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One of the most striking changes in U.S. equity markets has been the proliferation of 

trading venues. My dissertation studies the impact of market fragmentation on 

liquidity and price discovery from three different perspectives.  

 

The first section, coauthored with Maureen O’Hara, examines how fragmentation of 

trading is affecting the quality of trading.  We use newly-available trade reporting 

facilities volumes to measure fragmentation levels in individual stocks, and we use a 

matched sample to compare execution quality and efficiency of stocks with more and 

less fragmented trading.  We find market fragmentation generally reduces transaction 

costs, as measured by effective spread and realized spread, and increases execution 

speeds.  Fragmentation does increase short-term volatility, but prices are more 

efficient in that they are closer to being a random walk.   

 

The second section focuses on a particular type of new trading mechanism, crossing 

network, in which buy and sell orders are passively matched using the price set by the 

stock exchange. The results show that the crossing network harms price discovery and 

the relative lack of revealed information most strongly affects stocks with high 

uncertainty in their fundamental values. I find that an increase in the uncertainty of the 

fundamental value of the asset increases the transaction costs in both markets, but 

stocks with higher fundamental value uncertainty are more likely to have higher 

market shares in the crossing network. The impact of different allocation rules in the 



crossing network on market outcomes is also examined. 

 

The third section tests the theoretical prediction of the second essay. I find that 

crossing networks have lower effective spread and price impact of trade, but they also 

have lower execution probability and speed of trade. Non-execution is positive 

correlated with price impact, decreases in trading volume and increases in volatility. 

Crossing networks have higher market share for stocks with lower volatility and 

higher volume. We also find that the underlying assumption in previous literature, that 

stocks with higher effective spreads have higher reductions in effective spread by 

trading in crossing networks, is not supported by data. 
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CHAPTER 1 

IS MARKET FRAGMENTATION HARMING MARKET QUALITY? 

 

One of the more striking changes in U.S. equity markets has been the proliferation of 

trading venues.  While the traditional exchanges continue to execute orders, they now 

face a host of competitors ranging from electronic platforms such as ECNS (electronic 

communication networks) and ATS (alternative trading systems), to the trading desks of 

broker/dealer firms, and even to a variety of new entrants such as futures and options 

markets.  The addition of these new trading venues has created a marketplace in which 

equity trading can take place in ways and places unimagined but a few years ago.  And 

these changes are not just confined to U.S. markets.  European equity trading has seen 

dramatic growth of electronic platforms such as Chi-X and BATS, and even Canada, 

where the Toronto Stock Exchange enjoyed a virtual monopoly on trading, has 

experienced fragmentation with the addition of electronic venues Alpha, Pure and 

MATCH Now1

 

. 

What is less clear is how this fragmentation of trading is affecting the quality of trading.  

Certainly, the addition of new trading venues has increased competition, forcing the 

traditional exchanges to lower trading charges and other fees.2

                                                 
1 From its launch in 2007, Chi-X has now captured 19% of EU trading volume market share and in June 
2010 it was the second largest trading venue in terms of volume.  Alternative trading venues have grown 
rapidly in Canada following the launch of the consortia-owned Alpha trading system on November 7, 
2008.  As of March 20010, ATSs have captured 33% of the trading volume in Canada.  

  The proliferation of 

venues has also provided a wealth of trading options to the trading community, 

fostering innovations such as reductions in latency and more sophisticated crossing 

networks.   But there is a deeper concern that fragmentation of trading may also be 

2 See, for example, “NYSE Adjusts Charges in Bid to Draw Traders”, Wall Street Journal, Feb. 3, 2009, 
which discusses the NYSE’s strategy of lowering trading fee rebates to attract more high frequency 
traders. 
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harming the quality of markets by reducing the liquidity available not only in individual 

markets but in the aggregate market as well. Such a degradation of market quality could 

occur, for example, if fragmentation reduced the enforcement of time priority across 

markets, thereby dis-incentivizing traders from posting limit orders. A related concern 

is that because many of the new trading platforms are proprietary systems, not all 

traders can access all trading venues.  This raises the specter that markets may not be 

fragmenting so much as they are fracturing into many disparate pieces.   

 

In this research, we investigate how fragmentation is affecting equity market quality.  

This question has long interested researchers but empirical investigations have been 

limited by the difficulty of measuring both the extent of fragmentation and the quality 

of executions in diverse venues.  Our analysis draws on new data sources to provide 

better metrics for addressing these issues.  We calculate the extent of fragmentation in 

individual stocks by using volumes reported by the newly-established Trade Reporting 

Facilities (TRFs).  Whereas before off-exchange volume was simply aggregated with 

exchange-executed volume for reporting purposes, now exchanges must report only 

their on-exchange volumes, with off-exchange volumes handled by TRFs.3  Because all 

trades must be reported to the consolidated tape, TRF data provides an accurate measure 

of the trades being executed in non-exchange venues.4

                                                 
3 TRFs were mandated by the SEC as a condition for approval of Nasdaq’s application for exchange 
status.  The SEC required that as of March 5, 2007, all non-exchanges must report to a trade reporting 
facility, which in turn would report trades to the consolidated tape. 

  

4 TRF data does not disaggregate trades into specific execution venues so we cannot determine the 
specific volume of trading in each of the many non-exchange venues.  We can determine the aggregate 
off-exchange volume per stock, however, giving us comparable, and much improved, metrics for 
fragmentation.  An alternative fragmentation metric is the volume of trade executed away from the listing 
exchange.  Results using the two fragmentation metrics are similar, but for brevity we report only the 
TRF results.   
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To address market quality issues, we use SEC Rule 605 data, which is a set of execution 

metrics reported monthly on a per stock basis by all execution venues.5

 

  This data was 

generously provided to us by TAG/Audit, and it allows us to compare execution quality 

as measured by effective spreads, realized spreads and execution speeds across stocks 

with more fragmented or more consolidated trading.  We also use more standard TAQ 

microstructure data to investigate quality issues related to price efficiency.  Our analysis 

here examines short-term return volatility and variance ratio tests. 

Determining the effects of fragmentation on execution quality is complicated by 

endogeneity issues. As previously demonstrated (see SEC (2001); Boehmer (2005)), 

different stocks may have different costs of trading for reasons unrelated to 

fragmentation.  For example, small stocks generally have higher trading costs.  If small 

stock trading is also more likely to fragment, then finding higher trading costs for 

fragmented stocks may be spurious due to the failure to control for firm size.  

Additionally, market-related issues (see Bessembinder (2003); Boehmer, Jennings and 

Wei (2007)) may lead to fragmentation for reasons unrelated to the trading costs of 

stocks.  If particular venues only trade specific stocks, a finding of lower trading costs 

for fragmented stocks may be spurious due to a failure to control for this selection bias. 

 

Previous research has addressed these endogeneity concerns in a variety of ways, 

including matched samples, regression analysis and the Heckman correction.  We use 

each of these approaches in our research.  We use the Heckman correction to test for 

                                                 
5 Rule 605 data arises from an SEC requirement that all market centers publicly disclose on a monthly 
basis execution quality statistics.  Not all trade executions must be included,   but data must be provided 
for orders meeting the following criteria:  orders must be held; limit price must be less than 10 cents from 
the quote; order must be straight market or limit order; and the order must be for 10,000 shares or less.  
Bennett and Wei (2006) also use what was then known as SEC 11Ac1-5 data to address market quality in 
their study of firms moving from the Nasdaq to the NYSE, as do Goldstein et al (2008) in their interesting 
study of competition for Nasdaq securities.  
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selection bias in how stocks fragment across markets, and we use a matched sample 

approach to compare the execution quality of stocks with more fragmented trading to 

that of stocks with more consolidated trading.  We also use regression analysis to 

investigate more fully how spreads are affected by fragmentation and other economic 

variables.   

 

Our analysis yields a number of results.  We provide compelling new evidence on the 

extent and nature of fragmentation in U.S. equity markets. We find that off-exchange 

venues are executing almost 30% of all equity volume. While fragmentation levels vary 

widely across stocks, all firms now exhibit fragmented trading, and major markets and 

TRFS now trade virtually all stocks. These results are in stark contrast with earlier 

findings that only sub-sets of stocks fragmented and that markets were selective 

regarding the stocks they chose to trade.  Results from the Heckman correction confirm 

that selection bias is not a factor in explaining the relation of fragmentation and market 

quality. 

 

Turning to the main focus of our paper, we find fragmented stocks generally have lower 

transaction costs and faster execution speed.  The specific effects of this fragmentation 

differ across firm sizes, and it differs as well for NYSE-listed and Nasdaq-listed firms.  

For large firms, fragmentation is associated with faster execution time. For small firms, 

effective spreads are lower, but there are no significant effects on speed.  For NYSE-

listed stocks, large, liquid stocks appear to gain the most from fragmentation, whereas 

for Nasdaq-listed stocks, it is small, illiquid stocks benefiting from fragmentation.  

Fragmented stocks (particularly on the NYSE) do have higher short-term return 

volatility, but prices appear to be more efficient in the sense that they are closer to being 

a random walk.  These efficiency effects also exhibit differences with respect to firm 
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size and listing venues.  Regression analysis provides confirming evidence that market 

quality, as measured by effective spreads, is not harmed by market fragmentation.   

 

An immediate application of our results is to the on-going policy debate regarding the 

desirability of allowing fragmentation to occur in markets.  In the United States, 

fragmentation was an expected outgrowth of Reg NMS, particularly because of the 

changes required by Rule 611 (the “trade through” rule).  Our research provides a first 

analysis of how market quality as measured by transactions costs and efficiency 

measures has fared in this new market structure. 6   In Europe and in Canada, 

fragmentation is more nascent, and our results may be helpful for regulators struggling 

to decide whether to encourage or discourage more off-exchange trading.  In many 

emerging markets, off-exchange trading is prohibited.7

 

 Our finding that fragmentation 

does not appear to have detrimental effects on market quality suggests reconsidering 

such policies.  

We caution, however, that as with prior empirical work, our analysis has limitations.  

We do not have trade data identified by specific trading locale, limiting our ability to 

relate how execution quality differences reflect differences in particular trading 

mechanisms.  We also do not observe many factors that could influence routing 

decisions, such as payment for order flows, the use of indications of interest (IOIs), or 

smart routers.  These data deficiencies limit our ability to address the ex ante causes of 

fragmentation.  More recently, concerns have arisen regarding the stability of 

                                                 
6 Reg NMS, originally proposed in August 2005, entailed a variety of changes to market linkages and 
structure.  Among the most important changes was Rule 611 which essentially imposed a price priority 
rule across all market centers.  By requiring that orders must be sent to the market center with the best 
price, this rule allowed for greater competition by non-exchange venues.  Rule 611 was very contentious, 
and was only fully implemented for all stocks in October 2007.  
7 China, for example, strictly prohibits all off-exchange trading, as do most Asian markets.   
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fragmented markets in abnormal market conditions.  These conditions do not arise 

during our sample period, so an analysis of stability issues is beyond the purview of our 

research.8

 

  Our analysis is thus best viewed as providing empirical evidence on the ex 

post relation between fragmentation and market quality in normal market settings. 

This chapter is organized as follows.  The next section sets out theoretical arguments 

surrounding market consolidation and fragmentation, endogeneity issues and our 

empirical testing approach.  Section 1.2 sets out the data and sample period, and 

discusses the roles played by trade reporting rules and the newly-established trade 

reporting facilities. Section 1.3 presents results on the current state of fragmentation, 

both in the aggregate and conditional on firm and market characteristics.  Section 1.4 

presents empirical results from the Heckman correction, matched sample investigation, 

and regression analysis of how fragmentation affects various metrics of market quality.  

Section 1.5 is a short conclusion. 

 

1.1 Fragmentation versus Consolidation 

1.1.1  Theory and Empirical Evidence 

Whether trading is best consolidated into a single setting or dispersed across multiple 

venues has long interested researchers. The arguments underlying this debate generally 

rely on features of the trading process (specifically, the fixed cost structure of markets 

and network externalities) on the one hand, and the role of competition on the other.  

Traditionally, setting up exchanges was extremely costly.  Trading involved not only 

expenses related to the trading platform, but also to ancillary services such as 

                                                 
8 The causes of aberrant market behavior on May 6, 2010, generally known as the flash crash, remain 
undetermined.   
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monitoring and listing functions, and costs of clearing and settlement.9

 

  With much of 

this cost fixed, it followed that the larger the scale, the smaller could be the trading cost 

per share traded, and so the greater the gains from consolidation.  Network externalities 

convey a similar benefit in that the ability to match buyers and sellers is greater the 

more buyers and sellers there are in a market, and so trading costs also benefit from 

greater scale.  Thus, the notion that “liquidity begets liquidity” favors consolidation, 

even leading some to view exchanges as natural monopolies.  Of course, the downside 

of a monopoly is that it behaves non-competitively, so one argument for fragmentation 

is that the increased competition it engenders reduces trading costs. 

Much of the early theoretical work looking at fragmentation and consolidation argued in 

favor of consolidation.  Mendleson (1987) was perhaps the first to advance the network 

argument, while Pagano (1989) argued that equilibrium with trading in two markets was 

inherently unstable as orders would naturally gravitate to the market with greater 

liquidity.  Chowdry and Nanda (1991) advanced another case for consolidation by 

arguing that adverse selection costs increase with the number of markets trading the 

asset.  Madhavan (1995) argued that consolidated markets would not fragment if trade 

disclosure rules were mandatory across markets, but would do so otherwise.  In his 

model with non-disclosure, dealers benefit from fragmentation by being less 

competitive, and informed traders and large traders also benefit by being able to hide 

trades.  Madhavan stated that “fragmentation increases price volatility and induces other 

distortions as well.”10

 

 

                                                 
9 See, for example, Macey and O’Hara (1999) for a discussion of issues relating to exchange and trading 
system functions. 
10 See Madhavan (1995) pg. 581. 
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More recent research focused on whether competitive effects might shift the arguments 

in favor of fragmented markets. Economides (1996) argued that welfare losses 

connected with monopoly providers are not offset by network externalities, suggesting 

welfare improvement can obtain under fragmentation.  Harris (1993) noted that markets 

fragment in part because traders differ in the types of trading problems that they 

confront.  Hendershott and Mendelson (2000) demonstrated that fragmentation can 

reduce inventory risk of individual dealers.  Bias (1993) proposed conditions under 

which fragmentation would have no effect on market quality where quality is measured 

by the mean of spreads. 

 

Empirically, Battalio (1997) found that spreads narrowed on the NYSE after a third-

market broker (Madoff Securities) initiated trading.  Boehmer and Boehmer (2003) 

found a similar positive effect on liquidity when the NYSE began trading ETFs listed 

on the American Stock Exchange.  Fong, Madhavan, and Swan (2001) found positive 

effects on trading costs for large Australian stocks executed off-exchange.  Foucault and 

Menkveld (2008) looked at competition for Dutch stocks between EuroSETS, the 

London Stock Exchange trading platform, and NSC, the trading platform of Euronext 

Amsterdam.  They concluded that liquidity as measured by depth increased when 

trading expanded, supporting the notion that fragmentation may be the better outcome.  

 

Yet, other empirical work reaches a different conclusion.  Bennett and Wei (2006) 

examine stocks voluntarily moving from the more fragmented Nasdaq market to the 

more consolidated NYSE, and find overall execution costs fell when the stocks began 

trading on NYSE.  A study by the SEC (2001) also found lower effective spreads on 

NYSE than on Nasdaq for a matched sample of stocks, although other execution quality 

measures were mixed.  Gajewski and Gresse (2007) examine trading in Europe, finding 
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that trading costs are lower in a centralized order book than when orders are split 

between an order book and competing dealers.11

 

 Amihud, Lauterbach and Mendelson 

(2003) provide evidence from warrant exercise on the Tel Aviv Stock Exchange that 

consolidation is more beneficial.   Overall, the empirical evidence to date is mixed as to 

whether market quality is higher in a fragmented or consolidated market.   

1.1.2. Testing for Fragmentation Effects 

An immediate challenge to testing for fragmentation effects on market quality are the 

endogeneity issues noted previously.  Endogeniety problems can arise if firm, market, 

and order characteristics influence market quality measures for reasons unrelated to 

fragmentation.  Regression analysis provides one way to control for such differences 

and we use variables suggested by Bessembinder (2003), Madhavan (2000), and Stoll 

(2000) to investigate these effects. Another approach to deal with this problem (see SEC 

(2001); Boehmer (2003)) is to construct a matched sample of firms differing only with 

respect to fragmentation levels.  In Section 1.4 we discuss in more detail our matched 

sample analysis. 

 

Potentially more challenging endogeneity problems arise if markets selectively choose 

which stocks to trade.  This was clearly an issue in earlier studies of fragmentation.  

Bessembinder (2003) found that of the 500 NYSE listed stocks in his sample, other 

markets centers only traded between 77 and 163 stocks.  Boehmer, Jennings and Wei 

(2007) had 1435 stocks in their sample, but only 258 traded continuously in market 

centers other than the listing market.   

 

                                                 
11 Domowitz et al (2008) add a new dimension to this debate by looking at execution statistics for orders 
left in a single dark pool as opposed to sent sequentially to many dark pools.  They find that resting orders 
in a single venue enhances execution quality, consistent with an inter-temporal consolidation story.  
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A standard approach to control for selection bias is the Heckman correction.  This 

approach first uses a probit model to capture the variables affecting the proportion of 

trade in TRFs (our fragmentation measure).  The second stage then regresses effective 

spreads (a market quality measure) on variables affecting market quality including the 

fragmentation level (more precisely, the Inverse Mills ratio calculated in the first step).  

We develop this analysis in more detail in Section 1.4. 

 

Finally, endogeneity problems can also arise at the order level.  As markets fragment, 

orders go to new locales and leave old ones.  We can see the execution metrics in both 

venues, but we cannot know whether the types of orders moving to the new venue are 

the same as orders remaining on the old venue.  We control for this potential bias by 

comparing execution metrics only for specific order types. 

 

1.2. Measurement Issues, Data, and Sample Selection   

1.2.1. Measuring Market Fragmentation 

Market fragmentation refers to the extent trades execute in different locales. 

Traditionally, U.S. listed securities traded only on stock exchanges, or since 1971 on 

Nasdaq, but this has changed dramatically.  New technologies gave rise to trading 

venues such as electronic communication networks (ECNs) and alternative trading 

systems (ATS’s), and regulatory changes removed barriers that generally favored 

exchange locales.  Of particular importance was the passage of Regulation National 

Market System (or Reg NMS) in 2005 which changed order routing priorities and 

imposed caps on access charges that exchanges and other venues could impose.   

 

The result has been an explosion of trading venues, with more than 40 trading platforms 

available to traders in 2008. Table 1.1 lists these trading venues, which include seven 
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U.S. registered stock exchanges, 5 ECNs, 20 or more ATS platforms, as wells as a 

variety of new entrants to equities trading such as the Chicago Board of Options 

Exchange, the International Securities Exchange (an electronic options market), and the 

Chicago Mercantile Exchange (a futures market).  Add to this the internalization of 

orders by the more than 100 broker/dealer firms, and the number of venues executing 

trades becomes larger still. 

 
Table 1.1:  Trading Venues for U.S. Equities 

This table gives trading venues executing equity trades during the period January-June 2008.  
ECNS refers to Electronic Communication Networks and ATS refers to Alternative Trading 
Systems.   

 

EXCHANGES ECNS ATS 

NASDAQ BATS ITG POSIT CITIMATCH 

NEW YORK STOCK 
EXCHANGE 

DIRECTEDGE BIDS CS 
CROSSFINDER 

ARCHIPELAGO TRADEBOOK LEVEL LX 

NATIONAL STOCK 
EXCHANGE 

LAVA LIQUIDNET MLXN 

AMERICAN STOCK 
EXCHANGE 

TRACK MATCHPOINT SIGMA X 

CHICAGO STOCK 
EXCHANGE 

 INSTINET MORGAN 
STANLEY POOL 

PHILADELPHIA 
STOCK EXCHANGE 

 MILLENNIUM UBS PIN 

BOSTON STOCK 
EXCHANGE 

 PIPELINE BNY 
CONVERGEX 

INTERNATIONAL 
STOCK EXCHANGE 

 PULSE FIDELITY 
CROSS STREAM 

CHICAGO BOARD 
OPTIONS EXCHANGE 

 ESPEED AQUA LAVA ATS 
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Ideally, one would measure fragmentation by simply collecting data on trade executions 

by venue on a per-stock basis.  Unfortunately, such data is not available.  To understand 

why, it is useful to differentiate between execution and reporting venues.  In the U.S., 

all trades of listed equity securities must be reported to the consolidated tape.  Until 

recently, only exchanges could report trades, meaning that any off-exchange venue had 

to report trades to an exchange, which in turn would report those trades to the tape.  

Such trades would indicate only the reporting venue’s identifier, resulting in the 

reported trades of Nasdaq, for example, including both trades executed there and trades 

only reported there.  This aggregation limited previous studies of fragmentation as it 

was not possible to know where trades actually executed. Several studies, including 

SEC (2001) and Bennett and Wei (2006), simply assumed that Nasdaq was more 

fragmented than NYSE, and analyzed differences between market executions using 

venue as a proxy for fragmentation. 

 

In addition to complicating matters for researchers, reporting protocols raised important 

competitive issues. As exchanges and markets converted to for-profit status, exchange 

volumes became a competitive metric, with venues vying for listing business based on 

their claims of market size.  The SEC, responding to concerns of bias in these numbers, 

required that trades only reported on venues be separated from trades actually executed 

there.  Such segregation would be accomplished by the establishment of Trade 

Reporting Facilities that would report directly to the consolidated tape.  As of March 5, 

2007, all non-exchange executed trades must report to a TRF. 

 

In our analysis, we use TRF volumes to measure fragmentation on a stock-by-stock 

basis.  Because exchange-reported volume now includes only trades executed on that 

exchange, TRF data provide an accurate measure of each stock’s volume executing in 
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off-exchange venues. These data are not perfect, however, in that we cannot determine 

specific volumes for non-exchange execution venues (by individual ECN or ATS, for 

example). 12 Consequently, our TRF number is not a homogenous measure, reflecting as 

it does fragmentation into what are often very diverse trading platforms.13

 

 

1.2.2. Measuring Market Quality 

Market quality refers to a market’s ability to meet its dual goals of liquidity and price 

discovery.  In general, markets with lower transactions costs are viewed as higher 

quality, as are markets in which prices exhibit greater efficiency.  While these concepts 

are straightforward in theory, actually measuring such effects is problematic.  

Transactions costs can be measured in a variety of ways, and different traders place 

different value on different execution features. Market efficiency is even more difficult 

to measure, with a variety of proxies used in the literature to capture this concept. 

 

We use three measures to capture the transactions cost aspect of market quality:   

effective spread, realized spread, and execution speed.  As discussed later in the paper, 

Rule 605 data is based on orders, not simply on trade executions.14

                                                 
12 Due to concerns about the size and significance of off-exchange trading venues such as dark pools, the 
SEC has proposed adopting a uniform method for reporting equity trading volumes by venue.  Such a 
reporting protocol would provide greater transparency into where volume is actually executing. As of 
June 2010, however, this proposal has not been adopted, although some venues have begun voluntary 
reporting. 

  Thus, the effective 

spread is given by twice the difference of the trade price minus the midpoint of the 

13 While all reporting exchanges have established Trade Reporting Facilities, over our sample period only 
NYSE TRF, Nasdaq TRF, and National Stock Exchange (NSX) TRF were active.  In addition, the 
Alternative Trade Facility (ADF) also operated as a TRF.  The ADF was originally created by NASD in 
response to Nasdaq’s conversion to for-profit status.  The ADF includes both a reporting and display 
facility, allowing trading platforms who do not wish to post quotes on Nasdaq an alternative venue in 
which to display quote and trade information. 
13 Boehmer (2005) provides an excellent discussion of the properties and potential problems with Rule 
11Ac1-5 data, which is now known as Rule 605 data. 
14 Boehmer (2005) provides an excellent discussion of the properties and potential problems with Rule 
11Ac1-5 data, which is now known as Rule 605 data. 
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consolidated best bid or offer at the time of order receipt.  Effective spread is a standard 

measure in microstructure, and it captures the overall cost of executing the trade from 

the point-of-view of a trader submitting a marketable order.15

 

 Realized spread is twice 

the difference between the execution price and the midpoint of the consolidated quote 

five minutes after the trade.  Realized spread is sometimes viewed as a proxy for the 

profits available to market makers in making the trade.   Execution speed measures the 

time from order receipt until execution.  For some traders, speed is more important than 

spread. In general, faster markets are viewed as higher quality.  

We measure price efficiency using two standard proxies from the literature:  short term 

volatility and variance ratios.  Short-term volatility is the return volatility measured over 

a 15-minute interval.  The SEC views excessive short-term volatility as a negative 

metric of market quality in that some groups of traders may be disadvantaged by short-

term price movements unrelated to long term fundamentals. 16

 

  The variance ratio (see 

Lo and MacKinlay (1988)) captures the notion that, in an efficient market, prices should 

approximate a random walk.  The variance ratio is defined as the absolute value of the 

ratio of the variance of 30 minute log returns divided by 2 times the variance of 15 

minute log returns minus one.  The closer this number is to zero, the more prices behave 

like a random walk, and so the more efficient is the market.   

                                                 
15 A trader can also submit a non-marketable order, which is typically a limit order to trade at some price 
not currently at the market.  For such a trader, transaction costs would also have to include some measure 
of non-execution risk.   
16 SEC Concept release No. 34-61358 notes: “short term price volatility may harm individual investors if 
they are persistently unable to react to changing prices as fast as high frequency traders. As the 
Commission previously has noted, long term investors may not be in a position to access and take 
advantage of short term price movements. Excessive short term volatility may indicate that long-term 
investors, even when they initially pay a narrow spread, are being harmed by short-term price movements 
that could be many times the amount of the spread. ”     
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Hasbrouck (1993) suggests using a variance decomposition approach to measure price 

efficiency in markets.  This approach uses signed order flow to separate the noise 

variance component of price movements from the information-based variance 

component.  We do not use this approach because the aggregation of volumes across 

various market venues means that TRF trades are not homogenous.  An added 

complication is the difficulty of assigning trade direction, an increasingly important 

problem as more and more trades take place within quoted spreads.   

 

1.2.3. Data and Sample Selection   

The time period for our analysis is January 2 – June 30, 2008.  The data are drawn from 

TAQ, CRSP, and SEC Rule 605 data provided to us by TAG Audit.  Trading volume 

and price information are taken from TAQ data.  We also use TAQ data to calculate 

short-term return volatility and variance ratios.  We use CRSP data to provide 

information on market capitalization and price.    We use Rule 605 data to provide 

execution quality measures relating to transactions costs.  SEC Rule 605 requires all 

stock exchanges, dealers, and other market centers executing trades to provide specific 

data on selected order executions.  These data must be provided monthly on a stock by 

stock basis.17

 

  The data do not include all executed trades and are limited to specific 

order types.   

 

 

 
 

                                                 
17 These include all orders meeting the following criteria: orders must be held; the limit price must be less 
than 10 cents from the quote; order must be straight market or limit order; and the order must be for less 
than 10,000 shares.  
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Table 1.2: Sample Selection Criteria 
The sample is selected from all listed securities in January 2, 2008.  We remove all securities 
that are not included in CRSP at December 31, 2007.  Those include warrants, preferred, and 
units bundled with warrants. We apply CRSP filters to remove non-common stock equities, 
common stocks of non-U.S. companies, close-end funds, Real Estate Investment Trusts, and 
Americus Trust components and dual class stock. Volume and quote filters are applied to 
eliminate infrequently traded stocks and low price stocks.  
 

 

We use data based on marketable limit orders for 9999 shares or less.  This data 

captures the largest category of transactions and seems most representative of general 

market quality, but it does mean that our analysis does not capture all trading in a stock.  

Market centers report data separately, so the data must be aggregated to provide an 

average execution metric for each stock.  We used data provided by TAG/Audit to form 

a volume-weighted average execution measure for each stock.  The data exhibit 

substantial outliers, so following standard practice we winsorize the data to set outliers 

to the 2.5 and 97.5 percentile levels.  

 

Table 1.2 gives information on our sample selection criteria.  We begin with all listed 

stocks on NYSE and Nasdaq. We follow Boehmer (2005) and apply standard filters to 

Criterion NASDAQ NYSE 
CRSP Filter (December 31, 2007) 
All securities in Jan 2, 2008 3134 3251 
No data in CRSP on December 31, 2007 -104 -762 
Non-common stock equities (ADRs, units, certificates and 
Shares of Beneficial Interest) -159 -564 
Common stocks of non-U.S. companies, close-end funds, Real 
Estate Investment Trusts and Americus Trust Components, 
ETFs 

- 211 -551 

Dural class stock  -123 -145 
 

2537 
 
1229 
 

Volume and Quote Filter (January 2, 2008-March 31, 2008)  
Missing volume, any day -507 -17 
Price<5 -442 -46 
Mean daily volume<1000 0 0 
Final Sample 1588 1166 
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remove non-common equities, dual class shares, REITS, and common stocks of non-US 

companies.  We also exclude stocks with prices below $5.00, with mean daily volume 

below 1000 shares, and stocks not in the CRSP data base.  Our final sample is 2754 

stocks, with 1588 firms being Nasdaq-listed and 1166 firms listed on the NYSE.  We 

refer to this as the universe sample. 

 

We use a smaller sub-sample of stocks in testing for market quality differences which 

we refer to as the select sample.  We form this smaller sample by selecting from our 

universe sample every tenth stock listed on NYSE (112 stocks) and every tenth stock 

listed on Nasdaq (150 stocks).  In the matched-pairs analysis, discussed later, we 

augment these 262 stocks with an additional 262 stocks chosen to match the selected 

stocks on attributes of price and market capitalization.  

 

1.3 Market Fragmentation 

How fragmented is trading in U.S. equity markets?  We address this basic question by 

first looking at trading volumes across the various executing and reporting venues for 

the period January – March 2008.  During this interval there were 9 exchanges, 3 TRFs, 

and the ADF reporting trades.  Table 1.3 provides data on trading volumes reported by 

each venue.  As is apparent, Nasdaq had the largest volume, followed by New York 

Stock Exchange. Archipelago, the fourth largest venue, is part of NYSE group, but it is 

treated as a separate location for regulatory reporting purposes (combining ARCA and 

NYSE volume results in larger overall volume than on Nasdaq).  The data also show 

that regional exchanges (i.e. National Stock Exchange, American Stock Exchange, 

Chicago Stock Exchange, and Philadelphia Stock Exchange) execute a very small 
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fraction of trades in the market.18

 

  Similarly, new non-equity exchange entrants (the 

Chicago Board of Options Exchange and the International Stock Exchange) did not 

establish any significant market presence during this time period. 

Table 1.3: Consolidated volume by reporting venue 
The consolidated volumes of all securities listed in NYSE, NASDAQ, American Stock 
Exchange (now known as NYSE Alternext U.S.) and NYSE ARCA. Sample period is from 
January 2, 2008 to March 31, 2008.   

Trading Venue 
Volume in 

Millions of Shares 
Share of Total Volume  

in percent 
Consolidated Volume 495548 100 
NASDAQ 153743 31.025 
NYSE 105418 21.273 
NASDAQ TRF 88302 17.819 
ARCA 82305 16.609 
NYSE TRF 31643 6.385 
National Stock Exchange TRF 12207 2.463 
National Stock Exchange 7701 1.554 
International Stock Exchange 5259 1.061 
American Stock Exchange 2872 0.58 
ADF 2684 0.542 
Chicago Stock Exchange 2260 0.456 
Chicago Board Options Exchange 717 0.145 
Philadelphia Stock Exchange  439 0.089 
Boston Stock Exchange  0 0 
American Stock Exchange TRF 0 0 
Boston Stock Exchange TRF 0 0 
International Stock Exchange TRF 0 0 
Chicago Stock Exchange TRF 0 0 
ARCA TRF 0 0 
Chicago Board Options Exchange TRF 0 0 
Philadelphia Stock Exchange TRF 0 0 

 

This is not the case for Trade Reporting Facilities, which rank 3rd, 5th, and 6th in overall 

trade volume, reporting in aggregate approximately 27% of trading volume.  The 

                                                 
18 The Boston Stock Exchange, which was acquired by the Nasdaq, was not active during this time 
period.  Similarly, while most exchanges had set up TRFs, most of these were not active during our 
sample period.  For an interesting discussion of the evolution of regional exchanges see Arnold et al 
(1999). 
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overall role of TRFs can be better seen in Figure 1.1, which depicts the share of trading 

volume for all Nasdaq-listed equities, AMEX-listed equities and NYSE-listed equities.  

For Nasdaq-listed equities, more than one-third of trading volume is taking place in 

TRFs.  For NYSE and AMEX-listed securities, TRFs play a smaller role, but still report 

almost 25% of volume in those stocks.19

 

  By any metric, TRFs report a substantial 

fraction of total U.S. equity volume.  As these trades are actually executing in myriad 

off-exchange venues, fragmentation is clearly an important feature of US equity 

markets.   

Figure 1.1: This figure gives the percentage share of trading volume for all NASDAQ, 
AMEX (now know as NYSE Alternext U.S.) and NYSE-listed equities. The sample 
period is from January 2, 2008 to March 31, 2008. The NASDAQ sample has 3348 
equities and the NYSE and AMEX sample has 5414 equities.   

                                                 
19 This finding that trading in Nasdaq-listed stocks is more fragmented than trading in NYSE-listed stocks 
is consistent with the intuition of earlier researchers such as SEC (2001) and Bennett and Wei (2006).   

46.87%

16.23%

33.85%

3.04%

NASDAQ NYSEplusARCA
TR FS Others

NASDAQ Equities
Share of Trading Volume

24.20%

47.21%

24.35%

4.25%

N ASDAQ N YSEplusARCA
TR FS Others

AMEX and NYSE Equities
Share of Trading Volume
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How important fragmentation is for individual stocks can be seen from the distribution 

of volumes across listed securities.  As Figure 1.2 (a) shows, individual Nasdaq-listed 

stock TRF trading ranges from a low of approximately 15% to a high of greater than 

75% of volume.  For individual NYSE-listed stocks, depicted in Figure 1.2(b), 

dispersion is smaller, but at the upper range TRFs report almost 40% of volume in some 

stocks.  Equally significant, fragmentation is the reality for all stocks; there are no 

stocks in our sample with zero TRF volumes.    

 

Figure 1.2: Distribution of Volume in Trade Reporting Facilities (TRFs) and Off-
Primary Exchange 
Figures (a) and (b) demonstrate the distribution of share of volume in TRFs for the 1588 
NASDAQ and 1166 NYSE stocks in our filtered sample. The x axis demonstrates the 
share of volume in TRF, with each bin has a width of 0.02. The y axis counts the 
number of shares that fall in each bin. Figures (c) and (d) provide the distribution of the 
share of volume in each stock executing off of the primary listing market.  The sample 
period is from January 2, 2008 to March 31, 2008   
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Which venues trade particular stocks?  Table 1.4 shows the number of stocks with 

reported trades in each venue.  The data show that TRFs trade all 2754 stocks in our 

universe.  This is also the case for Nasdaq.  Although the NYSE only trades stocks 

listed on NYSE, Archipelago trades both NYSE and Nasdaq-listed issues.  Thus, 

analysis at NYSE group level is not subject to a selection bias, nor is it the case for the 

regional exchanges which collectively also trade all 2754 stocks.  The new entrants to 

equity trading (ISE and CBOE) are not trading every issue, but as noted earlier their 

market share is negligible.  These results illustrate important features of the current 

competitive landscape for equity trading.  The sheer size of TRF volumes testifies to the 

important competitive challenges that off-exchange trading is posing for established 

markets.  Both NYSE and Nasdaq have been losing market share to TRF venues, and 

regional exchanges are diminishing in importance as well.  For at least some stocks (i.e. 

those in the right tail of the volume distributions), it appears that TRF trading is now the 

“market” in terms of trade execution.  

 

But what types of stocks are most likely to trade in TRF venues?  We investigate this is 

more detail in the next section, but we can provide some basic analysis by looking at 

simple fragmentation patterns by firm size and listing venue.  Nasdaq stocks are 

generally smaller than NYSE-listed firms, so in our universe sample we divide the firms 

listed on each exchange into large, medium, and small sub-samples based upon firm 

market capitalization as of January 2, 2008.  
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Table 1.4: Number of sample stocks traded in each venue 
This table gives the number that are traded, or in the case of TRFs reported, in each venue.  
There are 2754 stocks in our sample.  TRF refers to a trade reporting facility, and ADF refers to 
the Alternative Display Facility.  The other trading venues were not active during our sample 
period. 
 

