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ABSTRACT 

Holstein cows (n=48) entering second or greater lactation were utilized 

to determine the effects of method of delivery of glycerol on performance and 

metabolism of dairy cows during the transition period.  Beginning 21 d before 

expected parturition, cows were fed either a control diet or a diet containing 

glycerol (5% of DM).  After parturition, cows were assigned to one of four 

treatments in a 2 (dietary glycerol; 3.3% of DM) X 2 (glycerol drench; 500 ml/d 

for 5 d beginning at parturition) factorial arrangement.  From d 22 through 63 

of lactation, cows were fed the same diet.  Feeding glycerol during the 

prepartum period increased prepartum DMI, but feeding glycerol during the 

postpartum period tended to decrease postpartum DMI and drenching glycerol 

for the first 5 d of lactation decreased postpartum DMI.  Milk yield was not 

affected by feeding glycerol during either the prepartum or postpartum periods 

or drenching glycerol during the first 5 d of lactation.  Percentages and yields 

of milk fat and true protein were not affected by feeding glycerol during either 

the prepartum or postpartum periods; however, drenching glycerol tended to 

decrease milk protein content and decreased milk lactose content.  Glycerol 

fed during the prepartum period resulted in no significant effects on plasma 

glucose, NEFA or BHBA concentrations during the prepartum period with no 

carry over effects on postpartum metabolites.  Prepartum incorporation of 

glycerol in the diet resulted in no significant effects in liver triglycerides or 

glycogen content in liver samples collected d 1 after calving compared with 

control cows with no carry over effects on postpartum liver triglycerides or 



 

glycogen content.  Postpartum incorporation of glycerol in the diet resulted in 

no significant effects on postpartum liver composition.  Short term (5-d) oral 

drenching of glycerol beginning at calving resulted in no significant effects on 

liver composition (d 10 and 21 postpartum) or on plasma glucose and NEFA.  

However, there was a trend for an increase in BHBA concentrations for cows 

drenched with glycerol.  Intensive blood sampling performed on d 5 post 

calving demonstrated that a 500 ml oral bolus of crude glycerine significantly 

decreased plasma NEFA concentration with no overall significant effects on 

plasma glucose, BHBA, or insulin.  Overall, incorporation of glycerol in to the 

diets of transition cows or the short-term oral drench of glycerol at calving  

resulted in few positive performance responses and only modest effects on 

metabolic variables studied. 
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CHAPTER ONE: 
 

INTRODUCTION 
 

The transition period of dairy cows, ranging from three weeks 

prepartum to three weeks postpartum, is a period marked with large changes 

in metabolic demands due to parturition and lactogenesis (Grummer, 1995; 

Drackley, 1999).  Failure of the cow to properly coordinate her metabolism in 

support of lactation results in impaired performance and increased incidence 

of metabolic disorders.  Ketosis and fatty liver are two metabolic disorders 

related to energy metabolism that occur in varying frequency and severity 

during the transition period of the dairy cow (Gummer, 1993).  These 

conditions result in reduced milk production and poorer reproductive 

performance along with increased culling rates and veterinary costs.  

Developing and deploying methods to reduce the incidence of ketosis and 

fatty liver in the transition cow should improve the overall well being of the 

dairy cow along with increase productivity and profitability of the dairy industry. 

One of the major metabolic challenges confronting the transition cow is 

gradually increasing demands for glucose to support the gravid uterus during 

late pregnancy followed by a dramatic increase in glucose demand at the 

onset of lactogenesis and copious milk secretion during early lactation (Bell, 

1995; Reynolds, et al., 2003a).  Concurrent with these increasing demands for 

glucose and other nutrients, the cow experiences a decline in voluntary feed 

intake as parturition approaches (Ingvartsen and Andersen, 2000), which 

results in the onset of a period of negative energy balance that begins prior to 

parturition and continues through early lactation.  This results in mobilization of 

substantial amounts of adipose tissue reserves in the form of nonesterified 

fatty acids (NEFA) to meet overall energetic demands for lactation.   
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The liver is responsible for the majority of the increased 

gluconeogenesis that must occur to support this increased demand for 

glucose; however, the liver also takes up NEFA in proportion to their supply in 

the circulation (Reynolds, et al., 2003a).  The liver uses these NEFA for 

energy; however, in excess they are accumulated as fat in liver tissue and it is 

believed that excessive accumulation of fat in liver tissue decreases the 

gluconeogenic capacity of the liver (Overton and Waldron, 2004).  Therefore, 

strategies to manage metabolism of NEFA by the liver of dairy cows are of 

biological and economic interest. One opportunity to manage metabolism of 

NEFA and improve metabolic health of the transition cow exists through 

manipulations of energy supply.  Increasing energy intake of the transition cow 

either through increased dry matter intake or increasing the energy density of 

the diet during the transition period can decrease circulating NEFA 

concentrations and potentially the amount of NEFA extracted by the liver  

(Grummer, 1995).  In addition, oral administration of glucogenic compounds 

such as propylene glycol can increase circulating concentrations of glucose 

and insulin and decrease concentrations of NEFA, thereby potentially lowering 

triglyceride accumulation in the liver (Ingvartsen et al., 2003). 

Increased understanding of the metabolism of glucogenic supplements 

and their application offers the opportunity to potentially improve metabolic 

health, productivity, and profitability of dairy farms.  The purpose of the review 

of literature to follow is to overview the transition period and the dramatic 

metabolic changes that occur during this timeframe, and then to review the 

current state of knowledge regarding the biology and application of glucogenic 

supplements as tools to improve the metabolic health of transition dairy cows.  
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CHAPTER TWO: 
 

REVIEW OF LITERATURE 

TRANSITION PERIOD 

The transition period has been defined as three weeks prepartum to 

three weeks postpartum (Grummer, 1995), and is a time period where cows 

are susceptible to most major metabolic disorders.  Disorders such as milk 

fever, ketosis, retained placenta, metritis and displaced abomasum occur on 

farms with varying frequency and severity during early lactation along with 

fatty liver and ketosis.  Health disorders that occur during the transition period 

result in reduced milk production (King, 1979; Rowlands and Lucey, 1986; 

Detilleux and Grohn, 1994) and reproductive performance (Gerloff, et al., 

1986) along with increased culling rates and veterinary costs (Detilleux and 

Grohn, 1994).  The success of the transition period has a significant impact on 

performance and health, and thus profitability of the transition cow. 

Jordan and Fourdraine (1993) studied 61 of the highest producing 

herds in the United States and reported the incidences of metabolic disorders 

in these herds.  They evaluated these herds for incidence of milk fever, 

displaced abomasum, ketosis, retained placenta and metritis. Their survey 

revealed that 20% of cows had at least one of these health disorders during 

the periparturient period.  The mean incidence of ketosis, milk fever and 

metritis were 3.7%, 7.2%, 12.8%, respectively, with ranges of 0 to 20%, 0 to 

44.1% and 0 to 66%, respectively.  In addition to their clinical forms, milk fever, 

ketosis, and metritis can occur in subclinical forms.  As a part of the USDA 

National Animal Health Monitoring System (NAHMS, 2002) dairy study, 

subclinical hypocalcemia was defined as serum calcium less than 8.0 mg/dl 

(Horst, et al., 2003).  From this study it appears that those cows with serum 
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calcium levels higher than 8.0 mg/dl also had lower serum NEFA 

concentrations than those cows with calcium levels lower than 8.0 mg/dl.  This 

evidence suggests that normocalcemic cows tend to have a better energy 

balance and are less susceptible to energy-related disorders such as 

displaced abomasum, fatty liver, and ketosis.  Subclinical ketosis [defined as 

circulating concentration of B-hydroxybutyric acid (BHBA) greater than 1400 

umol/L (Duffield, et al., 1998)] was present in approximately 25% of the control 

cows in a field study conducted on dairy farms in Ontario (Duffield, et al., 

1998).  Subclinical ketosis results in impaired milk production.  Duffield (1997) 

estimated that cows having serum BHBA concentrations greater than 1600 

μmol/L produced 1.8 kg less milk per day, cows having serum BHBA greater 

than 1800 μmol/L produced 3 kg/d less milk per day, and cows having serum 

BHBA greater than 2000 μmol/L produced 4 kg/d less milk. 

When the transition period is affected by health disorders, milk 

production losses occur not only during the time of illness but often persist into 

lactation.  In a study conducted by Wallace et al. (1996), mean daily milk yield 

for the first 20 d of lactation was 7.2 kg/d lower in cows that experienced a 

health disorder compared with cows that did not.  Furthermore, DMI was 

decreased by 5.4 kg/d for cows that experienced a health disorder compared 

with those that did not.  Rajala-Schultz et al. (1999) determined that milk 

losses due to ketosis began even before the diagnosis of clinical ketosis and 

that milk losses in mature cows persisted throughout lactation.  Energy-related 

metabolic disorders such as ketosis often occur in a complex with hepatic 

lipidosis (Gummer, 1993).  In addition to the correlation of triglyceride 

accumulation in the liver with increased circulating concentrations of BHBA 

and decreased capacity for gluconeogenesis from propionate (Piepenbrink 
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and Overton, 2003), hepatic lipidosis in varying degrees has been linked to 

decreased reproductive performance (Reid, 1980; Reid, 1982; Jorritsma, et 

al., 2003).   

As is apparent from the discussion above, the transition period is a 

potentially challenging time for the dairy cow.  Part of this challenge relates to 

the dynamic nature of nutrient demand and supply relationships together with 

the failure of nutritional management systems on many farms to adequately 

support the metabolic demands during this timeframe (Overton and Waldron, 

2004).  One of the hallmarks of this period is a large increase in demand for 

energy and all categories of nutrients on or about the day of parturition 

combined with inadequate DMI to satisfy these demands.  Beginning two to 

three weeks prepartum, the transition cow decreases her DMI by 

approximately 30% while nutrient requirements for the gravid uterus and, 

subsequently the mammary gland, begin to increase dramatically (Bell, 1995; 

Grummer, 1995).  Accordingly, virtually all cows enter a period of negative 

energy balance during the final week before parturition that continues through 

the first few weeks of lactation (NRC, 2001).  During this same time period, the 

transition cow mobilizes adipose tissue in an attempt to meet this energetic 

demand.  The following sections of this review of literature will overview 

aspects of energy metabolism of the transition dairy cow, together with the 

state of knowledge of the use of glucogenic supplements to positively affect 

energy metabolism and improve metabolic health of transition dairy cows. 

ENERGY DEMANDS OF THE TRANSITION PERIOD 

The dairy cow experiences dramatic increases in her demand for 

glucose during late pregnancy and early lactation.  Whole-body glucose 

demand during the last 21 d prepartum has been estimated to be 1000 to 
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1100 g/d and the demand for glucose increases dramatically after calving to 

be 2.5 times greater at 21 d postpartum (Bell, 1995).  Although glucose supply 

based upon dietary energy intake has been predicted to be insufficient by 

about 500 g/d during the first three weeks post-calving (Overton, 1998), it is 

clear that hepatic gluconeogenesis is substantially upregulated to supply 

sufficient glucose to the cow (Reynolds et al., 2003a). 

During the transition period, metabolic changes must occur to meet the 

demand of the mammary gland during early lactation.  In support of lactation, 

oxidation of glucose by peripheral tissues is reduced to conserve glucose for 

milk synthesis while liver metabolism must increase dramatically at calving to 

support glucose demands (Overton, 1998; Reynolds, et al., 2003a).  Liver size 

does not increase significantly during the transition period (Reynolds, et al., 

2003b); however, calculations of metabolic activity as indicated by oxygen 

uptake per unit of liver weight doubles during early lactation (Overton and 

Piepenbrink, 2001).  This increased metabolic activity is attributed to the 

increase in gluconeogenesis to meet glucose demand.  

