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Lagrangian Perturbation Theory (LPT) is a powerful method to model non-

linear evolution of large scale structure analytically. This thesis investigates the

convergence properties of this theory by applying it to a simple test problem -

the spherical top-hat. The method of Largangian re-expansions is introduced

to improve the convergence properties of the series. This method involves re-

expanding the solution in overlapping time domains, each domain subject to a

time of validity criteria. The results show that there is a trade-off between the

Lagrangian order and number of steps; one can achieve the same accuracy with

a lower order scheme and more time steps as that with a higher order scheme

and a single step.

The method developed based on the top-hat is then applied to model

evolution of inhomogeneous initial conditions. A numerical code is developed

and tested. Tests of convergence with Lagrangian order, step size and grid size

are presented.
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CHAPTER 1

MOTIVATION AND OUTLINE

1.1 Motivation

The observed sky today shows a hierarchical pattern on large scales - galaxies

aggregate to form clusters, clusters form superclusters and they are separated by

large underdense voids and supervoids. The problem of modeling how exactly

this structure developed from tiny seed fluctuations has been an active area

of research for nearly four decades. Traditionally, perturbative methods have

been restricted to linear scales and non-linear scales have been best tackled

by N-body codes. However, analytical methods remain essential to highlight

the physics behind simulations. Furthermore, cosmological observations have

now established that the universe is accelerating, a finding that is inconsistent

with the known constituents of the universe. Various explanations have been

put forth to understand the origin of this acceleration, one of which is the

existence of a new form of energy referred to as ‘dark energy’, parametrized

by an equation of state w. One way of constraining the nature of dark energy

is to follow the growth history of perturbations in such cosmologies. Given

the plethora of phenomenological models and the time-consuming nature

of N-body codes, alternate faster techniques based on perturbation schemes

become especially useful for this task. In addition, numerical simulations

cannot be started at very early epochs since the perturbations are small and

the initial conditions can become contaminated by shot noise. In the current

era of ‘precision cosmology’, this drawback may also prove to be significant.

Therefore, analytic techniques to follow non-linear growth are necessary to

1



serve as a bridge between linear theory and N-body codes.

The analytic description of a fluid is mainly carried out in either the

Eulerian or Lagrangian frame. In the Eulerian frame, the density and velocity

are the two main dependent variables and they are expressed as functions

of fixed grid coordinates. On the other hand, the Lagrangian frame moves

with the fluid and the main dependent variable is the position which is

expressed as a function of the initial particle label. The density and velocity

are reconstructed from their exact non-perturbative definitions, making the

Lagrangian description a powerful tool to model non-linear evolution. This

thesis focuses on perturbation theory in the Lagrangian frame i.e. Lagrangian

Perturbation Theory (LPT) as a tool to model non-linearities.

1.2 Outline of the thesis

The thesis is outlined as follows.

• Chapter 2 gives a basic introduction to cosmological structure formation

and a very brief introduction to LPT.

• Chapter 3 examines convergence properties of the Lagrangian expansion.

It was shown in a paper by Sahni and Shandarin [70] that the LPT

series did not converge when applied to spherical voids. This issue is

examined in detail by applying the techniques of complex analysis to

the exact solution of the spherical top-hat. It is demonstrated that to

ensure convergence, it is always necessary to re-expand the solution in
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overlapping time domains, each domain subject to a time of validity

criteria. The variation of the leading order error with Lagrangian order

and step size is characterized. The results indicate that the accuracy

achieved by a higher order scheme with a single step can be achieved by

a lower order scheme but with multiple steps.

• The results presented in the previous chapter are based on a spherical

top-hat model. However, inhomogeneities in the universe arise from

fluctuations in a Gaussian random field. Chapter 4 outlines the scheme

to handle generic initial conditions and also serves as a documentation of

a numerical code that has been developed and tested. The code is capable

of evolving generic initial density and velocity perturbations using LPT

expansions, in principle up to any order. Tests of convergence are

presented. One section in this chapter is still under debate. The extensive

appendices give the exact algorithm of implementing the Lagrangian

scheme with multiple steps.

• Chapter 5 gives very preliminary results of an application of the code.

If there were no perturbations at the initial time, then linear theory

predicts simple relation between the density and velocity divergence

fields. Based on the spherical top-hat evolution, this density-velocity

relation is extended to non-linear densities. This result improves upon

previous attempts by Bernardeau [10] and Bilicki and Chodorowski [12].

This evolution is compared across cosmologies with different dark energy

equation of state and I propose that such a relation can be used to constrain

the dark energy equation of state.

Chapter 3 has been accepted for publication in the Monthly Notices of the Royal

Astronomical Society (MNRAS). Chapter 4 will be submitted to MNRAS.
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One must note here that one of the major drawbacks of LPT is its inability to

track evolution once particle trajectories have crossed. The techniques focussed

on in this thesis do not address this issue. Some other approximations (which

might involve including pressure effects) will have to be invoked to handle

evolution beyond shell crossing.

1.3 Scope and applications

A good part of this thesis discusses the error control parameters of an LPT based

scheme. One may well ask why a tool based on an approximate, perturbative

scheme needs such a detailed error control analysis. The justification follows.

As mentioned earlier, simulations have two main drawbacks; they are time

consuming and limited by shot noise, which arises from the errors made in

the discrete representation of a continuous density field. Correspondingly,

one can think of two limits of application for this tool. One limit is where

precision is not a premium, but time is. Applications which require simulations

over a wide range of scales (big boxes) or a wide range of parameter space

fall under this category. The second limit is where one requires precision

(which usually comes at the cost of time) that cannot be provided by numerical

simulations, due to their discrete particle nature. Simulations involving early

dark energy models or evolution of primordial non-Gaussianities come under

this category. Alternatively, there may be problems such as BAO reconstruction

where the Lagrangian formulation is a natural choice. Even in the context

of such applications, a recent paper by Carlson, Padmanabhan & White [23]

emphasizes the need for error control, although they focus on Eulerian PT.
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A list of possible applications are outlined below. Readers unfamiliar with

the standard notations in cosmology may refer to the next chapter.

1.3.1 Reconstruction of Baryon Acoustic Oscillations (BAO)

Acoustic oscillations in the photon-baryon plasma that took place early in

the history of the universe leave their mark as a peak at 150 h−1Mpc in the

correlation function of galaxies today. In linear theory, the scale of this peak

is set by the radius of the sound horizon at decoupling which in turn depends

on the cosmological parameters Ωbh−2 and Ωmh−2. If we assume these quantities

to be well constrained by CMB data (WMAP 7-year results, Komatsu et al [43])

then, the BAO peak at 150 h−1Mpc behaves like a standard ruler with which

we can measure the angular diameter distance as a function of redshift, thus

mapping out the Hubble parameter H(z) and hence constraining the equation of

state of dark energy. Although, in theory, a very promising probe to constrain

dark energy, in practice, dynamics of galaxy clustering is not linear; non-linear

effects degrade the BAO peak. Motions of the galaxies due to bulk flows

towards a supercluster or away from a void tend to displace galaxies from

their initial separation by about ∼ 10 h−1Mpc. This blurs the acoustic peak

at 150 h−1Mpc and correspondingly erases the higher harmonics in the power

spectrum (Eisenstein, Seo, & White [33]). If the BAO signal is to be used for

precision cosmology, then one must correct for such effects and reconstruct the

peak.

The reconstruction involves correcting for galaxy positions, hence a natural

framework to use is the Lagrangian formulation. The main contribution to the
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degradation comes from scales in the range 300h−1Mpc to 30h−1Mpc. Flows

arising from scales larger than 300h−1Mpc correspond to a very small density

contrast and displace both galaxies almost equally in the same direction. Non

linearities due to clustering of haloes (scales less than 30hMpc−1) are known

to have a sub-dominant effect in degrading the peak. This range of scales is

particularly well suited to be modeled by LPT. In a recent paper (Eisenstein et

al [32]), reconstruction was performed using the Zeldovich approximation (first

order LPT). The LPT based code has been developed to allow integration both

forward and backward in time and taking multiple steps and/or using a higher

order scheme will provide a more accurate reconstruction.

In addition to recovering the BAO peak, the same technique can also be used

to reconstruct primordial fluctuations from a non-linear power spectrum (Frisch

et al [35], Brenier et al [16]), although this application will require modeling

scales smaller than the BAO reconstruction scales.

1.3.2 Weak lensing of high redshift supernovae

For little over a decade, Type Ia supernovae have provided compelling evidence

that our universe is accelerating. The most common explanation for this is

the presence of an alternate form of energy termed ‘dark energy’ described

by an equation of state w. Future proposed missions such as the SuperNova

Acceleration Probe (SNAP) and the Joint Dark Energy Mission (JDEM) aim

to measure w precisely and determine whether or not it evolves with time by

probing supernovae from higher and higher redshifts. Although the light curve

of a Type Ia supernova provides an excellent standard candle to determine the
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luminosity distance-redshft relation, the lensing of the light due to intervening

inhomogeneities degrades this relation (Holz & Wald [37]). Overdense

(underdense) regions tend to magnify (demagnify) the image resulting in

systematic correction to the inferred equation of state parameter w and the

fractional density parameter Ωd.e. This effect is usually estimated by ray tracing

through N-body simulations or Monte Carlo approximations to inhomogeneous

universes (Vanderveld, Flanagan & Wasserman [79]). However, as the surveys

improve, the maximum redshift probed will increase and it will be necessary to

consider bigger simulation boxes. Although accurate, N-body simulations are

time consuming and the LPT iterative scheme provides a faster approximate

answer, at least for quasi-linear scales.

1.3.3 Evolution of non-Gaussian initial conditions

It is widely believed that quantum fluctuations during the inflationary

epoch were responsible for seeding the perturbations that led to temperature

anisotropies in the Cosmic Microwave Background (CMB) and the large scale

structure (LSS) observed today. Observations are consistent with a Gaussian

spectrum, predicted by the standard slow-roll, single field model of inflation.

But they place only weak constraints on a non-Gaussian component. Self

interactions in the standard inflation model or other non-standard mechanisms

predict a non-Gaussian spectrum, providing theoretical motivation to look for

such effects. Phenomenologically, this is usually written as 〈φ〉 = 〈φL〉 + fNL〈φ
2
L〉,

where φL represents the linear (Gaussian) gravitational potential, fNL represents

the parameter characterizing the degree of non-Gaussianity, 〈〉 denote averages

over many ensembles (see Bartolo et al [5] for a detailed review). Although the
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simplest constraints on fNL arise from temperature maps (CMB), density maps

(observations of galaxies, or weak lensing maps) can act as complementary

probes to constrain fNL, in particular its scale dependence. Since the non-

Gaussian perturbations are generated as a second order effect, any method that

tracks their future evolution should include post-linear terms.

To date this problem has been tacked numerically by N-body simulations.

However, N-body simulations suffer from shot noise due to their discrete

particle representation of a continuous density field. This prevents them from

starting at high redshifts (z ∼ 1000) when the density contrasts are small.

Furthermore, shot noise effects are worse for smaller scales (Baugh, Gaztañaga,

Efstathiou [6], Sirko [73]). These are also the scales which enter the non-linear

regime earlier, making the shot noise problem a serious limitation to model

evolution of non-Gaussianities. Most N-body codes that track growth of non-

Gaussian seeds start at z ∼ 50, using the Zeldovich approximation to propagate

initial conditions from z ∼ 1000 to z ∼ 50 (for example Dalal et al [28], Wagner et

al [80]. Most of these employed 2563 − 5123 particles with box sizes of 600 - 800

h−1 Mpc. More recent simulations start at z ∼ 99 (Sefusatti et al, 2010) but they

need to use 10243 particles to model mildly non-linear scales.

The simulation tool I have developed for this thesis, is based on Lagrangian

Perturbation Theory (LPT). It is an intrinsically analytic approach that deals

with continuous density and velocity fields. The simulation is not limited by

shot noise effects and can be started at any post equipartition epoch. The

number of initial functions i.e. initial density and velocity fields does not

change with the starting epoch. The code employs the method of Lagrangian re-

expansions (Nadkarni-Ghosh & Chernoff, 2010) which involves re-expanding
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the solution at discrete time intervals and allows one to obtain accurate results

even at a finite order in perturbation theory. The errors in the simulation are

controlled by three parameters; the Lagrangian order, the number of time steps

and the size of the grid. A subsequent work (Nadkarni-Ghosh & Chernoff, in

preparation) will show how the errors of the simulation scale with each of these

parameters. The simulation can be easily modified to change the dark energy

equation of state, allowing for the first time a combined study of dark energy

and non-Gaussian effects.

1.3.4 Evolution of early dark energy cosmologies

Early Dark Energy (EDE) models are one of the many classes of phenomeno-

logical models put forth to explain dark energy (for example Wettrich [82],

Doran & Robbers [30]). In these models dark energy is allowed to have a

non-negligible contribution to the energy budget as early as recombination

(z ∼ 1000). While observational constraints from BBN & CMB (Bean, Hansen

& Melchiorri [7]) and CMB, SN and LSS (Doran & Robbers [30]) suggest that

this contribution is small, there are theoretically motivated models that support

its existence (Wetterich [81], Albrecht and Skordis [2]). Not only does EDE

change the acoustic peaks in the CMB (Bean et al [7]) and BAO scale (Linder

& Robbers [47]), it also has an effect on structure formation. Bartelmann,

Doran & Wetterich [4] have investigated the effect of EDE on haloes using the

Press-Schecter formalism. However, the Press-Schecter theory is a semi-analytic

theory based on the spherical collapse model and can be expected to give only

approximate results. A more accurate modeling of the effect of EDE on non-

linear structure has been carried out by Grossi & Springel [36] and Francis,
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Lewis & Linder [34], using N-body simulations. However, like most N-body

simulations, these were started at later redshifts (z ∼ 49 and z ∼ 24 respectively).

If EDE is indeed non-negligible at the epoch of recombination, then it would be

useful to follow evolution from z ∼ 1000 to model its effect on structure through

the early ages of the Universe. An LPT based code can perform such a task.
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CHAPTER 2

A BRIEF INTRODUCTION TO STRUCTURE FORMATION

This chapter lays out the standard notation used in cosmology and gives a brief

introduction to structure formation.

2.1 Homogenous and Isotropic background universe

On large scales the universe is homogenous and isotropic. Until the early

1990’s it was believed that the main constituents of the universe were radiation

(photons and neutrinos) and matter (baryons and dark matter). However,

observations of Type Ia supernovae in the late 1990’s (Riess et al [68], Perlmutter

et al [65]) suggested that the universe is accelerating, a feature that cannot be

produced by radiation or matter. Since then three main hypotheses attempting

to explain the observations have emerged. These are

1. Missing sources, i.e. there exists some form of energy called ‘dark energy’,

that is unaccounted for in the energy budget of the universe.

2. Incorrect equations or infra-red corrections, i.e. Einstein’s gravity is correct

on small scales (solar system), but needs to be modified on large scales.

3. Effects of backreaction, i.e. the assumption of homogeneity and isotropy,

which is implicit in the analysis of observations is incorrect and the

analysis must include the effects of inhomogeneities.

The first hypothesis is perhaps the most popular and can be traced back to

Einstein, who originally introduced a term called the cosmological constant Λ.
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His motivation was to obtain a steady-state universe, a popular cosmological

model at the time, but he later withdrew it following the observations by Edwin

Hubble which established that the universe was expanding. Given the need for

a dark energy, this term has seen a revival in cosmology. However, attempts

to understand its fundamental nature have not been fruitful yet. One possible

candidate is the quantum vacuum energy, however, its theoretically estimated

value is 120 orders of magnitude greater than the observed value. This has led

to many phenomenological models, and the many upcoming surveys such as

JDEM (Joint Dark Energy Mission) or EUCLID will help constrain these models

and unravel the true nature of dark energy.

The evolution of the expanding Universe is usually described by the scale

factor a(t). Einstein’s equations dictate that a(t) obeys

ä
a

= −
4πG

3

∑[
ρ(t) + 3p(t)

]
= −

4πG
3

∑
ρ(t)(1 + 3w), (2.1)

where ρ(t) and p(t) are the energy density and pressure and the sum is over all

the different components of the universe. Usually the scale factor today, a0, is set

to a0 = 1. The redshift z is defined as z = 1/a − 1. The equation of state w relates

the energy density to the pressure w = p/ρ. Conservation of energy-momentum

gives
d
dt

(ρa3) = −p
da3

dt
. (2.2)

From this it can be seen that the radiation and matter energy densities scale as

ργ ∼ a−4 (w = −1/3), ρm ∼ a−3 (w = 0) respectively. The cosmological constant

has w = −1. The simplest phenomenological extension of this allows w to be

a constant, not necessarily −1 (Caldwell, Dave & Steinhardt [22]). For such

models, the dark energy density scales as ρd.e ∼ a−3(1+w) and these are the models

considered in the last chapter of this thesis.
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At early times z & 104, the universe is radiation dominated. The baryons

and dark matter are coupled to the photons through Compton scattering and

structure cannot grow. The period of recombination around z ∼ 1000 marks

the epoch where the photons decouple from the matter, matter energy density

dominates and structure begins to grow. Throughout the era of structure

formation, the background scale factor can be assumed to only depend on

matter and dark energy. The equation for the scale factor is

ä
a

= −
4πG

3

(ρm,0 + ρb,0

a3 + (1 + 3w)
ρd.e,0

a3(1+w)

)
, (2.3)

where, ρm,0, ρb,0 and ρd.e,0 are matter, baryon and dark energy densities today and

G is Newton’s gravitational constant. The quantity H = ȧ/a is called the Hubble

parameter and is related to the critical density (the density needed to make the

universe flat) as H2
0 = 8πGρc,0/3. It is customary to write the energy densities

today as fraction of the critical density,

Ωm,0 =
ρm,0

ρc,0
, (2.4)

Ωb,0 =
ρb,0

ρc,0
, (2.5)

Ωd.e,0 =
ρd.e,0

ρc,0
. (2.6)

This puts the Einstein equation and its integrated version (the Friedmann

equation) into the form

ä
a

= −
H2

0

2

(
Ωm,0 + Ωb,0

a3 + (1 + 3w)
Ωd.e,0

a3(1+w)

)
, (2.7)

H2 = H2
0

(
Ωm,0 + Ωb,0

a3 +
Ωd.e,0

a3(1+w)

)
. (2.8)

Observations by WMAP set H0 = 100h km/s/Mpc, h = 0.71, Ωm,0 = 0.26,

Ωb,0 = 0.022, Ωd.e,0 = 0.73 and the universe is very close to being flat (Komatsu

[43]). These are the form of the equations used in this thesis, however for the

rest of the discussion, baryons and dark matter are jointly referred to as matter.
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2.2 Linear Growth of inhomogeneities

This section presents the basics of linear theory in the Eulerian frame, which is

the most commonly used analytic method to follow growth of structure.

On very large scales the dynamics of the universe is characterized by the

scale factor described in the previous section. For small scales, much less than

the horizon scale, Newtonian gravity is a good approximation and the density

and velocity fields obey the continuity equation, Euler’s equation and Newton’s

law of gravity. In the absence of baryons, one can neglect pressure effects and

write

dρ(r, t)
dt

= −ρ(r, t)∇r · v(r, t), (2.9)

dv(r, t)
dt

= −∇rφ(r, t), (2.10)

∇2
rφ(r, t) = 4πGρ(r, t). (2.11)

Here r refers to the physical Eulerian coordinate and the divergence operation‘·’

is with respect to this variable. d/dt refers to the total derivative d
dt = ∂

∂t

∣∣∣
r
+ v · ∇r.

When the perturbations are small, one can expand the density, velocity and

potential around the background quantities,

ρ(r, t) = ρb(t)(1 + δ(r, t)), (2.12)

v(r, t) = vb(t) + vp(r, t), (2.13)

φ(r, t) = φb(t) + φp(r, t), (2.14)

where ρ, v and φ refer to the density, velocity and gravitational potential

respectively. The background quantities are subscripted by ‘b’ and perturbed

quantities are subscripted by ‘p’. δ(r, t) is called the fractional density and vp is

called the ‘peculiar velocity’.
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Substituting in the above system equations and keeping the first order terms

gives

dδ
dt

+ ∇r · v = 0, (2.15)

δ̈ + 2H(a)δ̇ −
3
2

H(a)2Ωm(a)δ = 0. (2.16)

It is clear from this equation that the growth of the overdensity δ depends on the

background cosmology through the density parameter Ωm(a) and the Hubble

parameter H(a). Therefore, measuring the growth rate of structure can provide

insights into the evolution history of the universe and constrain cosmological

parameters. For the case of a matter dominated universe with Ωm = 1, eq.

(2.16) has two solutions δ+(t) ∼ a(t) ∼ t2/3 and δ−(t) ∼ H ∼ 1/t. Usually, initial

conditions are chosen such that there are no decaying modes and there are no

singularities in the solution at t = 0. Only the growing mode δ+ ∼ a remains.

This gives δ̇ = Hδ and relates the velocity divergence to δ as ∇r · vp = −Hδ.

It is common to scale the velocity divergence by the Hubble constant giving

∇r · v′p = −δ, where v′p = vp/H.

At linear order, extending to more general cosmologies, this relationship is

written in the form

∇r · v′p = − f (Ωm)δ, (2.17)

where f (Ωm) = dlnδ/dlna. It was shown in 1976 by Peebles [63] that for purely

matter cosmologies f (Ωm) ' Ω0.6
m . Extensions of this relation for cosmologies

with a cosmological constant performed at linear order by Lahav et al (1991)

[44] give f (Ωm,ΩΛ) ' Ω0.6 + ΩΛ/70(1 + Ωm/2), where ΩΛ is the density parameter

for the cosmological constant.
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2.3 Non-linear growth

2.3.1 Higher order Eulerian PT

When the density contrast δ ∼ 1, linear theory breaks down and non-linear

methods need to be used. One analytic technique is the natural extension of the

linear theory outlined above i.e. higher order Eulerian perturbation theory. This

involves expanding the functions as

δ(r, t) =

∞∑
n=1

δ(n)(r, t)εn (2.18)

Θ(r, t) =

∞∑
n

Θ(n)(r, t)εn (2.19)

where Θ = ∇ · v′p and expansion parameter ε is proportional to the magnitude

of the initial fractional density (or scaled velocity divergence) field δ(r, t0). A

detailed review of higher order Eulerian perturbation theory can be found in

Bernardeau et al [9] and shall not be discussed further.

2.3.2 Numerical Simulations and their limitation

Numerical simulations are the most popular choice to tackle growth in the non-

linear regime. The basic algorithm of a numerical N-body code involves the

following steps (see for e.g. Bagla & Padmanabhan [3]):

1. Set up the initial positions and velocities of the particles.

2. Solve for the force on each particle.

3. Move the particles forward a small time step based on this force and

calculate the new position and velocity.
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4. Perform diagnostic check for energy conservation.

5. Repeat step 2.

Although numerical simulations do a good job at getting the right answer,

they are nevertheless approximations that involve a discrete representation of

a continuous density field in a finite box. They cannot represent scales larger

than the box size or smaller than the inter-particle spacing. The discrete particle

representation gives rise to a shot noise limit which corresponds to the smallest

density contrast that can be well represented with finite number of particles.

This limit is larger for scales much smaller than the size of the box i.e. shot noise

is greater for small scales. The earlier the starting redshift for the simulation,

the smaller the density contrast that needs to be represented and higher the

required resolution (Baugh, Gaztañaga, Efstathiou [6], Scoccimarro [71], Crocce

& Scoccimarro [27], Sirko[73], Smith et al [74]).

The transfer function gives the linear theory amplitude of fluctuations at

the end of the period of recombination. Ideally, one would like to follow the

growth of structure exactly from then on. However, usually the shot noise

constraint prevents N-body codes from starting at very early redshifts (z ∼ 1000)

and instead the Zeldovich approximation (linear LPT) is used to propagate the

initial conditions from z ∼ 1000 to z ∼ 50. As mentioned in the previous chapter,

this can prove to be a drawback for certain applications. Improvements using

higher order LPT to start the simulations have been made by Scoccimarro [71],

Crocce & Scoccimarro [27], but fundamentally, numerical simulations remain

shot noise limited.
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Figure 2.1: Different approximations to the density compared with
the exact density from the spherical top-hat model. The
linear Eulerian PT (EPT), first, second, third order LPT
approximations are denoted by plain, dashed, dotted and dot-
dashed lines respectively. The thick solid line denotes the
exact value of the density. Note that the linear LPT performs
significantly better than linear EPT because LPT is intrinsically
non-linear in the density field. This makes LPT a very powerful
tool to model non-linear structure. This figure is similar to fig.1
in Munshi et al [58].

2.3.3 Lagrangian Perturbation Theory

The other analytic approach to describe the fluid is Lagrangian Perturbation

Theory. In the Lagrangian framework, the evolution of the fluid is tracked

as a function of particle labels X and t i.e. r = r(X, t). The initial Lagrangian
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coordinate of a particle is defined as

X =
r(t0)
a(t0)

, (2.20)

where r(t0) is the Eulerian position of the particle and a(t0) is the background

scale factor at the initial time. Let ρm(X, t0) be the total density at the initial

time. The perturbation is characterized by two quantities; the initial fractional

overdensity

δ(X, t0) =
ρm(X, t0)
ρm,0

− 1 (2.21)

and the initial peculiar velocity

v(X, t0) = ṙ(t0) − ȧ0X. (2.22)

Below horizon scales, the equations obeyed by the position vector r(X, t) are

∇r · r̈ = −4πG
[
ρm(r, t) + ρd.e(t)(1 + 3w)

]
, (2.23)

∇r × r̈ = 0., (2.24)

where ρm(r, t) and ρd.e(t) are the total matter and dark energy densities

respectively at time t and G is Newton’s gravitational constant. ∇r is the Eulerian

gradient operator and the ‘dot’ denotes derivative with respect to time.

Conservation of mass implies that the density at any time t is given as

ρm(X, t) =
ρm(X, t0)J(X, t0)

J(X, t)
, (2.25)

where J(X, t) = Det
(
∂ri
∂X j

)
is the Jacobian of the transformation relating the

Eulerian and Lagrangian coordinate systems. This transformation is well

defined until orbit crossing.

r(X, t) is the main variable solved for in the Lagrangian framework. Note,

that the density is reconstructed using exact definitions. Therefore, even though
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r(X, t) is solved for perturbatively, a first order expansion in the displacement

field gives a higher than linear order approximation to the density field. Figure

2.1 shows the benefit of the LPT approximation over Eulerian PT for the case of

a spherical top-hat system. The spherical top-hat system can be solved exactly

and is described in detail in the next chapter.
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CHAPTER 3

EXTENDING THE DOMAIN OF VALIDITY OF LPT

The material presented in this chapter has been accepted for publication in

MNRAS (Nadkarni-Ghosh & David Chernoff [59]). The aim in this paper was

to understand the convergence properties of the Lagrangian series. The exact

solution for a spherical top-hat system is analyzed using the techniques of

complex analysis. Based on this analysis, it is possible to predict exactly how

long the series solution will be valid given general initial conditions. This

time is referred to as the ‘time of validity’. It is demonstrated that to ensure

convergence, it is always necessary to re-expand the solution in overlapping

time domains, each domain subject to the time of validity criteria. The errors

in the solution are characterized as a function of Lagrangian order and time

steps. It is found that a higher order scheme with fewer time steps can

achieve the same accuracy as a lower order scheme with more time steps. This

is an important aspect of the scheme that may be exploited when evolving

inhomogeneous initial conditions with a numerical simulation.
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3.1 Abstract

We investigate convergence of Lagrangian Perturbation Theory (LPT) by

analyzing the model problem of a spherical homogeneous top-hat in an

Einstein-deSitter background cosmology. We derive the formal structure of

the LPT series expansion, working to arbitrary order in the initial perturbation

amplitude. The factors that regulate LPT convergence are identified by studying

the exact, analytic solution expanded according to this formal structure. The key

methodology is to complexify the exact solution, demonstrate that it is analytic

and apply well-known convergence criteria for power series expansions of

analytic functions. The “radius of convergence” and the “time of validity” for

the LPT expansion are of great practical interest. The former describes the range

of initial perturbation amplitudes which converge over some fixed, future time

interval. The latter describes the extent in time for convergence of a given initial

amplitude. We determine the radius of convergence and time of validity for a

full sampling of initial density and velocity perturbations.

This analysis fully explains the previously reported observation that LPT

fails to predict the evolution of an underdense, open region beyond a certain

time. It also implies the existence of other examples, including overdense,

closed regions, for which LPT predictions should also fail. We show that

this is indeed the case by numerically computing the LPT expansion in these

problematic cases.

The formal limitations to the validity of LPT expansion are considerably

more complicated than simply the first occurrence of orbit crossings as is often

assumed. Evolution to a future time generically requires re-expanding the
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solution in overlapping domains that ultimately link the initial and final times,

each domain subject to its own time of validity criterion. We demonstrate that

it is possible to handle all the problematic cases by taking multiple steps (LPT

re-expansion).

A relatively small number (∼ 10) of re-expansion steps suffices to satisfy

the time of validity constraints for calculating the evolution of a non-collapsed,

recombination-era perturbation up to the current epoch. If it were possible

to work to infinite Lagrangian order then the result would be exact. Instead,

a finite expansion has finite errors. We characterize how the leading order

numerical error for a solution generated by LPT re-expansion varies with the

choice of Lagrangian order and of time step size. Convergence occurs when

the Lagrangian order increases and/or the time step size decreases in a simple,

well-defined manner. We develop a recipe for time step control for LPT re-

expansion based on these results.

3.2 Introduction

Understanding the non-linear growth of structure in an expanding universe has

been an active area of research for nearly four decades. Simulations have been

instrumental in illustrating exactly what happens to an initial power spectrum

of small fluctuations but analytic methods remain essential for elucidating the

physical basis of the numerical results. Perturbation theory, in particular, is an

invaluable tool for achieving a sophisticated understanding.

The Eulerian and Lagrangian frameworks are the two principal modes of

description of a fluid. The fundamental dependent variables in the Eulerian
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treatment are the density ρ(x, t) and velocity v(x, t) expressed as functions of

the grid coordinates x and time t, the independent variables. In perturbation

theory the dependent functions are expanded in powers of a small parameter.

