 

much misses. The opposite was the case of the interactive runs, where the evolution 

got 6 hits and 2 misses. Meaning that most of the time it was able to evolve to its best 

individuals. 

 For the valley scenario the interactive system was better able to evolve good 

systems. 

 Phenotype wise the results are again similar in the sense that the reactive systems’ 

builders and diggers are similar to the interactive systems’ builders and diggers. The 

difference being that the interactive system evolved builders more often, which 

incidentally represent the “good” genomes for these runs. 
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Test Reactive Interactive 
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Figure 6.2.4 Valley Phenotypes 
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6.3 The Vertical-Bar Scenario 

 

The starting condition for this scenario was the same hill type scenario from the main 

experiments but with the addition of a high vertical-bar tower on the right side of the 

hill. 

 

 
Figure 6.3.1 Diagram showing the starting conditions for the valley scenario. 

Grey shows solid cells and white show empty cells. 

 

 This is the scenario that produced the most interesting results. Both types of runs, 

reactive and interactive achieved on average about the same overall fitness. The 

interesting part is that they used completely different strategies. The interactive 

systems evolved in perhaps the most consistent manner that has been shown in any of 

the runs presented here. In Figure 6.3.3 we see this as all of the genomes evolved form 

a small cluster around a mean density of 20 and a mean temperature of 60. Also these 

are all diggers and well it seems that, as always, no preference regarding angles or 

direction (4
th

 and 5
th

 genes in a rule) can be observed. 
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Figure 6.3.2 Vertical-Bar Fitness Results: Plots of the reactive and interactive run 

for the vertical bar scenario. 

 

 

The fitness result for both cases was very close with no significant distinction between 

the “main” fitness plots. Which is curious as the individual test result seem to have no 

relation in their patterns. It is very rare that we had runs where the test favoring 

patterns were different. It seems that the case is that the favored test depends mostly 
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on the scenario used. But these results show that it is also heavily affected by the 

strategies used. This is a significant result because it breaks a previous pattern that 

could not be conclusively explained. 
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Figure 6.3.3 Vertical-Bar Final Genomes: Plots showing the genome distribution 

for the vertical bar scenario.  
 

 

The reactive run seemed to have various local peaks that it settled on, which is quite 

the opposite from the interactive runs which have one dominant narrow peak. The 

reactive peaks vary between diggers and builders but in the reactive runs there is one 

dominant peak only that corresponds to diggers. 

 In the interactive runs it is noticeable how the digging function shifts its focus with 

the angle of the sun almost forming a wide hole along the direction of the sun starting 

from just below the tip of the vertical-bar tower.  

 The reactive systems however resorted most successfully to the canopy approach 

but extending from the tower and not the up the left side as with the original 

experiments shown in the previous chapter. 
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Test Reactive Interactive 
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Figure 6.3.4 Vertical-Bar Phenotypes: Note this is the only scenario were the 

reactive and interactive systems consistently pursued different strategies. 
 

It is not clear why this scenario was the only one to produce such results the feature 

that makes this scenario stand out the most among all the other is that this is the only 

left-right asymmetrical scenario. 
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CHAPTER 7 

 

SYSTEM SELF-REPAIR 

 

Perhaps one of the biggest advantages of using Interactive Systems as representation 

of structural design is that they do not need to stop working, which can lead to 

different outcomes. One outcome could be an ever growing structure, a design fit for 

types of structures which need to meet ever growing demands or structures that need 

to achieve partial functionality before they are finished. This could be the case when 

trying to establish a functional remote facility that will receive its crew in growing 

stages. This is not exclusive for remote facilities, but the specific advantages offered 

make it more attractive in such cases when compared to conventional blueprint 

methods. Also the word “remote” is being use loosely here and as it can be applied to 

any case where there is considerable operations establishing cost. Another outcome, 

which was further explored, is the possibility of a self-repairing system. 

 

7.1 Self-Repair 

 

 Consider a rule-based design evolved such that once the desired function is 

achieved the agents or robots that built the structure could continue in a roaming 

mode, simply because the feedback from the structure or environment is not 

prompting build rules, while no spots that trigger build rules are found. In such a case 

the agent would roam indefinitely, until its power source ran out or a low-power 

trigger would signal a return to a charging station and then resume roaming as if the 

construction was not finished because it has no finish trigger. Power source issues 

aside, the robot-agents rules could be such that they roam indefinitely and, during the 
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roaming stage, if the agent were to run into an area of the structure that was damaged 

it could perceive this as simply unfinished and then would go forth and fix the damage 

before continuing its roaming. 

