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Advances in hardware have enabled many long-running applications to execute entirely

in main memory. With the emergence of cloud computing, thousands of machines could

be made available to deploy such applications with lowered operational and mainte-

nance costs. While achieving substantially better performance, these applications have

encountered new challenges in achieving fault tolerance; i.e., to ensure durability in

the event of a crash. In addition, many of these applications, such as massively mul-

tiplayer online games, main-memory OLTP systems, main-memory search engine and

deterministic transaction processing systems, must sustain extremely high update rates

– often hundreds of thousands of updates per second. They also demand extremely high

throughput (e.g. scientific simulation) or low latency (e.g. massively multiplayer online

games). To support these demanding requirements, these applications have increasingly

turned to database techniques. In this dissertation, we propose an approach to provide

fault tolerance for main-memory applications without introducing excessive overhead

or latency spikes.

First, we evaluate the applicability of existing checkpoint recovery techniques devel-

oped for main-memory DBMS. We use massively multiplayer online games (MMOs) as

our motivating example. In particular, we show how to adapt consistent checkpointing

techniques developed for main-memory databases to MMOs. Furthermore, we provide

a thorough simulation model and evaluation of six recovery strategies. Based on our

results, we argue that not all state-of-the-art checkpoint recovery techniques are equally

suited for low-latency and high-throughput applications such as MMOs. These algo-



rithms either use locks or large synchronous copy operations, which hurt throughput

and latency, respectively.

Next, we take advantage of frequent points of consistency in many of these appli-

cations to develop novel checkpoint recovery algorithms that trade additional space

in main memory for significantly lower overhead and latency. Compared to previous

work, our new algorithms do not require any locking or bulk copies of the application

state. Our experimental evaluation shows that one of our new algorithms attains nearly

constant latency and reduces overhead by more than an order of magnitude for low to

medium update rates. Additionally, in a heavily loaded main-memory transaction pro-

cessing system, it still reduces overhead by more than a factor of two.

Finally, we present BRRL, a library for making distributed main-memory appli-

cations fault tolerant. BRRL is optimized for cloud applications with frequent points

of consistency that use data-parallelism to avoid complex concurrency control mecha-

nisms. BRRL differs from existing recovery libraries by providing a simple table ab-

straction and using schema information to optimize checkpointing.
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CHAPTER 1

INTRODUCTION

Every cloud has its silver lining but it is sometimes a little difficult to get it to the

mint. – D. Marquis

Data-driven applications such as OLTP and data warehousing systems, data mining

algorithms, search engines, computer games, and large-scale simulations, have tradi-

tionally required disks to hold their data. But increasingly, due to the low-cost avail-

ability of terabytes of main memory within a cluster and the resulting improvements

in speed, these data-driven applications are moving towards completely main-memory

based implementations.

Systems with huge main memories were once available exclusively to entities with

huge financial resources. But low-cost cloud infrastructure has become a great equal-

izer: At current prices, the rental cost of a cluster of 600 machines with over 1 TB of

aggregate main memory is less than $55 per hour in the cloud [6]. This means that sci-

entists can now afford to run data-driven applications for their terabyte-sized datasets at

unprecedented speeds in-memory.

Main memory data-driven computing in the cloud brings new challenges. One of the

greatest of these is fault tolerance. If an application resides only in main memory, we

need to apply some methodology to persist its state in case of crashes or failures. Most

cloud computing services are built from commodity hardware, which is not especially

reliable. As the number of nodes in a computation grows, so does the chance of failure;

for many data-intensive scientific applications the mean time to interrupt (MTTI) is

considerably less than the application running time [23]. This situation is predicted to

grow exponentially worse as cluster sizes increase [102]. Naively scaling an application
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to 100 nodes in the cloud causes about a 30-fold reduction in its mean time to interrupt.

Estimates based on recent cluster growth rates predict that the utilization of a large

parallel application relying on conventional checkpoint recovery techniques will fall to

zero by 2013 – the application will spend all its time writing checkpoints or recovering.

As a result, there is a dire need in developing efficient checkpoint-recovery techniques

that scientists can easily use to make their data-driven applications fault-tolerant.

In this dissertation, we present three projects. The first project examines the applica-

bility and challenges of using checkpoint-recovery techniques to provide fault tolerance.

The second project presents a new class of novel checkpoint-recovery algorithms that

trade additional space in main memory for significantly lower overhead and latency. In

particular, we leverage three copies of the application state to achieve almost an order

of magnitude lower overhead and nearly constant latency. Nevertheless, for applications

with large state size, we also present memory-optimized checkpoint-recovery algorithms

which only use two copies of the application state. The third project demonstrates the

practicality of these algorithms with BRRL, a library for making distributed main mem-

ory applications fault tolerant. In the remaining of this chapter, we introduce these

projects in more detail.

1.1 An Evaluation Of Existing Checkpoint-Recovery Techniques

We use massively multiplayer online games (MMOs) as a running example throughout

this evaluation. MMOs are persistent virtual worlds that allow tens of thousands of

users to interact in fictional settings [46, 95]. Users typically select a virtual avatar

and collaborate with other users to solve puzzles or complete quests. These games are

extremely popular, and successful MMOs, such as World of Warcraft, have millions of

subscribers and have generated billions of dollars in revenue [20]. Unlike single player
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computer games, MMOs must persist across user sessions. Players can leave the game

at any time, and they expect their achievements to be reflected in the world when they

rejoin. Similarly, it is unacceptable for the game to lose player data in the event of a

crash. These demands make it essential for MMOs to ensure that their state is durable.

In order to provide durability, MMO developers have turned to database technology.

While specific MMO architectures differ significantly, many have adopted a three-tiered

architecture to build their virtual worlds. Clients communicate with game servers to up-

date the state of the world, and these servers use a standard DBMS back-end to provide

transactional guarantees. This architecture is appropriate for state updates that require

full ACID guarantees. For example, many MMOs allow players to trade or sell in-game

items, sometimes for real money [114].

In many MMOs, a much larger class of updates does not require transactional guar-

antees. For example, character movement is handled within the event simulation, and

conflicts are resolved using game specific logic such as collision detection. Though

these updates do not require transactional guarantees, they occur at a very high rate. For

instance, characters move at close to graphics frame rate, and this can lead to hundreds

of thousands or millions of updates per second. Since most state-of-the-art DBMS use

ARIES-style recovery algorithms [77], their update rate is limited by the logging band-

width, and they are unable to support the extremely high rate of game updates.

To provide some degree of durability, developers typically resort to ad-hoc solutions

that rely on expensive specialized hardware, or partitioning schemes that limit the num-

ber of characters that can interact at once [28, 46, 90]. For instance, developers often

create shards, which are disjoint instances of the same game. Though these solutions

allow games to scale, they limit the user experience by preventing large numbers of

players from interacting.
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In this dissertation, we experimentally evaluate a number of traditional main-

memory checkpoint recovery strategies for use with MMOs [70, 98, 123]. These strate-

gies advocate using logical logging to reduce disk activity and periodically creating

consistent checkpoints of the main-memory state. These techniques are particularly at-

tractive for MMOs, where a single logical action (e.g., a user command) may generate

many physical updates. In the event of a crash, the game state can be reconstructed by

reading the most recent checkpoint and replaying the logical log.

The real-time nature of MMOs introduces some unique considerations when choos-

ing a checkpointing algorithm. First of all, latency becomes a critical measure. Whereas

most traditional recovery work has emphasized throughput, MMOs must execute at

frame rate so that users have the experience of a fluid and immersive game. Thus the en-

tire checkpointing process must fit into the game simulation without causing any visible

“hiccups” in the game. To achieve this, we can exploit the fact that game updates are

applied in a simulation loop. To ensure that all clients see a consistent world, there can

be no outstanding updates at the end of an iteration of the simulation loop. This allows

us to avoid many of the traditional strategies for aborting ongoing transactions.

1.2 Fast Checkpoint-Recovery Algorithms For Frequently Consis-

tent Applications

A frequently consistent (FC) application is a distributed application in which the state of

each node frequently reaches a point of consistency. A point of consistency is simply a

time at which the state of the node is valid according to the semantics of the application.

The definition of frequently depends on the application, but we expect it to be less than a

second. For example, MMO servers execute approximately 10 ticks/sec, while modern
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OLTP systems may be able to execute a small transaction in tens of microseconds [109,

59].

There is a wide range of FC applications. For example, certain classes of main-

memory OLTP systems also have frequent points of consistency. Traditional OLTP

systems are heavily multi-threaded to mask the huge differences between access times

to main memory and disk, but the tradeoffs change when all data is stored in memory.

New OLTP systems like H-Store [109] (and its commercial version VoltDB [119]) se-

rialize all transactions so that each machine can execute them using a single thread in

order to avoid the overhead of concurrency control and increase throughput. In these

applications, the end of each transaction marks a point of consistency [118]. Other ex-

amples of FC applications include new data-parallel systems to program the cloud, such

as BOOM [5], deterministic transaction processing systems [115, 123], and in-memory

search engines [111].

Many FC applications must handle very high update rates, which can complicate re-

covery. For example, popular MMO servers may have to process hundreds of thousands

of updates per second, including behaviors such as character movement. Traditional

database recovery techniques, such as fuzzy checkpointing and ARIES-style recovery,

that rely on physical logging, simply cannot sustain this update rate. Since physical

logging records physical addresses and values of updated objects, the number of physi-

cal log records is proportional to the number of updates. As a result, applications with

high update rates quickly saturate the I/O bandwidth while trying to make these phys-

ical log records durable. Therefore, logical logging, which logs high level operations,

is the method of choice in designing checkpoint-recovery algorithms for applications

with high update rates. Depending on logging granularity, a logical log record could

correspond to tens or hundreds of physical log records.
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We leverage frequent points of consistency in FC applications to take periodic check-

points of the entire application state and use logical logging to provide durability be-

tween checkpoints. At any time, the combination of a checkpoint plus the logical log

from the time the checkpoint is taken contains a complete copy of the application state;

the application state can simply be constructed by reapplying the logical log to the

checkpoint. Since we have frequent points of consistency, there is no need to quiesce

the system in order to take a checkpoint, and we benefit from not having to maintain

a costly physical log. Furthermore, we can avoid the primary disadvantage of logical

logging, namely the cost of replaying the log during recovery. Since there are many

points of consistency, we can take checkpoints very frequently (every few seconds), so

the log can be replayed very fast.

Of course, taking very frequent checkpoints can increase the overhead associated

with providing durability. To make this feasible, we need high performance check-

pointing algorithms. In particular, we have identified several important requirements.

First, the algorithm should have low overhead during normal operation. Ideally, taking

a checkpoint should have very little impact on the throughput of the system. Second,

the algorithm should distribute its overhead uniformly and not introduce performance

spikes or highly variable response times. This is particularly important in applications

such as MMOs where high latency may create “hiccups” in the immersive virtual ex-

perience. Finally, it should be possible to take checkpoints very frequently so that the

logical log can be replayed quickly in the event of a failure. Our experimental study

has evaluated existing main-memory checkpointing algorithms for use in MMOs [99],

however these algorithms either use locks or large synchronous copy operations, which

hurt throughput and latency, respectively.

In this dissertation, we propose and evaluate two new checkpointing algorithms,
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called Wait-Free Zigzag and Wait-Free Ping-Pong, which avoid the use of locks and are

designed to distribute overhead smoothly. Wait-Free Ping-Pong also makes use of ad-

ditional main memory to further reduce overhead. We evaluate these algorithms using

a high-performance implementation of TPC-C running in the cloud as well a synthetic

workload with a wide variety of update rates. Our experiments show that both algo-

rithms are successful in greatly reducing the latency spikes associated with checkpoint-

ing and that Wait-Free Ping-Pong also has considerably lower overhead: up to an order

of magnitude less for low to medium update rates and more than a factor of two in our

TPC-C experiments.

1.3 Memory Optimized Checkpoint-Recovery Algorithms

Our approach is inspired by the extensive work in checkpoint-recovery algorithms for

main-memory DBMS [33, 72, 92, 97, 98, 101, 123]. In addition, we draw from early

work in operating systems, such as the Recovery Box [9]. Surprisingly, little of that

work takes advantage of natural points of consistency, even though they are increasingly

common in data-driven applications. We observed the overhead of these algorithms to

be directly correlated with update rates. For low to moderate update rates, a copy-on-

write technique performed best; for high update rates, the best technique focused on

eagerly making entire main-memory copies of the game state. Our study demonstrated

that previous methods can be adapted to take advantage of natural points of consistency

in data-driven applications. In particular, our Wait-Free algorithms achieve significantly

better latency and lower overhead. However, they incur a substantial memory overhead

cost; for example, the Wait-Free Ping-Pong algorithm uses three copies of the applica-

tion state.
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In this dissertation, we present a series of optimization techniques which we can ap-

ply to the existing checkpoint-recovery algorithms to lower their memory usage. In ad-

dition, some of these optimization techniques also exploit modern hardware architecture

to reduce the number of cache misses as well as to build low-overhead synchronization

between the Mutator and the Asynchronous Writer. Our experiments show that these

optimization techniques achieve a comparable performance with the existing Wait-Free

algorithms while utilize only two copies of the application state.

1.4 BRRL(Big-Red Recovery Library): A Recovery Library For

Main-Memory Applications In The Cloud

We have integrated all our techniques in to the Big Red Recovery Library (BRRL), a re-

covery library for frequently consistent applications in the cloud. Unlike existing check-

pointing libraries such as Libckpt [87] and PORCH [93], which are designed solely for

single-node applications, BRRL is primarily intended for distributed applications de-

ployed on the cloud or other large shared-nothing clusters. Many of these applications

have embraced data-parallelism in order to scale to a very large number of nodes and

are frequently designed with limited or periodic synchronization in place of traditional

lock-based concurrency control. BRRL takes advantage of these points of consistency to

take efficient checkpoints without interfering with application throughput or introducing

excessive latency. Additionally, BRRL includes an efficient and low-latency implemen-

tation of logical logging to ensure that checkpointed applications can recover to the point

of failure.

Another key way in which BRRL differs from previous work is that it uses schema

information to select the best checkpointing algorithms for mutable and immutable state.
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Developers implement their state using a BRRL provided table abstraction, and they an-

notate the schema with access pattern details to guide BRRL’s optimization decisions.

For instance, updates to append-only tables can be logged without the need for addi-

tional checkpoints. BRRL uses the high-performance Wait-Free Ping-Pong checkpoint-

ing algorithm, and it reorganizes the physical storage of tables so that access to check-

pointing data is cache optimized. Unlike BRRL, most existing approaches provide a

generic memory abstraction and use compiler support to add appropriate checkpointing

logic [15, 16]. While these approaches require very little information from the devel-

oper, their generality may lead them to choose sub-optimal checkpointing algorithms.

1.5 Contributions of this dissertation

This section summarizes the contributions of each project presented in this dissertation.

1. To the best of our knowledge, we provide the first benchmarking to evaluate the

applicability of existing checkpoint recovery techniques for main-memory DBMS

to MMO workloads. We make two primary contributions.

(a) First, we show how to adapt consistent checkpointing techniques developed

for main-memory databases to MMOs. In particular, we discuss the interplay

of these techniques with the stringent latency requirements of MMOs.

(b) Second, we provide a thorough simulation model and evaluation of six re-

covery strategies. We characterize their performance in terms of latency,

checkpoint time, and recovery time. In addition to synthetic data, we test

our techniques on a prototype MMO that simulates medieval combat of the

type found in many popular games. We also validate the results produced by

our simulation model against a real implementation of a relevant subset of
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the recovery strategies. The Java source code for our simulation is available

for download [38].

2. We formally define a prevailing class of main-memory applications, namely fre-

quently consistent applications. We take advantage of frequent points of consis-

tency in many of these applications to develop novel checkpoint-recovery tech-

niques. The work makes the following contributions.

(a) We analyze the performance bottlenecks in prior work, and propose two new

algorithms to address them; Wait-Free Zigzag and Wait-Free Ping-Pong are

designed to perform well over a wide range of update rates.

(b) We explore the impact of data layout in main memory on cache performance

and do a careful cache-aware implementation of all of our algorithms, as

well as the best previous algorithms [99]. We find that our algorithms are

particularly amenable to these low level optimizations.

(c) We perform a thorough evaluation of our new algorithms and compare them

to existing methods. We find that Wait-Free Ping-Pong exhibits lower over-

head than all other algorithms by up to an order of magnitude over a wide

range of update rates. It also completely eliminates the latency spikes that

plagued previous consistent checkpointing algorithms.

(d) We design and implement a series of optimization techniques which exploit

modern computer architectures to design low-overhead operations. When

apply these techniques to the existing checkpoint-recovery algorithms, we

achieve comparable performance with lower memory usage.

3. We have developed BRRL, a library for making distributed main-memory appli-

cations fault tolerant. We make the following contributions.
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(a) BRRL provides a simple table-oriented API that makes it easy for developers

to make their applications fault tolerant in the cloud.

(b) We present a concrete implementation of a durable main-memory transac-

tion processing system using BRRL. Our experiments show that this system

achieves good performance at low cost.

1.6 Dissertation Outline

Chapter 2 presents our experimental evaluation of checkpoint recovery for massively

multiplayer online games (MMOs). Chapter 3 describes the design and implementa-

tion of our fast checkpoint-recovery algorithms for frequently consistent applications.

Chapter 4 presents a series of optimization techniques to enhance existing algorithms.

Chapter 5 demonstrates BRRL, a recovery library for main-memory cloud computing

applications. Chapter 6 concludes.

11



CHAPTER 2

AN EVALUATION OF CHECKPOINT-RECOVERY FOR MASSIVELY

MULTIPLAYER ONLINE GAMES

Get your facts first, and then you can distort them as much as you please.

– Mark Twain

Massively multiplayer online games (MMOs) have emerged as an exciting new class

of applications for database technology. MMOs simulate long-lived, interactive virtual

worlds, which proceed by applying updates in frames or ticks, typically at 30 or 60 Hz.

In order to sustain the resulting high update rates of such games, game state is kept en-

tirely in main memory by the game servers. Nevertheless, durability in MMOs is usually

achieved by a standard DBMS implementing ARIES-style recovery. This architecture

limits scalability, forcing MMO developers to either invest in high-end hardware or to

over-partition their virtual worlds.

In this chapter, we evaluate the applicability of existing checkpoint recovery tech-

niques developed for main-memory DBMS to MMO workloads.

2.1 Architecture of an MMO

In this section, we describe the architecture of an MMO [46, 95, 116, 121]. Most MMOs

use a client-server architecture, as shown in Figure 2.1. Clients join the virtual world

through a connection server that connects them to a single shard. Shards are inde-

pendent versions of the virtual world aimed at improving scalability. Shards are not

synchronized, and players on one shard cannot interact with players on another. More

recent MMOs such as Eve Online [46] and Taikodom [47] are pioneering shardless
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Figure 2.1: Architecture of a typical MMO.

architectures in which all players interact in the same virtual world.

In this dissertation, we focus on recovery for a single shard, though our techniques

could be extended to shardless architectures. We also make the simplifying assumption

that a shard consists of a single logical machine. This machine is the game server in

Figure 2.1. This may be a large mainframe as used in Taikodom [47] or a cluster with

tightly synchronized clocks. This work is a first step towards a more general solution

for sophisticated network topologies.

2.1.1 The Game Logic

The core of an MMO is a discrete-event simulation loop that executes at close to the

graphics frame rate, typically 30 or 60 Hz. This provides the illusion of an interactive

and continuously evolving virtual world. Conceptually, the state of the MMO is a table

containing game objects, including characters and the items they interact with. In order

to meet the stringent real-time demands placed on the game, the active state of the game

is typically kept in the main memory of the game server. Disks are used only to provide

persistence or to store information about inactive (e.g., logged off) characters.

During each iteration or tick of the simulation loop, portions of the state are up-
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dated according to game-specific logic. These updates may be triggered by user actions,

elapsed time, or some other event. Note that a single user action may cause several phys-

ical updates to the state. For instance, a user-level movement command may translate

into a number of smaller movement updates that occur over several ticks.

We make no assumptions about the structure of updates during a tick. Developers

may use multithreading to process updates in parallel or leverage a special purpose lan-

guage like SGL to convert the computation into a relational query plan [122]. The only

assumption is that all updates finish by the end of the tick. The state must be consistent

at the end of every tick, and any actions that last longer than a tick must be represented

in the persistent state.

2.1.2 Transactions and Durability in MMOs

Current MMOs focus on providing transactional guarantees for a small subset of up-

dates that need to be globally consistent across servers or communicate with external

services. For example, EVE Online processes nine million item insertions per day that

require transactional behavior [46]. Other MMOs may include financial transactions

that require ACID properties. These transactions frequently involve user interaction or

communication with an external system, and thus the update rate is fairly low. Recovery

can therefore be handled by a standard DBMS with an ARIES-style recovery manager.

This system is the persistence server in Figure 2.1.

In addition to proper transactions, however, MMOs also include a large number

of local updates that change the game state but do not require complete transactional

behavior. For instance, character movement is the single largest source of updates in

most MMOs [29, 95], but game-specific logic ensures that these updates never conflict.
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Nevertheless, we would like to ensure that local updates are durable so that players do

not lose their progress in the game in the event of a server failure.

A modern MMO may see hundreds of thousands of local updates per tick, and pro-

cessing these efficiently is a major challenge [112]. Traditional DBMS cannot sustain

this update rate, and existing MMOs have either created ad-hoc checkpointing strate-

gies or resorted to costly special purpose hardware [91]. For instance, EVE Online

uses RAM-based SSD drives for their database servers to handle logging and transac-

tion processing [46].1 While well established MMOs are able to afford such hardware

investments, these investments are usually delayed until the MMO builds up a substan-

tial user base. In addition, the cost of any specialized hardware must be multiplied by

the number of game server shards. Some MMOs have several hundred shards and this

increases their hardware costs accordingly.

2.1.3 Recovery Requirements for MMOs

We consider a principled approach to durability using a checkpoint recovery approach

first proposed for main-memory databases [70, 123, 98] and scientific simulations [101].

The applicability of these approaches to MMOs has never been fully explored, and our

investigation focuses on the unique workload requirements found in online games.

For example, since MMOs are interactive, it is important for simulation ticks to oc-

cur at a uniform rate: an inconsistent tick rate can distort time in the virtual world, and

be frustrating to players [26]. In a choice between uniformity and performance, online

game designers typically chose uniformity, especially if performance can be masked by

client-side interpolation (e.g. the client interpolates finer-grained values from coarse

1These drives, which start at $90,000, have a sustained random I/O rate of up to 3GB/s [94, 75]
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server states to produce smoother animation). Scientific simulations, on the other hand,

tend to be non-interactive [96]. For these applications, individual tick time is unimpor-

tant, and total running time is the most important performance measurement. Hence, a

high-throughput recovery algorithm designed for scientific simulations may not be ideal

for MMOs if it suffers from occasional bouts of poor latency.

Another interesting feature of MMOs is that players are often willing to accept

longer recovery times so long as their progress in the game is not lost. These games

are designed so that the players can easily take breaks and leave the game without it af-

fecting the experience significantly. The primary problem with server downtime is that

it dictates when the player must take a break; as such, it can be an annoyance, but it is

accepted as long as it does not occur too frequently and does not last more than several

minutes. On the other hand, losing game state is particularly undesirable; if a player has

spent a lot of effort trying to beat a difficult challenge, then she might quit in frustration

if a server crash forces her to repeat the challenge again. If the challenge is well-defined,

like killing a powerful monster, then the player’s progress can be preserved by ARIES-

style recovery algorithms. However, this can only encompass those challenges that the

game designer was able to identify ahead of time. Some challenges, such as jumping

up onto a specific hard-to-reach platform, may be overlooked in the original design, and

thus do not have transactional guarantees.

Our investigation considers these requirements in analyzing checkpointing algo-

rithms for MMOs, enabling us to better understand the engineering trade-offs involved

in implementing recovery algorithms for online games.
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2.2 Main-Memory DBMS Recovery

In this section, we review the existing main-memory checkpoint-recovery techniques.

Objects Eager Copy Copy on Update

Copied Double Log Double LogBackup Backup
All

Naive Snapshot Dribble and Copy on UpdateObjects
Dirty

Atomic Copy Partial Redo Copy on Update Copy on UpdateObjects
Dirty Objects Partial Redo

Table 2.1: Algorithms For Checkpointing Game State

2.2.1 Checkpointing for MMOs

Before enumerating the algorithms we evaluate, we consider the implications of the

architecture described in Section 2.1 on the design of a recovery solution for MMOs.