Venue Number of Stocks Traded 
NASDAQ 2754 
National Stock Exchange 2754 
Arcapelago 2754 
NASDAQ TRF 2754 
National Stock Exchange TRF 2754 
NYSE TRF 2754 
ADF 2751 
International Stock Exchange  2674 
Chicago Stock Exchange  2502 
Chicago Board Options Exchange 1717 
New York Stock Exchange 1166 
Philadelphia Stock Exchange   690 
American Stock Exchange  15 

 
 
Table 1.5: Fragmentation for large, medium and small NYSE and NASDAQ listed 
stocks 
 
The total sample has 1166 NYSE-listed stocks and 1588 NASDAQ-listed stocks. Large stocks 
are the largest one third of stocks in each market, small stocks are the smallest one-third and 
medium stocks are in-between. The sample period is from January 2, 2008 to March 31, 2008. 
The asterisks ***, **, and * indicate significance level of one percent, five percent or ten 
percent.  
 

Panel A – TRF Volumes 

 NYSE Stocks NASDAQ Stocks 

 Observations Mean Observations Mean 
Large 388 0.219 529 0.301 
Medium 389 0.205 529 0.314 
Small 389 0.204 530 0.368 

Panel B – Differences in TRF Volumes 

 Difference P-Value Difference P-Value 
Large-Medium 0.014*** 0.00 -0.032*** 0.00 
Large-Small 0.016*** 0.00 -0.095*** 0.00 
Medium-Small 0.002 0.35 -0.063*** 0.00 
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Table 1.5 demonstrates different fragmentation patterns across NYSE-listed and 

Nasdaq-listed stocks.  For Nasdaq stocks, TRF fragmentation is more important, and it 

affects small stocks more than it does large stocks.  Many venues reporting to TRFs are 

crossing networks or ECNs, and these venues provide traders with opportunities to 

transact within the spread.   Because small stocks tend to have the highest trading costs, 

these data are consistent with off-exchange locales attracting order flow by providing a 

more competitive alternative for high trading cost stocks.   

 

For NYSE-listed stocks, TRFs play a smaller but still very significant role. 

Interestingly, for NYSE-listed stocks, fragmentation is higher for large stocks than it is 

for small stocks.   Large NYSE stocks are the basis for most major stock market indices, 

and so these stocks are particularly attractive to institutional investors.  Crossing 

networks provide institutions greater ability to trade large orders, while ECNs have 

typically featured faster execution speeds than the NYSE platform.  Greater 

fragmentation for large NYSE stocks may reflect competition by alternative trading 

venues for institutional traders.  

 

In summary, we find that U.S equity markets feature substantial fragmentation.  There 

is considerable dispersion in fragmentation across individual stocks and across different 

listing venues.  We now turn to investigating whether there are also differential effects 

of fragmentation on market quality.  

 

1.4 Fragmentation and Market Quality 

If fragmentation affects market quality, then we would expect to find significant 

differences in market quality metrics between stocks with greater fragmented trading 
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and those with more consolidated trading.  In this section, we provide a variety of 

empirical analyses to investigate this issue.  Because these analyses rely on firm-

specific order execution data, we analyze the 262 firm select sample composed of every 

10th firm listed on Nasdaq and NYSE.  This provides a large, random sample of firms to 

test for market quality differences. 

 

We first use the Heckman correction to investigate whether selection bias across 

markets affects the relation of fragmentation and market quality as measured by 

effective spreads.  We then use a matched-pairs investigation to control for other firm-

specific factors that could affect market quality.  In this matched-pairs analysis, we 

examine a broader range of market quality metrics relating to both transactions costs 

and market efficiency. Finally, we provide evidence from regression analysis to control 

for a larger set of factors potentially affecting the relationship of fragmentation and 

market quality.   

 

1.4.1. Selection Bias and Markets:  The Heckman Correction 

As noted earlier, a bias can arise if markets or trading venues selectively chose stocks to 

trade.  An econometric specification to control for selection bias is the two-stage 

estimation procedure commonly referred to as the Heckman correction (see Heckman 

(1979).   This approach has been applied to compare trading costs across various trading 

venues by Madhavan and Cheng (1997), Bessembinder and Venkataraman (2004), and 

Conrad, Johnson and Wahal (2003).20

                                                 
20 See Bessembinder (2003b) for discussion of this approach and its application to trading cost 
comparisons. 

 The first stage of the Heckman correction is to 

run a Probit model for choice of venue.  The Probit estimation then produces a new 

variable which is included with regressors as controls for selectivity bias in a second 
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stage regression of market quality.  Because our fragmentation measure is a proportion, 

we use the Probit model specification for when the dependent variable is continuous 

between 0 and 1 (see Fleiss, Levin and Paik (2003)).   For comparability with previous 

work, we use effective spreads as the market quality measure. 

 

Suppose that the proportion of trade in TRFs is determined by the following model: 

 

where Φ  is the standard normal cumulative distribution function (cdf) and iZ  are the 

economic variables to explain market fragmentation. We estimate the regression: 

 

Given the estimate
∧

γ , we then compute the inverse Mills ratio 
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is the standard normal pdf and Φ  is the standard normal cdf function.  

 

The second stage of the procedure is to run the regression: 

iiii Xspreadeffective ελθβ ++=
∧

_  
where iX  are the variables to explain market quality (here captured by effective spread) 

including the fragmentation level.  A simple test of selection bias is given by the t-

statistic on îλ If the îλ  is not significant, we can reject the presence of a sample 

selection problem.  

 

For the choice of iX  and iZ , we follow Bessembinder (2003b). The explanatory 

variables iZ  include the logarithm of market cap of the stock on January 2, 2008, the 

logarithm of average daily trading volume from January, 2   2008 to March 31, 2008, 

)( iii uZTRFpercent +Φ= γ

iii uZTRFpercent +=Φ− γ)(1
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the average order size and the average price impact. 21

iX
  We also run the two-stage 

analysis excluding the price inverse variable. The  include the TRF percent, the log 

of number of trades, the price inverse, the average trade size, and an indicator variable 

equal to 1 when the listing market is Nasdaq and 0 otherwise.   

 
Table 1.6: Regression Results with Heckman Correction 

Panel A presents the estimates from the probit model of the likelihood that an order is executed 
in TRFs. The dependent variable is the probit transformation of proportion of volume executed 
in TRFs. logmkt_cap is the log of the market cap in January 2, 2008. logvol is the log of 
consolidated volume from January 2, 2008 to March 31, 2008. trade_size is the average trade 
size from January 2, 2008 to March 31, 2008. price_impact is the average price impact from 
April 1, 2008 to June 30, 2008. Panel B presents the second-stage regression that use inverse 
Mills ratio obtained from the first stage regression to correct for endogeneity. TRFpercent is the 
share of consolidated volume executed in TRFs from January 2, 2008 to March 31, 2008. 
logtradenumber is the total number of trades from January 2, 2008 to March 31, 2008. 
price_inverse is 1 over the closing price in January 2, 2008. , dummy equals one if the stock is 
listed on Nasdaq and 0 otherwise. Standard errors in parentheses*** p<0.01, ** p<0.05, * p<0.1  
 

Panel A: First-stage Probit Regression 

  (3.1) (2) 
VARIABLES pro_TRF pro_TRF 
      
logmkt_cap -0.0585*** -0.0457** 
 -0.0154 -0.0188 
logvol -0.00676 -0.0104 
 -0.0144 -0.0148 
trade_size 2.417*** 2.251*** 
 -0.231 -0.27 
price_inverse  0.578 
  -0.485 
Constant -0.656*** -0.724*** 
 -0.075 -0.0941 
Observations 262 262 
R-squared 0.413 0.416 
 
 

  

                                                 
21 Bessembinder (2003) also uses quoted spread in different trading venues as an explanatory variable in 
his analysis of market competition. We do not include this variable because we have a different focus in 
our analysis and the quoted spread in our dataset is aggregated quoted spread across all market centers.         
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Table 1.6: Panel B: Second-stage Heckman 
Correction 

VARIABLES effective_spread effective_spread 

mills_ratio 8.622 11.53 
 -5.906 -7.488 
TRFpercent -9.263** -9.262** 
 -3.739 -3.735 
logtradenumber -1.852*** -1.906*** 
 -0.223 -0.244 
price_inverse -44.92*** -39.74*** 
 -6.903 -9.092 
trade_size 33.36*** 36.74*** 
 -9.77 -11.35 

 
dummy 1.842*** 1.844*** 
 -0.56 -0.56 
Constant 4.851 0.709 
 -8.06 -10.32 
Observations 262 262 
R-squared 0.435 0.435 

 

The results in Table 1.6 show two important results.  First, the lack of significance on 

the Mills ratio also means that we can reject the hypothesis of a selection bias in the 

data.  Consequently, selection bias at the market level is not the important problem that 

it was for investigators of earlier fragmentation studies.  We caution, however, that our 

results are at the TRF and market center level.   We cannot, and do not, investigate how 

orders fragment across the individual ATS, ECNs, and broker/dealer desks reporting to 

the TRF where selection issues may still be present.22

 

   

                                                 
22 A second difficulty is that we do not have individual orders (or even trades) in each stock but rather 
overall traded volumes.  This difference matters because orders are now typically split into pieces and 
routed to multiple venues.  Boehmer, Jennings and Wei (2007) analyze the order routing decision across 
trading venues.  They find that “broker-dealers face competitive pressures to route to low-cost and/or fast 
execution venues”, which is consistent with fragmentation being driven by competitive factors.  They 
note, however, that practices such as payment for order flow, or the use of IOIs may also be explaining 
order flow, but the unavailability of data precludes analysis of these effects.  
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Second, we find that after implementing the Heckman correction an increase in TRF 

trading decreases effective spreads.  This is direct evidence that market fragmentation 

does not appear to harm market quality as captured by effective spreads.  The results in 

Panel B also show that spreads are positively related to trade size and to listing on 

Nasdaq, and negatively related to the number of trades (a proxy for volume) and to the 

price level.  These latter results are consistent with the findings of previous research. 

 

1.4.2.  Matched Pairs Analysis 

Another standard approach for investigating market quality differences is a matched 

pairs analysis.  Such an analysis can control for firm-specific factors than can influence 

market quality measures.  Following Davies and Kim (2008), we match firms based on 

market capitalization, price, and listing exchange.  Thus, using our select sample of 150 

Nasdaq-listed firms and 112 NYSE-listed firms,  we seek a corresponding firm on 

Nasdaq or NYSE, respectively, that minimizes the matching error given by:  

i i
ij

j j

MCAP PRCD 1 1
MCAP PRC

= − + −  

For each pair of stocks, we place the stock with the higher TRF volume into the 

fragmented group, and the other stock into the consolidated group.   By construction, 

firms in the TRF-fragmented sample have higher TRF volumes, but otherwise are 

identical to firms in the consolidated sample.    We refer to this as the “pairs sample”. 

We use data from the period January- March 200 to sort the matched pairs into 

fragmented and consolidated samples, and we use execution data from April –June 

2008 to test for statistical differences in the two samples with respect to market quality 

measures.  
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1.4.2.1 Execution Quality Results 

We first investigate whether fragmentation affects transactions costs which we measure 

using effective spreads, realized spreads, and execution speeds.23

 

    Table 1.7 Panel A 

provides evidence on these trading cost measures across the fragmented and 

consolidated samples.  In the post-Reg NMS world, effective spreads are extremely 

low, with average spreads in the 3-4 cent range.  The data show that effective spreads 

are lower in the fragmented sample on average by .29 cents, with median spreads lower 

by .11 cents.  These results are statistically significant.  As effective spreads measure 

trading costs from a trader’s perspective, this result is consistent with the competitive 

effects of fragmentation into TRFs being greater than the network externality effects of 

consolidation.   Fragmentation also lowers average execution speed, with significant 

differences on the order of 7 seconds between the consolidated and fragmented samples. 

Realized spreads are not significantly different between the two samples.  

Panel B reports results segmented by firm size.  We divided the 262 pairs of stocks into 

two groups based on market capitalization.  We find that fragmentation tends to benefit 

large and small stocks, but in different ways.  Effective spreads are statistically 

significantly lower for small stocks but are essentially unchanged for large stocks.  

Average execution speed falls for large stocks, but it is unaffected for small stocks.  

These differential effects across firm sizes suggest that different forces may be at work 

in explaining why trading fragments for different firm types. 

 

 

 

                                                 
23 The data exhibit substantial outliers, so following standard practice we winsorize the data to set outliers 
to the 2.5 and 97.5 percentile levels. We report both t-tests based on averages and Wilcoxon signed 
ranked tests based on medians.  
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Table 1.7: Execution Quality for Consolidated and Fragmented Samples 
Panel A contains the pair-wise difference of execution quality statistics of the112 NYSE pairs 
and 150 NASDAQ pairs in our sample. Those pairs are matched based on market capitalization 
and closing price on January 2, 2008. We consider marketable limit order of all sizes executed 
in all market centers. Effective spread and realized spread are in cents and average speed is in 
seconds. All variables are calculated using weighted averages based on executed shares across 
different sizes and market centers in the SEC 605 data.  Panel B contains the pair-wise 
difference of execution quality statistics of large and small stocks based on market cap. Each 
category has one half of the observation in our 262 pairs of NYSE and NASDAQ stocks. The 
sample period for execution statistics is from April 2008 to June 2008. The asterisks ***, **, 
and * indicate significance level of one percent, five percent or ten percent. 
Panel A. Overall Pairs Sample 

 Consolidate Fragment 
Consolidate
-Fragment p-value 

Effective Spread 
T-test Mean 3.61 3.33 0.29* 0.07 
Wilcoxon Signed 
Rank Test  

Median 2.48 2.26 0.11** 0.05 

Realized Spread 
T-test Mean 0.97 1.07 -0.09 0.31 
Wlicoxon Signed 
Rank Test  

Median 0.56 0.47 -0.08 0.25 

Average Speed 
T-test Mean 86.58 79.18 7.40* 0.08 
Wlicoxon Signed 
Rank Test  

Median 64.11 55.74 3.68* 0.07 

 
Panel B.   Large versus Small Stocks 

 Large Stocks Small Stocks 

Effective Spread 
Consolidate-

Fragment 
p-

value 
Consolidate-

Fragment 
p-

value 

T-test Mean 0.13 0.33 0.45** 0.05 
Wilcoxon Signed Rank Test  Median 0.04 0.36 0.23** 0.03 

Realized Spread      
T-test Mean 0.11 0.34 -0.30 0.11 
Wilcoxon Signed Rank Test  Median 0.01 0.43 -0.24 0.13 

Average Speed      
T-test Mean 10.12** 0.03 4.68 0.31 
Wilcoxon Signed Rank Test  Median 4.33** 0.03 2.84 0.34 
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To investigate this further, we examine in Table 1.8 execution costs segmented by firm 

size for Nasdaq-listed stocks and for NYSE-listed stocks.  Segmenting by firm sizes 

across markets helps us to control for listing standard effects as well for the fact that 

Nasdaq-listed stocks are smaller in general than NYSE listed stocks.  Looking first at 

Nasdaq  results, we find significant differences in both average and median effective 

spreads for small firms.  These differences are consistent with small fragmented firms 

having lower spreads than their consolidated matched firms.  This effect is not 

statistically significant for large firms.  Turning to NYSE results, we find no significant 

effects on spreads, but average speeds are improved by fragmentation for small firms.  

Because NYSE firms are larger overall, this result clarifies that execution speeds 

improvements are accruing not to the largest firms but rather to firms in the lower half 

of the NYSE size distribution.  Overall, our results suggest that fragmentation as 

measured by TRF volumes generally helps small firms, and does not harm larger firms.  

 

Our implication of these findings is that conflicting results in the literature may be at 

least partially due to sample selection biases.  Bennett and Wei (2006), for example, 

find that both effective spreads and execution speeds decrease for their sample of firms 

moving their listing from Nasdaq to NYSE.  They attribute these beneficial effects to 

the consolidation of trading on NYSE relative to Nasdaq, and so conclude that 

fragmentation is harmful to stocks.  But most stocks shifting from Nasdaq to NYSE are 

the larger stocks in Nasdaq, and as we show here fragmentation has no significant 

effects on those stocks.  A more likely explanation for Bennett and Wei’s result are 

different trading rules or corporate governance requirements between the two venues.24

                                                 
24 One such rule could be the NYSE requirement in place during their sample period that specialists faced 
restrictions on the size and movement of spreads.   Macey, O’Hara, and Pompilio (2009) found that firms 
delisted from the NYSE had differential effects on trading costs when moving to the Pink Sheets.  While 
the spreads of large firms actually decreased due to the sub-penny pricing allowed on the Pink Sheets, the 
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Table 1.8 Execution Quality for Large and Small Stocks by Listing Venue 
The table contains the pair-wise difference of execution quality statistics of in each market 
based on market cap. Panel A has 112 pairs of NYSE stocks and Panel has 150 pairs of 
NASDAQ stocks. The NYSE and NASDAQ samples are divided into large and small stocks 
based on the market cap on January 2, 2008. We consider marketable limit order of all sizes 
executed in all market centers. Effective spread and realized spread are in cents and average 
speed is in seconds. All three variables are calculated using weighted averages based on 
executed shares across different sizes and market centers in SEC 605 data.   The sample period 
for execution quality is from April 2008 to June 2008.  The asterisks ***, **, and * indicate 
significance level of one percent, five percent or ten percent. 

 Large Stocks Small Stocks 
Panel A:  NYSE Stocks  

Effective spread  
Consolidate-

Fragment p-value 
Consolidate-

Fragment p-value 
T-test Mean 0.21 0.11 0.16 0.33 
Wilcoxon Signed Rank Test Median 0.08 0.14 0.08 0.45 

Realized Spread 
T-test Mean 0.12 0.35 -0.02 0.47 
Wilcoxon Signed Rank Test Median -0.03 0.47 -0.27 0.34 

Average Speed 
T-test Mean 7.14 0.13 7.96 0.23 
Wilcoxon Signed Rank Test Median 1.02 0.30 6.92* 0.08 

Panel B:  NASDAQ Stocks 

  Large Stocks Small Stocks 

Effective Spread  
Consolidate-

Fragment p-value 
Consolidate-

Fragment p-value 
T-test Mean -0.05 0.46 0.78** 0.04 
Wilcoxon Signed Rank Test Median 0.01 0.48 0.29** 0.02 

Realized Spread 
T-test Mean -0.15 0.36 -0.25 0.25 
Wilcoxon Signed Rank Test Median -0.23 0.28 0.10 0.39 

Average Speed 
T-test Mean 5.77 0.28 8.80 0.25 
Wilcoxon Signed Rank Test Median 5.58 0.24 6.34 0.31 

 

                                                                                                                                               
spreads of small and medium-sized firms increased.  These authors attribute this worsening to the cross-
subsidization of smaller stocks by larger stocks on the NYSE.   
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1.4.2.2. Market Efficiency Results 

Could fragmentation harm other aspects of market quality?  To address this issue, we 

look at differences across the fragmented and consolidated pairs with respect to two 

standard measures of efficiency, specifically, the short term return volatility and the 

variance ratio.  We divide the trading day into 26 fifteen-minute intervals starting at 

9:30 a.m.25  We calculate return over each interval based on the spread midpoint at the 

beginning and ending of each interval.26

Short-term volatility is defined as the standard deviation of these returns over the three-

month period.   Greater volatility is viewed as a trading friction, so the lower the 

volatility the more efficient the market.  The variance ratio is the absolute value of one 

minus the ratio of the variance of 15-minute log returns to one-half of the variance of 

30-minute log returns.  A ratio of zero is consistent with stocks following a random 

walk, hence, a smaller number is better in terms of efficiency (see Lo and MacKinlay 

(1988)).  

   

 

The results in Table 1.9 reveal interesting divergences in the effects of fragmentation 

across trading venues.  We find weak negative results with respect to volatility: 

fragmented stocks are more volatile as measured by medians (but not means) for the 

overall pairs sample. The results for the variance ratio, however, point to the opposite 

result.  The variance ratio is significantly smaller for the fragmented sample, consistent 

with prices of these stocks behaving more like a random walk.  
 

                                                 
25 We also computed the short-term volatility, return autocorrelation and variance ratio for 5 minute 
intervals and the results are similar. 
26 An interesting problem arises with respect to the treatment of the close-open period.  Deleting this 
period introduces noise into the variance ratio test because the sums of log returns from 3:45 p.m. to 4:00 
p.m. and log returns from 9:30 a.m. to 9:45 a.m.(both one period log returns)  is not equal to the log 
return from 3:35 p.m. to 9:45 a.m. (the two period log return).  To deal with this heteroscedacticity 
problem, we included the overnight return, although statistically whether we include the close-to-open 
interval has a very limited impact.  
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Table 1.9: Price Efficiency for Consolidated and Fragmented Samples 
 
Panel A contains the pair-wise difference of price efficiency statistics of the combined 112 
NYSE pairs and 150 NASDAQ pairs in our sample. Those pairs are matched based on market 
capitalization and closing price on January 2, 2008. We divide the regular daily trading hour 
into 26 15-minute intervals and also consider the time between date t close and date t+1’s open 
as an interval.   Short term volatility measures the standard deviation of return for the interval. 
Variance ratio is the absolute value of 1 minus the ratio of variance of one interval log return to 
one half of the variance of two interval log return. Smaller numbers in both measures mean 
more efficiency.  Panel B contains the pair-wise difference of price efficiency for stocks listed 
in different markets.  The sample period for execution quality is from April 2008 to June 2008.  
The asterisks ***, **, and * indicate significance level of one percent, five percent or ten 
percent. 
 
Panel A:  Overall Pairs Sample 
 

Consolida
te 

Fragme
nt 

Consolidate-
Fragment 

p-
value 

Short-term Volatility (in Percent) 
T-test Mean 0.728 0.749 -0.021 0.11  
Wilcoxon Signed Rank 
Test 

Median 0.642 0.716 -0.030** 0.05  

Variance Ratio 
T-test Mean 0.179 0.163 0.017*** 0.01  
Wilcoxon Signed Rank 
Test 

Median 0.166 0.153 0.014*** 0.01  

 
 
Panel B:  Pairs Sample by Listing Venue 
 NASDAQ NYSE 

 
Consolidate
-Fragment 

p-
valu

e 
Consolidate
-Fragment 

p-
valu

e 
Short-term Volatility (in 
Percent) 

     

T-test Mean 0.024 0.16 -0.081*** 0.00 
Wilcoxon Signed Rank Test Median 0.005 0.25 -0.061*** 0.00 

Variance Ratio 
T-test Mean 0.019** 0.02 0.014 0.11 
Wilcoxon Signed Rank Test Median 0.016** 0.02 0.009 0.12 
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Table 1.10: Price Efficiency for Large and Small Stocks in Each Market 
 

The table contains the pair-wise difference of price efficiency in each market based on market 
cap. The 112 NYSE pairs and 150 NASDAQ pairs are both divided into large and small stocks 
based on the market cap on January 2, 2008. Each category has one half of the observations. We 
divide the regular daily trading hour into 26 15-minute intervals and also consider the time 
between today’s close and tomorrow’s open as an interval. Short term volatility measures the 
standard deviation of return for the interval. Variance ratio is the absolute value of 1 minus the 
ratio of variance of one interval log return to one half of the variance of two interval log return.  
Autocorrelation means the absolute value of first order autocorrelation of each interval. Because 
of our standardization, small numbers in all three measures mean more efficiency.  The sample 
period for execution quality is from April 2008 to June 2008.  The asterisks ***, **, and * 
indicate significance level of one percent, five percent or ten percent. 
 

Panel A:  NYSE Stocks 
  Large Stocks Small Stocks 

  
Consolidate-

Fragment 
p-

value 
Consolidate-

Fragment 
p-

value 
Short-term Volatility (in Percent)     

T-test Mean -0.052** 0.02 -0.11*** 0.00 
Wilcoxon Signed Rank Test Median -0.037** 0.03 -0.10*** 0.00 

Variance Ratio 
T-test Mean 0.008 0.31 0.019* 0.10 

Wilcoxon Signed Rank Test Median 0.016 0.20 0.009 
       
0.17 

Panel B: NASDAQ Stocks 
  Large Stocks Small Stocks 

  
Consolidate-

Fragment 
p-

value 
Consolidate-

Fragment 
P-

value 
Short-term Volatility (in Percent) 
T-test Mean -0.026 0.19 0.074** 0.02 
Wilcoxon Signed Rank Test Median -0.031 0.14 0.055** 0.03 

Variance Ratio 
T-test Mean 0.012 0.15 0.026** 0.05 
Wilcoxon Signed Rank Test Median 0.013 0.13 0.032** 0.04 
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Examining these results by listing-firm market reveals that the positive effects on 

variance ratios are due to Nasdaq-listed firms; these effects are not significant for the 

NYSE-listed sample.  Similarly, the data show no fragmentation effects on volatility for 

Nasdaq stocks, but an increase in volatility for NYSE stocks These findings raise the 

intriguing possibility that fragmentation has enhanced the efficiency of Nasdaq-listed 

firms, while simply increasing volatility for NYSE-listed firms. 

 

To investigate these effects in more detail, we divide our sample into size groups by 

listing market.  Table 1.10  presents these results.  The Nasdaq-listed results clearly 

indicate that fragmentation is uniformly beneficial for small stock efficiency.  Small 

fragmented stocks have lower volatility than their consolidated counterparts, and they 

also have lower variance ratios.  Large Nasdaq stocks exhibit no statistical differences 

between fragmented and consolidated firms.  Overall, these results suggest that for 

Nasdaq stocks fragmentation has helped some stocks without harming others.   

 

For the NYSE-listed sample, results are more complex.  Consolidated stocks have lower 

volatility for large and small stocks.    However, there is weak statistical evidence from 

the variance ratio test that prices for small fragmented stocks are closer to being a 

random walk.  Fragmentation thus appears to raise volatility for NYSE-listed stocks but 

does not appear to harm (and may actually help) other metrics of price efficiency.   

 

1.4.3. Regression analysis 

A third empirical approach to investigate fragmentation effects is regression analysis. 

Regression specifications to study trading costs issues have been used by numerous 

authors including Bessembinder and Kaufman (1997), Madhavan (2000), Stoll (2000), 

and Bessembinder (2003).  Bessimbinder (2003) argues that regression analysis is 
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particularly appropriate for studying fragmentation issues in that it can control for 

variations in types of stocks traded in each market or variations in types of orders and 

market conditions.  

  

We first investigate the relationship between effective spreads and fragmentation. Using 

the select sample of 262 firms, we ran the following regressions: 
1 2 3

4 5

_ log _= + + +

+ + +
i i i i

i i i

effective spread trade tradesize price inverse
TRFpercent dummy

α β β β
β β ε

 (1.1) 

1 2 3

4 5 6 7

_ log _
log _

= + + +

+ + + + +
i i i i

i i i i i

effective spread trade tradesize price inverse
sd mkt cap TRFpercent dummy

α β β β
β β β β ε

  (1.2) 

where  logtrade is the log of the number of trades in stock I from Jan.2 - March 31, 

2008, trade size is the average trade size for stock i, price inverse is 1/price where price 

is the closing price of stock i on January 2, 2008, sd is the standard deviation of the 

return of stock i from Jan.2 - March 31, 2008, log market cap is the market 

capitalization of stock i on January 1, 2008, TRF percent is the percentage of orders in 

stock i executing in TRFs, and dummy is an indicator variable equal to 1 when the 

listing market is Nasdaq and 0 otherwise.   The variables in these specifications are 

suggested by Bessembinder (2003), Madhavan (2002) and Stoll (2000).  

 

The results in Table 1.11 show that fragmentation lowers effective spreads.  In both 

specifications, the coefficient on the TRF variable is negative and statistically 

significant, consistent with our earlier results on the effect of fragmentation on spreads.  

The regressions also show that spreads are lower for actively traded stocks, higher 

priced stocks and stocks traded on NYSE, and spreads are higher for stocks with greater 

volatility volatile, larger trade sizes, and market capitalization.  
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Table 1.11: Regression Results 

This table gives results from regressions where for each stock effective spread is the average 
effective spread across all market centers from April 1 -June 30, 2008, logtrade is the log of the 
number of trades from January 2 - March 31, 2008, trade_size is the average trade size from 
January 2 - March 31, 2008, price_impact is the average price impact equal to the difference 
between average effective spread and realized spread across all market centers from April 1 - 
June 30, 2008, price_inverse is 1/closing price in January 2, 2008, sd is the standard deviation 
of daily stock return from January 2- March 31, 2008 , logmkt cap is the log of market 
capitalization in January 2, 2008, TRF percent is the percentage of volume reported to the TRFs 
from January 2- March 31, 2008, dummy equals one if the stock is listed on Nasdaq and 0 
otherwise. Standard errors are in parentheses *** p<0.01, ** p<0.05, * p<0.1.  
 

 (1) (2) 
VARIABLES effective_spread effective_spread 
   
logtrade -1.592*** -2.014*** 
 (0.134) (0.226) 

trade_size 20.80*** 16.84*** 
 (4.642) (4.857) 

price_inverse -50.70*** -46.33*** 
 (5.669) (6.646) 

sd  40.94*** 
  (14.60) 

logmkt_cap  0.583** 
  (0.284) 

TRFpercent -9.772*** -8.710** 
 (3.731) (3.712) 

dummy 1.837*** 1.678*** 
 (0.562) (0.557) 

Constant 16.46*** 14.54*** 
 (1.304) (1.503) 
   
Observations 262 262 

R-squared 0.430 0.449 
 
 
 
 
 
 



 39  
 

Table 1.12: Regression Using Pairwise Differences (262 Matched Pairs, 524 
Observations)  
This table shows the result based on matched samples. ∆  shows the differences between the 
Consolidate and Fragmented paired stocks. effective_spread is the average effective spread 
across all market centers from April 1 -June 30, 2008. logtrade is the log of the number of trades 
from January 2 - March 31, 2008, trade_size is the average trade size from January 2 - March 
31, 2008, price_inverse is 1/closing price in January 2, 2008, price is closing price in January 2, 
2008, sd is the standard deviation of daily stock return from January 2- March 31, 2008 , 
logmktcap is the log of market capitalization in January 2, 2008, Standard errors are in 
parentheses *** p<0.01, ** p<0.05, * p<0.1.  

     
 (3.1) (2) (3) (4) 
VARIABLES ∆ effective_spread ∆ effective_spread ∆ effective_spread ∆ effective_spread 
     
∆ logtrade -1.186*** -1.321*** -1.139*** -1.277*** 
 (0.177) (0.191) (0.176) (0.190) 
∆ trade_size 9.792*** 7.254** 10.34*** 8.035** 
 (3.377) (3.431) (3.214) (3.284) 
∆ pinverse 8.284 19.07   
 (58.08) (57.05)   
∆ price   0.107** 0.0926** 
   (0.0420) (0.0415) 
∆ sd  26.66***  25.31*** 
  (9.743)  (9.669) 
∆ logmktcap  6.066**  5.489** 
  (2.473)  (2.455) 
Constant 0.330 0.337* 0.334* 0.344* 
 (0.201) (0.197) (0.197) (0.194) 
     
Observations 262 262 262 262 
R-squared 0.181 0.220 0.201 0.234 

 
 
We also looked at the relationship between fragmentation and effective spreads use   

pair-differences in our matched-pairs sample. We use similar control variables to those 

used in regression (1.1) and (1.2), and add additional variables to control for residual 

matching errors. In the previous literature, the difference of prices enters the regression 

in two different ways (see Boehmer, (2005); Huang and Stoll (1996)), so we ran the 

following regressions:  
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         (1.6) 

 

 

The dummy variable does not enter into these four equations because each pair has the 

same listing market. A positive α  in these regressions implies that the consolidated 

group has higher transaction cost, and Table 1.12 shows that this is case. In general, we 

find that consolidated stocks’ trading cost is about 0.33-0.34 cent higher than the 

fragmented group, which is similar to the result we find using the matched sample 

approach.   

 

1.5 Conclusions 

Is market fragmentation harming market quality?  Our results suggest the answer is 

generally no. From a transactions cost perspective, fragmentation appears to reduce 

effective spreads and increase execution speeds.  While the magnitude of these effects 

differs across listing and size regimes, we find that fragmentation is particularly 

beneficial for small stocks, suggesting that fragmentation has increased competition for 
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traditionally less liquid stocks.  Moreover, while short-term volatility appears to have 

increased particularly for NYSE-listed stocks, overall efficiency seems to be enhanced 

in that stocks with more fragmented trading exhibit price behavior closer to being a 

random walk. These results suggest that fragmentation has enhanced the competitive 

nature of U.S. equity markets without degrading its transactional or informational 

efficiency. 

 

One might wonder how these ameliorative effects arise given the presumed positive 

network externality effects that arise from consolidated trading.  We believe the answer 

is that while U.S. equity markets are spatially fragmented, they are, in fact, virtually 

consolidated.  The development of sophisticated order routing combined with the 

existence of a consolidated tape and the “trade through” rule have resulted in a single 

virtual market with many points of entry.  This allows the positive benefits of greater 

competition and specialization to prevail without the negative effects that accompany 

the loss of consolidation. 

 

This result has particular importance for the debates surrounding fragmentation in 

global markets.  In Europe, the development of multi-lateral trading facilities (MTFs) is 

accelerating the movement of trades away from the established exchanges.  However, 

the lack of a consolidated tape collecting price feeds from all execution venues greatly 

inhibits the ability to establish market-wide trade-through protection.  Without such 

protection, it is hard to see how a single virtual market can emerge.  Similarly, in 

Canada, fragmentation has begun, but there is not yet regulatory policy regarding access 

to new venues, nor a trade-through rule to require orders to flow to the most competitive 

venue.  It remains to be seen whether benefits from fragmentation can emerge without 

such protections. 
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Our results may have particular importance for developing economies.  Emerging 

economies have traditionally banned off-exchange trading, but the benefits of new 

trading technologies can be substantial if combined with appropriate regulatory 

protections.  In China, for example, putting in place trade-through protection and 

unified trade and price reporting protocols could set the stage for substantial 

improvements in market quality.  Conversely, in markets where such protections have 

not or cannot be implemented, fragmentation is likely to be more detrimental than not, 

suggesting that off-exchange trading prohibitions may be appropriate. 

 

Finally, the recent “flash crash” has raised concerns that fragmentation may raise 

stability issues for markets.  Our analysis does not include any periods of instability, 

and as yet this conjecture is unproven. But these concerns underscore the importance of 

understanding how market structure affects market performance.  We believe this is an 

important issue for future research. 
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CHAPTER 2 

A GLIMPSE INTO THE DARK: 

   PRICE FORMATION, TRANSACTION COST AND MARKET SHARE OF THE 

CROSSING NETWORK 

2.1 Introduction 

No trading mechanisms are more controversial than crossing networks, defined by the 

Securities and Exchange Commission (SEC) as "systems that allow participants to enter 

unpriced orders to buy and sell securities. Orders are crossed at a specific time at a price 

derived from another market." (SEC (1998)).27  According to a report by Tabb group, 

crossing networks account for 11.5% of average daily volume in the U.S. 28 Recently, 

this kind of trading platform has received increased public attention, partly because of 

"the industry's curious choice of the name ‘dark pool’."29 In June 2009, NYSE Euronext 

executive vice president Thomas Callahan asked Congress to pressure the SEC to 

reexamine its regulatory regime for dark pools because they can "harm price discovery 

and worsen short term volatility."30  A month later, Nasdaq CEO Robert Greifeld made 

an even more aggressive claim in a letter to SEC Chairman Mary Shapiro, in which he 

called for the elimination of dark pools because they are "market structure policies that 

do not contribute to public price formation and market transparency."31 On the other 

hand, proponents of dark pools claim that "undisplayed liquidity adds to execution 

quality" and "on behalf of all investors, dark liquidity adds to execution."32

                                                 
27 Examples of crossing networks are Goldman Sachs Sigma X, ITG POSIT, Liquiditynet and Pulse 
Trading BlockCross. For a list of these crossing networks, refer to Domowitz, Finkelshteyn and 
Yegerman (2009). 

  The SEC 

28 "Study: 'Dark Pools' Account for 4% of European Trades", Wall Street Journal, November 2, 2009. 
29 "Exchanges should unite to end flash orders", by Nasdaq CEO Robert Greifeld, Financial Times, 
August 6, 2009. Interestingly, even though Robert Greifeld is an opponent of "dark pools", he 
acknowledges that "dark pool" is a "misnomer and has inevitably gained a negative connotation." In the 
survey paper by Degryse, Achter and Wuyts (2008) on dark pools, all of the papers cited are actually on 
crossing networks. 
30 "NYSE Euronext Asks Congress to Press the SEC On Dark Pools", Trader's Magazine, June 10, 2009, 
31 "Dark Pools Fire Back at Call for Ban", Wall Street Journal, July 31, 2009, . 
32 "Dark Pools Fire Back at Call for Ban", Wall Street Journal, July 31, 2009. 
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now considers dark pools an area that "will have a significant impact on individual 

investors and the readers of the financial press,"33 and they are "expected to solicit 

comments and meet with proponents and opponents of dark pools."34

 

 

The finance literature provides surprisingly little insight into crossing networks and the 

following questions are not well addressed. Do crossing networks harm price 

discovery? Do crossing networks increase stock price volatility? How and to what 

extent do crossing networks affect liquidity and transaction costs in the public 

exchange?  Should crossing networks provide so-called "fair access" to all traders? 