For cosmology that parameter typically encodes a characteristic small spatial

variation of density and/or velocity with respect to a homogeneous cosmology

at the initial time. As a practical matter, the first-order perturbation theory

becomes inaccurate when the perturbation grows to order unity. Subsequently

one must work to higher order to handle the development of non-linearity (see

Bernardeau et al [9] for a review) or adopt an alternative method of expansion.

In the Lagrangian framework, the fundamental dependent variable is the

physical position of a fluid element or particle (terms used interchangeably

here). The independent variables are a set of labels X, each of which follows

a fluid element, and the time. Usually X is taken as the position of the element

at some initial time but other choices are possible. In any case, the physical

position and velocity of a fluid element are r = r(X, t) and ṙ(X, t), respectively.

Knowledge of the motion of each fluid element permits the full reconstruction

of the Eulerian density and velocity fields. In cosmological applications of

Lagrangian perturbation theory (LPT), just like Eulerian perturbation theory,

the dependent variables are expanded in terms of initial deviations with respect

to a homogeneous background. The crucial difference is that the basis for the

expansion is the variation in the initial position and position-derivative not the

variation in the initial fluid density and velocity. The Eulerian density and

velocity may be reconstructed from knowledge of the Lagrangian position using

exact non-perturbative definitions. A linear approximation to the displacement

field results in a non-linear expression for the density contrast. The Lagrangian

description is well-suited to smooth, well-ordered initial conditions; a single
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fluid treatment breaks down once particle crossings begin, caustics form and

the density formally diverges.

First-order LPT was originally introduced by Zeldovich [84] to study the

formation of non-linear structure in cosmology. In his treatment the initial

density field was taken to be linearly proportional to the initial displacement

field (the “Zeldovich approximation”). These results were extended by many

authors (Moutarde [57]; Buchert [20]; Bouchet et al [15]; Buchert & Elhers

[21]; Buchert [17]; Munshi et al [58]; Catelan [24]; Buchert [18]; Bouchet [14];

Bouchet [13]; Elhers & Buchert [31]). The work pioneered by Bouchet focused

on Zeldovich initial conditions and established the link between LPT variables

and statistical observables. The work by Buchert as well as the paper by Ehlers

& Buchert [31] formalized the structure of the Newtonian perturbative series

for arbitrary initial conditions. A general relativistic version of the Zeldovich

approximation was developed by Kasai [40] and other relativistic descriptions

of the fluid in its rest frame were investigated by Matarrese & Terranova [53] and

Matarrese et al([52, 51]). LPT has been used for many applications including,

recently, the construction of non-linear halo mass functions by Monaco [55] and

Scoccimarro & Sheth [72].

Not much has been written about the convergence of LPT although LPT

expansions are routinely employed. Sahni & Shandarin [70] pointed out that

the formal series solution for the simplest problem, the spherical top-hat, did

not converge for the evolution of homogeneous voids. Figure 3.1 illustrates the

conundrum that the LPT approximations diverge from the exact solution in a

manner that worsens as the order of the approximation increases. The details

will be described in the next section.
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This paper explores LPT convergence for the spherical top-hat and identifies

the root cause for the lack of convergence. The analysis naturally suggests a

means of extending the range of validity of LPT. This generalization of LPT

guarantees convergence to the exact solution of the model problem at all times

prior to the occurrence of the first caustic.

Tatekawa [77] attempted to treat the divergence by applying the Shanks

transformation to the LPT series. Although non-linear transformations can sum

a divergent series, the correct answer is not guaranteed; comparison of several

different methods is usually necessary to yield trustworthy results. Other

approaches include the Shifted-Time-Approximation (STA) and Frozen-Time-

Approximation (FTA) which have been investigated by Karakatsanis et al [39].

These schemes modify lower order terms to mimic the behavior of higher order

terms and/or extend the range of applicability in time. None of these techniques

are considered here.

The organization follows: §3.3 sketches the model problem, the evolution of

a uniform sphere in a background homogeneous Einstein-deSitter cosmology.

The LPT equations, the structure of the formal series and the term-by-

term solution are outlined. §3.4 discusses the complexification of the LPT

solution and convergence of the series. This section introduces the “radius

of convergence” and the “time of validity” for LPT. §3.5 outlines the real and

complex forms of the parametric solution and sets forth the equations that must

be solved to locate the poles which govern the convergence. §3.6 presents

numerical results for the time of validity and radius of convergence for a full

range of possible initial conditions for the top-hat. The notion of mirror model

symmetry is introduced and used to explain a connection in the convergence for
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Figure 3.1: The time-dependent scale factor b of an initial spherical top-
hat perturbation is plotted as a function of the background
scale factor a. The perturbation is a pure growing mode, i.e.
the density and velocity perturbations vanish at t = 0. The
black dotted line is the exact solution. The smooth blue lines
are the LPT results obtained by working successively to higher
and higher order. Series with even (odd) final order lie below
(above) the exact solution. Roughly speaking, LPT converges
only for a<∼0.2. Beyond that point the higher order approximations
deviate from the exact solution more than lower order ones.

open and closed models. §3.7 shows that the time of validity may be extended

by re-expanding the solution in overlapping domains that ultimately link the

initial and final times, each domain subject to an individual time of validity

criterion. The feasibility of this method is demonstrated in some examples. §3.8

summarizes the work.

3.3 The model problem and formal series solution

This section describes the governing equations, the initial physical conditions,

the formal structure of the LPT series solution and the order-by-order solution.
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3.3.1 Newtonian treatment

Consider evolution on sub-horizon scales after recombination in a matter-

dominated universe. A Newtonian treatment of gravity based on solving

Poisson’s equation for the scalar potential and on evaluating the force in terms

of the gradient of the potential gives an excellent approximation for non-

relativistic dynamics. When there are no significant additional forces on the

fluid element (e.g. pressure forces) then it is straightforward to eliminate the

gradient of the potential in favor of r̈, the acceleration. The governing equations

are

∇x · r̈ = −4πGρ(x, t) (3.1)

∇x × r̈ = 0 (3.2)

where ρ(x, t) is the background plus perturbation density, G is Newton’s

gravitational constant and ∇x is the Eulerian gradient operator. In the

Lagrangian treatment, the independent variables are transformed (x, t) → (X, t)

and the particle position r = r(X, t) adopted as the fundamental dependent

quantity. For clarity note that x refers to a fixed Eulerian grid not a comoving

coordinate.

3.3.2 Spherical top-hat

The starting physical configuration is a compensated spherical perturbation

in a homogeneous background cosmology. The perturbation encompasses a

constant density sphere about the centre of symmetry and a compensating

spherical shell. The shell that surrounds the sphere may include vacuum
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regions plus regions of varying density. Unperturbed background extends

beyond the outer edge of the shell. Physical distances are measured with respect

to the centre of symmetry. At initial time t0 the background and the innermost

perturbed spherical region (hereafter, “the sphere”) have Hubble constants H0

and Hp0, and densities ρ0 and ρp0, respectively. Let rb,0 (rp,0) be the physical

distance from the centre of symmetry to the inner edge of the background (to

the outer edge of the sphere) at the initial time. Let a0, b0 be the initial scale

factors for the background and the sphere respectively. Two sets of Lagrangian

coordinates Y = rb,0/a0 and X = rp,0/b0 are defined. A gauge choice sets

a0 = b0. Appendix A.1 provides a figure and gives a somewhat more detailed

chain of reasoning that clarifies the construction of the physical and Lagrangian

coordinate systems. The initial perturbation is characterized by the independent

parameters

δ =
ρp0

ρ0
− 1

δv =
Hp0

H0
− 1. (3.3)

Finally, assume that the background cosmology is critical Ω0 = 1. The perturbed

sphere has

Ωp0 =
1 + δ

(1 + δv)2 . (3.4)

The physical problem of interest here is the future evolution of an arbitrary

initial state unconstrained by the past history. In general, the background and

the perturbation can have different big bang times. Initial conditions with

equal big bang times will be analyzed as a special case of interest and imply

an additional relationship between δ and δv.

While the previous paragraphs summarize the set up, they eschew the

complications in modeling an inhomogeneous system in terms of separate inner
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and outer homogeneous universes. For example, matter motions within the

perturbed inner region may overtake the outer homogeneous region so that

there are problem-specific limits on how long solutions for the scale factors

a(t) and b(t) remain valid. The appendix shows that there exist inhomogeneous

initial configurations for which the limitations arising from the convergence of

the LPT series are completely independent of the limitations associated with

collisions or crossings of inner and outer matter-filled regions. A basic premise

of this paper is that it is useful to explore the limitations of the LPT series

independent of the additional complications that inhomogeneity entails.

3.3.3 Equation governing scale factors

During the time that the spherical perturbation evolves as an independent

homogeneous universe it may be fully described in terms of the motion of its

outer edge rp. Write

rp(t) = b(t)X (3.5)

where b(t) is the scale factor and X is the Lagrangian coordinate of the edge. The

initial matter density of the homogeneous sphere ρ(X, t0) = ρp0 = ρ0(1 + δ). The

physical density of the perturbation at time t is

ρ(X, t) =
ρ(X, t0)J(X, t0)

J(X, t)
(3.6)

where the Jacobian of the transformation relating the Lagrangian and physical

spaces is

J(X, t) = det
(
∂~r

∂~X

)
. (3.7)
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Since eq. (4.3) implies J(X, t) = b(t)3 and the choice a0 = b0 implies J(X, t0) = a3
0

the perturbation matter density at later times is

ρp(t) =
ρ0(1 + δ)a3

0

b(t)3 . (3.8)

Substituting for ρp and rp in eq. (3.1) gives

b̈
b

= −
1
2

H2
0a3

0(1 + δ)
b3 (3.9)

with initial conditions b(t0) = a0 and ḃ(t0) = ȧ0(1+δv). The curl of the acceleration

(i.e. eq. (4.2)) vanishes by spherical symmetry. The corresponding equation for

the background scale factor is

ä
a

= −
1
2

H2
0a3

0

a3 (3.10)

with initial conditions a(t0) = a0 and ȧ(t0) = ȧ0 = a0H0. The solution for b(t) will

be expressed in terms of its deviations from a(t).

In summary, the physical setup is an Ω0 = 1 background model and a

compensated spherical top-hat (over- or underdense). The properties of interest

are the relative scale factors a(t)/a0 and b(t)/a0 (the choice of a0 is arbitrary

and b0 = a0). The evolution of the relative scale factors is fully specified by

H0, Hp0 and Ωp0 at time t0. The perturbed physical quantities, Hp0 and Ωp0,

may be equivalently specified by a choice of δ and δv. Appendix A.1 contains

a systematic description and enumerates degrees of freedom, parameters,

constraints, etc.

3.3.4 Perturbations in phase space

The initial density and velocity perturbations are taken to be of the same order in

the formalism developed by Buchert [20, 17], Buchert & Ehlers [21] and Ehlers &
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Buchert [31]. We assume the same ordering here. Write the initial perturbation

(δ, δv) in terms of magnitude ∆ and angle θ

∆ =

√
δ2 + δ2

v (3.11)

so that

δ = ∆ cos θ (3.12)

δv = ∆ sin θ. (3.13)

To map physical perturbations (δ, δv) in a unique manner to (∆, θ) adopt the

ranges ∆ ≥ 0 and −π < θ ≤ π. Figure 3.2 (left panel) shows the phase space

of initial perturbations. Since density is non-negative the regime of physical

interest is δ ≥ −1. Open (closed) models with positive (negative) total energy are

the regions that are unshaded (shaded). Initially expanding models, 1 + δv > 0,

lie above the horizontal dashed line. The right panel of figure 3.2 summarizes

the overall evolution of the system. The initial choice of δ and δv dictates the

trajectory in the plane. Cosmologically relevant initial conditions generally

assume there to be no perturbation at t = 0. We adopt the name “Zeldovich”

initial conditions for models that satisfy this condition. This establishes a

specific relation between δ and δv which is indicated by the sold blue line.

The exact mathematical relationship is given in §3.6.4. Starting from a general

initial point (δ, δv), the system as it evolves traces out a curve in phase space

indicated by the blue arrows. There are three fixed points visible. The origin

(δ, δv) ≡ (0, 0), which corresponds to a unperturbed background model, is a

saddle point. The vacuum static model at point (−1,−1) is a unstable node and

the vacuum, expanding model at (−1, 0.5) is a degenerate attracting node. Far to

the right and below the dashed line the models collapse to a future singularity.

The phase portrait illustrates that the trajectories either converge to the vacuum,
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Figure 3.2: Phase diagram of density and velocity perturbations (δ, δv).
Physical initial conditions require −1 < δ < ∞ and −∞ < δv <
∞. The left panel highlights the qualitatively different initial
conditions. The shaded (unshaded) region corresponds to
closed (open) model with negative (positive) total energy. For
small ∆, models with θ−c < θ < θ+

c are closed. Initially expanding
and contracting models are separated by the dashed horizontal
line (δv = −1). The right panel shows the evolution of δ and δv.
The solid blue line corresponds to the “Zeldovich” condition i.e
no perturbation at t = 0. The points (−1,−1), (−1, 0.5) and (0, 0)
are unstable, stable and saddle fixed points of the phase space
flow. The flow lines (indicated by the blue vectors) converge
along the Zeldovich curve either to the stable fixed point at
(−1, 0.5) or move parallel to the Zeldovich curve to a future
density singularity. Further discussion follows in §3.6.4 and
§3.7.2.

expanding model or to the singular, collapsing model. The equations that

govern the flow and further relevance of the Zeldovich solution is discussed

in §3.7.2 and §3.6.4.
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3.3.5 Generating the Lagrangian series solution

The scale factor is formally expanded

b(t) =

∞∑
n=0

b(n)(t)∆n (3.14)

where b(n) denotes an n-th order term. The initial conditions are

b(t0) = a(t0) (3.15)

ḃ(t0) = ȧ0(1 + δv) = ȧ0(1 + ∆ sin θ). (3.16)

Substitute the expansion for b(t) into eq. (3.9), equate orders of ∆ to give at zeroth

order

b̈(0) +
1
2

H2
0a3

0

b(0)2 = 0 (3.17)

which is identical in form to eq. (3.10) for the unperturbed background scale

factor. The initial conditions at zeroth order:

b(0)(t0) = a0 (3.18)

ḃ(0)(t0) = ȧ0. (3.19)

The equation and initial conditions for b(0)(t) simply reproduce the background

scale factor evolution b(0)(t) = a(t). Without loss of generality assume that the

background model has big bang time t = 0 so that

a(t) = a0

(
t
t0

)2/3

= a0

(
3H0t

2

)2/3

. (3.20)

At first order

b̈(1) −
H2

0a3
0b(1)

a3 = −
1
2

H2
0a3

0 cos θ
a2 (3.21)

and, in general,

b̈(n) −
H2

0a3
0b(n)

a3 = S (n) (3.22)
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where S (n) depends upon lower order approximations (b(0), b(1) . . . b(n−1)) as well

as θ. The first few are:

S (2) = −
1
2

H2
0a3

0

a4

[
b(1)

{
3b(1) − 2a cos θ

}]
(3.23)

S (3) = −
1
2

H2
0a3

0

a5

[
b(1)

{
−4

(
b(1)

)2
+ 6ab(2) + 3ab(1) cos θ

}
− 2a2b(2) cos θ

]
(3.24)

S (4) = −
1
2

H2
0a3

0

a6

[(
b(1)

)2
{
5
(
b(1)

)2
− 12ab(2) − 4ab(1) cos θ

}
+

6a2b(1)
{
b(3) + b(2) cos θ

}
+ 3a2

(
b(2)

)2
− 2a3b(3) cos θ

]
. (3.25)

These terms can be easily generated by symbolic manipulation software. The

initial conditions are

b(1)(t0) = 0 (3.26)

ḃ(1)(t0) = ȧ0 sin θ (3.27)

and for n > 1

b(n)(t0) = 0 (3.28)

ḃ(n)(t0) = 0. (3.29)

The ordinary differential equations for b(n) may be solved order-by-order.

To summarize, the structure of the hierarchy and the simplicity of the initial

conditions allows the evaluation of the solution at any given order in terms of

the solutions with lower order. This yields a formal expansion for the scale

factor of the sphere

b =

∞∑
n=0

b(n)(t)∆n (3.30)

which encapsulates the Lagrangian perturbation treatment. The right hand size

explicitly depends upon the size of the perturbation and time and implicitly

35



upon a0, H0, and θ. This hierarchy of equations is identical to that generated by

the full formalism developed by Buchert and collaborators when it is applied to

the top-hat problem. The convergence properties in time and in ∆ are distinct; a

simple illustrative example of this phenomenon is presented in Appendix A.2.

3.4 Convergence properties of the LPT series solution

The series solution outlined in the previous section does not converge at all

times. Figure 3.1 is a practical demonstration of this non-convergence for the

case of an expanding void. An understanding of the convergence of the LPT

series is achieved by extending the domain of the expansion variable ∆ from the

real positive axis to the complex plane.

3.4.1 Complexification

The differential eq. (3.9) and initial conditions for the physical system are

b̈(t) = −
1
2

H2
0a3

0(1 + ∆ cos θ)
b(t)2

b(t0) = a0

ḃ(t0) = ȧ0(1 + ∆ sin θ) (3.31)

where t, b(t), ∆ and all zero-subscripted quantities are real. This set may be

extended by allowing ∆ and b to become complex quantities, denoted hereafter,

∆ and b, while the rest of the variables remain real. The complex set is

b̈(t) = −
1
2

H2
0a3

0(1 + ∆ cos θ)
b(t)2

b(t0) = a0
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ḃ(t0) = ȧ0(1 + ∆ sin θ). (3.32)

The theory of differential equations (for example, Chicone [25]) guarantees

that the solution to a real initial value problem is unique and smooth in the

initial conditions and parameters of the equation and can be extended in time

as long as there are no singularities in the differential equation (hereafter, the

maximum extension of the solution). First, note that each complex quantity in

eq. (3.32) may be represented by a real pair, i.e. b = u+iv by pair {u, v} = {<b,=b}

and ∆ = x + iy by pair {x, y} = {<∆,=∆}. The basic theory implies continuity and

smoothness of solution u and v with respect to initial conditions and parameters

x and y. Second, observe that the Cauchy-Riemann conditions ux = vy and uy =

−vx are preserved by the form of the ordinary differential equation. Since the

initial conditions and parameter dependence are holomorphic functions of ∆ it

follows that b(t,∆) is a holomorphic function of ∆ at times t within the maximum

extension of the solution.

Inspection shows that the differential equation is singular only at b = 0.

For a particular value of ∆ = ∆′, the solution to the initial value problem can

be extended to a maximum time tmx such that b(∆′, tmx) = 0 or to infinity. The

existence of a finite tmx signals that a pole in the complex analytic function b(∆, t)

forms at ∆ = ∆′ and t = tmx. For times t such that t0 ≤ t < tmx, the solution b(∆, t) is

analytic in a small neighborhood around the point ∆′. Of course, there may be

poles elsewhere in the complex ∆ plane.

The relationship between the original, real-valued physical problem and

the complexified system is the following. In the original problem ∆ is a real,

positive quantity at t0. LPT is a power series expansion in ∆ about the origin

(the point ∆ = 0). LPT’s convergence at any time t can be understood by
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study of the complexified system. Consider the complex disk D centered on

the origin and defined by |∆| < ∆. At t0 each point in D determines a trajectory

b(∆, t) for the complexified system extending to infinity or limited to finite time

t = tmx(∆) because of the occurrence of a pole. The time of validity is defined

as T (∆) = minD tmx, i.e. the minimum tmx over the disk. Since there are no

poles in D at t0 the time of validity is the span of time when D remains clear

of any singularities. If a function of a complex variable is analytic throughout

an open disk centered around a given point in the complex plane then the series

expansion of the function around that point is convergent (Brown and Churchill

[38]). The LPT expansion for the original problem converges for times less than

the time of validity because the complex extension b(∆, t) is analytic throughout

D for t < T (∆). If ∆1 < ∆2 then, in an obvious notation, the disks are nested

D(∆1) ⊂ D(∆2) and the times of validity are ordered T (∆1) ≥ T (∆2).

This idea is shown in figure 3.3. No singularities are present for the initial

conditions at t0; at t1 a singularity is present outside the disk but it does not

prevent the convergence of the LPT expansion with ∆ equal to the disk radius

shown; at t2 a singularity is present in the disk or on its boundary and it may

interfere with convergence.

A distinct but related concept is the maximum amplitude perturbation for

which the LPT expansion converges at the initial time and at all intermediate

times up to a given time. The radius of convergence R∆(t) is the maximum disk

radius ∆ for which t > T (∆). Because the disks are nested if t1 < t2 then R∆(t1) ≥

R∆(t2).

The time of validity and the radius of convergence are inverse functions

of each other. If the initial perturbation is specified, i.e. ∆ is fixed, and the
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Im[Δ]

time

 t = t0

Re[Δ]

 t = t1

Δ=0

 t = t2

Figure 3.3: This figure is a schematic illustration of how the time of
validity is determined. The initial conditions imply a specific,
real ∆ at time t0. The LPT series is an expansion about ∆ = 0,
convergent until a pole appears at some later time within the
disk of radius ∆ (shown in cyan) in the complex ∆ plane.
Typically, the pole’s position forms a curve (blue dashed) in the
three dimensional space (<[∆],=[∆], t). The black dots mark
the pole at times t1 and t2. At t1 the pole does not interfere with
the convergence of the LPT series; at t2 it does. The time of
validity may be determined by a pole that appears within the
disk without moving through the boundary (not illustrated).
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question to be answered is “how far into the future does LPT work?” then the

time of validity gives the answer. However, if the question is “how big an initial

perturbation will be properly approximated by LPT over a given time interval?”

then the radius of convergence provides the answer.

Finally, note that one can trivially extend this formalism to deal with time

intervals in the past.

3.4.2 Calculating radius of convergence and time of validity

The following recipe shows how to calculate the radius of convergence R∆(t)

and the time of validity T (∆) efficiently. Fix a0, H0, t0 and θ; these are all real

constants set by the initial conditions. Assume that it is possible to find b(∆, t)

for complex ∆ and real t by solving eq. (3.32). There exist explicit expressions

for b as will be shown later.

Start with t = t0 and R∆(t) = ∞. The iteration below maps out R∆(t) by making

small increments in time δt.

• Store old time tprevious = t, choose increment δt and form new time of

interest t = tprevious + δt.

• Locate all the ∆ which solve b(∆, t) = 0. The roots correspond to poles in

the complex function. Find the root closest to the origin and denote its

distance as |∆near|.

• The radius of convergence is R∆(t) = min(|∆near|,R∆(tprevious)).

• Continue.
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Complex Δ plane Root Plot

Im[Δ]

Re[Δ]

Roots at t2

Roots at t1

Δ

 T(Δ)
t

RΔ (t)

Figure 3.4: A schematic illustration of the radius of convergence and the
time of validity. The left panel shows the location of poles in the
complex ∆ plane at times t1 and t2, denoted by orange squares
and green dots, respectively. At a fixed time, the pole nearest
the origin determines the disk (black circle) within which a
series expansion about the origin converges. The right panel
shows |∆| for t1 and t2. The black line is R∆(t), the minimum |∆|
calculated for a continuous range of times (where t0, the initial
time, lies far to the left). The arrows show how the time of
validity is inferred for a given ∆.

Since R∆ is decreasing, the inversion to form T (∆) is straightforward. Figure

3.4 shows a schematic cartoon of the construction process.
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3.5 Explicit solutions

The usual parametric representation provides an efficient method to construct

an explicit complex representation for b(∆, t).

3.5.1 Real (physical) solutions

The original system eq. (3.31) depends upon a0, H0, θ and ∆. The assumed

Einstein-deSitter background has a0 > 0 and ȧ0 > 0; as defined, the perturbation

amplitude ∆ ≥ 0 and the relative density and velocity components are

determined by phase angle θ with −π < θ ≤ π. The quantity (1 + ∆ cos θ) is

proportional to total density and must be non-negative. The sign of ḃ0 is the

sign of 1 + ∆ sin θ and encodes expanding and contracting initial conditions.

Briefly reviewing the usual physical solution, the integrated form is

ḃ2 = H2
0a3

0

[
(1 + ∆ cos θ)

b
+

(1 + ∆ sin θ)2 − (1 + ∆ cos θ)
a0

]
. (3.33)

The combination

E(∆, θ) = (1 + ∆ sin θ)2 − (1 + ∆ cos θ) (3.34)

is proportional to the total energy of the system. If E > 0 the model is open

and if E < 0 it is closed and will re-collapse eventually. Figure 3.2 shows the

parabola E = 0 which separates open and closed regions. For infinitesimal ∆

the line of division has slope tan θ = 1/2. Models with θ ∈ [θ−c , θ
+
c ] = [−π +

tan−1(1/2), tan−1(1/2)] = [−2.68, 0.46] are closed while those outside this range

are open.

There are four types of initial conditions (positive and negative E, positive
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Figure 3.5: Scale factor as a function of time. The initial conditions
(b0 = a0 = 1 and varying ḃ0) are given at time t0 (dashed
blue line). The left (right) panel illustrates initially expanding
(contracting) models. t±bang corresponds to η = 0; tcoll to η = 2π.
For expanding solutions tage = t0 − t+

bang is the time interval since
the initial singularity and tcoll is the future singularity for closed
models. For contracting solutions tage = t−bang− t0 is the time until
the final singularity and tcoll is the past singularity for closed
models.

and negative ḃ0) and four types of solutions, shown schematically in figure

3.5. The solutions have well-known parametric forms involving trigonometric

functions of angle η or iη (see Appendix A.3). The convention adopted here is

that the singularity nearest the initial time t0 coincides with η = 0 and is denoted

t+
bang (t−bang) for initially expanding (contracting) solutions (see figure 3.5). The

time interval between the singularity and t0 is tage = |t0 − t±bang| ≥ 0.

The parametric solution for the models can be written as

b(η,∆, θ) =
a0

2
(1 + ∆ cos θ)
[−E(∆, θ)]

(1 − cos η)
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t(η,∆, θ) = t0 ±

(
1

2H0

(1 + ∆ cos θ)
[−E(∆, θ)]3/2 (η − sin η) − tage(∆, θ)

)
. (3.35)

The plus and minus signs give the solution for initially expanding and initially

contracting models respectively. Parameter η is purely real for closed solutions

and purely imaginary for open solutions. The distance to the nearest singularity

is

tage =

∫ b=a0

b=0

db
[ḃ2]1/2

=
1

H0

∫ y=1

y=0

dy[
(1 + ∆ cos θ)y−1 + E(∆, θ)

]1/2 . (3.36)

The second equality uses eq. (3.33) and the substitution y = b/a0.

3.5.2 Complex extension

To extend the above parametric solution to the complex plane, one might guess

the substitution ∆ → ∆eiφ where −π < φ ≤ π in eq. (3.35) and eq. (3.36).

The physical limit is φ = 0. However, this leads to two problems. First, the

integral for tage can have multiple extensions that agree for physical φ = 0 but

differ elsewhere including the negative real axis. This is tied to the fact that the

operations of integration and substitution ∆ → ∆eiφ do not commute because

of the presence of the square root in the expression for tage. A second related

problem is the presence of multiple square roots in the parametric form for t.

These give rise to discontinuities along branch cuts such that one parametric

form need not be valid for the entire range of φ, but instead the solution may

switch between different forms. Directly extending the parametric solution is

cumbersome.

However, the original differential eq. (3.32) is manifestly single-valued.

The equation can be integrated forward or backward numerically to obtain the

correct solution for complex ∆. One can then match the numerical solution to
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the above parametric forms to select the correct branch cuts. This procedure

was implemented to obtain the form for all ∆ and θ. The main result is

that the solution space for all θ and ∆ is completely spanned by complex

extensions of the two real parametric forms which describe initially expanding

and contracting solutions. The expressions for tage and details are given in

Appendix A.3.3.

The traditional textbook treatment relating physical cosmological models

with real Ω > 1 and Ω < 1 typically invokes a discrete transformation η → iη

in the parametric forms and one verifies that this exchanges closed and open

solutions. However, starting from the second order differential equation it is

straightforward to use the same type of reasoning as above to construct an

explicit analytic continuation from one physical regime to the other.

In addition, note that the differential equation and its solution remain

unchanged under the simultaneous transformations ∆ → −∆ and θ → θ + π.

Every complex solution with −π < θ ≤ 0 can be mapped to a complex solution

with 0 < θ ≤ π and vice-versa. For determining the radius of convergence and

the time of validity the whole disk of radius |∆| is searched for poles so it suffices

to consider a restricted range of θ to handle all physical initial conditions.

3.5.3 Poles

The condition b = 0 signals the presence of a pole. Inspection of the parametric

form shows that this condition can occur only when η = 0 or η = 2π. The
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corresponding time

t(∆, θ) =


t0 ±

(
π

H0

(1+∆ cos θ)
[−E(∆)]3/2 − tage(∆)

)
(η = 2π)

t0 ∓ tage(∆) (η = 0)
(3.37)

is immediately inferred. Since the independent variable t is real the

transcendental equation

=t(∆, θ) = 0 (3.38)

must be solved. It is straightforward to scan the complex ∆ plane and calculate

t to locate solutions. Each solution gives a root of b = 0 and also implies

the existence of a pole at the corresponding ∆. Note that relying upon the

parametric solutions is a far more efficient method for finding the poles than

integrating the complex differential equations numerically. We have verified

that both methods produce the same results.

In practice, we fix θ, scan a large area of the complex ∆ plane, locate all purely

real t and save the {∆, t} pairs. These are used to create a scatter plot of |∆|

as a function of time (hereafter the “root plot”). Generally, the location of the

poles varies smoothly with t and continuous loci of roots are readily apparent.

Finding R∆ and T (∆) follows as indicated in figure 3.4.

3.6 Results from the complex analysis

Root plots were calculated for a range of angles 0 ≤ θ ≤ π. Since the root plots

depend upon |∆| they are invariant under θ → θ−π and this coverage suffices for

all possible top-hat models. For the results of the full survey in θ see Appendix

A.4. The theoretical radius of convergence R∆(t) and time of validity T (∆) follow

directly.
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Figure 3.6: R∆ for θ = 2.82 and a0 = 10−3 (vertical dashed line). To
determine the time of validity for LPT expansion with a given
∆, move horizontally to the right of a = a0 following the dashed
line with arrow and locate the first colored line with ordinate
equal to ∆ and then move vertically down to read off the scale
factor at the time of validity av. The specific case illustrated (∆ =

10−2) matches that of the model with problematic convergence
in figure 3.1. The time of validity is correctly predicted. The
meaning of the colors is discussed in the text. Coloured version
of the figure is available online.