First, MMOs are amenable to disk-based recovery solutions. Though high-availability

techniques that rely on hot standbys may provide faster recovery times, they require

hardware over-provisioning and thus are expensive [101]. Furthermore, MMOs can

tolerate some downtime. Developers argue that 99.99% uptime is sufficient for their

systems, equivalent to about one hour of unplanned downtime per year [116]. At the

failure rates observed for current server hardware, there is more than adequate room for

a checkpoint recovery solution to deal with fail-stop failures [101].

A checkpoint recovery solution for MMOs must resort to logical logging in order

to record state updates. As discussed previously, the rate of local updates may be ex-

tremely large, and physically logging this stream could easily exhaust the available disk

bandwidth. Instead, we log all user actions at each tick and replay the ticks to recover.
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This allows us to recover to the precise tick at which a failure occurred. Though logical

logging considerably reduces the number of updates written to disk, it adds the overhead

of replaying the simulation to the recovery time. To minimize this cost and fully utilize

the disk bandwidth, we would like to take checkpoints as frequently as possible.

In order to use logical logging, we must restrict our attention to consistent check-

pointing techniques. As it turns out, the structure of the discrete-event simulation loop

provides a natural point to do checkpointing. Since all updates complete before the end

of the tick, we do not have to worry about aborting ongoing updates if we take check-

points at tick boundaries.

2.2.2 Consistent Checkpointing Techniques

We consider several consistent checkpointing algorithms that have been developed in

the context of main-memory DBMS. All of these strategies write to stable storage asyn-

chronously, but their memory behavior may be characterized along three dimensions:

In-memory copy timing: some algorithms perform an eager copy of the state to

be checkpointed in main memory, while others perform copy on update. Algorithms

that perform eager copies are conceptually simpler, but they introduce pauses in the

discrete-event simulation loop of the game.

Objects copied: some algorithms copy only dirty objects, while others copy all ob-

jects in the game state. The amount of state included in a copy will affect the checkpoint

time, and as a consequence, the time required to replay the ticks during recovery.

Data organization on disk: some algorithms use a simple log file, while others use a

double-backup organization as proposed by Salem and Garcia-Molina [98]. Depending
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on the disk organization, we may be able to capitalize on sequential I/O when flushing

the checkpoint to disk.

Table 2.1 shows how existing algorithms fit into this design space. We describe the

algorithms in detail below.

Naive-Snapshot. This is the simplest consistent checkpointing technique, which qui-

esces the system at the end of a tick and eagerly creates a consistent copy of the state

in main memory. Naive-Snapshot then writes the state to stable storage asynchronously.

Naive-Snapshot can use either a double backup or log-based disk structure. We use the

former in our experiments. This strategy is very simple, and a number of real systems

have used it [14, 72, 101, 123]. Other than ease of implementation, one advantage of

this technique is that it can be implemented at the system level without knowledge of the

specific application. On the other hand, copying the full state may introduce significant

pauses in the game. As games are extremely sensitive to latency [26], such long pauses

may make this algorithm inapplicable.

Dribble-and-Copy-on-Update. This algorithm takes a checkpoint of the full game state

without quiescing the system for an eager copy [97]. Each game object has an associated

bit that indicates whether it has been flushed to the checkpoint or not. An asynchronous

process iterates (or “dribbles”) through each object in the game and flushes the object

to the checkpoint if its bit is not set. The process sets the bit of any object it flushes.

Additionally, when an object whose bit is not set is updated, the object is copied and its

bit is set. If an object’s bit is already set, it is not copied again until the next checkpoint.

This method produces a checkpoint that is consistent as of the time the copy was started.

Note that it is not necessary to reset all of the bits before starting the next checkpoint.

Instead, we can simply invert the interpretation of the bit attached to each object [92]. In

this strategy each object is copied exactly once per checkpoint, regardless of how many
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times it is updated. This is a critical property for handling the update-heavy workloads

of MMOs. Another advantage of this technique is that there is no need to quiesce the

system for an eager copy. A disadvantage of this technique is that the decision to include

the entire game state in every checkpoint may lead to high main-memory copy overhead

and long checkpoint times.

Atomic-Copy-Dirty-Objects. This algorithm refines Naive-Snapshot by copying only

the “dirty” state that has changed since the last checkpoint. State that was not modified

can be recovered from the previous checkpoints. Though previous work has proposed

methods to copy this state without quiescence, they rely on aborting transactions that

read inconsistent state [92, 98]. To avoid this overhead, we perform our copies eagerly

during the natural period of quiescence at the end of each tick. We follow Salem and

Garcia-Molina and organize our checkpoints in a double-backup structure on disk [98].

In this technique, two copies of the state are kept on disk and objects in main memory

have two bits associated with them, one for each backup. Each bit indicates whether the

associated object has already been sent to the corresponding backup on disk. Check-

points alternate between the two backups to ensure that at all times there is at least one

consistent image on the disk. Each object has a well-defined location in the disk-resident

checkpoint, allowing us to update objects in it directly. As one optimization to avoid ar-

bitrary random writes, we write the dirty objects to the double backup in order of their

offsets on disk. Note that even if an in-memory sort operation is performed for that

purpose, it can be done asynchronously and its time is negligible compared to the time

spent writing the objects to disk. This sorted I/O optimization is crucial for algorithms

that use a double-backup organization, but not necessary for log-based algorithms. The

latter methods already write to disk sequentially, and thus as fast as possible. This al-

gorithm will be an improvement over Naive-Snapshot if the dirty object set is generally
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much smaller than the entire game state.

Partial-Redo. As in Atomic-Copy-Dirty-Objects, Partial-Redo performs an eager copy

in main memory of the objects dirtied since the last checkpoint. As a consequence, it

also has latency as a potential disadvantage. On the other hand, Partial-Redo attempts

to improve the writing of checkpoints with respect to Atomic-Copy-Dirty-Objects. One

disadvantage of the double-backup organization is that it may not write dirty objects

contiguously on disk. To address this problem, Partial-Redo writes dirty objects to a

simple log [42]. Note that while the log organization allows us to use a sequential write

pattern, we may have to read more of the log in order to find all objects necessary to

reconstruct a full consistent checkpoint. In order to avoid this overhead, we periodically

create a full checkpoint of the state using Dribble-and-Copy-on-Update.

Copy-on-Update. This algorithm refines Dribble-and-Copy-on-Update to copy only

dirty objects [33, 98]. In this algorithm the in-memory copies are performed on update,

and an object is copied only when it is first updated. We use a double-backup structure

on disk as in Atomic-Copy-Dirty-Objects. A similar method was used in SIREN, where

the authors found that it may be beneficial to copy at the tuple level rather than the page

level [70]. In our experiments, all copies are performed at the level of atomic objects

whose size may be configured (Section 5.2). An advantage of this algorithm is that it has

a smaller effect on latency since it does not perform an eager copy. In addition, it may

have smaller memory requirements because additional main memory is allocated only

when an update touches an object that is being flushed to the checkpoint. A potential

disadvantage is that the double-backup organization does not allow fully sequential I/O.

Copy-on-Update-Partial-Redo. This algorithm is similar to Copy-on-Update, but uses

a log-based disk organization to transform sorted writes into sequential writes. As with

Partial-Redo, we periodically run Dribble-and-Copy-on-Update to limit the portion of
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the log that we must access during recovery. Combining copy on update with logging,

we aim to obtain the advantages of both Copy-on-Update and Partial-Redo.

Algorithm Subroutine
Copy-To Write-Copies-To Handle-Update Write-Objects-To
Memory Stable-Storage Stable-Storage

Naive-Snapshot All objects All objects, log No-op No-op
Dribble-and No-op No-op First touched, All objects,

Copy-on-Update all log
Atomic-Copy Dirty objects Dirty objects, No-op No-op
Dirty-Objects double backup No-op
Partial-Redo Dirty objects Dirty objects, log No-op No-op

Copy-on-Update No-op No-op First touched, Dirty objects,
dirty double backup

Copy-on-Update No-op No-op First touched, Dirty objects,
Partial-Redo dirty log

Table 2.2: Subroutine Implementations for Checkpoint Recovery Algorithms

2.3 Experimental Setup

In this section, we describe the experimental setup used in our evaluation. We have

implemented a detailed simulation to measure the cost of checkpointing and recovery.

A simulation model allows us to understand all relevant performance parameters of the

algorithms of Section 2.2. Using the simulation model has three advantages. First, we

can use hardware parameters that would be found in server configurations common in

MMOs even though we might not own the corresponding hardware. Second, it exten-

sively reduces the effort necessary to implement all the algorithms described previously.

Third, it enables other researchers or MMO developers to easily repeat our results, mod-

ify parameters, and understand their effects on the algorithms. In order to fully achieve

the latter benefits, we have made our simulation available for download [38]. All of our

code is written in Java 1.6.
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In the following, we discuss in detail our implementation of the checkpointing algo-

rithms (Section 5.2) and our simulation model (Section 2.3.2). In addition, we describe

the simulation parameters (Section 2.3.3) and the datasets (Section 2.3.4) used in our

evaluation.

2.3.1 Implementation

Our implementation is organized into two main parts. The first part is an algorithmic

framework that isolates the main costs of the checkpointing algorithms in subroutines.

The second part comprises specific implementations of these subroutines for each algo-

rithm, done based on the cost model of our simulator. We describe these two components

of our implementation below.

Checkpointing Algorithmic Framework. As discussed in Section 2.1, at the end of

each tick, the state of the game in the discrete simulation loop is consistent in main

memory. The core idea of our algorithmic framework is to capture this tick-consistent

image of the game state and checkpoint it to disk. We assume in our presentation that

updates are handled at the level of abstract game objects, which we call atomic objects.

In principle, an atomic object can be as small as a single attribute of a row in the game

state. However, use of an atomic object size smaller than a disk sector adds significant

overheads, especially for double-backup schemes. Techniques to improve I/O by orga-

nizing objects into logical pages are orthogonal to our description [70]. We assume they

have been applied in order to make the atomic object size equal to a disk sector.

The Checkpointing Algorithmic Framework shows the general method we follow in

our implementation. At the end of each game tick, the algorithm checks whether we

have finished taking the last checkpoint. If so, a new checkpoint is started. First, we
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Checkpointing Algorithmic Framework
Input: ObjectSet Oall containing all objects in game data
do synchronous on end of game tick :

if last checkpoint finished then
// perform synchronous copy actions at end of tick:
ObjectSet Ocopy ← Copy-To-Memory(Osync ⊆ Oall)
if Ocopy , ∅ then

do asynchronous Write-Copies-To-Stable-Storage(Ocopy)
end
// register synchronous handler for update events:
do synchronous on each Update u of an Object o ∈ Oall :

Handle-Update(u, o)
end
// perform asynchronous copy of remaining information:
do asynchronous Write-Objects-To-Stable-Storage(Oall \ Osync)

end
end

synchronously copy in-memory part (or all) of the game state (Copy-To-Memory sub-

routine). This portion of the state is then written to the appropriate data structures in

stable storage on the background (Write-Copies-To-Stable-Storage subroutine). For the

remainder of the game state, we start an asynchronous copy to stable storage (Write-

Objects-To-Stable-Storage subroutine) and register a handler routine that reacts to up-

dates while this copy operation is running (Handle-Update subroutine).

Instantiating algorithms. We implement all algorithms of Section 2.2 by providing ap-

propriate implementations of the subroutines in the Checkpointing Algorithmic Frame-

work. We summarize in Table 2.2 how each subroutine is implemented for each check-

pointing algorithm. We state whether the routine acts on all objects of the game state or

only on dirty objects and also whether the routine is implemented or is a no-op. When

different from a no-op, the subroutines perform the operations below:

1. Copy-To-Memory: this subroutine computes the time necessary to copy either all

objects or dirty objects to main memory and advances the simulation time.

2. Write-Copies-To-Stable-Storage: this subroutine computes, at every tick, the
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amount of data from the memory copy that has been flushed to disk. It takes into

account whether we are writing to a sequential log or to a double backup. This

routine operates on state copied by the Copy-To-Memory routine and thus may be

implemented without thread-safety concerns.

3. Handle-Update: this subroutine computes the time to perform bit tests, acquire

locks, and save the old value of an item in memory. Since we save the old value,

this routine is only executed the first time we update an item.

4. Write-Objects-To-Stable-Storage: this subroutine computes, at every tick, the

amount of data from the objects to be checkpointed that has been flushed to disk.

As with the Write-Copies-To-Stable-Storage routine, the amount flushed depends

on whether we are writing to a log or to a double backup. Unlike Write-Copies-

To-Stable-Storage, this routine reads the actual game state concurrently and thus

must be thread-safe.

It is important to emphasize that our simulation does not perform any actual I/O

operations or memory copies. Rather, we keep track of which objects have been updated

since the last checkpoint and compute the time necessary for these operations based on

the detailed simulation model presented in the next section.

2.3.2 Simulation Model

We describe the main components of the performance model we have used in our sim-

ulation below. We assume that the game server is a dedicated machine and, therefore,

there is no resource contention with other workloads. MMOs are cognizant of issues that

influence performance and avoid running processes that might negatively affect game
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experience. Scheduled maintenance activities, for example, are typically performed at

well-defined times during off-peak hours.

Assume n is the number of atomic objects in the game state.

Duration of synchronous copy. The function Copy-To-Memory in the Checkpointing

Algorithmic Framework performs a synchronous, in-memory copy, which introduces

a pause in the simulation loop. Given k contiguous atomic objects of size Sobj to be

included in the synchronous copy and memory bandwidth Bmem, we can calculate the

time ∆Tsync(k) required to copy these objects by:

∆Tsync(k) = Omem+
k ·Sobj
Bmem

Here the constant term Omem represents memory copy startup overhead, including pos-

sible cache misses. The total pause time is computed by summing this formula over all

contiguous groups of atomic objects to be copied.

Because latency affects the gaming experience, there is a (game-dependent) hard

bound on the maximum duration of a pause [26]. Thus it is important to consider the

latency introduced in the discrete-event simulation loop in order to understand the ap-

plicability of a checkpoint recovery technique.

Duration of asynchronous write. The functions Write-Copies-To-Stable-Storage and

Write-Objects-To-Stable-Storage perform asynchronous copies of atomic objects. If we

write k ≤ n contiguous objects to a log-based organization on disk, I/O is sequential

and we can take maximum advantage of the disk bandwidth Bdisk. Thus, the duration

function ∆Tasync(k) of the asynchronous copy will be:

∆Tasync(k) =
k ·Sobj
Bdisk

(log-based)
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This approximation does not consider the initial seek and rotational delay, but for real-

istic game state sizes the error introduced is negligible.

For algorithms using a double-backup disk organization we assume a sorted write

I/O pattern, in which disk sectors are transferred in order of increasing offset in a con-

tiguously allocated backup file. We assume for simplicity that the objects to be written

are uniformly spaced in the file. If more than a tiny fraction of the sectors are written,

with high probability, there will be a dirty atomic object to be written in every track of

the file. As a consequence, this pattern requires a full rotation for every track of the file,

so the cost of writing k sectors can be approximated well by the cost of a full transfer,

∆Tasync(k) ≈
n ·Sobj
Bdisk

(double-backup)

As above, this approximation does not consider the initial seek and rotational delay; it

also ignores the fact that the expected distance from the first to the last sector transferred

is actually shorter than n by O(n/k). Again, for the values of n and k we consider, the

error introduced is negligible. This model has the slightly counterintuitive (but correct)

property that, for reasonable values of k, the amount of data written to the backup file is

proportional to k, but the elapsed time to write that data is independent of k.

Effect of copy on update. All algorithms on the right of Table 2.1 use a copy-on-

update scheme, in which synchronous in-memory copy operations may be performed

during checkpointing in order to save old values of game objects being updated. These

copy operations add overhead to the simulation loop, potentially over multiple ticks. To

estimate this overhead, we examine each atomic object update operation and compute

an overhead cost of the form

∆Toverhead = Obit+Olock+∆Tsync(1)

The first term in this expression represents the overhead for the simulation loop to test a

per-atomic-object dirty bit. If that test fails, the second term is added, representing the
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cost to lock out the asynchronous copy thread. The third term is added if necessary to

represent the cost of a memory copy of a single atomic object. This detailed simulation

is needed because dirty bit maintenance, while comparatively cheap, is embedded in the

inner loop of the simulator, so the overhead it introduces can be quite significant and

must be modeled.

Recovery time. The recovery time ∆Trecovery of our methods is divided into two com-

ponents: the time to read a checkpoint, ∆Trestore, and the time to replay the simulation

after the checkpoint is restored, ∆Treplay. It is given by

∆Trecovery = ∆Trestore+∆Treplay

For all schemes except Partial-Redo and Copy-on-Update-Partial-Redo, we have:

∆Trestore =
n ·Sobj
Bdisk

For Partial-Redo and Copy-on-Update-Partial-Redo, the time to restore will be larger

whenever updates are concentrated into a subset of the game objects. In the worst case,

we will have to read the log backwards until we find the last time all objects have been

flushed to the log. Assuming that k objects are written to the log per checkpoint and that

we perform a full write of the n game objects every C checkpoints, we may estimate the

time to restore by:

∆Trestore =
(k ·C+n) ·Sobj

Bdisk

The time to replay ∆Treplay is, in the worst case, equal to the time to checkpoint

∆Tcheckpoint . This situation may happen if the system crashes right before a new check-

point is finished. In that case, we restore the previous checkpoint and expect the simu-

lation to take exactly the same time between checkpoints to redo its work. Note that the

time to checkpoint will be given either by ∆Tasync or ∆Tsync+∆Tasync, depending on

the method used.
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2.3.3 Simulation Parameters

parameter notation setting
Tick Frequency Ftick 30 Hz
Atomic Object Size Sobj 512 bytes
Memory Bandwidth Bmem 2.2 GB/s
Memory Latency Omem 100 ns
Lock overhead Olock 145 ns
Bit test/set overhead Obit 2 ns
Disk Bandwidth Bdisk 60 MB/s

Table 2.3: Parameters for cost estimation

As described in Section 2.3.2, we explicitly model the hardware parameters and

compute all relevant costs for the algorithms. The parameters we have used in our

evaluation are given in Table 2.3. During each tick, the simulator selects a set of objects

to update and then invokes the appropriate checkpointing strategy. We update at the

granularity of an atomic object, and we allow an object to be updated more than once

per tick. Since we simulate all relevant hardware parameters, our hardware setup is

unimportant.

Note that the parameters in Table 2.3 fall into several different categories. Some pa-

rameters, such as Ftick, are properties of the game being simulated. Others, such as Sobj,

are parameters of the algorithms. The most challenging parameters are those represent-

ing system performance. The values presented here were measured for one particular

server in our lab, using a collection of micro-benchmarks written for the purpose.

Memory bandwidth: We measured effective memory bandwidth Bmem by repeated

memcpy calls using aligned data, each call copying an order of magnitude more data

than the size of the L2 cache of the machine.

Memory latency: We measured memory latency Omem using another memcpy

benchmark with memory reference patterns mixing sequential and random access. The
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intent was to take into account both hardware cache-miss latency and the startup cost of

the memcpy implementation.

Lock overhead: We measured lock overhead Olock as the aggregate cost of uncon-

tested calls to pthread spinlock, again with a mixture of sequential and random access

patterns.

Bit test overhead: The bit test overhead Obit is intended to model the cost of the

dirty-bit check that must be added to the simulation loop for the copy-on-update variants

of the algorithms. This benchmark measures the incremental cost of naive code to count

dirty bits, roughly half of which are set. The code is added to a loop intended to model

the memory reference behavior of the update phase of the game simulation loop.

Disk bandwidth: We measured the effective disk bandwidth Bdisk by performing

large sequential writes to a block device allocated to our recovery disk.

All these benchmarks required considerable care to achieve repeatable results and to

eliminate errors due to loop overheads, compiler optimizations, and the cost of timing

calls themselves.

2.3.4 Datasets

The input to our simulator is an update trace indicating which attributes of game objects,

termed cells, have been updated on each tick of the game. We consider several methods

for choosing which cells to update. In the first set of experiments, we generate updates

according to a Zipf distribution with parameter α. We choose the row and column to

update independently with the same distribution. By varying α, we can control the skew

of the distribution. As α grows, we are more likely to update a small number of “hot”
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parameter setting
number of ticks 1,000

number of table cells 10,000,000
number of updates per tick 1,000 . . . 64,000 . . . 256,000
skew of update distribution 0 . . . 0.8 . . . 0.99

Table 2.4: Parameter settings used in the Zipfian-generated update traces

parameter setting
number of units 400,128

number of attributes per unit 13
number of ticks 1,000

avg. number of updates per tick 35,590

Table 2.5: Characteristics of the update trace from our prototype game server.

objects. Our Zipfian generator is from [44]. In addition to the update skew, we also vary

the number of updates per tick and analyze latency peaks introduced by the different

methods. Table 2.4 shows the range of parameter values we used. The numbers in bold

are the default values we used when varying the other variables.

For each of these three independent variables, we measure the overhead time due

to bit testing, locking, and synchronous in-memory copies. This time is extremely im-

portant for MMOs, because these overheads must be compensated by MMO developers

by reducing the amount of work performed in a given tick. In addition to the runtime

overhead of the recovery algorithms, we are also interested in measuring the time to

checkpoint and the recovery time. While the behavior of the recovery time will be of

great interest to MMO developers, the time to checkpoint gives us insight into the cost

breakdown of the recovery time. It is equivalent to the time to replay the simulation

(Section 2.3.2), so the remaining time spent during recovery is due to restoring the last

checkpoint taken. We discuss these experiments in Sections 2.4.1 to 2.4.3.

To better understand realistic update patterns, we have also implemented a prototype

game that simulates a medieval battle of the type common in many MMOs. It is based
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on the Knights and Archers Game of [122]. The simulation contains three types of

characters: knights, archers, and healers, that are divided into two teams. Each team

has a home base, and the objective is to defeat as many enemies as possible. Each unit

is controlled by a simple decision tree. Knights attempt to attack and pursue nearby

targets, while healers attempt to heal their weakest allies. Archers attempt to attack

enemies while staying near allied units for support. Furthermore, each unit tries to

cluster with allies to form squads.

In typical MMOs, not all characters are active at all times. In the Knights and

Archers game, 10% of the characters are active at any given moment and the active

set changes over time. Units leave and join the active set such that it is completely re-

newed every 100 ticks with high probability. We have instrumented this game to log

every update to a trace file, which we then use as input to our checkpoint simulator.

Table 2.5 summarizes the basic characteristics of our trace. Note that the update distri-

bution follows the skew determined by the game logic. We consider these experiments

in Section 2.4.4.

2.4 Experimental Results

In this section, we present the results of our experimental evaluation. The goals of our

experiments are twofold. First, we want to understand how the different checkpoint

recovery algorithms behave as we scale the number of updates per tick (Section 2.4.1),

what latency peaks we can observe (Section 2.4.2), and how the skew of the update

distribution affects the algorithms (Section 2.4.3). Second, we want to understand how

the checkpoint recovery algorithms perform with an update trace generated by realistic

game simulations (Section 2.4.4).
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2.4.1 Scaling on Number of Updates Per Tick

In this section, we evaluate how the different recovery methods scale as we increase the

number of updates per game tick. Recall that an update is a change in one of the cells

of the game state table.
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Figure 2.2: Overhead, checkpoint, and recovery times when scaling up on the
number of updates per tick.

Average Overhead Time. We begin by analyzing the time added by the different algo-

rithms to the game ticks; we call this time the overhead time or short overhead. Keeping

the overhead low is key in MMOs because it represents how much recovery penalizes

tick processing. Our simulation assumes that game logic and update processing take the

whole tick length. A recovery method introduces overhead that stretches ticks beyond

their previous length, reducing the frame rate of the game. In order to compensate for

recovery overhead, MMO developers have to diminish the amount of work performed

per tick. If the pauses introduced by a recovery algorithm are too high, then the use of
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that recovery algorithm becomes infeasible.

Figure 2.2(a) shows the effect of varying the number of updates per tick on the

average overhead per tick. Recall that we have one million rows with ten columns

each. In typical MMOs, a subset of the game objects are active at any given time. In

battle games with very intense action sequences, update rates may reach hundreds of

thousands of updates per tick [112]. This extreme scenario is the rightmost point of

the graph. Game characters typically have a set of relatively static attributes along with

attributes that are more often updated. Thus we expect this extreme situation to occur

only in games with very hot objects that receive many updates per tick or in games in

which a large set of active objects is moving every single tick.

The average overhead of Naive-Snapshot is 0.85 msec per tick — however, this

average is not spread uniformly among all ticks of the game. The method performs a

single synchronous copy per checkpoint in which all of the overhead is incurred. This

copy takes nearly 17 msec (see Section 2.4.2), a value in excess of half the length of a

tick.