Gluconeogenesis 

Glucose is required as a source of fuel for the gravid uterus, mammary 

gland, some peripheral tissues, central nervous system, red blood cells, 

gastrointestinal tract, and also lactose synthesis by the lactating mammary 

gland. Very little net absorption of glucose occurs in the intestinal tract of 

ruminants; therefore, the cow is almost entirely dependent upon 

gluconeogenesis in the liver, and to a lesser extent the kidney, to support 

overall glucose needs (Seal and Reynolds, 1993).  Ruminal fermentation of 

starch and other fermentable carbohydrates yields glucogenic substrates such 

as propionate, amino acids, and lactate.  Maximal contributions to hepatic 
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gluconeogenesis from glucogenic substrates, based upon uptake/output 

relationships of these substrates with hepatic glucose release, have been 

estimated to range from 32 to 72% for propionate, 10 to 30% for amino acids, 

15% for lactate and also a small amount from glycerol (Seal and Reynolds, 

1993).  Initial data suggest that the contributions of these substrates to hepatic 

gluconeogenesis in the transition dairy cow occur at similar proportions 

throughout the transition period (Reynolds et al., 2003). 

 As described above, propionate produced from ruminal and hindgut 

fermentation is the volatile fatty acid that makes a net contribution to glucose 

synthesis and is the most important precursor for hepatic gluconeogenesis.  

Increased availability of propionate from the rumen potentially increases 

gluconeogenesis in the liver, raising blood glucose levels, increasing insulin 

concentrations, which would then decrease adipose tissue mobilization 

(Grummer, 1995).   

 The amount of propionate available for gluconeogenesis and oxidative 

metabolism is directly related to the amount of nonfiber carbohydrates (NFC) 

consumed by the cow, which is a function of both NFC concentration of the 

diet and dry matter intake.  Available data suggest that the contribution of 

propionate to hepatic gluconeogenesis is related to its supply.  Propionate 

contributed 43.3% of the carbon for gluconeognesis in steers fed a control 

diet; supplying additional propionate as sodium propionate increased its 

contribution to 67.1% (Veenhuizen, et al., 1988).  Aiello et al. (1984) found the 

rate of conversion of [1-14C]propionate to glucose was higher in liver slices 

from cows fed a high concentrate diet as compared to cows fed a high forage 

diet.  In addition, Drackley et al. (2001) suggested that the capacity of liver 

slices to convert [1-14C]propionate to glucose was increased as fat-free NEL 
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intake increased during the first few weeks of lactation.  However, this 

relationship was not evident in cows during the middle of the dry period and at 

65 d postpartum, suggesting that overall glucose demand may also affect the 

relationship between propionate supply and its contribution to hepatic 

gluconeogenesis. 

 All amino acids except lysine, leucine and taurine can contribute to 

gluconeogenesis in ruminants.  In ruminants, alanine and glutamine have 

been reported to make the greatest contribution to glucose synthesis, and may 

account for as much as 40 to 60% of all the gluconeogenic potential from 

amino acids (Bergman and Heitmann, 1978).  The contribution of amino acids 

to glucose production may also be related to their supply (Lindsay and 

Williams, 1971; Danfaer, et al., 1995).  Amino acids from skeletal muscle also 

apparently serve as a source of glucogenic precursor in support of 

gluconeogenesis (Bell, 1995).  Overton et al. (1998) reported that the capacity 

of liver slices to convert [1-14C]alanine to glucose was approximately doubled 

at one day postpartum compared to late pregnancy in dairy cows.  These 

results were similar to those of Reynolds et al. (2003), who determined that 

the maximal contribution of alanine to glucose synthesis was doubled at 11 d 

postpartum compared to the prepartum period in dairy cows. 

 Lactate utilized for glucose production is a result catabolism of glucose 

by peripheral tissues (representing recycling of carbon) or propionate by 

ruminal epithelium.  However, lactate is not produced in significant amounts 

during fermentation of typical diets fed to transition cows (Nocek, 1997).  

Some evidence suggests that lactate may make a greater contribution to 

gluconeogenesis during late gestation than early pregnancy due to the release 

of lactate by the gravid uterus and muscle in late gestation (Bell, 1995).  Baird 
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et al. (1983) determined that the percentage of total glucose recycling and 

percentage contribution of lactate to glucose flux were lower during early 

lactation than during late pregnancy.  Although the amount of lactate that was 

potentially converted to glucose by liver was increased during early lactation 

compared with late pregnancy, the maximal contribution of lactate to glucose 

synthesis expressed as a percentage of glucose release was not markedly 

altered during the transition period (Reynolds et al., 2003). 

 The availability of glycerol as a substrate for glucose production also 

can arise as a result of carbon recycling and may be an important 

gluconeogenic precursor as the cow adapts to lactation.  Approximately 3.2 

kg/d of triglycerides are mobilized at 4 d postpartum and may provide 

maximally 15 to 20% of the glucose demand (Bell, 1995).  The contribution of 

glycerol to gluconeogenesis will depend on energy balance and the degree to 

which adipose tissue is mobilized (Overton, 1998; Drackley et al., 2001). 

Recent data (Reynolds et al., 2003) suggest that glycerol may be an important 

glucose precursor only during the immediate peripartum period, as glycerol 

uptake by liver at both 10 d prepartum and 11 d postpartum was low and 

accounted maximally for a small percentage of glucose release by liver. 

Endocrine Regulation of Gluconeogenesis 

 Although the availability of propionate and, to some extent, amino acids 

for gluconeogenesis is controlled by dietary supplies of fermentable 

carbohydrates and protein, availabilities of other substrates (e.g., glycerol, 

lactate, and amino acids from catabolism of skeletal muscle protein) are 

partially under hormonal control, and overall hepatic gluconeogenesis has a 

component of endocrine regulation.  Hormones that influence hepatic 

gluconeogenesis include insulin, glucagon, somatotropin, and cortisol.   

 

9 
 



 

 Insulin is released by the beta cells of the pancreas in response to 

elevated circulating concentrations of glucose and, along with glucagon, is 

responsible for glucose homeostasis.  Insulin both promotes glucose uptake 

and oxidation by tissues and can decrease hepatic gluconeogenesis in 

ruminants (Brockman, 1985; Brockman and Laarveld, 1986).  Results of 

Brockman (1990) suggest that insulin also decreases the availability of other 

glucose precursors including amino acids by 30 -50% for gluconeogenesis in 

growing ruminants, in part by promoting anabolism in muscle tissue.  Insulin 

concentrations decrease at parturition and remain low during early lactation 

(Bell, 1995), which promotes hepatic gluconeogenesis.  The decreased 

contributions of lactate to gluconeogenesis described above during early 

lactation may be a function of decreased concentrations of insulin and 

decreased responses of peripheral tissues to insulin-dependent glucose 

uptake for oxidative metabolism during early lactation as a homeorhetic 

adaptation to lactation (Bauman and Currie, 1980; Bell, 1995).   

 Glucagon is released by alpha cells in the pancreas in response to low 

circulating concentrations of glucose and promotes both hepatic 

gluconeogenesis and the breakdown of glycogen in the liver.  Glucose 

synthesis from amino acids is stimulated by glucagon and inhibited by insulin 

(Danfaer, et al., 1995).  Intravenous infusion of glucagon into both dairy cows 

(She et al., 1999) and sheep (Brockman and Bergman, 1975) resulted in an 

increase in glucose synthesis rate.  Hippen et al. (1999) found the intravenous 

administration of glucagon in early lactation cows increased plasma glucose 

and decreased plasma concentrations of β-hydroxybutyrate and NEFA.  These 

researchers also found hepatic triglyceride content to be decreased by 71% at 

35 d postpartum or after 14 d of glucagon treatment compared to control cows.  
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This research indicates that exogenous glucagon may play a role in increasing 

plasma glucose and decreasing fatty liver in the transition cow. 

 Somatotropin is a homeorhetic hormone that works to coordinate the 

metabolism of tissues to partition nutrients in the ruminant animal and appears 

to have a role in promoting hepatic gluconeogenesis in ruminants. Plasma 

concentrations of somatotropin increase during late gestation, peak at 

parturition and decrease slowly postpartum (Bell, 1995).  This hormone 

functions in stimulation of gluconeogenesis by increasing the metabolism of 

propionate to glucose (Danfaer, et al., 1995) and the partitioning of nutrients to 

the mammary gland for milk synthesis (Bauman, 1992). Liver slices from cows 

treated with exogenous somatotropin showed an increase in the conversion of 

[1-14C] propionate to glucose (Pocius and Herbein, 1989; Knapp, et al., 1992); 

therefore, elevated concentrations of somatotropin that persist from parturition 

through early lactation may help to promote hepatic gluconeogenesis in 

support of the increased glucose demand.  

 Glucocorticoids such as cortisol will promote gluconeogenesis and 

increase glucose blood supply.  Plasma cortisol concentrations increase 

during the last 3 d before calving then peak at parturition and decrease to 

prepartum levels by 3 to 5 d of lactation (Goff et al., 1989).  Glucocorticoids 

stimulate lipolysis and the mobilization of amino acids from extrahepatic 

tissues; the amino acids can then used by liver for gluconeogenesis.    

FATTY ACID METABOLISM 

 As described above, dairy cows typically experience a period of 

negative energy balance during the immediate periparturient period and early 

lactation (Bauman and Currie, 1980).  As a result, mobilization of adipose 
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tissue reserves occurs in essentially all clinically normal cows during this 

period. Net mobilization of adipose tissue, representing a balance of lipolysis 

and lipogenesis, results in the release of NEFA into the bloodstream for 

oxidative metabolism by peripheral tissues and incorporation into milk fat 

(Drackley, 1999).  In addition, the liver takes up NEFA from the circulation in 

proportion to supply during the periparturient period (Reynolds et al., 2003) 

and either oxidizes them in the mitochondria or peroxisomes or reesterifies 

them into triglycerides for storage or export (Grummer, 1993; Drackley et al., 

2001).  The mobilization of body stores and accumulation of liver triglycerides 

begins prior to parturition, liver triglyceride concentrations peak at or following 

parturition, and hepatic lipidosis can precede ketosis in many cases 

(Grummer, 1993). 

 As described above, the liver takes up NEFA in proportion to their 

circulating supply and either oxidizes them or reesterifies them into 

triglycerides.  Compared to nonruminants, ruminant liver has limited capacity 

to oxidize fatty acids and export triglycerides in VLDL (Gummer, 1993).  This 

contributing factor predisposes the transition cow to the development of fatty 

liver.  Low concentrations of liver triglyceride accumulation most likely have 

insignificant effects on liver metabolism (Overton and Waldron, 2004); 

however, as triglycerides accumulate in the liver, the capacity of the liver to 

produce glucose from propionate appears to decrease (Strang et al. 1998; 

Piepenbrink and Overton, 2003).  Thus, it is uncertain whether the association 

of hepatic lipidosis with ketosis is simply a function of high circulating 

concentrations of NEFA that predispose cows to accumulate triglycerides in 

liver or a direct interference of triglyceride accumulation with hepatic 

carbohydrate metabolism that leads to the onset of ketosis. 
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GLUCOGENIC SUPPLEMENTS 

Given the interest in increasing glucose availability and decreasing 

NEFA mobilization from adipose tissue during the transition period to facilitate 

the cow’s metabolic adaptation to lactation and help to minimize occurrence of 

energy-related metabolic disorders, researchers have focused on strategies to 

increase the supply of glucogenic nutrients (Grummer, 1995; Overton and 

Waldron, 2004).  This has typically been accomplished by either increasing the 

nonfiber carbohydrate content of the diet fed prepartum or by administering 

glucogenic supplements during the periparturient period (NRC, 2001;  Overton 

and Waldron, 2004). 