This section analyses the theoretical convergence for specific open and

closed models derived from the root plots. These estimates are compared to

the time of validity inferred by numerical evaluation of the LPT series. The

range of models with limited LPT convergence is characterized. The concept of

mirror models is introduced to elucidate a number of interconnections between

open and closed convergence. The physical interpretation of roots introduced

by the complexification of the equations but lying outside the physical range are

discussed. Finally, the special case where the background and the perturbation

have the same big bang time is analyzed.
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3.6.1 Open models

Figure 3.6 shows R∆(t) for θ = 2.82 and initial scale factor a0 = 10−3. All ∆ yield

expanding open models for this θ; one choice corresponds to the model whose

LPT series appeared in figure 3.1 (∆ = 0.01, θ = 2.82, a0 = 10−3). The x-axis is

log a and is equivalent to a measure of time. The y-axis is log |∆|, i.e. the distance

from the origin to poles in the complex ∆ plane. In principle, future evolution

may be limited by real or complex roots. The blue solid line and the red dotted

line indicate real and complex roots of η = 2π respectively. The cyan dashed and

pink dot-dashed lines indicate the real and complex roots of η = 0 respectively.

Future evolution is constrained by real roots (blue and cyan) in this example.

The time of validity is the first instance when a singularity appears within

the disk of radius ∆ in the complex ∆ plane. For the specific case, starting at

ordinate ∆ = 10−2, one moves horizontally to the right to intersect the blue

line and then vertically down to read off the scale factor av = a[T (∆)] = 0.179.

The time of validity inferred from the root plot agrees quantitatively with the

numerical results in figure 3.1.

Appendix A.4 presents a comprehensive set of results. The time of validity is

finite for any open model. As expected, smaller amplitudes imply longer times

of validity. The poles do not correspond to collapse singularities reached in the

course of normal physical evolution since the open models do not have any real

future singularities. A hint of an explanation is already present, however. The

green dashed line is δv = 1 (or ∆ = 1/ sin θ) at which point the root switches from

η = 2π below to 0 above. Such a switch might occur if varying the initial velocity

transposes an expanding closed model into a contracting closed model. But it

is expected to occur at δv = −1 not 1. The open models are apparently sensitive
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to past and future singularities in closed models with initial conditions that are

transformed in a particular manner. §3.6.3 explores this interpretation in detail.

3.6.2 Closed models

Figure 3.7 presents R∆(t) for models with θ = 0.44 and a0 = 10−3. There are

several new features. Over the angular range θ−c < θ < θ+
c the cosmology is

closed for small ∆ (see shaded region in figure 3.2 near ∆ = 0). Conversely,

a straight line drawn from ∆ = 0 within this angular range must eventually

cross the parabola E = 0 except for the special case θ = 0. Since the velocity

contribution to energy E ∝ ∆2 while the density contribution ∝ −∆ it is clear that

eventually E > 0 as ∆ increases. The critical value, ∆E=0, is a function of θ. Below

the brown horizontal dot-dashed line in figure 3.7 the models are closed, above

they are open (line labelled ∆ = ∆E=0).

The root plot has, as before, blue solid and red dotted lines denoting the

distance to real and complex ∆ poles, respectively, for η = 2π. The cyan dashed

line denotes real roots for η = 0 and does not restrict future evolution.

For small ∆ real roots determine the time of validity. These roots correspond

exactly to the model’s collapse time. In other words, the time of validity is

determined by the future singularity. For example, for ∆ = 0.01, the root plot

predicts that a series expansion should be valid until the collapse at a = 5.5

denoted by “av = ac” on the x-axis . This prediction is confirmed in the left

hand panel of figure 3.8. The root diagram is consistent with the qualitative

expectation that small overdensities should have long times of validity because

collapse times are long: lim∆→0 T (∆)→ ∞.
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Figure 3.7: R∆ for θ = 0.44 and a0 = 10−3. The line ∆E = 0 separates open
and closed models. The scale factor at the time of validity is av.
For closed models the scale factor at time of collapse is ac. Blue
solid line and red small dashed line denote real and complex
roots of η = 2π, respectively. The cyan dashed lines denotes the
real roots of η = 0. When the first singularity encountered is
real, av = ac, the time of validity is the future time of collapse.
However, when the singularity is complex the time of validity
is less than the actual collapse time. In the range ∆rc < ∆ < ∆E=0,
there are closed models with av < ac.

As ∆ increases from very small values, i.e. successively larger initial density

perturbations, the collapse time decreases. Eventually the velocity perturbation

becomes important so that at ∆ = ∆rc a minimum in the collapse time is reached.

For ∆E=0 > ∆ > ∆rc the collapse time increases while the model remains closed.

As ∆→ ∆E=0 the collapse time becomes infinite and the model becomes critical.

All models with ∆ > ∆E=0 are open.

The root diagram shows that for ∆ > ∆rc, the time of validity is determined

by complex not real ∆ for η = 2π. Closed models with ∆rc < ∆ < ∆E=0 have a

time of validity less than the model collapse time. For example, for ∆ = 0.2, the

collapse occurs at a = 0.94 but convergence is limited to a ≤ 0.38. This prediction

is verified in the right panel of figure 3.8.

The convergence of LPT expansions for some closed models is limited to
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Figure 3.8: The exact solution (black, dashed) and LPT expansions of
successively higher order (blue) for two expanding, closed
models with θ = 0.44. The left hand panel has ∆ = 0.01. LPT
converges to the exact solution at all times up to the singularity
at a = 5.5. The right hand panel has ∆ = 0.2. LPT does not
converge beyond a = 0.38.

times well before the future singularity. This general behavior is observed for

θ−c < θ < θ+
c and ∆rc < ∆ < ∆E=0 where both ∆rc and ∆E=0 are functions of θ.

Appendix A.4 provides additional details.

3.6.3 Mirror models, real and complex roots

The parametrization of the perturbation in terms of ∆ > 0 and −π < θ ≤ π and

the complexification of ∆ → ∆ can give rise to poles anywhere in the complex

∆ space. When R∆ is determined by a pole along the real positive axis, a clear

interpretation is possible: the future singularity of the real physical model exerts

a dominant influence on convergence. LPT expansions for closed models with
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∆ < ∆rc are limited by the future collapse of the model and are straightforward

to interpret.

The meaning of real roots for open models is less clear cut. The roots

determining R∆ at large t are negative real and small in magnitude. Negative

∆ lies outside the parameter range for physical perturbations taken to be ∆ > 0.

Nonetheless the mapping (∆, θ) → (−∆, θ ± π) preserves (δ, δv) and the original

equations of motion. The poles of the models with parameters (∆, θ) and (∆, θ±π)

are negatives of each other. Let us call these “mirror models” of each other.

For infinitesimal ∆ if the original model is open then the mirror model is

closed. Figure 3.2 shows that the ∆E=0 line has some curvature (in fact, it is

a parabola) whereas the mirror mapping is an exact inversion through ∆ = 0.

Small ∆ points are mapped between open and closed; large ∆ points may

connect open models to other open models.

If the original model is open with limiting pole which is negative real of

small magnitude then it corresponds to a future singularity of the closed mirror

model. For example, the closed model with parameters (∆ = 0.01, θ = 0.44) in

the left panel of figure 3.8 and the open model with parameters (∆ = 0.01, θ =

0.44−π) shown in the left panel of figure 3.9 are mirrors. The time of the validity

of the open model equals the time to collapse of its closed mirror.

The notion of mirror models explains other features of the root diagrams.

The time of validity of open models was previously discussed using figure 3.6

(θ = 2.82). The blue solid line indicated real roots. Such roots are the future

singularities of closed mirror models lying in the fourth quadrant along θ =

2.82 − π = −0.32. As ∆ increases the sequence of mirror models crosses the δv =

52



−1 line (the horizontal dashed line) to become initially contracting cosmologies

and, in our labeling, the future singularity switches from η = 2π to η = 0. This

explains the switch in root label from blue solid to cyan dashed seen in figure

3.6, which occurs at δv = 1 in the original model.

The symmetry of the mirroring is not limited to cases when ∆ is real. It

applies for complex ∆, too. For example, the models in the right panels of

figures 3.8 and 3.9 are mirrors of each other. Their time of validity is the same

and determined by complex roots which are negatives of each other. These

singularities are non-physical and have no interpretation in terms of the collapse

of any model yet they limit the LPT convergence in the same way.

Figure 3.10 shows the areas of phase space where complex roots determine

the time of validity in light red. The area within the parabola (light blue)

contains closed models. Most of the light blue region has a time of validity

determined by real roots, i.e. the time to the future singularity. The area

with both light blue and red shading encompasses closed models with the

unexpected feature that the time of validity is less than the time to collapse.

The area outside the parabola contains open models. The time of validity

of the unshaded region is determined by real roots. The original observation

of LPT’s non-convergence for an underdensity (Sahni & Shandarin [70]) is an

example that falls in this region. For small amplitude perturbations the time

of validity is simply related by mirror symmetry to the occurrence of future

singularities of closed models. The right hand plot in figure 3.9 is an example of

an open model with time of validity controlled by complex roots (red shading

outside the parabola).
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Figure 3.9: Mirror models of the closed models of figure 3.8. Each
graph shows the exact solution (black, dashed) and the LPT
expansion to successively higher orders (blue) of one mirror
model. The original model and the mirror have the same time
of validity for the LPT expansion.

Finally, some open models (especially those with large ∆) have mirrors that

are open models. Figure 3.11 shows mirror models (∆ = 2, θ = 17π/36) and

(∆ = 2, θ = 17π/36 − π). These are initially expanding and contracting solutions

respectively. The root plot in figure 3.12 predicts that the series is valid until

av = 0.0016. The real root with η = 0 (cyan line) sets the time of validity and

corresponds to the bang time (the future singularity) of the initially contracting

model.

In all cases, the analysis correctly predicts the convergence of the LPT series.
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Figure 3.10: The red shaded region denotes part of phase space where
complex roots play a role. The solid blue line represents the
initial conditions which correspond to the background and
perturbation having the same big bang time. The black solid
parabola separates the closed and open models. Coloured
version online.

3.6.4 Zeldovich and equal bang time models

The large expanse of phase space shaded light red in figure 3.10 suggests

that complex roots should play a ubiquitous role in LPT applications but

the situation is somewhat more subtle. For good physical reasons purely

gravitational cosmological calculations often start with expanding, small

amplitude, growing modes at a finite time after the big bang. The absence of

decaying modes implies that the linearized perturbations decrease in the past

1. A non-linear version of this condition is that the perturbation amplitude

1Our analysis is restricted to the case of initially expanding models, i.e. near ∆ = 0. For
initially contracting closed models, similar physical arguments motivate a consideration of the
behavior near the initial singularity (not the future bang time). For initially contracting open
models the epoch of interest is t → −∞. These models have large ∆ and are not described by the
linear limit discussed in the text.
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Figure 3.11: Two open models which are mirrors of each other. Each plot
shows the exact solution (black, dashed) and the LPT series
expansion to successively higher orders (blue). The left panel
is an initially expanding, open model whose convergence is
limited to scale factors less than av = 0.0016 (arrow). The right
panel shows the initially contracting mirror model whose
bang time at av = 0.0016 is responsible for the limitation.

is exactly zero at t = 0. The same condition can be formulated as “the

background and the perturbation have the same big bang time” or “the ages

of the perturbation and the background are identical.” The condition is

1
H0

∫ y=1

y=0

dy[
(1 + ∆ cos θ)y−1 + E(∆, θ)

]1/2 =
2

3H0
. (3.39)

This is a nonlinear relationship between the two initial parameters ∆ and θ

which is shown by a thick blue line on the phase space diagram in figure 3.10.

We have adopted the name “Zeldovich” initial conditions for the top-hat models

that satisfy the equal bang time relation. There are a variety of definitions for

Zeldovich initial conditions given in the literature. Generally, these agree at

linear order. This one has the virtue that it is simple and easy to interpret. Note

56



av

-3.0 -2.8 -2.6 -2.4 -2.2 -2.0
-2.0

-1.5

-1.0

-0.5

0.0

0.5

Log10HaHtLL

L
og

10
ÈD

È

Figure 3.12: R∆ for θ = 17π/36 and a0 = 10−3. The blue solid and cyan
dashed lines denoted real roots with η = 2π and η = 0
respectively. For ∆ = 2, the time of validity is set by the root
with η = 0, which is the bang time of the mirror model with
θ = 17π/36−π. See figure 3.11 for the evolution of both models.

that the blue curve does not intersect the region of phase space where complex

roots occur except, possibly, near ∆ = 0.

In the limit of small ∆ eq. (3.39) becomes

∆(3 sin θ − cos θ) = 0. (3.40)

The solutions are θ = θZ± where θZ+ = 2.82 and θZ− = π − θZ+ = −0.32. The second

quadrant solution θZ+ corresponds to open models while its mirror in the fourth

quadrant θZ− to closed models. Only when ∆ → 0 can complex roots approach

the loci of Zeldovich initial conditions but they intersect only in the degenerate

limit.

In the next section, we will show that points starting close to the Zeldovich

curve continue to stay near it as they move through phase space. Such models

have real, not complex, roots. This implies that closed systems along the curve

always have a convergent series solution. Hitherto, LPT convergence has been
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studied only for initial conditions close to the Zeldovich curve. This is why

problems have been noted only in the case of voids. The existence of the

complex roots is a new finding. All of the above is based on the spherical top-hat

model which has a uniform density.

As emphasized above, there are good physical motivations for adopting

Zeldovich-type initial conditions. The fact that cosmological initial conditions

must also be inhomogeneous (i.e. Gaussian random fluctuations) is not

captured by the top-hat model. One can imagine two extreme limiting cases

for how the simple picture of top-hat evolution is modified. If each point

in space evolves independently as a spherical perturbation then at any given

time one expects to find a distribution of points along the Zeldovich curve.

As time progresses this distribution moves such that the underdense points

cluster around the attracting point (−1, 0.5) and overdense points move towards

collapse. The distribution of initial density and velocity perturbations yields

a cloud of points in phase space but complex roots never play a role because

nothing displaces individual points from the Zeldovich curve. Each moves

at its own pace but stays near the curve. Alternatively, it is well known that

tidal forces couple the collapse of nearby points. These interactions amplify

the initial inhomogeneities leading to the formation of pancakes and filaments.

As time progresses motions transverse to the Zeldovich curve will grow. If

these deviations are sufficient they may push some points into areas with

complex roots. In a subsequent paper, we will explore these issues for general

inhomogenous initial conditions.
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3.7 LPT re-expansion

To overcome the constraints above, an iterative stepping scheme that respects

the time of validity is developed for LPT. The initial parameters at the first step

determine the solution for some finite step size. The output at the end of the

first step determines the input parameter values for the next step and so on.

3.7.1 The Algorithm

Choose the background (a0, H0, Ω0 = 1, Y0) and the perturbation (b0 = a0, Hp0,

Ωp0, X0) at initial time t0. The perturbed model is fully characterized by Hp0 and

Ωp0 or by δ0 = ρp0/ρ0 − 1 and δv,0 = Hp0/H0 − 1 or by ∆0 and θ0. Extra subscripts

have been added to label steps.

LPT converges for times t < T (∆0, θ0). Use LPT to move forward to time t∗

satisfying t0 < t∗ < T (∆0, θ0). At t∗, the background and perturbed scale factors

and time derivatives are a∗, b∗, ȧ∗, and ḃ∗. The fractional density and velocity

perturbations with respect to the background are

δ∗ = (1 + δ0)
(
a∗
b∗

)3

− 1 (3.41)

δv,∗ =
ḃ∗/b∗
ȧ∗/a∗

− 1. (3.42)

Re-expand the perturbation around the background model as follows. First,

let the time and Lagrangian coordinate for the background (inner edge of the

unperturbed sphere) be continuous: t1 = t∗ and Y1 = Y0. These imply a1 = a∗

and ȧ1 = ȧ∗, i.e. the scale factor and Hubble constant for the background are

continuous.
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At the beginning of the first step we assumed a0 = b0. This is no longer true

at the end of the first step. Define a new Lagrangian coordinate X1 = X0b∗/a∗,

new scale factor b1 = a∗, and new scale factor derivative ḃ1 = ḃ∗a∗/b∗. These

definitions leave the physical edge of the sphere and its velocity unaltered

rphysical,∗ = b∗X0 = b1X1 (3.43)

ṙphysical,∗ = ḃ∗X0 = ḃ1X1. (3.44)

The re-definitions relabel the fluid elements with a new set of Lagrangian

coordinates and re-scale the scale factor. The perturbation parameters are

unchanged δ1 = δ∗ and δv,1 = δv,∗ because physical quantities are unmodified.

Consequently, ∆1 = ∆∗ and θ1 = θ∗.

3.7.2 Flow dynamics in the phase space

To examine how Lagrangian re-expansion works consider how the Lagrangian

parameters ∆ and θ would vary if they were evaluated at successive times over

the course of a specific cosmological history. Let δ(t) and δv(t) be defined via

eq. (3.3) and apply the second-order equations of motion eqs. (3.9) and (3.10) to

derive the coupled first-order system

dδ
dt

= −
2
t
δv(1 + δ) (3.45)

dδv

dt
=

1
3t
{(1 + δv)(1 − 2δv) − (1 + δ)} (3.46)

where all occurrences of δ and δv are functions of time. From δ(t) and δv(t)

one infers the parameters, ∆(t) and θ(t). These have the following simple

interpretation: a Lagrangian treatment starting at time t′ has ∆ = ∆(t′) and

θ = θ(t′) in the LPT series.
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Since the system is autonomous it reduces to a simple flow in phase space.

The flow has three fixed points at (δ, δv) = (0, 0), the unperturbed, background

model, (−1,−1), a vacuum static model, and (−1, 0.5), a vacuum expanding

model. Linearizing around (0, 0) shows it is a saddle fixed point. The tangent

to the E = 0 curve at the origin is the attracting direction and the tangent to

the equal big bang curve is the repelling direction. The fixed point at (−1, 0.5)

is a degenerate attracting node and that at (−1,−1) is an unstable node. The

flow vectors are plotted in the left panel of figure 3.13. The blue shaded region

indicates closed models and red shaded region indicates models where complex

roots limit the time of validity for LPT.

Note that the flow lines smoothly cover the whole phase space. The

interpretation is that the continuous relabeling of Lagrangian coordinates and

re-scaling of the scale factor has the potential to overcome the convergence

limitations discussed thus far. Otherwise one might have seen ill-defined or

incomplete flows or flows that were confined to a given region.

Asymptotic limits of open and closed models

The right panel of figure 3.13 zooms in on the area near the origin. Initial points

that correspond to open models starting near the origin approach the Zeldovich

curve and asymptotically converge to the strong attractor at (δ, δv) = (−1, 0.5).

Closed models collapse and the density δ → ∞. In the asymptotic limit, the

solution to (3.46) is given by δ ∼ δ2
v + K with integration constant K. From figure

3.13, the flow lines of closed models that start in the vicinity of the origin trace a

parabolic path that is parallel and essentially equivalent to the Zeldovich curve.
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Figure 3.13: The left panel shows streamlines of the flow described by eq.
(3.46). The color coding of the plot is same as figure 3.10.
The right panel zooms in on the area near the origin which
is where all models are located at sufficiently early times. At
late times, open models move away from the origin towards
the attracting fixed point at (δ, δv) = (−1, 0.5). The attraction to
the Zeldovich solution is shown for a set of initial conditions
(yellow, cyan, green and black lines) that begin near but not
on the critical trajectory. Closed models move out to infinity
along the fixed big bang time curve. Coloured version online.

The flow shows where re-expansion is needed. Closed model flow lines that

start near the origin never pass through the red shaded region where complex

roots play a role; the time of validity equals the time to collapse and no re-

expansion is needed. However, closed models that originate in the red region

must be re-expanded. The flow suggests that they eventually move into the

blue region. So even though a closed model may initially have an LPT series

with limited convergence, re-expansion makes it possible to move into the part

of phase space where a single step suffices to reach collapse.
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3.7.3 Finite steps and feasibility

This section and the next examine the feasibility of extending a solution from

recombination to today. The results will be applied to fully inhomogeneous

evolution in future paper.

Let the asymptotic time of validity for an open model be expressed in

dimensionless form χ = limt→∞ H(t)T (∆(t), θ(t)). Here, ∆ →
√

5/4 and θ →

tan−1(−1/2) = 2.677 and T (∆, θ) is determined by the future time to collapse of the

closed mirror model. The result is χ = 2.62 (numerical results in Appendix A.4),

the time of validity is proportional to the characteristic age of the background

and individual steps grow larger and larger.

An example shows that the basic effect can be seen even before the

asymptotic regime is achieved. Figure 3.14 sketches the first two steps where

the assumed model parameters at the first step are (∆0, θ0) = (0.01, 2.82). The

scale factor at the time of validity is a = 0.179. A step with half the allowed

increment in time is taken and the system is reinitialized. The re-initialization

implies (∆1, θ1) = (0.91, 2.68) or (δ1, δv,1) = (−0.82, 0.4). Afterwards the new time

of validity is larger in this example.

The feasibility of the re-expansion scheme can be examined by evaluating

the ratio of the time of validity before (T ) and after (T ′) a step

α =
T ′

T
. (3.47)

Figure 3.15 shows α evaluated along the continuous flow as a function of scale

factor for three different starting initial conditions. Since α > 3 at all times,

starting at initial time ti the time after N steps is roughly t ∼ αNti > 3Nti.
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Figure 3.14: Extending the time of validity of LPT. The first step has
∆0 = 10−2 and θ = 2.82 and implies scale factor at the time
of validity av = 0.179. Incrementing by half the allowed
step gives initial conditions for the second step (∆1, θ1) =

(0.91, 2.68). Note that the new time of validity has increased.

Consider, for example, the number of steps needed to extend an open

solution from recombination to today. Let t f (ti) be the final (initial) time of

interest where t f /ti ∼ a f /ai ∼ 104.5. Estimating α = 3 implies N ∼ log3 104.5 ∼ 10

steps are needed. This numerical result for N is an overestimate and one can

do better. It is important to recall that it based on an arbitrarily high order

expansion which achieves an exact solution. If one is limited to calculations of

finite Lagrangian order and imposes a maximum numerical error at the end of

the calculation then more than N steps may be required. At least N steps are

needed for series convergence and more than N steps may be needed for error

control.

One can extend any open model to an arbitrary future time while respecting

the time of validity of the LPT series. The number of steps is governed by a

geometric progression.

One can also extend any closed model to the future singularity while
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Figure 3.15: The ratio of successive times of validity (α) vs. a(t). The
dashed, dot-dashed and dotted lines indicate three initial
starting points (0.5, 0.5), (0, 1), (−0.2, 0.2) respectively. The
ratio converges to about 3.6 and the time of validity increases
geometrically with N.

respecting the time of validity of the LPT series. Only a single step is needed

for a closed model when the root is real (blue shaded region of figure 3.13).

When it is complex (the region shaded both blue and red) the model flows

first toward the node at (0, 0) (∆ decreases) and ultimately reaches the region

of real roots. Multiple steps will generally be necessary to escape the region of

complex roots. An approximate fit (eq. (A.39)) shows that χ ∼ T (∆, θ)H(t) ∝ ∆β

for small ∆ where β < −2.5. Both χ and the time of validity increase as the node

is approached. Time advances at least as quickly as a geometric progression and

this is analogous to the manner in which the open model steps towards its limit

point. However, unlike the open case, once the trajectory crosses into the blue

region (assuming it does not lie exactly on the unstable attracting trajectory) a

single final step is needed. The specific number of steps will depend upon the

starting initial conditions but will be small because of the property of geometric

progression.
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3.7.4 Demonstrative examples

LPT re-expansion can solve the problematic convergence in previously analyzed

open and closed models.

Open models have asymptotic values of ∆ and θ and simple evolution.

The first section below includes numerical results that provide a practical

demonstration of the success of LPT re-expansion in this case. Convergence

as Lagrangian order increases and/or time step size decreases is observed

qualitatively.

Closed models have a somewhat more complex behavior (before and after

turnaround). The second section provides both a qualitative and quantitative

discussion of convergence. The scaling of the leading order error and the time

step control which are derived are of general applicability.

Open model

Figure 3.16 investigates the effect of time step and order on the evolution of

the open model introduced in figure 3.1 (∆ = 0.01, θ = 2.82, a0 = 10−3). The

series convergence breaks down at a = 0.179. The left panel shows an attempt

to take a single step to a = 1 using successively higher LPT series orders. As

expected, higher order terms do not improve the accuracy of the description

because the time of validity is violated. The middle panel employs three steps

to reach a = 1, each respecting the time of validity. Now the LPT series with

higher order improves the accuracy just as one desires. The right panel employs

six steps to reach a = 1, each respecting the time of validity. Again, higher order

improves the description. Note that more frequent re-expansion, i.e. smaller
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Figure 3.16: LPT re-expansion of an open model with ∆0 = 0.01 and
θ0 = 2.82. The top three figures show the scale factor for the
same initial conditions calculated with one step (left), three
steps (middle) and five steps (right). The black dots indicate
the position of the time steps. In the middle and right panels,
the solution was advanced 9/10 and 1/2 the allowed time
of validity, respectively. The bottom figures show the errors
for all LPT approximations to b(t) including the unphysical
negative ones. The order of the LPT expansion are color-
coded according the top left figure. The single step expansion
does not respect the time of validity whereas both the three
and six step examples do. The original expansion does not
converge over the full time range whereas the re-expansions
do. Coloured version online.

steps in time, improve the errors at fixed LPT order.
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Closed model

Figure 3.17 investigates the closed model introduced in figure 3.8 (∆ = 0.2, θ =

0.44, a0 = 10−3). The time of validity is determined by a complex root. The first

panel shows that the series begins to diverge at a = 0.38 well before the collapse

singularity is reached at a = 0.94.

A single time step less than the time of validity is guaranteed to converge as

the order of the Lagrangian expansion increases. LPT re-expansion utilizes a set

of such time steps each of which is likewise guaranteed to converge. However,

since a calculation of infinite order is never achieved in practice, it is worth

characterizing how convergence depends upon two calculational choices one

has at hand, the time step and the order of the Lagrangian expansion.

A single small step beginning at t = t0 and ending at t f has leading order

error for the m-th order Lagrangian approximation 2 ∝ (t f /t0 − 1)m+2∆m+1, where

∆ is the value at the initial time. If the same small interval is covered in N smaller

steps, the error after N steps scales as N−m(t f /t0 − 1)m+2∆m+1 (see Appendix A.5

for details). If the step size increases in a geometric sequence such that δt/t is

a constant for each intermediate step, then t f = t0(1 + δt/t)N and the error after

N steps scales as N(t f /t0 − 1)(δt/t)m+1∆m+1. This leads to the interpretation that

the error per intermediate step scales as (δt/t)m+1∆m+1. Define ε = (δt/t)∆. The

leading order error scales as εm+1 which is numerically small if ε < 1. The sum

of all the missing higher order terms is finite if δt < T , i.e respects the time of

validity.

2Typically, the numerical coefficient is of order unity and varies with m as well as the
particular value of θ. For the purposes of a discussion of the scaling of the error term, we
assume the numerical coefficients to be constant as m and θ vary.
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In a practical application, the initial and final times are not close. A

reasonable time step criterion is to choose ε < 1 fixed throughout the evolution

and to infer δt for a given ∆. Other choices are possible but δt must always be

less than the time of validity. If ε is held fixed throughout the evolution, then

the net error after N steps for the m-th order approximation ∝ εm+1N.

The number of steps required to go from the initial to the final time can be

estimated. As a special case assume that ∆ is constant. The time step criterion

implies that the number of steps to move from the initial time t = t0 to the final

time t f for given ε is N = log(t f /t0)/ log(1 + (ε/∆)). For limited total intervals

(t f − t0 << t0) and small steps (ε/∆ << 1) the exact answer reduces to N ∼ (t f −

t0)∆/ε = (t f − t0)/δt. Here δt = εt∆ does not grow appreciably over the interval so

the estimate for N is a maximum. In this limit, the net error ∝ εm∆. The leading

order error for the m-th order Lagrangian scheme decreases at least as quickly

as εm.

In more general situations the value of ∆ varies. Once the closed model

turns around ∆ increases without bound. For fixed ε the step size δt decreases

monotonically to zero as t → tcoll where tcoll is the time of the future singularity.

At any order it would take infinitely many steps to follow the solution up until

collapse. Consider the problem of tracking the solution up to a large, finite value

of ∆ = ∆ f . This moment corresponds to a fixed time t f <∼ tcoll in the exact solution.

The number of steps N < Nmax ∼ t f /δt f where δt f is the step size for the system

near ∆ f ; δt f ∝ ε/∆ f . The leading order error after N steps at the m-th Lagrangian

order ∝ εm+1N < εm+1Nmax ∼ ε
m∆ f . This method of step control forces the leading

order error at fixed time t f < tcoll to decrease as the Lagrangian order m increases

and/or the control parameter ε decreases.
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The second and third panels in figure 3.17 show the runs with ε = 0.5 and ε =

0.2 respectively. The Lagrangian orders are color-coded; dots show time steps

determined by the above criterion. At each order the solution was terminated

when the numerically determined ∆ > 100 so as to avoid the infinite step regime.

This required 32 steps for the ε = 0.5 run and 77 steps for the ε = 0.2 run. As the

red solid lines illustrates, the first order solution turns around before all other

solutions. This explains why its step size begins to shrink near the midpoint

of the graph. By contrast, all the step sizes for higher order solutions are very

similar up to that point.

The numerical errors may be analyzed from two points of view.

1. A comparison of different coloured lines (different Lagrangian orders) in

a single panel shows that error decreases as m increases. This is true in a

quantitative as well as qualitative sense. For example, in the second panel

at a = 0.64 a plot of the log of the absolute error is approximately linear in

m, as expected.

2. A comparison of the same coloured lines in the middle and right panels

shows that smaller ε implies better accuracy. Again, this is true in a

quantitative as well as qualitative sense. For example, the observed

ratio of errors at a = 0.64 for the 9-th order calculations is 5 × 10−4. To

evolve up to this time with ε = 0.5 (middle panel) takes 10 steps; with

ε = 0.2 (right panel) it takes 22 steps. The expected ratio of errors is

(0.2/0.5)9+1(22/10) ∼ 2×10−4, the same order of magnitude as the observed

ratio.