Atomic-Copy-Dirty-Objects and Partial-Redo exhibit similar behavior as both meth-

ods perform eager copies of only the dirty objects. We see that these strategies outper-

form Naive Snapshot for update rates below 10,000 updates per tick. For such low

update rates, these two methods achieve lower total memory copy time than Naive-

Snapshot, which always copies the whole game state. Above 10,000 updates per tick,

however, these methods tend to become worse than Naive Snapshot. At high update

rates, most objects in the game state get updated between checkpoints. Thus these

methods have to copy as much data in main memory as Naive Snapshot. In contrast

to Naive Snapshot however, these methods must also pay for bit checking overhead for

each update. At 256,000 updates per tick, this difference amounts to an average over-
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head of 1.4 msec for Atomic-Copy-Dirty-Objects versus 1 msec for Naive-Snapshot, a

60% difference.

The methods based on copy on update, namely Dribble-and-Copy-on-Update, Copy-

on-Update, and Copy-on-Update-Partial-Redo, present an interesting trend. Under

8,000 updates per tick, these methods add less average overhead than Naive-Snapshot by

up to a factor of five. In addition, these methods also outperform other eager copy meth-

ods. Above 8,000 updates per tick, however, these methods add more average overhead

per tick by up to a factor of 2.7. In spite of adding more overhead when the number of

updates per tick is larger, copy on update methods may still be the most attractive even

in these situations. Recall that all eager methods mentioned previously, such as Naive-

Snapshot, concentrate their total overhead of all the ticks associated with a checkpoint

into one single tick. Copy on update methods, on the other hand, spread their overhead

over a number of ticks, presenting smaller latency peaks even when the total latency in-

troduced is larger than for eager methods (see Section 2.4.2). Unfortunately, even copy

on update methods will introduce significant latency if most atomic objects in the game

state are updated in at least one tick after a checkpoint. This situation happens in our ex-

periment for update rates over 100,000 updates per tick. At these extreme update rates,

all methods are undesirable in terms of latency. The strategy of last resort is to take the

method with lowest total latency, i.e., NaiveSnapshot and to invest development effort

into latency masking techniques for the game [26].

Checkpoint and Recovery Times. Figure 2.2(b) shows how the checkpoint time

changes as we increase the number of updates processed in each tick of the game. Naive-

Snapshot, Dribble-and-Copy-on-Update, Atomic-Copy-Dirty-Objects, and Copy-on-

Update write the entire game state to disk on every checkpoint. As a consequence,

these methods present constant checkpoint time of around 0.68 sec for all update rates.
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Note that Atomic-Copy-Dirty-Objects and Copy-on-Update copy only dirty objects in

main memory. Given that the atomic objects dirtied every checkpoint are a significant

fraction of the game state, the fastest way for these strategies to commit their checkpoint

to the double backup is a single sequential write of the whole state.

Partial-Redo performs like Copy-on-Update-Partial-Redo. Again the time to flush

the checkpoint to disk dominates the checkpoint time. These two algorithms rely on

a log-based disk organization and perform sequential I/O. At 1,000 updates per tick,

Partial-Redo and Copy-on-Update-Partial-Redo take 0.1 sec to write a checkpoint. That

represents a gain of a factor of 6.8 over Naive-Snapshot.

In Figure 2.2(c), we see how this gain in checkpoint time translates into recovery

time. Recall from Section 2.3.2 that the time to replay the simulation once a check-

point is restored is roughly equal to the checkpoint time. Moreover, for Naive-Snapshot,

Dribble-and-Copy-on-Update, Atomic-Copy-Dirty-Objects, and Copy-on-Update, the

time to restore is equal to the time to read the checkpoint sequentially and thus roughly

equal to the time these algorithms take to save the checkpoint to disk. As such, the re-

covery time for these algorithms is nearly twice their checkpoint times, reaching around

1.4 sec for all update rates.

Partial-Redo and Copy-on-Update-Partial-Redo show more interesting behavior.

While their time to replay the simulation is again roughly equal to the checkpoint time,

the methods differ in the time necessary to restore the checkpoint from disk. Partial-

Redo and Copy-on-Update-Partial-Redo have the best checkpoint times, and thus the

lowest times to replay the simulation. On the other hand, these algorithms have recov-

ery times that are consistently worse than Naive-Snapshot above 4,000 updates per tick.

These methods must read through a log in order to restore the checkpoint, leading to

restore times much larger than for the other algorithms. While these restore times could
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be reduced by flushing the whole state to the log more often, doing so would also make

the checkpoint times of these algorithms much closer to a simple sequential write of the

whole game state, eliminating the advantage of a reduced time to replay the simulation.

At 256,000 updates per tick, these methods spend 7.2 sec to recover, a value 5.4 times

larger than the time required by Naive-Snapshot.

In summary, the three methods Dribble-and-Copy-on-Update, Copy-on-Update, and

Copy-on-Update-Partial-Redo have the smallest overhead for low numbers of updates

per tick. Even when the number of updates per tick is high, these methods may still

be preferable given that they spread their overhead over several ticks instead of concen-

trating it into a single tick. Out of these three methods, Copy-on-Update and Dribble-

and-Copy-on-Update are the most efficient in terms of recovery times, being vastly su-

perior to Copy-on-Update-Partial-Redo for high numbers of updates per tick. Eager

copy methods only display overhead significantly lower than copy on update methods

with very high update rates. In these extreme situations, all methods introduce latency

peaks in the game. The method with the lowest overall latency for these cases is Naive-

Snapshot.

2.4.2 Latency Analysis

In order to better understand the latency behavior of the algorithms, we look in depth at

a scenario with 64,000 updates per tick. Given the results in Figure 2.2(a), we expect

copy on update methods to introduce nearly twice the average latency of eager copy

methods. We have plotted the tick length as we run the algorithms in order to observe

how much overhead is introduced on top of the basic tick length of 33 msec. The results

are shown in Figure 2.3 for ticks 55 to 110 of the simulation. The same pattern for all
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Figure 2.3: Latency analysis: 10M objects, 64K updates per tick.

methods repeats itself over the remaining 945 ticks not shown in the figure.

The figure clearly shows that eager copy methods introduce the largest overhead

peaks, with some game ticks being lengthened by 17 msec. This value is approximately

the same for Naive-Snapshot, Atomic-Copy-Dirty-Objects, and Partial-Redo. As the

number of updates is relatively high in this scenario, most atomic objects in the game

state are touched between successive checkpoints for all methods. As a consequence,

all eager copy methods have identical synchronous copy times. This time is the sin-

gle latency factor for Naive-Snapshot and dominates latency for the other eager copy

methods, given that overheads for bit testing are small.

Considering that the tick frequency of the game is 30 Hz, and thus each tick is about

33 msec long, the eager copy algorithms introduce a pause of over half a tick in the game.

As such, the latency impact of these algorithms is undesirable. In fact, we argue that

pauses longer than half the length of a tick introduce latency that has to be dealt with

by MMO developers via latency masking techniques [26]. In Figure 2.3, we plot an

additional line that represents this latency limit of half a tick. Neither Naive-Snapshot,

Atomic-Copy-Dirty-Objects, nor Partial-Redo is able to respect the latency bound.

Copy on update methods present different behavior. Their overhead is spread over a
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number of game ticks instead of being concentrated into a few ticks. The latency peak

for all of these methods is 12 msec for the first tick after a checkpoint is started, dropping

to seven msec for the second tick, four msec for the third, and even smaller times for

subsequent ticks. In the first tick, no atomic objects are dirty yet and thus copy on update

methods must incur locking, memory latency, and copying overhead for many objects.

As we move through the checkpoint period, however, many updates will be applied to

objects that have already been dirtied in previous ticks. For all of these updates, copy

on update methods perform only inexpensive bit tests.

According to what we have discussed above, almost all of the atomic objects in the

game state are touched between successive checkpoints for all methods. As copy on

update methods perform copies randomly and have to acquire locks for synchroniza-

tion, their total overhead is larger than the overhead to perform a sequential copy of the

state, as done by eager copy methods. In contrast to eager copy methods, however, copy

on update methods have a much better distribution of their overhead along ticks of the

game. In addition, when smaller fractions of the game state are updated, copy on up-

date methods tend to incur both lower and better distributed overhead than eager copy

methods.

2.4.3 Effect of Skew

Finally, we evaluate the effect of update skew on the various recovery methods. The

primary effect of increasing the skew is to decrease the number of dirty objects. This

has no effect on the Naive-Snapshot algorithm, but it causes slightly different behavior

in the other strategies. The graphs in this section are not log-scaled in order to emphasize
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Figure 2.4: Overhead, checkpoint, and recovery times when varying the skew.

the trends.

Average Overhead Time. Figure 2.4(a) shows the overhead as a function of skew. The

relative performance of the strategies is similar to that in the previous experiments with

about 64,000 updates per tick. The lowest overhead is introduced by Naive-Snapshot,

while other methods fall within a factor of 2.5. Since the number of dirty objects de-

creases as the skew increases, we expect strategies that copy only dirty objects to per-

form better with high skew. Atomic-Copy-Dirty-Objects and Partial-Redo benefit less

from skew, however, than Copy-on-Update and Copy-on-Update-Partial-Redo. Recall

that the large number of updates per tick in the experiment leads to most of the atomic

objects in the game state being updated between checkpoints. For Copy-on-Update, ex-

treme skew diminishes the updated portion from roughly 100% to 84% of the atomic

objects. All copy on update methods benefit more from a smaller fraction of objects

updated than eager copy methods because they do not need to incur locking and latency
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overheads for these objects.

Interestingly, Dribble-and-Copy-on-Update also gets some benefit from skew, al-

though it writes the whole game state to disk. This method copies fewer objects with

high skew because game objects are copied only on the first update. Thus a larger frac-

tion of the updates avoid copying, and more of the objects are flushed to disk directly by

the asynchronous process.

Checkpoint and Recovery Times. Figure 2.4(b) shows the time to checkpoint as a

function of the data skew, and Figure 2.4(c) shows the recovery time. As a large fraction

of the atomic objects are updated between checkpoints, most strategies display very

similar times to checkpoint. For Copy-on-Update-Partial-Redo and Partial-Redo, the

time to checkpoint decreases as the skew increases, because there are fewer dirty objects

and these methods benefit from fast sequential writes of only dirty objects to a log.

This effect is more clear in the graph that shows recovery time. Here the time for

Copy-on-Update-Partial-Redo and Partial-Redo decreases from 7.3 sec to 6.3 sec. This

graph also shows some of the same trends observed in the previous sections. Partial

redo methods have much larger recovery times than other strategies, while the remaining

strategies have similar recovery times given that the whole game state is written by them

to disk.

In summary, we conclude that skew has a fairly minor effect on the performance

of the algorithms. Copy on update methods benefit relatively more from skew than

other methods, as these methods may then avoid locking and memory latency overheads.

Copy-on-Update-Partial-Redo and Partial-Redo have very large recovery times, and for

this reason are not competitive.
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2.4.4 Experiments with Prototype Game Server
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(c) Recovery time

Figure 2.5: Overhead, checkpoint, and recovery times for a trace with 400,128
units and updates to 10% of the units every tick.

In this section we run our simulation with the update trace of the Knights and Archers

Game described in Section 2.3.4. Our goal is to understand whether the observations

we made regarding Zipf distributions carry over to more realistic datasets. Recall that

this trace contains 400,128 rows of 13 attributes. The trace applies updates only to 10%

of the units, exhibiting an average update rate of 35,590 attributes per tick. This corre-

sponds to the fact that many characters update their position during each tick (possibly

only in one dimension), but that other attributes such as health remain relatively stable.

The results in Figure 2.5 confirm several of our previous observations. At the update

rate exhibited by the game, copy on update methods have average per tick overheads

that are larger than the overheads of eager copy methods. However, copy on update
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methods spread this overhead better over several ticks, while eager copy methods con-

centrate all of their overhead into a single tick. Copy-on-Update-Partial-Redo presents

higher overhead than other copy on update methods. It reaches 1.6 msec compared to

only 1.2 msec for Copy-on-Update. This effect occurs because Copy-on-Update-Partial-

Redo checkpoints more often than Copy-on-Update, as can be seen in Figure 2.5(b).

Recall from Section 2.4.2 that all copy on update strategies exhibit more overhead in the

first few ticks of a checkpoint than in later ticks. As Copy-on-Update checkpoints less

often, it spends more of its time in the region of lower overhead than Copy-on-Update-

Partial-Redo. Typically, one would expect longer recovery times as a consequence of

less frequent checkpoints. In the case of Copy-on-Update-Partial-Redo, however, the

recovery times shown in Figure 2.5(c) are also longer than for Copy-on-Update. This

confirms our previous observation that methods based on partial redo are slower than

other strategies since they have to read more of the log from disk. We saw this behavior

previously when we had a very high update rate (Figures 2.2(c) and 2.4(c)).

Similar trade-offs can be observed for other strategies. Atomic-Copy-Dirty-Objects

checkpoints more often than Partial-Redo, and shows both lower overhead and lower re-

covery time than the latter. Atomic-Copy-Dirty-Objects is in fact the method with lower

average overhead time, having a value slightly lower than Naive-Snapshot. Dribble-and-

Copy-on-Update exhibits slightly higher overhead than Copy-on-Update, as Dribble-

and-Copy-on-Update copies in main memory all objects touched on first update, while

Copy-on-Update can restrict its copies to objects that have been dirtied since the last

consistent image of the backup currently being written. As observed previously in other

experiments, similar checkpoint and recovery times are observed for Naive-Snapshot,

Atomic-Copy-Dirty-Objects, and the lazy methods Dribble-and-Copy-on-Update and

Copy-on-Update. Overall, the game trace falls comfortably into the range of parameters

we explored using synthetic data.
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2.5 Experimental Validation

In this section, we present experimental results that validate our simulation model

against an actual implementation of two recovery methods: Naive-Snapshot and Copy-

on-Update. These methods are the most relevant methods as identified by our simu-

lation results. For a wide range of update rates, copy on update methods exhibit the

best latency behavior and recovery times. When compared to Dribble-and-Copy-on-

Update, Copy-on-Update introduces slightly less overhead time on the game as it copies

only dirty objects on update. Copy-on-Update also consistently outperforms Copy-

on-Update-Partial-Redo in terms of recovery times. For extreme update rates of over

100,000 updates per tick, Naive-Snapshot is the method with the lowest overhead time.

Taken together, these two methods ourperform the other algorithms over the entire range

of performance metrics included in our simulation model, including memory latency,

locking overhead, and memory and disk bandwidths.

Validation Setup. We implemented Naive-Snapshot and Copy-on-Update in C++ and

ran them on an Intel Core 2 Quad 2.4 GHz machine with 4MB cache and 4GB of main

memory. The operating system used was Ubuntu Linux kernel 2.6.27-14. To avoid

fragmentation at the filesystem level, we put the checkpoint files on a dedicated hard

drive to which we wrote directly through a Linux block device. The disk was an 80GB

7200 rpm SATA drive with an 8MB cache.

We repeated the experiments from Section 2.4.1 for validation. Our implementation

is driven by trace files with update distributions as described in Section 2.3.4. It is

divided into a mutator thread and an asynchronous writer thread. In order to reproduce

the work done in realistic games that tick at 30Hz, the mutator executes each tick in

three phases: query, update, and sleep. The query phase is adjusted for each update
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rate in order to fill a tick. It performs a sequence of random lookups in the game state.

After the query phase is over, the update phase processes the updates from the trace

for the given tick. We keep all trace files completely loaded in main memory to avoid

introducing disk access delays in the update phase. Finally, the (short) sleep phase fills

the remaining time so that the game ticks at 30Hz. In our experiments, the sleep phase

averaged less than 1 msec and we ensure that this time does not affect the measurement

of overhead time. The asynchronous writer flushes consistent checkpoints to disk. The

state to be written is either created by the mutator as in Naive-Snapshot, or it is directly

accessed by the asynchronous writer using appropriate locks, as in Copy-on-Update.
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Figure 2.6: Validation of overhead, checkpoint, and recovery times when scaling
up on the number of updates per tick. We compare the results of our
simulation model with a real implementation of Naive-Snapshot and
Copy-on-Update.

Validation Results. Figure 2.6 shows the results from our implementation as we scale

the number of updates per tick. For reference, the figure also shows the results predicted
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by our simulation model, where we calibrated the parameters in the simulation with the

micro-benchmarks described in Section 2.3.3.

The trends predicted by our simulation model are closely matched by the imple-

mentation. The real implementation of Naive-Snapshot exhibits practically the same

overhead, checkpoint, and recovery times as the simulation. This is expected as the per-

formance of Naive-Snapshot depends essentially on the memory and disk bandwidths.

Copy-on-Update displays similar behavior regarding checkpoint and recovery times.

The overhead time shown by the implementation is, however, larger than the simulation

model’s prediction by up to a factor of 3. This occurs because the real implementation

has overheads not accurately modeled in our simulation, for example, lock contention

between the mutator and the asynchronous writer and interference on the mutator from

the I/O performed by the asynchronous writer. We have observed in a separate experi-

ment that the latter effect is significant and explains why the difference between imple-

mentation and simulation increases for higher update rates. In spite of these differences,

the simulation model accurately predicts the overhead trends shown by the algorithm.

2.6 Related Work

Several approaches have been proposed for taking database snapshots [2]. Kähler and

Risnes explore how to use logging to refresh a snapshot, proposing a technique that

resembles incremental view maintenance [60]. Other work has investigated how to pro-

vide efficient access to a large collection of past snapshots [104, 105]. Our focus is

different, as we target instead recording the most recent consistent snapshot of the data

efficiently and as often as possible. Furthermore, in our scenario all primary data is

main-memory resident for performance reasons, while these previous approaches as-
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sume disk storage of both the database and the snapshots.

Levy and Silberschatz propose a recovery scheme for databases with large main

memories termed log-based backup [69]. Log-based backup works by continuously ap-

plying log records to a backup copy of the database. Both a redo log and the backup

copy are maintained. In order to decouple transaction processing from log I/O, the au-

thors suggest the use of stable memory to keep the log’s tail. However, as previously

discussed, schemes based on logging all game updates are infeasible for MMOs in prac-

tice.

Fuzzy checkpointing does not produce a consistent checkpoint, requiring the system

to keep a physical log [50, 98]. In MMOs, this requirement makes this technique infeasi-

ble, given that all game updates would have to be logged to disk whenever a checkpoint

is being taken.

A number of systems study how to optimize recovery in a distributed setting. Clus-

tRa uses the idea of hot standbys and log shipping to provide high availability [53]. To

achieve higher performance, log records are not written to disk, but rather to the main

memory of a neighboring node. Whitney et al. execute transactions in both a primary site

and in a number of backup sites [123]. Backup sites use a variant of the Naive-Snapshot

algorithm from the previous section to save checkpoints to stable storage. More re-

cently, Lau and Madden [67] and Stonebraker et al. [109] advocate a distributed design

in which no logging is performed by the system. In contrast to Whitney et al. [123], all

sites are active and thus updates are processed in all sites that replicate a given portion

of the data. Data is replicated in a minimum of K sites so that the system will survive

up to K site failures. If we apply their model to our scenario, we need to use K servers

to execute copies of the discrete event simulation loop. This basic solution is similar

to the process-pairs solution for high-performance scientific simulations [101]. While
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availability is high, system utilization is rather low (1/K), given that all active copies of

the simulation loop perform redundant work. We follow instead a checkpoint recovery

model, which increases utilization at a potential increase in recovery time; a detailed

exploration of recovery methods for MMOs inspired by K-safety is future work.

2.7 Summary and Recommendations

In this dissertation, we have experimentally evaluated the performance of main-memory

checkpoint recovery techniques for MMOs. Instead of requiring MMO developers to

hand-code persistence logic for their games, our experimental study shows that these

techniques can be used as a viable alternative to provide durability for local updates.

One important conclusion of our study is that not all checkpoint recovery techniques

are equally suited for MMOs. MMOs have stringent latency requirements, ruling out

algorithms that introduce excessive pauses in the game’s discrete-event simulation loop.

In our study, we have quantified the duration of these pauses and observed which al-

gorithms introduce the least overhead. We summarize our principal findings as a set of

recommendations for MMO developers:

1. Methods based on copy on update that checkpoint only dirty objects have clear

advantages over other checkpoint recovery methods for MMOs. These methods

introduce up to a factor of five less overhead in the game than methods that per-

form eager copies in main memory when the number of updates is low. In ad-

dition, even when update rates are high, these methods avoid latency peaks by

spreading their overhead over a number of game ticks.

2. Some games may have such extreme update rates that they update a huge number
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of objects within some tick. In these situations, all methods we have evaluated

will introduce significant latency peaks in the game. The method that has shown

the lowest overall latency under such heavy and skewed load is Naive-Snapshot,

as it avoids any overheads associated with locking and performs fully sequential

memory copies of the whole game state.

3. Methods based on a double-backup organization that checkpoint only dirty ob-

jects exhibit recovery times either better or comparable to other methods across

all ranges of parameters we have investigated. In particular, methods based on

checkpointing dirty objects to a log file have larger recovery times due to the time

needed to process the log when restoring the checkpoint.

4. The best method in terms of both latency and recovery time is Copy-on-Update.

This method combines checkpointing of dirty objects with copy on update and

a double-backup organization. When compared to Naive-Snapshot, we have ob-

served up to a factor of five gain in latency and no degradation in recovery time.
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CHAPTER 3

FAST CHECKPOINT-RECOVERY ALGORITHMS FOR FREQUENTLY

CONSISTENT APPLICATIONS

Repetition is the only form of permanence that nature can achieve.

– George Santayana

Advances in hardware have enabled many long-running applications to execute en-

tirely in main memory. As a result, these applications have increasingly turned to

database techniques to ensure durability in the event of a crash. However, many of these

applications, such as massively multiplayer online games and main-memory OLTP sys-

tems, must sustain extremely high update rates – often hundreds of thousands of updates

per second. Providing durability for these applications without introducing excessive

overhead or latency spikes remains a challenge for application developers.

In this chapter, we take advantage of frequent points of consistency in many of these

applications to develop novel checkpoint recovery algorithms that trade additional space

in main memory for significantly lower overhead and latency.

3.1 Background

A frequently consistent (FC) application is a distributed application in which the state of

each node frequently reaches a point of consistency. A point of consistency is simply a

time at which the state of the node is valid according to the semantics of the application.

The definition of frequently depends on the application, but we expect it to be less than a

second. For example, MMO servers execute approximately 10 ticks/sec, while modern

OLTP systems may be able to execute a small transaction in tens of microseconds [109,
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59].

Throughout the dissertation, we use application state to refer to the dynamic,

memory-resident state of an FC application. FC applications may have additional read-

only or read-mostly state that can simply be written to stable storage when it is created.

For example, in an MMO, each character will have some attributes such as position,

health, or experience that are frequently updated and thus part of the dynamic state,

but it will also have other attributes such as name, race, or class (the type or job of

the character) that are unlikely to change. Additionally, some applications include sec-

ondary data structures such as indices that can be rebuilt during recovery. We will focus

exclusively on making the primary dynamic state durable.

In this dissertation, we use coordinated checkpointing to provide durability for dis-

tributed FC applications at low cost [21]. Many applications already use replication to

increase availability and provide some fault tolerance [109], but checkpointing can still

be used to copy state during recovery and provide durability to protect against power

outages and other widespread failures.

Furthermore, we will focus exclusively on developing robust single-node check-

pointing algorithms, as these form the core of most distributed checkpointing schemes.

There is a large distributed systems literature that explores how to generalize efficient

single-node checkpointing algorithms to multiple nodes. Tightly synchronized FC appli-

cations that reach global points of consistency during normal operation are particularly

easy to checkpoint, as they can reuse their existing synchronization mechanisms to de-

cide on a global point of consistency at which each node can take a local checkpoint.

More general distributed applications may need to use techniques such as message log-

ging to create a consistent checkpoint. These distributed approaches are discussed at

length in a recent survey by Elnozahy et al [34].
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Before discussing requirements for checkpoint-recovery algorithms targeted at FC

applications, we summarize the terminologies we use in this chapter:

• A point of consistency during an application execution is a time at which the

state of the application is valid according to the semantics of the application. For

example, in a single-threaded transactional processing system, an end of each

transaction is a point of consistency.

• A frequently consistent (FC) application is a distributed application in which the

state of each node frequently reaches a point of consistency. For example, new

OLTP systems, such as H-Store, data-parallel systems, such as BOOM, and deter-

ministic transaction processing systems, are FC applications.

• Logical logging is a logging technique which logs high level operations. For ex-

ample, each time an application performs any action which changes its application

state, logical logging only records the operation which made the changes, such as

insert, update or delete.

• Stable storage indicates a data repository which guarantees that successfully writ-

ten data is safe in the event of an application crash.

• A Checkpoint period is the time between start and end of a checkpoint.