 Such automated repair is simply just part of the representation and execution of 

interactive system design. Of course an designer would probably be tempted to include 

some sort of extreme damage trigger and sequence that could be included among the 

rules of the systems to better allow them to promptly fix the damage, even going as far 

as requesting help and having a clean-up stage before repair damage. 

 Of course with a better understanding of system-environment interaction we might 

end up realizing that it is not necessary to explicitly implement hard triggers and 

sequenced protocols, as these aspects of behavior will be implicitly evolvable. The 

following plots show the self-repair capabilities of the genome shown in Figure 4.4.2. 

 

 

 
0 Steps 

 
192 Steps 

 
192 Steps (Damage Applied) 

 
384 Steps (another 192 Steps) 

Figure 7.1.1 Self-Repair in Test 1: Agent rebuilds the part of the structure 

damage at step 192. It is not a exact rebuild but the principle is retained. 
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 In Figure 7.1.1, it can be seen how the agent rebuilds the column and part of the 

canopy. It does not rebuild exactly the same thing but it still has the same idea. This is 

reminiscent of regeneration which is a property that some biological developmental 

systems have where a fully developed organism can replace lost parts (Wolpert et al. 

236, 447-448). 

 

 

 

 
0 Steps 

 
192 Steps 

 
192 Steps (Damage Applied) 

 
384 Steps (another 192 Steps) 

Figure 7.1.2 Self-Repair in Test 2: Agent is not able to completely repair the 

previous structure but it does repair the canopy and recovers the temperature 

profile (reduce loss of heat to sky using the canopy). 

 

 In Figure 7.1.2, the fact that the agent does not recover the vertical column that 

connects the canopy to the ground but it does recover the functionality by sort of 

building down in that direction and even partially rebuilding the canopy seems to 
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slightly undermine the need for a vertical column, yet it is still rebuilt eventually after 

working down from the canopy. 

 

 

 

 
0 Steps 

 
192 Steps 

 
192 Steps (Damage Applied) 

 
384 Steps (another 192 Steps) 

Figure 7.1.3 Self-Repair in Test 3: Canopy is worked down to the remains of the 

column. 

 

 This case seems to fall in between the first two where, as in the first test, the 

canopy is reconnected to the column and the canopy was worked down from the left-

side down to the column, as in the second test. The first test was the only one where 

the vertical column was immediately worked up towards the canopy. And in tests 2 

and 3 the canopy was built downwards from the left until at some point the vertical 

column shoot up to meet it. Although in the second test the column did not have 

enough time to connect. 
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CHAPTER 8 

 

CONCLUSION 

 

In this thesis it has been shown by experimental work that systems evolved using and 

interactive level of system-environment interaction where able to build more 

functional structures over different environmental conditions, showing a more robust 

behavior.  Increased adaptability is very important when designing systems that will 

need to build structure in unforeseen environments or if one knows that the system is 

going need to perform it duties over a wide range of environmental conditions. 

 When working with developmental systems it is important to pay attention to the 

level of system-environment interaction present, especially to identify the role that the 

environment plays in the development of the system. In biology the important role of 

the environment in the development of an organism is yet to become widely 

recognized. 

 

 One of the most important issues in pre-modern biology was the struggle 

between the preformationist and epigenetic theories of development. The 

preformationist view was that the adult organism was contained in the sperm 

and that development was the growth and solidification of this miniature 

being. The theory of epigenesis was that the organism was not yet formed in 

the fertilized egg, but that it arose as a consequence of profound changes in 

shape and form during the course of embryogenesis. It is usually said that the 

epigenetic view decisively defeated preformationism. Yet it really 

preformationism that has triumphed, for there is no essential difference 

between the view that the organism is already formed in the fertilized egg and 
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the view that the complete blueprint of the organism and all information 

necessary to specific it is contained there, a view that dominates modern 

studies of development. (Lewontin, 5-6) 

 

 The importance of looking closely at the system-environment interaction in system 

that we work with goes beyond just achieving better performance and adaptability, it 

is also about having a better understanding of the behavior of our experimental system 

and seeing the importance of the role that the environment plays in system 

development. 

 

8.1 Nature and Stigmergy 

 

This thesis work was introduced by talking about the role of nature in it inspiration. 