These comparisons lead to the important conclusion that the leading order
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error for LPT re-expansion varies with Lagrangian order and time step as

theoretically expected.

It is clear that considerable benefit accrues not only from implementing

higher order Lagrangian schemes but also by limiting time step size (which

must always be less than the time of validity). For simple examples like the

top-hat it is feasible to work to very high Lagrangian order but this is not likely

to be true in the context of more complicated, inhomogeneous problems. On

the other hand, marching forward by many small time steps using LPT re-

expansion is generally feasible. In the example above the initial perturbation

is ∆ = 0.2 whereas a practical calculation starting at recombination would start

with ∆ ∼ 10−5. For the same ε the practical application requires more steps for

the phase before turnaround but the net increase is only a modest logarithmic

factor. In fact, most of the steps in the example were taken after turnaround

and the total number varies with the depth of the collapse. This will continue to

be true for the practical calculation. The choice of step size and order for such

applications will be the subject of a forthcoming paper.

3.8 Conclusion

We have investigated the time of validity of Lagrangian perturbation theory for

spherical top-hat cosmologies with general initial conditions. Using techniques

from complex analysis we showed that the time of validity is always limited for

open models. We also discovered a class of closed models whose time of validity

is less than their time to collapse. We introduced the concept of the mirror model

and derived a symmetry principle for the time of validity of mirror models. For
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Figure 3.17: LPT re-expansion of a closed solution with ∆ = 0.2, θ = 0.44.
The top three figure show the scale factor calculated with a
single step (left) and multiple steps with ε = 0.5 (middle)
and ε = 0.2 (right) (refer to text for definition of ε). The
bottom figures show the errors for all LPT approximations to
b(t) including the unphysical negative ones. The order of the
expansion is color-coded as in the top left figure. The single
step expansion does not respect the time of validity whereas
both the other cases do. The black dots indicate the position of
the time steps. The original expansion does not converge over
the full time range whereas the re-expansions do. Coloured
version online.

small initial perturbations the time of validity of LPT series expansion of an

open model corresponds to the collapse time of a closed mirror model.

A qualitative analogy is useful. A single LPT series expansion is similar to

a single step in a finite difference approximation for advancing a hyperbolic

partial differential equation like the wave equation. The time of validity of the

LPT expansion is analogous to the Courant condition which guarantees stability.
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In LPT the constraint is an acceleration-related time-scale; in the wave equation

it is a sound-crossing time-scale.

We developed the method of LPT re-expansion which overcomes the

limitations intrinsic to a single expansion. We demonstrated how to iteratively

re-expand the solution so as to link convergent series expressions that extend

from initial to final times. The time of validity of the expansions set the

minimum number of re-expansion steps (∼ 10) necessary for cosmological

simulations starting at recombination and proceeding to the present epoch.

Finite as opposed to infinite order Lagrangian expansions required extra steps to

achieve given error bounds. We characterized how the leading order numerical

error for a solution generated by LPT re-expansion varied with the choice of

Lagrangian order and of time step size. We provided a recipe for time step

control for LPT re-expansion based on these results.

Our long-term goal and motivation for this study is to develop a numerical

implementation of LPT re-expansion for fully inhomogeneous cosmological

simulation. Top-hats with Zeldovich initial conditions have special properties

with respect to LPT convergence. We found that all underdense models must

be treated by re-expansion while none of the overdense ones need be. However,

during the course of an inhomogeneous simulation the density and irrotational

velocity perturbations (with respect to a homogeneous background cosmology)

at an arbitrary point will generally not fall on the top-hat’s Zeldovich curve.

Hence, the convergence of LPT in inhomogeneous applications must be

guided by the analysis of more general models. Top-hats with arbitrary

initial conditions are the simplest possibility and constitute the main focus in

this paper. The limitations on LPT convergence which we have elucidated
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in this generic case are considerably more complicated than in the top-hat

with Zeldovich initial conditions. Our plan is to use the generic time of

validity criterion to determine the time-stepping for inhomogeneous evolution.

This should allow us to develop high-precision simulations with well-defined

control of errors. The practical impact of a refined treatment of LPT convergence

is not yet clear.

The convergence issues we have dealt with should not be confused with

the breakdown when orbit crossing takes place and the Jacobian of the

transformation from Lagrangian to physical coordinates becomes singular. At

that time the flow becomes multi-streamed and much of the simplicity and

advantage of the Lagrangian approach vanishes. The aim of the current work is

to make sure it is possible to reach the epoch of multi-streamed flow but offers

nothing new on how to proceed beyond it. In fact, it may be necessary to include

an effective pressure term in the equations to account for the velocity dispersion

induced by orbit crossing (Adler & Buchert [1]; Buchert & et al [19]) or to

adopt alternative approximations for the basic dynamics (such as the adhesion

approximation; see Sahni & Coles [69] for a review and references therein) to

make progress.
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CHAPTER 4

MODELING MILDLY NON-LINEAR EVOLUTION USING LPT

RE-EXPANSIONS

The material presented in this chapter will be submitted to MNRAS.

4.1 Abstract

We develop a numerical method of solution of the hierarchy of equations

generated by Lagrangian Perturbation Theory for the problem of structure

formation in cosmology. The general formalism due to Buchert and Ehlers is

coupled to the idea of Lagrangian re-expansion developed in a recent paper by

the authors. The algorithm evolves arbitrary inhomogeneous initial conditions

in a periodic universe up until the formation of the first caustic. The Lagrangian

order n, number of time steps Nt and grid size Ns are the three parameters that

control the error. Convergence with respect to each is tested. Time stepping is

based on the detailed convergence analysis of the same Lagrangian hierarchy as

developed for the top-hat model. The results show that the method faithfully

models non-linear evolution of inhomogeneous initial conditions including

random Gaussian fields. The general technique will facilitate both numerical

and analytic investigations of linear and quasi-linear evolution in cosmology.
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4.2 Introduction

In the recent past, the growth history of large scale structure has emerged

as a very powerful tool to constrain fundamental constituents and properties

of the universe. While linear perturbation theory provides analytic answers

on large scales, the treatment breaks down once non-linearities grow large,

occurring first on small scales for a typical initial perturbation spectrum like

that of cold dark matter. These scales are typically modeled by numerical N-

body simulations (Bertschinger [11], Klypin [41]). Such simulations have their

own shortcomings. Firstly, they are time consuming; volumes as big as the one

used for the Millennium simulation [75] can take months to run. It is common

practice to use fits to the power spectrum instead of running large simulations

(e.g. Smith et al [74], Peacock and Dodds [62], Ma [49], Ma et al [50]). But

these fits are usually done over a restricted range of parameter space. Secondly,

simulations usually cannot be started at very early times z >> 50 since shot

noise can contaminate the initial conditions because the perturbations are small.

In the current era of precision cosmology and dark energy phenomenology,

these drawbacks may prove to be significant. Therefore analytic descriptions in

the non-linear regime are necessary not only to explain the physics underlying

simulations but also to serve as a bridge between linear theory and N-body

codes.

The analytic description of a fluid is mainly carried out in either the Eulerian

or Lagrangian frame. In the Eulerian framework, the density and velocity

are the two main dependent variables and they are expressed as functions of

the grid coordinates x and time t. In a perturbative treatment the dependent

variables are expanded in powers of a small parameter, usually taken to be
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the magnitude of the initial density and/or velocity field. On the other hand,

in the Lagrangian framework, the physical position is the dependent variable

and it is expressed as a function of the initial particle labels X and time

t. Once the position is known, the Eulerian density and velocity are then

reconstructed using exact non-perturbative definitions. Thus, even at first

order in perturbation theory, the Lagrangian framework yields a non-linear

density field. Since the density is estimated in a formal sense via the mass

conservation equation, a numerical implementation of the Lagrangian scheme

does not suffer from N-body like shot noise effects. The scheme efficiently

handles small amplitude, smooth initial conditions which may be specified

at any post-equipartition redshift and as long as the underlying Newtonian

treatment is valid.

It must be mentioned that numerical simulations are essentially Lagrangian

calculations because they too track particle positions. However, they differ

from the analytic framework because the particle nature implies a discrete

representation of a smooth density field. In the analytic framework, the

prescription to compute the density breaks down beyond shell crossing unless

other approximations (such as the adhesion approximation; see Sahni and Coles

[69] for a review and references therein) are invoked or pressure effects are

added (Adler and Buchert [1]; Buchert et al [19]). Present day LPT is most

suited to model structure formation in the quasi-linear regime where the density

contrasts are of the order of 1 to 10.

The use of LPT in cosmology was initiated by Zeldovich [84]. His treatment

assumed that the initial velocity field was proportional to the initial acceleration

field (“Zeldovich approximation”) and focussed only on growing modes.
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Buchert [20] showed that this solution was a special case of a more general first

order solution of LPT. Further theoretical extensions of the Zeldovich ansatz

were carried out by many authors (Moutarde et al. [57], Buchert [21], [17], [18],

Elhers and Buchert [31], Bouchet [15], [14], [13], Catelan [24] and Munshi et

al. [58]). A general relativistic version of the Zeldovich approximation was

developed by [40] and other relativistic descriptions of the fluid in its rest frame

were investigated by [53] and [52, 51]. In more recent times, LPT has been

used for many applications such as modeling the non-linear halo mass functions

(Monaco [55], Scoccimarro and Seth [72]), BAO reconstruction (Eisenstein et al

[32]) and setting initial conditions for numerical simulations (Scoccimarro [71],

Crocce & Scoccimarro [27]).

Despite its widespread use, LPT, like any other perturbation technique has

its limitations. While the breakdown of LPT at shell crossing is expected, it turns

out that LPT even fails to reproduce the evolution of spherical homogenous

voids (Sahni and Shandarin [70]). In a recent paper (Nadkarni-Ghosh and

Chernoff [59], hereafter NC) we investigated this issue of convergence of the

LPT series by analyzing the model spherical top hat system. We demonstrated

that to ensure convergence for voids, it was necessary to re-expand the solution

in overlapping time domains, each domain subject to a time of validity criteria.

To the best of our knowledge this has never been recognized or tested in

cosmological applications of LPT. It forces one to shift from thinking of the

analytic formulation as a single-step method of calculation whose accuracy

is limited by perturbation expansion order to something akin to a numerical,

multi-step method of solution. This new approach resembles a traditional

particle method in that the system is updated on a step-by-step basis. Accuracy

will now be determined by step size and expansion order just as particle
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motions in an N-body code are. LPT retains all the virtues of its analytic

formulation that begins with smooth functions rather than discrete particles but

becomes considerably more complicated in its application.

Convergence for collapsing models is also limited. In some cases the

maximum time is finitely less that the future singularity. Evolution to reach

the singularity from such initial conditions requires multiple steps. One might

wonder why this behavior had not been previously reported in a model as well-

studied as the top-hat. To the best of our knowledge, convergence of LPT has

not previously been addressed in a systematic fashion. In addition, it turns

out that for initial conditions starting near those prescribed by the Zeldovich

ansatz the finite interval mentioned above shrinks to zero, i.e. the convergence

limitations become identical to the moment of caustic formation. For such

examples LPT-based numerical studies of top-hat collapse would see nothing

anomalous. A similar explanation (to be investigated) might apply to general,

realistic problems of interest which are initialized from the growing mode.

The Zeldovich ansatz for the top-hat problem implies a specific relationship

between the density and velocity perturbations. We showed that in an

appropriate density-velocity phase space there is a curve giving an exact, non-

linear generalization of the ansatz. It effectively describes the growing mode

of the system. This curve plays a special role in the dynamics of the system;

initial conditions that start along the the curve continue to stay along it and

those that start near it evolve parallel to it. We found that most systems need

only a few steps to approach the curve closely enough that the convergence

limitation in subsequent evolution becomes identical to the formation of the

caustic. Nevertheless, the convergence rate can be improved by working to
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higher Lagrangian order and/or increasing the frequency of re-expansion. We

characterized how the leading order error for the series solution varies with the

choice of Lagrangian order and step size.

Our results in the previous paper were based on the special condition

of spherical symmetry and uniform density of the spherical top-hat and the

background cosmology was Ω = 1. This paper develops a systematic procedure

to extend LPT to arbitrary initial conditions. We examine how the convergence

of the LPT series for the inhomogeneous system depends upon Lagrangian

order, step size and size of the numerical grid. Such tests validate the analytical

form of the Lagrangian expansion, the re-expansion procedure that occurs

between individual time steps and the method for time-step selection which is

based on the convergence analysis of the spherical top-hat. We restrict the tests

to small grid sizes, expecting the results to scale for larger grids. A need for

such error control in perturbation theory techniques has also been emphasized

in a recent paper by Carlson, White and Padmanabhan [23], although this paper

focussed on Eulerian perturbation theory.

The organization is as follows: §4.3 re-derives the general formalism set

down by Buchert and Elhers [31] for a single step. We extend the treatment

to include general dark energy terms in the background evolution. We outline

the process of taking multiple steps. §4.4 presents the various tests that were

performed to test the convergence of the code with Lagrangian order, step size

and grid size. §4.5 presents the conclusion.
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4.3 Gravitational field equations in the Lagrangian framework

4.3.1 Equations and initial conditions

Consider a cosmological fluid consisting of pressureless dark matter and

dark energy with a constant equation of state w = p/ρ. Although it has

been suggested that quintessence models with w , −1 should have spatial

fluctuations (for example Caldwell et al [22]), these fluctuations are estimated

to be small (Mota et. al [56], Cooray et al [26]). In this work we allow to dark

matter to cluster but assume dark energy to be spatially uniform.

On very large scales the fluid is homogeneous and isotropic and is described

by the scale factor a(t) which obeys the Friedmann equation. The evolution

is completely determined by specifying the initial values of the scale factor

a0, Hubble constant H0 and matter and dark energy densities ρm,0 and ρd.e,0

respectively. The subscript ‘0’ here indicates an arbitrary initial time and should

not be confused with the values for today (z = 0).

On smaller scales the fluid is inhomogeneous and is described by the

position r(t) and the velocity ṙ(t) of the fluid elements/particles with respect

to to some fixed origin. For sub-horizon scales in the absence of pressure,

Newton’s law of gravity provides a good description of the dynamics for purely

matter dominated universes. Even in the presence of dark energy it can be

shown from the equation of geodesic deviation [66] that the acceleration of the

fluid element obeys

∇r · r̈ = −4πG
[
ρm(r, t) + ρd.e(t)(1 + 3w)

]
(4.1)

∇r × r̈ = 0 (4.2)
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where ρm(r, t) and ρd.e(t) are the total matter and dark energy densities

respectively at time t and G is Newton’s gravitational constant. ∇r is the Eulerian

gradient operator and the ‘dot’ denotes derivative with respect to time.

In the Lagrangian framework, the evolution of the fluid is tracked as a

function of initial particle labels X and time t i.e. r = r(X, t). Let these value

of the position and velocity at the initial time t0 be r(t0) and ṙ(t0). Define the

Lagrangian coordinates as

X =
r(t0)
a(t0)

. (4.3)

Let ρm(X, t0) be the total density at the initial time. The perturbation is

characterized by two quantities; the initial fractional overdensity

δ(X, t0) =
ρm(X, t0)
ρm,0

− 1 (4.4)

and the initial peculiar velocity

v(X, t0) = ṙ(t0) − ȧ0X. (4.5)

We require
∫

V
δ(X, t0)d3X = 0 and

∫
V

v(X, t0)d3X = 0. We assume that V is a fair

sample of the universe and that all functions of X are periodic.

Conservation of mass implies that the density at any time t is given as

ρm(X, t) =
ρm(X, t0)J(X, t0)

J(X, t)
(4.6)

where J(X, t) = Det
(
∂ri
∂X j

)
is the Jacobian of the transformation relating the

Eulerian and Lagrangian coordinate systems. This transformation is well

defined until orbit crossing. From the definitions eq. (4.3) and eq. (4.4), it

follows that J(X, t0) = a3
0 and ρm(X, t0) = ρm,0(1 + δ(X, t0)). This gives

ρm(X, t) =
ρm,0(1 + δ(X, t0))a3

0

J(X, t)
. (4.7)
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The density evolution of dark energy for a constant equation of state w is

ρd.e(t) = ρd.e,0

(a0

a

)3(1+w)
, (4.8)

In eqs. (4.1) and (4.2), ∇r is the Eulerian gradient operator. However, in the

Lagrangian formalism r is the dependent variable and X is the independent

variable. Transforming all the derivatives with respect to the Eulerian

coordinates to derivatives with respect to the Lagrangian coordinates (see

Appendix B.1 for details) and substituting eqs. (4.7) and (4.8) into eqs. (4.1)

and (4.2) gives

L̂[r̈, r, r] = −3H2
0Ωm,0a3

0(1 + δ(X, t0)) (4.9)

−
H2

0

2
(1 + 3w)Ωd.e,0

(a0

a

)3(1+w)
L̂[r, r, r]

T̂[r̈, r] = 0 (4.10)

where

Ωm,0 =
8πGρm,0

3H2
0

, (4.11)

Ωd.e,0 =
8πGρd.e,0

3H2
0

, (4.12)

L̂[A,B,C] = εlmqεi jk
∂Ai

∂Xl

∂B j

∂Xm

∂Ck

∂Xq
, (4.13)

T̂q[A,B] = εlmq
∂Ak

∂Xl

∂Bk

∂Xm
. (4.14)

εi jk is the usual Levi-Civita symbol and Einstein’s summation convention is

used. As a convenient notation we have introduced the scalar operator L̂ and

vector operator T̂. A list of their properties are given in Appendix B.2. The

equations are solved using the perturbation scheme outlined in the next section.
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4.3.2 Perturbation scheme

The solution for a particle trajectory r in the inhomogeneous medium is

written as a sum of its homogenous and inhomogeneous displacements. The

inhomogeneous displacement vector is further written as a series expansion

in terms the initial density and velocity fields. In the formalism outlined by

Buchert ([20], [21], [17]) and Elhers and Buchert [31], the two fields are both

assumed to be first order. We adopt the same assumed ordering. Write

r(X, t) = a(t)X + p(X, t) = a(t)X +
∑

n

p(n)(X, t)εn (4.15)

where ε is used as a bookkeeping device to track the order. Substitute this ansatz

into eq. (4.10) and eq. (4.10), and equate the terms of the same order of ε.

At zeroth order eq. (4.10) reduces to

ä
a

= −
H2

0

2

(
Ωm,0a3

0

a3 + (1 + 3w)Ωd.e,0

(a0

a

)3(1+w)
)

(4.16)

and (4.10) is identically zero. This is simply the equation governing the

background scale factor. Given a0, H0, Ωm,0, and Ωd.e,0, the background evolution

is completely determined.

At first order eqs. (4.10) and (4.10) reduce to

DL
t

[
∇x · p(1)

]
= −

3
2

H2
0Ωm,0a3

0δ(X, t0) (4.17)

DT
t

[
∇x × p(1)

]
= 0. (4.18)

where,

DL
t =

(
2aä +

3
2

a2H2
0(1 + 3w)Ωd.e,0

(a0

a

)3(1+w)
+ a2 d2

dt2

)
, (4.19)

DT
t =

(
−ä + a

d2

dt2

)
. (4.20)
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Note that the Lagrangian derivative operator commutes with the time

derivative operator because the Lagrangian coordinate system is independent

of time.
d
dt

=
∂

∂t

∣∣∣∣∣
r
+ v · ∇r =

∂

∂t

∣∣∣∣∣
X
. (4.21)

At higher orders eqs. (4.10) and (4.10) reduce to

DL
t

[
∇x · p(n)

]
= S (n,L), (4.22)

DT
t

[
∇x × p(n)

]
= S(n,T ), (4.23)

where S (n,L) and S(n,T ) are scalar and vector source terms comprised of

combinations of solutions whose order is less than n. The general form is

S (n,L) =
∑
α,β

α+β=n

(
−

1
2

ä −
3
4

aH2
0(1 + 3w)Ωd.e,0

(a0

a

)3(1+w)
)

L̂[p(α),p(β),X]

−
∑
α,β

α+β=n

aL̂[p̈(α),p(β),X] −
∑
α,β,γ

α+β+γ=n

1
2

L̂[p̈(α),p(β),p(γ)]

−
∑
α,β,γ

α+β+γ=n

1
4

H2
0(1 + 3w)Ωd.e,0

(a0

a

)3(1+w)
L̂[p(α),p(β),p(γ)] (4.24)

S(n,T ) = −
∑
α,β

α+β=n

T̂[p̈(α),p(β)]. (4.25)

α, β, γ can take any values from 1 to n − 1.

The displacement at each order p(n) is split into its longitudinal (curl-free)

and transverse (divergence-less) parts. We write

p(n) = p(n,L) + p(n,T ) (4.26)

where ∇x × p(n,L) = 0 and ∇x · p(n,T ) = 0. The periodicity of the system guarantees

that this decomposition is unique (see Appendix C of Buchert and Elhers [31]).

Using this decomposition it is obvious that the longitudinal and transverse
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parts of the solution at the n-th order obey a different set of equations and can

be solved independently. However, note that each of the source terms S (n,L)

and S(n,T ) include both the longitudinal and transverse parts of the lower order

solutions. So the entire solution at all lower orders is needed to compute either

the longitudinal or transverse part of a given order.

Using the definition of the Lagrangian labels and the initial peculiar velocity

(eq. (4.3) and eq. (4.5)), the initial conditions are

p(1,L/T )(X, t0) = 0, (4.27)

ṗ(1,L/T )(X, t0) = vL/T (X, t0) (4.28)

and for n > 1 are

p(n,L/T )(X, t0) = 0 (4.29)

ṗ(n,L/T )(X, t0) = 0 (4.30)

wherevL/T (X, t0) are the curl-free and divergence-less parts of the initial velocity

respectively.

The eqns. (4.17), (4.18), (4.22) and (4.23) can be further simplified by noting

that the spatial and temporal operators commute. The temporal and spatial

parts decouple and at each order the problem reduces to solving a set of Poisson

equations subject to periodic boundary conditions for the spatial part and a

set of second order ordinary differential equations with two initial conditions

for the temporal part. The details are outlined in Appendix B.3. The Poisson

equations are solved using Fourier transforms on a N × N × N grid with equally

spaced grid points which represent the Lagrangian coordinates. The temporal

solutions are solved numerically using a standard differential equation solver.
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4.3.3 LPT re-expansions

The LPT scheme does not converge at all times when applied to expanding

spherical top-hat voids [70]. In the previous paper (NC) the authors showed

that problem is not restricted to voids but can affect closed overdense models

as well. This work showed how to overcome the problem by re-expanding

the series in overlapping time domains each domain subject to the time of

validity criteria. The analysis was based on spherically symmetric perturbations

evolving in a Ω = 1 background cosmology. We assume that the time step for the

inhomogeneous evolution can be estimated by treating each point in the box as

if it were an isolated top-hat. That is, we use the local density perturbation and

the divergence of the local velocity perturbation to calculate the time step that

would be allowed for a top hat with those parameters. We adopt the minimum

of all the individual time steps.

The fractional overdensity δ and the fractional Hubble parameter δv are the

two important parameters that govern the time of validity of the series for the

spherical perturbation. For generic inhomogeneous initial conditions field the

natural generalization of these definitions is

δ ≡ δ(r, t0) = δ(X, t0) (4.31)

δv ≡
1

3H0
∇r · ṙ − 1 =

1
3ȧ0
∇X · ṗ(X, t0). (4.32)

The above definitions reduce to the fractional overdensity and peculiar velocity

scaled by the Hubble parameter used to estimate the time of validity T (δ, δv) in

NC. We take the minimum of T (δ, δv) over the Lagrangian grid. Note that the

spherical top-hat system has no transverse component and its effect on the time

of validity is unknown. As a working hypothesis, we assume that a presence of

a transverse component poses no extra limitations on the time of validity.
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In existing literature it is common to relate δ and the divergence of the

peculiar velocity scaled by the Hubble parameter (∇r · v). In our notation,

δv = ∇r · v/3. A positive δ at a point implies a overdense region and a positive

δv implies an expanding region. The time of validity is estimated by evaluating

T (δ, δv) for each point on the grid assuming it evolves as an independent sphere

and taking the minimum value over the grid. If the minimum is set by an

expanding region then the LPT re-expansion scheme can extend the time of

validity. However, if the minimum is set by a collapsing region then the time

of validity corresponds to caustic formation. The re-expansion scheme does not

include any physics of multi-streaming and to extend beyond this regime other

techniques to model this regime must be introduced (for example Adler and

Buchert [1]).

Let X0 be vector labeling particles at time t0. Use the single step series

solution to move forward to time t1 less than the time of validity. The scale

factor of the background at the new time t1 is denoted as a1 and ȧ1. At t1, the

particles are relabeled with coordinates X1. The physical position and velocity

of the particles is not altered by the labeling. This sets the relationship between

the coordinate labels X0 and X1 and sets the initial velocity field for the next

step:

r(t1) = a1X1 = a1X0 + p(X0, t1), (4.33)

ṙ(t1) = ȧ1X1 + ṗ(X1, t1). (4.34)

Substituting for X1 from eq. (4.33),

ṗ(X1, t1) = ṗ(X0, t1) −
ȧ1

a1
p(X0, t1). (4.35)

In the Lagrangian scheme, the density and velocity are explicit functions of the

coordinate label X and implicit functions of the Eulerian variable r. Therefore at
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the intermediate time t1, the physical density associated with a fluid element is

independent of the label of the element. This gives

ρm,0(1 + δ(X0, t0))a3
0

J(X0, t1)
= ρm,1(1 + δ(X1, t1)). (4.36)

where ρm,1 is the background density at time t1 which can be written as ρm,1 =

ρm,0a3
0/a

3
1. This gives the fractional density at time t1

δ(X1, t1) =
(1 + δ(X0, t0))a3

1

J(X0, t1)
− 1. (4.37)

It is important to note that the initial conditions are specified on a equispaced

three dimensional grid in the space corresponding to the Lagrangian coordinate

at that initial time. After the first step, the initial conditions are known on a non-

uniform grid in X1 space. Interpolation must be used to obtain the initial values

on a uniform grid in the X1 space (see Appendix B.4 for details). In the sections

that follow we will refer to the X0 grid as the initial Lagrangian grid and the

X1 grid as the final comoving Eulerian grid. Equations (4.35) and (4.37) set the

initial conditions for the next time step beginning at t1. The longitudinal and

transverse parts of p(X, t1) are computed as

∇X1 · ṗ
L(X1, t1) = ∇X1 · ṗ(X1, t1), (4.38)

ṗT (X1, t1) = ṗ(X1, t1) − ṗL(X1, t1). (4.39)

The physical position at the end of the second step is

r(X1, t2) = a2X1 + p(X1, t2) (4.40)

and at the end of N steps is

rphysical = r(XN−1, tN) = aNXN−1 + p(XN−1, tN). (4.41)
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4.3.4 ‘Zeldovich’ initial conditions

At the initial time t0 the system is completely specified by the initial density

field δ(X, t0) and the transverse and longitudinal vector fields vL,T (X, t0).

Cosmological numerical simulations are usually started at early times with no

vortical modes in the velocity field, so vT (X, t0) = 0 and the velocity field is

parallel to the acceleration field Fδ which is determined by the initial density

field via Poisson’s equation ∇ · Fδ = δ(X, t0). It is usually assumed that only

the growing modes are present at the initial time. In NC we showed that this

condition established a non-linear relationship between the density and velocity

tracing out a curve in the density-velocity phase space. In this paper we impose

this condition at linear order, which sets the constant of proportionality between

the initial velocity and acceleration fields (see Appendix B.9),

vL(X, t0) = −ȧ(t0)Fδ(X, t0). (4.42)

This method of initialization is the usual practice is most other applications of

LPT in the literature.

At the initial time the Lagrangian coordinate is related to the Eulerian

coordinate by simply a scale factor and requiring irrotationality in the Eulerian

space and Lagrangian space are equivalent. In the Eulerian coordinates,

the Kelvin circulation theorem guarantees that under the influence for

purely conservative forces, a flow that starts out irrotational continues to be

irrotational. However, in the Lagrangian coordinate system, this is not true.

Even if the initial conditions are irrotational, transverse components can be

generated at third order (Buchert [17]) after a single step. The re-initialization

at an intermediate step relates the quantities in the initial Lagrangian grid to

the current comoving Eulerian grid. In principle, this procedure will guarantee
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that irrotationality is preserved, but because of a finite numerical grid this

procedure may not be exact and this component should not be neglected. It is

necessary to allow for a transverse initial mode to keep track of this component

for intermediate steps.

4.4 Numerical tests of the code

This section presents tests performed to check the convergence properties

of the numerical scheme outlined in §4.3. The Lagrangian order (n), the

number of time steps (Nt), and the size of the grid used for the numerical

FFTs (Ns) are the three parameters that control the error of the re-expansion

scheme and in general convergence to the exact answer requires that all three

control parameters are increased simultaneously. We did not attempt to test

the convergence in a rigorous manner by simultaneously refining all three

parameters according to a given prescription. Instead we assumed that it

was sufficient to study various limits in which the dominant error scaling was

thought to be due to the variation of a single parameter. To operate correctly

the code must necessarily ”pass” such tests (i.e. converge at the expected rate)

for each individual parameter. But success for all parameters considered one

at a time does not guarantee that any particular prescription for simultaneous

refinement of all three parameters will actually converge to the correct answer.

We regard our strategy as a reasonable but not rigorous approach to validating

the method.

Generally, the exact analytic answer is unknown and convergence is

established using the Cauchy convergence criterion i.e difference between
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successive approximations should decrease. Root mean square errors are

usually evaluated in the various dependent quantities such as comoving

displacement, comoving peculiar velocity and fractional overdensity. The

general Cauchy error in a function f is defined as

E(α) = 〈| f (α+β)(X, t) − f (α)(X, t)|〉 (4.43)

where α is n,Nt or Ns for Lagrangian order, number of time steps and spatial

resolution respectively, f is p/a(t), ṗ/a(t) or δ for comoving displacement,

comoving peculiar velocity and comoving density respectively and t refers to

the time at which the error is evaluated. f (α+β) is a better approximation than

f (α). Convergence tests with n,Nt have β = 1 (§4.4.3, §4.4.4) and with respect

to Ns, β = 8 (§4.4.2). X refers to either the initial Lagrangian grid or the final

comoving Eulerian grid. The average 〈〉 denotes the root mean square error

over the grid used. In the plots presented, E is subscripted by p, v or δ referring

to comoving position, comoving peculiar velocity and density respectively.