3.1.1 Requirements for Checkpoint Recovery Algorithms

We can summarize the requirements for a checkpointing algorithm for FC applications

as follows:

1. The method must have low overhead. During normal operation, FC applications
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must process very high update rates, and the cost of checkpointing state for recov-

ery should not greatly reduce the throughput.

2. The method should distribute overhead uniformly, so that application perfor-

mance is consistent. Even when the total overhead is low, many applications

depend on predictable performance. For example, fluctuations in overhead af-

fect MMOs by interfering with time-synchronized subsystems like the physics

engine [57]. This problem is made even worse when the checkpointing algorithm

must pause the system in order to perform a synchronous operation like a bulk

copy. Such latency spikes can also be a problem for distributed applications. If

a node sending a message experiences a latency spike, the receiver may block,

spreading the effect of the latency spike throughout the system and reducing over-

all throughput.

3. The method should have fast recovery in the event of failure. Ideally, the recovery

time should be on the order of a few seconds to avoid significant disruption. We

will accomplish this primarily by increasing the frequency of checkpoints.

Traditional approaches to database recovery such as ARIES-style physiological log-

ging [77] and fuzzy checkpointing [50, 98], which uses physical logging, cannot keep up

with the extremely high update rates of FC applications without resorting to extremely

expensive special-purpose hardware such as battery backed RAM [46, 75, 94]. As the

dollar cost per gigabyte of battery-backed RAM exceeds the cost of traditional RAM by

over an order of magnitude, it is unlikely that cloud infrastructures or large enterprise

clusters will package this technology for use by FC applications.

In the following subsections, we review the framework we previously proposed in

Chapter 2 for checkpointing MMOs on commodity hardware and discuss how it can be

extended to support FC applications.
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Interface 1: Algorithmic Framework

Mutator::PrepareForNextCheckpoint()
Mutator::PointOfConsistency()
Mutator::HandleRead(index)
Mutator::HandleWrite(index, update)

AsynchronousWriter::WriteToStableStorage()

3.1.2 Algorithmic Framework

In this section we discuss the basic algorithmic framework we use for checkpointing.

During normal operation, the application takes periodic checkpoints of its entire dy-

namic state and maintains a logical log of all actions. For example, in an MMO we

would log all user actions sent to the server; in a system like H-Store, we would log all

stored procedure calls. Because each logical update may translate into many physical

updates, we expect the overhead of maintaining this log to be quite small, and we will

focus primarily on the overhead associated with checkpointing. In order to compare

with existing algorithms for games, we will use the same algorithmic framework for

checkpointing introduced in Chapter 2. Interface 1 lists the key methods in this API.

We model main-memory checkpointing algorithms using a single Mutator thread

that executes the application logic and synchronously updates the application state. Our

techniques can be naturally extended to support applications with multithreaded muta-

tors as long as we include enough information in the logical log to enable deterministic

replay. For OLTP applications, for instance, this might include transaction commit or-

der so that transactions can be serialized during replay. This may lengthen the recovery

time somewhat, but in practice we have observed that many FC applications are already

deterministic or can be made deterministic using existing methods [115].

In addition to the Mutator, we use two threads to write data to disk. The Logical

Logger thread synchronously flushes logical log entries to disk. This could be done
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directly in the Mutator thread, but we implement it as a separate thread so that we can

overlap computation and process additional actions while we are waiting for the disk

write to complete. Note that we must wait for all disk writes to finish before proceeding

to the next point of consistency (e.g. reporting a transaction as committed).

The final thread, the Asynchronous Writer, writes some or all of the main-memory

state to disk. Note that this thread can be run in the background while the Mutator con-

currently updates the state. Since the performance of the Asynchronous Writer thread

is primarily determined by disk bandwidth, we will focus on the synchronous overhead

introduced in the Mutator thread. However, it is important to note that some existing

checkpointing algorithms require that the Asynchronous Writer acquire locks on por-

tions of the application state, which can impact the performance of all of the threads [99].

The Mutator thread makes function calls before starting a new check-

point (PrepareForNextCheckpoint), when a point of consistency is reached

(PointOfConsistency), and during each read and write of the application state

(HandleRead and HandleWrite). The PointOfConsistency method must be executed

at a point of consistency, but it need not be executed at every point of consistency. If

points of consistency are very frequent (e.g., every few microseconds), we can wait for

several of them to pass before calling the method.

Different algorithms will implement these methods differently depending on how

they manage the application state. Most algorithms will maintain one or more shadow

copies of the state in main memory. The Mutator may use this shadow state dur-

ing the checkpoint before it is written to stable storage by the Asynchronous Writer.

In the rest of the chapter, we will refer to the time between successive calls to

PrepareForNextCheckpoint as a checkpoint period. Note that this must be long

enough for the Asynchronous Writer to finish creating a checkpoint on disk. These
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checkpoints may be organized on disk in several different ways. In our implementa-

tion, we use a double-backup organization for all of the algorithms, as it was reported in

previous work to consistently outperform a log-based implementation [99].

The recovery procedure is the same for all algorithms that implement this frame-

work. First, the most recent consistent checkpoint is read from disk and materialized

as the new application state. Then, the logical log is replayed from the time of the last

checkpoint until the state is up-to-date. Since we take checkpoints very frequently, the

time to replay the logical log is quite small.

3.1.3 Existing Algorithms

Our experimental evaluation for MMOs concluded that there was no single checkpoint-

ing algorithm that outperformed all the others over the entire range of update rates [99].

Our evaluation included a number of synthetic experiments, and we believe they provide

a reasonable model for many FC applications. We recommended that two algorithms,

Copy-on-Update and Naive-Snapshot, performed best for low and high update rates,

respectively.

Naive-Snapshot synchronously copies the entire state of the application to the

shadow copy at a point of consistency and then writes it out asynchronously to disk.

Naive-Snapshot is among the best algorithms when the update rate is very high since

it does not perform any checkpoint-specific work in the HandleRead or HandleWrite

functions.

Copy-on-Update groups application objects into blocks and copies each block to the

shadow state the first time it is updated during a checkpoint period. During a checkpoint,
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the Asynchronous writer either reads state from the application state or the shadow

copy based on whether the corresponding block has been updated. Since the Mutator

is concurrently updating the application state, it must acquire locks on the blocks it

references. This may introduce considerable overhead. By varying the memory block

size, Copy-on-Update can trade off between copying and locking overhead.

3.2 New Algorithms

In this section, we present two novel checkpoint recovery algorithms for FC applica-

tions. We first discuss important design trade-offs that differentiate our algorithms from

state-of-the-art methods (Section 3.2.1) and then introduce each algorithm in turn (Sec-

tions 3.2.2 and 3.2.3).

3.2.1 Design Overview

We have identified four primary factors that affect the performance of checkpoint recov-

ery algorithms:

1. Bulk State Copying: The method may need to pause the application to take a

snapshot of the whole application state, as in Naive-Snapshot.

2. Locking: The method may need to use locking to isolate the Mutator from the

Asynchronous Writer, if they work on shared regions of the application state.

3. Bulk Bit-Array Reset: If the method uses metadata bits to flag dirty portions of

the state, it may need to pause the application and perform a bulk clean-up of this

metadata before the start of a new checkpoint period.
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Method

Overhead Factor

Bulk Locking
Bulk Memory

Copying Bit-Array UsageReset
Naive-Snapshot Yes No No ×2
Copy-on-Update No Yes Yes ×2
Wait-Free Zigzag No No Yes ×2
Wait-Free Ping-Pong No No No ×3

Table 3.1: Overhead factors of checkpoint-recovery algorithms.

4. Memory Usage: In order to avoid synchronous writes to disk, the method may

need to allocate additional main memory to hold copies of the application state.

Table 3.1 shows how the factors above apply to both Naive-Snapshot and Copy-on-

Update. Naive-Snapshot eliminates all locking and bulk bit-array resetting overhead,

but must perform a bulk copy of the whole application state. This introduces a latency

spike in the application since it must block during the copy. Copy-on-Update avoids

this problem since it does not perform synchronous bulk copies, but incurs both locking

and bulk bit-array resetting overhead. This extra overhead is small for moderate update

rates, but is significant for higher update rates. Both methods require additional main

memory of roughly the size of the entire application state. So the memory usage for the

dynamic application state increases to about twice its original size.

Our new algorithms, Wait-Free Zigzag and Wait-Free Ping-Pong, are designed to

eliminate all overhead associated with bulk state copying and locking. Unlike Naive-

Snapshot, they spread their overhead over time instead of concentrating it at a single

point of consistency. Unlike Copy-on-Update, they only require synchronization be-

tween the Mutator and Asynchronous Writer at the end of a checkpoint period. This

eliminates all locking overhead during state updates. Additionally, the Mutator and

Asynchronous Writer are each guaranteed to make progress even if the other is pre-
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empted within a checkpoint period. According to Herlihy, an implementation of a con-

current data object that guarantees that any process can complete any operation in a finite

number of steps, regardless of the execution speeds of the other processes, is called a

wait-free implementation [52]. As a consequence, both of our algorithms are wait-free

within a checkpoint period. Table 3.1 also summarizes the overhead factors our algo-

rithms incur.

To eliminate overhead factors, both of our new algorithms strictly separate the state

being updated by the Mutator from the state being read by the Asynchronous Writer.

In addition, both track updates at very fine, word-level granularity. However, the algo-

rithms use different amounts of main memory. Wait-Free Zigzag, like Naive-Snapshot

and Copy-On-Update, uses additional main memory on the order of the size of the ap-

plication state. Wait-Free Ping-Pong, however, requires twice that amount. We believe

that this is a reasonable tradeoff for most MMOs and OLTP applications, as the size of

the dynamically updated state is generally quite small – usually only a small fraction of

the whole state.

3.2.2 Wait-Free Zigzag

The main intuition behind Wait-Free Zigzag is to maintain an untouched copy of every

word in the application state for the duration of a checkpoint period. These copies form

the consistent image that is written to disk by the Asynchronous Writer. As these copies

are never changed during the checkpoint period, the Asynchronous Writer is free to read

them without acquiring locks.

The algorithm starts with two identical copies of the application state: AS0 and AS1

(Figure 3.1(a)). For each word i in the application state, we maintain two bits: MR[i]
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Figure 3.1: Wait-Free Zigzag Example

and MW [i]. The first bit, MR[i], indicates which application state should be used for

Mutator reads from word i, while the second bit, MW [i], indicates which should be used

for Mutator writes. The bit array MR is initialized with zeros and MW with ones.

During a checkpoint period, Wait-Free Zigzag maintains an invariant that the bits

in MW are never updated during a checkpoint period. This ensures that for every

word i, AS¬MW [i][i] is also never updated by the Mutator during a checkpoint period.

These words form an untouched consistent copy of the application state. As such, the

Asynchronous Writer flushes exactly these words to disk in order to take a checkpoint.

To avoid blocking the Mutator, however, we must also apply updates to the applica-

tion state. Whenever a new update comes to word i, we write that update to position

ASMW [i][i] and set MR[i] to MW [i]. Before any read of a word i, the Mutator inspects
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MR[i] and directs the read to the most recently updated word ASMR[i][i]. Figure 3.1(b)

shows the situation after updates are applied to the shaded words. For example, the

value written for the third word by the Asynchronous Writer resides in AS0 and remains

unchanged during the first checkpoint. Any reads by the Mutator after the first update

return the value in AS1.

At the end of the checkpoint period, to maintain the invariant for the next checkpoint

period, the Mutator assigns the negation of MR to MW , i.e., ∀i,MW [i] := ¬MR[i]. This

is done so that the current state of the application is not updated by the Mutator during

the next checkpoint period and can be written to disk by the Asynchronous Writer.

Figure 3.1(c) shows the state right after the Mutator performs this assignment in our

example. Again, updates during the next checkpoint period follow the same procedure

outlined above. Figure 3.1(d) shows the application state after two updates during the

second checkpoint period. Note that the current application state, as well as the state

being checkpointed to disk, is now distributed between AS0 and AS1.

Algorithm 2 summarizes Wait-Free Zigzag. At the very first checkpoint, all the bits

in MW are ones, so the Mutator only updates AS1, and sets the MR bits accordingly.

Meanwhile, the Asynchronous Writers can flush AS0 to a stable storage. The Mutator

can read values of the application state using the corresponding MR bits. At the end of

this checkpoint, the Mutator pauses the application state, assigns the negation of MR to

MW to maintain the invariant for the next checkpoint. The process repeats for the next

checkpoint and so on.

While most of this algorithm is a straightforward translation of the explanation

above, one further observation applies to the PointOfConsistency procedure. This

Mutator procedure checks whether the Asynchronous Writer has finished writing the

current checkpoint to disk. Though the threads communicate, this does not violate the
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Algorithm 2: Wait-Free Zigzag

input:
/* ApplicationState is a vector containing words */

ApplicationState AS0← initial application state

ApplicationState AS1← initial application state

sizeWords← |AS0| /* size of application state in words */

BitArray MR←{0,0, . . . ,0} /* reads from the Mutator reference ASMR[k] */

BitArray MW ←{1,1, . . . ,1} /* writes from the Mutator affect ASMW [k] */

Mutator::PrepareForNextCheckpoint()
1: for i = 0 to sizeWords do

2: MW [i]←¬MR[i]

3: end for

Mutator::PointOfConsistency()
1: if Asynchronous Writer done then

2: PrepareForNextCheckpoint()

3: NotifyAsynchronousWriter()

4: end if

Mutator::HandleRead(index)
1: return ASMR[index][index]

Mutator::HandleWrite(index, newValue)
1: ASMW [index][index]← newValue

2: MR[index]←MW [index]

AsynchronousWriter::WriteToStableStorage()
1: loop

2: WaitForMutatorNotification()

3: for k = 0 to sizeWords do

4: write-to-disk AS¬MW [k][k]

5: end for

6: end loop
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Figure 3.2: Wait-Free Ping-Pong Example

wait-free property of the algorithm, as it can be implemented using store and load barri-

ers instead of locks. Heavier synchronization methods are only necessary at the end of

every checkpoint period.

Wait-Free Zigzag does not require any lock synchronization during a checkpoint

period. In addition, there is no need to copy memory blocks in response to an update

from the Mutator. This eliminates some of the largest overheads of Copy-on-Update.

In addition, Wait-Free Zigzag distributes its overhead smoothly and avoids the latency

spikes of Naive-Snapshot. On the other hand, Wait-Free Zigzag adds bit checking and

setting overhead to both reads and writes issued by the Mutator. It also exhibits a small

latency peak associated with negating the bit array at checkpoint boundaries.
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3.2.3 Wait-Free Ping-Pong

All algorithms we have analyzed so far may introduce latency spikes at the end of a

checkpoint period due to either synchronous copying or bulk bit-array reset. In this

section, we present Wait-Free Ping-Pong, an algorithm that invests extra main memory

and extra work per update to avoid these peaks. Wait-Free Ping-Pong uses a total of

three versions of the application state. Two of these are used to ensure that the Mutator

and Asynchronous Writer always access separate versions of the state and never have to

acquire locks. The final copy allows Wait-Free Ping-Pong to do only a constant amount

of work at checkpoint boundaries. Rather than performing a large copy or linear time

bit-array reset, it only needs to swap two pointers before starting the next checkpoint.

The three copies of the state maintained by Wait-Free Ping-Pong are called AS, Odd,

and Even. The Mutator thread reads from AS and applies each update to both AS and one

of the other copies (either Odd or Even). The Asynchronous Writer uses the other copy

to construct a consistent checkpoint that it writes to disk in the background. At the end

of the checkpoint period the roles of Odd and Even are switched so that new updates can

be flushed to disk. In order to avoid unnecessary disk writes, each word in Odd and Even

has an associated mark bit that indicates whether it has been updated during the current

checkpoint period. The Asynchronous Writer merges those words that have their mark

bits set with the previous checkpoint in order to create a new consistent checkpoint.

We show the initial state of Wait-Free Ping-Pong in Figure 3.2(a). AS contains the

application state, Odd is empty, and Even contains a copy of AS. The Asynchronous

Writer will process Even and flush to disk all of the words that have a mark bit set.

During the first checkpoint period, this corresponds to the whole state. In the meantime,

the Mutator applies updates to AS. For every such update, the Mutator must guarantee

that the corresponding mark bit for the updated word is set on Odd and that the update is
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Algorithm 3: Wait-Free Ping-Pong

input:
/* ApplicationState is vector containing words */

ApplicationState AS← initial application state

ApplicationState currentAS

ApplicationState previousAS← initial application state

sizeWords← |AS| /* size of application state in words */

BitArray currentBA←{0,0, . . . ,0} /* current checkpoint dirty words */

BitArray previousBA←{1,1, . . . ,1} /* last checkpoint dirty words */

Mutator::PrepareForNextCheckpoint()
1: /* pointer swapping */

swap (previousAS,currentAS)
swap (previousBA,currentBA)

Mutator::PointOfConsistency()
1: if Asynchronous Writer done then
2: PrepareForNextCheckpoint()
3: NotifyAsynchronousWriter()
4: end if

Mutator::HandleWrite(index, newValue)
1: AS[index]← newValue
2: currentAS[index]← newValue
3: currenBA[index]← 1

AsynchronousWriter::WriteToStableStorage()
1: loop
2: WaitForMutatorNotification()
3: for k = 0 to sizeWords do
4: if previousBA[k] then
5: write-to-disk previousAS[k]
6: previousBA[k]← 0
7: previousAS[k]← empty
8: else
9: write-to-disk word k from previous checkpoint

10: end if
11: end for
12: end loop
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also applied to Odd. The situation after a few mutator updates is shown in Figure 3.2(b).

Updated words are shaded in the figure – their most recent values are present in both AS

and Odd.

At the end of the first checkpoint period, the Asynchronous Writer will have written

all of the marked words in Even out to disk. In addition, it will have reset their mark

bits. For clarity of presentation, we assume that not only the mark bits but also the

contents of those words are reset by the Asynchronous Writer. In an implementation,

however, this latter action may be skipped for performance. Note that the Mutator is still

applying updates to Odd up to this point. Now, the Asynchronous Writer is done with

this checkpoint period. The next checkpoint period proceeds similarly with the roles

of Odd and Even inverted. This is shown in Figure 3.2(c). During the next checkpoint

period, the algorithm applies updates to Even and the words marked in Odd are flushed

to disk by the Asynchronous Writer. Figure 3.2(d) displays the situation after a few

updates from the Mutator in the second checkpoint period.

Algorithm 3 presents the logic of Wait-Free Ping-Pong. Note that currentAS and

currentBA point to the copy of the application state collecting updates for the current

checkpoint period (either Odd or Even). From a high-level perspective, currentAS and

currentBA may be seen as an in-memory, compressed implementation of a log of up-

dates for this checkpoint period.

Note that as part of the WriteToStableStorage method, the Asynchronous Writer

must merge the words updated during the most recent checkpoint (previousAS[k]) with

the last consistent checkpoint in order to construct a new consistent checkpoint that can

be written to disk (lines 5 and 9). This merge can be done in one of two ways. In the

first method, which we call Copy, the Asynchronous Writer maintains an extra copy of

the application state which it “rolls forward” by applying the new updates before flush-
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ing the full checkpoint to disk. In the second method, called Merge, the Asynchronous

Writer reads the most recent checkpoint from disk and applies the new updates before

streaming the new checkpoint to disk. Note that the updates can be applied as the check-

point is read, so it is not necessary to maintain an additional copy of the state in main

memory. We compare these alternatives in Section 3.4.5

Wait-Free Ping-Pong introduces negligible overhead to the Mutator at the end of

a checkpoint period; only simple pointer swaps are needed. Thus, there is no single

point in time at which the algorithm introduces a latency peak. On the other hand,

this algorithm doubles the number of updates, as each update is applied both to the

application state and to a copy.

3.3 Implementation

Since all of the algorithms we evaluate make frequent access to multiple copies of the

application state in main memory, cache and TLB performance are important consid-

erations to reduce overhead. In this section, we describe the important features of our

cache-optimized implementations.

3.3.1 Existing Algorithms

We start by describing our implementations of the two existing algorithms: Naive-

Snapshot and Copy-on-Update.

Naive Snapshot (NS). As this algorithm is relatively straightforward, we focused on

making the memory copy at the beginning of a new checkpoint period as efficient as
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possible. With microbenchmarks, we observed that a memcpy of a memory-aligned

application state was better than our attempts to manually unroll the copy loop.

Bit-Array Packed Copy-on-Update (BACOU). The main data structures used by

Copy-on-Update include the primary and shadow states maintained by the algorithm,

bit arrays with metadata on dirty memory blocks, and lock information for these blocks.

In order to minimize the overhead of bulk bit-array resetting, we packed the bits into

(64 byte) cache lines and used long word instructions for all operations. Furthermore,

we interleaved blocks of the primary and shadow copies of the application state into one

cache line, so that they will be fetched together. This optimized implementation gave us

a factor of five improvement over a naive implementation of the algorithm.

3.3.2 Wait-Free Zigzag

The Wait-Free Zigzag algorithm has two major sources of overhead: the bit array

lookups in the handleRead and handleWrite routines, and the bulk negation in the

prepareForNextCheckpoint routine. To address these sources of overhead, we de-

vised the following data layout variations.

Naive Wait-Free Zigzag (NZZ). This is the naive translation of the algorithm presented

in Section 3.2.2. We represented each of AS0, AS1, MR, and MW as a separate array in

main memory and encoded each bit of MR and MW as one byte for efficient access.

Interleaved Wait-Free Zigzag (IZZ). In this variant, we interleaved the main-memory

layout of AS0, AS1, MR, and MW . Each cache line holds a fixed number of interleaved

records, containing a word from each data structure, stored in order. Placing all of

the words necessary for handleRead and handleWrite in the same cache line reduces
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memory stalls on read and write instructions.

Packed Wait-Free Zigzag (PZZ). This variant is similar to IZZ, but organizes data

inside of a cache line differently. Instead of laying out interleaved records row-

at-a-time, we laid them out column-at-a-time, in a style reminiscent of PAX [3].

This maintains the benefits for handleRead and handleWrite, while allowing

prepareForNextCheckpoint to be implemented more efficiently with long word nega-

tion instructions.

Bit-Array Packed Wait-Free Zigzag (BAZZ). We observed experimentally that negat-

ing the MR bits at the end of each checkpoint period was the major source of overhead in

Wait-Free Zigzag (Section 3.4.2). As with BACOU, we optimized this bulk negation by

combining the representation of MR and MW into a single bit-packed array. We divided

each cache line in the array in half, and used the first half for the bits of MR and the

second half for bits of MW . In a system with a cache line size of 64 bytes, each cache

line encodes 256 bits from each array. We negated the bits of MR efficiently with long

word instructions.

3.3.3 Wait-Free Ping-Pong

Unlike Wait-Free Zigzag, Wait-Free Ping-Pong has a very inexpensive

prepareForNextCheckpoint routine. On the other hand, it must write to two

copies of the application state during each update. With this in mind, we investigate the

following two variants of Wait-Free Ping-Pong.

Naive Wait-Free Ping-Pong (NPP). In this variant, we allocated AS, Odd, Even, and

their respective bit arrays as independent arrays in main memory. Additionally, we also
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represented each bit using one byte in order to avoid bit encoding overhead on writes.

Interleaved Wait-Free Ping-Pong (IPP). As in the corresponding variant for Wait-Free

Zigzag, we interleaved the memory layout of AS, Odd, Even, and their respective bit

arrays. Each cache line contains a set of interleaved records with one word from each

data structure in sequence. In this way, the additional writes of handleWrite fall on the

same cache line as the original write to the application state. We thus expect to eliminate

any DTLB or cache miss overheads associated with the additional writes of Wait-Free

Ping-Pong using this organization.

We also applied a number of other optimizations, including using different page

sizes, eliminating conditionals, and aggressively inlining code. Using large pages re-

sulted in a considerable performance improvement, which we report in Section 3.4.6.

3.4 Experiments

In this section we compare the performance of Wait-Free Zigzag and Wait-Free Ping-

Pong with existing algorithms. We consider several metrics in our evaluation. First, we

look at the synchronous overhead per checkpoint. This added overhead indicates the

total amount of work done by the checkpointing algorithm during a checkpoint period.

We also measure how the overhead is distributed over time in order to see whether the

checkpointing algorithms introduce any unacceptable latency peaks.

70



3.4.1 Setup and Datasets

We compare Wait-Free Zigzag and Wait-Free Ping-Pong with Naive-Snapshot and

Copy-on-Update using two different synthetic workloads and a main-memory TPC-C

application.