However the work itself is about developmental theory and the terms systems, 

environment, and development take on a more abstract shape as references to nature 

and termites quickly become sparse. The discussion was kept away from termites and 

nature to avoid confusion about its claims being made in relation to termites or social 

insects. This is due to the focus of the work being more on engineering and computer 

science related. However, it must be clear that the author always kept the concept of 

termites close at hand in his mind when designing the experiments and writing the 

programming code. The agents where referred to as termites and the structures were 

referred to as mounds. The concept of stigmergy, a notion introduced to describe the 

cooperative behavior in termites. Is very key to this work and describes and interactive 

level of system-environment interaction among termites. The relation lies in that 

stigmergy is defined as: 
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The indirect communication taking place among individual termites through 

dynamically evolving features of a structure. (Bonabeau et al. 188-193) 

 

The very notion of stigmergy is about cooperation between systems, a method of 

cooperation only possible at an interactive level system of system-environment 

interaction. This is because interactive systems are able to exploit changes in the 

dynamics of the environment; this ability in termites is what drives their stigmergic 

behavior and the inspiration for this work. 

 

8.2 Future Work 

 

The systems used in this work were designed as experiments to test a hypothesis. The 

high amount of simplification done on our test systems left us without any basis to 

make claims about the systems on which they where originally based on. 

 Seeing as how this thesis works on concepts taken from biology but applies them 

to engineering, it is logical to picture two direction in which this work could branch 

out. Biologically focused work stemming from this thesis may involve creating more 

complicated simulations to explore an learn more about termite behavior building 

mound in three-dimensions and embedding more physical properties into the 

environment such as basic fluid dynamics (Stam), mechanical properties to the 

materials, and pheromones for the surface. Adding pheromones to otherwise random 

simulations of ant movement has been shown to produce foraging patterns like those 

of several species of ants in Deneubourg’s work. Perhaps giving the system more 

complicated goals besides temperature, such as relative humidity or making more 

complicated agents that behave differently as a factor of lighting, age/time, or 

hunger/power. Such factors can greatly contribute to the nest’s overall structure as is 
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the case in Florida harvester ants (Tschinkel). A motivation to adding more realism to 

the models is to evolve simulated systems that we could ultimately port to real systems 

and use to build real-world structures. Using continuous systems in the simulation 

would be part of that step toward a physical realization of our evolved systems. 

 Further work expanding the quantitative metric presented as the Interactive 

Dynamics Index to include and classify all the different levels of system environment 

interaction mentioned in section 1.3 under one all-inclusive scale. 

 If even the simple setup used for these experiments is able to show self-repair and 

even when it wasn’t even evolved for it, then more work exploring the self-repair 

capabilities of an interactive system must be explored. The ability to self-repair can be 

integrated in a fitness function and some tweak could be made in the environment to 

make self-repair especially worth while. 

 There is also potential in combining these self-repair capabilities with 3D 

printing technologies. Work is already being done in printing functional components 

with solid freeform fabrication using computer 3D models as blueprints (Malone). 

Such 3D-printers fitted with sensors and rules instead of conventional blueprints could 

be the first to build real-life structures using functional blueprints. With added 

mobility this technology could eventually become the platform for the robots 

described in the self-repair scenario given in section 7.1. Already real-life reactive 

developmental systems have been built (Werfel et al.) so interactive systems is the 

next logical step. 

 From an engineering point of view it would be of interest to design interactive 

developmental systems tasked with solving real-world engineering problems starting 

in areas where evolutionary algorithms are being used for design already.  

 There is great potential in the current work being done involving real-world 

systems designed for various tasks (Lipson and Pollack 974-978). In some cases the 
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systems are designed using evolutionary algorithms (Hornby and Pollack 223-246) 

and in other cases their behavior is (Lipson et al. 11-18). 

These concepts are potentially very useful for applications such as cooperation in 

multiple-robot systems tasked with building adaptive structures in orbit, on other 

planets, or even the orbits of other planets. 
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APPENDIX 
 

//Main Code for single evaluation of reactive system 
 

 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

 

for (double m = 0; m <= 1; m += 0.5) 

{ 

 model.Initialize(m); 

 for (int i=0; i<lsim; i++) 

 { 

  model.ExecuteAgent(&individualgenome, agentsize); 

  //model.Run(runsteps, m); 

 } 

 model.Run(runsteps0, m); 

 RedrawViewsNow(); 

 model.AgentFitness(targettemp); 

} 

 

 

Walkthrough: 

 

(line 1) Variable m used as input to indicate which test is being done. The ‘for-

loop’ run three times for m equal  0, 0.5, and 1, which are actually the 

inverse values of the slope that the sunrays angles are going to be. 