Although it is standard practice to monitor Cauchy differences to assess

numerical convergence, the method does not guarantee that the converged

solution is the desired solution. For example, it is possible to obtain convergence

in the Cauchy sense, but to the wrong answer if there is an error in the

equations. To minimize this possibility we begin by testing the numerical

code on a problem with a known exact analytic answer, the spherical top-

hat. There are two drawbacks however. First, the spatial discontinuities in

the top-hat solution ruin the expected rate of convergence (with grid size) for

smooth solutions. Second, the top-hat dynamics exercises only the subset of the

equations describing longitudinal flows. Nevertheless, it serves as an excellent

test in view of the geometric difference between the solution (spherical) and

calculation domain (rectangular). Subsequent Cauchy convergence tests for
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each of the three parameters are carried out on generic smooth problems. All

tests are done in a Ω = 1 background cosmology and the time intervals of

evolution always respect the time of validity criterion.

4.4.1 Evolution of a spherical top-hat overdensity

The physical configuration is an overdense sphere surrounded by a vacuum

compensating region. The initial velocity perturbation is set to zero. For this

special case, the solutions for the displacement and density can be computed

analytically for every order. Convergence can be analyzed by comparing the

numerical n-th order solution to the analytic n-th order solution. This makes

the system a good test case to debug various spatial routines of the numerical

code. The main numerical complication is that the exact top-hat profile is

discontinuous along the transition boundaries between the overdense sphere

and the vacuum compensating region. Consequently, its Fourier transform

is not bandwidth limited and the Gibbs’ phenomenon masks any differences

between the expected and observed behavior. To suppress this numerical

artifact, the discontinuous profile is smoothed by a gaussian in a manner

described below. The resulting distribution is evolved using third order LPT

from the initial time to the final time, ensuring that the latter is within the range

of validity of the series. Details of the functional form of the initial profile and

the smoothing procedure can be found in the Appendix B.10. At the final time

t f , the numerical values of the density ρn with respect to the initial Lagrangian

grid are compared to the analytical values ρa. The relative r.m.s. error between

the expected and true density is defined as

∆r.m.s. =
1

ρmax,a
〈|ρn(X, t f ) − ρa(X, t f )|〉 (4.44)
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The average is over the initial Lagrangian grid and ρmax,a represents the height

of the top-hat density peak. The width of the gaussian, σ, was chosen to scale

as 4/Ns. The numerical and analytic initial density profiles differ due to finite

grid size Ns and finite σ. By design the numerical representation of the initial

profile approaches the exact initial profile in the limit Ns → ∞; the r.m.s. error

∝ 1/
√

Ns. We study the convergence of the final profile to the exact analytic final

profile. Roughly speaking, for the optimum convergence rate the r.m.s. errors

are anticipated to scale as 1/
√

Ns. Figure 4.1 shows the log of the error as a

function of the grid size Ns for four different final times. The points represent

the numerical values and the solid lines are the best fit curves. Appendix B.10

shows that the convergence rate should scale as 1/
√

Ns and the numerical fits

to the data shown in table (4.1) agree with the expected behavior. It must be

emphasized that this is a particularly bad convergence rate. However, it arises

from the errors made in the representation of the discontinuous function on a

finite grid and it does not reflect the convergence rate of the Lagrangian series

for smooth initial conditions. The purpose of this test was to show that the

LPT scheme approached the known analytic solution; later we assess the rate of

convergence for smooth initial conditions.

4.4.2 Convergence with grid size Ns

In this test smooth periodic initial conditions are evolved for a fixed time

interval at a fixed Lagrangian order and compared as grid size Ns increases. Our

implementation of the LPT scheme relies on FFT methods to solve all spatial
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Figure 4.1: Testing the code with spherical top-hat evolution. Log of the
relative r.m.s. errors between the third order numerical and
the third order analytic solution vs. grid size Ns. The dots
are the data and lines provide empirical fits at four different
times (bottom to top indicates increasing final times). times).
See Table 4.1 for the numerical fits. The key point is that the
relative r.m.s. error scales as 1/

√
Ns agreeing with the expected

behavior for discontinuous functions.

equations in a periodic universe. We check that the convergence with with

grid parameter Ns (for fixed final time and fixed Lagrangian order) matches that

anticipated for the spectral techniques that are employed. Such techniques are

expected to display exponential convergence (Boyd [61]). The density field is

generated by smoothing a compensated discontinuous top-hat function with a

gaussian of a fixed width. To ensure periodicity of the initial data, contribution

of the 26 nearest neighbors cells is added. The contribution of cells beyond

the nearest neighbors was zero to machine precision. A smooth velocity field

is created by taking each component of the field to be proportional to the
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Table 4.1: Numerical fits indicating scaling of the relative r.m.s. error
between the exact and the numerical densities on the grid
calculated with single step third order LPT. The time at which
the error is evaluated is denoted as a fraction of the collapse time
tc.

t/tc ∆r.m.s

0.47 0.32N−0.51
s

0.61 0.35N−0.52
s

0.75 0.43N−0.53
s

0.89 0.51N−0.50
s

density field with an arbitrary proportionality constant. The resulting velocity

profile has both longitudinal and transverse velocities. The initial values of the

acceleration and velocity fields are given in table 4.5. Five runs ranging from

Ns = 24 to Ns = 56 were performed the on same initial data for first, second

and third Lagrangian order and the comoving displacement, comoving peculiar

velocity and density were evaluated as functions of the initial Lagrangian grid.

Figure 4.2 shows the Cauchy errors as defined in eq. (4.43) for evolution

using the second order scheme. The errors for the first and third order

schemes show a similar behavior. The circles, squares and diamonds denote

the numerical values and dotted, dashed and dot-dashed lines are fits for the

errors in comoving displacement, comoving velocity and density respectively.

The log of the error vs. the grid size is a straight line well-fit by an exponential

form. The results for this test demonstrate that spectral accuracy of the spatial

solution is indeed achieved. The fits are given in table 4.2.
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Figure 4.2: Convergence with the grid size. Errors Ep(Ns), Ev(Ns), Eδ(Ns) are
denoted by the dots, squares and diamonds respectively. The
fits (table 4.2) show that the errors decrease exponentially with
the grid size as expected.

Table 4.2: Scaling of the r.m.s. error for increasing the size of the grid.

Ep(Ns) 10−3.30.74Ns

Ev(Ns) 10−1.850.74Ns

Eδ(Ns) 101.650.70Ns

4.4.3 Convergence with Lagrangian order n

In this test, a single realization of the density field arising from Gaussian initial

conditions is specified on the grid (see Appendix B.11 for details regarding
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the set up). The initial velocity vector field is taken to be irrotational and

its longitudinal component is set by requiring “Zeldovich initial conditions”

discussed in 4.3.4. The choice of irrotationality means that there are only two

terms at first order. This simplifies the LPT hierarchy and allows for calculations

to be performed up to fourth order in the Lagrangian expansion parameter for

the small grid size of Ns = 16. The simplification does not imply that there are

no transverse terms at higher order; it only means that higher order terms that

depend on the first order transverse piece are zero. Transverse terms at third

order still arise from combinations of first and second order longitudinal terms.

The tests in the previous section demonstrated that the spatial errors

decreased exponentially with grid size for fixed Lagrangian order and fixed

step. In this section we aim to isolate and test the impact of Lagrangian order.

We will fix the step size and choose initial conditions for which we anticipate

grid-related errors at fixed Ns to be so small that they should not interfere with

the Cauchy differences for varying Lagrangian order. We proceed as follows.

The power in the initial data is truncated at half the Nyquist frequency. Since

gravitational dynamics is intrinsically non-linear we anticipate that the power

in the initially zeroed modes will grow. Because Ns is fixed, ultimately, any

power that reaches or exceeds the Nyquist frequency will manifest as error. We

limit the interval of evolution in time and monitor the power that builds up in

initially zeroed modes to make sure that the spatial errors remain negligible.

In the figures to follow, the power in the Nyquist mode, which provides

a measure of the finite grid effects is plotted along with the Cauchy errors.

Given a numerical representation of any function f , we define the power in
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the Nyquist mode as

PNyq. =

√√√√√ 1
N3

s

∑
kx,ky,kz

kx ||ky ||kz=kNyq.

| f̃ n+1(kx, ky, kz) − f̃ n(kx, ky, kz)|2 ∼

√√√√√ 1
N3

s

∑
kx,ky,kz

kx ||ky ||kz=kNyq.

| f̃ (kx, ky, kz)|2

(4.45)

The last approximation can be made because for all Lagrangian orders, the

Nyquist components are of the same order of magnitude and their differences

are approximately equal to the individual values. Note that this definition

allows one to compare the Nyquist errors to the Cauchy errors. The latter are

are r.m.s. differences of f between successive Lagrangian orders and Parseval’s

theorem (Press et al [67]) equates the r.m.s. of these differences in real space to

differences in Fourier space. The definition above picks out only the Nyquist

contribution to the r.m.s. of the differences in Fourier space. At the end of

a single step and before reinitializing, the displacement and velocity always

have zero Nyquist power because they are solutions to Poisson’s equations (see

appendix for algorithm). So, the power in the next-to-Nyquist mode is taken to

be the measure of error.

The initial conditions are specified at t = t0 and the system is evolved

forward for a small time interval ∆t using a single step. The details of the initial

conditions can be found in table 4.5. The final displacement and velocity are

evaluated at five different final times, each time less than the time of validity

of the series. The n-th term in the LPT series is of the form εn, where ε is the

magnitude of the initial perturbation. Therefore, the log of the Cauchy error

on the initial Lagrangian grid is expected to scale linearly with n. It is also

necessary to check that the interpolation step relating the quantities on the initial

Lagrangain grid to the final comoving Eulerian grid also preserves the behavior

of the error terms. In this test errors were evaluated with respect to both grids.
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Figure 4.3 shows the log of the Cauchy error vs. Lagrangian order, on

the initial Lagrangian grid. The first, second and third panels display the

errors in the comoving displacement, comoving peculiar velocity and fractional

overdensity respectively. The points are the log errors and the lines are

empirical fits. The five solid lines are the errors at five different snapshots. The

five dashed lines, color coded like the solid lines, indicate the amount of power

in the next-to-Nyquist frequency for the first and second panel and the power

in the Nyquist frequency for the third panel. The interpretation of the figure

is clear: the size of the spatial error inferred from the high frequency power

is always small compared to the Cauchy difference with respect to Lagrangian

order. This shows that the effort to isolate and test the effect of Lagrangian order

has been successful. Note that the log errors decrease linearly with Lagrangian

order, agreeing with the expected behavior.

Figure 4.4 compares the errors calculated on the Lagrangian grid

(established at the initial time) and the comoving Eulerian grid (at the final

time). The left and right panels show the errors in the total velocity and density

as a function of Lagrangian order. The points and the solid lines are the data

and fit for the errors on the Lagrangian grid while the dashed lines are errors

calculated on the Eulerian grid. We infer that the reinitialization calculation that

connects the initial Lagrangian grid to the final comoving Eulerian grid does not

introduce any order dependent errors.
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Figure 4.3: Cauchy errors Ep(n), Ev(n) and Eδ(n) evaluated over the initial
Lagrangian grid. The points are the data and the solid lines are
the fits given in table 4.3. A single step is used to propagate the
series up to a given time. Lines from bottom to top indicate
increasing final times. The dashed lines show the power in
next-to-Nyquist mode (first and second panel) and Nyquist
mode (third panel) indicating that the results are not limited
by errors due to lack of representation of power beyond the
Nyquist frequency.
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Figure 4.4: Comparing errors with respect to the initial Lagrangian grid
and the final comoving Eulerian grid. The left and right
panels show the comoving peculiar velocity and density terms
respectively. The solid lines and dashed lines indicate the
errors with respect to the initial Lagrangian final Eulerian
grid respectively. At all times the interpolation procedure
preserves the expected convergence rate. Dashed lines indicate
the power in the Nyquist frequency and have the same color
coding as figure 4.3. The dotted line shows the interpolation
error that relates the Lagrangian grid to the final Eulerian grid.
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Table 4.3: Convergence of the error with Lagrangian order n. Fits to the
lines shown in figure 4.3 for the scaling of the r.m.s. error for
displacement, peculiar velocity and fractional overdensity

Time

∆t/t0 = 0.1 ∆t//t0 = 0.2 ∆t/t0 = 0.33 ∆t/t0 = 0.5 ∆t/t0 = 1

log10 Ep(n) −2.4n − 2.6 −2.0n − 2.0 −1.8n − 1.7 −1.7n − 1.4 −1.4n − 0.9

log10 Ev(n) −2.2n − 1.1 −1.9n − 0.8 −1.7n − 0.7 −1.6n − 0.5 −1.3n − 0.4

log10 Eδ(n) −2.3n − 3.5 −2.0n − 2.9 −1.8n − 2.5 −1.6n − 2.2 −1.3n − 1.7
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Figure 4.5: Convergence with respect to frequency of re-expansion. Errors
Eδ(Nt), EvL(Nt), EvT (Nt) plotted as functions of number of steps
Nt. The points indicate data and lines indicate fits. Dots,
squares and diamonds indicate first, second and third order
respectively. The errors decrease as more steps are taken;
the higher the order the smaller the error. The spacing
with Lagrangian order for the transverse velocity term does
not agree with the spacing for the density and longitudinal
velocity. This behavior may be because of the finitely many
Lagrangian orders explored. This issue is explored further in
figure 4.6. Dashed line indicates the Nyquist errors and dotted
line indicates the error in the interpolation step that relates
the Lagrangian grid to the Eulerian grid. These errors do not
interfere with the errors for the convergence test.
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4.4.4 Convergence with number of steps Nt

In this test, the fixed initial data is evolved from a fixed initial time t0 to a fixed

final time t f using increasing number of time steps Nt. For each run the grid

size was taken to be Ns = 16 and final densities and velocities were computed

using first, second and third Lagrangian order. The initial density and velocity

fields are generated from random Gaussian fields with their power truncated at

half the Nyquist frequency. The velocity field was taken to have both rotational

and irrotational components of nearly equal magnitudes. This was one tenth of

the magnitude of the acceleration field at the initial time. This run presents a

qualitatively new case because it also enables us to study the n dependence of

the convergence in the presence of transverse velocities.

The initial time t0 = 2/3 and the final time t f = 6. The r.m.s strengths at

the initial time are given in table 4.5. At the final time, the density field grew

by a factor of 2.5 and the longitudinal velocity grew by a factor of 300. The

transverse field decayed by a factor of 4. Seven runs with Nt ranging from 2 to 8

were performed. The Cauchy errors for the comoving displacement, comoving

peculiar velocity and density were evaluated on the final comoving Eulerian

grid.

Figure 4.5 shows these errors with the first, second and third panel

showing the fractional overdensity, the comoving longitudinal and comoving

transverse velocity fields respectively. In each panel the dots, squares and

diamonds represent calculations with first, second and third Lagrangian order

respectively. The dotted, dashed and dot-dashed lines are fits to the data (table

4.4). The dotted line indicates the accuracy to which the interpolation to the

Eulerian grid was performed and the dashed line indicates the power in the
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Nyquist mode. It is clear that they do not interfere with the Cauchy errors. As

expected, the errors converge as the frequency of re-expansion is increased. This

is qualitatively in agreement with the results for the spherical case examined in

NC.

It is clear from the figure that the convergence in the transverse velocity

term is quite different from the convergence in the longitudinal velocity

and density terms. In particular, no significant improvement is seen with

Lagrangian order. This may be because of the limited range of Lagrangian

orders explored. A justification is given below. At any time, let the strengths

of the acceleration, longitudinal and transverse velocity fields be denoted by

εδ, εvL and εvT respectively. Although, formally these are assumed to have the

same magnitude in the Lagrangian expansion, they can have different values.

For example, in the Zeldovich approximation, εδ = εvL , but εvT = 0. The second

order fields depend on product of first order fields. The longitudinal fields at

second order can have six possible strengths - three terms that arise due to self

interactions ε2
δ , ε

2
vL
, ε2

vT
and and three cross terms εδεvL , εδεvT , εvLεvT . The transverse

terms however, have no self interaction terms and have only the three cross term

strengths. Furthermore, if the first order acceleration and longitudinal velocity

are parallel, then only the εδεvT , εvLεvT terms remain.

Suppose the leading strength at first order is εδ, then the leading strength at

second order for the longitudinal piece is ε2
δ , and at third order is ε3

δ etc. and the

magnitudes of the longitudinal pieces scale systematically with the Lagrangian

order n. If εδ, εvL and εvT have the same strengths at the beginning of the

evolution and maintain their relative magnitudes throughout the evolution then

the leading order errors for the transverse terms can also be expected to have the
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same scaling behavior as the transverse term. However, it is well known that the

in a conservative force field such as gravity transverse peculiar velocity decays

as 1/a, where as the magnitude of the density and velocity increase. Therefore,

the magnitude of the second order transverse velocity εδεvL can in some cases

be higher than the magnitude of the first order transverse velocity and the

errors for the transverse velocity will not scale as εn
δ for the first few orders.

For this particular example, the values were εδ = 7.2 × 10−2, εvL = 3.4 × 10−4 and

εvT = 4.4× 10−4. Therefore, the strength of the transverse second order term after

one step is 1/10 that of the longitudinal term at second order. With multiple

steps, this problem becomes more extreme since the values of εδ and εvL grow

at each intermediate time while the strength of vT decays. This explains the

bunching of the lines for the transverse velocity errors in figure 4.5. However,

in the limit that the Lagrangian order tends to infinity, one expects to observe

the expected asymptotic behavior. Due to limited memory, it is difficult to test

this case with higher order Lagrangian schemes. Instead, we simply check that

the kinematic behavior of the transverse velocity is as expected.

As a test of the kinematics, we examine the behavior of the transverse

peculiar velocity. In an expanding cosmology with no gravity, the peculiar

velocity always decays as 1/a(t). In the presence of gravity, the longitudinal

peculiar velocity can grow but the transverse part continues to decay. This

behavior was verified. Figure 4.6 shows the decay of the transverse velocity.

The first panel plots of the log of the r.m.s. value of the transverse velocity vs.

the scale factor evaluated at intermediate time steps for the Nt = 8 run. The root

mean square velocity at the end of each intermediate time step is shown by the

dots. A numerical fit to the dots gives a slope of −0.99 which is very close to the

expected slope of −1. This behavior was the same for all Lagrangian orders. The
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second panel shows the decay rateD = d log vT/d log a compared to the expected

value of −1. The difference D − (−1) decreases with the number of steps Nt.

Most cosmological codes, start with Zeldovich initial conditions which imply a

zero transverse peculiar velocity. Although for such initial conditions, non-zero

transverse terms in Lagrangian space are generated at third order (Buchert [17]),

the process of interpolation which relates the quantities back onto the Eulerian

grid, will ensure that the irrotationality in Eulerian space is preserved.

For the homogenous spherical case, it was observed that the rate of

convergence was higher for higher orders. Here, we observe from the density

and longitudinal velocity that the rates of convergence for a second order

scheme are slightly better than the first order scheme, however, the rates for

the second and third order scheme seem to be comparable. Our working

assumption is that this weak dependence on order might arise due to the

effect of inhomogeneities. The intuition based on the spherical system does

not include the effect of interactions between modes. This effect of interactions

is worst when the interactions are so strong that the Nyquist errors interfere

with the convergence due to time steps. When this limit is reached, one does

not expect to see any convergence with Lagrangian order or time steps unless

the grid size in increased. But even before the limit is reached, the effect of

interactions, may weaken the order dependence of the scheme. Furthermore,

the spherical case has no transverse velocity terms, and the effect of such terms

on the convergence of the system cannot be predicted analytically.

The results in this section are subject to further investigation. Although, we

expect results similar to the top-hat, we observe two main differences. First, the

scaling is not as expected for a top-hat. Higher order errors do not converge
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Table 4.4: Scaling of the r.m.s. error between the calculations with Nt and
Nt + 1 steps for different Lagrangian orders

Lagrangian Order

n = 1 n = 2 n = 3

Eδ(Nt) 10−4.87N−1.3
t 10−6.84N−2.2

t 10−8.8N−1.9
t

EvL(Nt) 10−4.38N−1.44
t 10−6.06N−2.42

t 10−8.07N−2.77
t

EvT (Nt) 10−6.6N−1.96
t 10−6.7N−2.07

t 10−6.8N−1.98
t

faster with Nt. Secondly, spacing of the errors for the transverse velocities is

not the same as that for the longitudinal. There are two possibilities that might

explain this scenario:

1. The test was not done in the asymptotic limit of a small time step, which

was the limit for the error predicted based on the top-hat. A smaller time

step for the case presented here gave errors that were indistinguishable

from numerical precision. To ensure that the errors are not contaminated

by machine precision, one has to test a case which starts with a higher

initial amplitude and preferably equal magnitudes of density, longitudinal

and transverse velocity. However, for this case, the error in the Nyquist

component grows rather rapidly and it is difficult to complete the test on

the 163 grid. Thus one has to resort to higher grid sizes.

2. The effect of inhomogeneities is responsible for the change in behavior

between the spherical top-hat and generic initial conditions.
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Figure 4.6: Decay of the transverse velocity vT ∼ 1/a(t). The first panel

shows the run with Nt = 8. The points represent the numerical
data and line represents the fit. The observed behavior was
very close to the expected behavior. The second panel shows
the error in the rate of decay vs. time steps Nt. The expected
value of D = d log vT/d log a is -1. As expected the decay rate
decreases with the number of time steps Nt.

4.5 Conclusion

The numerical code for generic initial conditions with third order LPT was

implemented and tested. Convergence was demonstrated with respect to the

three control parameters Lagrangian order n, number of steps Nt and size of

the grid Ns. The scaling of the error with n and Ns was exponential and with

Nt was algebraic. In general, convergence to the exact answer can only be

obtained when the grid size and time steps (or Lagrangian order) are increased

simultaneously. However, if the functions are bandwidth limited, then the finite

grid size effects do not play a role in determining convergence. Such cases

were examined here. The convergence rates observed for inhomogeneous initial
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Table 4.5: Table of initial conditions for runs that examine convergence
with Ns, n and Nt. The starting time was always t0 = 2/3.
The εδ, εvL and εvT denote the r.m.s. magnitudes of the initial
acceleration, initial longitudinal and initial transverse velocities
respectively. The table below gives the r.m.s. values of the initial
and final δ and δv.

Convergence parameter ∆t/t0 εδ εvL εvT

Ns (§4.4.2) 0.1 4.8 × 10−2 2.9 × 10−2 4.2 × 10−2

n (§4.4.3) 0.5 1.4 1.4 0

Nt (§4.4.4) 8 7.2 × 10−2 3.4 × 10−4 4.4 × 10−4

Convergence parameter δi δ f δv,i δv, f

Ns (§4.4.2) 0.72 0.81 0.53 0.55

n (§4.4.3) 0.15 0.25 0.15 0.25

Nt (§4.4.4) 7.9 × 10−3 2 × 10−2 3.7 × 10−5 1.9 × 10−2

conditions are not comparable to those observed for the spherical top-hat. The

convergence rate with number of steps did not show as strong dependence on

order as it did for the spherical top-hat system. This issue is under investigation.

The aim of this paper was to outline the algorithm to take multiple time steps

and to implement and check that it converges. This aim has been achieved.

Although for most tests the convergence rates are as expected, the rates for

convergence with Nt in §4.4.4 differ from expectations based on the top-hat

and this issue is still under investigation. The exact number of time steps,

Lagrangian order and grid size will ultimately depend on the application at

hand and this issue is not addressed in this paper. Usually for a real application,
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one is limited to a finite grid size. Non-linearities always grow and eventually,

the power in the Nyquist modes increases enough that the results cannot be

trusted and the simulation has to be stopped. Given a fixed error requirement,

the error control parameters will vary according to the redshift range and mass

scales that need to be resolved. Furthermore, this scheme does not address the

main drawback of LPT which is its inability to go beyond shell crossing. Any

approximation to model this regime will further introduce errors and they will

have to be balanced against the error parameters discussed in this paper.
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CHAPTER 5

PHASE SPACE DYNAMICS AS PROBE TO CONSTRAIN THE DARK

ENERGY EQUATION OF STATE

Preliminary results of an application of the code are presented here.

5.1 Introduction

This chapter aims to extend our previous work by investigating the phase

space evolution for inhomogenous initial conditions evolving in cosmologies

with non-zero dark energy.1 In particular, we focus on the behavior of the

Zeldovich curve and examine how the evolution is influenced by the effect of

interactions and a change in the background cosmology. Early studies of the

density-velocity relationship were mainly restricted to the linear or quasi-linear

regime in matter dominated cosmologies (see Peebles [63], Nusser et al [60]),

Bernardeau [10], review articles by Willick and Strauss [76] and Dekel [29]) and

was further examined in the non-linear regime by Bernardeau et al, [8], Bilicki

and Chodorowski [12]). The main goal of these studies was to use the density-

velocity relationship to get bias independent measures of mass from peculiar

velocity measurements or to constrain the matter density parameter today Ωm

(subject to a bias factor) from observations of the local universe.

In this work we adopt a different approach and assume that the values of

the matter density parameter Ωm and dark energy density parameter Ωd.e today

1We assume in this paper that the observed acceleration of the universe is caused by a
some form of dark energy characterized by an equation of state w. Other explanations for this
acceleration based on modifying gravity or back reaction of inhomogeneities are not considered
here.
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are well constrained by recent cosmological observations (for e.g WMAP, BAO,

SNe), but allow the equation of state w to be a free parameter and investigate

the w-dependence of the Zeldovich curve. Using the growth history of structure

is a commonly used technique to unravel the nature of dark energy. However,

most of the work in the recent past has focussed on the growth of densities via

the power spectrum or mass function (see for e.g. McDonald et al [54], Linder

and Jenkins[46], Linder and White [48], Percival [64]), which is only one of

the parameters that describes perturbations. This paper aims to demonstrate

that the joint density-velocity evolution can serve as another useful probe to

distinguish between various dark energy scenarios.

5.2 Dynamics in phase space

Most applications of LPT start with the ‘Zeldovich’ ansatz which requires that

the background cosmology and the perturbations have the same big bang

time. Imposing the equal bang time condition sets a relationship between the

quantities δ and δv which maps out a curve in phase space referred to as the

“Zeldovich curve”. In NC we examined the implications of this condition for

a spherical top hat perturbation and showed that this solution had the special

property that top-hat initial conditions that started along this curve stayed on

the curve as they evolved and those that started near it stayed near it or moved

parallel to it.

Our investigation in the previous paper was based on a homogenous density

spherical top-hat evolving in a Ωm = 1 universe. However, cosmologically

interesting initial conditions arise from Gaussian random fluctuations and
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Figure 5.1: Zeldovich curve for different cosmologies. The red (dotted),
blue (dashed), green (dotdashed) and brown (plain) curves
correspond to w = −1,−3/4,−2/3,−1/2 respectively. All four
cosmologies are flat have the same value of Ωm and Ωde

today. The thick black curve corresponds to Ωm = 1 and
does not change with z. The smaller the Ωm, the smaller is
the instantaneous growth rate of the model and shallower the
curve.

evolve in a universe that has a non-zero dark energy component. This leads

to two differences. Firstly, the Zeldovich curve based on the spherical top-

hat differs from its Ωm = 1 version because of the change in the background

cosmology and secondly tidal interactions cause the evolution of inhomogenous

perturbations to deviate from the curve. In this section, we examine the effect

of background cosmology.
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5.2.1 Zeldovich curve for arbitrary cosmologies based on the

spherical top-hat

The evolution of the background in the presence of dark energy is

ä
a

= −
H2

i

2

(
Ωm,ia3

i

a3 + (1 + 3w)Ωd.e,i

(ai

a

)3(1+w)
)

(5.1)

where, Hi,Ωm,i,Ωd.e,i are the Hubble parameter and density parameters at the

initial time ti. The initial conditions are a(ti) = ai and ȧ(ti) = ȧi. Consider

a compensated spherical top-hat perturbation with scale factor b(t) evolving

in this background. If δi and δv,i are the parameters describing the initial

perturbation, then the evolution of b(t) is given by

b̈
b

= −
H2

i

2

(
Ωm,ia3

i (1 + δi)
b3 + (1 + 3w)Ωd.e,i

(ai

a

)3(1+w)
)
, (5.2)

with initial conditions b(ti) = ai and ḃ(ti) = ȧi(1 + δv,i). Note here that the dark

energy is assumed to be homogenous throughout space and hence its evolution

in the region of matter perturbation depends on the background scale factor and

not the perturbed scale factor. The matter and dark energy density parameters

at any scale factor ai are related to the corresponding parameters today (a0 = 1)

as

Ωm,i =

(
1 +

Ωd.e,0a−3w
i

Ωm,0

)−1

(5.3)

Ωde,i =

(
1 +

Ωm,0

Ωd.e,0a−3w
i

)−1

. (5.4)

Ωm,0 = 0.3, Ωd.e,0 = 0.7 are chosen in rough accordance with WMAP (Komatsu

[42]). It is shown in the appendix C.1 that the Hubble parameter can be

scaled out of the system of equations and its actual value is not needed for the

calculations. The universe is taken to be flat so that Ωm,i + Ωd.e,i = 1 at all times.

If Ωm,0 = 1, Ωm,i = 1 for all i. This is referred to as the Ωm = 1 cosmology.
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Given the initial conditions it is easy to compute the bang time of the

background and the perturbed sphere and one can solve for the pair (δi, δv,i)

for which the bang times are equal. It turns out that for a Ωm = 1 cosmology, the

pair (δi, δv,i) is independent of the initial starting time ti and the Zeldovich curve

is same for all epochs. However, for universes with non-zero dark energy, the

values of Ωm,i and Ωd.e,i change and the Zeldovich curve depends on the starting

epoch (see Appendix C.1).