Glucogenic supplements are substances that are administered or fed to 

the cow that can subsequently be absorbed and converted to glucose by the 

liver, with the intent of increasing glucose availability to the cow.  This 

increased glucose availability to the cow can promote insulin  secretion, which 

in turn should decrease NEFA release from adipose tissue (Gummer, 1993; 

Overton and Waldron, 2004).  Gluconeogenic supplements have been 

reported to decrease NEFA and β-hydroxybutyrate (BHBA, the predominant 

ketone body found in blood) and increase blood glucose.  Bertics et al.  (1992) 

proposed that glucose precursors administered prepartum would increase 

blood glucose which will elicit an insulin response and reduce mobilization of 

fatty acids from adipose tissue.  Several gluconeogenic supplements including 

propylene glycol, sodium or calcium salts of propionate, and glycerol have 

been investigated and determined to be an effective means of preventing fatty 

liver and treating ketosis. 

Propylene Glycol:  Propylene glycol was first investigated in the 1950s 

(Johnson, 1953) as a treatment for clinical ketosis.  As detailed below, many 

 

13 
 



 

studies have been conducted to investigate the effects of propylene glycol on 

metabolic parameters indicative of risk for ketosis and fatty liver and changes 

in ruminal volatile fatty acids in response to propylene glycol supplementation. 

Johnson (1953) used lactating cows showing signs of clinical ketosis to 

evaluate the effects of oral administration of propylene glycol.  Propylene 

glycol was administered in varying amounts from as much as 1800 g via 

rumen tube to as little as 225 g in the grain portion of the diet.  Concerns with 

palatability were noted in this experiment; therefore, it was suggested that 

propylene glycol may be best administered in drinking water or as a drench 

versus in the diet.  Clinical observations with concurrent monitoring of blood 

glucose concentrations suggested that oral administration of propylene glycol 

was an effective treatment for ketosis.   A disadvantage of propylene glycol 

may be its toxic effects when administered in large quantities.  Johnson found 

that propylene glycol given to ketotic cows in large quantities (> 800 g/d) may 

cause incoordination for several hours post treatment.  Smaller quantities 

ranging from 200 – 500 g/d were effective in increasing plasma glucose 

without symptoms of toxicity. More intensive studies have been performed 

since this initial field trial.  These studies have included evaluation of changes 

in rumen fluid, plasma concentrations of glucose, NEFA, BHBA, insulin, as 

well as liver triglycerides and milk production.   

Several studies have evaluated the effects of oral administration of  

propylene glycol on ruminal parameters (Emery, et al., 1964; Fisher, et al., 

1971; Grummer, et al., 1994; Christensen, et al., 1997).  Propylene glycol 

leaves the rumen through three routes: absorption, fermentation, or passage 

to the lower intestinal tract.  Emery et al. (1964) concluded that most of the 

propylene glycol escapes the rumen intact with a small portion metabolized to 
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propionate; however, Kristensen et al. (2002) recently determined that the 

majority of propylene glycol is metabolized in the rumen.  Other reports also 

have indicated that the molar proportion of propionate in ruminal fluid is 

increased when ruminants have been fed propylene glycol (Emery et al., 1964; 

Fisher et al., 1971; Grummer et al., 1994; Christensen et al., 1997).  Propylene 

glycol that escapes rumen fermentation reaches the liver where it is converted 

to glucose.  Rumen fermentation of propylene glycol increases rumen 

concentrations of propionate which in turn is converted to glucose.  

Regardless of whether the liver receives propylene glycol in its native form or 

as propionate, peak circulating concentrations of glucose and insulin occur 

within the first 90 min after oral drenching, which indicates that propylene 

glycol is rapidly absorbed from the rumen and utilized in the liver for glucose 

production (Nielsen and Ingvartsen, 2004).   

Propylene glycol decreases plasma concentrations of NEFA and BHBA 

while increasing concentrations of insulin and glucose.   Grummer et al. (1994) 

compared 0, 300, 600, and 900 ml of propylene glycol administered once daily 

via oral drench to feed-restricted heifers.  Increasing doses of propylene glycol 

demonstrated linearly increased plasma glucose and serum insulin 

concentrations and linearly decreased plasma NEFA and BHBA.  Pickett et al. 

(2003) determined that once-daily drenching of 500 ml of propylene glycol 

during the first 3 d postpartum decreased concentrations of NEFA which 

concurred with data of Stokes and Goff (2001), who administered 300 ml of 

propylene glycol via oral drench for the first 2 d postpartum.  Plasma BHBA 

also tended to be decreased by propylene glycol drench in the study by 

(Pickett et al., 2003); however, Stokes and Goff (2001) reported that BHBA 

was not affected by propylene glycol administration during the first 2 d 
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postcalving.  Long term administration of propylene glycol to feed restricted 

heifers for 14 d did not affect plasma glucose or BHBA concentrations; 

however, insulin was increased and NEFA was decreased by propylene glycol 

administration  (Christensen, et al., 1997).   

The combined effects of propylene glycol on plasma glucose and serum 

insulin concentrations along with plasma NEFA and BHBA should in turn help 

to reduce hepatic triglyceride accumulation.  Studer et al. (1993) evaluated 

propylene glycol as a 1 L oral drench given once daily beginning 

approximately 10 d before expected parturition on periparturient fatty liver. 

Liver triglycerides were reduced by 32 and 42% at 1 and 21 d postpartum 

along with decreased plasma NEFA and BHBA, and increased plasma 

glucose and insulin.  Pickett et al. (2003) reported that propylene glycol 

administration did not affect liver triglyceride accumulation.  These studies 

suggest that the effect of propylene glycol on liver triglyceride accumulation 

may vary depending upon the physiological state or overall opportunity to 

decrease liver triglyceride accumulation. 

Physiological state of the animal also appears to influence the overall 

effects of propylene glycol administration.  In the 1970s, Canadian researchers 

(Fisher, et al., 1971; Fisher, et al., 1973; Sauer, et al., 1973) investigated 

propylene glycol as a feed additive.  Results indicated that normal cows not 

subject to high lactational demands or inadequate feed intake during lactation 

did not benefit from adding propylene glycol to diet.  However, when cows 

were both highly productive and had lower feed intake, dietary 

supplementation with propylene glycol showed reduced plasma BHBA, NEFA, 

and increased glucose concentrations.  Early lactation cows and feed-

restricted heifers are in negative energy balance and, therefore, mobilize more 
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adipose tissue resulting in higher concentrations of NEFA.  Propylene glycol 

appears to have more notable effects on plasma BHBA in animals with higher 

NEFA concentrations (Nielsen and Ingvartsen, 2004).   

Typically, milk yield and composition are not significantly affected by the 

administration of propylene glycol (Nielsen and Ingvartsen, 2004).  Some 

studies do indicate that the supplementation of propylene glycol around 

calving or during early lactation may have a tendency to increase milk yield 

(Emery, et al., 1964; Fisher, et al., 1973; Studer, et al., 1993; Pickett, et al., 

2003).  It is logical that the effect of propylene glycol on milk yield may be 

dependent upon whether a metabolic condition existed before administration 

that resulted in decreased milk yield. 

Although the concept of adding propylene glycol to the diet is attractive, 

available data suggest that propylene glycol is most effective if administered 

as an oral drench (Hutjens, 1996; Christensen et al., 1997; Overton and 

Piepenbrink, 2001).  Propylene glycol has been described as being 

unpalatable and therefore when added to the diet may decrease DMI 

(Johnson, 1953; Fisher, et al., 1971; Fisher, et al., 1973; Sauer, et al., 1973).  

Christensen et al. (1997) compared the effects of method of delivery of 

propylene glycol.  They reported that the administration of propylene glycol as 

an oral drench or in a concentrate resulted in more noticeable effect on blood 

parameters and ruminal fluid concentrations than when administered in a 

TMR.  This is most likely due to more rapid uptake as an oral drench and in 

concentrate feeding versus the slow intake as part of a TMR.  Therefore the 

use of propylene glycol as a dietary ingredient is less effective than when 

administered as an oral drench. 
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Sodium and Calcium Propionate: In ruminant animals, propionate is 

a known glucose precursor and propionate supplements complexed with Na, 

Ca, or trace minerals could be used to increase plasma glucose 

concentrations in the transition cow.  When sodium propionate or calcium 

propionate is used as a dietary supplement, propionate is released from 

sodium or calcium and absorbed across the rumen wall into blood then 

transported to the liver where it is converted to glucose. 

Early feeding studies in which (Schultz, 1958) sodium propionate was 

fed at a rate of 114 g per cow per day during the first 6 weeks of lactation 

indicated an increase in blood glucose along with reduced blood ketone 

concentration.  Goff (1996) administered calcium propionate in the form of a 

paste and reported trends for decreased plasma concentrations of NEFA, and 

BHBA, which supports the theory that propionate supplements may improve 

energy status and prevent the development of ketosis and fatty liver.  Other 

studies using propionate supplements have reported no significant effects on 

milk yield or plasma concentrations of NEFA and BHBA (Burhans and Bell, 

1998; Stokes and Goff, 2001). 

Glycerol:  Glycerol has been reported to be a sweet-tasting liquid 

substance that, as a three-carbon molecule, enters the gluconeogenic 

pathway and can be used as a gluconeogenic supplement.  It was evaluated 

as an aid for treatment of ketosis in the 1960s and 70s but not adopted due to 

high costs (Fisher et al., 1973; Sauer et al., 1973).  New sources of glycerol as 

a byproduct of biodiesel have reduced the cost (Schroder and Sudekum, 

1999) thus making glycerol more attractive and a potential supplement for 

addition to transition cow diets. Renewed interest of the use of glycerol is 
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evidenced by recent studies (Schroder and Sudekum, 1999; Goff and Horst, 

2001; DeFrain et al., 2004; Linke et al., 2004). 

Glycerol can be converted to glucose in the liver and enters the 

glucogenic pathway at the level of dihydroxyacetone phosphate and 3-

phosphoglyceraldehyde.  This is only true when glycerol is absorbed or 

administered directly into circulation.   Oral administration of glycerol may 

result in fermentation in the rumen.   Linke et al. (2004) found administration of 

1 kg of glycerol as a dietary supplement, an oral drench, and via rumen tube 

increased rumen propionate compared to control cows (28.7, 30.4, 30.4 and 

26.4 molar percent, respectively).  This would suggest that glycerol is 

fermented in the rumen and provides propionate as a glucose precursor.  This 

is supported by the observed increase in plasma glucose concentration 

expressed as area under the curve over baseline for 8 h (23.6, 54.6, 58.1, and 

9.4 mg/dl*h, respectively).  Goff and Horst (2001) administered 1, 2 or 3 L of 

glycerol via an esophageal pump and found an increase in plasma glucose by 

16, 20 and 25% over pretreatment values respectively.  Evaluation of ruminal 

contents by Linke et al. (2004) also indicated that glycerol administration 

increased butyrate concentrations in rumen fluid (20.0, 20.3, 21.5 and 14.1 

molar percent)  Increases in ruminal butyrate in effect can result in increased 

blood ketones such as BHBA, which can be used for energy by various 

tissues. 