Synthetic Workloads. For the synthetic workloads, we produced trace files containing

the sequence of physical updates to apply to the application. We make these traces

sufficiently large to avoid transient effects and keep them in main memory to avoid I/O

effects. Updates are applied as fast as possible by our benchmark, but to normalize

results for presentation, we group updates into intervals that correspond to 0.1 seconds

of simulated application logic. In addition, to meaningfully compare the overhead of

checkpointing algorithms, we ensure that the checkpointing interval is the same for all

algorithms.

In the first workload, we model the application state as a set of 8 KB objects. Differ-

ent FC applications may have different data models or schemas, but this is a reasonable

general model that allows us to vary the state size by changing the number of objects.

We use 25,000 rows as a default, which yields approximately 200 MB of dynamic state.

In this workload, we distribute updates by selecting an object and then selecting one of

the 2,000 four-byte words of the object using identical Zipf-distributions with parameter

α. Using this skewed distribution allows us to model applications in which part of the

state is “hot” and is frequently updated. We have found that our results remain consistent

across a range of α values, so for space reasons we present all results with α = 0.5.

We also experimented with a synthetic MMO workload. Accurately modeling an

MMO is challenging as games vary widely, but we have attempted to capture the salient

features using a Markov model. Each agent in the game is represented as an object
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and modeled with a set of five semi-independent probabilistic state machines associated

with common gameplay behaviors. We tuned the transition probabilities for each state

machine by looking at update rates produced for each type of action. We then adjusted

the state-transition probabilities until these update rates corresponded to those we have

observed in specific MMOs. For our experiments, we used 2,000 players and a total

of 531,530 updates per second. Each player object contains roughly 100 KB of state

corresponding to a wide variety of character attributes.

We ran all synthetic experiments on a local Intel Xeon 5500 2.66 GHz with 12 GB

RAM and four cores running CentOS. Its Nehalem-based CPU has 32 KB L1 cache,

256 KB L2 cache for each core and a shared L3 cache of 8 MB. We measured disk

bandwidth in this server to be roughly 60 MB/s. For the experiments with synthetic

workloads, we first ensured that the checkpoint interval was large enough for any of

the algorithms to finish writing the entire checkpoint to disk. Then, we normalized

checkpoint interval at roughly 4 seconds, so as to provide for short estimated recovery

time. Once we established this, we turned off both the Asynchronous Writer and logical

logging. These mechanisms perform the same amount of work independently of check-

pointing method, and disabling them enabled us to measure the synchronous overhead

introduced by different algorithms more accurately.

TPC-C Application. We implemented a single-threaded transaction processing system

in main memory. Following the methodology from [109], we implemented the TPC-

C workload by writing stored procedures in C++. We drive this application with a

memory-resident trace containing transaction procedure calls respecting the transaction

mix dictated by the TPC-C specification. As in [109], we do not model think times

in order to stress our implementation. As usual, we report the number of new order

transactions per second.
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Unlike in the synthetic benchmark experiments, we checkpoint as frequently as pos-

sible in order to understand the maximum impact of our algorithms in a realistic ap-

plication. This yields the minimum possible recovery time, as the length of the log

since the last checkpoint is minimized. We ran our TPC-C application on an Amazon

Cluster Compute Quadruple Extra Large instance with 23 GB RAM, and computing

power equivalent to two Intel Xeon X5570 quad-core Nehalem-based processors. We

write checkpoints and the log to two separate RAID-0 devices, which we configured

with ten Amazon Elastic Block Storage (Amazon EBS) volumes. We observed that the

aggregate bandwidth of these RAID-0 devices depended on the size of the I/O request,

ranging from under 10 MB/s for small requests to over 150 MB/s for large requests

exceeding 1 GB. In order to completely utilize disk bandwidth, we scale the check-

point interval with the size of the dynamic application state, so that the Asynchronous

Writer always writes data to disk as fast as possible. This differs from our synthetic

experiments where we set the checkpoint interval to a constant for all measurements.

Nevertheless, to fairly compare the overhead of different algorithms, we set the length

of the checkpoint interval to be the same for all methods at each database size.

Since each EC2 instance communicates with EBS over the network, there is a CPU

cost to writing out state in the Asynchronous Writer. To limit this effect, we set the

thread affinity so that the Asynchronous Writer always runs on a separate core from the

Mutator thread. As the number of cores per machine continues to increase, we believe

that it will become increasingly feasible to devote a core to durability in this way. A

thorough evaluation of these methods on a single core remains future work.

In addition to turning on the Asynchronous Writer, we also enable logging for these

experiments. To minimize synchronous I/O effects, we configured the Logger thread to

perform group commit in batches of 500 transactions. We also overlap computation with
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IO operations so that when the Logger is writing the actions of one batch of transactions,

the Mutator is processing the next batch.

In standard OLTP systems, it is common to use the ARIES recovery algorithm [77].

As a baseline for our TPC-C experiments, we have implemented an optimized version

of ARIES for main-memory databases. As FC applications do not have transactions in

flight at points of consistency, checkpointing does not need to be aware of transaction

aborts. This eliminates the need to maintain undo information. In addition, since the

database is entirely resident in main memory, there is no need to keep a dirty page

table. So in our scenario, ARIES reduces to physical redo logging with periodic fuzzy

checkpoints. To optimize it as much as possible, we compressed the format of physical

log records by exploiting schema information instead of recording explicit offsets and

lengths whenever profitable.

In the remainder of this section, we first compare the different implementation op-

tions from Section 5.2 for our algorithms (Section 3.4.2). After selecting the alternatives

with the best performance, we observe how our new algorithms compare to existing

methods using both the Zipf and MMO workloads (Sections 3.4.3 and 3.4.4). Then,

we report on how our methods affect application throughput in our TPC-C application

(Section 3.4.5). Finally, we investigate the impact of a further optimization, using large

pages, on the relative performance of all algorithms (Section 3.4.6).

3.4.2 Comparison of Implementation Variants

In this section we compare the performance of the different implementations of our al-

gorithms on the Zipf workload. To get a deeper understanding of the runtime character-

istics, we profiled our implementation with the Intel VTune Performance Analyzer [55].
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Figure 3.3: Wait-Free Zigzag Overhead
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Figure 3.4: Wait-Free Ping-Pong Overhead
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Figure 3.5: Zipf workload: Overhead

Table 3.2 shows a subset of the statistics we collected from VTune. It includes cycles

per instruction (CPI) as well as various measures to characterize the behavior of cache,

DTLB, and page walks. For reference, we display these statistics not only for all algo-

rithms, but also for the raw Mutator program without checkpointing.
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Wait-Free Zigzag

Figure 3.3 shows the average overhead per checkpoint period of the different variants.

Both IZZ and PZZ are less efficient than NZZ, except for extremely high update rates.

With NZZ and PZZ, the use of long word instructions during negation brings benefits

over IZZ, which negates single bytes at a time. However, the benefits are much smaller

for PZZ, given that it still interleaves state information between small bit blocks. BAZZ,

a variant that focuses on optimizing bulk bit-array negation, dominates all other variants.

In general, there is a tension between accelerating bulk bit-array negation and re-

ducing per-update overhead. Table 3.2 shows profiling results for 320,000 updates per

second. NZZ’s update handling phase has an L1D cache miss rate of 22.3% and an L2

cache miss rate of 24.6%. In addition, every update incurs 0.78 page walks on aver-

age, given NZZ’s independent allocation of data structures. Bulk negation, on the other

hand, benefits from prefetching on these data structures. The cache miss rate is about

3% for both the L1D and the L2 cache; the DTLB miss rate is also low. IZZ trades bulk

negation performance for better update performance. Its DTLB miss rate is much lower

than that of NZZ. The ratio of cache misses to updates for IZZ is much higher during the

bulk negation phase, however. PZZ pays more on cache misses and page walks at the

update phase, but less during the bulk negation phase. Meanwhile, BAZZ focuses solely

on making negation more compact, and dramatically improves performance despite a

higher cache miss rate. As Figure 3.3 shows, this is an important effect at most update

rates.

Overall, we have observed that negation is the most significant source of overhead

for Wait-Free Zigzag unless the update rate is extremely high. Thus, BAZZ is the best

variant for this algorithm under typical workloads. For example, at 320,000 updates per

second, BAZZ exhibits about half as much overhead as NZZ and one third the overhead
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Algorithma CPI
L1D L1D L2 DTLB # Page

Misses / Miss Miss Miss % Walks /
Update Rate Rate (STORE) Update

NS 1.79 2.1 6.6% 10.8% 7.1% 0.50
COU 2.91 1.2 8.5% 9.2% 23.5% 0.53
BACOU 2.51 1.1 4.5% 4.5% 6.5% 0.41
NZZ-UP 13.6 0.8 22.3% 24.6% 95.2% 0.78
NZZ-NE 0.7 0.2 3.1% 3.1% 0.8% -
IZZ-UP 11.1 0.2 7.7% 7.2% 49.2% 0.29
IZZ-NE 0.7 1.0 3.0% 3.4% 1.6% 0.02
PZZ-UP 7.1 0.3 5.0% 5.2% 48.7% 0.37
PZZ-NE 5.0 0.8 22.8% 25.4% 3.3% 0.02
BAZZ-UP 1.5 0.04 6.9% 7.2% 0.03% -
BAZZ-NE 1.6 0.03 6.9% 8.0% - -
NPP 7.1 1.9 23.6% 24.0% 97.4% 0.96
IPP 2.5 1.7 7.4% 7.8% 98.3% .85
Raw Mutator 2.4 2.0 9.4% 8.0% 96.0% 1.00

a-UP: update handling phase; -NE: bulk negation phase

Table 3.2: Profiling on synthetic workload, 320K updates/sec

of IZZ.

Wait-Free Ping-Pong

Figure 3.4 shows the overhead of the two variants of Wait-Free Ping-Pong. NPP’s over-

head is roughly six times higher than IPP’s over all update rates. Like NZZ, NPP runs

into similar problems with DTLB and cache performance. Table 3.2 shows observation.

that NPP’s cycle-per-instruction ratio (CPI) is 2.8 times higher.

IPP, on the other hand, potentially incurs a cache miss on the write to the application

state, but then is guaranteed to find the other words to be written on the same cache line.

This has a positive effect in the L1D LOAD hit rate and eliminates most of the stalls on

LOAD. IPP pays only a 43% performance overhead on top of the raw Mutator, a great

improvement compared to the 258% of NPP. These numbers are very consistent across
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update rates.

In short, this experiment shows that IPP comfortably dominates NPP over the whole

spectrum of update rates evaluated.

3.4.3 Synthetic Zipf Workload

In this section, we compare the performance of our new algorithms with the best cache-

aware variants of Naive Snapshot (NS) and Copy-on-Update (BACOU). We report num-

bers for the optimized variants described in Section 5.2. For both BACOU and BAZZ, the

overhead numbers we report are lower bounds. Since we turned off the Asynchronous

Writer, there is no lock contention between the Mutator and the Asynchronous Writer

in BACOU. We also do not model reads, which discounts the small amount of per-read

overhead for BAZZ. As shown below, IPP significantly dominates all these algorithms,

so we do not explore these effects further.

Checkpointing Overhead. Figure 3.5 shows the overhead of the algorithms for update

rates between 10,000 and 5,120,000 updates per second. As expected, NS is essentially

constant regardless of the number of updates, since it always copies the entire state.

This is the worst strategy for very low update rates since many unchanged cells get

copied, but it dominates the other algorithms, with the notable exception of IPP, for

more than 160,000 updates per second. This agrees with the results of [99] – when a

large fraction of the words gets updated, taking a checkpoint requires copying most of

the state anyway, and NS does this very efficiently.

Among the existing algorithms, BACOU is the best strategy for low update rates [99],

and it is four times faster than NS for 10,000 updates per second. Its overhead increases
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steadily with the update rate, however, since it must lock and copy a memory block

the first time the block is updated. As we increase the update rate, more blocks get

updated, leading to higher locking and copying overheads. Even though updates are

distributed using a Zipf distribution, we have observed only a minor effect from the

fact that updates have higher likelihood to hit hot words that fall into the same memory

block. This measurement corroborates prior simulation results [99]. We observe that

BACOU is never the best algorithm for any update rate. It is always dominated by IPP,

and it is also dominated by NS for high update rates.

IPP displays the best performance of any of the algorithms for all but the highest

update rates. At 80,000 updates per second, it is nine times better than BAZZ and over

an order of magnitude better than NS and BACOU. At 320,000 updates per second, the

gap is still a factor of 8.4 with respect to BAZZ, 9.6 with respect to BACOU and three with

respect to NS. IPP scales linearly with the number of updates over the entire range of

update rates, since the predominant cost is updating each of two copies of the application

state. The absolute overhead of the extra updates performed by IPP is extremely low,

however, due to its cache-aware data layout and its wait-free operation. Unlike in BAZZ,

in IPP the Mutator does not do any bit negations, and the beginning of a checkpoint

consists only of swapping pointers.

This experiment shows that, for our default application state size of 200MB, IPP

is the method with the lowest overhead for all but the highest update rates. Next, we

validate that this trend is robust for a wide range of state sizes.

Scaling the State Size. To understand how our algorithms perform for applications with

larger state sizes, we scale the application state from 100 MB to 1.6 GB by adding more

objects to the state. Figures 3.6 and 3.7 show the overhead per checkpoint period for

two different update rates. In each case, we scale the update rate with the state size,
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Figure 3.6: Scaleup: 0.08% updates/sec

10
-3

10
-2

10
-1

10
0

 100  200  400  800  1600

O
v
er

h
ea

d
 p

er
 C

h
ec

k
p
o
in

t 
[s

ec
],

 l
o
g

sc
al

e

Application State Size [MB], logscale

NS

BACOU

BAZZ

IPP

Figure 3.7: Scaleup: 2.56% updates/sec
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Figure 3.8: Latency: 320K updates/sec

so in Figure 3.6, for every second, we update a number of words equal to 0.08% of

the state size. This corresponds to 40,000 updates per second for 200 MB of state. In

Figure 3.7 the update rate corresponds to 2.56%, which is 1,280,000 updates per second

for 200 MB of state.

From these graphs we confirm that the trends we described above for 200 MB of

application state continue to hold for larger state sizes. When the update rate is fairly low
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(Figure 3.6), IPP has roughly an order of magnitude lower overhead than NS regardless

of the state size. On the other hand, when the update rate is very high (Figure 3.7),

NS dominates all other algorithms, as it is insensitive to the number of updates. IPP

continues to dominate BACOU and BAZZ for larger state sizes regardless of the update

rate.

Overhead Distribution. The above experiments already show that IPP dominates BA-

COU and is preferable to NS for all but the highest update rates, but the overhead does

not tell the whole story. As discussed in Section 3.1.1, we also want the overhead to be

uniformly distributed over time. Figures 3.8 and 3.9 show the cost of the Mutator thread

for 320,000 and 1,280,000 updates per second, respectively. Points on the x-axis corre-

spond to time intervals of 0.1 sec, or alternatively the time it takes to execute 32,000 or

128,000 updates. Each point in the graphs indicates the total time taken by the Mutator

thread during one such interval. The graphs thus give us an indication of how work is

distributed over time.

From these graphs, we see that NS has the worst overhead distribution of any of the

algorithms. At 320,000 updates per second (Figure 3.8) it has a latency peak of 29 ms

during intervals when the state is copied. BAZZ and BACOU have much smaller peaks,

at 4 ms and 6 ms, respectively. These results indicate that there is a tradeoff between the

absolute overhead per checkpoint and the overhead distribution. Recall from Figure 3.5

that NS has lower overhead than BACOU at 320,000 updates per second, but the latter has

a much lower spike. Fortunately, this tradeoff is not present for IPP, which has a nearly

constant overhead of 0.8 ms per 0.1 second interval at 320,000 updates per second. This

is because IPP only has to swap pointers at the beginning of each checkpoint, and most

of the work is distributed evenly among the updates.

Figure 3.9 tells a slightly different story. The number of updates executed during
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each point of the graph has increased to 128,000, and this increases the baseline over-

head for all of the strategies that do some work per update. BAZZ shows the most

dramatic increase with a nearly constant overhead of 10 ms. BACOU and IPP also show

modest overhead increases. Additionally, we can see the finer structure of BACOU.

There is a spike in the overhead at the end of each checkpoint period, and then the over-

head gradually decreases during the checkpoint. This is because BACOU only has to

copy a block the first time it is updated. As the checkpoint progresses, more blocks are

already dirty and do not need to be copied.

Significantly, the behavior of NS changes very little at the higher update rate. This is

because all of the work done by NS is done at the end of a checkpoint period. The small

increase in the figure is due to the time necessary to apply the updates. This indicates a

distinction between the overhead incurred by NS and the overhead incurred by the other

algorithms. Aside from the small spikes for BAZZ and BACOU, the other algorithms

incur most of their cost for work they do at each update. Thus as we increase the number

of updates per unit of time, we expect their overhead to increase. Furthermore, the cost

shown in each point of Figures 3.8 and 3.9 is distributed across all of the updates in

the 0.1 second increment. On the other hand, the entire cost of NS occurs between

two updates at the end of each checkpoint period. Thus NS is insensitive to the update

rate, but it may force the system to block for a considerable amount of time during the

synchronous copy. As the height of NS’s latency spike is proportional to the application

state size, this problem becomes worse when we scale the state size.

Overall, IPP has the most consistent overhead of any tested algorithm, and its total

overhead is also lowest for all but the highest update rates. Thus we believe that it best

satisfies the requirements for FC applications described in Section 3.1.1.
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Figure 3.11: MMO: Latency

3.4.4 Synthetic MMO Workload

We also ran our experiments on a trace produced using our MMO workload. Figure 3.10

shows the checkpoint overhead. In this case, both wait-free strategies outperform BA-

COU. As expected, IPP performs the best, with nearly seven times less overhead than

NS. BAZZ is comparable to NS, even though it had higher overhead than NS for 500,000

updates per second in the Zipf experiments. Part of the reason our new algorithms do so

83



well in this case is that many attributes were almost never updated. About 80 percent of

the attributes are only updated in response to player actions, which are human initiated

and thus occur infrequently. This type of workload is bad for NS, as it has to copy many

cells that are never updated.

Figure 3.11 shows the performance of each algorithm in the MMO simulation over

time. The Mutator cost is quite variable compared to Figure 3.8, due to the more realistic

workload, but the trends are the same. NS shows peaks of up to 29 ms, while IPP has a

very low, almost uniform latency of at most 0.9 ms. These results suggest that Wait-Free

Ping-Pong offers real advantages for MMO workloads.

Finally, we measured the recovery time for the MMO workload. We expected this to

be the same for all of the algorithms, as they all store complete checkpoints on disk. In

addition, this time is the same as for the synthetic workload, given that the application

state size for both scenarios is the same. To measure this time, we observed the time

to reread the checkpoint from disk after a crash simulated by server reboot, obtaining

an average of 3.9 seconds out of five measurements. To simulate replaying the logical

log, we can reapply the updates from the MMO trace file that occurred since the last

checkpoint. The maximum time to reapply those updates is equal to our checkpointing

interval of 4.2 seconds, resulting in a worst-case recovery time of only 8.1 seconds.

Given that current MMO players regularly tolerate downtime [28], we think this is very

reasonable for real systems.

In short, the above experiments show that IPP is the method with the lowest overhead

and the best overhead distribution for a realistic application with hundreds of thousands

of updates per second. In addition, IPP exhibits short recovery times in this scenario.
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3.4.5 TPC-C Application

To validate the usefulness of our techniques in realistic FC applications with logging

and checkpoint writing enabled, we compare the total overhead introduced by different

checkpointing techniques in our main-memory implementation of the TPC-C bench-

mark [117]. We stress our implementation by processing as many transactions per sec-

ond as possible and show results for the two best methods for high update rates: Naive

Snapshot (NS) and Wait-Free Ping-Pong (IPP). In addition, we show the performance

of our optimized version of ARIES (OPT. ARIES) as a baseline method.

Figure 3.12 shows throughput as we increase the number of warehouses in TPC-C.

Recall that in this measurement we keep the ratio of application state size to checkpoint

interval fixed. In other words, we checkpoint as fast as possible to achieve short recov-

ery times while ensuring that the checkpoint interval is equal for all methods so as to

allow for direct overhead comparison. Thus the checkpoint sizes grow and so do the

costs per checkpoint. The maximum attainable performance is displayed by running

the application with checkpointing disabled. Maximum throughput declines as we scale

the number of warehouses given that we must operate over a larger database in main

memory.

We observe that the relative performance of all methods remains roughly unchanged

as we scale the number of warehouses. The variants of IPP using the Copy and Merge

methods described in Section3.2.3 for merging the new updates with the previous check-

point perform similarly. IPP-Copy always slightly outperforms IPP-Merge at the cost of

maintaining an additional copy of the application state. Both IPP variants dominate NS,

which in turn dominates OPT. ARIES. At 60 warehouses, application throughput de-

creases by 10.11% when using IPP-Copy, by 27.92% when using NS, and by 34.21%

when using OPT. ARIES.
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Figure 3.14: Large Page Overhead

In order to understand the distribution of overhead in the TPC-C experiment, we

also measured the response time of each of the algorithms. Figure 3.13 reports these

results, where each point corresponds to a batch of 500 transactions that are committed

together. The response time is measured as the time between the start of one batch of

transactions and the start of the next. The large peaks in the response time of NS are

due to the synchronous copy time at the end of each checkpoint period. The remaining

peaks in all of the algorithms are due to the cost of logging to EBS. Recall that while the
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Logger is writing to EBS, the Mutator executes the next batch of transactions. This hides

some of the disk latency, but the Mutator still blocks if it finishes the next batch before

the Logger. Thus the response time is still quite erratic due to variability in transaction

lengths and EBS latency. Since OPT. ARIES uses physical logging, it must write more

data to disk, and thus the peaks for OPT. ARIES are both larger and more frequent than

the other methods.

Based on these results, we find that IPP allows for frequent checkpointing with sig-

nificantly lower overhead than the best existing methods. Further, it distributes overhead

more evenly than either Naive Snapshot or ARIES, and thus is more suitable for latency-

sensitive applications. As the memory capacity and number of cores in a single node

continue to increase, we will be able to process even more warehouses within a single

machine. Thus, the absolute difference in throughput between using IPP and existing

methods will become even more dramatic in the future. Therefore, our experiments

suggest that IPP should be the checkpointing method of choice for FC applications.

3.4.6 Further Optimizations: Large Pages

In order to further increase update rates and stress the limits of all methods, we investi-

gate the effect of an additional optimization. As discussed above, page walks resulting

from TLB misses are a significant bottleneck for the Mutator in most algorithms we

examined. Large pages may reduce TLB misses because they cover the same region

of physical memory with a smaller number of TLB entries. In our scenario, the whole

application state and auxiliary data structures are implemented as a few large objects in

memory, so using large pages causes very little internal fragmentation.

Figure 3.14 shows the reduction in overhead when we use different page sizes in
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the Synthetic Zipf workload. Large pages have little impact on NS and BACOU, since

these two methods do not put much stress on TLB (Table 3.2). In constrast, all variants

of Wait-Free Zigzag and Wait-Free Ping-Pong benefit noticeably from large pages. In

BAZZ, using large pages yields a 40% to 60% cut in overhead. In IPP, a consistent

80% overhead cut is obtained. These two algorithms benefit the most from using large

pages, and remain the best candidates from their respective family of variants. We also

increased the update rates to an extremely high value to compare the overhead of IPP

and NS when using large pages. Over a range up to ten million updates per second,

IPP outperforms NS by up to three orders of magnitude and maintains nearly constant

latency.

3.5 Related Work

There has been extensive work in checkpointing algorithms for main-memory

DBMSs [33, 92, 97, 98, 123]. Recently, we have evaluated the performance of these

algorithms for MMO workloads [99]. Naive-Snapshot and Copy-on-Update came out

as the most appropriate algorithms for checkpointing these FC applications. As we have

seen in our experiments, Wait-Free Ping-Pong dominates those methods over a wide

range of update rates. In contrast to Naive-Snapshot, Wait-Free Ping-Pong distributes

overhead better over time, eliminating latency peaks. In contrast to Copy-on-Update,

Wait-Free Ping-Pong completely eliminates locking overheads, as it is wait-free within

checkpoint periods.

There have been different approaches to integrating checkpoint-recovery systems

with applications. One consideration is whether to integrate checkpointing at the sys-

tem [71, 87] or application level [12, 16]. Additionally, checkpointing may be offered to
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applications embedded in a language runtime [127], through a library [87], or via com-

piler support [16]. Our work performs application-level checkpointing and integrates

with the application logic through a library API (Section 3.1.2). Thus we are able to

checkpoint only the relevant state of the application, something not achieved by system-

level checkpointing schemes. We are also able to exploit application semantics, such

as frequent points of consistency, to determine when a consistent image of the state is

present in main memory.