Figure 5.1 shows the Zeldovich curves for different cosmologies for different

starting redshifts. The red (dotted), blue (dashed), green (dotdashed) and

brown (plain) represent four cosmologies with equation of state parameters

w = −1,−3/4,−2/3,−1/2 respectively. They all have the same values of Ωm

and Ωd.e today. The thick black line is the curve for Ωm = 1 cosmology. The

differences between the evolution of the Zeldovich curve for change in the

equation of states is due to the differences in the variation of Ωm. As expected,

for high redshift, the curves coincide since Ωm,i term in eq. (5.2) dominates and is

close to 1 for all cosmologies. Similarly, at z = 0 (a0 = 1), the density parameters

for all dark energy cosmologies are the same and the curves match but deviate

from the EdS value since Ωm,0 < 1. As a measure of the deviation between two

curves, we compute the differences between the value of δv at a fixed value of δ.

For a fixed redshift, it is clear that higher the δ larger is the deviation. To estimate

the deviation across redshifts, we measure the differences at δ = 2 and find that

the deviations between the w = −1 case and w = −1/2 case are maximum around

a redshift of z ∼ 1. This corresponds to the redshift where the differences in Ωm

between the two cosmologies are maximum.

Usually the density velocity relationship in linear Eulerian perturbation
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theory is characterized as ∇ · v = − f (Ωm)δ, which in our notation reduces to

δv = − f (Ωm)δ/3, where f (Ωm) is the linear growth rate. The slope of the curve

in phase space thus gives the instantaneous growth rate of the perturbations; a

shallower curve implying a smaller Ωm and slower growth rate. The overall rate

at which perturbations grow is related to the speed at which they move along

the curve and the net growth of perturbations in various cosmologies cannot

be estimated by a phase space plot for a single redshift, but by comparison

between two redshifts. This is why although the various dark energy curves are

degenerate at z = 0, the net growth in these cosmologies can only be inferred

by where perturbations that started at an earlier redshift lie along the curve.

Figure 5.2 shows the evolution of a spherical compensated smooth overdensity

for two of the cosmologies (w = −1,w = −1/2). The initial conditions were set at

z = 0.001 and evolved until z = 1. It is apparent that the growth in the w = −1

cosmology is faster than that in the w = −1/2 cosmology. In the absence of any

interactions, the evolution of a sphere is expected to follow the Zeldovich curve

and this is seen qualitatively in the figure. A more quantitative assessment is

yet to be done.

The study of the density-velocity relationship has been an area of active

research for more than four decades. Early work by Peebles [63] estimated

the linear growth rate in pure matter universes to be f (Ωm) = Ω0.6
m . This was

later extended by Lahav et al [44] to cosmologies with a cosmological constant.

Further extensions to quasi-linear/non-linear regimes were performed by

Bernardeau [10] (B92) using second order Eulerian perturbation theory and

more recently using the spherical-top hat model by Bilicki and Chodorowski

[12] (BC08), although their analysis was restricted to a pure matter universe.

Figure 5.3 compares these various approximations with the exact curve based on
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Figure 5.2: Evolution of the same compensated spherical overdensity in
two different cosmologies. The initial conditions are the same
for both cosmologies at z = 0.001 and are compared at z = 1.
Evolution was carried out using first order LPT. The red curve
corresponds to w = −1 and brown corresponds to w = −1/2.
The growth in w = −1/2 cosmology is less than that in the w =

−1 cosmology as seen by the dots on each curve. This is because
dark energy starts to dominate earlier in the w = −1/2 case.

the spherical top-hat at the present epoch (Ωm = 0.3,Ωde = 0.7). The left and right

panels focus on overdensities and underdensities respectively. The non-linear

approximations by B92 and BC08 are within a few percent of the exact value for

overdensities, however, the approximation by BC08 deviates significantly near

δ ∼ −1.

5.3 Conclusion

This chapter presents preliminary results that indicate that phase space

dynamics in the density-velocity plane can be a useful probe to constrain the

dark energy equation of state. The Zeldovich curve based on the spherical

top-hat system has been characterized for various dark energy equation of

state parameters. Future work will indicate if there is a range of scales and
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Figure 5.3: Comparison of the various approximations of the density-
velocity relationship in literature. The left and right panels
show the relationship for overdensities and voids respectively.
The method presented in the paper provides an exact
computation of the relationship based on the spherical top
hat for any cosmology and any density. The non-linear
approximations by B92 and BC08 agree for overdensities, but
BC08 does not agree for δ ∼ −1.

redshifts where the effect of tidal forces can be disentangled from the effect of

a background cosmology. If such a range exists and is not too sensitive to the

underlying phenomenological model, then it can help design future surveys

which aim to constrain the dark energy equation of state.
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CHAPTER 6

CONCLUSION

This thesis has investigated the convergence properties of Lagrangian

Perturbation Theory and developed the method of Lagrangian re-expansions to

improve convergence. The method is capable of non-linear evolution of general

initial conditions, including those arising from a random Gaussian field and I

have numerically implemented the scheme and tested it. A scheme based on

LPT has the advantage that it can efficiently evolve smooth initial conditions

from as early as recombination because it is not limited by N-body like shot

noise. By specifying the number of steps and order of the scheme, one can fine

tune it to achieve any desired accuracy. However, like a numerical simulation,

the box size and the grid size set the upper and lower limits on the scales that

can be modeled by this scheme and any errors due to effect of scales outside the

box will remain present.

The generality of this tool makes it very useful for a variety of applications

which were listed in the introduction. Currently, the code has been developed

and tested using Mathematica [83]. The algorithm that re-initializes the system

is the most memory intensive step that prevents bigger grids from being

implemented in the Mathematica version. A C-based version of the code is under

development. This will enable simulations of bigger boxes with larger grids

that would be most useful to a cosmological application. In the near future I

plan to use this scheme to solve some of the problems that I have outlined in the

introduction.
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APPENDIX A

APPENDIX FOR CHAPTER 3

A.1 Formal set-up of the spherical top-hat

We intend to study an inhomogeneous universe. It contains a single,

compensated spherical perturbation evolving in a background cosmology.

To describe two spatially distinct pieces of the inhomogeneous universe

(the background and the central perturbation) we invoke the language of

homogeneous cosmology.

A.1.1 Description of the background

The origin of the coordinate system is the centre of the sphere. The background

system at the initial time t0 is set by the physical size of the inner edge rb,0,

the velocity ṙb,0 and density parameter Ω0. The Lagrangian coordinate system is

extended linearly throughout space once the Lagrangian coordinate of the inner

edge is fixed. Let the Lagrangian coordinate of the inner edge be

Y =
rb,0

a0
. (A.1)

Either choose the initial background scale factor a0 and determine the

coordinate system or, alternatively, fix Y and infer the background scale factor.

In either case, the scale factor embodies the gauge freedom associated with the

radial coordinate system.

The future evolution of the inner edge of the background is given by rb(t) =

a(t)Y . The velocity at the initial time satisfies ṙb,0 = ȧ0Y . The density at any later
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time is

ρb(t) =
ρb0a3

0

a3 , (A.2)

and the Hubble parameter for the background is

H0 =
ṙb,0

rb,0
=

ȧ0

a0
. (A.3)

The evolution of the scale factor is

ä
a

= −
4πGρb0a3

0

a3 = −
1
2

H2
0a3

0Ω0

a3 . (A.4)

The quantities, rb,0, ṙb,0, Ω0 and t0 along with the choice of the coordinate system,

completely specify the background universe.

A.1.2 Description of the innermost perturbation

The perturbation can be described by four physical quantities: the physical

position rp,0 and velocity ṙp,0 of the edge (or the ratio H0p = ṙp,0/rp,0), the density

parameter Ωp0 at the initial time t0. The Lagrangian coordinate system for the

perturbation is

X =
rp,0

b(t0)
. (A.5)

It can be linearly extended throughout space.

Like a0, b(t0) embodies the gauge freedom associated with the choice of the

coordinate system. Without loss of generality, one can pick this gauge to satisfy

b(t0) = a0. (A.6)

Note that the Lagrangian coordinate systems for the background and

perturbation are different.
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Figure A.1: A cartoon showing the physical set-up of the problem.

Let ρ0 and ρp,0 denote the densities of the background and perturbation

respectively. Define the perturbation parameters

δ =
ρp0

ρb0
− 1 (A.7)

δv =
H0p

H0
− 1 (A.8)

giving

Ω0p =
(1 + δ)

(1 + δv)2 . (A.9)

A.1.3 Inhomogeneous model

Figure A.1 shows how an overdense and underdense innermost sphere may

be embedded with compensation in a homogeneous background universe. The

assumption that the background cosmology evolves like a homogeneous model,
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fully described in terms of its Hubble constant and density, imposes consistency

conditions. At the initial instant the “inner edge” of the unperturbed

background distribution is at physical distance rb,0 from the centre of the

sphere. The region with r > rb,0 will evolve like an unperturbed homogeneous

cosmology as long as

1. the mass within equals the mass that an unperturbed sphere would

contain;

2. matter motions within the perturbed region do not overtake the inner edge

of the homogeneous region.

These conditions which are obvious in the Newtonian context have general

relativistic analogues (Landau & Lifschitz [45]).

Next, consider the innermost perturbed spherical region. At the initial time

let rp,0 be the “outer edge” of this region. The physical properties and evolution

of the innermost region are fully described in terms of its Hubble constant and

density as long as its outer edge does not overtake matter in surrounding shells.

While this is obvious in a Newtonian context there exists a relativistic analogue

(Tolman [78]; Landau & Lifschitz [45]).

The inhomogeneous model is incomplete without specification of the

transition region between the innermost sphere and the background. For the

background to evolve in an unperturbed fashion the mass within rb,0 must

be exactly 4πρ0r3
b,0/3. There are many ways to satisfy this requirement. For

example, when δ > 0 a simple choice is to place an empty (vacuum) shell for

rp,0 < r < rb,0 so that (ρp0/ρ0) = (rb,0/rp,0)3 = (Y/X)3. The evolution of each matter-

filled region proceeds independently as long as the trajectories of the inner and
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outer edges do not cross. When δ < 0, a more complicated transition is required.

For example, one choice is to nest sphere, empty shell and dense shell (see figure

A.1) so that the mass within rb,0 matches that of the unperturbed background. In

this case ρp0r3
p,0 = fρ0r3

b,0 for some f < 1 (the remaining fraction 1− f is placed in

the dense shell). Varying the specifics of the compensation region while keeping

the properties of the sphere fixed leaves δ and δv, as defined above, invariant.

For fixed δ and δv the solution b(t) is independent of the details of the

transition. Nonetheless, variation in f , rb,0/rp,0 and Y/X all go hand-in-hand.

Hence, the extent of time that the sphere’s evolution may be treated as

independent of the matter-filled outer regions also varies. A basic premise of

this paper is that it is meaningful to determine the limitations arising from

the convergence of the LPT series independently of limitations associated

with crossing of separate matter-filled regions. For a given a δ and δv this

separation can be achieved for specific constructions by choosing the radius and

(hence velocity) of the inner sphere and the energy of the compensating region

appropriately.

A.1.4 Number of degrees of freedom for the innermost sphere

If the innermost sphere corresponds to an overdensity then the compensating

region can be a vacuum as shown in figure A.1. Having picked the co-ordinate

system, having selected equal initial times for the background and perturbation

(not equal bang times but equal times at which we give the background and

perturbation values), and required the correct amount of mass, only two degrees

of freedom remain: δ and δv.
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To reiterate, the background and the perturbation can have different big

bang times. Setting them equal would imply a relationship between δ and δv

and leave a single free parameter.

If the innermost sphere corresponds to an underdensity then the compen-

sating region is not vacuum but a spherical shell. In this case, in addition to

δ and δv, one must specify f or, equivalently, rp,0. But the solution for b(t) is

independent of the size of the innermost sphere so, again, only two degrees of

freedom remain.

A.1.5 Preventing shell crossing

There are two sorts of limitations for the solution of b(t). One is the calculation-

dependent limitation arising from the convergence properties of the Lagrangian

series expansion. It involves the scale factors only. The other is a physical

limitation arising from collisions of the innermost region with surrounding non-

vacuum regions (either the background or a compensating shell). We show that

it is possible to delay the epoch of collisions indefinitely without altering the

evolution of the innermost region.

Fix H0, Hp,0, ρ0 and ρp,0. This implies that the expansion parameters in LPT,

δ and δv, and the time of validity of the LPT solution are all fixed. Consider

the case of an overdensity surrounded by vacuum. To stave off the collision

of the outer edge of the innermost region with inner edge of the homogeneous

background hold rb,0 fixed and reduce rp,0. The velocity ṙp,0 = H0prp,0 becomes

arbitrarily small. The time for the edge to reach any fixed physical distance

increases without bound. Shell crossings may be put off indefinitely. However,
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we have altered the mass within the innermost edge of the background so we

add back a thin, dense shell just inside rb,0 and set it on a critical trajectory

outward. This accomplishes our goal.

The case of the underdensity surrounded by a compensating shell is

identical. First, we must make sure that the compensating shell does not

overrun the homogeneous model. Choose the shell to be thin, fix its initial

physical distance from the centre and adjust is velocity (based on how the

interior mass changes) to give a critical solution. The two power laws,

one for the compensating shell and one for the innermost boundary of the

homogeneous model, cannot cross in the future. Second, as above, note that

reducing rp,0 reduces the outward velocity of the edge so that it takes more time

to reach the initial position of the compensating shell. The time can be made

arbitrarily long.

The limitations in LPT convergence are completely distinct from those

associated with physical collisions in inhomogeneous model.

A.2 Series expansions for a function of two variables

In this section we elucidate by example some qualitative features of the

expansion of b(t,∆), the central quantity in the Lagrangian treatment of the top-

hat. We assume a very simple form denoted f (t,∆) and look at convergence

with respect to expansions in t and ∆. Let

f (t,∆) = t2/3
(
1
t

+ ∆

)1/3

. (A.10)
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The series expansion of this function around ∆ = 0 at fixed t is

f ∼ t1/3 + t4/3∆ −
1
9

t7/3∆2 +
5

81
t10/3∆3 −

10
243

t13/3∆4 +
22

729
t16/3∆5 + O(∆6) (A.11)

which is supposed to mimic the Lagrangian expansion in ∆. One can also

expand the function as a series in t around t = ti

f ∼ 3

√
∆ +

1
ti

t2/3
i +

(2∆ti + 1)(t − ti)

3
(
∆ + 1

ti

)2/3
t4/3
i

+

(
−∆2t2

i − ∆ti − 1
)

(t − ti)2

9
(
∆ + 1

ti

)2/3
t7/3
i (∆ti + 1)

+

(
4∆3t3

i + 6∆2t2
i + 12∆ti + 5

)
(t − ti)3

81
(
∆ + 1

ti

)2/3
t10/3
i (∆ti + 1)2

+ O
(
(t − ti)4

)
. (A.12)

Both expansions involve the complex power z1/3. There are two branch cuts

which extend to z = 0 so at ∆ = −1/t the function is not analytic. Additionally,

the expansion in t is not analytic at t = 0.

The efficacy of various expansions are illustrated in figure A.2. In all the

plots the black dotted line indicates the exact function. The top left panel shows

successively higher order series approximations in ∆ as a function of t for the

specific case ∆ = 1/10. The question here is whether the pole at a given time lies

with a disk of radius 1/10? The location of the pole is ∆ = −1/t so the answer

is “yes” when t > 10. This pole interferes with the convergence of the series

expansion for ∆ = 1/10. The figure demonstrates the (future) time of validity is

t < 10.

The top right panel shows the series in ∆ at a fixed t = 1/10. The question

here is how big a perturbation will converge at t = 1/10? Since the location

of the pole is ∆ = −1/t the radius of convergence at the indicated time is 10.

Perturbations with |∆| > 10 are not expected to converge and the figure shows

that this is indeed the case.
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Figure A.2: Series expansions in t and ∆ for an illustrative function f (t,∆)
(see text). The black dotted line indicates the exact function
f and the blue solid lines indicate successive approximations.
The top left and right panels are series expansions in ∆ around
∆ = 0 plotted as a function of t (for ∆ = 1/10) and function of
∆ (for t = 1/10) respectively. The bottom left and right panels
are series expansions in the t around t = 2 plotted as functions
of t for ∆ = −1/10 and ∆ = −1/3 respectively.

The bottom left panel shows the series in t expanded around ti = 2 for fixed

∆ = 1/10. The poles are at t = −10 and t = 0 in the complex t plane. The expected

radius of convergence is min(|2 − 0|, |2 − (−10)|) = 2 or ti − 2 < t < ti + 2. As seen

in the plot, the series converges only in the expected range (0, 4)

The bottom right panel shows the series in t expanded around ti = 2 for

∆ = −1/3. The poles are at t = 3 and t = 0 in the complex t plane. The expected

radius of convergence is min(|2− 0|, |2− 3|) = 1 or ti − 1 < t < ti + 1. As seen in the

plot, the series converges only in the expected range (1, 3).
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A.3 Parametric Solution

The background model has scale factor a0 and Hubble constant H0 = ȧ0/a0. The

model, perturbed in density and velocity, is parameterized by ∆ and θ and has

scale factor b(t). For the choice of coordinate system given in the text the second

order equation for b is
b̈
b

= −
1
2

H2
0a3

0(1 + ∆ cos θ)
b3 (A.13)

with the initial conditions that at t = t0, b(t0) = a0, ḃ(t0) = ȧ0(1 + ∆ sin θ). The scale

factor a0 and the velocity of the background ȧ0 at the initial time t0 are positive.

The parametrization of ḃ(t0) allows either positive or negative values where ∆

is non-negative and −π < θ ≤ π. The quantity (1 + ∆ cos θ), proportional to total

density, is non negative.

This equation once integrated is

ḃ2 = H2
0a3

0

[
(1 + ∆ cos θ)

b
+

(1 + ∆ sin θ)2 − (1 + ∆ cos θ)
a0

]
. (A.14)

The combination

E(∆, θ) = (1 + ∆ sin θ)2 − (1 + ∆ cos θ) (A.15)

is proportional to the total energy and determines the fate of the system. If

E(∆, θ) > 0, the model is open and if E(∆, θ) < 0, the model is closed and will re-

collapse eventually. Four cases (positive and negative E, positive and negative

ḃ0) are shown in figure 3.5.
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A.3.1 Initially Expanding Solutions

The expanding case with ḃ0 > 0 for open models (E > 0) has solution

b(η,∆, θ) =
a0

2
(1 + ∆ cos θ)

E(∆, θ)
(cosh η − 1) (A.16)

t(η,∆, θ) =
1

2H0

(1 + ∆ cos θ)
E(∆, θ)3/2 (sinh η − η) + t+

bang(∆, θ) (A.17)

and the singularity b = 0 occurs at η = 0. For closed models (E < 0) the solution

is

b(η,∆, θ) =
a0

2
(1 + ∆ cos θ)
|E(∆, θ)|

(1 − cos η) (A.18)

t(η,∆, θ) =
1

2H0

(1 + ∆ cos θ)
|E(∆, θ)|3/2

(η − sin η) + t+
bang(∆, θ). (A.19)

For closed models, the convention adopted sets η = 0 at the singularity nearest

in time to t0. For both models, the time at η = 0 is denoted t+
bang. For closed

models the time at η = 2π is denoted t+
coll.

At the initial time the solutions (both open and closed) satisfy b(t0) = a0,

ḃ(t0) = ȧ0(1 + ∆ sin θ) and t = t0. The condition b(t0) = a0 sets the value of

the parameter at the initial time η0. The velocity condition is then manifestly

satisfied from the form of eq. (A.14). The condition t = t0 at η = η0 sets the value

of the bang time

t+
bang = t0 −


1

2H0

(1+∆ cos θ)
|E(∆,θ)|3/2 (η0 − sin η0) E < 0

1
2H0

(1+∆ cos θ)
E(∆,θ)3/2 (sinh η0 − η0) E > 0.

(A.20)

The bang time for the model can also be written as

t+
bang = t0 −

∫ b=a0

b=0

db
(ḃ2)(1/2)

, (A.21)

where ḃ2 is given by eq. (A.14) with the sign for the square root positive. The

age of the model since its birth is

tage(∆, θ) =

∫ b=a0

b=0

db
(ḃ2)(1/2)

=

∫ η=η0

η=0

db/dη · dη
(ḃ2(η))(1/2)

. (A.22)
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Inserting the appropriate parametric solution, one can verify that the bang times

obtained from (A.20) and (A.21) are identical. Generally t+
bang , 0.

The velocity at the initial time is

ḃ0 = ȧ0|E|1/2


sin η0

1−cos η0
E < 0

sinh η0
cosh η0−1 E > 0.

(A.23)

First, ḃ0 > 0 implies η0 > 0. Second, if the age of the model increases, η increases.

For the open solution if η varies from 0 to ∞ time increases from t+
bang to ∞. For

a single cycle of the closed solutions, η increases from 0 to 2π and time increases

from t+
bang to t+

coll.

In summary, the parametric solutions solve eq. (A.13) and eq. (A.14) for the

specified initial conditions. As a final useful step, rewrite eq. (A.21) by defining

y = b/a0

t+
bang = t0 −

1
H0

∫ y=1

y=0

dy[
(1 + ∆ cos θ)y−1 + E(∆, θ)

]1/2 (A.24)

which follows from eq. (A.14) and uses the same positive square root

convention.

A.3.2 Initially Contracting Solutions

Next, consider the case ḃ0 < 0. The parametric solution for E > 0 is

b(η,∆, θ) =
a0

2
(1 + ∆ cos θ)

E(∆, θ)
(cosh η − 1) (A.25)

t(η,∆, θ) =
1

2H0

(1 + ∆ cos θ)
E(∆, θ)3/2 (− sinh η + η) + t−bang(∆, θ) (A.26)

and for E < 0 is

b(η,∆, θ) =
a0

2
(1 + ∆ cos θ)
|E(∆, θ)|

(1 − cos η) (A.27)
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t(η,∆, θ) =
1

2H0

(1 + ∆ cos θ)
|E(∆, θ)|3/2

(−η + sin η) + t−bang(∆, θ). (A.28)

Again, for closed models, the convention adopted is that the singularity nearest

to t0 corresponds to η = 0. The time at η = 0 is t−bang and the collapse time for

closed models is t−coll.

The parametric form of the solutions satisfies eq. (A.13) and eq. (A.14). Just

as in the previous case, the initial conditions set η0 and t−bang. Since the singularity

at η = 0 lies to the future of t0,

t−bang = t0 +

∫ b=a0

b=0

db
(ḃ2)(1/2)

. (A.29)

where ḃ2 is given by eq. (A.14). The sign of the square root is chosen to be

positive and the integral is a positive quantity which is added to t0. For closed

models the singularity at η = 2π lies to the past of t0 at t−coll. In this case (see figure

3.5) the labeling implies t−coll < t0 < t−bang. Although this might seem backwards, it

facilitates combining the open and closed models into one complex function as

was done in the positive ḃ0 case. The initial velocity is

ḃ0 = ȧ0|E|1/2


sinh η0

1−cosh η0
E > 0

sin η0
cos η0−1 E < 0

(A.30)

The initial velocity ḃ0 < 0 implies η0 > 0. For the age of the model to increase, η

must decrease. Conversely, if η increases, the time in the open model decreases

from t0 to −∞ and the time in the closed model decreases from t0 to t−coll.

A table summarizing the properties of the physical solutions with η = |η|ζ =

ηζ follows.
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Closed Open If η increases If t increases tbang − t0

ḃ0 > 0 ζ = 1 ζ = i t increases from t+
bang η increases to∞ or 2π < 0

ḃ0 < 0 ζ = 1 ζ = i t decreases from t−bang η decreases to 0 > 0

A.3.3 Analytic Extension of the exact solution in parametric

form

The differential eq. (3.32) was solved numerically over the range 0 ≤ θ ≤ π,

0 < δ < 100 and −π < φ ≤ π where ∆ = ∆eiφ. For each value of (∆, φ, θ), the

numerical solution matched one of the two possible parametric forms.

Omitting the explicit functional dependence on ∆ and θ the following

abbreviations are useful

j = (1 + ∆ cos θ) (A.31)

h =
(1 + ∆ sin θ)2

j
(A.32)

E = (h − 1)j. (A.33)

The two possible parametric forms that agree with the numerical solution are

b(η) =
a0

2
j

[−E]
(1 − cos η) (A.34)

t(η) = t0 ±

(
1

2H0

j
[−E]3/2 (η − sin η) − tage

)
(A.35)

where

tage =
1

H0

√j
√

h −
j

[E]3/2 sinh−1

√
E
j

 . (A.36)

The branch cut lies along the negative real axis for all fractional powers and

from −i∞ to −i and +i to i∞ for the inverse sinh function.
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The prescription for the correct form is for the choice of the ± sign in t eq.

(A.35) and denoted t+ and t−. The correct form depends upon θ, φ, arg[h] (the

arg is defined to be between −π and π) and the (real) value j = j when φ = 0 or

π. The figure A.3 shows the upper half plane for the perturbation partitioned

into areas where the complex extension of the solution has one of two forms.

The lower half plane has the same structure inverted through the origin. The

horizontal red dashed line denotes ∆ sin θ = 1 and the vertical red dashed lines

denote ∆ cos θ = ±1. In some areas a single form applies as marked but in the
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central area both occur. The detailed prescription is

t =



0 ≤ θ ≤ π/4



φ = π, |∆| sin θ < 1 and j < 0 t−

otherwise t+

π/4 < θ ≤ π



0 < φ < π and arg h > 0 t+

−π < φ < 0 and arg h < 0 t+

φ = 0 and


cos θ > 0

or

cos θ < 0 and j > 0

t+

φ = π and


cos θ < 0

or

cos θ > 0 and j < 0

t−

otherwise t−

(A.37)
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Figure A.3: This figure describes one aspect of the analytic extension of
the exact solution. For a given real ∆, the complex extension
∆ → ∆eiφ obeys eq. (A.37) with two possible forms t+ and t−.
The choice depends on φ, ∆, θ. For some (∆, θ) a single form
is sufficient for all φ; for other values both forms are needed.
This figure illustrates how the upper half plane is partitioned
based on this property.

A.4 Numerical solutions

A.4.1 Algorithm

The initial conditions are parameterized by ∆ > 0 and −π < θ ≤ π. The

transformation θ → π ± θ and ∆ → −∆ leaves the solution unchanged. At any

time the roots for θ and π ± θ are negatives of each other. The root plot only

depends upon the absolute value of the root so the plots for θ and π ± θ are

identical. It is sufficient to consider the upper half plane.

For a given θ the algorithm to map out R∆(t) is the following: Vary ∆ from 0 to

an arbitrarily large value (∼ 100) in small increments. For each ∆ select ∆ = ∆eiφ

by varying the phase angles φ over the range 0 to 2π. For each ∆ evaluate t(η) at

η = 0 and η = 2π calculated according to eq. (A.37). Finally, hunt for solutions
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that set the imaginary part of t to 0. This last step involves one-dimensional

root-finding in φ at fixed ∆. A solution leads to a specific pair (t,∆) that is a pole

in the function b(∆, t).

Roots with t > t0 limit future evolution; those with t < t0 limit backwards

evolution. Both sets are shown in the results. Roots are classified based on

whether they are real or complex. For closed models the real roots can represent

a singularity that is nearby (η = 0) or far away (η = 2π) from t0. This classification

at the initial time is independent of whether the singularity is in the past or

future and is independent of whether the model is expanding or contracting.

For open models the real roots are always considered nearby (η = 0).

In what follows the numerical answers are first described in qualitative

terms. In the next section simple analytic estimates for the time of validity are

developed.

Figure A.4 shows the root plots on a log-log scale. Sixteen panels, each with

a particular value of θ listed at the top, are displayed. The x-axis is log10 H0t

and the y-axis is the log of the distance of the singularity from the origin in the

complex ∆ plane. The initial time, H0t0 = 2/3, is marked by the vertical black

dashed line.

For each θ, the shaded region indicates the range of ∆ that gives rise to closed

models. Figure 3.2 shows that closed models occur only for θ < θ+
c = 0.463 in the

upper half plane so only some of the root plots have shading and then only at

smaller ∆.

The color coding of the dots indicates four types of roots: real and complex

roots where η = 2π are in blue and red, respectively; real and complex roots
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with η = 0 are in cyan and pink, respectively. The radius of convergence at

the initial time t0 is infinite, i.e. the Lagrangian series is exact at the initial

time by construction. At times very close to the initial time the root loci lie

off the plot. Only the roots to the right of H0t0 are relevant for forward evolution

and, conversely, only those to the left are relevant for backwards evolution. The

discussion is focused on the case of forward evolution but it is straightforward

to consider the restrictions on marching backwards in time.

The phase of the root (of smallest magnitude) appears in figure A.6. When

closed models have real roots they are positive; when open models have real

roots they are negative. However, some open and closed models also possess

complex roots. The set of models with complex roots (of smallest magnitude)

is evident from the shading in figure 3.10. The phase of each root of smallest

magnitude in figure A.4 is indicated by the color shading in figure A.6.

There are horizontal dashed lines with colors green, blue and purple in

figures A.4 and A.6 indicating |δv| = 1, |δ| = 1 and the transition between one

and two complex forms, respectively. For each θ the lines mark the implied,

special value of ∆. These dashed lines also appear with the same color coding

in figure A.5.

The roots in figure A.4 will be analyzed in the range 0 < θ ≤ π/4, π/4 < θ ≤

π/2, π/2 < θ ≤ π.

0 ≤ θ ≤ π/4

The top left panel in figure A.4 has θ = 0; the blue dots indicate real roots with

η = 2π; the blue shading indicates a closed model; the phase is positive (top left
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Figure A.4: Root plots for θ in the range 0 ≤ θ ≤ π. In each plot the abscissa
is log10 H0t and the ordinate is the logarithm of the magnitude
of the root. The vertical black dashed line marks the initial
time. The shaded area corresponds to closed models. The
blue and red points show real and complex roots with η = 2π,
respectively. The cyan and pink show real and complex roots
with η = 0, respectively. The green and purple dashed lines are
|δv| = 1 (∆ = | sin θ|−1) and |δ| = 1 (∆ = | cos θ|−1), respectively. The
blue dashed line indicates the switch between two forms and
a single form of the parametric solution at ∆ = |2 sec θ − csc θ|.
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Figure A.5: Several conditions determine the nature of the roots in phase
space. The most significant are schematically illustrated here.
The green horizontal lines are |δv| = ∆| sin θ| = 1; purple
vertical lines are |δ| = ∆| cos θ| = 1; the black curved line is
the E = 0 critical solution. The red lines ∆rc mark where real
roots associated with closed models (or closed mirror models)
transform to complex roots. The blue dashed lines mark the
division between one and two complex forms (see also figure
A.3). Physical models lie to the right of δ = −1. Expanding
models lie above δv = −1. The intersection δ = δv = 1 occurs at
θ = π/4. The point P near θ = 0.84 is the meeting of δv = 1 and
∆rc.
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panel in figure A.6). Only a single branch is evident. In sum, each root is the

collapse time of a closed, pure density perturbation. For an expanding model,

η = 2π implies that the root is the future singularity. That θ = 0 is a special

case can be seen by consulting figure A.5: a ray starting at ∆ = 0 with θ = 0

never intersects any of the other lines of the diagram. In general, each time a

ray crosses one of the lines there is qualitative change in the properties of the

roots.