Early studies  (Johnson, 1953) added glycerol to the grain portion of the 

diet to clinically ketotic cows and found improvements in appetite, milk 

production and plasma glucose as well as a decrease in plasma ketones.  

Fisher et al. (1971, 1973) added glycerol to the grain portion of the diet (3 and 

6% of concentrate) of early lactation cows and found little difference in milk 
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production (25.8 and 24.3 vs. 25.5 kg/d)  when compared to control cows.  

Fisher et al. (1971) determined that feeding a concentrate mixture containing 

3.3% glycerol increased DMI (11.4 vs. 14.3 kg/d).  The increase in DMI was 

not observed in their 1973 study comparing glycerol and propylene glycol; 

however, cows that consumed the diet containing 6% glycerol appeared to 

lose less body weight than control cows or cows fed a concentrate containing 

3% glycerol or 3% propylene glycol. 

  Defrain et al. (2004) evaluated glycerol supplementation in the diet of 

transition cows.  Glycerol (0, 0.5, or 1.0 kg/d) was topdressed on to the top 

one-third of a total mixed ration (TMR) and fed to transition cows from 14 d 

prepartum to 21 d postpartum.  Glycerol treatments did not affect prepartum 

concentrations of glucose, insulin, NEFA or BHBA.  However, postpartum 

concentrations of plasma glucose tended to be higher for the cows fed the 

control diet compared to those fed glycerol (65.8 vs. 63.0 and 60.1 mg/dL). 

Significant diet and day interactions were observed during the postpartum 

period for concentrations of glucose, insulin, NEFA, and BHBA.  Plasma 

glucose decreased in cows fed 0.5 kg/d at 7 DIM while insulin steadily 

increased from d 7 to d 21.  Those cows fed 1.0 kg/d glycerol decreased 

sharply from d 14 to d 21 and insulin remained constant.  Between 7 and 21 

DIM, plasma concentrations of BHBA decreased in cows fed 0.5 kg/d and did 

not change in the control cows but increased in cows fed 1.0 kg/d.  At 7 DIM, 

NEFA were greater in cows fed the control diet and 0.5 kg/d compared to 

cows fed 1.0 kg/d; however, concentrations became similar among treatments 

at 14 and 21 DIM.  Cows fed either 0.5 or 1.0 kg/d of glycerol had decreased 

prepartum DMI compared with the control cows, but postpartum DMI was not 

affected by treatment.  Milk yield of multiparous cows was decreased by 
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feeding 1 kg/d of glycerol compared with the other two treatments.  This 

current data indicates that dietary glycerol during the transition period may 

provide modest support to increasing postpartum plasma glucose 

concentrations and decreasing NEFA.  

Glucogenic Comparison: Propylene glycol (C3H8O2), glycerol 

(C3H8O3) and propionate (C3H6O2) are three carbon molecules.  It appears 

that propylene glycol and glycerol may be fermented to propionate in the 

rumen, thus making a contribution to glucose production in the form of 

propionate.  In theory, it would require 2 moles of each of these glucose 

precursors to provide 1 mole of glucose (C6H12O6).  There is approximately 6.8 

moles in 500 ml of propylene glycol and glycerol and 500 g of propionate.  

Therefore, if 100 percent of a 500 ml or 500 g dose of each of these 

glucogenic substances were utilized for glucose production would provide 

approximately 3 moles of glucose.  Due to effects of the rumen environment, it 

is likely that less than 100% of these substances are utilized for 

gluconeogenesis.  

 
TABLE 2-1. Molecular weight, density and moles of glucogenic compounds. 
Glucogenic 
Compound 

Molecular Weight 
(g/mole) 

Density (g/ml) Moles 

Propylene Glycol 76.10 1.036 6.8/ 500 ml 
Glycerol 92.09 1.26 6.85/ 500 ml 
Propionate 74.08  6.75/ 500 g 

 

In summary, opportunities exist to influence transition cow metabolism 

and potentially productivity by administration of glucogenic supplements.  As 

indicated above, glycerol administered in the form of crude glycerine has 

shown potential to be utilized as a glucogenic substance.  In particular, 

 

21 
 



 

questions remain as to the appropriate time period for glycerol 

supplementation (prepartum vs. postpartum), its effectiveness as a dietary 

supplement compared to an oral drench, and whether there are additive 

effects of feeding and drenching glycerol.  These questions will be the subject 

of the research described throughout the remainder of this thesis.  
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CHAPTER THREE: 

EFFECTS OF METHOD OF DELIVERY OF GLYCEROL ON 
PERFORMANCE OF DAIRY COWS DURING THE TRANSITION PERIOD 

INTRODUCTION 

The transition period has been defined as three weeks prepartum to 

three weeks postpartum (Grummer, 1995).  It is a period characterized by 

dramatic metabolic adaptations due to parturition and lactogenesis.  During 

the late prepartum period, marked reductions in DMI occur concurrently with 

increased nutrient demands for the growth of the conceptus and initiation of 

milk synthesis (Bell, 1995; Grummer, 1995).  This results in a period of 

negative energy balance that begins several days prior to parturition and 

continues through early lactation, resulting in mobilization of NEFA from 

adipose tissue and increased risk of development of energy-related metabolic 

disorders such as fatty liver, ketosis, and displaced abomasum in transition 

cows (Grummer, 1993).  Furthermore, these changes occur concomitantly with 

a period of decreased immunocompetence during the transition period 

(Drackley, 1999).  

Ketosis and fatty liver results in reduced milk production (King, 1979; 

Rowlands and Lucey, 1986; Detilleux and Grohn, 1994) and reproductive 

performance (Gerloff et al., 1986) along with increased culling rates and 

veterinary costs (Detilleux and Grohn, 1994).  The degree of success of 

transition period management is considered to largely determine the 

profitability of the cow during that lactation (Drackley, 1999). When the 

transition period is affected by health disorders, milk production losses occur 

not only during the time of illness but often the entire lactation (Detilleux and 

Grohn, 1994; Wallace, et al., 1996; Geishauser, et al., 1998).   
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Ketosis is characterized by increased concentrations of ketone bodies 

in the blood, urine, and milk.  Ketosis can be considered to occur in subclinical  

or clinical forms (Baird, 1982; Geishauser et al., 1998).  The prevalence of 

sub-clinical ketosis has been reported to occur in the range of 8.9 to 34% 

(Kauppinen, 1983).  Studies in Ontario herds reported the prevalence to be 12 

– 14% of lactating dairy cows, with subclinical ketosis resulting in a loss of milk 

production of 1.0 to 1.4 kg/d (Dohoo and Martin, 1984).  Duffield (1997) 

reported that cows with plasma concentrations of BHBA greater than 1600 

μmol produced 1.8 kg less milk per day while cows with more than 1800 μmol 

produced 3 kg/d less per day and cows with >2000 μmol produced 4 kg/d less 

than cows with plasma concentrations of BHBA less than 1600 μmol. 

One commonly used strategy to treat or perhaps prevent the 

development of fatty liver and subclinical ketosis has been the administration 

of glucogenic supplements such as propylene glycol (Nielsen and Ingvartsen, 

2004; Overton and Waldron, 2004).  Most of the studies conducted have 

evaluated administration of propylene glycol as an oral drench and commonly 

have reported decreased circulating concentrations of NEFA and BHBA 

following administration of propylene glycol (reviewed by Nielsen and 

Ingvartsen, 2004).  Although most of the experiments in the literature 

evaluated administration of propylene glycol for 10 to 40 d, research 

conducted recently (Pickett et al., 2003) established that short-term (3 d) 

administration of propylene glycol beginning at parturition would result in 

carryover decreases in NEFA and BHBA during the first 21 d of lactation.  

Furthermore, although extensive research has not been conducted, available 

data suggest that the metabolic response to propylene glycol is greater if 
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administered as an oral drench instead of incorporated into the diet 

(Christensen et al., 1997).   

Glycerol is another glucogenic compound has been evaluated for 

prevention and treatment of energy-related metabolic disorders.  Early studies  

(Johnson, 1953) added glycerol to the grain portion of the diet to clinically 

ketotic cows and found that it increased appetite, milk production and plasma 

glucose concentrations and decreased plasma ketones.  In the 1970s, 

Canadian researchers (Fisher, et al., 1971; Fisher, et al., 1973; Sauer, et al., 

1973) evaluated glycerol as a feed additive in comparison to propylene glycol.  

These studies indicated that dietary glycerol may increase DMI, plasma 

glucose concentration and energy status.  These researchers discontinued 

use of glycerol in their 1973 trial due to high costs of glycerol.  Further 

research focused on glycerol was not conducted for many years because of 

the high cost of glycerol relative to propylene glycol. 

Recently, new sources of glycerol as crude glycerine have become 

available as a coproduct of biodiesel production from soybeans (Schroder and 

Sudekum, 1999) and thus interest in glycerol as a glucogenic supplement has 

been renewed (Goff and Horst, 2001; DeFrain et al., 2004; Linke et al., 2004).  

Recent studies have evaluated glycerol both as an oral drench and as a 

dietary supplement.  Goff and Horst (2001) evaluated glycerol for ketotic 

lactating cows and reported increased plasma glucose concentrations 

following administration by oral drench.  DeFrain et al. (2004) investigated the 

addition of glycerol in transition cow diets and its effects on blood metabolites 

and lactation performance.  This study revealed that dietary glycerol 

administered as a topdress during the transition period had transient and 

varied effects on circulating glucose and NEFA concentrations.  Furthermore, 
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glycerol administered as a topdress decreased prepartum DMI compared to 

controls.  Linke et al. (2004) compared effects of both oral drenching and 

feeding of glycerol and reported that glycerol increased plasma glucose and 

insulin concentrations during the 8-h period following administration when 

administered orally as a drench or via stomach tube. 

To date, studies have not been conducted to evaluate whether 

incorporation of glycerol into the TMR in conjunction with short-term 

administration via oral drench beginning at parturition will improve 

performance of transition dairy cows.  Hence, the objective of this study was to 

determine the effect of method of delivery of glycerol on DMI, milk production, 

milk composition, body weight and BCS during the transition period and early 

lactation. 

MATERIALS AND METHODS 

Experimental Animals, Treatments, and Procedures 

 All procedures using experimental animals were approved by the 

Cornell University Institutional Animal Care and Use Committee.  Forty-eight 

Holstein cows entering second or greater lactation were assigned to 

treatments in a completely randomized design.  On one day per week prior to 

d 28 before expected parturition, cows were moved into tie stalls at the Cornell 

University Teaching and Research Center and fed a diet typical of that fed to 

close-up dairy cows in the Northeast and Upper Midwest (control diet, Table 3-

1).  Beginning 21 d before expected parturition, cows were assigned to receive 

either the control diet or the control diet with added glycerol (5% of DM).  After 

parturition, cows were assigned in a balanced fashion to one of four 

treatments in a 2 (control vs. dietary glycerol; 3.3% of DM) X 2 (water vs. 

glycerol drench; 500 ml/d for 5 d) factorial arrangement.  Glycerol was 
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supplied as crude glycerine, which contained 80.6% glycerol, 8.9% salt and 

10.5% water (West Central Soy, Ralston, IA).  From d 22 through 63 of 

lactation, cows were fed the postpartum control diet.  Ingredient and nutrient 

composition of the prepartum and postpartum diets are listed in Table 3-1 and 

3-2, respectively. 