In classic relational DBMSs, ARIES is the gold standard for recovery [77]. As we

have seen in Section 3.4.5, approaches that necessitate physical logging, such as ARIES

or fuzzy checkpointing [50, 98], exhibit unacceptable logging overheads for the stream

of updates produced by FC applications in main memory.

Hot standby architectures have been commonly used to provide fault tolerance on

multiple database nodes [11, 53]. Recently, Lau and Madden [67] and Stonebraker et

al. [109] propose implementing active standbys by keeping up to K replicas of the state.

Systems using this approach can survive up to K failures, and they can also use those

replicas to speed up query processing. Our checkpointing algorithms can be used in tan-

dem with these approaches to bulk-copy state during recovery or when the set of replicas

changes. Many replicated systems (such as VoltDB [119]) also include checkpointing in

order to ensure durability in the event that all replicas fail (e.g., due to a power outage).

3.6 Conclusions

In this chapter, we have proposed two novel checkpoint recovery algorithms optimized

for frequently-consistent applications. Both methods implement highly granular track-

ing of updates to eliminate latency spikes due to bulk state copying. Moreover, the
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wait-free properties of our methods within a checkpoint period allow them to benefit

significantly from cache-aware data layout optimizations, dramatically reducing over-

head. Wait-Free Zigzag eliminates locking overhead by keeping an untouched copy of

the state during a checkpoint period. Wait-Free Ping-Pong improves both overhead and

latency even more by using additional main memory space. Our thorough experimental

evaluation shows that Wait-Free Ping-Pong outperforms the state of the art in terms of

overhead as well as maximum latency by over an order of magnitude. In fact, given

that Wait-Free Ping-Pong dominates Copy-on-Update and may have significantly lower

overhead than Naive-Snapshot over a wide range of update rates, our new algorithm

should be considered as an alternative wherever copy on write methods have been used

in the past.
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CHAPTER 4

OPTIMIZED CHECKPOINT-RECOVERY ALGORITHMS

Life is like riding a bicycle. To keep your balance, you must keep moving.

– Albert Einstein

Checkpoint-recovery is a crucially important technique to provide fault-tolerance to

main-memory applications. As discussed in the previous chapter, we can take advantage

of frequent points of consistency in many of modern main-memory applications to de-

velop novel checkpoint recovery algorithms that trade additional space in main memory

for significantly lower overhead and latency. In particular, Wait-Free Ping-Pong uses

three copies of the application state to achieve almost an order of magnitude lower over-

head and nearly constant latency. These algorithms work best for applications which

have small application states, such as MMOs, whose sizes are in a range of hundreds of

megabytes.

The previous chapter has only scratched the surface of the design space of

checkpoint-recovery methods to avoid locking and bulk copying. In this chapter, we

present a series of optimization techniques which exploit modern computer architec-

tures to reduce memory usage as well as to reduce synchronization overhead.

4.1 Background

A common feature of modern main-memory applications is that there are clear points in

time at which the application state is consistent. We consider OLTP systems as an exam-

ple. OLTP systems used to be heavily multi-threaded since they had to mask the huge

differences between access times to main memory versus disk. They sacrificed points of

91



consistency in order to mask latency differences, but the required concurrency control

and recovery subsystem imposed significant overhead [51]. When OLTP systems move

to main memory, this overhead and complexity can be avoided if transactions are just

completely serialized [109]. In addition, given natural restrictions on OLTP transactions,

it is possible to isolate their reads and writes to avoid coordination among multiple pro-

cessors or nodes. The end of each transaction (or group of transactions) marks a natural

point of consistency in these systems [118].

Such points of consistency exist in many other types of data-driven systems. Search

engines and data warehouse systems both keep read-optimized data structures for per-

formance. They do not directly apply updates to these data structures, but rather evolve

them by a differential indexing approach [103]. The merge of a new read-optimized data

structure in main memory marks a natural point of consistency. MMOs and large-scale

simulations follow a time-stepped processing model. Here, the effects of all actions of

characters are determined inside of a time step, or tick, and state updates are applied at

the end of a tick by aggregating the effects over all characters [107, 122]. The end of

each tick is again a natural point of consistency.

Data mining applications that can be implemented through iterated MapReduce

computations in main memory [25] are yet another example. This processing model ex-

hibits a natural point of consistency at the end of each MapReduce step [32]. The same

observation can be made about the time-stepped dataflow processing model proposed

by BOOM/Overlog [5, 27]. These processing models hold promise as new abstractions

to write a large number of future data-driven applications in the cloud.

In Chapter 2, we evaluated several existing main memory checkpointing algorithms

to persist the large number of non-transactional updates in MMOs. We recommended

two recovery algorithms: Copy-on-Update for low to moderate update rates, and Naive
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Snapshot for extremely high update rates. These algorithms try to balance the overhead

of checkpointing with the latency disruption caused by synchronous memory operations.

In order to avoid latency spikes, Copy-on-Update utilizes copy-on-write and requires

locking portions of the game state. Though this works for very low update rates, lock

contention becomes a major problem as the update rate increases. On the other hand,

Naive Snapshot involves large synchronous copy operations, and thus introduces large

latency spikes.

To avoid locking and synchronous copying, we designed two new algorithms: Wait-

Free Zigzag and Wait-Free Ping-Pong. As their names suggest, neither of these algo-

rithms requires locking, and both are designed to reduce latency spikes. Wait-Free Ping-

Pong takes advantage of the fact that the dynamic state is usually quite small, in a range

of a few hundred megabytes, so that it can use additional memory to reduce latency.

Wait-Free Zigzag is designed for more memory constrained environments, and achieves

overhead similar to existing algorithms with considerably smaller latency spikes.

In this chapter, we explore the impact of data layout in memory on cache perfor-

mance and present a series of low level optimizations. We find that our algorithms are

particularly amenable to these optimizations.

4.2 Optimizations for Copy-On-Update

In this section, we present the optimization techniques for Copy-On-Update.
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4.2.1 Copy-On-Update Revisited

The logic underlying Copy-On-Update is to group objects into blocks. During a check-

point period, when an object is updated, the block containing this object, if not yet

copied, is copied to the shadow state. There are two approaches to implement this logic;

system-level approach and application-level approach.

System-Level Copy-On-Update

System-level Copy-On-Update is widely used in all modern operating systems. This

approach uses page-level hardware-supported virtual memory snappshoting to create

consistent-snapshots. In particular, an Asynchronous Writer process is forked from the

Mutator process at a point of consistency. The forked child process obtains an exact

copy of the parent address space. The snapshot captures the state at the point of consis-

tency when the fork system call is invoked. When an object is updated, the hardware-

supported copy-on-update mechanism replicates the virtual memory page where the

object resides. Replicating a page is highly efficient, taking only 2 micro-second to

replicate a 4kb page [62]. Since the replication is carried out at the granularity of entire

pages, which usually have a default size of 4kb, it is difficult for system-level copy-on-

update to exploit memory layout to improve caching performance.

Application-Level Copy-On-Update

Algorithm 4 shows the pseudo-code of application-level Copy-on-Update. A set

of bit arrays is used to keep track of which blocks have been updated during the cur-

rent checkpoint period. The Mutator must check this bit array every time it updates

an object. Meanwhile, to bring the checkpoint up to date, the Asynchronous Writer
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Algorithm 4: Copy-On-Update algorithm

input:
/* ApplicationState is vector of blocks */

ApplicationState theApplicationState

ApplicationState shadowApplicationState

numBlocks← |theApplicationState|
BLOCKSIZE /* number of blocks */

BitArray currentBA /* current checkpoint dirty bits */

BitArray previousBA /* last checkpoint dirty bits */

BitArray changedBA /* last two checkpoints dirty bits*/

Mutator::PrepareForNextCheckpoint()
1: for i = 0 to numBlocks do

2: changedBA[i]← currentBA[i] | previousBA[i]

3: previousBA[i]← currentBA[i]

4: currentBA[i]← 0

5: end for

Mutator::EndOfTick()
1: if asynchronous writer done then

2: PrepareForNextCheckpoint()

3: NotifyAsynchronousWriter()

4: end if

Mutator::HandleWrite(index, update)
1: if ¬currentBA[index] then

2: lock theApplicationState[index]

3: if changedBA[index] then

4: shadowApplicationState[index]← theApplicationState[index]

5: end if

6: currentBA[index]← 1

7: unlock theApplicationState[index]

8: end if

9: theApplicationState[index]← update
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Algorithm 5: Copy-On-Update algorithm (Continue)

AsynchronousWriter::WriteToStableStorage()

1: loop

2: WaitForMutatorNotification()

3: if it is the first checkpoint then

4: write-to-disk theApplicationState

5: else

6: for k = 0 to numBlocks do

7: if changedBA[k] then

8: lock theApplicationState[k]

9: if currentBA[k] then

10: unlock theApplicationState[k]

11: write-to-disk shadowApplicationState[k]

12: else

13: write-to-disk theApplicationState[k]

14: unlock theApplicationState[k]

15: end if

16: end if

17: end for

18: end if

19: end loop

either reads from the application state or the shadow state depending on whether the

corresponding block has been updated. Since the Mutator is updating the application

state concurrently, it must be isolated from the Asynchronous Writer using locks on the

blocks it references. Note that this may introduce significant overhead if the number of

updates to the application state is large. By varying the block size, Copy-on-Update can

tradeoff between copying and locking overhead.
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In the remaining of this section, we present a set of optimization techniques to make

application-level Copy-On-Update lock-free.

4.2.2 Observations

We observe that the Asynchronous Writer always writes to the stable storage sequen-

tially. So, if the Asynchronous Writer is currently working on block i, then all the blocks

whose indexes are less than i have already been written. As a result, the Mutator can

freely update those blocks without acquiring a lock. The only information the Mutator

needs to know is the block index which the Asynchronous Writer is currently working

on. Hence, we can simply use less expensive operations, e.g. using memory barriers

or atomic Test-and-Set instruction, to synchronize the Mutator and the Asynchronous

Writer, completely removing the use of expensive locking.

In modern computer architecture, independent memory operations are effectively

performed in random order; for example, writes can be seen out-of-order, reads can

be speculative and return future values. In order to impose some orderings, program

developers have to use some types of memory-barriers. There are four basic types of

memory-barriers [76].

1. Store barrier A store barrier gives a guarantee that all the STORE operations

specified before the barrier will appear to happen before all the STORE operations

specified after the barrier with respect to the other components of the system. A

store barrier is a partial ordering on stores only; it is not required to have any effect

on loads.

2. Data dependency barrier A data dependency barrier gives a guarantee that if two

loads are performed such that the second depends on the result of the first, e.g. the
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first load retrieves the address to which the second load will be directed, then the

target of the second load is updated before the address obtained by the first load

is accessed. A data dependency barrier is a partial ordering on interdependent

loads only; it is not required to have any effect on stores, independent loads or

overlapping loads.

3. Load barrier A load barrier is a data dependency barrier plus a guarantee that all

the LOAD operations specified before the barrier will appear to happen before all

the LOAD operations specified after the barrier with respect to the other compo-

nents of the system. A load barrier is a partial ordering on loads only; it is not

required to have any effect on stores.

4. Full barrier A full memory barrier gives a guarantee that all the LOAD and

STORE operations specified before the barrier will appear to happen before all

the LOAD and STORE operations specified after the barrier with respect to the

other components of the system. A full memory barrier is a partial ordering over

both loads and stores.

4.2.3 Copy-On-Update with Naive Memory-Barriers

Algorithm 6 and Algorithm 7 describe a naive usage of memory-barriers to coordi-

nate the Mutator and the Asynchronous Writer. The key design is to assign each block

a status value; zero for not being updated, one for being updated and two for already

updated by the Mutator.

Initially, the status values are all zeros. Before applying the first update to a block

which has not been copied by the Asynchronous Writer, the Mutator sets the status bit

to one and copies the block to the Shadow Copy. After the copying is done, the Mutator
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Algorithm 6: MB-Copy-On-Update algorithm

input:

/* ApplicationState is vector of blocks */

ApplicationState theApplicationState

ApplicationState shadowApplicationState

numAtomicBlocks← |theApplicationState|
BLOCKSIZE /* number of blocks */

StatusArray statusArray /* 0:unchanged,1:being updated,2:updated */

iW ← 0 /* the async writer’s loop index */

LDBAR /* Load Barrier */

STBAR /* Store Barrier */

AsynchronousWriter::WriteToStableStorage()

1: loop

2: WaitForMutatorNotification()

3: for k = 0 to numBlocks do

4: if statusArray[iW ] == 0 then

5: LDBAR

6: write-to-backup theApplicationState[iW ]

7: LDBAR

8: end if

9: if statusArray[iW ]! = 0 then

10: while statusArray[iW ] == 1 do

11: no-op

12: end while

13: LDBAR

14: write-to-backup shadowApplicationState[k]

15: end if

16: LDBAR

17: increment iW

18: end for

19: end loop
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Algorithm 7: MB-Copy-On-Update algorithm(Continue)

Mutator::PrepareForNextCheckpoint()
1: for i = 0 to numBlocks do

2: clear statusArray[i]

3: end for

Mutator::EndOfTick()
1: if asynchronous writer done then

2: PrepareForNextCheckpoint()

3: NotifyAsynchronousWriter()

4: end if

Mutator::HandleWrite(index, update)
1: blockIndex = index∗ sizeo f (int)/BLOCKSIZE

2: if blockIndex >= iW then

3: LDBAR

4: if statusArray[blockIndex] == 0 then

5: statusArray[blockIndex]← 1

6: STBAR

7: block-copy

shadowApplicationState[blockIndex]← theApplicationState[blockIndex]

8: STBAR

9: statusArray[blockIndex]← 2

10: end if

11: end if

12: STBAR

13: theApplicationState[index]← update
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sets the status bit to two. Store-barriers are put between these steps to ensure this order

of execution.

Concurrently, the Asynchronous Writer iterates through all the blocks, checks the

status value of each block to decide whether it should read the block from the Applica-

tion State or from the Shadow Copy. If the status of a block is zero, the Asynchronous

Writer reads from the Application State. It is possible that during this time, the Mutator

also updates this block. Hence, in order to copy the correct block, the Asynchronous

Writer has to wait for the Mutator to finish its update; i.e. copies the block from the

Application State to the Shadow Copy and then changes the block status to two and

applies the update. The Asynchronous Writer achieves that by spinning checking the

status value if it has been changed to two. And then, it reads the block from the Shadow

Copy and writes it to the stable storage.

4.2.4 Copy-On-Update with Atomic Operators

Algorithm 8 and Algorithm 9 describe an enhanced version of Copy-On-Update

using the Test-And-Set instruction.

In this version of the algorithm, each block is associated with a dirty bit. This dirty

bit serves as a token for the Mutator and the Asynchronous Writer; who has the token

is responsible to copy the block from the Application State to the Shadow Copy. The

Test-And-Set instruction guarantees that if there is race between the two threads, only

one of them will get it.

However, simply obtaining the dirty bit may not guarantee that the Asynchronous

Writer will copy a consistent block since the Mutator can apply the update to that block

101



Algorithm 8: TaS-Copy-On-Update algorithm

input:

/* ApplicationState is vector of blocks */

ApplicationState theApplicationState

ApplicationState shadowApplicationState

numAtomicBlocks← |theApplicationState|
BLOCKSIZE /* number of blocks */

DirtyBitArray D[2] /* dirty bit arrays */

current← 0 /* indicate the current working bit array */

Mutator::PrepareForNextCheckpoint()

1: current← 1− current

Mutator::EndOfTick()

1: if asynchronous writer done then

2: PrepareForNextCheckpoint()

3: NotifyAsynchronousWriter()

4: else

5: if isFlagSet() then

6: chkptNum++

7: STBAR

8: resetFlag()

9: signal the AsyncWriter to flush the shadowApplicationState

10: end if

11: end if

Mutator::HandleWrite(index, update)

1: blockIndex = index∗ sizeo f (int)/BLOCKSIZE

2: if TaS(D[current][blockIndex]) == 0 then

3: block-copy shadowApplicationState[blockIndex]← theApplicationState[blockIndex]

4: end if

5: theApplicationState[index]← update
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Algorithm 9: TaS-Copy-On-Update algorithm(Continue)

AsynchronousWriter::WriteToStableStorage()

1: loop

2: WaitForMutatorNotification()

3: for i = 0 to numBlocks do

4: if D[current][i] == 1 then

5: continue

6: else

7: block-copy tempBu f ← theApplicationState[i]

8: if TaS(D[current][i]) == 0 then

9: block-copy shadowApplicationState[i]← tempBu f

10: end if

11: end if

12: end for

13: Clear the dirty bit array D[1-current]

14: setFlagAndWait() /*inform the Mutator */

15: Flush the shadowApplicationState

16: end loop

concurrently. To avoid this problem, the Asynchronous Writer always copies the block

to its temporary buffer and then tries to obtain the dirty bit. If the dirty bit is not set,

then the temporary copy is a consistent copy of that block. Therefore, the Asynchronous

Writer can safely move the temporary copy to the Shadow Copy. If the dirty bit is set,

then the Mutator is responsible to copy the block to the Shadow Copy.

After iterating through the application state, the Asynchronous Writer waits for a

signal from the Mutator to ensure that the Mutator has finished copying all the blocks it

is responsible for. This wait and signal mechanism can be done at the end of a tick, and

hence, introducing little overhead to the Mutator.
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Since the Test-And-Set operator may implicitly introduce some memory fences, we

can reduce the number of Test-And-Set operations in the Mutator by simply check-

ing the dirty bit with normal if statement. This optimization is achieved by adding

i f (D[current][blockIndex] == 0) between the line 1 and 2 in the Mutator.

4.2.5 Copy-On-Update with Memory-Barriers Simulated Test-

And-Set operation

This version of the algorithm simulates the Copy-On-Update with Atomic Operators

using memory-barriers. Algorithm 10 and Algorithm 11 present this implementation,

where store-barriers are used to enforce the execution order.

4.3 Optimizations for Wait-Free algorithms

The previous chapter presented two Wait-Free algorithms which eliminate locking and

bulk bit manipulation. These Wait-Free algorithms exhibit significant lower overhead

and achieve nearly constant latency. However, the best algorithm uses 3x copies of the

applications. In this section, we present a set of optimizations to reduce the memory

usage while maintaining a comparable performance and latency to the best existing al-

gorithm.
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Algorithm 10: MB Simulated TaS-Copy-On-Update algorithm

input:
/* ApplicationState is vector of blocks */

ApplicationState theApplicationState

ApplicationState shadowApplicationState

numBlocks← |theApplicationState|
BLOCKSIZE /* number of blocks */

DirtyBitArray D[2] /* dirty bit arrays */

current← 0 /* indicate the current working bit array */

Mutator::PrepareForNextCheckpoint()
1: current← 1− current

Mutator::EndOfTick()
1: if asynchronous writer done then

2: PrepareForNextCheckpoint()

3: NotifyAsynchronousWriter()

4: else

5: if isFlagSet() then

6: chkptNum++

7: STBAR

8: resetFlag()

9: signal the AsyncWriter to flush the shadowApplicationState

10: end if

11: end if

Mutator::HandleWrite(index, update)
1: blockIndex = index∗ sizeo f (int)/BLOCKSIZE

2: if D[current][blockIndex] == 0 then

3: D[current][blockIndex] = 1

4: STBAR

5: block-copy shadowApplicationState[blockIndex]← theApplicationState[blockIndex]

6: end if

7: theApplicationState[index]← update
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Algorithm 11: MB Simulated TaS-Copy-On-Update algorithm

AsynchronousWriter::WriteToStableStorage()

1: loop

2: WaitForMutatorNotification()

3: for i = 0 to numBlocks do

4: if D[current][i] == 1 then

5: continue

6: else

7: block-copy tempBu f ← theApplicationState[i]

8: LDBAR

9: if D[current][i] == 0 then

10: D[current][blockIndex] = 1

11: block-copy shadowApplicationState[i]← tempBu f

12: end if

13: end if

14: end for

15: Clear the dirty bit array D[1-current]

16: setFlagAndWait() /*inform the Mutator */

17: Flush the shadowApplicationState

18: end loop

4.3.1 Observations

Wait-Free Ping-Pong exhibits excellent low overhead and low latency compared to other

algorithms for a wide range of update rates. However, Wait-Free Ping-Pong uses 3x the

amount of memory usage. The Mutator always reads and writes to the main application

state. At the same time, all the writes are replicated both at the main application state

and one of the two copies; Wait-Free Ping-Pong can always determine which copies it

needs to write to. Therefore, the main application state is practically used for reading
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the latest data. So, it may be possible to use extra bit arrays to keep track of which copy

has the latest data in order to eliminate the main copy of the application state.

Wait-Free Zigzag requires two copies of the application states. However, it incurs

higher overhead since the mutator has to zigzagly write and read from these two copies.

As a result, the room to exploit special memory structure to layout these two copies

is limited. In fact, the previous chapter showed that the best implementation of Wait-

Free Zigzag is to optimize the negation of the bit-array and implement each copy of the

application as a continuous array, i.e. no memory interleaving. Therefore, it is greatly

beneficial if the Mutator just access write to a single copy and leverage a some meta data

to track the latest data for reading.

4.3.2 Optimized-Write Wait-Free Algorithm

Optimized-Write keeps two copies of the application state, namely AS0 and AS1.

During a checkpoint period, the Mutator only writes to one of the copies of the appli-

cation state. Optimized-Write maintains a current flag indicating which copy is being

updated by the Mutator during a checkpoint period.

To keep track of the updates, OptimizedWrite maintains two dirty bit-arrays, BA0

and BA1, each is associated with one of the application state copy, AS0 and AS1 respec-

tively. Whenever the Mutator updates a word, it also sets the corresponding dirty-bit.

The key design is that OptimizedWrite maintains two stable copies, corresponding

to AS0 and AS1, on a stable storage and propagates the update stream to the stable storage

so that in the event of a crash, it knows which stable copy has the latest values.

In addition, OptimizedWrite maintains two more bit-arrays, namely asValid and
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Algorithm 12: Optimized-Write Wait-Free Algorithm

input:

/* ApplicationState is a vector containing words */

ApplicationState AS0← initial application state

ApplicationState AS1← initial application state

sizeWords← |AS0| /* size of application state in words */

BitArray asValid←{0,0, . . . ,0} /* keeps track of which copy contains the

latest data*/

BitArray ckptValid←{0,0, . . . ,0} /* keeps track of which ckpt contains

the latest data*/

BitArray BA[2]←{{0,0, . . . ,0},{0,0, . . . ,0}} /* dirty words bit arrays */

current← 0 /* the copy to be written by Mutator */

Mutator::PrepareForNextCheckpoint()

1: current = 1− current

Mutator::PointOfConsistency()

1: if Asynchronous Writer done then

2: PrepareForNextCheckpoint()

3: NotifyAsynchronousWriter()

4: end if

Mutator::HandleRead(index)

1: return AS[asValid[index]][index]

Mutator::HandleWrite(index, newValue)

1: AS[current][index] = newValue;

2: BA[current][index] = 1;

3: asValid[index] = current;
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Algorithm 13: Optimized-Write Wait-Free Algorithm(Continue)

AsynchronousWriter::WriteToStableStorage()

1: loop

2: WaitForMutatorNotification()

3: Bit which = 1− current;

4: for i = 0 to sizeWords do

5: if BA[which][i] then

6: ckptValid[i] = which;

7: BA[which][i] = 0;

8: end if

9: end for

10: write-to-disk AS[which]

11: write-to-disk ckptValid

12: end loop

ckptValid.

The asValid is only updated by Mutator. Whenever the Mutator updates a word of

the application state, it sets the corresponding bit in the asValid bit-array so that the next

read of that word will get the latest value.

The ckptValid is only accessed by the AsynchronousWriter. At the beginning of

the checkpoint period, the AsynchronousWriter merges all the updates happened in the

previous checkpoint period into this ckptValid bit-array. This operation is feasible since

the Mutator only writes to one of the copies; consequently, the dirty-bit array of that

copy records all the updates. In particular, at the beginning of a checkpoint period, if

the Mutator writes to AS0, then the AsynchronousWriter merges all the bit set from the

dirty-bit array of AS1 to ckptValid, and simultaneously clears that dirty-bit.

The AsynchronousWriter also flushes the copy which is currently not being updated
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by the Mutator to the stable storage.

As the result, this technique uses two copies of the application state and four bit-

arrays, namely BA0, BA1, asValid, and ckptValid. On the stable storage, it maintains

two intact checkpoint files (for AS0 and AS1) and one intact bit-array file (for ckptValid),

one working application-state copy file (temporarily receiving the flush from either AS0

or AS1) and one working bit-array file ( temporarily receiving the flush from ckptValid).