What stock properties create a comparative advantage for crossing networks over 

exchanges or vice versa? 

 

Two obstacles prevent the previous literature from addressing these questions. First, in a 

model including both an exchange and a crossing network that also allows price 

discovery, we face two dimensions of uncertainty: price uncertainty and execution 

uncertainty. Current literature has not found a way to characterize these two uncertainty 

simultaneously. In classical models of price discovery, execution is guaranteed. 

Therefore, the volume is equal to the traders' order size, and the only uncertainty of 

profits comes from price. When not all submitted orders are executed, traders' expected 

profits are based on the expected volume as opposed to the submitted order size. 

Therefore, to define a profit function and optimal strategy, we first need to know the 

conditional expectation of the volume based on the order size, which usually resides 

within a very complex functional form. When the price is also a random variable, the 

problem becomes even more complex, because the profit is now a function of two 

                                                 
33 Speech by SEC Chairman Mary Schapiro, June 18, 2009. 
34 "SEC Plays Keep-Up in High-Tech Race", Wall Street Journal, August, 20 2009. 
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random variables. Second, if traders with better information can choose where to trade, 

the uninformed agents must guess informed traders' strategies in both markets, making 

the learning problem difficult to characterize. 

 

Due to these two obstacles, the previous literature on crossing networks relies on very 

strong assumptions. For example, Dönges and Heinemann (2006) and Degryse, Achter 

and Wuyts (2009) eliminate price uncertainty and assume that transaction costs in the 

exchange are fixed. These two assumptions enable these authors to focus on the 

complex problem of execution probability. However, the fixed price precludes them 

from studying price discovery and price volatility. Crossing networks also have no 

impact on the transaction costs in the exchange, which are assumed to be fixed.  In 

Hendershott and Mendelson (2000), traders with better information cannot choose 

where and how much they trade. Even under this strong assumption, the Hendershott 

and Mendelson model can only be analytically solved as the liquidity order flow goes to 

infinity, that is, when both information asymmetry and execution uncertainty disappear. 

 

This paper contributes to the literature by solving the obstacles encountered when 

considering two-dimensional uncertainty and two simultaneous markets. An analytical 

solution is obtained, which in turn provides theoretical predictions consistent with the 

empirical literature and sheds some light on the current policy debate. The paper also 

provides a number of predictions to be tested, which are summarized in the conclusion. 

 

This paper extends the frameworks of Grossman and Stiglitz (1980) and Kyle (1985) 

frameworks to multiple markets: an exchange with guaranteed execution but also with 

price impact, and a crossing network with no price impact but without guaranteed 

execution. Two mechanisms are essential for this model. First, the informed trader 
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needs to balance two types of trading costs. In the exchange, his order has guaranteed 

execution, but each trade shifts the market price in an unfavorable direction. The 

informed trader's order does not have a direct price impact in the crossing network, but 

it has a probability impact in that the execution probability decreases as the order size 

increases. Second, the price impact of the informed trader's trade on the exchange not 

only affects his profit in the exchange, but it also creates an externality to his profit in 

the crossing network, where orders are matched at the price set by the exchange. This 

externality makes the informed trader trade less aggressively in the exchange than the 

Kyle model predicts. 

 

This reduction in informed trading in the exchange makes the order flow in the 

exchange less informative than it is in the Kyle model. Therefore, price discovery is 

reduced, as the order flow reveals less information to the market maker. The relative 

lack of revealed information most strongly affects stocks with high fundamental value 

uncertainty, because information on those stocks is more valuable to the informed 

trader, which creates a higher incentive for him to hide in the crossing network. 

 

However, less informed trading in the exchange decreases the adverse selection 

problem and increases the liquidity of the exchange as measured by Kyle's λ.  This is in 

contrast to the prediction of previous literature based on cream-skimming. Cream-

skimming predicts that the creation of new trading mechanism worsens the liquidity in 

the primary exchange, because new trading platforms may attract liquidity traders out of 

the primary exchange while leaving the informed traders in the exchange. Therefore, the 

adverse selection problem in the primary exchange becomes more serious, and liquidity 

of the primary exchange is harmed. Empirically, Fong, Madhavan and Swan (2004) do 

not find that crossing networks increase the adverse selection problem of the primary 
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exchange, and Gresse (2006) finds that crossing networks increase the liquidity of the 

exchange, which suggests that cream-skimming from the crossing networks must be 

offset by other mechanisms. My model suggests that the externality of price impact on 

the crossing network is one such mechanism. 

 

Due to its ability to characterize both price impact and non-execution, this model 

generates predictions on the relationship between these two transaction costs, which 

explain several anomalies found in the empirical literature. Ready (2009) finds 

empirically that stocks with a higher volatility are more likely to be traded in crossing 

networks, while Dönges and Heinemann (2006) suggest the opposite on theoretical 

grounds. My predictions differ from those of the Dönges and Heinemann model 

because their model assumes a fixed transaction cost in the exchange, whereas the 

transaction costs in both markets are endogenous in this model. My model shows that 

both price impact and non-execution probability are positively correlated with volatility, 

but an increase in fundamental value uncertainty creates a comparative advantage for 

the crossing network, because the informed trader has a higher incentive to hide his 

trading in the crossing network. Also, I show that crossing networks may have a higher 

market share for stocks with lower execution probability, which provides an explanation 

for the empirical anomaly raised by Ready (2009) that crossing networks' volumes are 

not high in stocks where the likelihood of finding counterparts is expected to be high. 

 

The behavior of the optimizing informed trader leads to a rather surprising prediction on 

execution probability. I find that an increase in liquidity trading in the crossing network 

may decrease execution probability, because the resulting increase in informed trading 

may be greater than the increase in liquidity trading. This prediction is opposite of the 

predictions of the model with no informed trader (Dönges and Heinemann (2006)) and 
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of the model with exogenous informed traders (Hendershott and Mendelson (2000)). 

This counterintuitive result is driven by differences in market structure. While the 

market maker in the exchange can actively adjust quotes to protect himself from the 

informed trader, a crossing network with a fixed allocation rule is passive. As liquidity 

trading in the crossing network increases, the informed trader considers the crossing 

network to be more favorable and moves even more trades to the crossing network than 

the liquidity traders do. 

 

The paper then shows how the crossing network can change its allocation rules to 

protect itself from the informed trader. To my knowledge, this is the first paper that 

studies how market outcomes are affected by different allocation rules in the crossing 

network. The main discussion in the paper is based on the rule that the informed trader 

trades first. Then two alternative rules are considered. One is to give the informed trader 

a lower trading priority, and the other is to exclude the informed trader from the market 

altogether. Both of these strategies decrease the non-execution probability due to a 

decrease in the level of adverse selection in the crossing network, but price impact 

increases as adverse selection in the exchange increases. Price discovery, however, is 

always enhanced by these two strategies. Interestingly, while the main purpose of the 

crossing network adopting one of these two strategies is to increase the execution 

probability, these strategies also minimize the negative impact of crossing networks on 

price discovery. As a result, the proposed change to enforce fair access in crossing 

networks will have two undesirable consequences. First, fair access always harms price 

discovery, because informed traders will hide in the crossing network. Second, fair 

access will lead to higher adverse selection problems in crossing networks. Liquidity 

traders on the same side as the informed trader would be crowded out. If a liquidity 

order is executed, it will be more likely to be an order on the wrong side of the market. 
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The chapter is organized as follows. Section 2.2 provides institutional details about the 

crossing networks. Section 2.3 develops the model and solves for the unique linear 

equilibrium. Section 2.4 analyzes the crossing network's impact on information 

revelation and price volatility. Section 2.5 analyzes the price impact and the non-

execution probability as well as the relationship between them. Section 2.6 considers 

the competition for order flow between the exchange and the crossing network. Section 

2.7 considers the impact of different allocation rules on price discovery and liquidity. 

Section 2.8 concludes the paper and discusses the directions for future research. 

 

2.2 Institutional Details 

In crossing networks, traders anonymously enter unpriced buy and sell orders. The trade 

is priced by reference to a price derived from some other market. Crossing networks 

originated in the early 1970s as private phone-based networks among buy-side traders. 

In the 1980s, crossing networks went electronic with the introduction of Instinet and 

POSIT. Currently, there are about 40 crossing networks in the U.S. and 60 globally. A 

partial list of them can be found in Domowitz, Finkelshteyn and Yegerman (2009). As a 

thorough description of trading procedures of crossing networks would be voluminous, 

I focus my introduction on three key elements that define crossing networks and 

distinguish their types. 

 

First, crossing networks all have a benchmark price, which can be bid-ask midpoint, 

closing price, volume weighted average price, or national best bid and offer price. Here 

are examples offered by Hasbrouck (2007). For some crossing networks, the price is 

determined after the quantity match. In ITG's POSIT system, for example, potential 

buyers and sellers enter quantities to buy or sell, which are not made visible. At the time 
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of the crossing, the system matches buyers and sellers and the execution price is the 

midpoint of best bid and ask in the listing exchange. To discourage either side from 

manipulating the price in the listing market to obtain a favorable matching price, the 

exact time of a cross is random within a time window. For some other crossing 

networks, price is determined before the quantity match. For example, the Instinet 

closing cross allows traders to submit orders after the regular market closes. These 

orders will be matched and executed at closing price. Because price is determined 

before the quantity match, crossing networks need to be designed to discourage 

predatory trading. 35

 

 For example, Instinet cancels crosses when there are news 

announcements and monitors participants, expelling those whose strategies appear to be 

news driven. 

Second, prices of the crossing networks do not have the market-clearing function 

because they are derived from other markets. If buy and sell orders are not balanced, 

only the side with fewer orders can be fully executed. Therefore, crossing networks 

need proprietary matching algorithms to determine the trading priority for the side with 

the larger quantity. Examples of basic allocation rules include the time priority rule and 

the pro rata rule; rules in reality may be complex functions of these basic rules and are 

mostly confidential.36

                                                 
35 A strategy of predatory trading involve submitting orders in response to news announcements made 
after the determination of the closing price in the hopes of picking off unwary counterparties. 

 As crossing networks are not public exchanges, their customers 

can be selected and some traders can be excluded. This can be considered as an extreme 

allocation rule in which some traders always get 0 execution. Crossing networks' 

preferred customers are "buy-side" firms, particularly those who manage "passive 

portfolios" such as index funds. Two kinds of traders are often excluded from the 

36 As the paper will show, allocation rules are the key for crossing networks to minimize the adverse 
selection problem created by informed traders. Therefore, crossing networks adopt complex allocation 
rules, keep them confidential, and frequently change them. 



 55  
 

crossing network. The first kind is potentially informed traders such as hedge funds, 

brokers and proprietary traders from sell-side firms; the second kind is traders who 

submit small orders to extract information contained in the order flow. 

 

Finally, crossing networks differ in their matching frequency. Some only match orders 

once a day, whereas others may match several times a day or have continuous matching. 

 

There are several advantages to trade in crossing networks. First, there are usually no 

bid-ask spreads in crossing networks, as buy and sell orders are executed at the same 

price. Second, trades also do not have price impacts, as their prices are independent of 

order sizes. Conditional on execution, crossing networks usually have lower transaction 

costs than does the exchange (Keim and Madhavan (1998), Conrad, Johnson and Wahal 

(2003), Næs and Ødegaard (2006) and Sofianos and Jeria (2008)). In addition, 

institutional traders like to use crossing networks because they prevent information 

leakage. If information associated with an institutional order leaked out, opportunistic 

front runners could trade in advance of the order in the same direction, thereby driving 

the price in an unfavorable direction. 

 

The three benefits of trading in crossing networks prompt Conrad, Johnson and Wahal 

(2003) and Ready (2009) to ask why crossing networks are not more widely used. The 

answer is that the probability of execution in crossing networks is significantly lower 

than that in the exchange. Gresse (2006) finds that the execution probability of the 

crossing network is as low as 2.63% to 4.13%, whereas the order fill rate in the 

exchange is as high as 90% (Keim and Madhavan (1995) and Perold and Sirri (1993)).37

                                                 
37 These numbers are for all types of orders. The fill rate for limit orders, especially nonmarketable limit 
orders, are lower. Hasbrouck and Saar (2009) find that the fill rate for nonmarketable limit order is 
6.37%. 
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If we measure trading costs for both executed orders and nonexecuted orders using the 

implement shortfall developed by Perold (1988), we can say that crossing networks 

have lower execution costs but higher opportunity costs. 

 

Non-execution can occur for noninformational reasons. The Hendershott and 

Mendelson model shows that even if there is no information asymmetry, expected 

probability of execution cannot be higher than 70% because of random mismatch of 

geometrically distributed buy and sell order flow. Non-execution can also occur for 

informational reasons. On one side of the market, there are both liquidity and informed 

traders, and on the other side there are only liquidity traders. The noninformational and 

informational causes of non-execution have different implications. In a world without 

information asymmetry, the expected price change is 0 after each trade. On the other 

hand, non-execution caused by informational sources has an adverse selection effect. 

An order on the same side as the informed order may be crowded-out by the informed 

trader. On the other hand, an executed order is more likely to be on the wrong side of 

the market. By analyzing an institutional buyer, Næs and Ødegaard (2006) show that 

stocks that fail to execute in the crossing network have significantly higher cumulative 

abnormal returns than stocks that successfully execute, an indication of the adverse 

selection problem in crossing networks. 

 

2.3 Model 

2.3.1 Setup of the Model 

This model is a variation of the canonical strategic trade model developed by Kyle 

(1985).  I consider a two-period model with two markets: an exchange and a crossing 

network. A single risky asset is traded by three types of agents: a risk-neutral informed 

trader, many liquidity traders, and a market maker. The asset has a stochastic liquidation 
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value 𝑣𝑔� with𝐸�𝑣𝑔� � = 𝑝0. The informed trader observes in advance the realization of 

𝑣𝑔�, denoted 𝑣𝑔, and submits 𝑥𝑒 ∈ ℝ to the exchange and 𝑥𝑑 ∈ ℝ to the crossing network 

to maximize the value of his information. 

 

As in the Kyle model, liquidity traders are passive players and their motives for trade 

are not explicitly modeled. Dönges and Heinemann (2006), Degryse, Achter and Wuyts 

(2009), Foster, Gervais and Ramaswamy (2007) and Hendershott and Mendelson 

(2000) show that heterogeneous liquidity preferences of liquidity traders, which 

represent their willingness to pay for the immediacy of execution, can lead to non-zero 

liquidity trading in both markets. These four papers also show that crossing networks 

generate new liquidity traders who are unwilling to trade in the exchange.  In addition to 

liquidity preference, trade size is also a consideration in the choice of market. Index 

funds or other institutional traders who manage passive portfolios may make large 

liquidity trades, which will cause a substantial price impact if they trade in the 

exchange. Therefore, these traders may opt to trade in the crossing network. 

Conversely, small traders may prefer the exchange because the price impact of their 

trade is trivial. It is very hard to incorporate the choice of both informed and liquidity 

traders when there are different kinds of trading mechanism.38 The previous literature 

either assumes that there are no informed traders (Parlour and Seppi (2003)) or that 

there are only exogenous informed traders (Hendershott and Mendelson (2000)). The 

assumption of exogenous liquidity traders is certainly closer to the standard assumption 

in the market microstructure literature.39

                                                 
38 Chowdhry and Nanda (1991) and Baruch, Karolyi and Lemmon (2007) model the choice of both 
informed and liquidity traders when assets are traded in several markets with the same trading 
mechanism. 

 

39 In reality, exchanges and crossing networks coexist, which is a strong indication of liquidity trading in 
both markets because informed traders cannot trade among themselves. My model reduces to the Kyle 
model if there are no liquidity traders in the crossing network. No equilibrium exists when all of the 
liquidity traders are in the crossing network. The reason is as follows. Suppose that the informed trader 
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The liquidity order flow in the exchange is denoted as 𝑢𝑒� ∈ ℝ. For the convenience of 

modeling, the buy order flow and sell order flow are defined separately in the crossing 

network. Let 𝑢𝑑𝑏� ∈ ℝ⁺ and 𝑢𝑑𝑠� ∈ ℝ⁺ be the unsigned aggregate liquidity buy and sell 

order flows in the crossing network, respectively. I assume that 𝑣𝑔�, 𝑢𝑒�, 𝑢𝑑𝑏� and 𝑢𝑑𝑠�  are 

independently distributed, and their distributions will be specified below. 

 

The timing of events is depicted in Figure 2.1. At time 0, all four random variables are 

realized. The informed trader observes 𝑣𝑔  but does not observe 𝑢𝑒� , 𝑢𝑑𝑏�  or 𝑢𝑑𝑠� . His 

trading strategy {𝑋𝑒 , 𝑋𝑑 } assigns an order size in the exchange and the crossing 

network to each 𝑣𝑔 . The crossing network only accepts orders before time 1, even 

though it opens in the second period, because after time 1, the informed trader knows 

both the realization of 𝑣𝑔� and the price 𝑝�. He could then compare these two values and 

conduct predatory trading in the crossing network. At time 1, when the exchange opens, 

the market maker observes the aggregate order flow in the exchange 𝑦� =  𝑥𝑒� + 𝑢𝑒� but 

cannot know the individual values of 𝑥𝑒� and 𝑢𝑒�. He also does not know 𝑣𝑔�, 𝑥𝑑�, 𝑢𝑑𝑏�  or 

𝑢𝑑𝑠� . The market maker sets the semi-strong efficient price 𝑝�  to clear the imbalance 

between the buy and sell orders. The market maker's pricing rule is 𝑃, which assigns to 

each outcome of 𝑦� a price 𝑝� based on his conjecture of the informed trader's strategy 

{𝑋𝑒, 𝑋𝑑}. At time 2, the crossing network opens. 𝑝� is used to match the buy and sell 

orders. The stock liquidates at the end of period 2. As there is no market maker to offer 

liquidity for the trade imbalance in the crossing network, only the side with less volume 

gets full execution; the side with more volume, on the other hand, gets partial execution. 

                                                                                                                                               
trades in the exchange; then his information would be fully revealed to the dealer based on Grossman and 
Stiglitz (1980) and he would earn 0 profit. Therefore, the informed trader would not trade in the 
exchange. However, if the informed trader does not trade in the exchange, then the exchange shuts down, 
and there is no price for the crossing network. Alternatively, it can be assumed that the market maker sets 
a price equal to p₀ when nobody trades. A price of p₀, however, would lead the informed trader to trade in 
the exchange. Therefore, no equilibrium exists. 
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Figure 2.1: Time line of the model 

 

Because 𝑝� is determined before time 2, the informed order size 𝑥𝑑  does not have a 

direct price impact in the crossing network.40

 

 This would lead the risk-neutral informed 

trader to submit an infinite size 𝑥𝑑. To rule out this possibility, I follow Hendershott and 

Mendelson (2000), Seppi (1997), Parlour and Seppi (2003) and Foucault and Menkveld 

(2008) and assume that there is an up-front order submission cost of 𝑐 per share, which 

applies to both the exchange and the crossing network. Because all orders in the 

exchange are executed, 𝑐 can be understood as the commission, whereas the cost in the 

crossing network will "capture any incremental opportunity or shoe leather costs 

investors bear when trading from off the exchange." (Seppi (1997)). My model holds 

for any positive 𝑐 so the value of 𝑐 can be set to be arbitrarily small. 

Because of the cost 𝑐, the informed trader's profit per unit is (𝑣𝑔 − 𝑐) − 𝑝� when he buys 

and is 𝑝� − (𝑣𝑔 + 𝑐) when he sells. The cost 𝑐 has an asymmetric effect for the informed 

trader: it increases the fundamental value to the informed buyer and decreases the 

fundamental value to the informed seller. Moreover, when 𝑣𝑔 ∈ [𝑝0 − 𝑐,𝑝0 + 𝑐], the 

                                                 
40 At equilibrium, 𝑥𝑑  indirectly impacts the price because the market maker has a correct belief regarding 
𝑋𝑑. 
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potential revenue of trading is lower than the up-front submission cost. Therefore, the 

informed trader neither buys nor sells. To rule out the possibility of non-trading, the 

Hendershott and Mendelson model assumes that informed traders always trade. In this 

paper, I make the following assumption on 𝑣𝑔, whose only purpose is to make all of the 

proofs in the paper rigorous. Without the assumption, it can be proven that the model 

holds asymptotically by letting 𝑐 approach 0. 

 

To define the distribution of 𝑣𝑔� , I assume that a new variable 𝑣� , which is the 

fundamental value of the asset to the informed trader after adjusting for 𝑐, follows the 

normal distribution 

𝑣� ∼ 𝑁(𝑝0,𝜎𝑣2). 

 
Then 𝑣𝑔� is defined by the following transformation of 𝑣�: 

𝑣𝑔� = �𝑣� + 𝑐 𝑤ℎ𝑒𝑛 𝑣� ≥ 𝑝0
𝑣� − 𝑐 𝑤ℎ𝑒𝑛 𝑣� < 𝑝0

�                              (2.1) 

Intuitively, this transformation means that the value of the information is normally 

distributed after deducting the up-front submission cost. In addition, Pr�𝑣𝑔� ∈

[ 𝑝0 − 𝑐,𝑝0 + 𝑐]) = 0; thus, the information always leads the informed trader to submit 

orders. The Kyle model makes assumption about 𝑣� directly because it does not model 

commission or other submission cost; by contrast, I need to make assumptions about 𝑣𝑔�, 

because the up-front submission cost is part of the model. The value 𝑣𝑔� will only show 

up in the intermediate steps of the proofs, whereas the major results of the paper only 

contain 𝑣�  because c cancels out in the derivation. Finally, 𝑣𝑔� and 𝑣� are informationally 

equivalent because they have a one-to-one mapping such that 𝐸�. �𝑣𝑔�� = 𝐸(. |𝑣�).  In 

addition, it is easy to show that 𝐸�𝑣𝑔� � = 𝐸(𝑣�) = 𝑝0.  

 



 61  
 

As in the Kyle model, I assume that the liquidity order flow in the exchange,  𝑢𝑒� , 

follows a normal distribution with mean 0 and variance 𝜎𝑒2, where 𝑢𝑒� > 0 represents a 

net buy order flow and 𝑢𝑒� < 0 represents a net sell order flow. The standard deviation 

𝜎𝑒 serves as a proxy for the level of liquidity trading in the exchange.41

 

 

The unsigned liquidity buy, 𝑢𝑑𝑏� , and the unsigned liquidity sell, 𝑢𝑑𝑠� , follow power law 

distributions. The fact that U.S. trading volume follows a power law distribution has 

been found by Gopikrishnan, Plerou, Gabaix and Stanley (2000). This result is extended 

to France and the UK by Gabaix, Gopikrishnan, Plerou and Stanley (2006) and by 

Plerou and Stanley (2007).  

 

The following equation defines 𝑢𝑑𝑠� . The distribution of 𝑢𝑑𝑏�  can be similarly defined. 

 
The cumulative distribution function (C.D.F.) of 𝑢𝑑𝑠�  is 

𝐹𝑠(𝑧; 𝑘) = 𝑃�𝑢𝑑𝑠� ≤ 𝑧� = �
0,                       𝑓𝑜𝑟 𝑧 < 0

1 −� 𝑘
𝑧+𝑘

,   𝑓𝑜𝑟 𝑧 ≥ 0
�      (2.2) 

    which also implies the following probability distribution function (P.D.F.) of 𝑢𝑑𝑠� 

𝑓𝑠(𝑧; 𝑘) = �
0,                           𝑓𝑜𝑟 𝑧 < 0
1
2
𝑘
1
2(𝑧 + 𝑘)−

3
2   𝑓𝑜𝑟 𝑧 ≥ 0

�                              (2.3) 

The parameter k, which is called the scale, is an inherent parameter of the distribution. 

Figure 2.2 shows that a distribution with a higher k stochastically dominates a 

distribution with a lower k. Therefore, k captures the level of liquidity trading in the 

                                                 
41 The unsigned order flow, |𝑢𝑒�|, , follows a folded normal distribution with 𝐸|𝑢𝑒�| = �2

𝜋
𝜎𝑒 . Thus, the 

expected size of uninformed order flow is linear in 𝜎𝑒. 
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crossing network. As k increases, the level of liquidity trading in the crossing network 

increases. 
 

 

Figure 2.2: The cumulative distribution function of the power law distribution 
This figure illustrates the cumulative distribution function (C.D.F.) of the power law 
distribution for different k. The horizontal axis measures the order size and the vertical 
axis measures the value of the C.D.F. A distribution with larger k stochastically 
dominates a distribution with smaller k. 

 

2.3.2 Allocation Rules 

Market microstructure is the study of the process and outcomes of exchanging assets 

under explicit trading rules (O'Hara (1995)). The key rule affecting the market 

outcomes in my model is the allocation rule of the crossing network. First, let us 

consider a rule that defines a scenario in which the crossing network can successfully 

exclude the informed trader. Then, the exchange in my model reduces to that in the 

Kyle model. Each trade reveals half of the information, and the information revelation 
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is independent of the fundamental value uncertainty 𝜎𝑣 and the level of noise trading in 

the exchange 𝜎𝑒 . Therefore, price discovery is not harmed. A crossing network 

operating under the conditions defined by the informed-excluded rule still has a non-

execution problem because of the random mismatch between buyers and sellers. 

However, it is easy to verify that a change in the level of liquidity trading k will not 

affect the non-execution probability in this model. Hence, instead of capturing the 

network externality in which more liquidity traders lead to a higher execution 

probability (Dönges and Heinemann (2006) and Hendershott and Mendelson (2000)), 

my model focuses on the non-execution caused by informed trading. 

 

Certainly, it is unrealistic to expect that the crossing network can always exclude the 

informed trader. Næs and Ødegaard (2006) find evidence of informed trading in the 

crossing network by examining cumulative abnormal returns of the stocks. In addition, 

there is a proposed policy change to enforce "fair access" to the crossing network. 

Suppose this policy change is implemented; then the crossing network cannot exclude 

any trader. I consider the case where informed trader can trade in the crossing network, 

which is both realistic and also sheds some light on the effect of the proposed "fair 

access" policy. 

 

This model can be analytically solved in two cases. In the first case, the informed trader 

has priority over liquidity traders. This case can be understood as a crossing network 

with a time priority rule and the informed trader, who has better technology and 

information, trades faster than the liquidity traders do. In the second case, liquidity 

buyers and sellers trade first and the informed trader can only trade with the residual of 

the liquidity order flow. This rule corresponds to the situation in which the informed 
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trader is detected and is placed at the end of the queue.42 These two rules impose an 

upper bound and lower bound on the informed trader's impact in the crossing network, 

where all other rules can be considered combinations of these two extremes. Solving the 

model under other allocation rules such as a pro rata rule is a formidable task. 43

 

 

Fortunately, the qualitative results of the informed-first and the liquidity-first rules are 

very similar because the only effect of the liquidity-first rule is to decrease the amount 

of liquidity trading available to the informed trader, whereas the key mechanisms 

driving the results remain the same. The discussions and proofs in this paper will focus 

on the informed-first rule, and the liquidity-first rule will be considered in the section on 

alternative allocation rules. 

2.3.3 Equilibrium 

 

In this subsection, I solve the model in two steps. The first step derives the profit 

function, which is in a complex functional form. Then the model is solved in the second 

step. The final part of this subsection discusses the comparative statics of the 

                                                 
42 In reality, crossing networks do not like informed traders, and they have all kinds of anti-gaming 
techniques to minimize the impact of potentially informed order flow. 
43 Pro rata rule means that all the traders get an equal proportion of executed shares for each share he or 
she submits. If we want to solve the problem under the pro rata rule, we must calculate the expectation of 
the ratio of two random variables. That is, we must generate the expected volume for the informed trader 
who wants to submit 𝑥𝑑 buy orders in terms of the following function form 

𝑥𝑚� = �
𝑥𝑑 ∗

𝑢𝑑
𝑠�

𝑢𝑑
𝑏�+𝑥𝑑

    𝑖𝑓 𝑢𝑑𝑠� ≤  𝑢𝑑𝑏� + 𝑥𝑑

𝑥𝑑   𝑢𝑑𝑠� >  𝑢𝑑𝑏� + 𝑥𝑑

�. Then, it is very hard to write the functional form of E(xm� |xd) for 

the following two reasons. First, the expectation of ratio of two random variables is generally not equal to 
the ratio of their expectation even if the two variables are independent. Therefore, to calculate E(xm� |xd) 
we first need to calculate the joint density of random variables 𝑢𝑑𝑠�  and   𝑢𝑑𝑏� + 𝑥𝑑 or or the expectation of 

the ratio distribution 𝑢𝑑
𝑠�

𝑢𝑑
𝑏�+𝑥𝑑

. To make things worse, the probability of execution can never be greater than 

1. This makes us unable to follow the limited cases in which ratio distribution is well defined. So the best 
we can do is to express E(xm� |xd) as integrals.  For most distributions of  𝑢𝑑𝑠�  and  𝑢𝑑𝑏�, the integral is 
difficult or impossible to express in terms of a finite number of elementary functions. 
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equilibrium, which provides the intuitions for the results on price discovery, volatility, 

transaction costs and market share. 

 

The definition of equilibrium is as follows: 

Definition 2.1: A rational expectation equilibrium is an informed order submission 

strategy 𝑋𝑒 , 𝑋𝑑  and a market maker's pricing rule P such that the following two 

conditions hold: 

1. Profit Maximization: For any alternative strategy 𝑋𝑒′ , 𝑋𝑑′   and any realization v (or 

𝑣𝑔) 

 

𝐸[𝜋�(𝑋𝑒, 𝑋𝑑,𝑃|𝑣� = 𝑣] ≥ 𝐸[𝜋�(𝑋𝑒′ , 𝑋𝑑′   ,𝑃|𝑣� = 𝑣]; 

 

2. Market Efficiency: The random variable p satisfies 

𝑝�(𝑋𝑒, 𝑋𝑑,𝑃) =  𝐸[𝑣�|𝑦� = 𝑥𝑒� + 𝑢𝑒�] 

There are two additional comments regarding the market efficiency condition. First, the 

market efficiency condition implies 𝑝� =  𝐸[𝑣�|𝑦�]  instead of  𝑝� =  𝐸[𝑣𝑔�|𝑦�]  because 

commission in the exchange is not part of the price. The market maker sets a price equal 

to 𝐸[𝑣�|𝑦�]  and also collects the commission. Second, the market maker needs to 

conjecture not only the informed strategy in the exchange but also the informed trader's 

strategy in the crossing network. In the rational expectation equilibrium, the market 

maker's conjecture on the informer trader's strategies needs to be correct. Therefore, 

although the market maker can only observe 𝑦�, he can infer  𝑥𝑒� as well as 𝑣� and  𝑥𝑑� 

based on his correct belief of  𝑋𝑒 and 𝑋𝑑. 

 

I then solve for the equilibrium 𝑋𝑒 and 𝑋𝑑 as well as the pricing rule P by guessing and 

verifying. Suppose that 𝑥𝑒 = 𝑋𝑒(𝑣) = 𝛼 + 𝛽𝑣  and 𝑃(𝑦) = 𝜇 + 𝜆𝑦 , which are both 
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linear functions. As I will show in the proof, the functional form and coefficient of  𝑋𝑑 

is uniquely defined by 𝑋𝑒 and  P. 

 

2.3.3.1 Expected Profit 

The risk-neutral informed trader wants to maximize his expected profit. Since informed 

buying and selling are separable and symmetric in the model, I currently focus on the 

case in which 𝑣𝑔 ≥ 𝑝0 + 𝑐 (𝑣 ≥ 𝑝0), which represents a scenario in which the informed 

trader wants to buy.  Suppose that the informed trader chooses {𝑥𝑒 ,𝑥𝑑}. Then he expects 

that the market maker will set the price at  𝑝� = 𝜇 + 𝜆(𝑥𝑒 + 𝑢𝑒�). His expected profit per 

executed share then becomes 𝐸�𝑣𝑔 − 𝑝�� = 𝑣𝑔 − 𝜇 − 𝜆𝑥𝑒 because E(𝑢𝑒�) = 0. Therefore, 

his expected profit in the exchange is: 

𝐸(𝜋𝑒�) = 𝐸 ��𝑣𝑔 − 𝜇 − 𝜆(𝑥𝑒 + 𝑢𝑒�)� 𝑥𝑒 − 𝑐𝑥𝑒� = �𝑣𝑔 − 𝜇 − 𝜆𝑥𝑒�𝑥𝑒 − 𝑐𝑥𝑒 =

(𝑣 − 𝜇 − 𝜆𝑥𝑒)𝑥𝑒               ( 2.4) 

To determine his expected profit in the crossing network, we first must find the 

relationship between submitted shares (𝑥𝑑) and executed shares 𝑥𝑚� .  𝑥𝑚�   depends on 

both 𝑥𝑑  and the realization of 𝑢𝑑𝑠� . If 𝑥𝑑 is larger than the liquidity sell order flow 𝑢𝑑𝑠� , 

then 𝑢𝑑𝑠�  shares are executed; otherwise, 𝑥𝑑  shares are executed. Therefore, 

𝑥𝑚��𝑢𝑑𝑠 ,� 𝑥𝑑� = �
𝑢𝑑𝑠�       𝑤ℎ𝑒𝑛  𝑢𝑑𝑠� ≤ 𝑥𝑑
𝑥𝑑        𝑤ℎ𝑒𝑛   𝑢𝑑𝑠� > 𝑥𝑑

 �              (2.5) 

Thus, the expected number of executed shares conditional on 𝑥𝑑 is  
𝐸(𝑥𝑚� |𝑥𝑑) = ∫ 𝑧𝑓𝑠(𝑧)𝑑𝑧𝑥𝑑

0 + 𝑥𝑑 ∫ 𝑓𝑠(𝑧)𝑑𝑧+∞
𝑥𝑑

     (2.6) 

 Lemma 2.1 states the relationship between the numbers of submitted shares and 

executed shares. 
Lemma 2.1:  𝐸(𝑥𝑚� |𝑥𝑑) is increasing in 𝑥𝑑, and if  𝑥𝑑 ≠ 0 the probability of execution 

𝐸(𝑥𝑚� |𝑥𝑑)
𝑥𝑑

 decreases with 𝑥𝑑.  
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Proof: Let 𝐺(𝑥𝑑) =  𝐸(𝑥𝑚� |𝑥𝑑). Then  

𝐺′(𝑥𝑑) = 𝑥𝑑𝑓𝑠(𝑥𝑑) − 𝑥𝑑𝑓𝑠(𝑥𝑑) + � 𝑓𝑠(𝑧)𝑑𝑧
+∞

𝑥𝑑
= � 𝑓𝑠(𝑧)𝑑𝑧

+∞

𝑥𝑑
> 0 

 

(𝐺(𝑥𝑑)
𝑥𝑑

)′ = 𝐺′(𝑥𝑑)𝑥𝑑−𝐺(𝑥𝑑)
𝑥𝑑
2 =

𝑥𝑑 ∫ 𝑓𝑠(𝑧)𝑑𝑧 −∫ 𝑧𝑓𝑠(𝑧)𝑑𝑧𝑥𝑑
0 −𝑥𝑑 ∫ 𝑓𝑠(𝑧)𝑑𝑧+∞

𝑥𝑑
+∞
𝑥𝑑

𝑥𝑑
2 =

−∫ 𝑧𝑓𝑠(𝑧)𝑑𝑧𝑥𝑑
0

𝑥𝑑
2 <0 

The proof does not depend on the functional form of  𝐸(𝑥𝑚� |𝑥𝑑).  The proof holds as 

long as 𝑓𝑠(𝑧) > 0 almost surely when z∈[0,+∞). Lemma 2.1 captures the probability 

impact of the order 𝑥𝑑: as the informed trader increases the order size in the crossing 

network, the expected volume increases but the execution probability decreases. As the 

matching price is independent of quantity,  his total expected revenue increases but his 

marginal expected revenue decreases. 