 All cows were fed daily at approximately 1000 h.  Amounts of feed 

offered and refused were recorded daily from 28 d prior to expected parturition 

until 63 d postpartum.  Daily DMI were calculated based on the amounts 

offered and refused, corrected for DM content of the TMR.  Individual forage 

and TMR samples were obtained on weekly basis and dried to a static weight  
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TABLE 3-1. Ingredient and nutrient composition (DM basis) of prepartum 
diets. 
Ingredient Control Glycerol
Corn silage, % 43.7       41.5 
Alfalfa silage, %     10.6      10.0 
Grass hay, %     11.8      11.2 
Straw, %         1.58          1.50 
Citrus pulp, %         6.36          6.05 
Wheat middlings, %         5.15          4.89 
Soybean meal (47.5% CP), %         2.99          2.84 
High moisture shell corn, %         2.88          2.74 
Corn gluten feed, %         1.80          1.71 
Corn gluten meal, %         1.31         1.24 
Corn meal, %         1.12         1.06 
Animal protein blend, %         0.72         0.68 
SoyChlor2, %         6.10         5.79 
Mineral and vitamin mix, %         3.09         2.93 
Ca-PFAD1, %         0.76         0.72 
Urea, %         0.13         0.12 
Glycerine3, %         ----       5.0 
   
Energy and nutrient   
NEL, Mcal/kg        1.59        1.61 
NDF, %    37.1    35.9 
NFC4, %    39.2    40.5 
Starch, %    22.6    19.8 
Crude fat, %        3.46      3.98 
CP, %    15.8    14.5 
Lignin, %        3.43        3.37 
Ca, %        1.02       0.96 
P, %        0.38       0.37 
K, %        1.29       1.24 
Mg, %        0.35       0.33 
11Ca-salts of palm fattty acid distillate (EnerGll;Bioproducts, Inc Fairlawn, OH)  
2Anionic supplement (West Central Soy, Ralston, IA) 
380.6% glycerol, 8.9% salt and 10.5% water 
4Calculated as 100 – [(NDF-NDFCP)+CP+EE+Ash] (NRC, 2001). 
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TABLE 3-2. Ingredient and nutrient (DM basis) composition of the 
postpartum diets. 
Ingredient Control Glycerol
Corn silage, %      27.4      26.5 
Alfalfa silage, %      17.1      16.5 
Grass hay, %         4.71         4.55 
Straw, %         1.03         1.00 
Corn meal, %     10.7     10.3 
High moisture shell corn, %        9.87         9.54 
Soybean meal (47.5% CP), %        5.22         5.22 
Soy Plus, %        4.95         4.95 
Wheat middlings, %        3.94         3.94 
Cottonseed, %        3.94         3.81 
Citrus pulp, %        2.31         2.31 
Soy hulls, %       1.84         1.84 
Corn gluten meal, %       0.82         0.82 
Fat-tallow, %       0.68         0.68 
Animal protein blend, %       0.38         0.38 
Mineral and vitamin mix, %       4.19         4.19 
Ca-PFAD1, %       0.99         0.99 
Urea, %       0.12         0.12 
Glycerol2, %      ---         3.30 
   
   
Energy and nutrient   
NEL, Mcal/kg         1.69           1.70 
NDF, %    30.7       30.2 
NFC3, %    41.7       41.3 
Starch, %    26.9       26.1   
Crude fat, %         4.73           4.79    
CP, %      17.7         18.23   
Lignin, %          3.58           3.49 
Ca, %          0.91          0.96 
P, %          0.35         0.35 
K, %          1.12         1.12 
Mg, %          0.26         0.26 
1Ca-salts of palm fattty acid distillate (EnerGll;Bioproducts, Inc Fairlawn, OH 
380.6% glycerol, 8.9% salt and 10.5% water 
2Calculated as 100 – [(NDF-NDFCP)+CP+EE+Ash] (NRC, 2001). 
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at 60ºC.  A four-week composite sample was prepared from the individual  

weekly samples.  Concentrate samples were obtained on a monthly basis.  

Prior to analysis, the four-week composites of forages and the monthly 

composites of concentrates were compiled into total experimental composites 

for each feedstuff.  Composites of individual ingredients and TMR were 

prepared and subjected to the CNCPS nutrient profile analysis using wet 

chemistry techniques (Dairy One Laboratories, Ithaca, NY).  Analysis of feed 

samples included CP, ADF, NDF, EE, ash, lignin, ADICP, NDICP, starch, 

soluble CP, and minerals.  Nutrient composition of dietary ingredients is listed 

in Table 3-3. 

The initial glycerol or water drench was administered within 36 h of 

calving and prior to feeding (between 0700 and 1000 h) and subsequent 

drenches were given at the same time each day for a total of 5 d.  Drenches 

were administered using a 300 cc drench gun in two consecutive drenches to 

ensure the cow received a complete dose of 500 ml.  A 500 ml dose of crude 

glycerine (80% glycerol on a weight basis) contained approximately 625 g of 

glycerol. Body weights and body condition scores were recorded on a weekly 

basis throughout the study.  Two individuals evaluated and recorded body 

condition scores using a five-point scale (Wildman, et al., 1982).  An average 

of the two individual scores was used as the assigned weekly value.  General 

health records were maintained for each cow throughout the study. 

 After parturition cows were milked three times daily and individual milk 

weights were recorded at each milking through 63 d postpartum.  Composites 

were prepared from all milkings on one day per week from each cow and 

analyzed for milk fat, true protein, lactose, MUN and somatic  cell  count  using  
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mid infrared spectroscopy according to AOAC (2000) methods (DairyOne 

Laboratories, Ithaca, NY).   

Statistical Analysis 

Data for DMI and milk yield were reduced to weekly means prior to 

analysis.  Effects of prepartum feeding of glycerol were evaluated separately 

for prepartum and postpartum variables using the MIXED procedure of SAS 

Version 8.2 (SAS Institute, Cary, NC) for a completely randomized design with 

repeated measures and specified error term.  Terms included in the model 

used to evaluate prepartum effects were dietary treatment (control vs. 

glycerol), time, and their interaction.  Effects of postpartum feeding or oral 

administration of glycerol (2 x 2 factorial arrangement of treatments) on 

postpartum variables were evaluated as above using SAS.  Model terms were 

TMR, drench, their interaction, time, and two- and three-way interactions of 

main effects with time.  Pretreatment values for DMI, BW and BCS were used 

as covariates during their respective analysis.  Two cows were removed from 

the dataset as a result of problems at parturition and complications following 

the liver biopsy conducted at d 1 postpartum, one cow was fed glycerine 

prepartum, control diet postpartum and administered the glycerine drench and 

the second cow was fed the control diet prepartum, glycerine diet postpartum 

and administered the water drench.  Significance was declared at P < 0.05 

and trends toward a significant difference at 0.05 < P < 0.15.  Least squares 

means are presented throughout.   

RESULTS AND DISCUSSION 

 The ingredient and nutrient composition of the prepartum control and 

glycerol-containing diets were similar with the exception of the incorporation of 

glycerol into the TMR at a rate of 5% of DM for cows assigned to the dietary 
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glycerol treatment (Table 3-1).  Feeding glycerol during the prepartum period 

increased prepartum DMI (14.8 vs. 13.2 kg/d; P < 0.001; Figure 3-1); however, 

this did not carry over into a significant effect on postpartum DMI (21.4 vs. 

21.4 kg/d; P > 0.15; Table 3-4).  Cows fed glycerol during the prepartum 

period consumed on average 592 g/d of glycerol (740 g/d of crude glycerine).  

DeFrain et al. (2004) fed 430 g/d and 860 g/d on a DM basis from 14 d 

prepartum to 21 d postpartum and reported prepartum DMI to be lower in 

treated cows, consuming approximately 17% less DM (10.8 and 11.3 vs. 13.3 

kg/d).   Early feeding studies incorporating glycerol into the diet did not 

evaluate prepartum feeding (Johnson, 1953; Fisher, et al., 1971; Fisher, et al., 

1973; Sauer, et al., 1973). 

Milk yield averaged 42.1 kg/d during the experiment and was not affected (P > 

0.15) by feeding glycerol during the prepartum period (Table 3-4 and Figure 3-

2).  Percentages and yields of milk components were not affected (P > 0.15) 

by feeding glycerol during the prepartum period (Table 3-4).  DeFrain et al. 

(2004) evaluated the effects of feeding glycerol starting 14 d prior to expected 

calving to 21 d postpartum and reported no effect of feeding glycerol on milk 

yield.  However, these researchers did observe a tendency for decrease in 

yield of energy-corrected milk (ECM) compared to control cows (35.2 and 35.0 

vs 38.7 kg/d; P= 0.09), a tendency for a decrease in milk fat yield (1.32 and 

1.36 vs. 1.52 kg/d; P = 0.13) and milk urea nitrogen (MUN) (13.7 and 14.0 vs. 

15.2; P = 0.08). 

Prepartum BW (637 kg vs. 639 kg; P > 0.25) and BCS (3.33 vs. 3.37; P 

> 0.25) were not affected by prepartum treatment.  In accordance with the 

increased prepartum DMI of cows fed glycerol, cows fed glycerol had 

significantly greater calculated energy balance during the prepartum period  
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FIGURE 3-1. Least squares means for dry matter intake (DMI) during the 
prepartum period as affected by incorporation of glycerol into the diet.  Effects: 
treatment, P < 0.001, SEM = 0.3; treatment by time, P = 0.75, SEM = 0.6. 
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TABLE 3-4 Postpartum DMI and milk yield and composition for the first 63 DIM 
as affected by incorporation of glycerol into the prepartum TMR. 
  Prepartum treatment     
Item Control TMR Glycerol TMR SEM P-value
Number per treatment 23 23 --- --- 
DMI, kg/d    21.4   21.4   0.3 0.99 
Milk, kg/d    42.7   41.5   1.4 0.55 
3.5% FCM, kg/d    42.2   41.0   1.4 0.54 
Fat %        3.50       3.50     0.06 0.70 
Fat, kg/d        1.46       1.42     0.04 0.56 
True protein, %        2.85       2.91     0.06 0.50 
True protein, kg/d        1.18       1.17     0.05 0.91 
Lactose, %        4.65       4.70     0.03 0.32 
Lactose, kg/d       1.99       1.95     0.06 0.65 
SCC (x 1000) 192 308 59 0.17 
MUN, mg/dl   13.4   13.6     0.34 0.70 
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(7.73 vs. 10.63 Mcal/d; P < 0.05; Table 3-5).  DeFrain et al. (2004) determined 

that BW and BCS were similar among treatments when glycerol was fed from 

14 d prepartum to 21 d postpartum.  

The ingredient and nutrient composition of the postpartum control and 

glycerol-containing diets were similar with the exception of the incorporation of 

glycerol to the TMR at a rate of 3.3% DM for treated cows (Table 3-2).  

Interactions of dietary supplementation with glycerol and oral drench with 

glycerol were not significant (P > 0.15) for any of the variables measured in 

this experiment; therefore, results from postpartum treatments will be reported 

and discussed as main effects. 

Feeding glycerol during the postpartum period tended to decrease postpartum 

DMI (20.9 vs. 21.9 kg/d; P < 0.08; Table 3-6).  Cows fed the glycerol diet 

during the postpartum period consumed on average 504 g/d (630 g/d of crude 

glycerine).  DeFrain et al. (2004) fed 430 g/d and 860 g/d of glycerol on a DM 

basis from 14 d prepartum to 21 d postpartum and found postpartum DMI not 

be affected by diet.  Fisher et al. (1971) reported that incorporation of glycerol 

in a concentrate mix (3.3% of concentrate mix) fed during early lactation 

increased postpartum DMI when compared to cows fed propylene glycol; 

however, in another study conducted by the same researchers (Fisher et al. 