For 0 < θ ≤ π/4 a great deal more complexity is evident in figure A.4.

First, consider a ray emanating with small angle 0 < θ < θ+
c in figure A.5

(tan θ+
c = 1/2 is the slope of the E = 0 line at the origin). Eventually such a

line will cross the black line which is the E = 0 critical solution labelled ∆E=0.

For small ∆ the models are closed; for larger ∆ they are open. In figure A.4

this distinction corresponds to the the blue shading (closed models) at small ∆

versus the unshaded (open) models at large ∆.

Within the shaded region note that two branches of real roots are present

beyond a given time; at large t (asymptotically) the lower branch is ∆ → 0 and

the upper branch is ∆ → ∆E=0. The lower branch sets the time of validity for

small ∆. Each root is the collapse time of a closed model which has both density

and velocity perturbations at the initial time.

As ∆ increases the time of validity inferred from the lower branch decreases.

At the critical point ∆ = ∆rc, the two real branches merge and connect to a branch

of complex roots (intersection of red and blue points). For ∆ > ∆rc, the complex

roots determine the time of validity even though the upper branch provides a

real root. The complex roots do not have a direct physical interpretation in terms

of future singularities of physical models. On figure A.5 the ray emanating from
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the origin at shallow angle crosses the red dashed line labelled ∆rc at this critical

point.

Physically, when ∆ exceeds ∆rc, the velocity perturbation dominates the

density perturbation in the sense that the collapse time begins to increase. The

real root corresponds to the future singularity of the model. As ∆ increases

further, the solution eventually becomes critical (infinite collapse time). The

particular value where this occurs is ∆E=0 and it corresponds on figure A.5 to

the ray crossing the labelled black line. Within the entire range ∆rc < ∆ < ∆E=0

the complex root determines the time of validity. So, even though any model in

this range is closed and possesses a real future singularity, the time of validity

is determined by the complex root. This gives the sliver on figure 3.10 which is

the overlap of light red and blue shadings.

Both ∆rc and ∆E=0 decrease as θ → θ+
c as is evident from figure A.5 and both

vanish at θ+
c . On figure A.4 the real roots completely disappear and only the

complex roots are present, i.e. the two real branches have been pushed out to

infinite times. The panel with θ = 5π/36 = 0.436 is numerically closest to the

critical case θ+
c = 0.464 and the real branches are just barely visible at the right

hand edge.

For the rest of the upper half plane θ+
c < θ ≤ π the ray no longer intersects

any closed models.

For θ+
c < θ < π/4 the real roots reappear and move back to the left in figure

A.4 (see panel with θ = π/6). Now, however, the roots are negative (see figure

A.6). This is a manifestation of mirror symmetry which relates the negative real

roots of an open model to the positive real roots of a closed model. At large t
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the two branches have ∆ → 0 and ∆ → ∆E=0 and are completely analogous to

the real branches just discussed for closed models. The separation between the

two real branches increases as θ increases and the solution loci shifts upwards

in ∆. And just as before the two branches join and meet a complex branch. The

second red dashed line ∆rc in figure A.5 shows the real to complex transition for

the roots for the open models.

This behavior might be expect to continue for π/4 < θ < π but there is an

additional complication: the analytic extension involves two forms. As the ray

sweeps counterclockwise in figure A.3 it crosses δv = 1 (horizontal dashed line

and the curved blue line. These are also schematically illustrated in figure A.5.

π/4 < θ < π/2

All physical models are in this range are open. Real roots have a straightforward

interpretation in terms of the mirror models. Although some of the analysis

described for θ < π/4 continues to apply several additional complications ensue.

To understand them it is useful refer to the phase space picture shown in figure

A.5. As θ increases, the point where ∆rc meets δv = 1 is labelled P.

For a fixed θ consider increasing ∆ from small values near the origin to ∞.

The order in which this ray intersects the green (δv = 1), purple (δ = 1), red (∆rc)

and blue (one or two complex forms) curves will correlate with the change in

roots.

The roots are negative real for small ∆. They correspond to the collapse time

of a closed mirror model. Increase ∆ and ignore ∆rc. When the δv = 1 line is

crossed, the sign of the closed mirror model’s velocity switches from expanding
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to contracting. This just means that the labeling of the future singularity

switches from further away (η = 2π) to nearer (η = 0). Now recall ∆ < ∆rc

implies real roots and, by definition, δv = ∆ sin θ. Hence, ∆rc(θ) > 1/ sin θ implies

that the label switch occurs just as outlined. On figure A.5 rays counterclockwise

of point P belong to this case. This is responsible for the switch from blue (real

η = 2π) to cyan (real η = 0) roots at the green line in figure A.4 for θ = π/3 and

17π/36.

Conversely, if ∆rc(θ) < 1/ sin θ the roots are already complex and the label

switch occurs between the corresponding complex roots. There are no pictured

examples in figure A.4.

In the previous section with the 0 < θ ≤ π/4, the physical interpretation of

∆rc (as ∆ increases) was that the velocity contribution to the perturbation became

dominant in the original model if the model was closed or in the mirror closed

model if the original model was open. In latter case the mirror models were

initially expanding. Now, the same idea continues to apply in the regime π/4 <

θ < 0.84. Here the transition from real to complex roots occurs before the δv = 1

line is crossed. The significance of ∆rc is that it marks the increasing importance

of velocity perturbations in the closed expanding mirror models.

However, for 0.84 < θ < π/2 as ∆ increases the open model crosses δv = 1, the

mirror model swaps from η = 2π to 0 and the roots (real) corresponds to the real

future singularity of a closed, contracting model. As ∆ increases further, first the

mirror model becomes critical and then an open model contracting to a future

singularity. While the magnitude of ∆ grows larger than a critical value the

velocity perturbation dominates the mirror model dynamics. When ∆ > ∆rc the

roots switch from real to complex. At this point the contracting mirror model
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can be open, closed or critical.

Note in figure A.5 that ∆rc asymptotes to the vertical purple line δ = 1. The

corresponding mirror model hits the line δ = −1 in the third quadrant. This is

the limiting vacuum solution. Although there are no physical models beyond

the analytic extension continues and the roots change from real to complex.

All open models with θ <∼ π/2 see a transition to complex roots as the mirror

approaches the vacuum solution.

Finally figure A.5 shows as a blue curve the point at which there is a switch

in complex form of the analytic extension. Here, the complex roots switch from

η = 0 to η = 2π. The roots remain complex and since there is no physical

interpretation and it is irrelevant whether they belong to η = 0 or η = 2π.

In figure A.4 the panel with θ = π/3 and 17π/36 show these transitions: the

blue to cyan transition at the green dashed line is the mirror model switch from

expanding to contracting; the cyan to pink transition at the purple dashed line

is the mirror model moving through δ = −1; the pink to red transition is the

switch from two to one complex roots and η = 0 to η = 2π.

θ = π/2

At θ = π/2, only real roots of η = 0 are present for large ∆. This is a special case

in that a ray only intersects one special line δv = 1 in the upper half plane.
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π/2 < θ ≤ π

All models in this range also correspond to open models. Like the previous

cases, small ∆ have real, negative roots with η = 2π. The mirror models in this

case lie in the fourth quadrant. The crossover of real roots from η = 0 to η = 2π

occurs at δv = 1, however, unlike in the earlier case, the line δ = −1 is never

approached by the mirror models in the fourth quadrant. As a result, there is no

switch from real to complex roots and all models have real negative roots. The

η = 2π roots for small ∆ are collapse times of initially expanding closed mirror

models and the η = 0 are future singularities of initially contracting closed and

open mirror models for intermediate and large values of ∆ respectively.

A.4.2 Numerical Results

Here we present numerical formulas that give the time of validity for any initial

∆ and θ. Real roots occur for small ∆ when 0 < θ < π/2; and they occur for all ∆

when π/2 ≤ θ ≤ π or θ = 0. Real roots correspond to past or future singularities

of physical models and are known exactly.

Figure A.4 shows that complex roots occur 0 < θ < π/2. In the range π/4 <

θ < π/2 figure A.6 shows that the phase of the complex roots is very close to π.

We can approximate these roots as real, negative roots. Conversely, figure A.6

also shows that in the range 0 < θ ≤ π/4 the phase is not close to 0 or π. These

roots are complex only when ∆ > ∆rc. First, we fit ∆rc by

∆rc,app(θ) =
∣∣∣0.41 csc2 θ(cos θ − 2 sin θ) + 3.57(cos θ − 2 sin θ)(sin θ)4.39

∣∣∣ . (A.38)

We cannot approximate the time of validity with the results for physical cases
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Figure A.6: Roots with η = 2π plotted in the complex ∆ plane for 0 < θ ≤
π. These values of θ correspond to those in figure A.4. The
color codes the complex phase of the roots (∆ = ∆eiφ). The
real positive (φ = 0) and negative (φ = π) roots are shown in
red and cyan respectively. The complex roots can have any
color other than these two and the bottom figure provides the
coding. By comparison with figure A.4 one sees that all open
models with real roots are cyan (negative); likewise all closed
models with real roots are red (positive). Note, however, that
there exist complex roots for both open and closed models.
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but it turns out that the numerically derived time of validity is insensitive to θ

in the range 0 < θ < π/4 and may be fit

H0tapp(∆) =
2
3

+



14.125
∆2.5 0 < ∆ ≤ 1

1.514
∆2.82 1 < ∆ ≤ 2

1.778
∆3.13 2 < ∆ ≤ 5

63095
∆9.6 5 < ∆ ≤ 10

2×106

∆8.5 ∆ > 10.

(A.39)

Using these quantities, the table below gives an approximation to the time of

validity, Tapp, for all values of θ and ∆. The times for collapse and the bang times

are equivalent to eq. (A.35) and reproduced here for convenience:

tcoll(∆, θ) = t0 +
1

2H0

(1 + ∆ cos θ)
[−E(∆, θ)]3/2 (2π) − tage(∆, θ) (A.40)

t−bang(∆, θ) = t0 + tage(∆, θ) (A.41)

where

tage(∆, θ) =
1

H0

√
(1 + ∆ cos θ)

√
(1 + ∆ sin θ)2

(1 + ∆ cos θ)
(A.42)

−
1

H0

(1 + ∆ cos θ)
[E(∆, θ)]3/2 sinh−1

√
E(∆, θ)

(1 + ∆ cos θ)
,

E(∆, φ, θ) = (1 + ∆ sin θ)2 − (1 + ∆ cos θ) (A.43)

The error in the fit is estimated as

E =
T − Tapp

T
. (A.44)

If E > 0 then the approximation is conservative in this sense: the approximate

time of validity is less than the true value. Conversely, if E < 0, then the
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Table A.1: Approximation to time of validity, Tapp(∆, θ), for 0 ≤ θ ≤ π. Note
that ∆rc,app is an approximation to ∆rc in eq. (A.38).

Parameter range Tapp

0 < ∆ < ∆rc,app E(∆, θ) < 0 tcoll(∆, θ)

0 < θ < π/4 0 < ∆ < ∆rc,app E(∆, θ) > 0 tcoll(−∆, θ)

∆ > ∆rc,app tapp(∆, θ)

0 < ∆ < 1
| sin θ| tcoll(−∆, θ)

π/4 < θ ≤ π/2 1
| sin θ| ≤ ∆ ≤

∣∣∣ 2 sin θ−cos θ
sin θ cos θ

∣∣∣ <
[
t−bang(−∆, θ)

]
∆ >

∣∣∣2 sin θ−cos θ
sin θ cos θ

∣∣∣ < [tcoll(−∆, θ)]

0 < ∆ ≤ 1
| sin θ| tcoll(−∆, θ)

π/2 ≤ θ ≤ π ∆ > 1
| sin θ| t−bang(−∆, θ)

approximation overestimates the time of validity. Using the above fits the worst

case is E ' −0.02. We always use a time step δt which satisfies δt < 0.98Tapp so

that the inaccuracy in the approximation is irrelevant.

A.5 Error characterization of the Lagrangian series

We want to characterize the errors associated with calculating the solution at

time t f given some fixed initial conditions at time t0. Errors arise because any

real calculation involves truncating the Lagrangian expansion. We want to

compare the errors that result from different choices of truncation order and of

the number of re-expansion steps assuming all series expansions are convergent

(i.e. all respect the time of validity). Let Nm represent the final physical

coordinate generated with a m-th order calculation using N steps. Ultimately,

we seek to characterize differences like Nm − N′m′ . The quantity 1∞ is the exact
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answer.

Single step

The Lagrangian series solution for a single step has the form

1∞ = a(t)

1 +

∞∑
i=1

b(i)(t)
a(t)

∆i
0

 X0, (A.45)

where each b(i) satisfies

b̈(i) −
H2

0a3
0b(i)

a3 = S (i) (A.46)

and initial conditions are specified at t = t0. The initial conditions at each order

and the forms for the first few S (i) are given in the text.

If t f − t0 = δt << t0, then the solutions can be expanded in the small parameter

δt/t0. The solutions are

b(1)(t)/a(t) ∼ c(1) δt
t0
, (A.47)

b(i)(t)/a(t) ∼ c(i)
(
δt
t0

)i+1

for i ≥ 2. (A.48)

The coefficients c(i) depend on the angle θ and have a weak dependence on the

Lagrangian order. The difference between the exact answer and the m-th order

approximation for a single step is

1∞ − 1m =

 ∞∑
i=m+1

c(i)
(
δt
t0

)i+1

∆i
0

 X0. (A.49)

As long as t f is within the time of validity of LPT, by definition, the LPT

series converges and from the equation above, the leading order error scales

as ∼ (δt/t0)m+2∆m+1 (order terms first by powers of ∆ and then by powers of δt/t0).
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Multiple steps

In general for a practical application one is limited to working at a finite

Lagrangian order. In such cases, it becomes necessary to ask if convergence can

be achieved by working at a finite Lagrangian order with increasing number of

steps.

First, we outline the calculation. The initial data is subscripted by “0”. For

example, let the initial perturbed scale factor be b0 = b(t0), the initial background

scale factor a0, the initial density contrast δ0 and the initial velocity perturbation

δv0. The Lagrangian expansion parameter ∆0 and angle θ0 follow from the

relations δ0 = ∆0 cos θ0 and δv0 = ∆0 sin θ0. The physical coordinate is r0 = b0X0;

for given r0 the initial Lagrangian coordinate X0 is fixed by choosing b0 to be

equal to a0.

Consider taking N steps from initial to final time with an m-th order

Lagrangian expansion. Assume that the final time is within the time of validity

of the Lagrangian expansion. For definiteness, let the j-th time be t j = t0β
j/N

where β = t f /t0 (so tN is just the final time t f ). This geometric sequence

of increasing steps is well-suited for an expanding background with a small

growing perturbation. The scaling of differences like Nm − 1∞, (N + 1)m − Nm and

Nm+1 − Nm with N and m are all of interest. We expect the same scaling of these

differences with N and m for any uniformly refined set of time steps.

A finite order Lagrangian expansion accurate to order m is a truncated

representation of the full Lagrangian solution

b(t) =

m∑
i=0

b(i)(t)∆i
0. (A.50)

At the beginning of the first step the scale factor at t0 is advanced to t1 and
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written as b(t0 → t1; ∆0, θ0). Note the explicit dependence on the perturbation

parameters at t0. Abbreviate the scale factor and its derivative for the truncated

expression as b and ḃ. The background scale factor at time t1 is a1. At the end

of the first step the Lagrangian coordinate X1 and the new b1 are inferred as

described in the main body of the text by re-scaling quantities calculated at t1.

The new b1 is not b. The net result for the full step t0 → t1 is

X1 = X0
b
a1

(A.51)

b1 = a1 (A.52)

ḃ1 =
ḃ
b

a1 (A.53)

δ1 = (1 + δ0)
(a1

b

)3
− 1 (A.54)

δv1 =
a1ḃ
ȧ1b
− 1. (A.55)

The newly defined quantities subscripted by “1” will be used to initiate the next

step. The updated perturbations imply new Lagrangian expansion parameter

and angle according to

∆1 =

√
δ2

1 + δ2
v1 (A.56)

cos θ1 =
δ1

∆1
(A.57)

sin θ1 =
δv1

∆1
. (A.58)

The new physical position is r1 = b1X1 = bX0. In a numerical calculation the

truncated b is exact to floating point precision but contains an error because of

the omitted orders; in a symbolic calculation b is known to order ∆m
0 .

The next step from t1 → t2 involves a similar update with b = b(t1 → t2; ∆1, θ1)

X2 = X1
b
a2

(A.59)

b2 = a2 (A.60)
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ḃ2 =
ḃ
b

a2 (A.61)

δ2 = (1 + δ1)
(a2

b

)3
− 1 (A.62)

δv2 =
a2ḃ
ȧ2b
− 1. (A.63)

The new physical position is r2 = b2X2. This iterative scheme repeats for a total

of N steps. It ultimately yields an approximation to the position at the final time

denoted Nm = bN XN .

A difference like (N + 1)m − Nm may be calculated numerically for various

N and m and the scaling fitted and inferred. In addition, one can approach the

problem symbolically. To write Nm we need to expand the final result in powers

of ∆0. Note, for example, that ∆1 and θ1 are known as expansions in ∆0 with

coefficients that depend upon θ0. Perturbation-related quantities are re-written

systematically in terms of initial quantities. For example, b(t1 → t2; ∆1, θ1)

may be expanded in powers of ∆1 with coefficients depending upon θ1. Next,

all occurrences of ∆1 and θ1 are replaced by expansions in powers of ∆0 and

coefficients depending upon θ0. All terms up to and including ∆m
0 are retained in

the final result. This procedure is systematically repeated until all quantities are

expressed in terms of initial data. Finally, the difference (N+1)m−Nm is calculated

symbolically. Similar strategies allow construction of all the differences of

interest.

To make analytic progress assume that ft = β − 1 = (t f − t0)/t0 << 1 is a

small parameter. In a difference like (N + 1)m − Nm many “lower order” terms

will coincide. Consider an ordering of terms by the powers of ∆0 (first) and by

powers of ft (second). Define the leading-order difference to be the first non-

vanishing term proportional to ∆
p
0 f q

t for smallest p and then smallest q. It is

straightforward to apply this ordering to simplify the differences like (N + 1)m −
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Nm. The leading order differences satisfy the following simple equalities

|1∞ − Nm| ∼ |gN,m|

|Nm+1 − Nm| ∼ |gN,m| (A.64)

|(N + 1)m − Nm| ∼ |gN+1,m − gN,m|

where

gN,m = KN,m cos θ sinm θ∆m+1 f m+2
t

KN,m =
1
9

(
−2
3

)m (
N − m

2+m

Nm+1

)
.

These differences can be compared with the numerical differences for which no

expansion in ft is carried out.

We verified the analytical scaling by the following numerical experiment.

The parameters of the problem at the starting time t0 are ∆0 = 1/2, θ0 = −π/4.

The final time of interest t f is close to the initial time so that (t f − t0)/t0 = 1/4. The

m-th order Lagrangian approximation is evaluated at this fixed final time with

successively increasing number of steps. Values of m from 1 to 4 and values of

N from 10 to 50 were considered. For geometric time steps (ti+1 − ti)/ti = β1/N − 1

is independent of i and denoted δt/t below.

The results are plotted in figure A.7. The points indicate the numerical data

points and the solid lines indicate the analytical functions defined in eq. (A.64).

The numerical calculation was done with a high enough precision that even

small errors of the order of 10−14 are not contaminated by floating point errors.

The agreement between the numerical experiment and the symbolic differences

is very good.

Thus, the scaling of the errors implies that for a small total time step,

any finite order Lagrangian scheme will yield convergent results upon taking

154



0.0 0.5 1.0 1.5

-14

-12

-10

-8

-6

-4

Log10N

L
og

10
È1

¥
-

N
m

È

0.0 0.5 1.0 1.5

-11

-10

-9

-8

-7

-6

-5

-4

Log10N

L
og

10
ÈN

m
+

1
-

N
m

È

0.0 0.5 1.0 1.5

-14

-12

-10

-8

-6

Log10N

L
og

10
ÈN

+
1 m

-
N

m
È

Figure A.7: The three panels show the log of the errors |1∞−Nm|, |Nm+1−Nm|

and |(N + 1)m − Nm| vs. N. The final time t f is the same
for all these comparisons. The dots correspond to the data
generated by the numerical experiment and lines correspond
to the analytical formulas given in eq. (A.64). The lines from
top to bottom correspond to m = 1, 2, 3, 4 respectively for the
first and third panels and to m = 1, 2, 3 for the second panel.
It is clear that for a fixed m, increasing the number of steps
improves convergence. Conversely, for a fixed N, increasing
the Lagrangian order m improves convergence.

multiple steps. Conversely, for a fixed number of steps, a higher order

Lagrangian calculation will give better results.

It is useful to express the scaling in terms of the individual small step size

δt/t. Under the assumptions that (t f−t0)/t0 is small, (t f−t0)/t0 ∼ Nδt/t. The scaling

|1∞ − Nm| ∼ N−m∆m+1((t f − t0)/t0)m+2 can be re-written as |1∞ − Nm| ∼ N((t f − t0)/t0) ·

∆m+1(δt/t)m+1, which can be interpreted as an error of ((t f − t0)/t0)∆m+1(δt/t)m+1 per

step. In the text, the quantity ε = ∆δt/t is kept constant. For fixed initial and

final times, the error scales ∝ Nεm+1. If ∆ does not change appreciably then the

error is ∝ ∆εm. Convergence is attained when ε → 0.
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APPENDIX B

APPENDIX FOR CHAPTER 4

B.1 Mathematical Transformations

Changing the derivative with respect to r to that with respect to X in eqs. (4.1)

and (4.2) involves the transformations outlined below.

B.1.1 Divergence Equation

∇r · r̈ =
∂r̈i

∂ri
=
∂r̈i

∂Xl

∂Xl

∂ri
(B.1)

where Einstein’s repeated summation convention is followed.

The inverse transformation from X-space to r-space is given as

∂Xl

∂ri
=

1
2J
εlmnεi jk

∂r j

∂Xm

∂rk

∂Xn
(B.2)

where

J = Det
(
∂ri

∂X j

)
= εabc

∂r1

∂Xa

∂r2

∂Xb

∂r3

∂Xc
=

1
6
εipqε jlm

∂ri

∂X j

∂rp

∂Xl

∂rq

∂Xm
(B.3)

and εi jk is the usual Levi-Civita symbol. Substituting in eq.(4.1) gives

εlmnεi jk
1

2J
∂r̈i

∂Xl

∂r j

∂Xm

∂rk

∂Xn
= −4πG

(
ρm,0a3

0(1 + δ(X, t0))
J

+ ρd.e,0(1 + 3w)
(a0

a

)3(1+w)
)
.

(B.4)

Multiplying throughout by J and using eq. (B.3),

1
2
εlmnεi jk

∂r̈i

∂Xl

∂r j

∂Xm

∂rk

∂Xn
= −4πGρm,0a3

0(1 + δ(X, t0)) (B.5)

−
2πG

3

(
1 + 3w)ρd.e,0

(a0

a

)3(1+w))
εlmnεi jk

∂ri

∂Xl

∂r j

∂Xm

∂rk

∂Xn

)
.

Using the definition of the L̂ operator eq. (4.13), recasts eq. (B.5) as eq. (4.10).
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B.1.2 Curl Equation : Irrotationality in Eulerian space

Consider the component of equation eq. (4.2) along the r̂i direction. Again use

(B.2) to write

(∇r × r̈)i = εi jk
∂r̈k

∂r j
= εi jk

∂r̈k

∂Xl

∂Xl

∂r j
=

1
2J
εi jkεlmnε jrs

∂r̈k

∂Xl

∂rr

∂Xm

∂rs

∂Xn
= 0. (B.6)

Using the identity, εi jk = −ε jik and ε jikε jrs = δirδks − δisδkr, one gets

(∇r × r̈)i = −εlmn
∂r̈k

∂Xl

∂ri

∂Xm

∂rk

∂Xn
+ εlmn

∂r̈k

∂Xl

∂rk

∂Xm

∂ri

∂Xn
= 2εlmn

∂r̈k

∂Xl

∂rk

∂Xm

∂ri

∂Xn
= 0. (B.7)

Here, we have set each component of the vector ∇r × g in the r basis equal to

zero. In vector form

εlmn
∂r̈k

∂Xl

∂rk

∂Xm

∂ri

∂Xn
r̂i = 0̄. (B.8)

One can also express the components of ∇r × g in the X basis. The two basis

vectors are related by

r̂i =
∂Xp

∂ri
X̂p. (B.9)

Re-expressing ∇r × g in the X̂ basis gives

εlmn
∂r̈k

∂Xl

∂rk

∂Xm

∂ri

∂Xn

∂Xp

∂ri
X̂p = 0. (B.10)

But ∂ri/∂Xn · ∂Xp/∂ri = δpn Since the basis vectors are all independent, the

individual components must be zero. The simplified condition for each n is

εnlm
∂r̈k

∂Xl

∂rk

∂Xm
= 0. (B.11)

Using the definition of the T̂ operator eq. (4.14) recasts eq. (B.11) as eq. (4.10).

B.2 Properties of the L̂ and T̂ operators

.

L̂[c · F(α),F(β),F(γ)] = c · L̂[·F(α),F(β),F(γ)], (B.12)
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L̂[F(α),F(β),F(γ)] = L̂[F(β),F(α),F(γ)], (B.13)

L̂[F(α) + F(η),F(β),F(γ)] = L̂[F(α),F(β),F(γ)] + L̂[F(η),F(β),F(γ)]. (B.14)

Similar properties hold for the T̂ operator. In addition

T̂[F(α),F(α)] = 0. (B.15)

B.3 Separating the spatial and temporal solutions

This section first explains the equations and initial conditions and then outlines

the implementation algorithm.

B.3.1 Equations and initial conditions

For the first order, the equations to be solved have the form

DL
t

[
∇x · p(1)

]
= −

3
2

H2
0Ωm,0a3

0δ(X, t0), (B.16)

DT
t

[
∇x × p(1)

]
= 0. (B.17)

and for higher order the form is

DL
t

[
∇x · p(n)

]
= S (n,L), (B.18)

DT
t

[
∇x × p(n)

]
= S(n,T ). (B.19)

These equations are subject to initial conditions:

At first order

p(1,L/T )(X, t0) = 0, (B.20)

ṗ(1,L/T )(X, t0) = vL/T (X, t0). (B.21)
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At all higher orders n > 1,

p(n,L/T )(X, t0) = 0 (B.22)

ṗ(n,L/T )(X, t0) = 0. (B.23)

The form of the time derivative operators and the source terms are given in the

text.

The initial perturbation is described by one scalar field corresponding to the

initial density field and two vector fields corresponding to the curl-free and

divergence-less parts of the velocity field. The initial acceleration field (vector)

can be constructed from the initial density field via Poisson’s equation and is

also curl-free. All the three vector fields are taken to be of first order (by choice).

Since the spatial and temporal operators in eqs. (B.16) and (B.17) commute, the

first order displacement field can be written as a linear combination of these

three independent vectors with purely time dependent coefficients. Splitting

into the longitudinal and transverse components, the first order displacement

p(1) is written as

p(1,L) = bδ(t)Fδ(X) + bL
v (t)FL

v (X), (B.24)

p(1,T ) = bT
v (t)FT

v (X). (B.25)

The superscripts denote the order and type of the term. Substituting in eqs.

(B.16) and (B.17) gives,

DL
t bδ(t)[∇ · Fδ] + DL

t bL
v (t)[∇ · FL

v ] = −
3
2

H2
0Ωm,0a3

0δ(X, t0). (B.26)

DT
t bT

v (t)[∇ × FT
v ] = 0. (B.27)

The initial conditions that p(1) satisfies are given by eqs. (B.20) and (B.21). There

is a choice to be made in how these initial conditions translate to conditions on
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the temporal and spatial functions. We choose to set the spatial functions as

∇ · Fδ = δ(X, t0), (B.28)

FL
v = vL(X, t0), (B.29)

FT
v = vT (X, t0) (B.30)

and the temporal equations as

DL
t bδ(t) = −

3
2

H2
0Ωm,0a3

0 (B.31)

DL
t bL

v (t) = 0, (B.32)

DT
t bT

v (t) = 0. (B.33)

subject to the initial conditions

bδ(t0) = 0 (B.34)

ḃδ(t0) = 0 (B.35)

bL,T
v (t0) = 0 (B.36)

ḃL,T
v (t0) = 1. (B.37)

The Poisson equation eq. (B.28) is subject to periodic boundary conditions and

is solved using Fourier transforms. This prescription completely specifies the

first order solution.

At higher orders (n > 1), the source terms are combinations of lower order

terms. The general structure of a longitudinal and transverse source terms at

the n-th order is of the form

S (n,L) =
∑
α,β,γ

α+β+γ=n

hL
α,β,γ(t) · L̂[F(α),F(β),F(γ)] (B.38)

S(n,T ) =
∑
α

hT
α(t)T̂[F(α),F(n−α)]. (B.39)
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For the longitudinal term, α, β, γ can take any value from 0 to n − 1 and F(0) = X.

For the transverse term, α can take values from 1 to n − 1.

It is easy to calculate all the independent source terms symbolically at all

orders using the symmetries and properties of the L̂ and T̂ operators. Let Zn,L

and Zn,T denote the number of such independent longitudinal and transverse

terms respectively (see table B.1). The form for the longitudinal and transverse

displacements can then be taken as

p(n,L) =

Zn,L∑
i=1

b(n,T )
i (t)F(n,T )

i (X) (B.40)

p(n,T ) =

Zn,T∑
i=1

b(n,T )
i (t)F(n,T )

i (X) (B.41)

where the spatial functions F(n,L) and F(n,T ) satisfy an equation of the form

∇X · F(n,L) = L̂[F(α),F(β),F(γ)] (B.42)

∇X × F(n,T ) = T̂[F(α),F(n−α)] (B.43)

and the temporal functions b(n,L)(t) and b(n,T )(t) satisfy

DL
t b(n,L)(t) = hL

α,β,γ(t) (B.44)

DT
t b(n,T )(t) = hT

α(t) (B.45)

The temporal equations at all orders higher than the first are subject to the initial

conditions b(n,L/T )(t0) = 0, ḃ(n,L/T )(t0) = 0. The spatial equations are subject to

periodic boundary conditions.