 

The crossing network matches orders based on the price in the exchange,  𝑣𝑔 − 𝜇 −

𝜆(𝑥𝑒 + 𝑢𝑒�). Thus, the informed trader's expected profit in the crossing network is 

𝐸(𝜋𝑑�) = 𝐸[� 𝑣𝑔 − 𝜇 − 𝜆(𝑥𝑒 + 𝑢𝑒�)� 𝑥𝑚��𝑢𝑑𝑠 ,� 𝑥𝑑� − 𝑐𝑥𝑑] 

= ( 𝑣𝑔 − 𝜇 − 𝜆𝑥𝑒)𝐸(𝑥𝑚� |𝑥𝑑) − 𝑐𝑥𝑑 

= ( 𝑣𝑔 − 𝜇 − 𝜆𝑥𝑒)(∫ 𝑧𝑓𝑠(𝑧)𝑑𝑧 + 𝑥𝑑 ∫ 𝑓𝑠(𝑧)𝑑𝑧)+∞
𝑥𝑑

𝑥𝑑
0 − 𝑐𝑥𝑑   (2.7) 

 

 

The informed trader's optimization problem is to choose {𝑥𝑑 , 𝑥𝑒} to maximize his two-

period profit. That is, 

 
Max
𝑥𝑑,𝑥𝑒

𝐸(𝜋�) = 𝐸(𝜋𝑑� + 𝜋𝑒�) = 

(𝑣 − 𝜇 − 𝜆𝑥𝑒)𝑥𝑒 + ( 𝑣𝑔 − 𝜇 − 𝜆𝑥𝑒)(∫ 𝑧𝑓𝑠(𝑧)𝑑𝑧 + 𝑥𝑑 ∫ 𝑓𝑠(𝑧)𝑑𝑧)+∞
𝑥𝑑

𝑥𝑑
0 − 𝑐𝑥𝑑  (2.8) 
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2.3.3.2 Equilibrium Order Submission Strategy and Pricing Rule 

Equation (2.8) has two first-order conditions. The first-order condition with respect to 

𝑥𝑑 is 
𝜕𝐸(𝜋�)
𝜕𝑥𝑑

= ( 𝑣𝑔 − 𝜇 − 𝜆𝑥𝑒)� 𝑧𝑓𝑠(𝑧)𝑑𝑧
+∞

𝑥𝑑
− 𝑐 = 0 

⇒ ( 𝑣𝑔 − 𝜇 − 𝜆𝑥𝑒)(1 − 𝐹𝑠(𝑥𝑑)) = 𝑐 

⇔ ( 𝑣𝑔 − 𝜇 − 𝜆𝑥𝑒)𝑃𝑟(𝑢𝑑𝑠� > 𝑥𝑑) = 𝑐              (2.9) 

Equation (2.9) has a very intuitive explanation. The term  ( 𝑣𝑔 − 𝜇 − 𝜆𝑥𝑒) represents 

the informed trader's per unit profit conditional on execution, and 𝑃𝑟(𝑢𝑑𝑠� > 𝑥𝑑) is the 

probability that the 𝑥𝑑𝑡ℎ unit is executed. The informed trader chooses 𝑥𝑑  such that the 

marginal profit ( 𝑣𝑔 − 𝜇 − 𝜆𝑥𝑒)𝑃𝑟(𝑢𝑑𝑠� > 𝑥𝑑) = is equal to the order submission cost c. 

The first-order condition with respect to 𝑥𝑒 is 

 
𝜕𝐸(𝜋�)
𝜕𝑥𝑒

= 𝑣 − 𝜇 − 𝜆𝑥𝑒 − 𝜆𝑥𝑒 − 𝜆 �� 𝑧𝑓𝑠(𝑧)𝑑𝑧
𝑥𝑑

0
+ 𝑥𝑑 � 𝑓𝑠(𝑧)𝑑𝑧 

+∞

𝑥𝑑
� = 0 

⇔  𝑣 − 𝜇 − 𝜆𝑥𝑒 = 𝜆𝑥𝑒 + 𝜆𝐸(𝑥𝑚� |𝑥𝑑)          (2.10) 

 

Equation (2.10) also has an intuitive explanation. 𝑣 − 𝜇 − 𝜆𝑥𝑒 is exactly the same as the 

Kyle model. 𝑣 − 𝜇 − 𝜆𝑥𝑒  captures the gain from buying one more share due to the 

increase in volume. The increase in volume, however, leads the market maker to 

increase the price by  𝜆 causing the informed trader to lose 𝜆𝑥𝑒 . Therefore, the informed 

trader in the Kyle model chooses the optimal 𝑥𝑒 based on the trade-off of the volume 

and the price impact. The crossing network adds another trade-off to the model. The 

informed trader's order not only has a price impact on the exchange, but also affects his 

profit in the crossing network. In this sense, his trade in the exchange creates some 
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"externality" for his trade in the crossing network. By trading one more unit in the 

exchange, the informed trader's expected profit in the crossing network decreases by 

 𝜆𝐸(𝑥𝑚� |𝑥𝑑). It is this "externality" that drives the result of the model. 

 

To solve for 𝑥𝑑, the expression of 𝐹𝑠(𝑥𝑑)is plugged into (2.9).  The optimal level of 𝑥𝑑, 

denoted as 𝑥𝑑∗ , is  

( 𝑣𝑔 − 𝜇 − 𝜆𝑥𝑒)(�
𝑘

𝑥𝑑∗ + 𝑘
) = 𝑐 

⇒ 𝑥𝑑∗ =
𝑘
𝑐2

( 𝑣𝑔 − 𝜇 − 𝜆𝑥𝑒)2 − 𝑘 

⇒ 𝑥𝑑∗ = 𝑘
𝑐2

(𝑣 + 𝑐 − 𝜇 − 𝜆𝑥𝑒)2 − 𝑘        (2.11) 

When 𝑣𝑔 ≤ 𝑝0 − 𝑐 (𝑣 ≤ 𝑝0) , it is easy to show that the informed strategy is 𝑥𝑑∗ =

− 𝑘
𝑐2

( 𝜇 + 𝜆𝑥𝑒 − 𝑣𝑔)2 + 𝑘 = − 𝑘
𝑐2

(𝜇 + 𝜆𝑥𝑒 − 𝑣 + 𝑐)2 + 𝑘. The informed strategies take 

different forms when 𝑣 ≤ 𝑝0  and when 𝑣 ≥ 𝑝0,   but the expected executed shares, 

𝐸(𝑥𝑚� |𝑥𝑑∗), and the expected profit in the crossing network 𝐸(𝜋𝑑∗�), , have the same 

functional form in 𝑣.  The intuition is that the discontinuity we create for 𝑣𝑔  finally 

cancels out with c. The following lemma summarizes the result. 

 

 

Lemma 2.2 The informed trader's order submission strategy is 

�
𝑥𝑑∗ =

𝑘
𝑐2

(𝑣 + 𝑐 − µ − 𝜆𝑥𝑒)2 − 𝑘     𝑓𝑜𝑟 𝑣 ≥ 𝑝0

𝑥𝑑∗ = −
𝑘
𝑐2

(µ + 𝜆𝑥𝑒 − 𝑣 + 𝑐)2 + 𝑘     𝑓𝑜𝑟 𝑣 < 𝑝0

�. 
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which leads to  𝐸(𝑥𝑚� |𝑥𝑑∗) = 2 𝑘
𝑐

(𝑣 − 𝜇 − 𝜆𝑥𝑒) 𝑎𝑛𝑑 𝐸(𝜋𝑑∗) = 𝑘
𝑐

(𝑣 − 𝜇 − 𝜆𝑥𝑒)2  

 

Proof. see the appendix 

 

Lemma 2.2 states that the informed trader's optimal strategy 𝑥𝑑∗  is a quadratic function 

of 𝑣 . This quadratic strategy leads to a linear relationship between the expected 

executed shares 𝐸(𝑥𝑚� |𝑥𝑑∗) and  𝑣. The expected profit in the crossing network is then a 

quadratic function of v.  The linear relationship between 𝐸(𝑥𝑚� |𝑥𝑑∗)and 𝑣 is the key to 

obtaining a close-formed solution for the model. This relationship enables my model to 

merge with the workhorse structure of the rational expectation model, that is, the linear 

normal framework developed by Grossman and Stiglitz (1980) and Kyle (1985). 

Therefore, I extend this literature to a market without guaranteed execution. 

 

To solve for the optimal 𝑥𝑒 , the expression of 𝐸(𝑥𝑚� |𝑥𝑑∗)  is substituted into (2.10), 

giving 

 
𝑣 − 𝜇 − 𝜆𝑥𝑒 − 𝜆𝑥𝑒 − 2𝜆 𝑘

𝑐
(𝑣 − 𝜇 − 𝜆𝑥𝑒) = 0      (2.12) 

    Denote 𝐾 = (𝑘/𝑐) and the expression for the optimal value of 𝑥𝑒 is 

 
𝑥𝑒∗ = 1−2𝜆𝐾

2𝜆−2𝜆2𝐾
𝑣 − 1−2𝜆𝐾

2𝜆−2𝜆2𝐾
𝜇        (2.13) 

Comparing the coefficient with the conjecture 𝑥𝑒 = 𝛼 + 𝛽𝑣 yields 

 
𝛽 = 1−2𝜆𝐾

2𝜆−2𝜆2𝐾
                        (2.14) 
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𝛼 =  −𝛽𝜇.                           (2.15) 

 

    The market maker sets the clearing price equal to the conditional expectation of 𝑣. 

 

 𝑝 = 𝜇 + 𝜆𝑦 = 𝐸{𝑣�|𝑥�𝑒 + 𝑢�𝑒 = 𝑦} = 𝐸{𝑣�|𝛼 + 𝛽𝑣� + 𝑢�𝑒 = 𝑦}.     (2.16) 

 

The normality of 𝑣� and 𝑢�𝑒  makes the conditional expectation linear, and the Projection 

Theorem yields 

 

𝜆 =  𝐶𝑜𝑣(𝑣� ,𝑦�)
𝑉𝑎𝑟(𝑦�)

=  𝛽𝜎𝑣2

𝛽²𝜎𝑣2+𝜎𝑒2
=  𝛽

𝛽²+𝜎𝑒2/𝜎𝑣2
= 𝛽

𝛽²+𝑅
         (2.17) 

𝜇 =  𝑝₀ − 𝜆(𝛼 + 𝛽𝑝₀).                                           (2.18) 

 

where I define 𝑅 = 𝜎𝑒2

𝜎𝑣2
 to simplify the notation. Combining (2.15) and (2.18) yields 

 

(𝜆𝛽 − 1)(𝑝₀ − 𝜇) = 0.               (2.19) 

 

    From Equation (2.17), we know 𝜆𝛽 = (𝛽²)/(𝛽² + 𝑅) < 1, which implies that 

 

𝜇 = 𝑝₀ and 𝛼 = −𝛽𝑝₀.                   (2.20) 

𝜆 can then be solved for by substituting (2.14) into (2.17) to give 

λ =
1−2λK
2λ−2λ²K

( 1−2λK
2λ−2λ2K

)2+𝑅
 ⇒ 

𝑅(2𝜆 − 2𝜆²𝐾)² =  (1 − 2𝜆𝐾).      (2.21) 

𝛽 is uniquely defined by (2.14) for any 𝜆. In turn, 𝛼 is uniquely defined by (2.15). Then 

the key to solve the model is to solving (2.21), which is a depressed quartic equation in 
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𝜆 . 44

 

 Closed form solutions can be obtained using the Ferrari method. However, 

analytical forms of the solutions are not presented explicitly because they are 

overwhelmingly complex in 𝑅 and 𝐾. It is easier to prove the existence and uniqueness 

of the solution and conduct comparative statics by analyzing (2.14) and (2.21). The 

analytical forms of the solutions are available upon request from the author. 

When 𝐾 = 0, meaning that the crossing network does not exist, the model degenerates 

into the Kyle model. It is easy to see from (2.14) and (2.21) that there is a unique 

solution 𝛽 = √𝑅 = 𝜎𝑒
𝜎𝑣

 and 𝜆 =  (1/(2√𝑅)) =  𝜎𝑒
𝜎𝑣

. For 𝐾 > 0 , the existence and 

uniqueness of the solution is established by the following two Lemmas. 

 
Lemma 2.3 Existence of real solutions: for any 𝐾 > 0 , there are exactly two real 

solutions 𝜆₁ ∈ (0,1/2𝐾)  and 𝜆₂ ∈ (−∞, 0)  for (2.21). 𝛽₁  that corresponds to the 

solution 𝜆₁ > 0 is also greater than 0; β₂ that corresponds to the solution 𝜆₂ < 0 is also 

smaller than 0. For 𝐾 = 0 , there is a unique solution 𝛽₁ = √𝑅 = 𝜎𝑒
𝜎𝑣

 and  𝜆₁ =

 (1/(2√𝑅)) = 𝜎𝑣
2𝜎𝑒

. 

Proof. see the appendix  

 

Next, Lemma 2.4 states the uniqueness of the linear equilibrium. The solution 𝛽₂ <

0 corresponds to "bluffing", a scenario in which the informed trader trades in the wrong 

direction to mislead the price and then benefits from the resulting mispricing by 

                                                 
44 A depressed quartic equation is a quartic equation with no cubic term. In the 16th century, Italian 
mathematician Lodovico Ferrari found the formula to express the solution of any depressed quartic 
equation in terms of its coefficients. 
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matching orders in the crossing network. "Bluffing" does not constitute an equilibrium 

in my framework because under the rational expectation framework, the market maker 

should have correct beliefs of the informed trader's strategies. If the informed trader is 

bluffing, the market maker should know that the informed trader is bluffing and should 

set 𝜆₂ < 0, meaning that the market maker decreases the price with the net buy order 

flow and raises the price by observing the net sell order flow. However, conditional on 

𝜆₂ < 0,𝛽₂ < 0 is not optimal for the informed trader. 

 

Lemma 2.4 Uniqueness of the solution: for 𝐾 > 0, only the solution with 𝜆₁ > 0,𝛽₁ >

0 constitutes an equilibrium. 

 

Proof. see the appendix 

Lemmas 2.3 and 2.4 and (2.14), (2.20) and (2.21) establish the unique linear 

equilibrium in this model, which is characterized by the unique solutions 𝛽∗ = 𝛽₁ and 

𝜆∗ = 𝜆₁: 

 
Theorem 2.1 There exists a unique linear equilibrium in which: the informed trader 

trades 𝑋𝑒(𝑣) = 𝛽∗(𝑣 − 𝑝₀),  𝑋𝑑(𝑣) = �
𝑘
𝑐2

(𝑣 + 𝑐 − 𝑝₀ − 𝜆∗𝑥𝑒)2 − 𝑘     𝑓𝑜𝑟 𝑣 ≥ 𝑝0

− 𝑘
𝑐2

(𝑝₀ + 𝜆∗𝑥𝑒 − 𝑣 + 𝑐)2 + 𝑘     𝑓𝑜𝑟 𝑣 < 𝑝0
� , 

and the price function is 𝑃(𝑦) = 𝑝₀ + 𝜆∗𝑦.  𝜆∗  is the unique positive solution of the 

equation 𝑅(2𝜆∗ − 2𝜆∗2𝐾)² = (1 − 2𝜆∗𝐾). 𝛽∗ = 1−2𝜆∗𝐾
2𝜆∗−2𝜆∗2𝐾

. 𝑅 = 𝜎𝑒2

𝜎𝑣2
> 0  and 𝐾 = 𝑘

𝑐
≥ 0 

are the parameters of the model.    
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2.3.4 Comparative Statics 

The equilibrium of the model is characterized by 𝛽∗ and  𝜆∗. Lemma 2.5 provides the 

comparative statics for 𝛽∗, 𝜆∗and 𝑥𝑑∗ .These comparative statics provide the intuition to 

explain the results on price discovery, transaction costs and market share. 

 

Lemma 2.5 The informed trader trades in both markets unless 𝑣 = 𝑝₀. 𝛽∗ increases in 

𝜎𝑒 and decreases in 𝑘 and 𝜎𝑣; 𝜆∗ decreases in 𝑘 and 𝜎𝑒 and increases in 𝜎𝑣; the size of 

informed trader's order in the crossing network, |𝑥𝑑∗ |,  increases in 𝑘  and 𝜎𝑣  and 

decreases in 𝜎𝑒. 

 

Unless the signal is of zero value (𝑣 = 𝑝₀), the informed trader always trades in both 

markets for the following reason. When the informed trader does not trade in the 

exchange, the price impact of the trade is zero. Therefore, the informed trader always 

finds it profitable to trade at least some small amount in the exchange. Similarly, the 

execution probability in the crossing network approaches 1 when the informed trader 

only wants to trade an infinitesimal amount. Therefore, the informed trader always 

trades in both markets when the signal is valuable. 

Because the informed trader always trades in the exchange when 𝑣 ≠ 𝑝0,  the market 

maker can infer the informed trader's signal through the order flow. However, compared 

to the case without crossing network (𝑘 = 0), the informed trader wants to trade less in 

the exchange when a crossing network exists because the price impact of his trade in the 

exchange imposes a negative externality on his profit in the crossing network. 

Therefore, 𝛽∗  decreases, and the aggregated order flow becomes less informative. 

Meanwhile, the price impact 𝜆∗  decreases due to a decrease in the level of informed 

trading in the exchange. 
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An increase in the fundamental value uncertainty increases the informed trader's order 

size in the crossing network but decreases his order size in the exchange, because an 

increase in the fundamental value uncertainty increases the value of the information for 

the informed trader. Therefore, the informed trader has a greater incentive to hide in the 

crossing network. 

 

2.4 Price Informativeness and Volatility   

2.4.1 Price Discovery 

One of the most important functions of the securities market is to provide price 

discovery (O'Hara, 2003). This subsection will show that the crossing network reduces 

price discovery, which is an intuitive result. Because the price impact of trading in the 

exchange creates an externality affecting the informed trader's profit in the crossing 

network, the informed trader chooses to trade less in the exchange. Therefore, the order 

flow becomes less informative, and price discovery is impeded. Next, I will give a 

formal proof of this result and also study the determinants of the size of the effect. 

 

The market maker sets the price based on y, which is the signal he receives. 

𝑦 = 𝑥𝑒∗� + 𝑢𝑒� = 𝛽∗(𝑣� − 𝑝0) + 𝑢𝑒�     (2.22) 

 

Rearranging terms yields 
𝜃 ≡ 𝑦

𝛽∗
+ 𝑝0 = 𝑣� + 𝑢𝑒�

𝛽∗
                         (2.23) 

 

where θ is an informationally equivalent transformation of the observed order flow y 

that has the same mean as the underlying asset. Conditional on 𝑣, 𝜃 is distributed as 
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𝑁(𝑣, 𝜎𝑒
2

𝛽∗2
) .The externality of the price impact on the crossing network results in a 

decrease of 𝛽∗ and an increase of 𝜎𝑒
2

𝛽∗2
. 

 

Price informativeness is defined in the same way as that in the Kyle model, which is 

equal to 1 minus the ratio of the posterior variance of 𝑣� to the prior variance of 𝑣�, 

denoted 

 
𝑒 = 1 − 𝑣𝑎𝑟(𝑣�|𝑝�)

𝑣𝑎𝑟(𝑣�)
          (2.24) 

Note that 𝑣𝑎𝑟(𝑣�|𝑝�) = 𝑣𝑎𝑟(𝑣�|𝑦�) = 𝑣𝑎𝑟�𝑣��𝜃��  because 𝜃� , 𝑝�  and 𝑦�  are informationally 

equivalent. 

 

When the price is perfectly informative, 𝑒 = 1. When the price is pure noise, 𝑒 =  0. 

Bayes' rule states that the posterior variance 𝑣𝑎𝑟(𝑣�|𝑝�)  can be expressed as the 

following function of the prior variance and the variance of the signal45

𝑣𝑎𝑟(𝑣�|𝑝�) = 𝑣𝑎𝑟�𝑣��𝜃�� = � 1
𝜎𝑣2

+ 𝛽∗2

𝜎𝑒2
�
−1

= 𝜎𝑣2

1+𝛽∗2𝜎𝑣
2

𝜎𝑒
2

             (2.25) 

:  

    Plugging equation (2.14) and (2.21) into (2.25), I obtain 

𝑒 = 1 −
1

1 + 𝛽∗2𝜎𝑣2
𝜎𝑒2

= 1 −
1

1 + ( 1 − 2𝜆∗𝐾
2𝜆 − 2𝜆∗2𝐾)2 𝜎𝑣

2

𝜎𝑒2
 

= 1 − 1
1+𝑅(1−2𝜆∗𝐾)1

𝑅
= 1 − 1

2−2𝜆∗𝐾
                (2.26) 

 

                                                 
45 For a derivation of the formula, see O'Hara (1995) appendix to Chapter 3. 



 77  
 

When 𝐾 ≡ 𝑘/𝑐 = 0, 𝑒 reaches its maximum, and its value is 0.5 for any value of 𝑅. A 

non-empty crossing network changes these two results. When 𝐾 > 0, then 𝑒 < 0.5, 

meaning that the crossing network always makes the price less informative. 

 

Theorem 2.2 states the relationship between price discovery and the four exogenous 

variables in the paper. 

 
Theorem 2.2 The crossing network harms price discovery as the price informativeness 

measure, e, reaches its maximum when 𝑘 = 0. If 𝑘 = 0, 𝑒 is independent of 𝜎𝑒 ,c,and 𝜎𝑣; 

otherwise, 𝑒 is uniquely determined by 𝜎𝑒𝑐
𝑘𝜎𝑣

 and increases in 𝜎𝑒𝑐
𝑘𝜎𝑣

 . 

Proof. see the appendix. 

 
Theorem 2.2 has two interesting implications. First, when 𝑘 = 0, my model degenerates 

into the Kyle model. Therefore, the information revelation is independent of 𝜎𝑣 and 𝜎𝑒. 

The existence of a crossing network changes this prediction. Second, the four 

exogenous variables in the model (the levels of liquidity trading in the crossing network 

and the exchange, the fundamental value uncertainty and the up-front submission cost) 

all affect price discovery, and the degree to which these variables affect price discovery 

is determined by the ratio  𝜎𝑒c
𝑘𝜎𝑣

 . If, for example, both 𝜎𝑒  and 𝑘  double, the level of 

information revelation does not change. Additionally, an increase in the level of 

liquidity trading k is equivalent to a similar increase in the value of 𝜎𝑣  in terms of their 

impact on price discovery, because it is the product of these two variables that 

determines price discovery. 



 78  
 

 

Theorem 2.2 is proven under the assumptions that the crossing network attracts 

additional liquidity traders and that the liquidity order flow in the exchange remains the 

same. Suppose that the crossing network not only creates its own liquidity traders, but 

also steals some liquidity traders from the exchange. Then 𝜎𝑒  will decrease and k will 

increase. Price discovery will be further reduced because Theorem 2.2 states that a 

decrease of liquidity trading in the exchange and an increase in liquidity trading in the 

crossing network reduce price discovery. 

 

Information revelation is less for stocks with higher values of 𝜎𝑣 , because the 

information on 𝑣� is more valuable for stocks with higher fundamental value uncertainty. 

Therefore, the informed trader has a greater incentive to hide his information in the 

crossing network, thereby decreasing the informativeness of the price. 

 

Figure 2.3 illustrates the relationship between e and exogenous parameters 𝜎𝑒, k and 𝜎𝑣. 

The graphs of 𝑘 and 𝜎𝑣 are identical, meaning that an increase in the liquidity trading in 

the crossing network has the same effect as an increase in the fundamental value 

uncertainty. 

 

2.4.2 Volatility 

The price volatility is measured by 𝑣𝑎𝑟(𝑝�). Under my framework, 𝑒 and 𝑣𝑎𝑟(𝑝�) have 

the following relationship: 

Lemma 2.6   𝑣𝑎𝑟(𝑣�) = 𝑣𝑎𝑟(𝑣�|𝑝�) + 𝑣𝑎𝑟(𝑝�)𝑎𝑛𝑑 𝑣𝑎𝑟(𝑝�) = 𝑒𝜎𝑣2  

Proof. see the appendix 
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Figure 2.3: This figure demonstrates the information revealed through trade. 𝜎𝑒 is the 
proxy for liquidity trading in the exchange; 𝜎𝑣  is the fundamental value uncertainty; 
and k is the proxy for liquidity trading in the crossing network. For all three panels, 
𝜎𝑒=100,  𝜎𝑣  =1, k=1 and c=0.01 unless otherwise specified. 
 

Lemma 2.6 states the relationship between the price volatility and price discovery. The 

Projection Theorem decomposes the prior variance of 𝑣� into two parts: the part that can 

be explained by 𝑝�, 𝑣𝑎𝑟(𝑣�|𝑝�), and the part that can not be explained by 𝑝�, 𝑣𝑎𝑟(𝑝�). More 

efficient price discovery means that 𝑣𝑎𝑟(𝑣�|𝑝�) should be smaller, which implies that 

𝑣𝑎𝑟(𝑝�) is higher. 

 

The comparative statics of 𝑣𝑎𝑟(𝑝�) are summarized in Corollary 2.1 and Figure 2.4. 

Corollary 2.1 shows that price volatility is positively correlated with fundamental value 

uncertainty, meaning that the observed price volatility can serve as a proxy for the 

underlying fundamental value uncertainty. 
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Figure 2.4: This figure demonstrates the price volatility. 𝜎𝑒 is the proxy for liquidity 
trading in the exchange; 𝜎𝑣  is the fundamental value uncertainty; and k is the proxy for 
liquidity trading in the crossing network. For all three panels, 𝜎𝑒=100,  𝜎𝑣  =1, k=1 and 
c=0.01 unless otherwise specified. 
 

However, in a two-period setup, Corollary 2.1 establishes a very surprising relationship 

between 𝜎𝑣  and 𝑣𝑎𝑟(𝑝�).When there is a crossing network, no matter how large the 

fundamental value uncertainty, price volatility can never be higher than 𝜎𝑒
2𝑐²
4𝑘²

 , a constant 

that is independent of 𝜎𝑣. The pattern can be seen clearly in the bottom left panel in 

Figure 2.4. In the benchmark Kyle model, price volatility is linear in the fundamental 

value uncertainty. The result changes when there is a crossing network. When 𝜎𝑣 is low, 

an increase in 𝜎𝑣 causes a substantial increase in the price volatility, though the increase 

is less than a linear increase. The price volatility still increases in 𝜎𝑣when 𝜎𝑣 is high,  

but the change is minuscule and approaches 0 as 𝜎𝑣 increases. 

Corollary 2.1  𝑣𝑎𝑟(𝑝�) = 𝜆∗2(2 − 2𝜆∗ 𝑘
𝑐
)𝜎𝑒2  . The crossing network decreases price 

volatility because 𝑣𝑎𝑟(𝑝�)  is largest when 𝑘 = 0 . When 𝑘 ≠ 0 , 𝑣𝑎𝑟(𝑝�)decreases in 

𝜎𝑒𝑐
𝑘

and increases in 𝜎𝑣. However, for ∀ 𝜎𝑣, 𝑣𝑎𝑟(𝑝�)<𝜎𝑒2𝑐²
4𝑘²
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Proof. see the appendix 

 
This surprising result, however, has an intuitive explanation under the two-period setup. 

Higher 𝜎𝑣  values indicate that information regarding the fundamental value becomes 

more valuable for the informed trader. The informed trader then has a greater incentive 

to hide his information in the crossing network and trade less in the exchange. 

Therefore, the information revelation e decreases, which counteracts the increase in 𝜎𝑣. 

The overall effect is that 𝑣𝑎𝑟(𝑝�) cannot be greater than 𝜎𝑒
2𝑐²
4𝑘²

 because 𝑣𝑎𝑟(𝑝�)=𝑒𝜎𝑣2. A 

more intuitive way to understand this is to consider the realization of 𝑣�  as "private 

news". When there is a deep crossing network, the informed trader will hide his trade in 

the crossing network. In the short run, the market maker may not even know that some 

"news" actually took place, nor is the market marker able to tell whether the news was 

positive or negative. Therefore, he is not able to adjust quotes in the short run, and thus 

we can see a decrease in the price volatility. 

 

In conclusion, the crossing network reduces both price discovery and price volatility. In 

the framework of this paper, it is impossible for the crossing network to both harm price 

discovery and increase price volatility, because lower price discovery directly implies 

lower price volatility. 

 

2.5 Liquidity and Transaction Costs 

This section addresses three questions. I first analyze price impact, the measure I 

employ to capture the liquidity and transaction cost of the exchange. Next, liquidity and 

transaction cost of the crossing network as measured by the non-execution probability 



 82  
 

are analyzed. The final part of this section analyzes the relationship between price 

impact and non-execution, both of which are endogenous in this model. 

 

2.5.1 Price Impact 
For the exchange, 𝜆∗  serves as the inverse measure of the liquidity or as a direct 

measure of price impact. Theorem 2.3 shows the relationship between 𝜆∗  and the 

exogenous variables 𝑘
𝑐
 and 𝜎𝑒

2

𝜎𝑣2
. 

 
Theorem 2.3. The existence of a crossing network puts an upper limit on 𝜆∗in that 

𝜆∗ < 𝑐
2𝑘

 for any 𝜎𝑒
2

𝜎𝑐2
. 𝜆∗ is decreasing in 𝜎𝑒

2

𝜎𝑐2
 and 𝑘

𝑐
. 

Proof. See the appendix. 

 
In the benchmark Kyle model, the price impact can go to infinity. This possibility is 

ruled out by a crossing network because of the externality of price impact on the 

crossing network.  This externality makes the informed trader trade less aggressively, 

decreases the information asymmetry problem in the exchange, and thereby leads the 

market maker to set a less aggressive price. Figure 2.5 compares  𝜆∗ and 𝛽∗ with the 

corresponding parameters in the Kyle model. Note that 𝜆∗ is always smaller than the 

Kyle 𝜆. In addition, the Kyle 𝜆 converges to infinity as 𝜎𝑒
𝜎𝑣
→ 0, whereas in this model 

𝜆∗ → 𝑐
2𝑘

= 1
2𝑘

= 1
2𝐾

 as 𝜎𝑒
𝜎𝑣
→ 0. 
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Figure 2.5: This figure compares the equilibrium λ and β with their counterparts in the 
Kyle model. I choose K≡(k/c)=1 to fit λ and β in the same graph. 
 

Theorem 2.3 states that the crossing network improves the liquidity of the exchange if it 

can attract new liquidity traders. Dönges and Heinemann (2006), Degryse, Achter and 

Wuyts (2009) and Hendershott and Mendelson (2000) all show that crossing networks 

can attract liquidity traders who are unwilling to trade in the exchange. Hendershott and 

Mendelson (2000) also show that the crossing network may improve the liquidity of the 

exchange by attracting new liquidity traders. The Hendershott and Mendelson model, 

however, assumes exogenous informed traders. Therefore, the mechanism driving their 

result is that a fixed amount of informed order flow is diluted by an increase of liquidity 

order flow. My result shows that even if the informed trader can choose how much to 

trade, the crossing network can still benefit the exchange if it can attract new liquidity 

traders. 

 

Certainly, what I find is only one mechanism, and there are other mechanisms working 

against the mechanism I find. The claim that crossing networks definitely harm the 



 84  
 

exchanges is usually based on the implicit assumption of so called "cream-skimming", 

in which crossing networks draw liquidity traders away from exchanges, leaving mostly 

informed traders trade in the exchange. However, there are at least two factors working 

against cream-skimming. First, when the liquidity traders move to the crossing network, 

the informed trader will follow them. Additionally, new trading mechanisms may attract 

new liquidity traders who are unwilling to trade in other platforms. 

 

Empirically, cream-skimming has been rejected. Gresse (2006) finds that more crossing 

trading decreases the transaction costs of the exchange. Fong, Madhavan and Swan 

(2004) also do not find that crossing networks have an adverse effect on the exchange. 

Both papers suggest that cream-skimming, if it exists, must be counteracted by some 

other effects. This paper provides one possible explanation to their findings.46

 

 

2.5.2 Non-execution 

The traditional measures of transaction costs, bid-ask spread and price impact, are 

irrelevant for the crossing networks. A measure of transaction cost in the crossing 

network is non-execution. Interestingly, though non-execution in the crossing network 

and price impact in the exchange are different dimensions of execution costs, they share 

the same underlying factor - order imbalance. In the crossing network, orders fail to 

execute because of the imbalance between buy and sell orders. Larger order imbalances 

lead to higher non-execution probabilities. In classical models of exchanges, the 

transaction costs is also an implicit function of order imbalance. This imbalance may be 

caused by non-informational factors, which are the focus of inventory models such as 

Ho and Stoll (1983). Order imbalance can also be caused by informational factors. On 

                                                 
46 An alternative explanation is that competition cause the exchange to decrease the trading cost and 
increase the liquidity. 
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one side of the market, there are both liquidity and informed traders, and on the other 

side there are only liquidity traders. In the models of Glosten and Milgrom (1985), 

Easley and O'Hara (1987), and Kyle (1985), orders would be imbalanced without the 

intervention of the market maker. In both inventory- and information-based models, 

order imbalances are positively correlated with transaction costs. The only difference 

between the crossing network and the exchange is that there is no market maker to clear 

the order imbalance in the crossing network. Therefore, instead of causing a higher 

price impact, a higher order imbalance in the crossing network leads to a lower 

execution probability. 

 

As with order imbalance, non-execution can also be explained by non-informational and 

informational factors. It is important to separate these two parts is important because 

they have different implications. In a world without information asymmetry, the 

expected price change is 0 after each trade. Conversely, non-execution caused by 

informational sources has an adverse selection effect: the future price is more likely to 

move in the unfavorable direction of the executed orders because the executed orders 

are more likely to be on the wrong side of the market. 

 

Previous literature on non-execution has focused on non-informational factors. In 

Dönges and Heinemann (2006) and Hendershott and Mendelson (2000), non-execution 

is primarily a function of liquidity externality.47

                                                 
47 Informed traders in Hendershott and Mendelson (2000) have a passive role. 

 In these models, buy and sell order 

flows follow independent geometric distributions. As the mean of the geometric 

distribution increases, the non-execution probability decreases because it is easier to 

find a potential match in a deep market. These two models imply that the major task for 

the crossing network is to attract more liquidity traders. Crossing networks that cannot 
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attract enough liquidity traders will fail due to a low execution probability, whereas 

crossing networks with many liquidity traders will attract even more liquidity traders. 

 

This paper supplements the Hendershott and Mendelson model and the Dönges and 

Heinemann model by focusing on the informational causes of non-execution.48

 

 When 

non-execution is caused by the informed trader, the execution probability may decrease 

as the amount of liquidity trading increases. This is because the information asymmetry 

problem cannot be mitigated simply by an increase in liquidity trading. The present 

paper shows that an increase in the liquidity order flow leads to a greater increase in the 

informed order flow, which results in a lower execution probability. Therefore, a 

crossing network cannot increase its execution probability only by attracting more 

liquidity traders. It also requires anti-gaming strategies to defend itself from informed 

traders. More discussions of anti-gaming strategies can be found in section 2.7. 

Before continuing, an important distinction must be emphasized. There are two 

measures of non-execution. The probability of non-execution for the informed trader's 

order depends on three random variables: 𝑣�, 𝑢𝑒� and the liquidity volume on the opposite 

side. The informed trader considers this probability in his optimization problem. The 

non-execution probability of the entire market also involves the liquidity trader on the 

same side as the informed trader. The proof presented here is based on the non-

execution probability for the informed trader. The non-execution probability for the 

entire market depends on the four random variables 𝑣, 𝑢�𝑒  , 𝑢�𝑑𝑏  and 𝑢�𝑑𝑠  and cannot be 

solved analytically. However, the simulated results are explained by the theorems 

presented in this subsection because liquidity traders are passive players in this model. 

                                                 
48 The noninformational causes of non-execution does not play a role in my model. Suppose that there are 
no informed traders in this model; then the execution probability is independent of k. 
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Theorem 2.4 first states the relationship between execution probability and two 

endogenous variables: price discovery and price impact. This theorem also relates the 

execution probability to the exogenous variables. The proof is conditional on the 

realization of the fundamental value 𝑣. However, the result of Theorem 2.4 also holds 

unconditionally.49

 

  

Theorem 2.4 The probability of execution for the informed trader conditional on 𝑣, 

𝑒𝑥𝑒𝑖 = 𝐸(𝑥𝑚� |𝑥𝑑
∗ ,𝑣)

𝑥𝑑
∗ ,has the following form 

 𝑒𝑥𝑒𝑖 = 2𝑐
2𝑐+|(𝑣−𝑝0)|(1−𝜆∗𝛽∗)

= 2𝑐
2𝑐+|(𝑣−𝑝0)|(1−𝑒)

. 

The probability of execution, 𝑒𝑥𝑒𝑖 , decreases in upfront submission cost 𝑐  and 

realization of fundamental value 𝑣, and increases in 𝜎𝑒
𝑘𝜎𝑣

. 