1973), they determined that the addition of glycerol in the concentrate mixture 

(3% and 6% of concentrate or 174 g/d and 347 g/d respectively) fed during the 

first 8 wk of lactation did not stimulate an increase in DMI. 

Milk yield was not affected (42.8 vs. 42.7 kg/d; P > 0.15; Table 3-6) by 

the incorporation of glycerol into the postpartum diet.  Percentages and yields 

of milk components were not affected (P > 0.15) by feeding glycerol during the 

postpartum  period  (Table 3-6).  This  is  in  agreement  with  other  studies  in  
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Table 3-5 Least squares means for BCS, BW and Net Energy 
Balance (NEB) during the prepartum period as affected by 
incorporation of glycerol into the prepartum1 TMR. 
     
  Treatment     

Item 
Control 

TMR
Glycerol 

TMR SEM P-value 
Number per 
treatment 23 23 --- --- 
DMI     13.2    14.8   0.30 <0.001 
BCS         3.33        3.37   0.04 0.58 
BW, kg 637 639   7 0.82 
NEB2, Mcal/d        7.73       10.63  0.58   0.001 
1Prepartum diet included glycerol at a rate of 5% of DM.
2 Net Energy Balance calculated according to NRC (2001). 
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TABLE 3-6 Postpartum DMI and milk yield and composition for the first 63 DIM as 
affected by incorporation of glycerol1 into the postpartum TMR and short-term oral 
administration2 of glycerol beginning at parturition. 
 Treatment     
 Control TMR Glycerol TMR  P-value 

Item 
Water 

drench 
Glycerol 

drench
Water 

drench 
Glycerol 

drench SEM TMR Drench 
TMR x 
drench

Number 
per 
treatment 11 12 12 11 --- --- --- --- 
DMI, kg 22.5 21.2 21.9 19.9 0.5 0.08   0.001 0.48 
Milk, kg/d 42.8 42.7 41.2 41.7  2.0 0.53 0.90 0.89 
3.5% FCM, 
kg/d 42.3    42.3 40.7 41.1  2.0 0.50 0.91 0.90 
Fat %     3.49   3.5     3.49   3.5 0.09 0.99 0.85 1.00 
Fat, kg/d     1.46     1.47     1.41     1.42 0.07 0.48 0.93 0.97 
True 
protein, %   2.9     2.85     2.98     2.79 0.08 0.91 0.15 0.42 
True 
protein, 
kg/d  1.2     1.19     1.19     1.13 0.07 0.61 0.64 0.75 
Lactose, %    4.73     4.70     4.73     4.56 0.05 0.18 0.04 0.16 
Lactose, 
kg/d     2.01     2.00     1.95     1.91 

     
0.09 0.36 0.79 0.87 

MUN,mg/dl 13.8 13.2 13.6 13.3  0.5 0.85 0.36 0.76 
SCC, x 
1000 201  267 276  258 89 0.71 0.79 0.63 
1Postpartum diet included glycerol at a rate of 3.3% of DM. 
2500 ml of crude glycerine was administered for 5 consecutive days following 
parturition. 
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which glycerol was incorporated into the postpartum diet (Fisher et al., 1973; 

DeFrain et al., 2004).  

Postpartum BW (590 vs. 590 kg; P > 0.15) and BCS (2.96 vs. 2.97; P > 

0.15) were not affected by the incorporation of glycerol in the postpartum diet.  

These results concur with those of DeFrain et al. (2004).  Fisher et al. (1973) 

found that cows fed glycerol at 347 g/d during the first 8 weeks of lactation lost 

less BW than cows fed glycerol at 174 g/d or the control diet.  Energy balance 

during the postpartum period was not affected by feeding treatment (-0.10 vs. -

0.18 Mcal/d; P >0.25). 

Drenching glycerol for the first 5 d of lactation significantly decreased 

postpartum DMI (20.6 vs. 22.2 kg/d; P < 0.01; Table 3-6).  The interaction for 

dietary addition and drench was not significant (P> 0.15), implying that 

administering a larger amount of glycerol simultaneously via two methods did 

not accentuate the negative effect of postpartum glycerol administration on 

postpartum DMI in this experiment.  Drenching glycerol for the first 5 d of 

lactation did not affect milk yield or milk fat percentage during the first 63 d of 

lactation (Table 3-6); however, it tended to decrease milk protein content (2.82 

vs. 2.94%; P < 0.15) and decreased milk lactose content (4.63 vs. 4.73%; P < 

0.05).  Despite these changes in composition, differences in yields of milk 

protein (1.19 kg/d vs. 1.20 kg/d; P > 0.25) and lactose (2.0 kg/d vs. 2.0 kg/d; P 

> 0.25) were not significant.  Oral drenches of glycerol significantly decreased 

BW (590 vs. 545 kg; P < 0.05) and BCS (2.97 vs. 2.75 P >0.05) during the 

postpartum period (Table 3.7) and tended to decrease energy balance (-2.21 

vs. -2.26 Mcal/d; P = 0.06). 

Although we did not compare propylene glycol administration with 

glycerol administration in the diet or via oral drench in this experiment, we can  
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Table 3-7 Least squares means for DMI, BCS, BW and Net Energy Balance 
(NEB) as affected by incorporation of glycerol1 in the postpartum TMR and 
short-term oral administration2 of glycerol beginning at parturition.  
 Treatment     
 Control TMR Glycerol TMR  P-value 

Item 

Wate
r 

drenc
h 

Glycer
ol 

drench

Wate
r 

drenc
h 

Glycer
ol 

drench
SE
M

TM
R Drench Treatment 

Number 
per 
treatment 11 12 12 11 --- --- --- --- 

BCS 
   

2.96   2.82   2.97   2.68 0.91 0.48 0.02 0.37 

BW, kg 590 536 590 554  9 0.59
0.000

5 0.60 
NEB3, 
Mcal/d 

  -
0.10   -2.21 

  -
0.18   -2.26 1.09 0.95 0.06 0.99 

1Postpartum diet included glycerol at a rate of 3.3% of DM. 
2500 ml of crude glycerine was administered for 5 consecutive days following 
parturition. 
3 Net Energy Balance calculated according to NRC (2001). 
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compare responses in DMI and milk yield from data available in the literature.  

Data from this experiment and others suggest that glycerol has varied effects 

on DMI during both the prepartum and postpartum effects, and that this 

variation occurs both in the magnitude and the direction of the response.  Data 

from the literature suggest that propylene glycol administration via the diet will 

not increase DMI, and this failure to increase DMI is attributed to low 

palatability of propylene glycol (Johnson, 1953; Fisher, et al., 1973; 

Christensen, et al., 1997).  In drenching studies using propylene glycol it is 

also evident that propylene glycol demonstrates no significant effect on DMI 

(Studer et al., 1993; Pickett et al., 2003).  In contrast, oral drenching of 

glycerol significantly decreased postpartum DMI in this experiment.  Propylene 

glycol administration as an oral drench and as a dietary supplement 

demonstrates no significant effects on BW or BCS (Studer et al., 1993; 

Formigoni et al., 1996; Pickett et al., 2003).  Glycerol administered as a dietary 

supplement appears to not affect BW or BCS; however, in this experiment 

glycerol drench administered during the first 5 d of lactation significantly 

decreased BW and BCS. 

Overall, oral administration of propylene glycol as a drench or as a 

dietary supplement has shown no significant effects on milk yield and milk 

composition (Fisher, et al., 1973; Studer et al., 1993; Formigoni, et al., 1996; 

Pickett, et al., 2003).  Fisher et al. (1973) did indicate a tendency for dietary 

propylene glycerol  to increase milk yield and decrease milk fat.  Our study 

along with that of DeFrain et al. (2004) found glycerol administration as a 

dietary supplement does not significantly increase milk yield or increase milk 

components during early lactation. 
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Conclusions and implications 

Although incorporation of glycerol at a rate of 5% of DM into the 

prepartum TMR resulted in potential benefits through increased DMI during 

the prepartum period, prepartum feeding of glycerol did not translate into 

increased DMI or yield of milk and milk components during the first 63 d 

postpartum.  Glycerol incorporated into the postpartum TMR at a rate of 3.3% 

of DM tended to decrease postpartum DMI with no significant effect on milk 

yield and milk composition.  Short-term (5 d) oral administration of glycerol 

beginning at parturition significantly decreased postpartum DMI and resulted in 

a trend for decreased milk protein percentage and a statistically significant 

decrease in milk lactose percentage; however, no effects on milk protein or 

milk lactose yield were observed.  Given the overall lack of effect of prepartum 

or postpartum glycerol administration on yields of milk and milk components, 

change in net energy balance during both the prepartum and postpartum 

periods and BW and BCS during the postpartum period mirrored effects of 

glycerol administration on DMI.  Overall, results suggest that glycerol 

administration as a dietary supplement or oral drench is not an effective 

strategy to improve performance of dairy cows during early lactation.  
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CHAPTER FOUR: 
 

EFFECTS OF METHOD OF DELIVERY OF GLYCEROL ON METABOLISM 
OF DAIRY COWS DURING THE TRANSITION PERIOD 

INTRODUCTION 

The transition period of three weeks prepartum to three weeks 

postpartum is a period marked with dramatic metabolic demands due to 

parturition and lactogenesis in dairy cows (Bell, 1995).  Decreases in nutrient 

intake during late gestation occur concurrently with dramatically increased 

nutrient demand; nutrient demand continues to outstrip dietary supply during 

early lactation.  This results in the mobilization of adipose tissue, which 

increases plasma concentrations of non-esterified fatty acids (NEFA).  The 

NEFA are used for energy by body tissues and as precursors for milk fat 

synthesis.  In most situations, plasma NEFA concentrations are elevated 

beginning within 10 d prior to parturition and are associated with hepatic 

triglyceride accumulation and increased ketone production (Studer, et al., 

1993; Vazques-Anon, et al., 1994).  Available data suggest that liver uptake of 

NEFA is proportionate to portal blood supply (Reynolds et al., 2003).  The liver 

does not have sufficient capacity to completely dispose of NEFA through 

export into the blood or catabolism for energy (Grummer, 1993; Drackley et 

al., 2001); therefore, when nutrient intake is insufficient and large amounts of 

NEFA are released into the blood, the liver begins to accumulate and store 

NEFA as triglycerides, resulting in fatty liver.  Although likely benign if in small 

amounts, accumulation of increasing amounts of triglycerides in liver appears 

to impair other aspects of liver metabolism, including hepatic gluconeogenesis, 

ureagenesis, and endotoxin metabolism (reviewed by Drackley et al., 2001; 

Overton and Waldron, 2004). 
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Triglyceride accumulation in the liver frequently is accompanied by 

increased concentrations of circulating BHBA, which can result in the 

development of either subclinical or clinical ketosis (Grummer, 1993; Drackley, 

1999).  As a result of this complex of triglyceride accumulation in the liver and 

increased concentrations of ketone bodies in the circulation, researchers have 

sought to determine strategies to improve metabolic health of dairy cows 

during the transition period (Overton and Waldron, 2004). 

In attempting to prevent or reduce the incidence of these metabolic 

disorders in the transition cow, management strategies should include ways to 

increase available glucose and decrease the supply of NEFA to the liver.  