 

(line 3) model.Initialize(…) – Initializes the model and uses m as 

input in order to set a specific temperature distribution. 

 

(line 4) lsim indicates length of simulation how many agents step are done. 

For every experiment discussed this was 128. 

 

(line 6) model.ExecuteAgent(…) – Executes rules of specified 

individual. Input are the genome with the rules and a varible that 

specifies number of rules. 

 

(line 7) Line used only for interactive system runs. 

 

(line 9) Line used only for reactive system runs. Executes environment update, 

agent never sees this. Only done for fitness evaluation. 

 

(line 11) model.AgentFitness(…) – Call to fitness function. Input is 

target temperature. 
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//Main Code for single evaluation of interactive system 
 

 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

 

for (double m = 0; m <= 1; m += 0.5) 

{ 

 model.Initialize(m); 

 for (int i=0; i<lsim; i++) 

 { 

  model.ExecuteAgent(&individualgenome, agentsize); 

  model.Run(runsteps, m); 

 } 

 //model.Run(runsteps0, m); 

 RedrawViewsNow(); 

 model.AgentFitness(targettemp); 

} 

 

 

 

Walkthrough: 

 

(line 1) Variable m used as input to indicate which test is being done. The ‘for-

loop’ run three times for m equal  0, 0.5, and 1, which are actually the 

inverse values of the slope that the sunrays angles are going to be. 

 

(line 3) model.Initialize(…) – Initializes the model and uses m as 

input in order to set a specific temperature distribution. 

 

(line 4) lsim indicates length of simulation how many agents step are done. 

For every experiment discussed this was 128. 

 

(line 6) model.ExecuteAgent(…) – Executes rules of specified 

individual. Input are the genome with the rules and a varible that 

specifies number of rules. 

 

(line 7) Line used only for interactive system runs. Executes environment 

update and is call after every rule execution. This allows the agent to 

use dynamic environmental feedback. 

 

(line 9) Line used only for reactive system runs. 

 

(line 11) model.AgentFitness(…) – Call to fitness function. Input is 

target temperature. 
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//Code for ExecuteAgent(…) Part 1: Finding Action Site 
 

for (int ix = 2; ix<nx-2; ix++) 

{ 

 for (int iy = 2; iy<ny-2; iy++) //nested for-loops scan 

environment 

 { 

  ax=ix; ay=iy; 

  if (cell is empty) 

  { 

   if (cell has solid neighbors) 

   { 

 

//Collect sensor data 

    double temp_avg = average temperature of 8 cells; 

    double matt_avg = average density of 8 cells; 

       

    double matt_gx=0; 

    double matt_gy=0; 

    double matt_angle; 

    for (int i=-1; i<2; i++) { 

     for  (int j=-1; j<2; j++) { 

      matt_gx += i*c(ax+i,ay+j).v; 

      matt_gy += j*c(ax+i,ay+j).v; 

     } 

    } 

    matt_angle = atan2(matt_gy, matt_gx) * 180 / pi; 

//gradient 

 

//check sensor data distance to rules 

    double dist=0; 

    for (int i=0; i<agentsize; i++)  

    {   

     dist += sqrt(  

     pow((pAgent->rule[i].temp_mean   - temp_avg),2) +  

     pow((pAgent->rule[i].matter_mean - matt_avg),2) ); 

    } 

    if ( dist < min_dist ) //save current data 

    { 

     min_dist = dist; 

     rx=ax; 

     ry=ay; 

     tangle = matt_angle; 

     for (int i=0; i<agentsize; i++) 

     { 

      pAgent->rule[i].weight = 1/sqrt(  

       pow((pAgent->rule[i].temp_mean   -temp_avg),2)+  

       pow((pAgent->rule[i].matter_mean -matt_avg),2)); 

     } 

    } 

   } 

  } 

 } 

} 

ax=rx; ay=ry; // coordinates for the action site saved 
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//Code for ExecuteAgent(…) Part 2: Combining Rules 
 

//Once action site is selected the rules are combined 

double rule_action = 0; 

double rule_angle = 0; 

double rule_angle_cos = 0; 

double rule_angle_sin = 0; 

double rule_dir = 0; 

rn=0; 

 

for (int i=0; i<agentsize; i++) 

{ 

 rn += rule[i].weight; //rn = total weights of rules 

} 

for (int i=0; i<agentsize; i++) 