 

Proof. See the appendix 
 

In my model, price impact, information revelation and non-execution are endogenously 

determined. Theorem 2.4 establishes the relationship between these values. For 

example, when price discovery 𝑒 increases, 𝑒𝑥𝑒𝑖 decreases, reflecting the intuition that 

more information revelation in the exchange causes the informed trader to move his 

trading from the exchange to the crossing network, which increases the order imbalance 

and leads to lower execution probability. Theorem 2.4 also relates 𝑒𝑥𝑒𝑖 , to the 

                                                 
49 It is very straightforward to see that the results of Theorem 2.4 holds unconditionally for 𝑐, 𝜎𝑒and 𝑘 
because they are true for any realization of 𝑣.  The result for 𝜎𝑣 is less obvious, because by changing𝜎𝑣 , 
the distribution of 𝑣� is also altered, thus making it impossible to compare the result state-by-state. 
Therefore, I can only compare the result by simulation. The result is not presented here because of space 
considerations and because it is very similar to that in Figure 2.6. 
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exogenous variables. An increase in v increases the profit per matched unit, which 

decreases 𝑒𝑥𝑒𝑖, because now the informed trader demands a lower execution probability 

to break even. The informed trader's information is more valuable for stocks with higher 

fundamental value uncertainty 𝜎𝑣 . Therefore, he has a greater incentive to hide his 

information in the crossing network, which leads to a lower execution probability. The 

execution probability increases with 𝜎𝑒because an increase in liquidity trading in the 

exchange attracts part of the informed order flow from the crossing network to the 

exchange. 

 

The most surprising result is that the execution probability decreases with the level of 

liquidity trading in the crossing network, a prediction opposite of that suggested by 

Dönges and Heinemann (2006) and Hendershott and Mendelson (2000). In these two 

models, an increase in liquidity trading has two effects. The first effect provides a 

network externality, and the second effect dilutes a fixed amount of informed order 

flow. However, when the informed trader optimizes, he will increase his order size 

more than the increase in liquidity order flow. This paper provides two mathematically 

rigorous proofs of this result. One is based on comparative statics, which is shown 

under the proof for Theorem 2.4. The other proof is to decompose the total impact of an 

increase in liquidity trading into two effects: volume effect and price effect. Details of 

these two proofs can be found in Appendix A and B. However, the reason why the 

execution probability decreases with the level of liquidity trading in the crossing 

network can be understood intuitively. The key to explain this result is the difference in 

market structure. While the market maker in the exchange can actively adjust quotes to 

protect himself from the informed trader, a crossing network with a fixed allocation rule 

is passive. As liquidity trading in the crossing network increases, the informed trader 
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considers the crossing network more favorable and moves even more trades to the 

crossing network than the liquidity traders do. 

 

The non-execution probability for the entire market depends on three degrees of 

uncertainty: 𝑥𝑑∗�(or 𝑣�), 𝑢𝑑𝑏�  and 𝑢𝑑𝑠�  .To obtain the non-execution probability for the entire 

market, I first define the matched volume as: 

 

𝑉𝑜𝑙� 𝑑 = �
2 min ��𝑥𝑑∗� + 𝑢𝑑𝑏�� , �𝑢𝑑𝑠���   𝑓𝑜𝑟  𝑥𝑑∗� > 0 

2 min ��𝑥𝑑∗� + 𝑢𝑑𝑠��, �𝑢𝑑𝑏���   𝑓𝑜𝑟  𝑥𝑑∗� ≤ 0
�    (2.27) 

 

When 𝑥𝑑� > 0, the informed trader wants to buy. In this case, the buy side has both 

informed and liquidity orders, while the sell side only has liquidity traders. The number 

of matched shares is equal to twice the number of shares on the side with fewer 

submitted shares. The definition is similar when 𝑥𝑑� ≤ 0. The probabilities of execution 

for the entire market are then defined as 

 

𝑒𝑥𝑒� 𝑤 = 𝑉𝑜𝑙� 𝑑

�𝑥𝑑
∗��+�𝑢𝑑

𝑏��+�𝑢𝑑
𝑠� �

                           (2.28) 

The non-execution probability is simply 1 minus the execution probability. 

 

𝑛𝑜𝑛𝑒𝑥𝑒� 𝑤 = 1 − 𝑒𝑥𝑒� 𝑤                         (2.29) 

Figure 2.6 demonstrates the pattern of non-execution probability for the entire market 

with respect to the exogenous variables. The non-execution probability for the entire 

market also decreases in the level of liquidity trading in the exchange and increases in 

fundamental value uncertainty. Figure 2.6 also shows that non-execution for the entire 

market is a decreasing function of the liquidity trading in the crossing network. 
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Therefore, a crossing network cannot increase its execution probability only by 

attracting more liquidity traders; the crossing network also needs anti-gaming strategies 

to defend itself from informed traders. A discussion of anti-gaming strategies can be 

found in Section 2.7. 

  

Figure 2.6: This figure demonstrates the simulated non-execution probability. 𝜎𝑒 is the 
proxy for liquidity trading in the exchange; 𝜎𝑣  is the fundamental value uncertainty; 
and k is the proxy for liquidity trading in the crossing network. For all three panels, 
𝜎𝑒=100,  𝜎𝑣  =1, k=1 and c=0.01 unless otherwise specified. 
 
 

2.5.3 The Relation between Price Impact and Non-execution 

Due to its ability to characterize both price impact and non-execution, this model 

generates predictions on the relationship between these two transaction costs. Figure 2.7 

illustrates the patterns of 𝜆∗ and of simulated 𝐸(𝑛𝑜𝑛𝑒𝑥𝑒� 𝑤)with respect to exogenous 

variable 𝜎𝑣 ,50

                                                 
50  𝐸(𝑛𝑜𝑛𝑒𝑥𝑒� 𝑤)  is the average of one million simulated 𝐸(𝑛𝑜𝑛𝑒𝑥𝑒� 𝑤)  For each simulation, four 
realizations of 𝑣�, 𝑢𝑒  , 𝑢𝑑𝑏  and 𝑢𝑑𝑠  are independently drawn, 𝑥�𝑑   is  obtained using the informed trader's 
optimal strategy of (2.11) and 𝑛𝑜𝑛𝑒𝑥𝑒� 𝑤 is obtained by Equations (2.27), (2.28) and (2.29) 

  which is consistent with the empirical findings of Næs and Skjeltorp 

(2003) that stocks that are hard to execute in the crossing network are more volatile than 
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stocks that are easy to execute in the crossing network51

 

 and that the non-execution 

probability is positively correlated with the price impact. My model shows that both 

price impact and non-execution probability increase as 𝜎𝑣  increases and that price 

impact and non-execution probability are positively correlated. This positive correlation 

can be easily understood through the informed trader's effort to balance his trading cost 

in these two markets. 

 

Figure 2.7: This figure illustrates the pattern of price impact and simulated non-
execution probability with respect to fundamental value uncertainty 𝜎𝑣. I set 𝜎𝑒=100, 
k=1 and c=0.01  
 
 

Figure 2.7 also sheds some light on the research on competition between different 

trading mechanisms. Because price impact and non-execution probability are highly 

correlated, they may provide limited insight in studying the competition between the 

exchange and the crossing network. Conditional on execution, stocks with a higher 
                                                 
51 Certainly, the volatility in their empirical model is observable price volatility, but 𝜎𝑣 in my model is the 
unobservable fundamental value uncertainty. However, Corollary 2.1 states that the observable price 
volatility and the unobservable fundamental value uncertainty are positively correlated. Therefore, price 
volatility can serve as a proxy for 𝜎𝑣 . 
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price impact may result in larger savings by trading in the crossing network. However, 

this potential savings may be offset by lower execution probability. Therefore, the 

relationship between price impact, non-execution and market share is ambiguous. Two 

verifications of this conjecture are presented in Ready (2009). First, Ready (2009) finds 

that the bid-ask spread, described by Amihud (2002) as price impact for "standard-size 

transactions", cannot explain the market share of crossing networks. Additionally, 

Ready finds that crossing network volumes are not the highest in the highest volume 

stocks, where the likelihood of finding a counterpart should be the highest. Both 

findings suggest that transaction costs may be poor explanatory variables for 

competition between the exchange and the crossing network. I will examine other 

explanatory variables in the section on market share. 

 

2.6 The Order Splitting Strategy and Market Share 

The results on market share are driven by the informed trader's order splitting strategy 

as well as the liquidity trading in each market. The first part of this section will focus on 

the order splitting strategy of the informed trader. This order splitting strategies is the 

key to understanding the simulated results regarding market share in the second 

subsection. 

 

2.6.1 The Order Splitting Strategy 

At equilibrium, the informed trader submits 𝑥𝑒∗ to the exchange and 𝑥𝑑∗  to the crossing 

network. However, the market share depends on 𝐸(𝑥𝑚� |𝑥𝑑∗) because only part of the 

order 𝑥𝑑∗  is executed. Theorem 2.5 states the order splitting strategy. 
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Theorem 2.5 𝐸(𝑥𝑚� |𝑥𝑑
∗ )

𝑥𝑒∗
= 1 − 1

1−2𝜆∗𝐾
.     𝐸(𝑥𝑚� |𝑥𝑑

∗ )
𝑥𝑒∗

  is uniquely determined by 𝜎𝑒𝑐
𝑘𝜎𝑣

and 

decreases with 𝜎𝑒𝑐
𝑘𝜎𝑣

. For a given  𝜎𝑒𝑐
𝑘𝜎𝑣

, 𝐸(𝑥𝑚� |𝑥𝑑
∗ )

𝑥𝑒∗
 is independent of 𝑣. 

Proof. See the appendix 

 

Theorem 2.5 states that an increase in 𝜎 leads the informed trader to submit relatively 

more shares to the exchange, whereas an increase in 𝑘 makes him submit relatively 

more shares to the crossing network. If 𝜎𝑒 and 𝑘 increase at the same rate, the informed 

trader maintains the ratio of trades made in these two markets. An increase in 𝑐 

discourages informed trading in the crossing network, while an increase in fundamental 

value uncertainty encourages trading in the crossing network, because an increase in 

fundamental value uncertainty provides the informed trader with a higher incentive to 

hide information in the crossing network. Interestingly, while an increase in 𝜎𝑣 makes 

the informed trader trade relatively more in the crossing network, an increase in the 

realization of 𝑣  would not. This is because an increase in 𝑣  would cause similar 

increases in 𝐸(𝑥𝑚� |𝑥𝑑∗) and 𝑥𝑒∗, as both are linear functions of 𝑣. 

 

2.6.2 Market Share 

The market share of the crossing network follows the intuition behind the informed 

trader's order splitting strategy, and the result can be obtained through simulation. The 

prerequisite to study the market share is to define the volume in each market. 

 

In the exchange, if the informed and liquidity order flow are on the same side of the 

market (buy or sell), the market maker must trade with both the informed and the 

liquidity traders. Thus, the volume is the absolute value of the sum of the informed and 

liquidity order flows. If the informed order flow and the liquidity order flow are on 
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different sides of the market, they can trade with each other and the market maker only 

needs to offset the imbalance between these two order flows. Thus, the volume is equal 

to the side with the larger order flow. Therefore, the volume of the exchange is 

 

𝑉𝑜𝑙� 𝑒 = �
|𝑥𝑒∗� + 𝑢�𝑒|     𝑥𝑒∗� ∗ 𝑢�𝑒 > 0 

max(|𝑥𝑒∗�|, |𝑢�𝑒|)   𝑓𝑜𝑟 𝑥𝑒∗� ∗ 𝑢�𝑒 ≤ 0
�   (2.30) 

 

The volume of the crossing network has already been defined by (2.27). Thus, the 

market share of the crossing network is defined as 

 

𝑠ℎ𝑎𝑟𝑒𝑑 = 𝐸( 𝑉𝑜𝑙� 𝑑
𝑉𝑜𝑙� 𝑒+𝑉𝑜𝑙� 𝑑

)                    (2.31) 

 

An increase in 𝑘 or 𝜎𝑒 first causes an exogenous increase in liquidity volume in the 

crossing network or the exchange, respectively, and the results are enhanced by an 

increase in the informed volume based on Theorem 2.5. Therefore, it is very 

straightforward to see that 𝑠ℎ𝑎𝑟𝑒𝑑 increases with 𝑘 and decreases with 𝜎𝑒. 

 
The relationship between 𝑠ℎ𝑎𝑟𝑒𝑑 and 𝜎𝑣 is shown in Figure 2.8. In the previous section, 

it was demontrated that non-execution and price impact both increase in 𝜎𝑣 .An increase 

in the fundamental value uncertainty 𝜎𝑣 , however, gives a comparative advantage to the 

crossing network, because the informed trader has a high incentive to hide his 

information for stocks with high 𝜎𝑣. 
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Figure 2.8: This figure illustrates the market share of the crossing network with respect 
to the exogenous variable 𝜎𝑣 . The non-execution probability is also in this figure. 
𝜎𝑒=100,  𝜎𝑣  =1, k=1 and c=0.01  
 

Conversely, the Dönges and Heinemann model predicts that the crossing network has a 

smaller market share for stocks with higher volatility. In their model, the disutility of 

unexecuted orders is higher for stocks with higher volatility. Therefore, traders prefer to 

trade higher volatility stocks in the exchange because of the guaranteed execution. The 

Dönges and Heinemann model, however, assumes a fixed trading cost in the exchange, 

whereas my model has an endogenous trading cost in the exchange. An increase in 𝜎𝑣 

leads to an increase of transaction costs both in the exchange and in the crossing 

network, but during these increases, the crossing network has a comparative advantage 

over the exchange. Empirically, Ready (2009) finds that crossing networks have a 

higher market share for stocks with higher volatility, which supports theoretical 

prediction made herein. 
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2.7 Alternative Allocation Rules 

The analyses in the previous four sections is based on the informed-first rule. This rule 

can be understood as the crossing network having a time priority rule, and that the 

informed trader, who monitors the market more frequently and has better order 

submission technology, reacts to the market faster than do the liquidity traders. The 

assumption of an informed-first rule gives an upper limit to the informed trader's 

maximum impact in the crossing network. As shown in the section on the non-execution 

probability, the informed-first rule leads to a low execution probability and this problem 

cannot be mitigated by increasing the number of liquidity traders participating in the 

crossing network. In reality, crossing networks tend to minimize the impact of informed 

traders by using a variety of anti-gaming strategies. Of particular importance are 

strategies that exclude potentially informed traders from the market, or at least give 

such traders lower priority. One way to do so is to restrict the crossing networks' 

customers to buy-side traders, especially traders with passive portfolios. 52  Some 

crossing networks provide "watchdogs" to detect patterns of abuse.53 Other crossing 

networks provide credibility rating reports that allow investors to see their 

counterparties' track records and to opt out of interacting with certain investors.54

Let us consider a case in which all liquidity traders manage to trade before the informed 

trader. Therefore, the liquidity order flow available to the informed trader decreases and 

can potentially be zero. This provides a lower bound to the informed trader's impact 

 

                                                 
52 Chris Heckman, managing director if ITG, said, "More than anything, we pride ourselves on the 
constituency of POSIT, which is 95% buy-side to buy-side." He also said that "All POSIT participants are 
effectively passive in nature, searching for natural liquidity." in "Fair game?", The Trade Magazine, 
April-June 2008. 
53 For example, Liquidnet constantly monitors its system to look for patterns of abuse and to notify 
members when a trader appears to be gaming. During its seven-year history, the 500-member venue has 
suspended approximately 100 members. in "Fair game?", The Trade Magazine, April-June 2008. 
54For example, BIDS trading provides score cards that track the past trading behavior of its users and 
enable members to filter out counter-parties with suspect behavior. "Big Traders Dive Into Dark Pools" in 
Business Week, October 3, 2007. 
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when there is "fair access". Other allocation rules, like the pro rata rule, lie in between 

the informed-first rule and the liquidity-first rule. Solving the problem for other 

allocation rules is a formidable task, but at least it is known that the market outcome for 

other rules should fall between those of the informed-first rule and the liquidity-first 

rule. A sketch of the proofs of the theorems under the liquidity-first rule can be obtained 

from the author. These proofs follow exactly from the proofs of all of the theorems 

under the informed-first rule, except that the liquidity order flow available to the 

informed trader is smaller. 

 

Two findings emerge from the liquidity-first rule, which are summarized in Figures 2.9 

and 2.10. First, the qualitative results for the informed-first rule still hold for the 

liquidity-first rule, suggesting that the results presented in the previous sections are 

robust under different allocation rules. Intuitively, the only effect of the liquidity-first 

rule is to decrease the liquidity trading available to the informed trader. Quantitatively, 

this is equivalent to a decrease in the value of k. The qualitative results of the model are 

driven by two mechanisms: the externality of the price impact in the exchange on the 

crossing network and the choice of the informed trader between price impact and 

probability impact. Both will hold as long as k≠0. The left panel of Figure 2.9 shows 

that the non-execution probability decreases in the level of liquidity trading in the 

exchange and increases in the fundamental value uncertainty under the liquidity-first 

rule, both of which are consistent with the prediction of Theorem 2.4. The right panel of 

Figure 2.9 shows that price impact under liquidity first rule decreases in the level of 

liquidity trading in the exchange and increases in fundamental value uncertainty, which 

is also the same as the result established under the informed-first rule. Figure 2.10 

shows that price discovery under the liquidity-first rule is less than price discovery 

without a crossing network. Additionally, price discovery is higher for stocks with 
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higher liquidity trading in the exchange, lower for stocks with higher fundamental value 

uncertainty, and lower for stocks with higher liquidity trading in the crossing network; 

these results are the same as those established by Theorem 2.2. Because the impact of 

the informed trader with respect to other allocation rules lies between the informed-first 

rule and the liquidity-first rule, it is expected that the qualitative results should be the 

same for other allocation rules as well. 
 

 

Figure 2.9: This figure illustrates the transaction costs of the crossing network and the 
exchange under three different allocation rules. The figure shows that non-execution 
probability is the lowest when the informed trader is excluded from the crossing 
network. However, the price impact is the highest when the informed trader is excluded 
from the crossing network. On the contrary, the informed-first rule leads to the lowest 
price impact in the exchange but the highest non-execution in the crossing network. The 
liquidity-first rule is in the middle. I choose (k/c)=10 to fit all the three lines in the same 
figure. 
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Figure 2.10: This figure demonstrates information revealed through trade under three 
different allocation rules. 𝜎𝑒 is the proxy for liquidity trading in the exchange; 𝜎𝑣  is the 
fundamental value uncertainty; and k is the proxy for liquidity trading in the crossing 
network. For all three panels, 𝜎𝑒=100,  𝜎𝑣   =1, k=1 and c=0.01 unless otherwise 
specified. 
 

The second finding is that the liquidity-first rule leads to quantitatively different results 

from the informed-first rule. Figure 2.9 demonstrates that the liquidity-first rule leads to 

a decrease in the non-execution probability and an increase in the price impact 

compared to those of the informed-first rule. Under the liquidity-first rule, the liquidity 

order flow available to the informed trader decreases, which causes the informed trader 

to decrease his order size in the crossing network and increase his order size in the 

exchange. Compared to the informed-first rule, the adverse selection problem in the 

exchange increases and the adverse selection problem in the crossing network 

decreases. Figure 2.10 demonstrates that price discovery is higher under the liquidity-

first rule than under the informed-first rule. Under the liquidity-first rule, the informed 
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trader faces a decrease of liquidity order flow in the crossing network. Therefore, he 

chooses to trade more aggressively in the exchange, hence revealing more information 

and increasing price discovery as compared to the informed-first rule. 

 

The liquidity-first rule imposes a lower limit on the informed trader's impact when the 

crossing network is open to all. The crossing network, however, can be even more 

aggressive to the informed trader. Because crossing networks are not public exchanges, 

they can select their customers and exclude others from the market, a practice seen as 

unfair by their opponents. Currently, the SEC is considering regulation to enforce "fair 

access" to crossing networks. 

 

Figure 2.9 shows that the non-execution probability under the informed-excluded rule is 

even lower than it is under the liquidity-first rule; the transaction cost in the crossing 

network is the lowest under the informed-excluded rule. However, the informed-

excluded rule corresponds to the highest price impact in the exchange. As the informed 

trader cannot trade in the crossing network, the price impact in the exchange does not 

create any externality for his profit in the crossing network. Therefore, the informed 

trader will trade more aggressively than he does when he has access to the crossing 

network. In turn, the adverse selection problem in the exchange increases and so does 

the price impact. The aggressive trading of the informed trader in the exchange, 

however, leads to more information revelation compared to the informed-first and 

liquidity-first rules. Figure 2.10 shows that if the crossing network can exclude the 

informed trader, price discovery is e=(1/2), which is the same as price discovery 

without the crossing network. When the informed trader is excluded from the crossing 

network, this model degenerates to the Kyle model. Therefore, price discovery is equal 

to (1/2) no matter how much liquidity order flow the crossing network attracts or how 
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large the fundamental value uncertainty is.55

 

 Now that the informed trader's order in the 

exchange does not create any externality for his profit in the crossing network, he trades 

more aggressively in the exchange and reveals more information. 

What would happen if the crossing network mistakenly excludes some liquidity 

traders? 56

 

 Theorem 2.2 predicts that price discovery is enhanced by lower liquidity 

trading in the crossing network. In conclusion, excluding traders always increases price 

discovery compared to price discovery under "fair access". 

Figures 2.9 and 2.10 also show an interesting pattern: the execution probability is 

positively correlated with price discovery under different allocation rules. The crossing 

network has incentive to limit the impact of the informed trader with the intention of 

increasing its execution probability. These anti-gaming strategies, at the same time, also 

enhance price discovery. Therefore, the strategies to defend the crossing network's self-

interests also minimize the negative impact of the crossing network on price discovery. 

However, the proposed policy change to enforce "fair access" will have two negative 

effects. First, price discovery is harmed. Second, fair access will increase the 

information asymmetry problem in the crossing network. 

 

2.8 Conclusion 

 

This paper studies the impact of the crossing network (dark pool) on the public 

exchange by extending the Grossman and Stiglitz (1980) and the Kyle (1985) 

                                                 
55 An exception is the extreme case in which all liquidity traders are in the dark pool, which cannot be 
sustained as an equilibrium. 
56 If all liquidity traders are excluded, the crossing network collapses because no one will trade with the 
informed trader. Thus, the model again degenerates to the Kyle model. 
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frameworks to multiple markets, including one without guaranteed execution. A number 

of testable hypotheses are generated; some of these hypotheses have been verified, but 

others are yet to be tested. 

 

This paper also sheds some light on a recent policy debate. For example, passionate 

opponents of crossing networks argue that excluding some traders from crossing 

networks is unfair. However, if "fair" is defined as giving different classes of traders 

(liquidity and informed alike) the same terms of trade, public exchanges also lack this 

kind of fairness. It is well documented that exchanges provide inferior quotes to 

potentially informed traders (Barclay, Hendershott and McCormick, (2003)). As 

crossing networks do not have the ability to adjust quotes, they can only rely on the 

allocation rules to protect themselves from informed traders. One extreme rule is to 

exclude informed traders altogether. 

 

It was also shown that the crossing network harms price discovery if the informed trader 

can trade in the crossing network. Interestingly, although the crossing network harms 

price discovery, it is in the crossing network's best interest to minimize this negative 

impact. Informed trading in the crossing network causes lower execution probability 

and decreases the competitiveness of the crossing network. The crossing network has an 

incentive to change its allocation rules to limit the impact of the informed trader, which 

simultaneously limits its negative impact on price discovery. 

 

This paper also provides explanations for several surprising empirical findings. The 

literature on cream-skimming predicts that crossing networks will increase the 

transaction costs of the exchange, which is rejected empirically by Fong, Madhavan and 

Swan (2004) and Gresse (2006). This paper shows one possible mechanism to drive that 
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result: the existence of a crossing network creates an externality for the informed 

trader's order in the exchange, which makes the informed trader trade less in the 

exchange and thus decreases the adverse selection problem. Also, Dönges and 

Heinemann (2006) predict that the crossing network should have a lower market share 

for stocks with higher volatility, but this very intuitive result is rejected by Ready 

(2009). The prediction made in this paper differs from that of Dönges and Heinemann, 

because my model endogenizes the trading cost of the exchange and because volatility 

in this model has information content. 

 

Several other theoretical predictions remain to be tested. This paper emphasizes non-

execution and its association with the transaction costs in the exchange, an area with 

very limited existing literature. An important area for future research is the exploration 

of the patterns and determinants of non-execution because most traditional measures of 

transaction costs are irrelevant for crossing networks. The simplest and most natural 

question to ask is the following: does non-execution, like transaction costs in the 

exchange, also contain both non-informational and informational factors? Næs and 

Skjeltorp (2003) find some evidence of information-based non-execution by studying 

the abnormal cumulative return, but a more direct way to test this hypothesis is to see 

whether proxies for liquidity externality, such as trading volume, and proxies for 

information asymmetry, such as probability of informed trading (PIN) (Easley, Kiefer 

and O'Hara (1996)), both have explanatory power for non-execution. Additionally, one 

may ask the following question: because the informed trader tends to "arbitrage" 

transaction costs in different markets, does this arbitrage finally equalize transaction 

costs of different markets? This would lead the non-execution probability to follow the 

same patterns of price impact. Although patterns of price impact are well studied (Chan 

and Lakonishok (1993,1995 and 1997), Keim and Madhavan (1995,1996,1997 and 
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1998),  Madhavan and Cheng (1997) and Stoll (2000) ), the empirical research on non-

execution probability has just begun. Exploring this new line of research should prove 

fruitful. Also, the prediction that the crossing network harms price discovery and 

decreases price volatility can be tested using an event study or by constructing matched 

stock samples. 

 

Several theoretical extensions can be made from this paper. First, this model can be 

extended to multiple periods. In reality, crossing networks are "dark" because they 

provide pre-trade opaqueness. The executed volume, however, needs to be reported to 

the consolidated tape. Then the market maker will be able to observe some signal in the 

crossing network and draw a new inference regarding the fundamental value, which 

may change the prediction of this model. Second, including multiple informed traders in 

the framework of Holden and Subrahmanyam (1992) may also generate new 

predictions. The result may also change when the model includes endogenous signal 

acquisition instead of an exogenous signal. Third, the liquidity traders are passive in the 

model. It would be interesting to see what happens if they can react to price impact and 

non-execution probability. Finally, my model rules out the bluffing equilibrium, in 

which the informed trader trades in the wrong direction so as to mislead the price and 

then benefits from the mispricing created by matching orders in the crossing network. 

However, bluffing may be possible under some other circumstances. An analysis of the 

conditions under which bluffing exists would make a very interesting study. 
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APPENDIX 2.A 

Proof. for Lemma 2.2 

The expected volume for any 𝑥𝑑  is 𝐸(𝑥𝑚� |𝑥𝑑) = ∫ 𝑧𝑓𝑠(𝑧)𝑑𝑧𝑥𝑑
0 + 𝑥𝑑 ∫ 𝑓𝑠(𝑧)𝑑𝑧+∞

𝑥𝑑
=

∫ 𝑧 ∗ 1
2
𝑘
1
2(𝑧 + 𝑘)−

3
2 𝑑𝑧𝑥𝑑

0 + 𝑥𝑑 ∫
1
2
𝑘
1
2(𝑧 + 𝑘)−

3
2𝑑𝑧+∞

𝑥𝑑
= 𝑘

1
2 �(𝑧 + 𝑘)

1
2 + 𝑘(𝑧 +

𝑘)−
1
2�|0

𝑥𝑑 − 𝑥𝑑𝑘
1
2(𝑧 + 𝑘)−

1
2|𝑥𝑑
+∞ = 2𝑘

1
2(𝑥𝑑 + 𝑘)

1
2 − 2𝑘 

Therefore 

𝐸(𝑥𝑚� |𝑥𝑑∗) = 2𝑘
1
2(𝑥𝑑∗ + 𝑘)

1
2 − 2𝑘 = 2 𝑘

𝑐
�𝑣𝑔 − 𝜇 − 𝜆𝑥𝑒� − 2𝑘 =  2 𝑘

𝑐
�𝑣𝑔 − 𝜇 − 𝜆𝑥𝑒 −

𝑐) = 2 𝑘
𝑐

(𝑣 − 𝜇 − 𝜆𝑥𝑒)  

𝐸(𝜋𝑐∗) = 𝐸(𝑝�)𝐸(𝑥𝑚� |𝑥𝑑∗) − 𝑥𝑑∗ ∗ 𝑐 = �𝑣𝑔 − 𝜇 − 𝜆𝑥𝑒�
2𝑘
𝑐

(𝑣 − 𝜇 − 𝜆𝑥𝑒) − � 𝑘
𝑐2
�𝑣𝑔 − 𝜇 −

𝜆𝑥𝑒)2 − 𝑘� 𝑐 = �𝑣𝑔 − 𝜇 − 𝜆𝑥𝑒�
2𝑘
𝑐

(𝑣 − 𝜇 − 𝜆𝑥𝑒) − 𝑘
𝑐
��𝑣𝑔 − 𝜇 − 𝜆𝑥𝑒�

2
− 𝑐2� =

𝑘
𝑐
�2𝑣𝑔 − 2𝜇 − 2𝜆𝑥𝑒�(𝑣 − 𝜇 − 𝜆𝑥𝑒) − 𝑘

𝑐
�𝑣𝑔 − 𝜇 − 𝜆𝑥𝑒 + 𝑐��𝑣𝑔 − 𝜇 − 𝜆𝑥𝑒 − 𝑐� =

𝑘
𝑐
�2𝑣𝑔 − 2𝜇 − 2𝜆𝑥𝑒�(𝑣 − 𝜇 − 𝜆𝑥𝑒) − 𝑘

𝑐
�𝑣𝑔 − 𝜇 − 𝜆𝑥𝑒 + 𝑐�(𝑣 − 𝜇 − 𝜆𝑥𝑒) =

𝑘
𝑐
�2𝑣𝑔 − 2𝜇 − 2𝜆𝑥𝑒 − �𝑣𝑔 − 𝜇 − 𝜆𝑥𝑒 + 𝑐�� (𝑣 − 𝜇 − 𝜆𝑥𝑒) = 𝑘

𝑐
(𝑣 − 𝜇 − 𝜆𝑥𝑒)2  

 

Proof. for Lemma 2.3 

Define function 𝑦 = 𝑓(𝜆) = (1−2𝜆𝐾)
(2𝜆−2𝜆2𝐾)2 

𝑓(𝜆) is continuous on (−∞, 0) ∪ �0, 1
𝐾
� ∪ �1

𝐾
, +∞� 

𝑓′(𝜆) = �−2𝐾�2𝜆−2𝜆
2𝐾�

2
−(1−2𝜆𝐾)∗2∗�2𝜆−2𝜆2𝐾�(2−4𝜆𝐾)

(2𝜆−2𝜆2𝐾)4 �  

The denominator is equal to 0 when 𝜆 = 0 or 𝜆 = 1
𝐾

, and greater than 0 otherwise, the 

numerator = (2𝜆 − 2𝜆2𝐾)[−2𝐾(2𝜆 − 2𝜆2𝐾) − (1 − 2𝜆𝐾) ∗ 2 ∗ (2 − 4𝜆𝐾)] =
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(2𝜆 − 2𝜆2𝐾)(−12𝜆2𝐾2 + 12𝜆𝐾 − 4) = 24(𝜆2𝐾 − 𝜆) �𝜆2𝐾2 − 𝜆𝐾 + 1
3
� =

24𝜆(𝜆𝐾 − 1) ��𝜆𝐾 − 1
2
�
2

+ 1
12
� 

So it is easy to see 

⎩
⎨

⎧
𝑓′(𝜆) > 0 𝑤ℎ𝑒𝑛 𝜆 < 0

𝑓′(𝜆) < 0 𝑤ℎ𝑒𝑛 0 < 𝜆 < �1
𝐾
�

𝑓′(𝜆) > 0 𝑤ℎ𝑒𝑛 𝜆 > �1
𝐾
�

�  

In addition, lim𝜆→−∞ 𝑓(𝜆) = 0, lim𝜆→0⁻ 𝑓(𝜆) = +∞, 

lim𝜆→0+ 𝑓(𝜆) = +∞, lim𝜆→�1𝐾�
− 𝑓(𝜆) = −∞, lim

𝜆→�1𝐾�
+ 𝑓(𝜆) = −∞, lim𝜆→+∞ 𝑓(𝜆) = 0 

and 𝑓 � 1
2𝐾
� = 0 

So 𝑦 = 𝑓(𝜆) = 𝑅, (𝑅 > 0) has two real solutions, 𝜆1∗ ∈ �0, 1
2𝐾
� and 𝜆2∗ ∈  (−∞, 0) 

𝛽 = � 1−2𝜆𝐾
2𝜆−2𝜆2𝐾

� = 𝑅(2𝜆 − 2𝜆2𝐾) = 2𝜆𝑅(1 − 𝜆𝐾).  when 𝜆 ∈ (−∞, 0), 𝛽 < 0,  when 

𝜆 ∈ �0, 1
2𝐾
� , 𝛽 > 0 

 

Proof. for Lemma 2.4 

Denote 𝜋 = 𝐸(𝜋𝑑� + 𝜋𝑒�) and the second order derivatives of 𝜋 are 

�𝜕
2𝜋
𝜕𝑥𝑒2

� = −2𝜆, �𝜕
2𝜋

𝜕𝑥𝑑
2� = −�𝑣𝑔 − 𝜇 − 𝜆𝑥𝑒�𝑓𝑠(𝑥𝑑∗), and � 𝜕2𝜋

𝜕𝑥𝑑𝜕𝑥𝑒
� = −𝜆∫ 𝑓𝑠(𝑧)𝑑𝑧+∞

𝑥𝑑
. So 

the Hessian of 𝜋 is 

�
−2𝜆 −𝜆 ∫ 𝑓𝑠(𝑧)𝑑𝑧+∞

𝑥𝑑

−𝜆 ∫ 𝑓𝑠(𝑧)𝑑𝑧+∞
𝑥𝑑

−�𝑣𝑔 − 𝜇 − 𝜆𝑥𝑒�𝑓𝑠(𝑥𝑑∗)
�  For 𝜆2∗  ∈  (−∞, 0) , the first-order 

principle minor is positive. Therefore, the Hessian matrix with 𝜆2∗  can not be negative 

semidefinite and the necessary condition for profit maximization is violated. 
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When  𝜆 ∈ �0, 1
2𝐾
�,  the first-order principle minor is negative. Now I need to show that 

the second order principle minor is positive, that is: 

−2𝜆 (−�𝑣𝑔 − 𝜇 − 𝜆𝑥𝑒�𝑓𝑠(𝑥𝑑∗)) − �−𝜆 ∫ 𝑓𝑠(𝑧)𝑑𝑧+∞
𝑥𝑑

�
2

> 0  

Combining (2.3) and (2.11) yields 

𝑓𝑠(𝑥𝑑∗) = 1
2
𝑘
1
2 � 𝑘

𝑐2
�𝑣𝑔 − 𝜇 − 𝜆𝑥𝑒�

2
− 𝑘 + 𝑘�

−32 = 𝑐3

2𝑘
(𝑣𝑔 − 𝜇 − 𝜆𝑥𝑒)⁻³  

 

So −2𝜆 (−�𝑣𝑔 − 𝜇 − 𝜆𝑥𝑒�𝑓𝑠(𝑥𝑑∗)) − (−𝜆∫ 𝑓𝑠(𝑧)𝑑𝑧+∞
𝑥𝑑

)² = −2𝜆 (−�𝑣𝑔 − 𝜇 −

𝜆𝑥𝑒) 𝑐3

2𝑘
�𝑣𝑔 − 𝜇 − 𝜆𝑥𝑒�

−3
− �−𝜆 � 𝑐

�𝑣𝑔−𝜇−𝜆𝑥𝑒�
��

2

= 𝜆 𝑐
3

𝑘
�𝑣𝑔 − 𝜇 − 𝜆𝑥𝑒�

−2
−

𝜆2𝑐2�𝑣𝑔 − 𝜇 − 𝜆𝑥𝑒�
−2

= 𝜆 𝑐
3

𝑘
�𝑣𝑔 − 𝜇 − 𝜆𝑥𝑒�

−2
�1 − �𝑘

𝑐
� 𝜆� 

Because 𝜆 ∈ �0, 1
2𝐾
� and 𝑘

𝑐
≡ 𝐾, �1 − 𝑘

𝑐
𝜆� > 0. Also 𝜆 > 0 and 𝑐

3

𝑘
�𝑣𝑔 − 𝜇 − 𝜆𝑥𝑒�

−2
>

0. Therefore, the second principle minor for 𝜆1∗  ∈ �0, 1
2𝐾
� is greater than 0. So Hessian 

for 𝜆1∗  is negative definite, which is the sufficient condition for profit maximization. 

 

Proof. for Lemma 2.5 

The proof of Lemma 2.5 is divided by three parts. First, I will prove that both 𝛽∗ and 𝑥𝑑∗  

are positive unless 𝑣 = 𝑝0 . Then I will show the comparative statics of 𝜆∗  and 𝛽∗ . 

Finally, I will show the comparative statics of 𝑥𝑑∗ . 