Glucogenic supplements are substances that are administered or fed to the 

cow that can subsequently be absorbed and converted to glucose by the liver, 

with the intent of increasing glucose availability to the cow.  This increased 

glucose availability to the cow can promote insulin secretion, which in turn 

should decrease NEFA release from adipose tissue (Gummer, 1993; Overton 

and Waldron, 2004).  Administration of gluconeogenic supplements has been 

reported to decrease circulating concentrations of NEFA and BHBA, and 

increase blood glucose (Grummer, 1993; Nielsen and Ingvartsen, 2004).  

Bertics et al.  (1992) proposed that glucose precursors administered 

prepartum would increase blood glucose which will elicit an insulin response 

and reduce mobilization of NEFA from adipose tissue.   

As discussed in the review of literature, extensive study has been 

performed using propylene glycol as a glucogenic supplement. Propylene 

glycol decreases plasma concentrations of NEFA and BHBA while increasing 

concentrations of insulin and glucose (Neilsen and Ingvartsen, 2004).   

Grummer et al. (1994) reported that the effects of propylene glycol 
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administration on these circulating metabolites and hormones were dose-

dependent and linear within the dose ranges studied.  Short-term 

administration of propylene glycol via oral drench beginning at parturition 

decreased circulating concentrations of NEFA in two studies (Stokes and Goff, 

2001; Pickett et al., 2003) and tended to also decrease plasma BHBA 

concentrations in one of these studies (Pickett et al., 2003).  Long-term 

administration of propylene glycol to feed-restricted heifers for 14 d did not 

result in effects on plasma glucose or BHBA concentrations; however, plasma 

insulin concentrations were increased and plasma NEFA was decreased  

(Christensen et al., 1997); these effects were only evident when propylene 

glycol was administered as an oral drench or topdress rather than TMR 

incorporation.  These changes in circulating metabolites should decrease 

hepatic triglyceride accumulation.  Studer et al. (1993) reported that propylene 

glycol administered as an oral drench given once daily beginning 

approximately 10 d before expected parturition decreased liver triglyceride 

content following parturition; however, Pickett et al. (2003) determined that 

short-term oral drenching of propylene glycol beginning at parturition did not 

affect subsequent concentrations of liver triglycerides.  

 Glycerol is another gluconeogenic supplement that was proposed as 

an aid for treatment of ketosis in the 1960s and 70s but not adopted due to 

high costs (Fisher, et al., 1973; Sauer, et al., 1973).  New sources of glycerol 

have reduced the cost (Schroder and Sudekum, 1999), making glycerol a 

potential supplement that may be added to transition cow diets. Renewed 

interest of the use of glycerol is evidenced by recent studies (Schroder and 

Sudekum, 1999; Goff and Horst, 2001; DeFrain et al., 2004; Linke et al., 

2004). 
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Early studies administering glycerol as a dietary supplement indicated 

an increase in plasma glucose and decrease plasma ketone concentrations 

(Johnson, 1953).  More recently, DeFrain et al. (2004) reported that 

administration of glycerol as a topdress during the transition period did not 

affect circulating concentrations of glucose, insulin, NEFA and BHBA or liver 

concentrations of triglycerides and glycogen.  Oral drenching of glycerol has 

increased plasma concentrations of glucose (Goff and Horst, 2001; Linke et 

al., 2004)  and insulin concentrations (Linke et al., 2004).  Linke et al. (2004) 

found both feeding and drenching of glycerol increased plasma BHBA.  This 

finding may be due to increased ruminal production of butyrate from glycerol 

fermentation to butyrate. 

Research has not been conducted to evaluate the prepartum and 

postpartum effects of glycerol incorporation into the TMR, or to determine 

whether short-term drenching of glycerol beginning at parturition will affect 

metabolism in a manner analogous to the study of Pickett et al. (2003) using 

propylene glycol.  Furthermore, the potential for interaction between TMR 

administration and oral drench has not been evaluated.  Therefore, the 

objectives of this study were to evaluate administration of glycerol in the 

prepartum and postpartum TMR and by short-term oral drench on metabolic 

parameters (blood metabolites and liver composition) important to metabolic 

health in transition dairy cows.  

MATERIALS AND METHODS 

Experimental Animals, Treatments, and Procedures 

 All procedures using experimental animals were approved by the 

Cornell University Institutional Animal Care and Use Committee.    Full details 

of experimental design and cow management are provided in Chapter 3.  
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Briefly, 48 Holstein cows entering second or greater lactation were assigned to 

treatments in a completely randomized design.  On d 28 prior to expected 

parturition, cows were moved into tie stalls at the Cornell University Teaching 

and Research Center and fed a diet typical of that fed to close-up dairy cows 

in the Northeast and Upper Midwest.  Beginning 21 d before expected 

parturition, cows were fed either a prepartum control diet or a diet containing 

glycerol (5% of DM; Table 3-1).  After parturition, cows were assigned in a 

balanced fashion, to one of four treatments in a 2 (postpartum control or 

dietary glycerol at 3.3% of DM; Table 3-2) X 2 (water or glycerol drench; 500 

ml/d for 5 d) factorial arrangement.  From d 22 through 63 of lactation, cows 

were fed the control diet (Table 3-2).    

Plasma and Tissue Sampling 

 Blood was collected from the coccygeal vessels using sodium 

heparinized (100 U/ml) Vacutainer® tubes (Becton Dickinson, NJ) every 4 d 

from 21 d prepartum until parturition and every other day through 21 d 

postpartum.  Samples were drawn prior to feeding and treatment 

administration (between 0700 and 1000 h).  Samples were placed on ice 

immediately after collection, and plasma was prepared by centrifugation 

(2,800 x g, 15 min) in a refrigerated (4ºC) centrifuge.  Aliquots of plasma were 

snap-frozen in liquid N2 and stored at -20°C until analysis for glucose (glucose 

oxidase procedure, kit # 315, Sigma Diagnostics, St. Louis, MO), NEFA 

(NEFA-C kit; Wako Chemicals, Dallas, TX) and BHBA (BHBA dehydrogenase 

procedure, kit # 310, Sigma).  

 On d 5 after parturition, a additional series of blood samples was 

collected into heparinized Vacutainer® tubes to characterize changes in blood 

metabolites and also insulin during the immediate post-drench period.  
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Samples were drawn prior to drench and at 1, 2, 4, and 6 h post-drench.  

Plasma samples were prepared and stored as described above.  

Subsequently, samples were analyzed for glucose, NEFA, and BHBA as 

described above for routine blood samples.  In addition, these samples were 

analyzed for insulin by radioimmunoassay. 

 Samples of liver tissue (3 to 5 g) were obtained by percutaneous 

trochar biopsy (Veenhuizen, et al., 1991) under local anesthesia on d 1, 10, 

and 21 postpartum.  Liver samples were blotted dry to remove excess blood 

and connective tissue and frozen immediately in liquid nitrogen, stored at -

80ºC and subsequently analyzed for concentrations of triglycerides 

(Rukkwamsuk, et al., 1999) and glycogen (Lo, 1970).  

Statistical Analysis 

Effects of prepartum feeding of glycerol were evaluated separately for 

prepartum and postpartum variables using the MIXED procedure of SAS 

version 8.2 (SAS Institute, Cary, NC) for a completely randomized design with 

repeated measures and specified error term.  Model terms were treatment, 

time, and their interaction.  Effects of postpartum feeding or oral administration 

of glycerol (2 x 2 factorial arrangement) on postpartum variables were 

evaluated as above using SAS.  Model terms were TMR, drench, their 

interaction, time, and two- and three-way interactions of main effects with time.  

Pretreatment values for blood metabolites were used as covariates during 

their respective analysis.  For analysis of the intensive blood sampling data 

collected on d 5 postpartum, statistical analysis was conducted initially using 

the same model applied to postpartum repeated measures data.  However, 

neither the effects of postpartum diet nor the interactions of postpartum diet 

and drench were significant (P > 0.15) for any plasma variables considered; 
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therefore, data were reanalyzed to assess only the effect of drench, using the 

pre-drench samples as covariates.  Data for all metabolic indices from the 

same two cows were removed from the data set in chapter 3 were also 

eliminated prior to analysis.  Significance was declared at P < 0.05 and trends 

toward a significant difference at 0.05 < P < 0.15.  Least squares means are 

presented throughout.   

RESULTS AND DISCUSSION 

 Glycerol fed during the prepartum period resulted in no significant 

effects on plasma glucose, NEFA or BHBA concentrations (Table 4-1 and 

Figures 4-1, 4-2 and 4-3) during the prepartum period with no carry over 

effects on postpartum metabolites (Table 4-2).  DeFrain et al. (2004)  

determined that cows fed 1 kg/d of glycerol tended to have greater 

concentrations of plasma BHBA compared to control cows; effects on other 

plasma metabolites measured (glucose and NEFA) were not significant.  In 

contrast, two studies reported that prepartum administration of propylene 

glycol significantly decreased plasma NEFA and BHBA concentrations along 

with a significant increase in plasma glucose (Studer et al., 1993; Formigoni et 

al., 1996). 

Despite increased DMI by cows fed glycerol during the prepartum period in 

this experiment (Chapter 3), liver composition (triglyceride and glycogen 

content) in samples collected within 36 h following parturition were not affected 

by prepartum dietary treatment (Table 4-1).  Furthermore, prepartum dietary 

treatment did not have carryover effects on liver composition measured at d 10 

and 21 postpartum (Table 4-2).  These results are similar to those of DeFrain 

et al. (2004), who reported that feeding glycerol during the transition period did 

not affect liver triglyceride or glycogen contents. 

 

49 
 



 

 
 

 

 

 

 

 

 

 

 

TABLE 4-1. Prepartum routine plasma metabolite concentrations and 
liver composition (d 1 only) as affected by incorporation of glycerol 
into the prepartum TMR. 

 
 
 
  
 
 

Treatment   
Item Control

 

Glycerol SEM P value 
Number per treatment  23  23 --- --- 
Glucose, mg/dl      60.4      60.3     0.7 0.96 
BHBA, mg/dl         6.1        5.8     0.3 0.43 
NEFA, μEq/L  206 170     23 0.27 
Glycogen, % wet wt* 

 
      1.1        1.1     2.3 0.90 

Triglyceride, % wet wt* 
 

      7.6        5.5     1.0 0.17  
 

 
*Liver biopsy obtained within 36 h of calving.   
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Figure 4-1. Least squares means for concentrations of glucose in plasma 
collected from cows as affected by incorporation of glycerol into the prepartum 
TMR.  Feeding glycerol prepartum resulted in no significant effects on 
prepartum plasma glucose concentrations (60.4 mg/dl vs. 60.3 mg.dl, P = 
0.96, SEM = 0.7) and no carry over effects on postpartum plasma glucose 
concentrations (49.4 mg/dl vs. 48.9 mg/dl, P = 0.69, SEM = 0.94). 
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Figure 4-2. Least squares means for concentrations of NEFA in plasma 
collected from cows as affected by incorporation of glycerol into the prepartum 
TMR.  Feeding glycerol prepartum resulted in no significant effects on 
prepartum plasma NEFA concentrations (206 μEq/L vs. 170 μEq/L, P = 0.27, 
SEM = 23) and no carry over effects on postpartum plasma NEFA 
concentrations (668 μEq/L vs. 685 μEq/L, P = 0.77, SEM = 39). 
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Figure 4-3. Least squares means for concentrations of BHBA in plasma 
collected from cows as affected by incorporation of glycerol into the prepartum 
TMR.  Feeding glycerol prepartum resulted in no significant effects on 
prepartum plasma BHBA concentrations (6.1 mg/dl vs. 5.8 mg/dl, P = 0.43, 
SEM = 0.3) and no carry over effects on postpartum plasma BHBA 
concentrations (10.1 mg/dl vs. 9.3 mg/dl, P = 0.44, SEM = 0.75). 