4.4 Implementation

We leverage the modern computer architecture to implement the optimizations intro-

duced in the previous section. In particular, we leverage low-level operations and exploit

different memory layouts to improve cache performance.

4.4.1 Optimized Copy-On-Update

Since System-Level Copy-On-Update operates at page granularity, it is hard to derive

cache granularity implementation. Therefore, this section focuses on cache-optimized

implementation for Application-Level Copy-On-Update. Our key design for these op-

timizations is to use low-overhead memory-barriers instead of locking to synchronize

the operations between the Mutator and the Asynchronous Writer. There are two stan-

dard ways to implement a memory barrier; using gcc-atomic-builtins and using asm-

operators.

1. gcc-atomic-buitins GCC version 4.x or higher provides a list of builtin functions

for atomic memory access. However, these functions apply only on a limited set
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of primitive types, such as int, long, long long and their unsigned counterparts.

In addition, they allow only integral scalar or pointer type that is 1, 2, 4 and 8

bytes in length. According to the GNU specification, in most cases, these builtins

are considered a full barrier. That is, no memory operand will be moved across

the operation, either forward or backward. Further, instructions will be issued as

necessary to prevent the processor from speculating loads across the operation and

from queuing stores after the operation [39].

2. asm-operators Instructions can be reordered at different levels; at compiler level

and at hardware(CPU) level. In a general case, memory operation ordering is very

relaxed, and a CPU may actually perform the memory operations in any order it

likes, provided program causality appears to be maintained. Similarly, the com-

piler may also arrange the instructions it emits in any order it likes, provided it

doesn’t affect the apparent operation of the program. As a result, the Linux kernel

(version 3.7 and above) provides different barriers that act at different levels; i.e. a

compiler barrier which prevents the compiler from moving the memory accesses

across it and basic CPU memory barriers which prevent the CPU to reorder in-

structions. Moreover, the Linux kernel enforces that the CPU memory barriers

also imply a compiler barrier [76]. Therefore, we only use CPU memory barriers

in our implementation. In particular, we use the GNU inline assembler statements,

asm volatile(“mfence” :::“memory”), asm volatile(“lfence” ::: “memory”), and

asm volatile(“sfence” ::: “memory”), for full barrier, load barrier and store bar-

rier respectively.
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Copy-On-Update with Naive Memory-Barriers

We implement this algorithm using full memory-barriers instead of fine-grained load

and store barriers. We also implement two versions, one uses gcc-atomic-builtins, i.e.

sync synchronize(...), and the other uses asm-operators, i.e. asm volatile(“mfence”

:::“memory”), to invoke a full memory barrier.

Copy-On-Update with Atomic Operators

We implement the Test-and-Set operator using gcc-atomic-builtins. In particular,

we use the sync lock test and set builtin. This builtin is not a traditional test-

and-set operation, but rather an atomic exchange operation [39]. We also im-

plement a version in which we use the gcc-atomic-builtin Compare-and-Swap, i.e.

sync bool compare and swap, to represent the Test-and-Set operator.

Copy-On-Update with Memory-Barriers Simulated Test-And-Set Operation

We implement this algorithm using fine-grained load and store barriers. In particular,

we use asm volatile(“lfence” :::“memory”) and asm volatile(“sfence” :::“memory”)

to invoke a load barrier and a store barrier respectively.

4.4.2 Optimized-Write Wait-Free Algorithm

The key design for this algorithm is to keep two copies of the application state as con-

tiguous arrays so that the Mutator has a direct access to the state it wants to update. This

design exhibits two advantages. First, it preserves the data locality as designed by the
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application developer. Second, the Asynchronous Writer can flush the copy which is

not currently being updated by the Mutator sequentially to a stable storage. To conform

with this design, we implement the two copies of the application state as separate arrays.

Unlike the Wait-Free Ping-Pong bit array implementation, which is interleaved with the

application states, we keep the asValid bit array as a contiguous array to maintain a

direct access for the Mutator.

The recovery procedure for this algorithm is substantially different from other al-

gorithms, which requires reading two checkpoints in order to recover the most recent

consistent state. We leave this implementation as a future work.
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4.5 Experiments

In this section we compare the performance of Optimized Copy-On-Update algorithm

with existing algorithms. We mainly use two metrics in our comparison; added over-

head and normalized throughput. We also compare the best implementation of Op-

timized Copy-On-Update and Optimized-Write Wait-Free algorithm with the existing

algorithms. We also include Fork-Copy-On-Update, a System-Level Copy-On-Update

using the fork system call in our comparison.

4.5.1 Setup and Datasets

We use the similar synthetic workloads which was described in the previous chapter.

In particular, we use the workload which models an application state of 8 KB objects.

This application state contains 25,000 rows, corresponding to approximately 200 MB

state size. Updates are selected according to a Zipf-distribution with the skew parameter

α = 0.2. We also group updates into intervals that correspond to 0.1 seconds of sim-

ulated application logic. Our workload generator produces traces with various number

of updates per interval. These traces are loaded into main-memory before testing the

algorithms. Each trace file contains a minimum of 50 s. of data.

We first compare all the variants of Optimized Copy-On-Update algorithms intro-

duced in Section 4.4. We then select the best variant of Optimized Copy-On-Update to

compare the added overhead with existing algorithms. Finally, to better understand how

this added overhead affects the overall performance of an application, we measure the

throughput of the most selective algorithms. In the throughput measurement experiment,

we also enable the Asynchronous Writer.
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We ran all our experiments on a local Quad-core Intel Xeon 5400 series processor

with 32GB of RAM running Centos 5.4. The machine has 32 KB L1 cache and 12 MB

L2 cache for each core and no L3 cache. The disk bandwidth in this server is roughly

100 MB/s and the memory bandwidth is around 1 GB/s.

4.5.2 Optimized Copy-On-Update Implementation Variants

Figure 4.1 shows the overhead per checkpoint period of different variants.

• MBCOU-No-Barriers. In this variant, we define all the barriers as no-op.

This variant demonstrates the best possible performance of Optimized Copy-On-

Update.

• MBCOU-GCC and MBCOU-ASM. These are the implementations of Opti-

mized Copy-On-Update with Naive Memory-Barriers, in which the barriers are

implemented using gcc-atomic-builtins and asm-operators respectively.

• MBCOU-GCC-TaS and MBCOU-GCC-CaS. These are the implementations of

Optimized Copy-On-Update with Atomic Operators, in which the atomic oper-

ators are implemented using gcc-atomic-builtins test-and-set and compare-and-

swap respectively.

• MBCOU-MBTaS-GCC and MBCOU-MBTaS-ASM. These are the implemen-

tations of Optimized Copy-On-Update with Memory-Barriers Simulated Test-

And-Set Operation, in which the barriers are implemented using gcc-atomic-

builtins and asm-operators respectively.

As the Figure 4.1 clearly shows, all the algorithms using gcc-atomic-builtins have

higher overhead than algorithms using asm-operators for a wide range of update rates.
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The main reason is that gcc-atomic-builtins use instructions with a lock prefix, e.g. lock

cmpxchgb, to implement the atomic operators. These lock prefix instructions lock the

system bus which prevent other cores from using it while the operations are taking place.

Among the algorithms using asm-operators, the MBCOU-MBTaS-ASM algorithm

is the best algorithm; it is slightly less efficient than MBCOU-No-Barriers, which has

the best possible performance among the Optimized Copy-On-Update implementations.

4.5.3 Throughput Comparison

While overhead measurement is an effective way to compare algorithms against each

other, it does not show the real effect on applications. In this experiment, we compare the

throughput of our synthetic workload application for each algorithm. Our experiment

includes the MBCOU-MBTaS-ASM algorithm, the best variant of Optimized Copy-On-

Update implementations, the Optimized-Writes algorithm, as well as a System-Level

Copy-On-Update implementation using the fork system call. Since our synthetic work-

load models the application state as arrays of words and updates are also at word-level,

we derive a version of Wait-Free Ping-Pong which implements the best memory layout

for this workload, called Integer-Only Wait-Free Ping-Pong.

Figure 4.2 shows the throughput comparison for the following implementations.

• PP. A generic implementation of Wait-Free Ping-Pong which can be used for all

types of applications.

• IP. A specific implementation fo Wait-Free Ping-Pong which can be used only for

the applications whose application states are arrays of words.

• MB. The best variant of Optimized Copy-On-Update.
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• ZZ. The best variant of Wait-Free Zigzag.

• FO. An implementation of the System-Level Copy-On-Update algorithm using

the fork system call.

• OW. An implementation of the Optimized-Writes algorithm.

• NS. A generic implementation of the Naive-Snapshot algorithm.

NS exhibits a constant throughput drop of 5% for the whole range of update rates.

This is expected since the Naive-Snapshot algorithm is agnostic to update rates. Among

all the implementations, FO has the worst throughput except for extremely low update

rates. Starting from 4,000 updates per second, FO performance is worse than NS per-

formance. FO throughput continues to drop as the update rate increases upto 12,000

updates per second. However, the FO throughput remains constant after that, achieving

90% throughput of the application running without checkpointing. The reason FO has

a constant throughput drop when the update rate reaches a certain point is that all the

pages are dirtied at that update rate, and therefore increasing the update rate does not

cause any more page to be copied.

The Wait-Free algorithms still display the best throughput of any of the algorithms

for all but the highest update rates. They dominate NS for all update rates below 100,000

updates per second. When the update rate increases to 256,000 updates per second, the

Wait-Free algorithms perform worse than FO. The optimized algorithms, MB and OW,

which utilize lesser memory usage than the Wait-Free algorithms, have a comparable

throughput with the Wait-Free algorithms for a small and medium range of update rates.

For the update rates greater than 10,000 updates per seconds, MB and OW throughput

drop more sharply than the Wait-Free algorithms; in particular, MB and OW throughput

becomes worse than NS throughput at 16,000 updates per second, and become worse

than FO throughput at around 100,000 updates per second.
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Overall, this experiment shows that the Wait-Free algorithms and the optimized al-

gorithms, such as MB and OW, are the methods with the highest throughput for low

and medium update rates. They achieve almost 98% of the throughput of the applica-

tion without checkpointing. For higher update rates, the Naive-Snapshot is the method

of choice not only for its simplicity in implementation but also for its achievement in

throughput.

4.6 Related Work

Levi and Silberschatz [69] enumerated the deficiencies of conventional approaches and

suggested that checkpoint recovery activities should be perform incrementally and in

parallel with transaction execution. Since then, various aspects of conventional check-

point recovery schemes have been exploited to improve the performance; some focused

on parallelism [65], some focused on shadowing [70], some focused on organizing

pages [105, 104], which are briefly summarized in the following section.

Fast-Start Oracle proposed the Fast-Start checkpointing algorithm [65] which in-

crementally write dirtied blocks in the cache to disk. Compared with conventional

checkpointing techniques, Fast-Start checkpointing does not incur bulk write and re-

sultant I/O spikes. Moreover, Fast-Start provides tunable parameters so that a DBA can

control the rate of checkpointing. With an aggressive setting, experimental results show

that fast-start incur negligible overhead, less than 1% of the baseline performance. With

persistent locking, i.e. row locks are stored persistently in the same block as rows of a ta-

ble or an index , fast-start implements the Deferred Rollback strategy which allows new

transactions to start before the the rollback phase of the database recovery completes. In

addition, the rollback activities can be parallelized and happen in the background along
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with normal processing. As a result, Fast-Start significantly reduces the recovery time

and hence makes the database available more quickly.

Most of the optimizations which Fast-Start proposed, for examples, incrementally

write dirtied blocks, rollback transactions in parallel, could apply to all techniques using

write-ahead-logging. Other optimizations, such as leveraging persistent write-locks,

dynamically adjusting configuration parameters, are special features of Oracle, which

could be explored by Oracle-like database checkpoint-recovery.

SIREN Analogous to shadow paging, Liedes and Wolski designed SIREN, a

consistency-preserving and memory-efficient checkpointing method [70]. The key de-

sign is to use tuple shadowing as opposed to page shadowing and logical pages instead

of physical pages. Using tuple shadowing, SIREN can achieve a non-blocking check-

pointing behavior. Basically, SIREN freeze all the pages that are to be backed up in

that checkpoint to produce a consistent checkpoint. During the checkpoint period, all

operations which are going to modify tuples in those pages are pending. Tuples with a

pending operation are not included in the checkpoint image and can thus be committed

and removed directly. The pending operations are not directly coupled with transac-

tions, and hence adding or removing tuples are not visible to the ongoing transactions,

providing a non-block behavior. In addition, logical page helps to organize tuples effi-

ciently which in turn facilitates partial and incremental checkpoints. We can split and

join pages without actually copying the tuples. It is also possible to create overfull

pages than a page capacity. Also, adding and removing tuples are simple and low cost

operations, just involving some linked list manipulation. Overall, SIREN achieves up

to 30% higher transaction throughput compared with a fuzzy checkpoint method with

undo/redo log.

Using logical page structure is the unique feature of SIREN. It provides a flexible

119



way to achieve consistent checkpoints. The main drawback of this technique is that

it has to allocate additional memory for each updated tuple. For frequently updated

applications, SIREN would double the amount of memory usage.

SNAP, Skippy To support on-line “back-in-time” execution, a DBMS usually needs

to version the data and provides an efficient mechanism to checkpoint a consistent image

of the database overtime [73, 74]. To prevent blocking the transactions while taking a

checkpoint, SNAP [105], a snapshot service for object storage system, used a copy-on-

write scheme to snapshot all the modified pages in a versioned database. To keep track

of pages in a snapshot, SNAP implemented an extra page table which maps each modi-

fied page to the its slot in the archived snapshot. As a consequence, SNAP trades extra

memory for better performance, i.e. it does not prevent applications from accessing the

storage system even when snapshots are frequent. Experimental evaluation shows that

the overhead SNAP is small, however, it is very hard to support back-in-time execution,

which resembles an “as-of” query in a transaction time database, against long-lived, disk

page level, copy-on-write snapshots. The problem is that finding much less frequently

updated pages must pass over large number of duplicate mappings that corresponds to

frequently modified pages. To overcome that problem, Skippy [104] augmented SPAN

with an efficient indexing method over snapshots. Basically, the Skippy structure allows

to skip over unneeded repeated mappings of frequently modified pages which experi-

mentally shows up to a 19-fold performance improvement in highly skewed workloads.

In short, SNAP and Skippy used a traditional copy-on-write shadowing technique

for taking consistent snapshots. They improve the checkpointing speed by using a more

advanced Modified Object Buffer [40] technique which supports versioning. However,

this technique is specific to the underneath storage system, and it is hard to exploit this

technique in the context of other DMBS.
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4.7 Conclusion

In this chapter, we have presented a series of optimization techniques which can be ap-

plied to the existing algorithms. In particular, we can use low-level memory-barriers to

implement Copy-On-Update, which avoids expensive use of locking. Our experiment

shows that the memory-barrier implementation using asm-operators has a higher per-

formance than the implementation using gcc-atomic-builtins. With these optimizations,

we implemented an optimized version of Application-Level Copy-On-Update. This op-

timized Copy-On-Update implementation achieves better throughput than the System-

Level Copy-On-Update for a wide range of update rates. It also performs better than the

Naive-Snapshot algorithm for low and medium update rates.

We have also showed an optimized implementation for Wait-Free algorithms, which

uses only two copies of the application state. This implementation, called OW, has

showed a comparable performance with the Wait-Free algorithms introduced in the pre-

vious chapter. A drawback of this optimization is that it increases the recovery time

since the recovery procedure needs to read the most recent two checkpoints in order to

rebuild the consistent state of the application at the time of the crash.
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CHAPTER 5

BRRL: A RECOVERY LIBRARY FOR MAIN-MEMORY APPLICATIONS IN

THE CLOUD

Our greatest glory is not in never failing, but in rising up every time we fail.

– R. W. Emerson

In this chapter we present BRRL, a library for making distributed main-memory

applications fault tolerant. BRRL is optimized for cloud applications with frequent

points of consistency. BRRL differs from existing recovery libraries by providing a

simple table abstraction and using schema information to optimize checkpointing.

5.1 Overview of BRRL

BRRL is a library for making application state durable. Unlike existing recovery li-

braries that present a generic memory abstraction [15, 16], BRRL uses semantic in-

formation about the application to optimize logging and checkpointing. BRRL is suit-

able for a wide variety of data-intensive applications, but it does have several require-

ments. BRRL applications must store their data in tables and access them only through

BRRL API functions. They must also have relatively frequent points of consistency

at which the application is consistent and can be safely checkpointed. These points

of consistency can be either local or global. In a distributed application, a local point

of consistency is a point at which the state at a single machine is consistent, whereas

a global point of consistency marks a time when the state of the entire application is

consistent. For example, a single-threaded partitioned DBMS such as H-Store [109]

would have local points of consistency since different nodes execute different transac-

tions, while a time-stepped simulation [19] would have global points of consistency at
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the end of each time-step. As more applications move to the cloud for scalability, we

expect points of consistency to become increasingly common since cloud applications

are often data-parallel and divide their work into relatively independent partitions.

BRRL uses logical logging to persist state during the time between checkpoints in

order to roll the application forward to a consistent state in the event of a failure. Though

logical logging can increase recovery time compared to physical logging, it introduces

less overhead during normal operation, and we can reduce the replay time by taking very

frequent checkpoints. To facilitate logging, applications must produce log records for

any non-deterministic behavior necessary for re-execution. For instance, in a DBMS,

the logical log would include the type or code and parameters for each transaction as

well as their serialization order. Additionally, the application should be able to parse

and apply these log messages during recovery. We leave this intentionally vague in

order to give applications some degree of flexibility, but in most cases log entries will

correspond to transactions or other client requests. In deterministic applications, logging

is not necessary, and BRRL can simply be used as an efficient way to take periodic

checkpoints.

BRRL uses semantic information about the application to optimize logging and

checkpointing. Figure 5.1 shows a typical distributed system deployment with BRRL.

• The schema defines application data structures in terms of tables. BRRL uses

C++-like syntax with per-table and per-attribute annotations.

• Developers implement application logic using standard C++. Developers manage

application data through BRRL APIs.

• The BRRL compiler compiles the schema and application code to binaries which

can be deployed to run on application servers.
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Figure 5.1: The System Overview

• Developers can specify availability and durability requirements in the configura-

tion file. BRRL deployers uses the information in the configuration file to setup

an optimal number of machines which satisfy the requirements.

• BRRL deploys the executables on a pool of application servers. This pool is

shared by other applications with different availability/durability requirements.

• Logical logs are transfered to Persistent Log Servers and application states are

checkpointed to Checkpoint Servers. This is done transparently to the users by

BRRL.

The salient features of BRRL are:

• Application developers can define their data structure using simple table abstrac-

tions which support per-table and per-attribute annotations. Based on these anno-
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tations, BRRL automatically chooses optimal checkpoint-recovery algorithms for

their application. For example, BRRL decides to apply Naive-Snapshot algorithm

to append-only tables and Wait-Free Ping-Pong to tables with no mutable string

attributes.

• BRRL provides simple APIs which application developers can use to manage

data. All getters and setters are named according to the corresponding at-

tributes. For example, application developers can call GetCustomerId() and Set-

CustomerId(id) to get and set the CustomerId attribute.

• BRRL shields programmers from the complexity of low-level optimizations, such

as cache-aware checkpoint-recovery implementations. The only requirement is

that application developers need to call the function PointOfConsistency at points

of consistency during application execution.

• BRRL separates application state into static and dynamic parts. Application state

is made durable by storing the static state at the very beginning and maintaining a

consistent copy of the dynamic state while the process is running. BRRL achieves

high availability by fast recovery; a failure could be treated as a small “hiccup”

while running an application.

5.1.1 The BRRL API

BRRL is implemented as a pre-compiler and a C++ library with a simple interface. Ap-

plication developers specify their state in a set of BRRL tables using a syntax similar

to structure definitions in C with scalar types. All of the state in these tables is check-

pointed automatically so that it can be recovered in the event of a failure. Figure 5.2

shows how two tables in TPC-C would be specified in BRRL. Each attribute in these

tables is classified as either mutable or immutable based on whether it is ever updated.
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class Customer {

immutable:

int c_id;

double c_phone[16];

...

mutable:

double c_balance;

double c_ytd_payment;

...

};

class OrderLine {

immutable:

int ol_o_id;

int ol_w_id;

int ol_quantity;

double ol_amount;

char ol_dist_info[24];

...

};

Figure 5.2: Example BRRL Tables

Method Description

Status init(RecoveryConfiguration rc) Initializes BRRL with a given configuration.
Status registerTable(TableHandle th) Registers a given table (th is constructed at the time of table creation).
Status startCheckpointing() Informs that the initialization and registration steps are done.
LSN writeLog(LogRecord lr) Logs a new record as an uninterpreted string of bytes, returns the corresponding lsn.
LSN queryLog() Gets the log sequence number of the most recently persisted log record.
Status persistLog(LSN lsn) Persists the log up to a given lsn.
Status pointOfConsistency(LSN lsn) Indicates that the application state is consistent at a given lsn.
Status recoverTables() Populates a registered set of tables from the most recent consistent checkpoint.
LogIterator getLogIterator() Gets an iterator to the logical log stored with the most recent consistent checkpoint.

Table 5.1: The BRRL API

Immutable attributes can never be updated unless the entire tuple is deleted. In Fig-

ure 5.2, all of the attributes in OrderLine are immutable since the table is append only,

but the c balance and c ytd payment attributes in the Customer table are mutable as

they are updated whenever a customer makes a purchase or a payment. The BRRL com-

piler uses these annotations to compile BRRL tables into a set of C++ classes that are

optimized for checkpoint-recovery. As BRRL may reorganize the storage layout, appli-

cations access their state using get and set methods generated by the compiler. Addi-

tionally, rows have no public constructors and must be created and deleted by calling

methods on the appropriate table.

Table 5.1 shows the main set of the BRRL API which application developers can use

to register tables, identify points of consistency, write log records, and recover state in

the event of a failure. Since application developers have to access application data via
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Method Description

TableHandle createTable(TableName tn) Creates the table which is defined in a brrl file with a given table name.
RowHandle addRow(TableHandle th) Allocates a row for a given table.
RowHandle getRow(TableHandle th, RowNum rn) Gets the row handle for a given row number.
YYY getXXX(RowHandle rh) Gets a field (XXX is the field name and YYY is the field type).
Status setXXX(RowHandle rh, YYY value) Sets a field (XXX is the field name and YYY is the field type).

Table 5.2: The Table API

the BRRL-generated methods, the BRRL API also provides the Table API which can be

used to manage application data. Table 5.2 shows a subset of the Table API.

When the library is initialized (init), the application developer must specify high-

level information about the application, including the checkpoint interval, the locations

where checkpoints and logs will be written, and whether or not to use group commit.

The application developers can then create their tables using the createTable method in

the Table API. The passed-in table name is the same table name of the corresponding

table defined in a brrl file. The application developers are responsible to register all of

their tables to the BRRL library via the registerTable API. After that, the application de-

velopers can call startCheckpointing to inform the BRRL library that the initialization

and registration steps have finished. During normal processing, the application devel-

opers can perform logical logging via the writeLog function. Note that the writeLog

returns immediately even though the log record has not been persisted. The application

developers can call queryLog to find out the most recently persisted log record or can

persist their log records using the blocking function call persistLog. All log records are

uniquely identified by their log sequence numbers. If a log record is determined to be

persistent, then all the log records with lower log sequence numbers than this log record

are guaranteed to be persisted.

The main requirement for application developers is that they should call pointOf-

Consistency at every point of consistency. Note that BRRL does not necessarily take a

checkpoint each time this method is called, but every checkpoint is guaranteed to start
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at a point of consistency. When a checkpoint is started, it also records the log sequence

number from which the logical log can be replayed upon this checkpoint. During execu-

tion, the application developers access their application data using the Table API getters

and setters. The recovery portion of the API consists of a method to recover all the reg-

istered tables (recoverTables) and an iterator to access the logical log (getLogIterator).

It is the application’s responsibility to use these methods to recover to a consistent state.

Taking TPC-C implementation as an example, we summarize BRRL usage as the

following steps:

• Setup

1. For each table in TPC-C, creates a brrl file specifying mutable and im-

mutable attributes.

2. Compiles these tables to .h and .cpp files using BRRL compiler.

• Initialize a BRRL instance

1. Defines a recovery configuration, e.g., defines checkpoint and log servers.

2. Initializes a BRRL instance with the recovery configuration using the BRRL

API, i.e. call BRRL::init(...)

3. Creates tables using the Table API, i.e. call Table::createTable(...)

4. Registers all tables using the Table API, i.e. call Table::registerTable(...)

5. Populates the registered tables, either

(a) Call recoverTables(...), get a logical log iterator and replay the logical

log, i.e. BRRL::getLogIterator(...), or

(b) Put some initial data to tables manually by using setter functions.
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6. Informs the BRRL library that the initialization and registration steps are

done, i.e. call BRRL::startCheckpointing(...)