{ 

 rule[i].weight /= rn; //using rn weight are normalized 

//using weight all rules are added together 

 rule[i].usecount += rule[i].weight; 

 rule_action += rule[i].weight*rule[i].action; 

//angles combined as vector components 

 rule_angle_cos+= rule[i].weight*cos( rule[i].angle); 

 rule_angle_sin+= rule[i].weight*sin( rule[i].angle); 

 rule_dir    += rule[i].weight*rule[i].dir; 

} 

//vectors components then are turn into angle for new rule 

rule_angle = atan2(rule_angle_sin, rule_angle_cos);  

 

//once a rule has been formed from the other it is executed 

if (rule_action >= 0.5) 

{ 

 Deposit(rule_angle + tangle, signval(rule_dir)); 

} 

else if (rule_action < 0.5) 

{ 

 Remove (rule_angle + tangle, signval(rule_dir)); 

} 
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//Code for Deposit(…); 

 
int n = 0; 

for (int i=0; i<8; i++) //repeats 8 times going through all neighbors 

{ 

 double angle = angle_in +(45*i*dir); //offset and rotation 

 if (cell chosen is empty) 

 { 

  make cell solid; 

  n = 1; 

  break; 

 } 

} 

//if all cell surrouding home are solid then no action has been taken 

at this point, so then home cell is turned solid 

if (n == 0) 

{ 

 make home cell solid; 

} 

 

//Code for Remove(…); 
 

for (int i=0; i<8; i++) //repeats 8 times going through all neighbors 

{ 

 double angle = angle_in +(45*i*dir); //offset and rotation 

 if (cell chosen is solid) 

 { 

  make cell empty; 

  n = 1; 

  break; 

 } 

} 

//action will always been taken because a home cell always has at 

least one solid cell neighbor 
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//Code for Run(…)  Part 1: Sunrays 

 
double increment = 0.75; //sun heat intensity 

double lres=0.25; //resolution of sunrays (only used when m is not 0) 

 

if(m==0) 

{ 

 for (int i=nx-1; i>=0; i--) {   //sideway scan 

  for (int j=ny-1; j>=0; j--) {  //top to bottom scan 

   if (top to bottom scan hits a solid cell) { 

    cell_temp += increment; 

    break; 

   } 

  } 

 } 

} 

 

else if(m>0){ 

 m = 1/m; 

 for(double b = -ny/m; b<nx; b+=lres){ //sideway scan 

  for(int y=ny-1; y>0; y--){  //top to bottom scan 

   int x = int (y/m + b);  //x = ray location 

   if( x hits a solid cell){ 

    cell_temp += increment*lres; 

    break; 

   } 

  } 

 } 

} 

 

else if(m<0){ 

 m = 1/m; 

 for(double b = 0; b<(nx-ny/m); b+=lres){ //sideway scan 

  for(int y=ny; y>0; y--){  //top to bottom scan 

   int x = int (y/m + b);  //x = ray location 

   if(x hits a solid cell) { 

    cell_temp += increment*lres; 

    break; 

   } 

  } 

 } 

} 
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//Code for Run(…) Part 2: conduction physics update 

 
 

double coeffs [2][2]; 

 coeffs[solid][solid]=0.025; 

 coeffs[solid][empty]=0.05; 

 coeffs[empty][solid]=0.05; 

 coeffs[empty][empty]=0.25; 

 

for (int i=0; i<nx; i++) {   // Temperature diffusion 

 for (int j=0;j<ny; j++) { 

  new_temp = old_temp +  

  coeffs[home][neighbor1]*( neighbor1_Temp – home_Temp) + 

  coeffs[home][neighbor2]*( neighbor2_Temp – home_Temp) + 

  coeffs[home][neighbor3]*( neighbor3_Temp – home_Temp) + 

  coeffs[home][neighbor4]*( neighbor4_Temp – home_Temp); 

 } 

} 

//updates temperature by adding temperature differences scaled by 

conduction coefficients which depends on both home and neighbors 

matter states 

 

 

 

//Code for AgentFitness(…) 

 
int counter = 0; 

double temp = 0; 

//for-loops scan whole environment 

for (int i=int(0.0*nx); i<int(1.0*nx); i++) { 

 for (int j=int(0.0*ny);j<int(1.0*ny); j++) { 

   counter++; 

   //temp will be total temperature difference 

   temp += fabs(targett – cell_temp); 

  } 

 } 

} 

 

fitness += 2*(50 - temp/gas);//3; 

 } 
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