 

53 
 



 

 

 

 

 

 

 

TABLE 4-2 Postpartum routine plasma metabolite concentrations and 
liver composition as affected by incorporation of glycerol into the 
prepartum TMR. 
 Treatment   
Item Control Glycerol SEM P value
Number per treatment  23  23 --- --- 
Glucose, mg/dl       49.4      48.9  0.94 0.69 
BHBA, mg/dl      10.1        9.3  0.75 0.44 
NEFA, μEq/L 668 685 39 0.77 
Glycogen, % wet wt        1.1       1.0 1.3 0.58 
Triglyceride, % wet wt      15.1     12.6 1.9 0.36 

 * Liver biopsies obtained d 10 and d 21 postpartum.  
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Interactions of postpartum dietary glycerol supplementation and short-

term oral drench of glycerol beginning at parturition were not significant (P > 

0.15) for any of the plasma or liver variables studied (Table 4-3); therefore, 

results will be presented and discussed as the main effects of dietary inclusion 

of glycerol during the postpartum period and short-term oral drench of glycerol 

beginning at parturition.  Postpartum incorporation of glycerol in the diet did 

not affect circulating concentrations of glucose, NEFA, and BHBA and liver 

concentrations of triglyceride and glycogen in this experiment (Table 4-3; 

Figures 4-4, 4-5, and 4-6).  DeFrain et al. (2004) reported that feeding 1 kg/d 

of glycerol transiently decreased plasma NEFA concentrations at d 7 

postpartum; however, effects on glucose and BHBA were not significant. 

Short-term (5-d) oral drenching of glycerol beginning at parturition 

resulted in no significant effects on circulating concentrations of glucose, 

NEFA, and BHBA and liver concentrations of triglycerides and glycogen during 

the postpartum period (Table 4-3).  Previous studies have shown oral 

drenching of glycerol to increase plasma glucose and insulin concentrations; 

however, these samples were collected several hours postdrench  (Linke et 

al., 2004) compared to those in this study that were more representative of 

basal (predrench) concentrations.  Daily prepartum oral drenching of 

propylene glycol beginning 10 d prior to expected calving demonstrated the 

increase in plasma glucose and decrease in NEFA and BHBA as noted by 

others along with reduced total liver triglyerides 1 d postpartum (Studer, et al., 

1993).  In a previous study conducted in our laboratory, Pickett et al. (2003) 

reported that short-term oral drenches of propylene glycol were effective in
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TABLE 4-3. Postpartum routine plasma metabolites and liver composition as 
affected by incorporation of glycerol into the postpartum TMR and short-term 
oral administration of glycerol beginning at parturition. 
 Treatment    
 Control TMR Glycerol TMR  P value 

Item 

Wate
r 

drenc
h 

Glycer
ol 

drench

Wate
r 
drenc
h  

Glycer
ol 
drench

SE
M 

TM
R 

Drenc
h 

Treatme
nt 

Number 
per 
treatment 11 12 12 11 --- --- --- --- 
Glucose, 
mg/dl   48.8  48.3 48.4 50.8 1.3 0.44 0.46 0.30 
BHBA, 
mg/dl    9.3  10.7 8.7 10.1 1.0 0.56 0.20 0.96 
NEFA, 
μEq/L  716  623 671  694 56 0.82 0.54 0.31 
Glycogen, 
% wet wt*   9.8 10.2 11.1 11.0 1.9 0.61 0.94 0.89 
Triglyceri
de, % wet 
wt* 14.8 12.9 14.7 13.2 2.8 0.97 0.57 0.95 

 

* Liver biopsies obtained d 10 and d 21 
postpartum.    
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Figure 4-4. Least squares means for concentrations of glucose in plasma 
collected from cows as affected by incorporation of glycerol into the 
postpartum TMR.  Feeding glycerol postpartum resulted in no significant 
effects on postpartum plasma glucose concentrations (48.5 mg/dl vs.  49.3 
mg/dl, P = 0.44, SEM = 1.3) 
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Figure 4-5. Least squares means for concentrations of NEFA in plasma 
collected from cows as affected by incorporation of glycerol into the 
postpartum TMR.  Feeding glycerol postpartum resulted in no significant 
effects on postpartum plasma NEFA concentrations (670 μEq/L vs. 682 μEq/L, 
P = 0.82, SEM = 55.8)  
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Figure 4-6. Least squares means for concentrations of BHBA in plasma 
collected from cows as affected by incorporation of glycerol into the 
postpartum TMR.  Feeding glycerol postpartum resulted in no significant 
effects on postpartum plasma BHBA concentrations (10.1 mg/dl vs. 9.3 mg/dl, 
P = 0.56, SEM = 1.08). 
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decreasing plasma NEFA and tended to decrease plasma BHBA assessed 

using similar timing of blood sampling relative to the drench as that employed 

in the current study.  These results suggest that the effects of glycerol drench 

are not as long-lasting as those from propylene glycol.  

In addition to effects of glycerol drench on baseline circulating 

concentrations of glucose, NEFA, and BHBA, we also evaluated the pattern of 

change of these metabolites plus insulin following glycerol drench.   Intensive 

blood sampling performed on d 5 post calving demonstrated that a 500 ml oral 

bolus of crude glycerine significantly decreased plasma NEFA concentration 

(312.6 vs. 206.2 μEq/L; P <0.05) with no overall significant effects on plasma 

glucose, BHBA or insulin (Table 4-4).  Data from our study indicated trends for 

drench X hour interactions for plasma glucose, NEFA and insulin 

concentrations (Figures 4-7, 4-8, 4-9, and 4-10) during the 6-h period following 

administration of glycerine or water. In our study, plasma glucose 

concentrations peaked at 1 h post drench while insulin was increasing by 1 h 

and peaked at 2 h postdrench.   These results concur with those of Linke et al. 

(2004), who determined that plasma glucose and insulin concentrations 

increased and peaked at approximately 1.5 h post drench of 1 kg of glycerol.  

Goff and Horst (2001) administered glycerol as 1, 2 or 3 L oral drench and 

found glucose to be increased by 16, 20 and 25% over pretreatment values at 

30 min post drench.   These findings are also similar to patterns of plasma 

metabolites and insulin following oral drench of propylene glycol, in which 

plasma glucose and insulin peaked at approximately 100 min post treatment 

and NEFA concentrations were decreased (Christensen, et al., 1997)  
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TABLE 4-4. Effects of oral glycerol drench on plasma metabolites 
and insulin. 

 

  

 

Drench   

Item Glycerol 

    

Water SE P-value 

Number per treatment  23  23 --- --- 

Glucose, mg/dl 48.9 46.7 1.5 0.11 

NEFA, uEq/L     206   313 25 0.06 

BHBA, mg/dl 10.7 10.3 0.9 0.41 

Insulin, ng/ml     0.11     0.12   0.01   0.098 

Blood samples were obtained prior to drench and at 1, 2, 4, and 6 
hours post drench. 
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FIGURE 4-7.  Least squares means for glucose concentrations in plasma 
immediately post oral drench of 500ml of crude glycerine.  (Drench X hour 
interaction, P = 0.11; SEM = 1.6) 
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FIGURE 4-8.  Least squares means for plasma concentration of NEFA 
immediately post drench of 500 ml of crude glycerine.  (drench X hour 
interaction, P = 0.06; SEM = 32) 
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FIGURE 4-9. Least squares means for plasma concentration of insulin 
immediately post drench of 500 ml of crude glycerine.  (drench X hour 
interaction, P = 0.098; SEM = 0.016) 
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FIGURE 4-10. Least squares means for plasma concentration of BHBA 
immediately post drench of 500 ml of crude glycerine.  (drench X hour 
interaction, P = 0.41; SEM = 0.63) 
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The incidence of health disorders are reported in Table 4-5 for 

information only.  The number of cows assigned to each treatment in this 

experiment was too few to evaluate differences among treatments statistically.  

In general, incidences of metabolic disorders were similar across the 

prepartum and postpartum treatments. 

Conclusions and implications 

 Glycerol addition to prepartum and postpartum diets did not significantly 

affect plasma concentrations of glucose, NEFA, and BHBA during either the 

postpartum or postpartum periods.  In addition, short-term (5-d) administration 

of glycerol via oral drench beginning at parturition did not affect basal 

concentrations of these metabolites.  Furthermore, glycerol administration 

either by dietary incorporation or oral drench did not affect concentrations of 

triglycerides or glycogen during the transition period.  Although the pattern of 

change of metabolites such as glucose and NEFA and hormones such as 

insulin following oral drench change in a manner consistent with other 

glucogenic supplements such as propylene glycol, the changes appear to be 

transient.  Collectively, these data suggest that glycerol has limited utility as a 

glucogenic supplement for administration to transition cows. 
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CHAPTER FIVE: 
 

INTEGRATED DISCUSSION AND SUMMARY 
 

 Data from this study indicate that the addition of glycerol to the diets of 

transitions cows does not demonstrate the meaningful glucogenic effects 

attributed by earlier studies (Johnson, 1953; Fisher et al., 1971).  At dietary 

concentrations or drench amounts studied in this experiment, neither TMR 

incorporation nor short-term oral administration of glycerol as crude glycerine 

resulted in any apparent benefits on transition cow performance or metabolic 

indices. 

Data from our study did indicate that the incorporation of glycerol into 

the prepartum TMR resulted in potential benefits through increased DMI 

during the prepartum period; however, prepartum feeding of glycerol did not 

translate into increased DMI or yield of milk and milk components during the 

first 63 d postpartum.  Conversely, glycerol incorporated into the postpartum 

TMR tended to decrease postpartum DMI with no significant effects on milk 

yield and milk composition.  Feeding glycerol during both the prepartum and 

postpartum period demonstrated no significant effects on plasma glucose, 

NEFA or BHBA concentrations.  The negative effects of crude glycerine on 

postpartum DMI likely negated any potential for positive effects of glycerol on 

performance or energy metabolism.  The decreased DMI by cows fed glycerol 

during the postpartum period likely negated any potential for beneficial effects 

of glycerol on metabolic indices.  

Short-term (5 d) oral administration of glycerol beginning at parturition 

resulted in no apparent benefits to the transition cow.  Short-term oral 

drenches of glycerol significantly decreased postpartum DMI and resulted in a 

trend for decreased milk protein percentage and a statistically significant 

 

68 
 



 

decrease in milk lactose percentage; however, no effects on milk protein or 

milk lactose yield were detected.  In addition, oral drench of glycerol beginning 

at parturition did not affect liver composition or plasma metabolites. 

 Data from this study are consistent with another recently reported study 

in which glycerol was administered by dietary topdress during the transition 

period (DeFrain, et al., 2004; Linke, et al., 2004); however, these changes 

appear to be too transient to impact overall metabolism of the transition cow.   

 From extensive studies evaluating propylene glycol (as reviewed by 

(Nielsen and Ingvartsen, 2004), propylene glycol is a glucogenic supplement 

that may be more beneficial for the transition cow in preventing fatty liver and 

ketosis than glycerol.  However, propylene glycol has been demonstrated to 

be most effective when administered as an oral drench rather than as a dietary 

component.  
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