𝛽∗ > 0 follows from Lemma 2.3. For 𝑥𝑑∗ , I focus the proof on the case when 𝑣 > 𝑝0, 

and the case for 𝑣 < 𝑝0is simply symmetric. 
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When 𝑣 > 𝑝0 , 𝑥𝑑∗ = 𝑘
𝑐2

(𝑣 + 𝑐 − 𝑝0 − 𝜆∗𝑥𝑒)² − 𝑘 = 𝑘
𝑐2

(𝑣 − 𝑝₀ − 𝜆∗𝛽∗(𝑣 − 𝑝0) + 𝑐)² −

𝑘 = 𝑘
𝑐2

((𝑣 − 𝑝0)(1− 𝜆∗𝛽∗) + 𝑐)² − 𝑘. 

From equation (2.17), we know that 𝜆∗𝛽∗ = 𝛽∗2

𝛽∗2+𝑅
< 1 . Therefore, (𝑣 − 𝑝0)(1−

𝜆∗𝛽∗) + 𝑐 > 𝑐 when 𝑣 > 𝑝0. So 

𝑥𝑑∗ = 𝑘
𝑐2
�(𝑣 − 𝑝0)(1− 𝜆∗𝛽∗) + 𝑐�

2
− 𝑘 > 𝑘

𝑐2
(𝑐)² − 𝑘 = 0  

The comparative statics of 𝜆∗ and 𝛽∗ follow from the implicit function rule. Equations 

(2.14) and (2.21) defines two implicit functions 𝜆∗(𝑅,𝐾)  and 𝛽∗(𝑅,𝐾) , where 𝑅 =

𝜎𝑒2

𝜎𝑣2
and 𝐾 = 𝑘

𝑐
. Fix 𝑐, the sign of 𝜕𝜆

∗

𝜕𝐾
 is the same as 𝜕𝜆

∗

𝜕𝑘
, and the sign of 𝜕𝛽

∗

𝜕𝐾
 is the same as 

𝜕𝛽∗

𝜕𝑘
. 

Denote 

�
𝐹1(𝜆∗,𝛽∗;𝑅,𝐾) = (2𝜆∗ − 2𝜆∗2𝐾)𝛽∗ − (1 − 2𝜆∗𝐾) = 0
𝐹2(𝜆∗,𝛽∗;𝑅,𝐾) = 𝑅(2𝜆∗ − 2𝜆∗2𝐾)² − (1 − 2𝜆∗𝐾) = 0

�  

Take total derivatives with respect to 𝑅 and 𝐾 I get 

�
(2𝜆∗ − 2𝜆∗2𝐾) (2 − 4𝜆∗𝐾)𝛽 + 2𝐾

0 2𝑅(2𝜆∗ − 2𝜆∗2𝐾)(2 − 4𝜆∗𝐾) + 2𝐾
� �

𝜕𝛽∗

𝜕𝑅
𝜕𝛽∗

𝜕𝐾
𝜕𝜆∗

𝜕𝑅
𝜕𝜆∗

𝜕𝐾

� =

� 0 2𝜆∗2𝛽 − 2𝜆∗

−(2𝜆∗ − 2𝜆∗2𝐾)² 2𝑅(2𝜆∗ − 2𝜆∗2𝐾)2𝜆∗2 − 2𝜆∗
�  

Therefore, 𝜕𝜆
∗

𝜕𝑅
= �2𝜆∗−2𝜆∗2𝐾�

2

2𝑅(4𝜆∗𝐾−2)(2𝜆∗−2𝜆∗2𝐾)−2𝐾)
. 

For 𝐾 > 0 𝑅 > 0 and 𝜆∗ ∈ �0, 1
2𝐾
� ⇒  �

2𝑅(4𝐾𝜆∗ − 2) < 0
2𝜆∗ − 2𝜆∗2𝐾 > 0

−2𝐾 < 0
� 

So 2𝑅(4𝐾𝜆∗ − 2)(2𝜆∗ − 2𝜆∗2𝐾) − 2𝐾 < 0 ⇒ 𝜕𝜆∗

𝜕𝑅
< 0 
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𝜕𝛽∗

𝜕𝑅
= (4𝜆∗𝐾−2)𝛽−2𝐾

(2𝜆∗−2𝜆∗2𝐾)
𝜕𝜆∗

𝜕𝑅
, where (4𝜆∗𝐾 − 2)𝛽 − 2𝐾 = (4𝜆∗𝐾 − 2) 1−2𝜆∗𝐾

2𝜆∗−2𝜆∗2𝐾
− 2𝐾 =

−(1−2𝜆∗𝐾)2

2𝜆∗−2𝜆∗2𝐾
− 2𝐾. 

For 𝐾 > 0, 𝜆∗ ∈ �0, 1
2𝐾
� , 2𝜆∗ − 2𝜆∗2𝐾 > 0 ⇒ −(1−2𝜆∗𝐾)2

2𝜆∗−2𝜆∗2𝐾
− 2𝐾 < 0 ⇒ (4𝜆∗𝐾−2)𝛽−2𝐾

(2𝜆∗−2𝜆∗2𝐾) <

0 

So 𝜕𝛽
∗

𝜕𝑅
= (4𝜆∗𝐾−2)𝛽−2𝐾

(2𝜆∗−2𝜆∗2𝐾)
𝜕𝜆∗

𝜕𝑅
> 0 

𝜕𝜆∗

𝜕𝐾
= 2𝑅�2𝜆∗−2𝜆∗2𝐾�(2𝜆∗2−2𝜆∗)

2𝑅(2𝜆∗−2𝜆∗2𝐾)(2−4𝜆∗𝐾)+2𝐾
  

from equation (2.21) I know that 𝑅 = (1−2𝜆∗𝐾)
(2𝜆∗−2𝜆∗2𝐾)2 

⇒ 2𝑅�2𝜆∗−2𝜆∗2𝐾�2𝜆2−2𝜆
2𝑅(2𝜆∗−2𝜆∗2𝐾)(2−4𝜆∗𝐾)+2𝐾

= −𝜆∗3𝐾
3𝜆∗2𝐾2−3𝜆∗𝐾+1

= − 𝜆∗3𝐾

3��𝜆∗𝐾−12�
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< 0  when 𝐾 > 0  and 

𝜆∗ ∈ (0, 1
2𝐾

) 

𝜕𝛽∗

𝜕𝐾
=

2𝜆∗2𝛽∗−2𝜆∗+[(4𝜆∗𝐾−2)𝛽∗−2𝐾]�𝜕𝜆
∗

𝜕𝐾�

(2𝜆∗−2𝜆∗2𝐾)  where 

2𝜆∗2𝛽∗ − 2𝜆∗ = 2𝜆∗2 1−2𝜆∗𝐾
(2𝜆∗−2𝜆∗2𝐾) − 2𝜆∗ = −2𝜆∗2

(2𝜆∗−2𝜆∗2𝐾)  

[(4𝜆∗𝐾 − 2)𝛽∗ − 2𝐾] 𝜕𝜆
∗

𝜕𝐾
= �(4𝜆∗𝐾 − 2) � 1−2𝜆∗𝐾

(2𝜆∗−2𝜆∗2𝐾)� − 2𝐾� 𝜕𝜆
∗

𝜕𝐾
= �(4𝜆∗𝐾 −

2) � 1−2𝜆∗𝐾
(2𝜆∗−2𝜆∗2𝐾)� − 2𝐾� 𝜕𝜆

∗

𝜕𝐾
= −4𝜆∗2𝐾2+4𝜆∗𝐾−2

2𝜆∗−2𝜆∗2𝐾
∗ −𝜆∗3𝐾
3𝜆∗2𝐾2−3𝜆∗𝐾+1

=

4𝜆∗5𝐾3−4𝜆∗4𝐾2+2𝜆∗3𝐾
(2𝜆∗−2𝜆∗2𝐾)(3𝜆∗2𝐾2−3𝜆∗𝐾+1)  

𝜕𝛽∗

𝜕𝐾
=

2𝜆∗2𝛽∗−2𝜆∗+[(4𝜆∗𝐾−2)𝛽∗−2𝐾]�𝜕𝜆
∗

𝜕𝐾�

(2𝜆∗−2𝜆∗2𝐾) = −2𝜆∗2

(2𝜆∗−2𝜆∗2𝐾)2 + 4𝜆∗5𝐾3−4𝜆∗4𝐾2+2𝜆∗3𝐾
(2𝜆∗−2𝜆∗2𝐾)2(3𝜆∗2𝐾2−3𝜆∗𝐾+1) =

4𝜆∗5𝐾3−10𝜆∗4𝐾2+8𝜆∗3𝐾−2𝜆∗2

(2𝜆∗−2𝜆∗2𝐾)2(3𝜆∗2𝐾2−3𝜆∗𝐾+1) = 2𝜆∗𝐾−1
2(3𝜆∗2𝐾2−3𝜆∗𝐾+1) < 0 when 𝜆∗ ∈ �0, 1

2𝐾
� 
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Finally, we need to prove that 𝜕𝑥𝑑
∗

𝜕𝑅
 , we focus on the case when 𝑣 > 𝑝0. The case when 

𝑣 < 𝑝0 can be proved symmetrically 

𝜕𝑥𝑑
∗

𝜕𝑅
= 𝑘

𝑐2
2[(1 − 𝜆∗𝛽∗)(𝑣 − 𝑝₀) + 𝑐][(𝑣 − 𝑝₀)(−𝜆∗ 𝜕𝛽

∗

𝜕𝑅
− 𝛽∗ 𝜕𝜆

∗

𝜕𝑅
)] .  As 𝜆∗𝛽∗ = 𝛽∗2

𝛽∗2+𝑅
<

1 and 𝑣 − 𝑝0 > 1, the sign of 𝜕𝑥𝑑
∗

𝜕𝑅
 is determined by �−𝜆∗ 𝜕𝛽

∗

𝜕𝑅
− 𝛽∗ 𝜕𝜆

∗

𝜕𝑅
� 

We know that 𝜕𝛽∗

𝜕𝑅
= (4𝜆∗𝐾−2)𝛽−2𝐾

(2𝜆∗−2𝜆∗2𝐾)
𝜕𝜆∗

𝜕𝑅
. Therefore, �−𝜆∗ �𝜕𝛽

∗

𝜕𝑅
� − 𝛽∗ �𝜕𝜆

∗

𝜕𝑅
�� =

�−𝜆∗ �(4𝜆∗𝐾−2)𝛽−2𝐾
(2𝜆∗−2𝜆∗2𝐾) � − 𝛽∗� 𝜕𝜆

∗

𝜕𝑅
= 2𝐾(1−𝜆∗𝛽∗)

2−2𝜆∗𝐾
𝜕𝜆∗

𝜕𝑅
 

Because 𝜆∗𝛽∗ = 𝛽∗2

𝛽∗2+𝑅
< 1, 𝜆∗ ∈ �0, 1

2𝐾
� and  𝜕𝜆

∗

𝜕𝑅
< 0 , 𝜕𝑥𝑑

∗

𝜕𝑅
< 0 

To know the sign of 𝜕𝑥𝑑
∗

𝜕𝑘
, we only need to know the sign of 𝜕𝑥𝑑

∗

𝜕𝐾
 when 𝑐 is fixed 

Note that 𝑥𝑑∗ = 𝑘
𝑐2
�(1 − 𝜆∗𝛽∗)(𝑣 − 𝑝0) + 𝑐�

2
− 𝑘 = 𝐾

𝑐
(𝑣 + 𝑐 − 𝑝0 − 𝜆𝑥𝑒)2 − 𝐾𝑐 

So 𝜕𝑥𝑑
∗

𝜕𝐾
= 1

𝑐
�(1 − 𝜆∗𝛽∗)(𝑣 − 𝑝0) + 𝑐�

2
− 𝑐 + �𝐾

𝑐
2�(1 − 𝜆∗𝛽∗)(𝑣 − 𝑝0) +

𝑐� �− 𝜕𝜆∗

𝜕𝐾
𝛽∗ − 𝜆∗ 𝜕𝛽

∗

𝜕𝐾
�� 

Note that 1
𝑐

((1 − 𝜆∗𝛽∗)(𝑣 − 𝑝₀) + 𝑐)² − 𝑐 = 1
𝑐

[((1 − 𝜆∗𝛽∗)(𝑣 − 𝑝₀) + 𝑐)² − 𝑐²] =

1
𝑐

[((1− 𝜆∗𝛽∗)(𝑣 − 𝑝₀))((1− 𝜆∗𝛽∗)(𝑣 − 𝑝₀) + 2𝑐)] > 0 

𝐾
𝑐

2((1 − 𝜆∗𝛽∗)(𝑣 − 𝑝₀) + 𝑐)(−𝜕𝜆∗

𝜕𝐾
𝛽∗ − 𝜆∗ 𝜕𝛽

∗

𝜕𝐾
) > 0  because �(1 − 𝜆∗𝛽∗)(𝑣 − 𝑝0) +

𝑐� > 0, 𝜕𝜆
∗

𝜕𝐾
< 0, 𝜕𝛽

∗

𝜕𝐾
< 0, 𝛽∗ > 0 and 𝜆∗ > 0. Therefore, 𝜕𝑥𝑑

∗

𝜕𝐾
> 0 

 

Proof. for Lemma 2.6 

Because 𝑝� = 𝑝0� + 𝜆𝑦� , 𝑝�  is informationally equivalent to 𝑦� , implying 𝑣𝑎𝑟(𝑣�|𝑝�) =

𝑣𝑎𝑟(𝑣�|𝑦�) . Because 𝑝� = 𝐸(𝑣�|𝑦�) , 𝑣𝑎𝑟(𝑝�) = 𝑣𝑎𝑟(𝐸(𝑣�|𝑦�)) . 𝑣𝑎𝑟(𝑣�) = 𝑣𝑎𝑟(𝑣�|𝑦�) +
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𝑣𝑎𝑟(𝐸(𝑣�|𝑦�)) follows directly from the Projection Theorem, where the variance of 𝑣� is 

decomposed into two parts: the part that can be explained by 𝑦�, 𝑣𝑎𝑟(𝐸(𝑣�|𝑦�)), and the 

part that can not be explained by 𝑦� , 𝑣𝑎𝑟(𝑣�|𝑦�) . Therefore, 𝑣𝑎𝑟(𝑣�) = 𝑣𝑎𝑟(𝑣�|𝑝�) +

𝑣𝑎𝑟(𝑝�) and 𝑣𝑎𝑟(𝑝�) = 𝑒𝜎𝑣2 follows (2.24) 

 
Proof. for Theorem 2.2 

From (2.26) 𝑒  is uniquely determined by 2 − 2𝜆∗𝐾 . Denote 2 − 2𝜆∗𝐾 ≡ 𝑙 , then 

𝜆∗ = 2−𝑙
2𝐾

. So 

𝑅(2𝜆∗ − 2𝜆∗2𝐾)² = (1 − 2𝜆∗𝐾) ⇒ 𝑅𝜆∗2(2− 2𝜆∗𝐾)² = (1 − 2𝜆∗𝐾) 

⇒ 𝑅 �
2 − 𝑙
2𝐾

�
2

𝑙2 = 𝑙 − 1 ⇒
𝑅

4𝐾2 (2 − 𝑙)2𝑙2 = 𝑙 − 1 ⇒
1
4
𝜎𝑒2𝑐2

𝑘2𝜎𝑣2
(2 − 𝑙)2𝑙2 = 𝑙 − 1 

The last step shows that the solution of l only depends on 𝑅
𝐾2

= �𝜎𝑒𝑐
𝑘𝜎𝑣
�
2

. There are 

multiple solution for the equation, but as 2 − 2𝜆∗𝐾 ≡ 𝑙  and that 𝜆∗  is unique. There 

should be only one solution satisfies optimization conditions set up the model. 

Therefore,  𝑙  is uniquely determined by 𝑅
𝐾2

= �𝜎𝑒𝑐
𝑘𝜎𝑣
�
2
 

From equation (2.26), 𝑒 = 1
2
 when 𝑘 = 0. 

When 𝑘 ≠ 0, we know that 𝑙  is uniquely determined by 𝜎𝑒𝑐
𝑘𝜎𝑣

. Denote 𝜎𝑒𝑐
𝑘𝜎𝑣

= 𝑁 . Then  

1
4
𝜎𝑒2𝑐2

𝑘2𝜎𝑣2
(2 − 𝑙)²𝑙² = 𝑙 − 1 ⇔ 1

4
𝑁² = 𝑙−1

(2−𝑙)2𝑙2
 

Totally differentiate both side of the equation results in 1
2
𝑁𝑑𝑁 = (2−𝑙)𝑙�3𝑙2−6𝑙+4�

(2−𝑙)4𝑙4
𝑑𝑙 ⇒

𝑑𝑙
𝑑𝑁

= 1(2−𝑙)3𝑙3𝑁
2(3𝑙2−6𝑙+4). 
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𝑙 ≡ 2 − 2𝜆∗𝐾 , 2 − 𝑙 = 𝜆∗

2𝐾
 and 𝜆∗ ∈ �0, 1

2𝐾
� ⇒ (2 − 𝑙)3 > 0  and 𝑙3 > 0 . Also 𝑁 > 0 

and (3𝑙² − 6𝑙 + 4) = 3(𝑙 − 1)² + 1 > 0. So 𝑑𝑙
𝑑𝑁

> 0 and 𝑙 is increasing in 𝑁. It is easy 

to see from (2.26) that 𝑒 increases in 𝑙. So 𝑒 increases in 𝑁 ≡ 𝜎𝑒𝑐
𝑘𝜎𝑣

. 

 

Proof. for Theorem 2.3 

From Lemma 2.3, we know that 𝜆∗ ∈ �0, 1
2𝐾
� so 𝜆∗ < 𝑐

2𝑘
. 

The relationship between 𝜆∗ and exogenous variables is proved in Lemma 2.5. 

 

Proof. for Theorem 2.4 

We prove for the case where 𝑣 ≥ 𝑝0. From Lemma 2.2 and 𝜇 = 𝑝0 
𝐸�𝑥𝑚� �𝑥𝑑

∗ �
𝑥𝑑
∗ =

2𝑘𝑐(𝑣−𝑝0−𝜆∗𝑥𝑒∗)
𝑘
𝑐2

(𝑣+𝑐−𝑝0−𝜆∗𝑥𝑒∗)2−𝑘 
 = 2𝑐(𝑣−𝑝0−𝜆∗𝑥𝑒∗)

(𝑣+𝑐−𝑝0−𝜆∗𝑥𝑒∗)2−𝑐2
= 2𝑐(𝑣−𝑝0−𝜆∗𝑥𝑒∗)

(𝑣+𝑐−𝑝0−𝜆∗𝑥𝑒∗+𝑐)(𝑣+𝑐−𝑝0−𝜆∗𝑥𝑒∗−𝑐) =

2𝑐
2𝑐+𝑣−𝑝0−𝜆∗𝑥𝑒∗

  

For 𝑥𝑒∗ = 𝛽∗(𝑣 − 𝑝0), 𝐸�𝑥𝑚� �𝑥𝑑
∗ �

𝑥𝑑
∗ = 2𝑐

2𝑐+(𝑣−𝑝0)(1−𝜆∗𝛽∗) 

From (2.14), (2.26) and Lemma 2.6. 𝜆∗𝛽∗ = 𝜆∗ 1−2𝜆∗𝐾
2𝜆∗−2𝜆∗2𝐾

= 1−2𝜆∗𝐾
2−2𝜆∗𝐾

= 𝑒 = 𝑣𝑎𝑟(𝑝�)
𝜎𝑣2

 

It is straightforward to see 𝑣 ↑ ⇒  2𝑐 + (𝑣 − 𝑝0)(1 − 𝜆∗𝛽∗) ↑ ⇒ 2𝑐
2𝑐+(𝑣−𝑝0)(1−𝜆∗𝛽∗) ↓. 

The comparative statics for 𝜎𝑒
𝑘𝜎𝑣

 follows Theorem 2.2. 𝜎𝑒
𝑘𝜎𝑣

↑ ⇒  𝑒 ↑⇒ 2𝑐 + (𝑣 − 𝑝0)(1−

𝑒) ↓ ⇒ 2𝑐
2𝑐+(𝑣−𝑝0)(1−𝜆∗𝛽∗) ↑. 

To find the relationship between 𝑐 and 𝑒𝑥𝑒𝑖, notice that 1
𝑒𝑥𝑒𝑖

= 2𝑐+(𝑣−𝑝0)(1−𝜆∗𝛽∗)
2𝑐

= 1 +

(𝑣−𝑝0)(1−𝜆∗𝛽∗)
2𝑐

= 1 + (𝑣−𝑝0)
2𝑐(2−2𝜆∗𝐾) = 1 + (𝑣−𝑝0)

4(𝑐−𝜆∗𝑘) 
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Now we prove that (𝑐 − 𝜆∗𝑘) increases in 𝑐: 𝜕(𝑐−𝜆∗𝑘)
𝜕𝑐

= 1 − 𝑘 𝜕𝜆∗

𝜕𝑐
 = 1 − 𝑘 𝜕𝜆∗

𝜕𝐾
𝜕𝐾
𝜕𝑐

 

For 𝐾 = 𝑘
𝑐

, 𝜕𝐾
𝜕𝑐

= − 𝑘
𝑐2

, from proof of Lemma 2.5 we know 𝜕𝜆
∗

𝜕𝐾
= −𝜆∗3𝐾

3𝜆∗2𝐾2−3𝜆∗𝐾+1
⇒

𝜕(𝑐−𝜆∗𝑘)
𝜕𝑐

= 1 − 𝑘 −𝜆∗3𝐾
3𝜆∗2𝐾2−3𝜆∗𝐾+1

�− 𝑘
𝑐2
� = 1 −

𝜆∗3𝐾� 𝑘
𝑐2
�𝑘

3𝜆∗2𝐾2−3𝜆∗𝐾+1
= 1 − 𝜆∗3𝐾3

3𝜆∗2𝐾2−3𝜆∗𝐾+1
=

−𝜆∗3𝐾3+3𝜆∗2𝐾2−3𝜆∗𝐾+1
3𝜆∗2𝐾2−3𝜆∗𝐾+1

= (1−𝜆𝐾)3

3��𝜆∗𝐾−�12��
2
+� 112��

 

For 𝜆∗ ∈ �0, 1
2𝐾
� , (1 − 𝜆𝐾)3 > 0  and 𝜕(𝑐−𝜆∗𝑘)

𝜕𝑐
> 0 . So 𝑐 − 𝜆∗𝑘  increases in 𝑐  and 

1
𝑒𝑥𝑒𝑖

= 1 + (𝑣−𝑝0)
4(𝑐−𝜆∗𝑘) decreases in 𝑐, and 𝑒𝑥𝑒𝑖 is  increasing in 𝑐. 

 

Proof. for Theorem 2.5 

𝐸�𝑥𝑚� �𝑥𝑑
∗ �

𝑥𝑒∗
=

2𝑘𝑐(𝑣−𝑝0−𝜆∗𝑥𝑒∗)

𝑥𝑒∗
= 2𝐾�𝑣−𝑝0−𝜆∗𝛽∗(𝑣−𝑝0)�

𝛽∗(𝑣−𝑝0) = 2𝐾(1−𝜆∗𝛽∗)�𝑣−𝑝0�
𝛽∗(𝑣−𝑝0) = 2𝐾(1−𝜆∗𝛽∗)

𝛽∗
 plug 

(2.14) into the equation I obtain 

𝐸�𝑥𝑚� �𝑥𝑑
∗ �

𝑥𝑒∗
=

2𝐾�1−𝜆∗� 1−2𝜆∗𝐾
2𝜆∗−2𝜆∗2𝐾

��

� 1−2𝜆∗𝐾
2𝜆∗−2𝜆∗2𝐾

�
= 2𝐾(𝜆∗)

1−2𝜆∗𝐾
= 1

1−2𝜆∗𝐾
− 1  

From the proof of Theorem 2.2 we know that 𝑙 ≡ 2 − 2𝜆∗𝐾 is uniquely determined by 

𝜎𝑒𝑐
𝑘𝜎𝑣

 and increases in 𝜎𝑒𝑐
𝑘𝜎𝑣

. Therefore 𝑙 − 1 ≡ 1 − 2𝜆∗𝐾 is also uniquely determined by 𝜎𝑒𝑐
𝑘𝜎𝑣

 

and increases in 𝜎𝑒𝑐
𝑘𝜎𝑣

. So 𝐸�𝑥𝑚� �𝑥𝑑
∗ �

𝑥𝑒∗
= 1

1−2𝜆∗𝐾
− 1  is uniquely determined by 𝜎𝑒𝑐

𝑘𝜎𝑣
 and 

decreases in 𝜎𝑒𝑐
𝑘𝜎𝑣

. 

 

Proof. for Corollary 2.1 

𝑣𝑎𝑟(𝑝�) = 𝑣𝑎𝑟(𝑝0 + 𝜆∗𝑦�) = 𝜆∗2𝑣𝑎𝑟(𝑦�) = 𝜆∗2𝑣𝑎𝑟(𝛽∗𝑥𝑒� + 𝑢𝑒�) = 𝜆∗2(𝛽∗2𝜎𝑣2 + 𝜎𝑒2)  



 114  
 

From (2.14) 𝛽∗ = 1−2𝜆∗𝐾
2𝜆∗−2𝜆∗2𝐾

 

𝜆∗2(𝛽∗2𝜎𝑣2 + 𝜎𝑒2) = 𝜆∗2(� 1−2𝜆∗𝐾
2𝜆∗−2𝜆∗2𝐾

�
2
𝜎𝑣2 + 𝜎𝑒2)  

from (2.21) we know � 1−2𝜆∗𝐾
2𝜆∗−2𝜆∗2𝐾

�
2

= 𝑅(1 − 2𝜆∗𝐾), and 𝑅 = 𝜎𝑒2

𝜎𝑣2
 so 

𝜆∗2(� 1−2𝜆∗𝐾
2𝜆∗−2𝜆∗2𝐾

�
2
𝜎𝑣2 + 𝜎𝑒2) = 𝜆∗2(𝑅(1 − 2𝜆∗𝐾)𝜎𝑣2 + 𝜎𝑒2) = 𝜆∗2((1 − 2𝜆∗𝐾)𝜎𝑒2 +

𝜎𝑒2) = 𝜆∗2(2 − 2𝜆∗𝐾)𝜎𝑒2  

Denote 𝑓(𝜆∗;𝜎𝑒2,𝐾) = 𝜆∗2(2 − 2𝜆∗𝐾)𝜎𝑒2 so 𝑣𝑎𝑟(𝑝�) = 𝑓(𝜆∗;𝜎𝑒2,𝐾) 

𝜕𝑓
𝜕𝜆

= (4𝜆∗ − 6𝜆∗2𝐾)𝜎𝑒2 = 4𝜆∗ �1 − 3
2
𝜆∗𝐾�𝜎𝑒2  

Therefore 𝜕𝑓
𝜕𝜆

> 0 when 𝜆∗ ∈ �0, 2
3𝐾
� 

From Lemma 2.3 and Lemma 2.4, 𝜆∗ ∈ �0, 1
2𝐾
�. Therefore, 

𝑓(𝜆∗;𝜎𝑒2,𝐾) < 𝑓( 1
2𝐾

;𝜎𝑒2,𝐾) = � 1
2𝐾
�
2
�2 − 2 1

2𝐾
𝐾�𝜎𝑒2 = 𝜎𝑒2

4𝐾2
= 𝑐2𝜎𝑒2

4𝑘2
 . 
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APPENDIX 2.B 

 

This part provides another way to understand why the informed trader increases order 

size more than the liquidity order flow. 

 

Theorem 2.6 Suppose {𝜆∗(𝑘₁), 𝑥𝑒∗(𝑘₁), 𝑥𝑑∗(𝑘₁)}  and {𝜆∗(𝑘₂), 𝑥𝑒∗(𝑘₂),𝑥𝑑∗(𝑘₂)}  are 

optimal solutions for 𝑘1 < 𝑘2. An increase from 𝑘1 to 𝑘2 can be decomposed into the 

following two effects: 

 
Volume effect: suppose that the informed trader's strategy in the exchange is fixed as 

𝑥𝑒∗(𝑘1), then the price impact remains as 𝜆∗(𝑘1) and the expected profit per matched 

unit does not change. Denote 𝑥𝑑′(𝑘2) as the optimal choice of the informed trader in 

the crossing network conditional on 𝜆∗(𝑘₁)  and 𝑥𝑒∗(𝑘₁) . Then 
𝐸�𝑥𝑚� �𝑥𝑑

′ �𝑘2��

𝑥𝑑
′ (𝑘2) =

𝐸�𝑥𝑚� �𝑥𝑑
∗ (𝑘1)�

𝑥𝑑
∗ (𝑘1) , meaning that the execution probability does not change. 

 

Price effect: 𝑣𝑔 − 𝑝₀ − 𝜆∗(𝑘1)𝑥𝑒∗(𝑘₁) < 𝑣𝑔 − 𝑝₀ − 𝜆∗(𝑘₂)𝑥𝑒∗(𝑘₂)  , meaning that the 

optimal profit per matched share is higher with k₂, which implies  
𝐸�𝑥𝑚� �𝑥𝑑

′ (𝑘₂)�

𝑥𝑑
′ (𝑘₂)

>

𝐸�𝑥𝑚� �𝑥𝑑
∗ (𝑘₂)�

𝑥𝑑
∗ (𝑘₂)

. 

Combining the volume effect and price effect results in
𝐸�𝑥𝑚� �𝑥𝑑

∗ (𝑘1)�

𝑥𝑑
∗ (𝑘1) >

𝐸�𝑥𝑚� �𝑥𝑑
∗ (𝑘₂)�

𝑥𝑑
∗ (𝑘₂)

. 

Proof. Volume effect: Suppose we fix 𝑥𝑒′(𝑘₂) = 𝑥𝑒∗(𝑘₁) . Because 𝑥𝑒∗ = 𝛽∗(𝑣 −

𝑝0),𝑥𝑒′ (𝑘₂) = 𝑥𝑒∗(𝑘1) is equivalent to 𝛽′(𝑘2) = 𝛽∗(𝑘1). From (2.17)  we know 𝜆′(𝑘₂) =
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𝜆∗(𝑘₁)  when both 𝛽∗  and 𝑅  are fixed. So 𝑣𝑔 − 𝑝₀ − 𝜆′(𝑘2)𝑥𝑒′(𝑘₂) = 𝑣𝑔 − 𝑝₀ −

𝜆∗(𝑘1)𝑥𝑒∗(𝑘₁). 

 

Denote 𝑣𝑔 − 𝑝₀ − 𝜆∗(𝑘₁)𝑥𝑒∗(𝑘₁) = 𝜋₁ . First-order condition (2.11) and Lemma 2.2 

implies that 
𝑥𝑑∗(𝑘₁) = 𝑘1

𝑐2
𝜋12 − 𝑘1 and 𝐸(𝑥𝑚� |𝑥𝑑∗(𝑘1)) = 2 𝑘1

𝑐
(𝜋1 − 𝑐)  

𝑥𝑑′ (𝑘2) = 𝑘2
𝑐2
𝜋12 − 𝑘2 and 𝐸(𝑥𝑚� |𝑥𝑑′ (𝑘2)) = 2 𝑘2

𝑐
(𝜋1 − 𝑐)  

 

Therefore �
𝐸�𝑥𝑚� �𝑥𝑑

′ (𝑘2)�

𝑥𝑑
′ (𝑘2) � = �

𝐸�𝑥𝑚� �𝑥𝑑
∗ (𝑘1)�

𝑥𝑑
∗ (𝑘1) � =

21𝑐𝜋1
1
𝑐2
𝜋12−1

= 2𝑐
𝜋1+𝑐

. So execution probability 

does not change. 

Price effect: Denote 𝜋2 = 𝑣𝑔 − 𝑝0 − 𝜆∗(𝑘2)𝑥𝑒∗(𝑘2) = 𝑣𝑔 − 𝑝0 − 𝜆∗(𝑘2)𝛽∗(𝑘2)(𝑣 −

𝑝0). 

 

Theorem 2.3 implies that 𝜆∗(𝑘2) < 𝜆∗(𝑘1)  and 𝛽∗(𝑘2) < 𝜆∗(𝑘2)  when 𝑘2 > 𝑘1 . So 

𝜋2 > 𝜋1. 

First-order condition (2.11) and Lemma 2.2 implies that 
𝑥𝑑∗(𝑘2) = 𝑘2

𝑐2
𝜋22 − 𝑘2 and E(𝑥𝑚� |𝑥𝑑∗(𝑘2)) = 2(𝑘2

𝑐
)(𝜋2 − 𝑐) 

So 
𝐸�𝑥𝑚� �𝑥𝑑

∗ (𝑘2)�

𝑥𝑑
∗ (𝑘2) =

2𝑘2𝑐 (𝜋2−𝑐)
𝑘2
𝑐2
𝜋22−𝑘2

= 2𝑐
𝜋2+𝑐

< 2𝑐
𝜋1+𝑐

=
𝐸�𝑥𝑚� �𝑥𝑑

′ (𝑘2)�

𝑥𝑑
′ (𝑘2)  
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Combining volume effect and price effect we get 
𝐸�𝑥𝑚� �𝑥𝑑

∗ (𝑘2)�

𝑥𝑑
∗ (𝑘2) <

𝐸�𝑥𝑚� �𝑥𝑑
′ (𝑘2)�

𝑥𝑑
′ (𝑘2) =

𝐸�𝑥𝑚� �𝑥𝑑
∗ (𝑘1)�

𝑥𝑑
∗ (𝑘1) . So an increase of liquidity trading in the crossing network decreases 

execution probability. 

 

The volume effect implies that if the profit per matched unit does not change, the 

informed trader increases his order size at the same ratio as the increase in liquidity 

trading. Then the probability of execution remains the same. This can be seen from the 

first-order condition (2.9). The informed trader's optimization problem in the crossing 

network is to choose the execution probability so that his expected marginal profit, 

which is the product of profit per matched unit and execution probability, is equal to up-

front submission cost 𝑐. When profit per matched unit and 𝑐 are the same, the informed 

trader will choose the same execution probability, that is, he will increase his order size 

at the same ratio as the liquidity traders. 

 

What drives the result is the price effect. As the liquidity trading in the crossing network 

increases, the informed trader finds that the externality of price impact on the crossing 

network increases. Therefore, he chooses to trade less in the exchange and more in the 

crossing network. His smaller order size in the exchange decreases the adverse selection 

problem in the exchange and causes a smaller price impact of trade. Therefore, his 

profit per matched unit increases. When the profit per matched unit increases, the 

informed trader requires a lower execution probability to make marginal revenue equal 

to marginal cost in the crossing network. 
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CHAPTER 3 

TRANSACTION COSTS AND MARKET SHARE OF CROSSING NETWORKS 

 

3.1. Introduction 

A major research topic in market microstructure is the measurement of transaction costs 

and the examination of their patterns. In his presidential address to the American 

Financial Association, Stoll (2000) provides seven measures of transaction costs 

(quoted spread, effective spread, traded spread, covariance of price changes, covariance 

of quote changes, price impact of trade and opening volatility) and examines their 

relationships. Yet all seven of these measures seem irrelevant for crossing networks, 

defined by the Securities and Exchange Commission (SEC) as "systems that allow 

participants to enter unpriced orders to buy and sell securities. Orders are crossed at a 

specific time at a price derived from another market."57 (SEC, 1998). Crossing networks 

have grown exponentially in the past several years and account for 15.19% of average 

daily U.S. security trading volume. 58  Recently, this kind of trading platform has 

received even more public attention, not only because of two requests for comments 

from the SEC on crossing networks, but also because of “the industry's curious choice 

of the name ‘dark pool.’”59

                                                 
57 Crossing networks have begun to allow limit orders, however, the fact that crossing networks cross 
orders using prices derived from other markets has not been changed. Limit orders in the crossing 
networks will not participate in the cross if the cross price is not as good as the limit price. 

  Despite their importance, there is very limited study of 

transaction costs in crossing networks. The purpose of this paper is to provide an 

empirical measure of transaction costs in crossing networks from publicly available 

data, to examine the pattern of transaction costs in crossing networks, and to study the 

58 Rosenblatt Securities Monthly Dark Liquidity Tracker, April 27, 2010, pp2.  
59 "Exchanges should unite to end flash orders," by Nasdaq CEO Robert Greifeld, Financial Times, 
August 6, 2009. 
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competition between crossing networks and traditional trading platforms, such as stock 

exchanges and electronic communication networks.   