B.3.2 Algorithm

1. Specify the order of the scheme and the number of initial functions at first

order. In general Z1,L = 2 and Z1,T = 1. If the initial conditions start with
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Table B.1: Number of transverse and longitudinal terms as a function of
Lagrangian order and type of initial conditions.

Order vT = 0 vT , 0

n=1 ZL = 2,ZT = 0 ZL = 2,ZT = 1

n=2 ZL = 3,ZT = 1 ZL = 6,ZT = 3

n=3 ZL = 12,ZT = 8 ZL = 37,ZT = 27

zero transverse velocity then Z1,T = 0.

2. Construct all the longitudinal and source terms formally L̂[F(α),F(β),F(γ)]

and T̂[F(α),F(β)]. Counting the terms determines Zn,L, Zn,T .

3. Substitute the ansatz r = a(t)X +
∑

n p(n,L) +
∑

n p(n,T ) in the equation

L̂[r̈, r, r] = −3H2
0Ωm,0a3

0(1 + δ(X, t0)) (B.46)

−
H2

0

2
(1 + 3w)Ωd.e,0

(a0

a

)3(1+w)
L̂[r, r, r]

T̂[r̈, r] = 0 (B.47)

The form for the displacement vectors is given by eq. (B.40) and eq. (B.41).

Use properties of the L̂ and T̂ operators given in Appendix B.2 to simplify.

4. Obtain the time-dependent coefficients of the terms L̂[F(α),F(β),F(γ)] and

T̂[F(α),F(β)]. These are the source terms for the temporal equations.

Construct the set of temporal equations which have the form eq. (B.44)

and eq. (B.45) and are subject to the initial conditions given above.

5. The symbolic spatial sources are then used to solve the spatial equations.
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B.4 Numerical implementation of the LPT scheme

This implementation of the LPT scheme consists of two parts. The first part

consists of symbolically obtaining all the spatial and temporal equations to be

solved and the second part is the numerical implementation of the solution.

The symbolic manipulations involved and the algorithm for the first part

are outlined in Appendix B.3. The main point is that the displacement vector

at each order can be written as a sum of many terms of which each term is of

the type b(t)F(X). At the n-th order there are Zn,L such terms that correspond to

the longitudinal functions and Zn,T such terms that correspond to the transverse

functions denoted as b(n,L/T ) and F(n,L/T )(X). The temporal functions b(t) all satisfy

second order O.D.E with two initial conditions and the spatial equations at each

order are of two types

∇X · FL(X) = S L(X) (B.48)

∇X × FT (X) = ST (X) (B.49)

where S L(X) and ST (X) are known scalar and vector source terms that depend

on partial derivatives of lower order displacement fields. The spatial equations

are subject to periodic boundary conditions.

The second part of the scheme consists of numerically solving these

equations. The separation of the spatial and temporal equations allows them

to be solved independent of each other. The temporal equations are solved

together as a set of simultaneous second order differential equations using a

standard ODE solver (NDSolve in Mathematica was used here). The spatial

equations are solved on a three dimensional grid using Fourier transforms.

The three main operations involved in obtaining the spatial part of the solution
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are calculating partial derivatives for the source terms, solving the divergence

equation and solving the curl equation of the form mentioned above. These are

done on a equispaced grid using discrete Fourier transforms and the technical

details for them are given in appendices B.6, B.5, B.7. The algorithm for

obtaining the full solution is outlined below.

B.4.1 Algorithm

1. Set up the grid in coordinate and Fourier space. This grid stays fixed for

the entire simulation. Let Lx, Ly, Lz and N1,N2,N3 denote the dimensions of

the box and resolution in each dimension respectively. Choose the center

of the box to be the origin. The grid coordinates in the spatial directions

extend from −L/2 to L/2.

x[i] =


(i − 1)∆x i = 1, . . .N/2 + 1

(i − 1)∆x − L i = N/2 + 2 . . .N
(B.50)

where ∆x = L/N.

In Fourier space, the grid coordinates extend from −kc to kc where kc is the

Nyquist frequency kc = 2π · N/(2L).

k[i] =


(i − 1)∆k i = 1, . . .N/2 + 1

(i − 1)∆k − 2kc i = N/2 + 2 . . .N
(B.51)

where ∆k = 2kc/N = 2π/L.

2. Get the symbolic forms of the temporal equations and spatial source terms.

This in general depends on the number and type of functions at the first

order and the order of the scheme. The algorithm is described in Appendix

B.3.
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3. Solve the temporal part

(a) Specify the initial time t0 and final time t f .

(b) Assign values to the cosmological parameters that dictate the

background evolution a0, H0, Ωm,0,Ωde,0.

(c) Specify the initial conditions for each of the temporal functions at all

orders (see Appendix B.3).

(d) Solve the temporal equations for all temporal functions b(n,L/T )(t).

Store all b(n,L)
i (t) (i = 1, . . .Zn,L) and b(n,T )

i (t) (i = 1, . . .Zn,T ).

4. Solve the spatial part.

(a) Set up the arrays corresponding to the initial density field δ(X, t0) and

velocity field v(X, t0). If the longitudinal and transverse parts of the

velocity field are not known independently, extract them as follows:

Solve ∇X · vL(X, t0) = ∇X · v(X, t0) for vL(X, t0). Set vT (X, t0) = v(X, t0) −

vL(X, t0).

(b) At first order solve ∇X · Fδ = δ(X, t0) and set FL,T
v = vL,T (X, t0).

(c) At second order evaluate the sources S L(X) and ST (X) on the grid

for the divergence equation and solve the divergence equation and

curl equations for the longitudinal and transverse terms respectively.

Refer to the definitions and the Appendices B.6, B.5, B.7 for the

numerical implementation of the solutions.

(d) Repeat the previous step for all higher orders until the maximum

order is reached. Store all spatial solutions for F(n,L)
i (X) (i = 1, . . .Zn,L)

and F(n,T )
i (X) (i = 1, . . .Zn,T ).
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5. Reconstruct the physical position and velocity at any later time t.

r = a(t)X + p(X, t) (B.52)

ṙ = ȧ(t)X + ṗ(X, t) (B.53)

where

p(X, t) =
∑

n

p(n)(X, t) (B.54)

=
∑

n

 Zn,L∑
i=1

b(n,L)
i (t)F(n,L)

i (X) +

Zn,T∑
i=1

b(n,T )
i (t)F(n,T )

i (X)


ṗ(X, t) =

∑
n

ṗ(n)(X, t) (B.55)

=
∑

n

 Zn,L∑
i=1

ḃ(n,L)
i (t)F(n,L)

i (X) +

Zn,T∑
i=1

ḃ(n,T )
i (t)F(n,T )

i (X)


6. Compute the density at any later time t.

J(X, t) = Det
(
∂ri

∂X j

)
(B.56)

δ(X, t) =
(1 + δ(X, t))a(t)3

J(X, t)
− 1 (B.57)

7. If multiple steps are being taken, reinitialize the system as follows:

Let the initial and final time in the previous step be denoted as t0 and

t1 respectively and Lagrangian coordinates as X0 and X1 respectively. The

physical position and velocity of the particles is not altered by the labeling.

This sets the relationship between the coordinate labels X0 and X1 and sets

the initial velocity field for the next step.

r(t1) = a1X1 = a1X0 + p(X0, t1). (B.58)

ṙ(t1) = ȧ1X1 + ṗ(X1, t1) (B.59)

ṗ(X1, t1) = ṗ(X0, t1) −
ȧ1

a1
p(X0, t1), (B.60)

δ(X1, t1) =
(1 + δ(X0, t0))a3

1

J(X0, t1)
− 1. (B.61)
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The physical density and velocity at the end of the previous step are

obtained at the equispaced grid locations in the X0 space. But it is required

that the initial conditions be given on the grid equispaced in the X1 space.

This is equivalent to a non equispaced grid in the X0 space at time t1.

The steps below outline the reinitialization routine.

(a) Set t0 = t1 and t1 = t2, where t2 is the final time of interest for the next

step.

(b) Get new values for a0, H0, Ωm,0, Ωd.e.,0. The initial conditions for the

temporal functions b(n,L/T )(t) stay the same.

(c) Interpolate the functions in the r.h.s of eq. (B.60) and eq. (B.61)

and the function p(X0, t1)/a1 to obtain a symbolic function that can

be evaluated at any point X0. Interpolation should be done using

periodic functions.

(d) Solve for

Xgrid
1 = X0 +

p(X0, t1)
a1

. (B.62)

This is done iteratively. X(0)
0 = Xgrid

1 and solving X(1)
0 = Xgrid

1 −

p(X(0)
0 , t1)/a1, X(2)

0 = Xgrid
1 − p(X(1)

0 , t1)/a1,etc. This iterative scheme

involves knowing the displacement at all points (not just at grid

values) in the X0 space. The values at the non-grid points in the X0

space are evaluated by interpolation of the values at the grid points

in the X0 space.

(e) Evaluate the interpolated functions for density and velocity at the off

grid points X0. These correspond to the new density and velocity on

the equispaced grid in X1 space.

8. Return to step 2.
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B.5 Solving Poisson’s equation on the grid

This section outlines the algorithm to solve for ∇X · F = S (X), where F is a

longitudinal function i.e. ∇X × F = 0.

Since the function is curl-less it can be represented by F = ∇Xφ. The

divergence equation is then transformed to Poisson’s equation

∇2
Xφ(X) = S (X) (B.63)

and is solved by the method of Fourier transforms.

The discrete fourier representation of φ(x) at the grid point labeled by xn in

one dimensions is

φ̃(kn) =
1
√

N

N∑
m=1

φ(xm)eikn xm (B.64)

and the inverse fourier transform is defined as

φ(xm) =
1
√

N

N∑
n=1

φ̃(kn)e−ikn xm . (B.65)

The solution to eq. (B.63) is obtained by the following steps:

1. Take the three dimensional Fourier transform of the source S̃ (k).

2. Set the zero frequency terms to be zero i.e. set S̃ (kx = 0, ky = 0, kz = 0) = 0.

3. Divide by −(k2
x + k2

y + k2
z ).

4. Take inverse Fourier transform.

This gives

φ(X) = Inv.FT
[

S̃ (k)
−(k2

x + k2
y + k2

z )

]
. (B.66)
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To avoid the singularity at kx = 0, ky = 0, kz = 0, the component S̃ (k = 0̄) is set to

0. If the original data has the property S̃ (k = 0̄), then this operation introduces

no error. This property is equivalent to

N1∑
i=1

N2∑
j=1

N3∑
k=1

S i, j,k = 0. (B.67)

where S i, j,k are the values of the source on the three dimensional grid. In the

continuous form this property is
∫

V
dX1dX2dX3S (X) = 0. The initial data (which

sets the first order spatial terms) is assumed to satisfy this property. At higher

orders, it is necessary to check that all source terms satisfy this condition (see

Appendix B.8).

B.6 Taking partial derivatives on the grid

This section outlines the algorithm to take partial derivatives using Fourier

transforms.

Consider first a function φ(x) in one dimension at a grid point denoted by xm.

φ(xm) =
1
√

N

N∑
n=1

φ̃(kn)e−ikn xm . (B.68)

Taking the derivative gives

dφ
dx

∣∣∣∣∣
xm

=
1
√

N

N∑
n=1

−iknφ̃(kn)e−ikn xm (B.69)

If φ(x) is a real function and x is a real variable, then it is required that dφ/dx be a

real function of x i.e. dφ/dx = (dφ/dx)∗, where ∗ denotes the complex conjugate.

Taking complex conjugate of the previous equation gives,

dφ
dx

∣∣∣∣∣∗
xm

=
1
√

N

N∑
n=1

iknφ̃
∗(kn)eikn xm (B.70)

169



Consider the difference between eq. (B.69) and eq. (B.70). If φ is a real function

then φ̃∗(kn) = φ̃(−kn). The positive k values in the first term cancel the negative k

terms in the second term except when k = kc since the negative Nyquist value

is not explicitly represented on the grid. Thus, the discrete representation of a

derivative taken using Fourier transforms has the property

dφ
dx

∣∣∣∣∣∗
xm

−
dφ
dx

∣∣∣∣∣
xm

=
1
√

N
ikcφ̃(kc) =

√
N

L
πiφ̃(kc) (B.71)

For the derivative to be real, the quantity on the r.h.s of the above equation

should be zero. Therefore, it is necessary to impose that the components

corresponding to the Nyquist frequency be zero. If the function is bandwidth

limited and has no power in components greater than or equal to the Nyquist

frequency, the r.h.s is equal to zero and no error is made in the representation.

The algorithm for the partial derivative follows:

1. Fourier transform φ(X) to get φ̃(k).

2. Assign zeros to all the Fourier components of φ(X) on the entire 2-d

boundary in k-space corresponding to the Nyquist frequencies i.e. φ̃(k) = 0

if kx, ky or kz = kc.

3. The partial derivative of a function with respect to the X1 coordinate is

then
∂φ

∂X1
= InvF.T

[
−ikxφ̃(k)

]
(B.72)

B.7 Solving the curl equation on the grid

All the higher order transverse functions require solving an equation of the type

∇ × FT = S(X), where the source vector S(X) is known on a N1 × N2 × N3 grid.
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Since FT is divergence-less, we can choose it to be of the form FT = ∇ × A.

∇ × FT = ∇ × (∇ × A) = ∇(∇ · A) − ∇2A. (B.73)

It is always possible to choose A to satisfy ∇ ·A = 0 (gauge freedom). If ∇ ·A , 0,

redefine A as A→ A +∇λ where ∇2λ = −∇ ·A. FT remains unchanged under this

transformation. The equation to solve for then becomes

∇2A = −S(X) (B.74)

which is Poisson’s equation for each component of A and is solved by the

algorithm outlined in section (B.5).

B.8 Check that the longitudinal and source terms are compen-

sated.

We want to prove that the volume integral of the source terms L̂[Fa,Fb,Fc] and

T̂[Fa,Fb] is zero. Since the functions are all periodic, we denote the space as a

3-dimensional torus T3.

B.8.1 Longitudinal terms

To prove

I = εi jkεpqr

∫
T3

dX1dX2dX3
∂F(α)

i

∂Xp

∂F(β)
j

∂Xq

∂F(γ)
k

∂Xr
= 0. (B.75)

Proof: Write I = εi jkI′ where

I′ = εpqr

∫
T3

dX1dX2dX3
∂F(α)

i

∂Xp

∂F(β)
j

∂Xq

∂F(γ)
k

∂Xr
(B.76)
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First integrate over the variable corresponding to Xr. Without loss of generality,

consider the case r = 3. Integrating by parts over X3, we get

I′ = εpq3

∫
T3

dX1dX2

 ∂F(α)
i

∂Xp

∂F(β)
j

∂Xq

∫
dX3

∂F(γ)
k

∂X3

∣∣∣∣∣∣∣
T3

−

∫
dX3

∂

∂X3

∂F(α)
i

∂Xp

∂F(β)
j

∂Xq

 Fγ
k


(B.77)

The first term in the above expression is zero because Fγ
k is periodic and we get

I′ = −εpq3

∫
T3

dX1dX2dX3
∂

∂X3

∂F(α)
i

∂Xp

∂F(β)
j

∂Xq

 Fγ
k (B.78)

In general, for any Ipqr,

I′ = −εpqr

∫
T3

dX1dX2dX3
∂

∂Xr

∂F(α)
i

∂Xp

∂F(β)
j

∂Xq

 Fγ
k

= −εpqr

∫
T3

dX1dX2dX3


 ∂2F(α)

i

∂Xr∂Xp

 ∂F(β)
j

∂Xq
+

 ∂2F(β)
j

∂Xr∂Xq

 ∂F(α)
i

∂Xp

 Fγ
k

= −εpqr

∫
T3

dX1dX2dX3

 ∂2F(α)
i

∂Xr∂Xp

 ∂F(β)
j

∂Xq
Fk

c − εpqr

∫
T3

dX1dX2dX3

 ∂2F(β)
j

∂Xr∂Xq

 ∂F(α)
i

∂Xp
Fγ

k

The first integrand is symmetric under the exchange r ↔ p and the second

under the exchange r ↔ q. εpqr is antisymmetric under these exchanges.

Therefore, I′ = 0 for every triplet (p, q, r) and I = 0.

B.8.2 Transverse terms

To prove

I =

∫
T3

dX1dX2dX3

−εnlm
∂F(α)

k

∂Xl

∂F(β)
k

∂Xl

 = 0. (B.79)

Proof: Rewrite the integrand

−εnlm
∂F(α)

k

∂Xl

∂F(β)
k

∂Xm
= −εnlm

∂

∂Xl

F(α)
k

∂F(β)
k

∂Xm

 + εnlmF(α)
k

∂2F(β)
k

∂Xl∂Xm
(B.80)
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The second term is zero because of the εnlm is antisymmetric under exchange of

l and m.

I = −εnlm

∫
T3

∂

∂Xl

F(α)
k

∂F(β)
k

∂Xm

 dX1dX2dX3 (B.81)

Consider n = 1 and integrate over the variable corresponding to l.

I = −ε123

∫
T3

dX1dX3

F(α)
k

∂F(β)
k

∂Xm


B

+ (2↔ 3) (B.82)

Since all the lower order terms are periodic, the terms in the brackets evaluated

on the boundary B add up to zero. The net integral for n = 1 is zero. Similarly

for n = 2, 3.

These results ensure that the sources for all Poisson equations encountered

in this scheme integrate to zero on the grid.

B.9 Setting the initial conditions along the Zeldovich curve

Zeldovich initial conditions are those for which the background and

perturbation have the same big bang time. This is also equivalent to having no

growing mode in the solutions. The first order solution depends on the initial

density and velocity fields and in the absence of any initial transverse velocity,

the first order solution is

p(1)(X, t) = bδ(t)Fδ(X) + bL
v (t)FL

v (X) (B.83)

where bδ and bL
v satisfy eqs. (B.31) and (B.32).

At very early times (recombination) the universe is purely matter dominated

with Ω ≈ 1 and the evolution of the spatial functions is

bδ(t) = −
2
5

a0

(
t
t0

)−1/3

−
3
5

a0

(
t
t0

)4/3

+ a0

(
t
t0

)2/3

, (B.84)
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bv(t) = −
3t0

5

(
t
t0

)−1/3

+
3t0

5

(
t
t0

)4/3

. (B.85)

The terms (t/t0)−1/3 and (t/t0)4/3 arise from the homogenous part of the solution

to the differential equation and the particular solution to eq. (B.31) scales as

(t/t0)2/3. The net p(1) is

p(1) =

(
t
t0

)−1/3 [
−

2a0

5
Fδ −

3t0

5
FL

v

]
+

(
t
t0

)4/3 [
−

3a0

5
Fδ +

3t0

5
FL

v

]
+ a0

(
t
t0

)2/3

Fδ. (B.86)

“Zeldovich initial conditions” correspond to no perturbation at the big bang

singularity at t = 0. Imposing this requirement at first order, gives a relation

between the initial velocity and density field at first order.

FL
v = −

2
3
·

a0

t0
Fδ = −ȧ(t0)Fδ (B.87)

Note, that this does not guarantee that there are no decaying modes at t = 0

from the higher order solution. The temporal derivative operator is the same

at all orders and hence the homogenous part of the solution at all orders will

have terms of the form (t/t0)−1/3. These terms will be multiplied by spatial

terms F(X) which get determined by combinations of lower order terms. The

other alternate way to set the initial velocity to satisfy Zeldovich conditions is

to choose the velocity at each point based on the non-linear Zeldovich condition

given by the spherical top-hat. In this case, the relationship in eq. (B.87) is not

satisfied and although the velocity and density lie on the non-linear top-hat

Zeldovich curve, decaying terms are present already at first order. The first

prescription is used more often in literature and in this paper. For simulations

starting at recombination, the differences in the two ways of setting the initial

conditions are very small (∼ 10−8).
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B.10 Spherical tophat

This section describes the details involved in setting up the compensated top-

hat configurations for sections 4.4.1 and 4.4.2

The exact compensated top-hat function consists of a spherical overdense

region surrounded by a compensating underdense vacuum region. Let a and b

be the radii of the overdense and compensating regions respectively. The initial

density profile is given by

ρ(X, ti) =


(1 + δi) 0 ≤ X < a

0 a ≤ X < b

1 X ≥ b

(B.88)

where X = |X|. The choice of δ and a determines the width of the vacuum

region b − a. Making δ too small makes it difficult to resolve the vacuum region

with a moderate size (643) grid. Set δi = 10 a = 1/4 and b = 111/3/4. The

box length Lbox is chosen to be two units in length centered around the point

(1/10,−1/11, 1/(2π)). The choice of parameters ensures that the entire profile is

well represented within the box and the offset ensures that no special symmetry

is exploited in the test. The profile is discontinuous at X = a and X = b. The

Fourier transform of a discontinuous function has power at all wavenumbers

and the Gibbs phenomenon prevents such functions from being completely

represented by Fourier transforms on any finite size grid. In order, to get smooth

initial conditions, this profile is smoothed with a gaussian filter of width σ. The

smoothed density profile is

ρσ(X, ti) =

∫ Lbox

0
ρ(X, ti) ·

exp(−X2/2πσ2)
(2πσ2)3/2 d3X (B.89)

where ρ(X, ti) is given by eq. (B.88). The smoothing is performed analytically

in real space and the smoothed function is then evaluated on the grid. In order
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to ensure periodicity of the initial conditions, the contribution from twenty six

nearest neighbors was added.

For the profile in section 4.4.1, the smoothing parameter is varied inversely

with the grid size so that the original top-hat is recovered in the limit that σ→ 0

and Ns → ∞. The justification for this choice is described below. For the density

profile in section 4.4.2, the smoothing parameter is fixed at σ = 1/18 and only

the grid size Ns is varied.

B.10.1 Scaling of the error

There are two sources of error between the analytic and numerical initial

density. One arises from the smoothing and the other from the discrete

representation of the discontinuous top-hat. The former dominates when the

smoothing width is large and the latter when the when the width is small. Thus,

for a fixed N, there is a certain value of σ for which the net error (smoothing +

Gibbs error) is minimum.

Consider the difference between the original discontinuous top-hat and its

smoothed version represented on a discrete grid with Ns points along each

axis. Figure B.1 shows a schematic representation of the transition boundary

at X = a. The error between the exact step and its smooth version occurs in the

transition region whose width scales proportional to the smoothing parameter

σ. If the transition region is defined to be between ninety and ten percent of

the maximum, the width of the transition region is approximately 1.5 σ. If L is

the length of the box, then n̄ = N3
s /L

3 is the density of points in the transition

region. The value of the function is underestimated for half of these points
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and overestimated for the other half and volume of the region is 4πa2 · 1.5σ.

Therefore, the root mean square error in the representation of the function is

≈

√
1

N3
s
·
(

A
2

)2
· 4πa2 · (1.5σ) · n̄ which scales as

√
σ.

The aliasing error arises because the top-hat function is discontinuous and

therefore its fourier transform is not bandwidth limited. This gives rise to the

Gibbs phenomenon or ringing artifacts in the step function. The overshoot is

around 20% of the maximum value and mainly occurs along the discontinuous

surface. Since the surface is represented by N2
s points the r.m.s Gibbs error scales

as
√

1/N3
s · N2

s ∼ 1/
√

Ns. In order to balance the smoothing error and the Gibbs

error the scaling σ ∼ 1/Ns was chosen.

B.10.2 Effect of periodic boundary conditions

The exact solution is known for a single isolated top-hat initial configuration.

However, the solution using Fourier transforms assumes that the system is

periodic. The evolution of an isolated system and a periodic system is different

because in the latter system, matter in each box will be affected by the force due

to the matter in the neighboring boxes. The ideal limit of an isolated system is

attained only in the limit that the box size is increased along with the resolution

Ns. However, for the sphere, the total contribution to the force from neighbors

arises only from the monopole term which is set exactly to zero because the

density is compensated. Because of spherical symmetry and the fact that the

inner and outer spheres have the same center, all the higher multipole moments

in potential are zero. So, the copies do not exert any force on the central box.

Thus it suffices to consider the convergence of sequence of answers obtained by
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~1.5Σ
A

a

Figure B.1: Schematic representation of the error due to smoothing a step
function by convolving it with a Gaussian. As the width of the
transition region decreases, the smooth function approaches
the discontinuous top-hat.

simultaneously decreasing σ and increasing Ns. The box size does not need to

be changed.

B.11 Realizing a Gaussian field

The initial fractional overdensity δ(x) can be written as as a series expansion in

terms of its Fourier coefficients

δ(x) =
V

(2π)3

∫
δ̃(k)e−ik·xd3k (B.90)

where δ̃(k) satisfies

〈δ̃(k)δ̃(k′)〉 =
2π2P(k)

V
(B.91)

where V is the volume of the box, and P(k) is the matter power spectrum. The

finite resolution of the numerical grid, requires smoothed initial distributions.

The Fourier coefficients of the smoothed density on any scale R are given

by δ̃R(k) = W(k,R)δ̃(k), where W(k,R) is the smoothing window function. The
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window function has the form W(k,R) = e−1/2(kR)2 for a Gaussian k-space filter.

The shape of the linear power spectrum is chosen to be

P(k) =
kn

(1 + P2k1/2 + P3k + Prk3/2 + P5k2)2P6
(B.92)

The coefficients Pi are given in Klypin [41] and n = 1. P(k) is normalized so

that σ8 ≡ σ(R = 8h−1Mpc) = 0.8, where the variance of the density fluctuation

smoothed on a scale R is

σ2
R =

∫ ∞

0
P(k)W(k,R)2k2dk. (B.93)

where W(k,R) is the Fourier transform of the window function in real space.

The form for P(k) above is the linear matter power spectrum today. To set

initial conditions at any starting scale factor a, requires multiplication by the

corresponding growth factors.

P(k, a) = P(k)
(

D(a)
D(a = 1)

)2

(B.94)

where the growth function D(a) is

D(a) =
5
2

Ωm
H(a)
H0

∫ a

0

da′

(a′H(a′)H0)3 . (B.95)

In the above expression H(a) is the Hubble parameter and H0 is its value at the

initial time. The finite size of the simulation grid requires the discrete version of

the definition of Fourier transform which is given as

δ(k) =
∑

δ̃(k)e−ik·x (B.96)

Note, here that an implementation in Mathematica will have to account for

the differences of normalization in the definition of Fourier transforms. The

prescription here is not generic to any particular implementation. The

prescription for each δ̃(k) is

δ̃(k) =

√
2π2P(k)

L3
(ak + ibk) (B.97)

179



where ak, bk are gaussian random numbers with mean zero and variance 1.

For the initial densities in sections 4.4.3 and 4.4.4, the box size was taken

to be Lbox = 100, Ns = 16 and the initial power spectrum was smoothed over 50

Mpc using a gaussian filter, followed by a sharp k-space truncation for k > kniq/2.
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APPENDIX C

APPENDIX FOR CHAPTER 5

C.1 Time dependence of the Zeldovich condition for dark

energy

The evolution of the background and perturbation in the presence of dark

energy is

ä
a

= −
H2

i

2

(
Ωm,ia3

i

a3 + (1 + 3w)Ωd.e,i

(ai

a

) f (a)
)

(C.1)

b̈
b

= −
H2

i

2

(
Ωm,ia3

i (1 + δi)
b3 + (1 + 3w)Ωd.e,i

(ai

a

) f (a)
)

(C.2)

where Hi,Ωm,i,Ωd.e,i are the Hubble parameter and density parameters at the

initial time ti and are related as

Ωm,i = Ωm,0
H2

0

H2
i a3

i

=
Ωm,0a−3

i

Ωm,0a−3
i + Ωd.e,0a−3(1+w)

i

(C.3)

Ωde,i = Ωd.e,0
H2

0

H2
i a3

i

=
Ωd.e,0a−3(1+w)

i

Ωm,0a−3
i + Ωd.e,0a−3(1+w)

i

(C.4)

where Ωm,0,Ωd.e,0,H0 are the values of the density parameters and Hubble

constant today. The initial conditions are a(ti) = ai, ȧ(ti) = ȧi, b(ti) = ai and

ḃ(ti) = ȧi(1 + δv,i).

For a pure matter universe the perturbation equation can be integrated to

get a first order equation for b(t) and an expression for the bang time, but for a

general dark energy term this cannot be done analytically. The bang time for the

perturbation is evaluated by numerically integrating the second order equation.

One can then solve for the pair (δ0, δv,0) which gives the same bang times for

the background and the perturbation. In the case of pure matter, this pair is
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independent of the initial starting time ti. But for general dark energy models,

it depends on time. This can be seen by changing variables x = a/ai,y = b/ai,

t′ = tiHi. The two equations then read

d2x
dt′2

= −
1
2

Ωm,i

x3 + (1 + 3w)Ωd.e,i

(
1
x

)3(1+w) , (C.5)

d2y
dt′2

= −
1
2

Ωm,i(1 + δi)
y3 + (1 + 3w)Ωd.e,i

(
1
x

)3(1+w) , (C.6)

with initial conditions x(t′i ) = 1, ẋ(t′i ) = 1, y(t′i ) = 1, ẏ(t′i ) = (1 + δv,i) where the dots

denote the derivative with respect to. t′. For a pure matter universe Ωd.e,i = 0

and Ωm,i = 1 for all starting times. The bang time for the background in these

units is 2/3 and the pair δi, δv,i is independent of ti. However, the presence of the

dark energy term implies that Ωm,i and Ωd.e,i change with time (eq. (C.4)) and

this implies that the equal bang time pair (δi, δv,i) is no longer independent of ti.

The situation is somewhat subtle when the dark energy is not a cosmological

constant. For cosmologies with w > −1, the equation for the perturbation is

singular when the scale factor of the background a(t) = 0. Therefore, the bang

time for the perturbation is always greater than or equal to the bang time for the

background. However, it is still possible to find a unique value of δv for which

the bang times are equal. The Zeldovich curves for different cosmologies are

plotted in the text.
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