• Normal execution

1. Builds a log record per transaction. For each log record, performs the fol-

lowing sequence of execution:

(a) Write the log record, i.e. call BRRL::writeLog(logRecord), get back an

lsn.

(b) Execute the application logic for this log record, i.e. call getters and

setters through the Table API.

(c) Inform the BRRL library that the execution is at a point of consistency,

i.e. call BRRL::pointOfConsistency(...), with the given lsn.

2. Calls BRRL::queryLog() at an appropriate time to get the lsn which have

been persisted, mark the corresponding transactions to be committed.

• Recover from a crash

1. Performs the initialization and registration steps.

5.1.2 Checkpointing and Recovery in BRRL

BRRL includes components for efficient logging and checkpointing. Logging is im-

plemented using a set of shared persistent log servers. When the application calls

writeLog(lr), the BRRL library sends the record to one or more log servers (the num-

ber is configurable). When one of these servers receives a log record, it stores the record

in main memory and flushes it asynchronously to disk. This allows for very low-latency
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logging since the log server returns as soon as the log record has been written to mem-

ory, and we expect the network latency to be much lower than the cost of a disk seek.

This approach is similar to the buffered logging technique proposed by the RamCloud

project [81]. For applications that cannot tolerate the loss of any of the log tail in the

event of a catastrophic failure or power outage, the application servers can use group

commit and wait until the log servers have flushed each record to disk.

Notice that since the persistent log servers do not have to perform any computation

and can write to disk asynchronously, they can be shared by many applications. This

sharing is particularly beneficial for cloud computing environments where many appli-

cations are multiplexed on the same infrastructure. This sharing can yield better resource

utilization than approaches such as k-safety that rely on many additional replicas [109].

By default BRRL checkpoints data to a shared disk, though any stable-storage me-

dia would be suitable. We use the Wait-Free Ping-Pong checkpointing algorithm, which

we introduced in Chapter 3, for frequently consistent main-memory applications. This

algorithm maintains two copies of the application state in memory and collects updates

in one of them for each checkpoint period (thereby “ping-ponging” between them).

BRRL automatically interleaves attributes from the original state and the two copies

in order to minimize the number of cachelines that must be accessed during an up-

date. This was shown to improve performance dramatically. BRRL only applies these

optimizations to mutable state in order to reduce the memory and update overhead. Im-

mutable state is only written to the checkpoint once when it is first created. Deletes

are persisted by writing a delete record with the checkpoint that can be replayed during

recovery.
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5.2 Implementation

This section describes the BRRL implementation in detail and shows the performance

of the integrated algorithms.

5.2.1 Implementation Details

Based on the annotated information at the time of creating tables, BRRL implements

the best algorithm recommended in Chapter 3. To guarantee reliable communications,

all checkpoints and logical log are transferred through totally-ordered communication

channels among the machines. Each channel is responsible by a separate thread for high

concurrency.

BRRL has its own memory allocator to provide fast memory allocation. Internally,

BRRL maintains a list of preallocated chunks of memory. At the time of creation,

each table is assigned a vector of pointers to free chunks. Free chunks of memory are

dynamically assigned as tables grow. Periodically, a background service inspect each

table to regain the memory chunks are marked deleted by tables. The deleted chunks

are then given back and will be assigned to other tables when needed.

BRRL is designed to work well with cloud infrastructure. The persistent servers

are shared among various applications. To provide high availability, each machine in a

partition is replicated. A proxy is responsible to set up separate communication chan-

nels to replicas. In order to provide latency, the logical logs are checkpointed to the

main memory of a persistent server; meanwhile, the application states are checkpointed

asynchronously.

131



 100

 102

 104

 106

 108

 110

 112

 114

 116

 118

 10  20  30  40  50  60  70  80

A
b
so

lu
te

 r
u
n
ti

m
e 

fo
r 

1
 b

il
io

n
 u

p
d
at

es

# Rows (in millions)

NS

BAZZ

IPP

MBCOU

BASELINE

Figure 5.3: Zipf workload: Overhead

BRRL explores the impact of data layout in memory on cache perform and does a

careful cache-aware implementation with various low level optimizations. In particular,

data structure with low and moderate update rates, BRRL either applies Wait-Free Ping-

Pong or Wait-Free Zigzag algorithm, depending on the size of the application state; for

extremely high update rates, BRRL uses Naive-Snapshot.

5.2.2 Integrating Checkpoint-Recovery Algorithms

In order to verify that the integrated checkpoint-recovery algorithms, we run an exper-

iment on a synthetic workload. In this experiment, we model an application state as a

2-D array of words. We fix the number of columns and vary the number of rows to ex-

periment applications with different state size. The number of columns is fixed as four.

The number of rows is varied from 10 millions to 80 millions. So, effectively, we vary

the application state size from 1.2 GB to 9.6 GB. Updates are applied randomly to the

application state. We measure the time to apply one billion updates.

Figure 5.3 displays the performance for some selective algorithms, namely

NS (Naive-Snapshot), BAZZ (Wait-Free Zigzag), IPP (Wait-Free Ping-Pong) and

MBCOU(Application-Level Copy-On-Update). BASELINE is the run when checkpoint
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algorithms are disabled. As we expected, IPP, BAZZ and MBCOU exhibit better per-

formance than NS for most of the time. IPP and MBCOU have very comparable perfor-

mance and are better than BAZZ at every state size.

5.3 Related Work

There have been different approaches to integrating checkpoint-recovery systems with

applications. A first consideration is whether checkpointing should be implemented at

the system [71, 87] or application level [12, 15, 16]. In addition, checkpointing may be

offered to applications embedded in a language runtime [127], through a library [87],

or with compiler support [15, 16]. Our work performs application-level checkpointing

and integrates with the application logic through a library API. Thus we are able to

checkpoint only the relevant state of the application, something not achieved by system-

level checkpointing schemes. We are also able to exploit application semantics, such as

natural points of consistency, to determine which images of the state to persist.

There is a large distributed systems literature that explores how to generalize efficient

single-node checkpointing schemes to multiple nodes. A recent survey by Elnozahy et

al. describes these distributed checkpointing approches [34]. Uncoordinated checkpoint-

ing applies single-node algorithms independently, but may have to deal with cascading

rollbacks in order to reconstruct a valid global snapshot. Coordinated checkpointing

avoids that problem at the cost of extra synchronization among nodes during check-

pointing. Message-logging approaches combine uncoordinated checkpointing with log-

ging of message exchanges to be able to replay the computation from the last checkpoint

taken from any single node. We can again take advantage of natural points of consis-

tency when selecting the best technique to use in distributed applications. For example,
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applications that have global natural points of consistency, such as time-stepped simu-

lations, can piggyback coordinated checkpoint requests on their natural synchronization

barriers. If the application is only loosely synchronized, but still exhibits local points of

consistency, a message-logging approach promises better performance. These methods

can be transparently layered on top of the efficient single-node algorithms developed as

part of our initial work. However, they contain assumptions that restrict their use on

heterogeneous cloud environments, a subject to be explored in our future work.

In classic relational DBMSs, ARIES is the gold standard for recovery [77]. Unfor-

tunately, ARIES relies on physiological logging, implying unacceptable logging over-

heads for the stream of local updates produced by high-throughput, in-memory data-

driven applications. The same observation applies to fuzzy checkpointing, which also

requires physical logging of the update stream [50, 98].

Recently, the Berkeley/Stanford Recovery-Oriented Computing (ROC) project has

explored techniques to reduce time to recover of general applications, under the premise

that failures due to hardware malfunction, software bugs or human error are in-

evitable [82, 18, 17]. This premise also holds for large computing infrastructures [101],

and we expect it to be the norm on cloud environments. Checkpoint recovery is an

important building block for systems operating in failure-intensive environments. For

example, in ROC it has been used to implement a generic undo system applied to an

email store [17]. Our approach is similar, but allied with the notion of points of consis-

tency and targeted to the specific challenges of a cloud environment.

Replication. Replication has been extensively used to provide fault-tolerance and high

availability in distributed systems. In particular, recent distributed file systems such as

Amazon S3, Hadoop and the Google File System (GFS) automatically replicate each

fragment of a file, with replication degree K = 3 being typical for large clusters [41, 49,
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7]. A background repair mechanism creates new segment copies to maintain K replicas

in response to disk failures.

Recently, data-driven applications such as data mining have begun to be expressed

as iterated MapReduce jobs [25]. We argue that the approach for fault tolerance in

MapReduce implementations will need to be rethought for these applications. In partic-

ular, most implementations save input and output of each job to a reliable replicated file

system [32, 41]. This use of replication is not sufficient to guarantee fault-tolerance, as

the minimum running time of even a moderate size Map-Reduce job can be much greater

than its MTTI. Map-Reduce implementations rely on the repeatability of Map and Re-

duce tasks to reschedule tasks assigned to a failed node. In Google’s published imple-

mentation, which takes no intermediate checkpoints, failure of a Map node may require

(possibly parallel) re-execution of all Map tasks previously assigned to that node [32].

In contrast, data-driven applications following our approach will have their state check-

pointed at natural points of consistency. The checkpointing interval can be set by bal-

ancing the overhead of taking checkpoints with the mean time to failure of the nodes

involved in the computation [101, 30, 72, 126].

In the context of classic RDBMSs, transactional, update-anywhere, synchronous

replication has been shown to be fundamentally not scalable [43]. Most recent work

has focused on asynchronous replication or on small server clusters with hot-standby

architectures, with a few notable exceptions [61, 125, 58]. Asynchronous replication is

the technique of choice for database caching [4, 8, 31, 48, 66, 106], given the accept-

ability of occasional data loss in this application. As asynchronous replication offers

better performance than eager replication, it is also offered to clients by many commer-

cial DBMS vendors [80, 54, 108]. Recently, Ganymed uses asynchronous replication

internally for DBMS scale-out, but hides it from clients by offering a transactional mid-
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dleware interface [89]. Of course, mechanisms for durability must still be provided by

the primary-copy DBMS.

ClustRa uses the idea of hot standbys and log shipping to provide high availabil-

ity [53]. To achieve higher performance, log records are written not to disk, but rather

to the main memory of a neighboring node. Whitney et al. execute transactions in both

a primary site and in a number of backup sites [123]. Backup sites save frequent check-

points of their main memory to stable storage. More recently, Lau and Madden [67] and

Stonebraker et al. [109] advocate a distributed design in which no logging is performed

by the system. In contrast to Whitney et al. [123], all sites are active and thus updates

are processed in all sites that replicate a given portion of the data. Data is replicated at a

minimum of K sites so that the system will survive up to K site failures. This solution is

similar to process-pairs in high-performance scientific simulations [101]. While avail-

ability is high, system utilization is rather low (1/K), given that all active copies of the

data-driven application perform redundant work. In contrast, our checkpoint recovery

model increases utilization at a potential cost in recovery time.

Erasure-resilient Codes. Erasure-resilient codes protect data against failures at lower

storage and bandwidth cost than replication [35, 120]. The downside is higher la-

tency and overhead for computing the coding scheme. A well-known use of erasure-

resilient codes in data storage is for building Redundant Arrays of Inexpensive Disks

(RAID) [83]. When multiple disks operate as a single storage device, the mean time to

failure is drastically reduced unless redundancy techniques are employed. RAID sys-

tems typically rely on parity to tolerate single-disk failures and more complex schemes,

such as Reed-Solomon codes, to tolerate multiple disk failures [86].

Plank and Li present a diskless checkpointing scheme based on RAID-like tech-

niques [88]. Their basic scheme survives single-node failures, but can be generalized
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to survive m failures given 2m extra nodes. These techniques have also been extended

to disk-based checkpointing [85]. Due to assumptions such as frequent communication

with a parity node, these schemes are restricted to small clusters with homogeneous,

high-performance network interconnects. In our proposal, in contrast, we plan to inves-

tigate techniques that work on cloud infrastructures composed of heterogeneous com-

modity hardware components. addition, single-node techniques that ignore effects from

processor caches and pipeline stalls must be revisited.

Other systems, such as OceanStore [64] and Intermemory [22], use erasure-resilient

codes in the design of large-scale archival services. These systems are designed to

be deployed over widely distributed, untrusted servers. As such, they must deal with

Byzantine failures. Unlike these systems, we expect data-driven applications to be run

on clusters of servers co-located in the same data center. While machines may exhibit

widely different performance due to heterogeneity, the failure modes experienced in this

architecture are closer to fail-stop failures than to fully general Byzantine failures [102].

5.4 Conclusion

In this chapter, we have presented BRRL, a checkpoint-recovery library, for distributed

systems in the cloud. BRRL provides data durability and data locality transparently to

application developers. Every operation on data in our library is done using light-weight

operations. That enables various optimizations which have been studied extensively in

this dissertation. Also, BRRL allows users to trade availability to achieve durability

with much lower cost.
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CHAPTER 6

SUMMARY AND FUTURE WORK

While promising huge improvements in performance and cost, main-memory data-

driven applications in the cloud computing needs to address a fundamental problem

before becoming ubiquitous: They need to become fault-tolerant.

In this dissertation, we first present a benchmarking framework which we use to eval-

uate the applicability of existing checkpoint-recovery techniques developed for main-

memory DBMS to MMO workloads. This framework is extensible for various other

main-memory applications, such as OTLP and behavioral simulations, which have fre-

quent points of consistency. Through this framework, we show how to adapt consis-

tent main-memory checkpointing techniques to frequently consistent (FC) applications.

We also provide a comprehensive simulation model and evaluate six different strate-

gies. Through a thorough evaluation, we find that there is no single checkpoint-recovery

technique which outperforms all the others. In particular, we recommend application

developers to use the Copy-On-Update algorithm for low and median update rates and

the Naive-Snapshot algorithm for extremely high update rates. In addition, we also ana-

lyze undesirable properties of the existing algorithms; i.e., they either use locks or large

synchronous copy operations, which hurt throughput and latency, respectively.

The findings of undesirable properties of existing algorithms motivate us to de-

sign and implement new algorithms which completely avoid locking and synchronous

copying. We have also identified several important requirements for high-performance

checkpointing techniques. First, the algorithm should have low overhead during nor-

mal operation; ideally, taking a checkpoint should have little impact on the throughput

of the system. Second, the algorithm should distribute its overhead uniformly and not

introduce any latency spike. Finally, it should be possible to take checkpoints very fre-
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quently so as to reduce the recovery time. Guided by these requirements, we design and

implement two novel checkpoint-recovery algorithms, namely Wait-Free Zigzag and

Wait-Free Ping-Pong, which trade additional space in main memory for significantly

lower overhead and latency. Wait-Free Zigzag eliminates locking overhead by keeping

an untouched copy of the state during a checkpoint period. Wait-Free Ping-Pong im-

proves both overhead and latency even more by using additional main memory space.

Our experimental evaluation shows that Wait-Free Ping-Pong outperforms the state of

the art in terms of overhead as well as maximum latency by over an order of magnitude.

While implementing the Wait-Free algorithms, we notice that the wait-free proper-

ties of our methods within a checkpoint period allow them to benefit significantly from

cache-aware data layout optimizations, dramatically reducing overhead. We go a step

further to leverage modern hardware architecture to explore other optimizations. In fact,

we construct a series of optimizations which are not only amenable to our Wait-Free

algorithms but can also be applied to existing algorithms. In particular, we use low-level

memory-barrier operators to design and implement an optimized version of Application-

Level Copy-On-Update. This optimized Copy-On-Update algorithm achieves a compa-

rable performance with the performance of our Wait-Free algorithms; however, it uses

less memory.

To hide the complexity of maneuvering memory layouts and low-level optimiza-

tions, we provide BRRL, a recovery library which transparently implements the pro-

posed techniques. BRRL is optimized for cloud applications with frequent points of

consistency. BRRL differs from existing checkpoint-recovery libraries by providing a

simple table abstraction and using schema information to optimize checkpointing.
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6.1 Future Work: Comprehensive Fault-Tolerance for Data-Driven

Applications

In this section, we discuss future work along two dimensions. First, how to design

methods that will work on cloud infrastructures. Second, how to relax the assumptions

that we made in the previous chapters about the application architecture to achieve truly

comprehensive checkpoint recovery.

6.1.1 Cloud Architecture

Cost versus Performance. One important characteristic of the cloud is that it is a

variable-cost infrastructure. Typically, scientific computing clusters operate in fixed-

cost regime; large hardware investments are made up-front to set up the cluster, and

applications are optimized to reap the maximum benefit from the available hardware

resources. In the cloud, there is a new tradeoff: In a data-driven batch application we

may want to optimize not for minimum expected running time, but rather for minimum

expected running cost. Adding an extra node to a computation may reduce the total

expected running time, but the cost of running the extra node for the whole computation

may not be offset by the reduction in cost due to the shorter compute time.

As observed in the literature on checkpoint recovery [30, 72, 126], the checkpoint

interval can be tuned to balance the computation time of the application, the checkpoint

overhead, the MTTI, and the recovery time. Therefore, it is useful to consider cost

as well, and explore new algorithms for checkpoint recovery optimized for this trade-

off. These algorithms will comprise new pricing-aware checkpoint-recovery methods

and will complement our research on latency-aware checkpoint-recovery methods pre-
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sented in this dissertation. These two families of algorithms will serve the needs of

cost-sensitive and jitter-sensitive applications, complementing traditional checkpoint-

recovery work optimized for total expected running time over a fixed-cost infrastructure.

Special-Purpose versus Commodity Hardware. The cloud violates several simplify-

ing assumptions made by previous distributed checkpoint-recovery methods [34]. The

most restrictive assumption is that checkpoints will be written to a shared disk acces-

sible to other nodes. This assumption was reasonable on scientific computing clusters

with expensive data storage solutions and network interconnects. Cloud infrastructures

are, however, built out of low-cost commodity hardware.

While standardization initiatives such as Fiber Channel over Ethernet (FCoE) aim to

bring sophisticated storage protocols to less expensive Ethernet interconnects [36], wide

adoption on commodity networks used by cloud infrastructures is far from a certainty.

Instead, diskless checkpointing schemes, such as mirror checkpointing [24], are a natu-

ral alternative to expensive shared disks. In mirror checkpointing, nodes are organized in

a ring and save checkpoints to themselves and to their neighbors. Note that this assumes

coordinated checkpoints for state saved locally, but the technique can also be extended

to message-logging protocols. Unfortunately, this work also assumes that nodes have

uniform bandwidth and memory capacities, which is not true in cloud environments.

In fact, widely varying network bandwidths may be observed between nodes located in

different racks or clusters [10]. In addition, cloud providers operate with heterogeneous

servers. Main memory and processing power of nodes in the system may differ depend-

ing on cost or age. Concurrent client tasks may affect performance by competing for

processing power or bandwidth.

The first step to address the problem of heterogeneity is to benchmark the perfor-

mance of previous checkpoint recovery methods, such as mirror checkpointing, in cloud
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environments. This will determine the exact means by which this lack of uniformity

degrades their performance. Because of heterogenous bandwidth, nodes using mirror

checkpointing need to be arranged so that neighbors have sufficient bandwidth to handle

the message traffic passing between them. This may require that the nodes be arranged

in a network overlay other than a ring. Furthermore, this overlay may need to change

as the number of messages between neighbors changes over time. Hence, a second

step in addressing non-uniformity is the development of load-balancing algorithms that

rearrange neighbors according to bandwidth demand.

Fixed versus Elastic Distribution. Another unique difficulty in running data-driven

applications on the cloud is elasticity. Unlike cluster computing, in which a program

is run on a specific number of nodes, cloud computing is a service where computing

nodes can be added and removed according to computing needs. Adding more nodes

to a running distributed computation alters the MTTI for the computation as well as the

computation time. Depending on the balance between reduction in MTTI and decrease

in computation time, the total expected runtime or cost of a data-driven batch applica-

tion could actually degrade when new nodes are added. This problem can be addressed

in two ways. First, by developing analytical methods for optimizing the number and the

configuration of nodes for any given checkpoint recovery technique. Second, by devel-

oping algorithms that allow a system to optimally switch between checkpoint recovery

methods, adapting to changes in the computing configuration.

6.1.2 Application Architecture

Static versus Dynamic Memory Allocation. This dissertation assumes data structures

that are relatively static. We place objects in fixed tables, and use foreign keys instead
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of pointers. This makes serialization of our data easy, and simplifies cache-aware place-

ment optimizations.

This assumption is too restrictive for general data-driven applications. While a num-

ber of existing applications do in fact represent data as first normal form relations in

main memory [5, 122], the runtimes of these systems often build additional data struc-

tures for performance reasons. Effective checkpoint recovery techniques will need to

balance the savings achievable by not checkpointing these structures against the addi-

tional recovery time required to rebuild them after a crash. In addition, data is often

dynamic: over its lifetime the application may undergo huge changes in the amount of

data being managed. Thus, it is beneficial to make cache-aware placement optimizations

for dynamically allocated data. There has not been a great deal of work on the locality

properties of memory allocators, and most existing work has addressed aggregate cache

miss rates, without attempting the kind of detailed placement decisions that we need

for our algorithms [124, 45, 100, 37]. The general problem of designing an allocator

placement policy to minimize cache misses is provably intractable [84]. An alternative

approach is to widen the allocator API to support declarative specification of which ob-

jects require shadow copies and metadata for checkpointing. The allocator will then be

able to make appropriate placement decisions to minimize checkpointing overhead for

those objects.

A related issue is fragmentation: Checkpointing a fragmented heap is more expen-

sive than checkpointing a compact one. At a higher level, data representation also po-

tentially affects the choice of checkpoint scheme. This dissertation assumes a row-store

format, but recent work suggests that column stores are sometimes much more effi-

cient [13, 110]. One promising approach involves schemes for periodic reorganization,

similar in spirit to differential indexing [103, 56, 79, 78].
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Single-threaded versus Parallel Mutator. One strong assumption made in our work

is that only two threads interact during execution: a single-threaded Mutator and an

asynchronous checkpoint writer. We have taken advantage of this assumption to make

the Mutator and checkpoint writer lock-free between points of consistency, resulting in

significant improvement in the overhead introduced by checkpointing.

In the future, it is expected that data-driven applications to be heavily optimized

for multi-core architectures. Naturally, these systems will employ a mix of data and

operator-level parallelism, as in parallel database systems. In particular, there is interac-

tion between the technique used to parallelize the mutator and the amount of overhead

introduced by the recovery strategy. If the mutator itself uses locks for synchroniza-

tion, then the relative benefit of a lock-free recovery thread will be smaller and may not

justify the space required for shadow copies.

In addition, it is well-known that cache optimizations are a major contributor to per-

formance in modern CPU architectures, and the database literature has started to investi-

gate the interplay of parallelism and cache awareness [68, 113, 63, 1]. There is a need to

investigate how cache optimizations applied to the mutator influence the optimizations

that can be used to diminish checkpointing overhead. The appropriate optimization goal

here is again to minimize total expected runtime or monetary cost [101]. It may well be

worth incurring extra checkpointing overhead if this cost helps to increase the perfor-

mance in the parallel mutator.

Single-Node versus Distributed Applications. Significant work has been done in the

distributed systems area on multi-node checkpointing in message-passing systems [34].

As we have discussed in this dissertation, either coordinated or message-logging check-

point protocols may be reused for data-driven applications, depending on whether they

exhibit global or only local points of consistency. While distributed applications are
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clearly important, we currently believe that existing techniques will suffice for the cloud,

and that we can layer them on top of our proposed work.
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[4] Mehmet Altinel, Christof Bornhövd, Sailesh Krishnamurthy, C. Mohan, Hamid
Pirahesh, and Berthold Reinwald. Cache tables: paving the way for an adaptive
database cache. In Proc. VLDB, pages 718–729, 2003.

[5] Peter Alvaro, Tyson Condie, Neil Conway, Khaled Elmeleegy, Joseph M. Heller-
stein, and Russell C Sears. BOOM: Data-centric programming in the datacenter.
Technical Report UCB/EECS-2009-113, EECS Department, University of Cali-
fornia, Berkeley, 2009.

[6] Amazon Elastic Compute Cloud (EC2). http://aws.amazon.com/ec2.

[7] Amazon Simple Storage Service (S3). http://aws.amazon.com/s3.

[8] Khalil Amiri, Sanghyun Park, Renu Tewari, and Sriram Padmanabhan. Dbproxy:
A dynamic data cache for web applications. In ICDE, pages 821–831, 2003.

[9] Mary Baker and Mark Sullivan. The recovery box: Using fast recovery to provide
high availability in the unix environment. In Proc. USENIX Summer Conference,
pages 31–43, 1992.
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