 

The traditional measures of transaction costs are less relevant for crossing networks 

because of their unique trading mechanism. Crossing networks usually use the price set 

by other markets to match buy and sell orders. The match is conducted anonymously, 

and crossing networks have proprietary allocation rules to decide the priorities of 

trading when buy and sell orders are not balanced. Therefore, the price impact of trade 

is technically 0 for crossing networks because price is determined in other markets and 

is independent of order size. The effective spread is also 0 if buy and sell orders are 

matched using quoted-midpoint, which is the business model of many crossing 

networks. The other five measures of transaction costs in Stoll (2010) are either 0 or do 

not exist at all for crossing networks. 60

 

 

The major transaction cost of crossing networks is non-execution: only the side with 

fewer shares gets full execution, while the side with more shares does not get full 

execution. Theoretical studies on crossing networks (Hendershott and Mendelson 

(2000), Dönges and Heinemann (2006), Degryse, Van Achter and Wuyts, (2009) and 

Ye (2010)) all focus on the choice between guaranteed execution with a higher bid-ask 

spread, or the price impact of trade in exchanges and a lower bid-ask spread or price 

impact but lower execution probability in crossing networks. However, non-execution 

probability is a missing piece in most empirical work on crossing networks due to the 

                                                 
60 We cannot calculate quoted spreads from crossing networks because they do not have their own quotes. 
For the same reason, we cannot compute covariance of quote changes for crossing networks. The traded 
spread is also 0 because buy and sell orders are matched using the same price. We cannot compute 
covariance of price changes for crossing networks because they do not have their own prices. Opening 
volatility depends on opening price, which is again irrelevant for crossing networks because they do not 
have their own prices at all.   
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lack of data. A direct consequence of this omission is two empirical puzzles in the 

literature. First, Conrad, Johnson and Wahal (2003) and Keim and Madhavan (1998) 

find that crossing networks consistently have lower transaction costs than stock 

exchanges. Then, a natural question is why crossing networks are not more widely used 

(Conrad, Johnson and Wahal (2003) and Ready (2009). The regulator also has the 

concern that crossing networks will “continue to expand indefinitely.” (SEC, 2009) 

Second, Ready and Ray (2010) find that the market shares of crossing networks are not 

higher for stocks with higher bid-ask spreads, whose reductions in transaction costs 

should be higher in crossing networks.  Our paper shows that non-execution probability 

and its cross-sectional variation can address these empirical puzzles.    

 

We contribute to the literature first by constructing a measure of transaction costs of 

crossing networks, based on publicly available data. Probability of non-execution is 

derived from SEC 605 data, which in turn allow us to study the pattern and 

determinants of this dimension of transaction costs and explain the competition between 

crossing networks and stock exchanges. We find that execution probability in the 

crossing networks is only 4.11 percent for NYSE stocks and 2.17 percent for NASDAQ 

stocks, which is significantly lower than the fill rate of the stock exchange. This low fill 

rate can potentially offset the reduction in effective spread and price impact in crossing 

networks. 

  

We then extend the literature on cross-sectional variation of transaction costs (Stoll 

(2000) and Madahvan (2000)) to non-execution in crossing networks. Our empirical 

findings are consistent with the theoretical prediction of Ye (2010) that non-execution 

probability in crossing networks should follow a similar cross-sectional pattern as price 

impacts in stock exchanges. More broadly, non-execution should also follow the cross-
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sectional pattern of a bid-ask spread because the bid-ask spread can be observed as the 

“price impact of trading standard size order” (Amihud, 2002). The intuition of the Ye 

model is that rational traders would move their trades between crossing networks and 

stock exchanges until they are indifferent between non-execution probability in crossing 

networks and price impacts in exchanges. We employ three methods for testing this 

hypothesis. First, we show that non-execution, like bid-ask spread, can also be 

explained by informational and non-informational causes. Second, we show that non-

execution is positively correlated to the price impact of trade, that is, stocks with a 

higher price impact of trade have a higher non-execution probability. Finally, we show 

that cross-sectional variation of non-execution can be well explained by the same 

underlying trading characteristics that explain cross-sectional differences in effective 

spread and price impact. The close association between effective spread, price impact 

and non-execution provides an explanation for Ray (2010) and Ready (2009). Ray 

(2010) finds that crossing networks do not have a higher market share for stocks with 

higher effective spreads. This can be explained by the positive correlation between the 

bid-ask spread and non-execution. Conditional on execution, stocks with a higher bid-

ask spread should have a higher reduction in transaction costs in crossing networks. 

However, stocks with higher bid-ask spreads are also stocks with lower fill rates in 

crossing networks. Therefore, the higher potential saving conditional on trading success 

is counteracted by the higher failure rate of trade. Ready (2009) questions why crossing 

network volume is not higher for stocks with the highest volume, where the likelihood 

of finding counterparties should be highest. Our paper does show that the execution 

probability is increasing in trading volume, but it is well-known that bid-ask spreads 

also decrease with trading volume (Stoll (2000 and 2003) and Madahvan (2000)). 

Stocks with higher volume have lower transaction costs in both stock exchanges and 
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crossing networks. Therefore, there may not be a comparative advantage for crossing 

networks with higher volume stocks.   

 

The final question we ask is on the competition between exchanges and crossing 

networks. Particularly, we test the theoretical hypotheses of the competing models of 

Dönges and Heinemann (2006) and Ye (2010). The Dönges and Heinemann model 

predicts that market share of the crossing network decreases in the volatility of the 

stock, while the Ye model predicts the opposite. These two models have different 

results because they focus on two different aspects of competition. In Dönges and 

Heinemann, no traders have better information than other traders do. The disutility of 

missing the trading opportunity is higher for stocks with higher volatility. Therefore, 

traders move to the stock exchange for guaranteed execution when price volatility 

increases. The Ye model, however, includes a trader with better information about the 

true value of the stock. An increase in stock volatility increases the value of the 

information for the informed trader, giving the informed trader a higher incentive to 

hide in the crossing network. Certainly, Dönges and Heinemann (2006) and Ye (2010) 

only focus on one effect of an increase in volatility. In reality, both effects should play a 

role, and determining which force is stronger is an empirical issue. Using data from 

2005-2007, Ready (2009) finds that stocks with higher volatility have a higher market 

share, implying that the effect found by Ye (2010) is stronger in that sample period. 

Using the data from January 2010 – March 2010, we find that stocks with higher 

volatility have lower market shares in crossing networks.  This is consistent with the 

finding of Buti, Rindi and Werner (2010), which covers a more recent period but uses a 

different dataset.  We believe that the discrepancy between Ready (2009) and Buti, 

Rindi and Werner (2010) and Ye (2010) is due to differences in sample periods. 

Currently, crossing networks have better anti-gaming strategies to exclude traders with 
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private information or give them less priority to trade. Therefore, while the effect in Ye 

(2010) dominates the effect in Dönges and Heinemann (2006) from 2005-2007, 

informed traders play a relatively less important role now due to better anti-gaming 

strategies.  

 

Due to the limitation of data, there are very few empirical studies on non-execution and 

market share of crossing networks. To my knowledge, there are only three academic 

studies on non-execution probability based on proprietary datasets with limited sample 

coverage.  Gresse (2006) finds that aggregate execution probabilities in Posit Europe 

were 2.63% from July 1, 2000 to December 31, 2000 and 4.13% from January 1, 2001 

to June 30, 2001. However, no further analysis has been done on cross-sectional 

patterns of non-execution probability. Næs and Ødegaard (2006) and Næs and Skjeltorp 

(2003) examine non-execution probability, based on three days of trading data from one 

institutional trader (the Government Petroleum Fund in Norway), and the number of 

orders on one of these three days was “too small to perform reliable statistical tests.” 61

 

 

Because of data limitation, the study on competition between crossing networks and 

stock exchanges (Ready (2009) and Ray (2010)) have to reply on assumptions about 

transaction costs in crossing networks. Both papers assume that stocks with a higher 

effective spreads have higher reductions in effective spreads by trading in crossing 

networks. We show, however, that this assumption is not supported by empirical data 

for NASDAQ stocks.  

This chapter is organized as follows. Section 3.2 provides institutional details of 

crossing networks. Section 3.3 describes how this paper relates to the existing literature 

and develops the hypotheses to be tested. Section 3.4 describes our data and sample 

                                                 
61 Næs and Skjeltorp (2003), pp1789, footnote 16.  
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selection criteria. Section 3.5 provides preliminary result on the measurements of 

transaction costs in crossing networks and stock exchanges as well as the competition of 

these two trading platforms. Section 3.6 examines cross-sectional variation of non-

execution probability. Section 3.7 studies the competition between exchanges and 

crossing networks. Section 3.8 concludes the chapter. 

 

3.2. Institutional Details 

Crossing networks originated in the early 1970s as private, phone-based networks 

among buy-side traders. In the 1980s, with the introduction of Instinet and POSIT, the 

networks became electronic. Currently, there are about 40 crossing networks, which 

execute 15.76% of U.S. equity trading volume. The trading mechanism of crossing 

networks changes very fast, and there are many types of crossing networks. Some 

modern crossing networks do not even fit exactly into the traditional definition of 

crossing network in SEC (1998). However, there are three key elements that define 

crossing networks and distinguish their types. 

 

First, crossing networks all use prices from other markets to match buy and sell orders. 

These prices, which are often called benchmark prices, can be bid-ask midpoint, closing 

price, volume-weighted average price, or national best bid and offer price. Some 

crossing networks may have more than one benchmark price. For example, Goldman 

Sachs Sigma X has midpoint peg orders, which participate in the crossing at the quoted 

midpoint. It also has peg-at-bid and peg-at-ask orders. Orders in crossing networks, 

however, do not participate in the formation of prices but simply free-ride the price 

discovery in stock exchanges. Trading in crossing networks should have no direct price 

impact because price is determined before order matching: an increase of buy orders 

does not increase the price but simply increases the execution probability for sell orders 
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and decreases execution probability for buy orders. However, Ye (2010) shows that 

trading in crossing networks can impact price indirectly because the agent who sets the 

price has a rational expectation of other traders’ strategies in crossing networks.  

 

Second, because prices in crossing networks are derived from other markets, they do 

not have the market-clearing function.  Crossing networks need proprietary matching 

algorithms to determine the trading priority for the side with the larger quantity. 

Examples of basic allocation rules include the time priority rule and the pro rata rule; 

rules in reality may be complex functions of these basic rules and are mostly 

confidential. As crossing networks are not public exchanges, their customers can be 

selected, and some traders can be excluded. This can be considered an extreme 

allocation rule in which some traders always get 0 execution. Crossing networks' 

preferred customers are "buy-side" firms, particularly those who manage "passive 

portfolios" such as index funds. Two kinds of traders are often excluded from the 

crossing network. The first kind are the potentially informed traders, such as hedge 

funds, brokers and proprietary traders from sell-side firms; the second kind are traders 

who submit small orders to extract information contained in the order flow. SEC (2009) 

proposed a “free access rule,” such that every trader has access to crossing networks. 

However, whether or not “fair access” will increase market quality is still an open 

question.   

 

Finally, crossing networks differ in their matching frequency. In the past, most crossing 

networks only matched orders once or several times a day. Currently, more and more 

crossing networks conduct continuous matching.  
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There are several advantages to trade in crossing networks. First, trades also do not have 

direct price impacts, as their prices are independent of order sizes. Second, buyers 

(sellers) do not pay the bid-ask spread if their orders are matched at midpoint or the bid 

(ask) price. Conditional on execution, crossing networks usually have lower transaction 

costs than does the exchange (Keim and Madhavan (1998), Conrad, Johnson and Wahal 

(2003), Næs and Ødegaard (2006) and Sofianos and Jeria (2008)). In addition, 

institutional traders like to use crossing networks because they prevent information 

leakage. If information associated with an institutional order leaked out, opportunistic 

front-runners might trade in advance of the order in the same direction, thereby driving 

the price in an unfavorable direction. 

 

The three benefits of trading in crossing networks prompt Conrad, Johnson and Wahal 

(2003) and Ready (2009) to ask why crossing networks are not more widely used. The 

answer is that the probability of execution in crossing networks is significantly lower 

than that in the exchange. If we measure trading costs for both executed orders and non-

executed orders using the implement shortfall developed by Perold (1988), we can say 

that crossing networks have lower execution costs but higher opportunity costs. 

 

3.3. Related Literature 

The theoretical literature on transaction costs in stock exchanges can be classified into 

two lines (O’Hara, 1995). The first line is inventory models, such as Stoll (1978), Ho 

and Stoll (1981) and Amihud and Mendelson (1980), in which information is 

symmetric. More recent literature, such as Kyle (1985), Glosten and Milgrom (1985) 

and Easley and O'Hara (1987), focus on the transaction costs incurred by information 

asymmetry. Only recently has theoretical literature on transaction costs in crossing 
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networks been published, but it can also be divided into two lines similar to the 

literature on transaction costs in stock exchanges.  

 

Even if there is no information asymmetry, non-execution can still arise because of a 

random mismatch of buyers and sellers. Dönges and Heinemann (2006) and 

Hendershott and Mendelson (2000) 62

 

 emphasize the relationship between network 

externality and non-execution probability. All other things being equal, non-execution 

probability should decrease in order arrival rate. The more shares that arrive to the 

market, the higher the probability to find a potential match, and the lower the non-

execution probability. Non-execution can also be a consequence of information 

asymmetry: on one side of the market, there are both informed and uninformed traders, 

and on the other side, there are only uninformed traders. Therefore, an increase of 

informed trading relative to uninformed trading would increase non-execution 

probability. The non-execution caused by information asymmetry is the focus of Ye 

(2010). The Ye model also predicts that non-execution probability should increase when 

volatility increases.  

We first examine whether or not non-execution contains both informational and non-

informational causes by regressing non-execution probability on proxies of network 

externality (number of shares submitted to crossing networks and consolidated trading 

volume) and proxy of information asymmetry (the price impact of trade). Then, we test 

the following two hypotheses. Hypothesis 1 follows the prediction of network 

externality models such as Dönges and Heinemann (2006) and Hendershott and 

Mendelson (2000).  

                                                 
62 There are informed traders in the Hendershott and Mendelson model. However, those informed traders 
cannot choose how much and where to trade. Therefore, the results in the Hendershott and Mendelson 
model are driven by traders without private information.   
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Hypothesis 1: non-execution decreases as trading volume increases 

 

Hypothesis 2 is the implication of Ye (2010) model.  

Hypothesis 2: non-execution increases as volatility increases. 

 

Then, we want to examine the association between non-execution and measures of 

transaction costs in the exchange. In Dönges and Heinemann (2006) and Degryse, Van 

Achter and Wuyts (2009), non-execution is assumed to have 0 correlation with 

transaction costs in the exchange, whereas Ye (2010) predicts that non-execution should 

have a positive correlation with the price impact of trade because rational traders who 

can trade in both exchanges and crossing networks would move their trades until they 

are indifferent between these two dimensions of transaction costs. Therefore, we have 

hypothesis 3: 

 

Hypothesis 3: Non-execution probability is positively correlated with price impact. 

 

Finally, we examine the competition between crossing networks and exchanges. There 

are two papers on this topic. Ready (2009) finds that crossing networks’ market share is 

not higher for the highest volume stocks, where the likelihood of finding counterparty 

should be the highest. Ready’s explanation is that institutional trader’s face other 

constraints besides minimizing transaction costs. Of particular importance is the soft 

dollar constraint. Ray (2010) finds that the market shares of crossing networks also do 

not have a monotonic relationship with effective spread. Starting from stocks with the 

lowest effective spread, the market shares of crossing networks first increase and then 

decrease with effective spread. Ray explains that it is because people who use crossing 

networks have concerns of possible gaming for stocks with higher effective spread. 
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Both of these papers, however, do not have data on transaction costs in crossing 

networks. Therefore, their analysis relies on assumptions about the transaction costs in 

crossing networks. For example, Ray (2010) implicitly assumes that the effective spread 

in crossing networks is 0, and Ready (2009) assumes that potential savings by using 

crossing networks is a fixed proportion of the spread. Both assumptions imply that 

effective spread in exchanges and the reduction in effective spread by trading in 

crossing networks should have correlation coefficient of 1. This hypothesis can 

certainly be tested using our data. However, we believe it is more informative to test 

whether the correlation efficient is positive or negative.  So we have hypothesis 4 and 

hypothesis 4’.  

 

Hypothesis 4: The reduction in effective spread by trading in crossing networks and 

effective spread in exchanges have  a correlation coefficient of 1. 

  

Hypothesis 4’: The reduction in effective spread by trading in crossing networks and 

effective spread in exchanges have a positive correlation coefficient 

 

Certainly, hypothesis 4’ is weaker than hypothesis 4. If hypothesis 4’ is rejected, so is 

hypothesis 4.  

 

Finally, we want to test the competing hypothesis of Dönges and Heinemann (2006) and 

Ye (2010) on the market share of crossing networks. In the Ye model, an increase in 

volatility increases the value of information for informed traders, giving them higher 

incentives to hide their trading in crossing networks. Therefore, an increase in volatility 

may increase the market share of crossing networks. The benefit of hiding information 

in crossing networks does not exist in Dönges and Heinemann model because no traders 
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have better information. The only effect of increased volatility is to increase the 

disutility of failed trade. Therefore, crossing networks have lower market shares for 

stocks with higher volatility. Due to the difficulty to model crossing networks, both the 

Ye model and the Dönges and Heinemann model can only focus on one side of the 

mechanism: Ye model has informed trader but passive uninformed trader whereas the 

Dönges and Heinemann model has no informed trader. We believe that both 

informational and non-informational factors should play a role in determining the 

market share of crossing networks, and this paper tests which effect plays a more 

important rule. The hypothesis is stated as follows: 

Hypothesis 5: Crossing networks have higher market shares for stocks with higher 

volatility.  

 

3.4 Data  

We apply four datasets in this study. SEC 605 data is used to calculate effective spread, 

the price impact of trade and non-execution probability. In the United States, each 

market center that is not registered as a stock exchange must post a link of its SEC 605 

report on the Financial Industry Regulatory Authority (FINRA) website. 63

 

 We compare 

the list of these market centers with the list of crossing networks in Domowitz, 

Finkelshteyn and Yegerman (2009) to identify our sample of crossing networks. CRSP 

data is used to identify the sample of stocks as well as the trading characteristics of 

those stocks.  

3.4.1 Measures of Transaction Costs and Market Share   

Five measures of transaction costs are generated through SEC 605 data: effective 

spread, realized spread, price impact, execution speed and non-execution probability. 

                                                 
63 http://apps.finra.org/datadirectory/1/marketmaker.aspx 
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Aside from non-execution probability, all other measures are widely studied in the 

literature, using SEC 605 data64, (Boehmer, Jennings and Wei (2007), Boehmer (2005), 

Bennett and Wei (2006), Lipson (2003), Bessembinder (2003), O’Hara and Ye (2010)). 

Effective spread measures the total price impact of trade (Boehmer, Jennings and Wei 

(2007)), which can be decomposed into temporary price impact (realized spread) and 

permanent price impact. The share-weighted average of effective spreads in the SEC 

605 report is calculated, for buy orders, as double the amount of difference between the 

execution price and the midpoint of the consolidated best bid and offer at the time of 

order receipt and, for sell orders, as double the amount of difference between the 

midpoint of the consolidated best bid and offer at the time of order receipt and the 

execution price. The realized spread excludes the effects of the information content of 

order flow. It is defined, for buy orders, as double the amount of difference between the 

execution price and the midpoint of the consolidated best bid and offer five minutes 

after the time of order execution and, for sell orders, as double the amount of difference 

between the midpoint of the consolidated best bid and offer five minutes after the time 

of order execution and the execution price. Price impact, the permanent component of 

effective spread, is defined as twice the change in the quote midpoint from order receipt 

to five minutes after the trade, or the difference between effective spread and realized 

spread. Execution speed is defined as the time between order receipt and execution. 65

Our paper is novel because of the measurement of non-execution of crossing networks 

obtained from SEC 605 data. Execution probability is defined as the ratio of executed 

 

                                                 
64 The data is also called Dash 5 data or SEC 11Ac1-5 data in early studies.  
65 Execution speed is not a variable in raw SEC 605 data, though some vendors of SEC 605 data provide 
execution speed data. We generate execution speed from raw SEC data using the same formula as those 
vendors, which is defined as the following weighted average: 
speed= (shares executed with price improvement*average speed for shares executed with price 
improvement shares + executed at the quote*average speed for shares executed at the quote + shares 
executed outside the quote*average speed for shares executed outside the quote)/(shares executed with 
price improvement + shares executed at the quote + shares executed outside the quote) 
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shares to covered shares in SEC 605 reports. SEC rules require each market center to 

report any market order or limit order (including immediate-or-cancel orders) received 

by a market center during regular trading hours at a time when a consolidated best bid 

and offer is being disseminated, and, if executed, is executed during regular trading 

hours, but shall exclude any order for which the customer requests special handling for 

execution. 66

eredshares covnumber of 
cutedshares exenumber of 1onNonexecuti −=

 Meanwhile, SEC 605 reports also require market centers to report the 

cumulative number of shares of covered orders executed at the receiving market center. 

Therefore, we have a measure of non-execution probability defined as follows. 

                             (3.1) 

The advantage of this measure is that it is calculated from public available data. As the 

dataset for crossing networks is very hard, if not impossible, to obtain, a measure based 

on public data provides an easy proxy for non-execution probability in empirical studies. 

This proxy allows us to answer some questions that are not addressed in the literature.  

We acknowledge, however, the proxy for non-execution, as well as the measures of 

effective spread, realized spread, price impact and execution speed has their limitations, 

which impose a constraint on the type of question we can ask. We focus on the cross-

sectional comparison of non-execution probability and market share across different 

stocks in this paper because of the following limitations in our data.  

First, our measures for non-execution, effective spread, realized spread, price impact 

and execution speed only cover certain sizes and types of orders received by each 

market center. Orders of 10000 shares or more are not in SEC 605 data.  More 
                                                 
66 The special handling orders include, but are not limited to, orders to be executed at a market opening 
price or a market closing price, orders submitted with stop prices, orders to be executed only at their full 
size, orders to be executed on a particular type of tick or bid, orders submitted on a "not held" basis, 
orders for other than regular settlement, and orders to be executed at prices unrelated to the market price 
of the security at the time of execution. 
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importantly, market centers now have some discretion on the types of orders they 

include in their SEC 605 report. The discretion comes from the fact that current order 

types, especially order types in crossing networks are much more complex than the 

order types defined in SEC 605 rule in 1998.67

Equation (3.1) also tends to overestimate non-execution probability because it does not 

account for shares cancelled before execution. An alternative measure is   

 As some new order types do not follow 

the standard definition of market or limit orders, market centers can choose whether 

they include them in the SEC 605 report or not. Therefore, while early works using SEC 

605 data focus on the comparison between execution qualities of different market 

centers, we take a different approach because it is possible now for some market centers 

to exclude some types of orders to improve their execution quality. Comparing the 

crossing sectional variation of execution statistics has much less problem: market 

centers may exclude some order types to improve their execution statistics, but they 

should manipulate their execution statistics in the some way for all the stocks. We 

assume that the way orders are excluded would not systematically affect the relative 

cost for different stocks.  

   
slled sharer of canceered-numbeshares covnumber of 

cutedshares exenumber of 1onNonexecuti −=           (3.1’) 

However, (3.1’) would greatly underestimate non-execution probability because several 

market centers in our sample treat all non-executed shares as canceled shares. 68

                                                 
67 For an introduction for the list of current order types, please see Johnson (2010). 

 

Therefore, there is not even cross-sectional variation in non-execution probability for 

these market centers because non-execution probability is always 0. Two other reasons 

68 This is mainly because of order types in crossing networks. For example, Liquidnet SEC 605 reports 
only include their Immediate or Cancel orders, while their time in force orders are exempt from SEC 605 
reporting requirements. Therefore, the execution probability is always 1 because orders are either 
executed immediately or cancelled. 
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make us choose measure (3.1) instead of measure (3.1’). First, equation (3.1) is the 

measure of the fill rate recommended by SEC 605 final rule69

Fortunately, non-execution is used as a dependent variable in all but one case for this 

paper. As long as the measurement error is not correlated with the explanatory variables, 

measurement error in dependent variable does not affect the consistency of the 

estimation of slope terms. 

. Second, the aggregated 

non-execution probability generated by excluding cancelled shares is much more 

consistent with previous literature (Gresse, 2006).   

70  There is only one place where we use non-execution as an 

independent variable.  In this case, measurement (3.1’) can potentially serve as an 

instrument for measurement (3.1). However, measurement (3.1’) is such a poor 

instrument that we cannot reject the hypothesis that they have 0 partial correlations 

measurement (3.1).71

                                                 
69 See footnote 51 of SEC 605 final rule.  

 This is due to the fact that non-execution measured by (3.1’) has 

very limited variation. Non-executions for many stocks are close to 1 because a number 

of market centers simply count non-executed shares as canceled shares.  Fortunately, 

measurement error does not change the answer for the question we want to ask.  Under 

classical errors-in-variables assumption, measurement error causes attenuation bias, in 

that it leads the estimated coefficient closer to 0 than the true value. In addition, the 

standard error of estimation increases. Therefore, even if non-execution has impact on 

the dependent variable, we may conclude it does not have an impact due to the 

measurement error. In section 3.6, we find that non-execution has impact on market 

share of crossing networks, and we believe the result would be stronger if there is no 

measurement error.  

70 Because equation (3.1) is an underestimate, we would get an underestimate of the intercept, which is 
rarely a cause for concern. (Wooldridge, 2006)   
71 Results are not reported for brevity but are available upon request.  
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We also exclude orders received by a market center but executed elsewhere. Because 

crossing networks sometimes route their unexecuted orders to other types of trading 

platforms, including orders routed to other market centers may exaggerate the execution 

probability for crossing networks. We do conduct the analysis including orders executed 

in other market centers, and the results are similar. 

We also obtain the market share of crossing networks from SEC 605 data, which is 

defined as  

tworksrossing necuted in cshares exeangesstock exchecuted in  shares ex
etworkscrossing necuted in  shares exremarket sha

+
=

 (3.2) 

Our market share data may also have some bias because of double counting. Market 

centers have different protocols for reporting their executed shares. Some market 

centers may report single-counted volume, where only the number of matched shares is 

reported. Some other market centers may report double-counted volume, where both 

buy and sell volume is counted.  Once again, focusing on crossing sectional variation 

will be less a problem. While double-counting in a market center may increase its 

market share relative to other market centers, we assume that it does not systematically 

affect the relative market share across different stocks.   

Our analysis focuses on all market and marketable limit orders in the SEC 605 data. We 

apply the filter in Bessembinder (2003) and eliminate an observation if the effective 

spread is greater than four dollars or less than -0.5 dollars. We also drop a stock if it has 

an average execution time greater than one trading day either in crossing networks or in 

stock exchanges. As our study focuses on a cross-sectional comparison, we aggregate 

the number of shares executed and the number of shares covered in all our sample 
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crossing networks and exchanges in equation (3.1), and we aggregate the number of 

shares executed in all sample crossing networks and exchanges in equation (3.2). Our 

choice for sample crossing networks and exchanges is specified in section 3.4.2 and 

3.4.3.    

3.4.2. Sample Crossing Networks  

To choose the sample crossing networks for this paper, we start from the list of crossing 

networks in Domowitz, Finkelshteyn and Yegerman (2009). 72

 

 Then we compare the 

list with the master file provided by Financial Industry Regulatory Authority (FINRA), 

which has names of all the market centers reporting the SEC 605 data through the 

FINRA website. Because every market center that is not a stock exchange needs to post 

the links of their SEC 605 data on the FINRA website, theoretically, all the execution 

data for orders of size 9999 or less in the crossing networks is included in SEC 605 

data. However, data from several crossing networks are not available, either because 

their orders are exempt from SEC 605 reports or because the owners of those crossing 

networks merge their crossing networks data with execution data from other trading 

platforms they own. The complete list of crossing networks in Domowitz, Finkelshteyn 

and Yegerman (2009) and our filters to select the final sample are demonstrated in 

Table 3.1.  

 

 

 

 

 

                                                 
72 See page 20 of Domowitz, Finkelshteyn and Yegerman (2009) for the list. Though the list is not 
complete, it includes all current major crossing networks.     
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Table 3.1: Sample of Crossing Networks 

This table shows the list of crossing networks in Domowitz, Finkelshteyn and Yegerman (2009) 
and our filters to choose the final sample of crossing networks. The sample period is January, 
2010 to March 2010.   

1. Orders are exempted from Sec 605 report for at least one month  

Pipeline,  Pulse Block Cross,  Bids and eSpeed Aqua  

2: Exchange owned crossing networks  

International Stock Exchange Midpoint Match, NASDAQ (End of Day Cross; Open; 
Intraday; Continuous) and NYSE Match Point  

3. Broker-dealer owned crossing networks that do not report independently  

Credit Suisse Cross Finder, Bloomberg BlockHunt, Citadel ExSvs, Citi Markets 
LIQUIFI, Fidelity CrossStream, Knight Securities Knight Match, Morgan Stanley 
(Trajectory Cross, MS Pool), Merrill Lynch (MLXN;AXP), State Street Lattice and 
UBS PIN  

4. Final sample  

Provider  Name  Rank 

Goldman Sachs  Sigma X  2  

Consortiums  Level  5  

Barclays  Barclays ATS  7  

ITG  Posit Now  10  

Instinet  Data contains multiple crossing 
networks operated by Instinet  11  

Liquidnet  Data contains multiple crossing 
networks operated by Liquidnet  12  

NYFIX  Millennium  13  

BNY ConvergEx  ConvergEx Cross  16  
  

In our sample period, all orders from Pipeline, Pulse Block Cross and Bids trading are 

exempted from SEC 605 reports, and the reports from eSpeed are empty for both 

January and February 2010. Therefore, we exclude these four crossing networks from 

our sample. We also need to exclude crossing networks owned by NYSE, NASDAQ 
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and International Stock Exchange from our sample because data of these crossing 

networks are not reported independently. For the same reason, we need to drop crossing 

networks owned by Bloomberg, Citadel, Citi Markets, Credit Suisse, Fidelity, Knight 

Securities, Merrill Lynch, State Street and UBS because their data is mixed with 

execution data of other trading platforms of the same market center.  

 

Our final sample includes eight crossing networks. Two are independent crossing 

networks: Level and Liquidnet. Goldman Sachs Sigma X, ITG POSIT Now, Instinet 

and Barclays ATS are broker-dealer-owned crossing networks but file their independent 

SEC 605 reports.73 BNY ConvergEx  group files two SEC 605 reports: BNY ConvergEx 

and ConvergEx's Millennium ATS.74  I also include these two market centers because 

both of them are crossing networks.  We compare our sample of 8 crossing networks 

with the report of Rosenblatt Securities on aggregated volume of crossing networks and 

find that our sample of crossing networks ranks 2, 5, 7, 10, 11, 12, 13 and 16 in all 17 

crossing networks they track, which is a pretty representative sample75

 

.   

3.4.3. Sample Exchanges  

Sirri (2008) divides trading venues into two categories based on whether or not they 

display quotes as an integral part of their business models. Roughly speaking, “quoted 

venues,” according to Sirri (2008), include exchanges and ECNs, even if they may offer 

one or more dark liquidity services through hidden orders or reserved orders. Because 
                                                 
73 Sigma X is reported as an independent center with a market center code SGMA, while orders executed 
under other platforms of Goldman Sachs is reported under the market center code GSCO. Barclays ATS 
has a market center code LATS, while the execution, through other trading platforms of Barclays Capital 
is reported in market center with a code LEHM. ITG reports its executions through Posit under the 
market center name Posititnow and market center code TACT. According to my conversation with the 
compliance office of Instinet, orders reported through the market center INCA are its crossing network 
execution reports.     
74 BNY ConvergEX files two reports because BNY ConvergEX acquired NYFIX Millennium in 2009. 
However, the latter still keeps its old market center code NYFX. 
75 Rosenblatt Securities Monthly Dark Liquidity Tracker, April 27, 2010, pp4. 

http://www.convergex.com/�
http://www.convergex.com/�
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the trading mechanisms of ECNs and exchanges are similar, and some ECNs, such as 

BATS, actually gained status as exchanges, we use the word “exchange” in this paper 

instead of “quoted venue,” for the sake of brevity. 

 

I collect the SEC 605 reports of all the stock exchanges that filed the reports from 

January 2010 to March 2010. 76 These include NYSE, NYSE Amex, NYSE ARCA, 

NASDAQ (including the acquired Boston Stock Exchange and Philadelphia Stock 

Exchange), National Stock Exchange, Chicago Stock Exchange, International Stock 

Exchange and Chicago Board of Option Stock Exchange. I also include data from Bats 

and Direct Edge in our sample. SEC (2010) shows that these market centers represented 

73.6% of total U.S. trading volume in September 2009, whereas other quoted venues 

only executed 1%. Therefore, we believe these trading platforms represent quoted 

venues as a whole.77

 

 

3.4.4.  Sample Stocks  

We use CRSP data to choose our sample of stocks and to measure the characteristics of 

different firms. To avoid the possibility that contemporaneous quarterly observations 

produce spurious associations, we apply the CRSP data from October 2009 to 

December 2009. I start from CRSP data, applying standard filters to remove non-
                                                 
76 NASDAQ recently acquired Boston Stock Exchange and Philadelphia Stock Exchange. Boston Stock 
Exchange still files SEC 605 reports, but there are no covered orders. Philadelphia Stock Exchange no 
longer files SEC 605 reports.    
77 One potential problem is that now exchanges also have their own crossing networks, which may be 
included in their SEC 605 reports. We believe that the impact of exchange-owned crossing network has 
very limited impact on the overall execution quality in SEC 605 data for exchanges. Firstly, the 
exchange-owned crossing networks only execute a small fraction of the exchanges’ volume. Furthermore, 
much of exchange-owned crossing networks’ volume is not included in SEC 605 data because SEC 605 
data excludes any order for which the customer requests special handling for execution, including, but not 
limited to, orders to be executed at a market opening price or a market closing price. SEC 605 data also 
excludes orders executed after regular trading. As much of the volume of exchange-owned crossing 
networks is executed through their after-market crossings based on closing prices, this further reduces the 
problem that exchange-reported data also includes exchanges’ executions through their crossing 
networks.    
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common equities, dual class shares, REITS, and common stocks of non-US companies. 

There are 3,610 stocks in our CRSP sample. Following Boehmer (2005), we also drop 

304 stocks with average dollar volumes of less than $20,000, 501 stocks with average 

prices of less than $3 and three stocks with active trading days of two or less.  

Altogether, we have 1,151 NYSE stocks and 1,651 NASDAQ stocks in our sample.     

 

3.5.   Preliminary Results  

Bessembinder  (2003) and Boehmer, Jennings and Wei (2007) find that market centers 

competing with the listing exchanges only trade a small subset of stocks traded in the 

primary market. 78 Among the 2,802 stocks in our sample, there are 10 NYSE and 23 

NASDAQ stocks that have no SEC 605 coverage, both in sample crossing networks and 

sample exchanges. Therefore, we delete these 33 stocks from our sample. Among the 

remaining 2,769 stocks, there is only one stock (ISRL) with executed volume in 

exchanges but not in crossing networks. Therefore, our finding is closer to O’Hara and 

Ye (2010), who find that competing market centers virtually trade all the stocks.79

 

 Our 

data also shows that there are no stocks that trade in crossing networks but not 

exchanges, which is obvious because crossing networks need the exchange to provide 

the price. For convenience, we delete ISRL from our sample and expect that the result 

would not change because of the deletion.  

Our final sample has 1,141 NYSE stocks and 1,627 NASDAQ stocks. For each stock, 

we compute its effective spread, realized spread, price impact and executed speed in 

crossing networks as the weighted average of these variables across all crossing 

                                                 
78 Bessimbinder (2003) found that of the 500 NYSE listed stocks in his sample, other markets centers 
only traded between 77 and 163 stocks during his 2002 sample period. Boehmer, Jennings and Wei 
(2007) had 1,435 stocks in their sample, but only 258 traded continuously in market centers other than the 
listing market. 
79 O’Hara and Ye (2010) find that ECN and Alternative Trading System trade all stocks in their sample. 
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networks. Execution probability in crossing networks is defined as the ratio of all shares 

executed in crossing networks to all shares covered by crossing networks. Effective 

spread, realized spread, price impact, execution speed and execution probability across 

all exchanges are defined in a similar way.  

 
Table 3.2: Execution Quality in Crossing Networks and Exchanges 
This table demonstrates the average execution quality measure across our sample crossing 
networks and exchanges as well as their pairwise difference. The sample period is from January, 
2010 to March 2010.  The asterisks ***, **, and * indicate significance level of one percent, 
five percent or ten percent. 
Panel A: NYSE Stocks 

 Crossing 
Networks Exchanges 

Crossing 
Networks-
Exchanges 

p-value 

Effective Spread (in cents) 
T-test Mean 1.61 2.02 -0.41*** 0.0000 
Wilcoxon Signed 
Rank Test  

Median 0.97 1.27 -0.24*** 0.0000 

Effective Spread/Price (in Basis Points) 
T-test Mean 8.42 10.34 -1.92*** 0.0000 
Wilcoxon Signed 
Rank Test 

Median 4.64 5.77 -0.94*** 0.0000 

Price Impact (in cents) 
T-test Mean 0.80 1.86 -1.07*** 0.0000 
Wilcoxon Signed 
Rank Test  

Median 0.52 1.19 -0.64*** 0.0000 

Price Impact/Price (in Basis Points) 
T-Test Mean 4.66 9.45 -4.79 0.0000 
Wilcoxon Signed 
Rank Test 

Median 2.48 5.71 -2.92  

Average Speed (in Seconds) 
T-test Mean 32.10 13.29 18.81*** 0.0000 
Wilcoxon Signed 
Rank Test  

Median 21.25 4.39  15.02*** 0.0000 

Execution Probability  
T-test Mean 4.11 31.47 -27.36*** 0.0000 
Wilcoxon Signed 
Rank Test 

Median 3.69 30.52 -26.46*** 0.0000 
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Table 3.2 Panel B: NASDAQ Stocks  

 

Crossing 
Network

s 
Exchanges 

Crossing 
Networks-
Exchanges 

p-
value 

Effective Spread (in Cents) 
T-test Mean 4.47 4.72 -0.25** 0.0377 
Wilcoxon Signed 
Rank Test  

Median 1.49 2.25 -0.46*** 0.0000 

Effective Spread/Price (in Basis Points) 
T-test Mean 45.01 47.72 -2.71** 0.0114 
Wilcoxon Signed 
Rank Test  

Median 13.48 20.18 -3.76*** 0.0000 

Price Impact 
T-test Mean 1.55 2.73 -1.17*** 0.0000 
Wilcoxon Signed 
Rank Test  

Median 0.56 1.51 -0.73*** 0.0000 

Price Impact/Price (in Basis Points)  
T-test Mean 16.86 26.77 -9.92*** 0.0000 
Wilcoxon Signed 
Rank Test  

Median 4.39 13.99 -5.96*** 0.0000 

Average Speed 
T-test Mean 51.72 12.93 38.80*** 0.0000 
Wilcoxon Signed 
Rank Test  

Median 29.77 4.11 22.80*** 0.0000 

Execution Probability  
T-test Mean 2.17 26.48 -24.31*** 0.0000 
Wilcoxon Signed 
Rank Test 

Median 1.65 25.88 -23.40*** 0.0000 

  

Table 3.2 shows the summary statistics of effective spread, price impact, execution 

speed and execution probability in exchanges and crossing networks as well as their 
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pairwise comparison. 80  We provide a measure both in cents and in basis points 

(standardized by the average of closing prices). The first observation is that trading in 

the crossing network has a non-zero effective spread and price impact of trade 81

 

, 

although, technically, trading in crossing networks should have no price impact, and 

effective spread should also equal 0 if orders are matched using the quoted midpoint. A 

non-zero effective spread can easily be explained by order types in crossing networks. 

At Goldman Sachs Sigma X, for example, traders can enter orders pegged at mid-quote, 

but they can also enter orders pegged at bid and pegged at ask. If a buyer sends a 

pegged at ask order, he still needs to pay the spread. However, the price impact of trade 

in the crossing network should be 0 by definition (See Hasbrouck (2007)) and Gresse 

(2006)) because the price is determined before the quantity match.  The positive price 

impact of trade has two possible explanations. First, Ye (2010) predicts that trade in the 

crossing network has an indirect price impact because rational agencies should draw a 

correct inference on hidden order flows in the crossing network by observing the order 

flow in the exchange. Therefore, trading in the crossing network moves prices 

indirectly. Second, the impact of trade is measured based on the price five minutes after 

the trade. At that point, the trade is reported through the consolidated tape. Though the 

trader’s identity and the executed venues are not reported, the size of the trade still 

reveals some information and moves the price.    

Despite the non-zero effective spread and price impact, crossing networks do have 

lower effective spreads and price impacts. The average (proportional) effective spread 

in crossing networks is 0.41 cents (1.92 basis points) lower than that in exchanges for 

NYSE stocks, and average (proportional) effective spread is 0.25 cents (2.71 basis 

                                                 
80 I also do the comparison with the 33 stocks that are traded in the stock exchange but not in the crossing 
networks, and the results are similar.  
81 P value is equal to 0.0000 but not reported.  
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points) lower in crossing networks than that in exchanges for NASDAQ stocks. Median 

(proportional) effective spread in the crossing network is 0.24 cents (0.94 basis points) 

lower for NYSE stocks and 0.46 cents (3.76 basis points) lower for NASDAQ stocks. 

The reduction in the price impact of trade is economically more significant. Trading in 

crossing networks reduces the (proportional) price impact by 1.07 cents (4.79 basis 

points) in terms of the mean, and 0.64 cents (2.92 basis points) in terms of the median 

for NYSE stocks, and 1.17 cents (9.92 basis points) in terms of mean, and 0.73 cents 

(5.96 basis points) in terms of the median for NASDAQ stocks. The reason we find a 

larger reduction in price impact is because of the design of crossing networks. The 

major function of crossing networks is to reduce the price impact of trade because price 

is determined before the order match. Traders still need to pay a bid-ask spread if the 

match price is different from the mid-quote. Therefore, we see a larger effect on the 

price impact of trade than on effective spread. 82

 

 

However, trading in crossing networks also has downsides. First of all, crossing 

networks are slower than exchanges. On average, crossing networks take 18.81 more 

seconds to execute an NYSE order and 38.8 more seconds to execute a NASDAQ order. 

More importantly, the execution probability of crossing networks is significantly lower 

than that of the exchange. The average execution probability for crossing networks is 

only 4.11% for NYSE stocks and 2.17% for NASDAQ stocks, while in exchanges the 

mean execution probabilities are 31.47% and 26.48%, respectively.83

                                                 
82 The other possible explanation is that crossing networks cream-skim stock exchanges by picking the 
less informed orders to execute. Though cream-skimming provides explanations for the lower price 
impact of trade for dealers or Electronic Communication Networks competing with the exchange, it is 
less likely to be an explanation for the price impact of trade in crossing networks because crossing 
networks do not set their own prices.      

 Certainly, as we 

83 There are several reasons why execution probability of exchange is not close to 100%. First, we do not 
consider cancelled orders in our calculation. Second, the depth of the market is given. Therefore, a large 
order with a marketable limit price may be only partially filled because of the limited depth. Third, in 
SEC 605 data, an order is marketable when its price is better than the quote at the time of order receipt. 
However, price may move between the time of order receipt and order execution. Finally, Hasbrouck and 
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mentioned in Section 3.3, our measure tends to underestimate the execution probability. 

However, our execution probability for crossing networks is close to the finding in the 

previous literature (See Gresse (2006)). The results that crossing networks have lower 

execution speeds and execution probabilities are both statistically significant when we 

conduct t-tests for the mean and Wilcoxon signed rank tests for the median.   

 

Figure 3.1 shows the cross-sectional variation of market shares of crossing networks. 

Panel (a) shows that the market share of crossing networks, in terms of executed shares 

from market and marketable orders, ranges from 0.4% to 38.3%. The mean market 

share of crossing networks, in terms of executed market and marketable limit orders, is 

8.2%, and the median is 7.3%. However, measuring market share of crossing networks 

based on executed shares underestimates the true impact of crossing networks (Sirri 

(2008) and Hendershott and Mendelson (2000)). Panel (b) shows market shares of 

crossing networks in terms of submitted shares. The mean market share of submitted 

market and marketable limit orders in crossing networks is 51%, and the median market 

share is 52%, which implies that the number of shares in market or market limitable 

orders submitted to the crossing network is larger than their counterparts submitted to 

the exchanges.  

 

As is mentioned in section 3.4, different market center may select the types of orders 

that they report. By focusing on market and marketable limit orders, we mitigate this 

problem. Still, there might be different interpretation of “market and marketable limit 

orders” across different market centers.  As a result, our comparison between crossing 

networks and stock exchanges need to be explained with caution. Therefore, we will 

                                                                                                                                               
Saar (2009) find the wide use of fleeting orders, which are cancelled immediately if orders are not 
executed.    



 152  
 

focus on crossing stock comparison but not cross market comparison because of the 

rationale we discussed in section 3.4.    

 

 

Figure 3.1. Market Share of Crossing Networks 
This figure shows cross sectional variation on market share of crossing networks for 
market and marketable limit orders. Panel (a) shows market share of executed shares 
and Panel (b) shows market share of covered shares. Our sample has 1141 NYSE stocks 
and 1627 NASDAQ stocks. The sample period is from January 2010 to March 2010 

 

3.6. Patterns of Non-execution Probability 

This section examines the pattern of non-execution. First, we examine whether or not 

both informational and non-informational factors account for cross-sectional variation 

of non-execution probability by regressing non-execution on a proxy for network 

externality and a proxy for information asymmetry. Then, we provide two tests for Ye’s 

(2010) hypothesis that non-execution follows similar patterns to price impact. The first 
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test is to examine the correlation between non-execution and price impact and effective 

spread. The second test examines whether or not variables that explain cross-sectional 

variation in effective spread and price impact also explain the cross-sectional variation 

in non-execution probabilities. 

 

3.6.1. Informational and Non-informational Factors of Non-execution  

An important line of research in the market microstructure literature models transaction 

costs incurred by non-informational and informational causes. Transaction costs 

incurred by non-informational factors are the focus of inventory models, such as those 

of Stoll (1978), Ho and Stoll (1981) and Amihud and Mendelson (1980).  The role of 

adverse information costs is emphasized by Copeland and Galai, Kyle (1985), Glosten 

and Milgram (1985) and Easley and O’Hara (1987). Following these theoretical works, 

Glosten and Harris (1988), Stoll (1989), Choi, Salandro and Shastri (1988), George, 

Kaul and Nimalendran (1991), Lin, Sanger and Booth (1995) and Huang and Stoll 

(1997) investigate the empirical methods to decompose bid-ask spreads into different 

components.  

 

Crossing networks have quite different mechanisms from markets with intermediates. 

However, we can still consider that transaction costs are due both to inventory factors 

and adverse information factors. Non-execution can occur for non-informational 

reasons. Even if there is no information asymmetry, non-execution exists because of 

random mismatches between buyers and sellers. The major difference between crossing 

networks and markets with intermediates is that there is no market-maker to bear the 

inventory holding cost in crossing networks. Therefore, a larger mismatch leads to a 

higher non-execution probability instead of a higher bid-ask spread. Hendershott and 

Mendelson (2000) and Dönges and Heinemann (2006) demonstrate that non-execution 
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caused by non-informational factors decreases as order arrival rates increase. The higher 

the arrival rate, the easier it is to find a potential match. Therefore, non-execution is 

inversely correlated with order arrival rate. Hendershott and Mendelson (2000) and Ye 

(2010), however, show that non-execution can also result from informational factors: 

while uninformed traders are equally likely to buy or sell, informed traders are always 

on one side of the market. Again, the major difference between crossing networks and 

markets with intermediates is that there are no market makers to offset this order 

imbalance. Therefore, higher information asymmetry results in a higher non-execution 

probability instead of a higher bid-ask spread or price impact. 

 

It is important to separate these two causes of non-execution because they have 

different implications. Suppose that non-execution is caused by non-informational 

factors. Then price is equally likely to go up or down. Therefore, non-execution would 

not be a cost for risk-neutral traders if they are patient. Surely, if traders are risk-averse 

or if they prefer immediate execution, non-execution would be a cost. The non-

execution caused by informational factors has a very different implication. Uninformed 

traders are equally likely to be on either side of the market, whereas traders with private 

information can only be on one side of the market. Non-execution caused by 

information asymmetry has the following implication. Orders on the correct side of the 

market are less likely to be executed. If an order is executed, it is more likely that it is 

on the wrong side of the market. Price tends to move in the opposite direction on 

executed shares.      

 

Ideally, if we have data for each order submitted to crossing networks, we can 

decompose the non-execution into informational and non-informational parts, following 

methods similar to decomposing the bid-ask spread. Because we only have aggregate-
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level data, we can only conduct the following test. We want to examine whether or not 

both proxies for network externality and information asymmetry have explanatory 

powers for cross-sectional variation in non-execution.  

 

As non-execution is a proportion defined as the ratio between executed shares and 

covered shares, it is bounded between 0 and 1. Therefore, we use standard logit 

transformation to transform the variable nonexe_c, which is defined as non-execution 

probability in crossing networks according to measurement 1. 84

)
cnonexe

cnonexeln(  xelogit_none
_1

_
−

=

  A new dependent 

variable logit_nonexe is defined as  

                              (3.3) 

This transformation maps the original variable, which was bounded by 0 and 1, to the 

real line. (See Fleiss, Levin and Paik (2003)). We also do the regression without logit 

transformation and the results are similar.   

 

We use the permanent price impact of trade of each stock in exchanges as a proxy for 

information asymmetry for each stock. The other proxy for information asymmetry is 

permanent price impact normalized by the stock price. Dummy variable NASDAQ is 

equal to 1 if the stock is listed in NASDAQ and is equal to 0 if the stock is listed in 

NYSE. We do have the data for number of shares submitted to the crossing networks, 

which may serve as a proxy variable for order arrival rate or network externality in 

crossing networks. However, the number of shares submitted to crossing networks has 

the following endogenity problem: while the number of shares submitted can affect 

non-execution probability, the causality can go to the opposite direction. Lower non-

                                                 
84 Kennedy (2003) consider “using a linear function form when the dependent variable is a fraction” as 
one of the common mistakes easily to be made. He recommends logistic transformation for dependent 
variables.   
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execution probability increases the attractiveness of crossing networks and thereby the 

number of shares submitted to crossing networks. To solve the endogenity problem, we 

use the consolidated volume traded in all exchanges as an instrument for total number 

of shares submitted to crossing network. Panel A of Table 3.3 first show that 

consolidated volume is highly correlation with number of shares submitted to crossing 

networks. There is also good reason to believe that consolidated volume is exogenous in 

this regression. Non-execution may affect the number of shares routed to crossing 

networks v.s. stock exchanges and it may even affect total number of shares routed to 

these two centers because of failed trades.  However, it is much less likely that non-

execution can affect the consolidated trading volume, which is determined by portfolio 

management purposes.   

 

Therefore, we run the following 2 regressions using both OLS and 2SLS with the log of 

consolidated volume in all trading venues as an instrument variable. 

iii2i1i NASDAQepimpactβnseβαxelogit_none εβ ++++= 3_log             (3.4) 

iii2i1i NASDAQepropimpactβnseβαxelogit_none εβ ++++= 3_log        (3.5) 

where nse is the number of shares entered into crossing networks, pimpact_e is price 

impact of trade of each stock in stock exchanges, and propimpact_e is the price impact 

of trade of each stock in stock exchanges divided by the price.  
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Table 3.3: Informational and Noninformational Factors of Non-execution 
Panel A examines the correlation of lognse and its instrument (lognse), and Panel B regresses 
non-execution on proxies for network externality and information asymmetry using both OLS 
and IV estimation. logit_nonexe is the logit transformation of Non-execution probability in 
crossing networks. logvol is the log of average trading volume of each stock, pimpact_e is the 
price impact of trade for each stock in exchanges and propimpact_e is price impact normalized 
by average closing price for the stock. lognse is the total number of shares entered into the 
crossing network. Dummy variable NASDAQ is equal to 1 if the stock is listed in NASDAQ 
and 0 if the stock is listed in NYSE. The sample period is from January, 2010 to March, 2010.    
Panel A: Partial Correlation between lognse and its instrument (logvol)  
   
COEFFICIENT lognse lognse 
pimpact_e -0.0331***  
 (0.00295)  
NASDAQ -0.290*** -0.263*** 
 (0.0244) (0.0249) 
logvol 0.993*** 1.010*** 
 (0.00691) (0.00748) 
propimpact_e  -0.00165*** 
  (0.000428) 
Constant 4.425*** 4.152*** 
 (0.0975) (0.105) 
Observations 2768 2768 
R-squared 0.925 0.922 
Panel B 

 OLS IV 
 (1) (2) (3) (4) 

COEFFICIENT logit_nonexe logit_nonexe logit_nonexe logit_nonexe 
     

pimpact_e 0.0100***  0.000830  
 (0.00338)  (0.00341)  

lognse -0.455*** -0.429*** -0.500*** -0.474*** 
 (0.00733) (0.00749) (0.00689) (0.00808) 

NASDAQ 0.0882*** 0.0717***  0.00831 
 (0.0280) (0.0274)  (0.0279) 

propimpact_e  0.00437***  0.00297*** 
  (0.000462)  (0.000474) 

Constant 11.48*** 11.00*** 12.31*** 11.81*** 
 (0.135) (0.137) (0.119) (0.148) 

Observations 2768 2768 2768 2768 
R-squared 0.705 0.713 0.700 0.709 

Standard errors in parentheses*** p<0.01, ** p<0.05, * p<0.1 
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The coefficients for lognse in these four regressions are all negative and statistically 

significant, which is a strong indication of network externality effect. We also find after 

we control for proxy for network externality in crossing networks, we still find that 

information asymmetry play a role in explaining non-execution probability.  Table 3.3 

tell us that if two stocks have the same order arrival rate, the stock with higher price 

impact of trade has higher non-execution probability, which is an indication of 

informational cause of non-execution. However, the effect seems weaker because the 

coefficient is only statistically significant for 3 of the 4 specifications.     

 

3.6.2. Correlation between Non-execution, Price Impact and Effective Spread  

Ye (2010) predicts that the non-execution probability and (permanent) price impact of 

trade should have positive correlations, and Panel A in Table 3.4 demonstrates that it is 

indeed the case. The non-execution probabilities in crossing networks and price impacts 

of trade in exchanges have a positive correlation of 0.2842, and the correlation is 

statistically significant. We also do another robustness test: because we know from 

summary statistics that crossing networks also have a price impact of trade, and 

exchanges also have non-execution, we examine whether or not the difference between 

non-execution probability in crossing networks and stock exchanges is positively 

correlated with the difference between price impact in stock exchanges and crossing 

networks. We find that the correlation is 0.1742, meaning that stocks that have a higher 

reduction in price impact by trading in crossing networks also have a higher increase in 

non-execution probability in crossing networks. Therefore, the potential savings in price 

impact costs is counteracted by the lower fill rate. In conclusion, we cannot reject 

Hypothesis 3 that non-execution and price impact are positively correlated.   
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If we study the correlation between the effective spread, the sum of (permanent) price 

impact and realized spread (temporary price impact), the relationship becomes weaker. 

This is not surprising because Ye’s prediction is on the relationship between permanent 

price impact and non-execution. Our results show that when we add the temporary 

component of price impact, the correlation between transaction costs in exchanges and 

those in crossing networks becomes weaker.  Panel B and C in Table 3.4 demonstrates 

that stocks with higher effective spreads in exchanges also have higher non-execution 

probabilities in crossing networks. However, the results for their differences are weaker. 

For NYSE stocks, stocks with a higher reduction in effective spread by trading in 

crossing networks also a higher increase in non-execution probability in crossing 

networks. This result, however, is not true for NASDAQ stocks, where stocks with a 

higher reduction in effective spread actually have a lower increase in non-execution 

probability. This negative correlation may be a consequence of the other negative 

correlation: Table 3.4 demonstrates that stocks with higher effective spreads actually 

have a lower reduction in effective spread by trading in crossing networks.   

 

The negative correlation between effective spreads in exchanges and the reduction in 

effective spreads by trading in crossing networks is contrary to the assumption of Ready 

(2009) and Ray (2010). Ray assumes that trading in crossing networks has a 0 effective 

spread, and Ready (2010) assumes that the potential cost saving is a fixed proportion of 

the effective spread. Under these two assumptions, effective spread and the reduction in 

effective spread by trading in crossing networks should have a correlation coefficient of 

1. For NASDAQ stocks, however, Panel C shows that not only these two variables do 

not have correlation of 1, they do not even have a positive correlation. Therefore, both 

hypothesis 4 and hypothesis 4’ are rejected.  
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Table 3.4: Correlation between Non-execution, Price Impact and Effective Spread   
This table shows the cross-sectional measure among different measure of transaction costs. 
nonexe_c and nonexe_e are non-execution probability in crossing networks and exchanges, 
respectively. pimpact_c and pimpact_e are price impact of trade in crossing networks and stock 
exchanges, which are defined as the average effective spread minus the average realized spread 
in crossing networks and stock exchanges. espread_c and espread_e are average effective 
spread in crossing networks and stock exchanges. The sample period is from January, 2010 to 
March 2010. The asterisks ***, **, and * indicate significance level of one percent, five percent 
or ten percent.     
Panel A: Correlation between Non-execution and Price Impact 

 nonexe_c  pimpact_e nonexe_c- 
nonexe_e  

pimpact_e- 
pimpact_c 

nonexe_c 1.0000    

pimpact_e 0.2842*** 
(0.0000) 1.0000   

nonexe_c-nonexe_e 0.2136*** 
(0.0000) 

0.2739*** 
(0.0000) 1.0000  

pimpact_e-pimpact_c 0.1132*** 
0.0000 

0.6124*** 
(0.0000) 

0.1742*** 
(0.0000) 1.0000 

Panel B: Correlation between Non-execution and Effective Spread: NYSE stocks  

 nonexe_c  espread_e nonexe_c- 
nonexe_e  

espread_e- 
espread_c 

nonexe_c 1.0000    

espread _e 0.2078*** 
(0.0000) 1.0000   

nonexe_c-nonexe_e 0.3397*** 
(0.0000) 

0.2928*** 
(0.0000) 1.0000  

espread_e-espread_c 0.1437*** 
0.0000 

0.8219*** 
(0.0000) 

0.2277*** 
(0.0000) 1.0000 

Panel C: Correlation between Non-execution and Effective Spread: NASDAQ 
stocks  

 nonexe_c  espread_e nonexe_c- 
nonexe_e  

espread_e- 
espread_c 

nonexe_c 1.0000    

espread _e 0.3142*** 
(0.0000) 1.0000   

nonexe_c-nonexe_e 0.2772*** 
(0.0000) 

0.3066*** 
(0.0000) 1.0000  

espread_e-espread_c -0.0141 
(0.5702) 

-0.2537*** 
(0.0000) 

-0.0855*** 
(0.0006) 1.0000 
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3.6.3. Regression Result on Non-execution  

The relationship between characteristics of a stock and its transaction cost in the 

exchange is one of the strongest and most robust relations in finance. (Stoll, 2000 and 

2003).  If non-execution follows a similar pattern as price impact, we expect that trading 

characteristics that can explain cross-sectional variation of price impact can also explain 

cross-sectional variation of non-execution probability.   

 

Therefore, we run the following regression: 

ii6i4i3i2i1i NASDAQβsdβlogpriceβlogvolβlogmktcapβαxelogit_none ε++++++=  (3.6) 

where logit_nonexe is the logit transformation of non-execution probability in crossing 

networks. logmktcap is average market cap for each stock. logvol is the log of average 

trading volume of each stock, logprice is the log of average closing price. sd is the 

standard deviation of daily stock return. Market cap, volume, price and volatility are the 

control variable in Madhavan (2000), Boehmer (2005) SEC (2001). The latter two 

papers also find that transaction cost of NASDAQ is higher than that of NYSE after he 

controls market cap, volume, price and volatility. Therefore, we add NASDAQ as a 

dummy variable.85

 

     

Table 3.5 shows that large stocks and stocks with higher volume have lower non-

execution probabilities. This result is consistent with Hypothesis 1. We also find 

support for Hypothesis 2: stocks with higher volatility have higher non-execution 

probabilities. Interestingly, we demonstrate that stocks with higher prices have lower 

                                                 
85 Some other regressions on cross-sectional variation of transaction cost added more variables. Stoll 
(2000), for example, also adds number of trades and the imbalance between buy and sell side to his 
regression. We do not include the buy and sell imbalance because non-execution should be uniquely 
determined by buy and sell imbalance.   If we know the number of shares demanded and supplied, we 
know the execution probability. Number of trades suffers from endogenity issues: while number of trades 
can affect non-execution probability, non-execution probability affects number of trades. A high non-
execution probability may increase the number of partial filled orders and increases the number of trades.     
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non-execution probabilities. While it is easier to explain that large stocks, frequently 

traded stocks and lower volatility stocks are more likely to have lower non-execution 

probabilities, the association between price and non-execution probability is less 

obvious. We believe that it is because stocks with higher prices have lower transaction 

costs in stock exchanges, and non-execution probability follows a similar pattern to 

transaction cost in exchanges because rational agents can move their trades between 

exchanges and crossing networks to balance the trading costs in these two markets. We 

also find that NASDAQ stocks have higher non-execution probabilities than NYSE 

stocks. Again, these variables explain of cross-sectional variation in non-execution 

probability, which is also a strong result.  
 

Table 3.5: Regress Non-execution on Stock Characteristics 
This table demonstrates the relationship between stock characteristics and non-execution.  The 
sample period is from January, 2010 to March, 2010. logit_nonexe is the logit transformation of 
non-execution probability in crossing networks. logmktcap is average market cap for each 
stock. logvol is the log of average trading volume of each stock, logprice is the log of average 
closing price. sd is the standard deviation of daily stock return. Dummy variable NASDAQ is 
equal to 1 if the stock is listed in NASDAQ and 0 if the stock is listed in NYSE.  

COEFFICIENT logit_nonexe 
  

logmktcap -0.0414** 
 (0.0211) 

logvol -0.475*** 
 (0.0143) 

logprice -0.0765*** 
 (0.0249) 

sd 0.123*** 
 (0.0264) 

NASDAQ 0.0817*** 
 (0.0270) 

Constant 10.66*** 
 (0.122) 

Observations 2768 
R-squared 0.736 

Standard errors in parentheses  
*** p<0.01, **p<0.05, * 

p<0.1  
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3.7. Competition between Different Trading Platforms 

There are two empirical puzzles in previous literature on the competition between 

crossing networks and exchanges. The focus of these two puzzles is whether or not 

traders face other objectives or constraints besides minimizing transaction costs (Ready, 

2009). Ready (2009) finds that the market share of crossing networks does not have a 

monotonic relationship with the volume of the stocks. He questions why crossing 

networks do not have a higher market share for stocks with higher volume, which have 

a higher probability of finding a potential match. Ready ascribes this anomaly to soft-

dollar arrangements. Ray (2010) finds that the market share of crossing networks is not 

higher for stocks with higher effective spreads, and Ready (2009) finds that the market 

share of crossing networks in fact decreases with effective spread. Ray (2010) explains 

that it is because people who use crossing networks have concerns about possible 

gaming for stocks with higher effective spreads. Ready (2009) ascribes this pattern to 

soft-dollar arrangements. In conclusion, both Ready (2009) and Ray (2010) consider 

incentives other than minimizing transaction costs as explanations for these puzzles.   

Ready (2009) and Ray (2010) do not have data to measure the effective spread and non-

execution in crossing networks. Therefore, their analysis relies on assumptions about 

transaction costs in crossing networks: both papers assume that reductions in effective 

spreads by trading in crossing networks increases linearly with effective spread, and 

neither paper has an empirical measure of non-execution. After we account for the 

differences in effective spreads and non-execution in crossing networks, we find that 

minimizing transaction costs alone is able to explain the cross-sectional variation of 

market shares of crossing networks.    
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Similar to non-execution probability, our dependent variable in market share regression, 

is also a proportion. Therefore, we do the logit transformation to market share. The 

result without logit transformation is also similar. 

 

)
share

shareln(  elogit_shar
−

=
1

               (3.7) 

The market share regression, however, need to be run with caution because of 

endogenity and measurement error issues.  First, while non-execution probability and 

effective spread in different trading venues can affect order routing decision and market 

share, market share of crossing networks certainly can also affect non-execution 

probability and effective spread. To deal with the endogenity issue, we use the market 

share of crossing networks from April 2010 to June 2010 as the dependent variable, 

while the non-execution measure and effective spread measure are from January 2010 

to March 2010. Because the execution statistics comes with a two month lag, Boehmer, 

Jennings and Wei (2007) use execution statistics of previous month to explain order 

routing decisions.  

 

Column (1) in Table 3.6 regresses market shares of crossing networks on effective 

spreads in exchanges.  

iii1i NASDAQβeespreadβαelogit_shar ε+++= −− 1,21,_                             (3.8)86

Column (2) in Table 3.6 also regresses market shares of crossing networks on effective 

spreads, but adds more control variable.   

 

                                                 
86 Technically, all the lagged independent variable we generate from SEC 605 data are from the first 
quarter of 2010, and all the lagged independent variables generated from CRSP are from the last quarter 
of 2009. CRSP data for the first quarter of 2010 is not available through CRSP yearly update when we 
conduct this study.  However, we believe that cross-sectional pattern of market cap, volume, price and 
listing venue would not change in three months.   
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iiiii

ii1i

NASDAQβsdβlogpriceβlogvolβ
logmktcapβeespreadβαelogit_shar

ε+++++

++=

−−−−

−−

1,61,51,41,3

1,21,_
                        (3.9) 

 

We find a similar pattern to Ready (2009) and Buti, Rindi and Werner (2010): crossing 

network’s market share decreases in effective spreads. However, these two regressions 

do not consider the fact that crossing networks also have effective spread. Also, non-

execution is not in the regression. Therefore, we run the following regression with only 

difference in effective spread and non-execution as explanatory variable.  

iiii1i NASDAQβprobdespreaddβαelogit_shar εβ ++++= −−− ,__ 1,31,21,     (3.10) 
 

The result is summarized in column (3) of Table 3.6. It demonstrates that an increase of 

effective spread of exchanges, relative to crossing networks, and a decrease of non-

execution probability in crossing networks, relative to exchanges, decreases the market 

share of crossing networks. This simple regression demonstrates that the market shares 

of crossing networks are consistent with the incentive of cost minimization. Crossing 

networks attract traders when they offer relative higher reductions in effective spreads 

and have relatively low non-execution probabilities.   

 
Finally, we add stock characteristics in equation (3.10) and run regression (3.11).  

iiiii

iii1i

NASDAQβsdβlogpriceβlogvolβ
logmktcapβprobdespreaddβαelogit_shar
ε

β

++++

++++=

−−−−

−−−

1,71,61,51,4

1,31,21, __
            (3.11) 

 

Still, we find that a decrease of non-execution probability in the crossing networks 

increases its market share. We also find that an increase of effective spread of 

exchanges relative to crossing networks increases market share of crossing networks, 

though the effective is not statistically significant, which may be because the 
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differences in effective spread can be explained by market cap, volume, volatility and 

price.  

Table 3.6: Market Shares of Crossing Networks  
This table demonstrates the relationship between market share of crossing networks and stock 
characteristics and transaction cost in both crossing networks and stock exchanges. The sample 
period is. logit_share is the logit transformation of market share of crossing networks from 
January, 2010 to March, 2010. espread_e-1 is the average effective spread in stock exchanges 
from January, 2010 to March, 2010. d_prob-1 is equal to nonexeution probability in crossing 
networks minus Non-execution probability in exchanges from January, 2010 to March, 2010. 
d_espread-1 is equal to effective spread in exchanges minus effective spread in crossing 
networks from January, 2010 to March, 2010. logmktcap-1 is average market cap for each stock. 
logvol-1 is the log of average trading volume of each stock, logprice-1 is the log of average 
closing price. sd-1 is the standard deviation of daily stock return. Dummy variable NASDAQ-1 
is equal to 1 if the stock is listed in NASDAQ and 0 if the stock is listed in NYSE. logmktcap-1, 
logvol-1, sd-1, logprice-1 and NASDAQ-1 are measured use CRSP data from October, 2009 to 
December, 2009.  

 (1) (2) (3) (4) 
COEFFICIENT Logitshare Logitshare Logitshare Logitshare 

     
espread_e-1 -0.0241*** -0.0146***   

 (0.00167) (0.00191)   
Logmktcap-1  0.0114  -0.0330* 

  (0.0186)  (0.0186) 
Sd-1  -0.0591**  -0.0651*** 

  (0.0253)  (0.0246) 
Logvol-1  0.0759***  0.0936*** 

  (0.0133)  (0.0125) 
Logprice-1  0.111***  0.192*** 

  (0.0223)  (0.0234) 
NASDAQ-1 0.403*** 0.587*** 0.284*** 0.495*** 

 (0.0222) (0.0238) (0.0220) (0.0243) 
d_espread-1   0.00753*** 0.00410 

   (0.00281) (0.00264) 
d_prob-1   -0.0173*** -0.0162*** 

   (0.00117) (0.00131) 
Constant -2.696*** -4.242*** -2.273*** -3.676*** 

 (0.0170) (0.115) (0.0362) (0.127) 
Observations 2740 2740 2740 2740 

R-squared 0.141 0.230 0.146 0.256 
Standard errors in 

parentheses 
    

*** p<0.01, ** 
p<0.05, * p<0.1 
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We find market shares of crossing networks are higher for stocks with higher volume, 

and that market shares of crossing networks are higher for high-priced stocks and 

NASDAQ stocks. In addition, Hypothesis 5 is rejected because we find that stocks with 

higher volatility have lower market shares in crossing networks, meaning that the effect 

of the informed trader hiding his trade (Ye, 2010) is not as significant as the effect 

found by Dönges and Heinemann (2006). This result is consistent with the time series 

pattern found by Rosenblatt Securities (2009 and 2010): that the aggregated market 

share of crossing networks decreases in volatility. Buti, Rindi and Werner (2010) also 

find the same pattern, using a different dataset from this study. On the contrary, Ready 

(2009) finds that stocks with higher volatility have a higher market share in the crossing 

network, using a sample from 2005 to 2007. One possible explanation is that now 

crossing networks have better anti-gaming strategies for excluding informed traders 

from their market (Ye, 2010). Therefore, informed trading in crossing networks now 

plays a less important role.  

 

3.8. Conclusion 

This paper examines non-execution and market shares of crossing networks. We verify 

the theoretical prediction of Ye (2010): that non-execution should follow similar 

patterns as price impact and non-execution increases in volatility of stocks. Non-

execution also decreases in trading volume, which supports the network externality 

argument in Dönges and Heinemann (2006) and Hendershott and Mendelson (2000). 

We also find that market shares of crossing networks decreases in volatility, suggesting 

that the effect modeled in Ye (2010) is not as strong as the effect modeled in Dönges 

and Heinemann (2006). Aside from testing the empirical predictions of theoretical 
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models, we also test whether or not the underlying assumptions in the literature (Ready 

(2009) and Ray (2010)) are supported by empirical data. We find that the reductions in 

effective spreads by trading in crossing networks are not positively correlated with 

effective spread. This contradiction provides alternative explanations for the puzzles 

found in empirical literature on competition between trading platforms.  

 

There are several possible extensions of the paper. One interesting question to ask is 

whether or not non-execution follows a similar time-series pattern as price impact, that 

is, whether or not non-execution is higher in months when the price impact of trade is 

higher. Competition among different crossing networks also raises interesting questions. 

Trading in the crossing network certainly has network externalities. Therefore, crossing 

networks have a natural tendency to consolidate. Crossing networks with the largest 

numbers of buyers and sellers should have the highest matching probability and then 

attract traders from other crossing networks, which results in an even higher execution 

probability. In reality, there are several competing crossing networks, which can be 

considered “peers.”  We need explanations for this coexistence conundrum. The most 

natural explanation is that crossing networks are in the process of consolidation. The 

way to test that hypothesis is to see whether or not the market share of leaders continues 

to increase and the market share of followers decreases. The second explanation is 

specialization. Although there are several peer crossing networks in total trading 

volume, there are no such relationships at the stock level.  There is a leader for each 

individual stock. Specialization can also be at the order level. Some crossing networks 

may have a comparative advantage in handling large orders, while some others 

specialize in small orders.  We defer these questions to our future work.  
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The key for us in addressing questions that are not answered in the literature is the new 

application of SEC 605 data – this paper is the first one to use data issued by crossing 

networks to compute an empirical measure of transaction costs in crossing networks. As 

this measure is from public data, it can be easily applied to other studies. On the other 

hand, however, the ability for us to address questions in the literature is constrained by 

the availability and quality of the data. We address some questions but provide limited 

or no answers to other questions. For example, we find evidence that non-execution has 

informational and non-informational causes, but we are not able to decompose these 

two factors because we do not have order-level data. In fact, if we had order-level data, 

the first thing we would do is polish the empirical measure proposed in this paper. Non-

execution is only a rough measure of transaction costs in crossing networks. We do not 

know the opportunity cost of unfilled orders based on the implement shortfall approach 

(Perold, 1988), and we cannot compare the difference between short-term alphas for 

filled and unfilled orders (Jeria and Sofianos, 2008). The SEC (2010) proposes a policy 

change on the transparency of crossing network data, and we expect new data will 

provide us with more insights on crossing networks.  
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