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ABSTRACT 

Kernel smoothing is a common method of estimating the mean function in the nonpara­

metric regression model 

y=/(:&)+1! 

where /(:&) is a smooth deterministic mean function, and I! is an error process with mean 

zero. In this paper, the mean square error of kernel estimators is computed for processes with 

correlated errors, and the estimators are shown to be consistent when the sequence of error 

processes converges to a mixing sequence. The standard techniques for bandwidth selection, 

such as cross-validation and generalized cross-validation, are shown to perform very badly when 

the errors are correlated. Standard selection techniques are shown to favor undersmoothing 

when the correlations are predominantly positive, and oversmoothing when negative. However, 

the selection criteria can be adjusted to correct for the effect of correlation. 

In simulations, the standard selection criteria are shown to behave as predicted. The 

corrected criteria are shown to be very effective when the correlation function is known. Es­

timates of correlation based on the data are shown, by simulation, to be sufficiently good for 

correcting the selection criteria, particularly if the signal to noise ratio is small. 

Keywords: mean squared error; kernel regression; autocorrelation; bandwidth; 

cross-validation; generalized cross-validation. 
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l.INTRODUCTION 

Nonparametric regression techniques have become increasingly popular as tools for data 

analysis. Because these techniques impose few assumptions about the shape of the mean func­

tion, they are extremely flexible tools for uncovering nonlinear relationships between variables. 

Many techniques include a smoothing parameter, the bandwidth, which controls the 

smoothness, bias and variability of the estimate. Various techniques have been developed for 

determining suitable values of the bandwidth from the data, when the errors are independently 

and identically distributed (i.i.d.) with finite variance. The purpose of this paper is to explore 

the properties of a class of nonparameteric regression techniques, kernel smoothers, and the 

use of the model selection techniques, when the errors are not independent, but instead come 

from a stationary correlated process. 

Figures la and lb show realizations of the process y = cos(3.15it'x) + e: when the errors 

come from, respectively, a Gaussian white noise process with unit variance, and an AR(l) 

process with the same variance and p = .5. The Gaussian process used in Figure la was used 

to generate the shocks for the AR(l) process in Figure lb, so the resulting sample paths are 

very similar. Figures lc and ld show kernel estimates of the mean function for this data when 

the bandwidth was chosen using cross-validation (CV). For the realization with i.i.d. errors, 

the estimate is quite smooth and captures the main features of the mean function. For the 

realization with correlated errors, the estimate is far too rough. However, when bandwidth 

is chosen to minimize the average squared error loss, (Figures le and lf), kernel estimation 

works almost as well for the correlated error process as for the independent error process. 

This paper addresses some of the issues raised by this example. How good are kernel and 

nearest neighbor smoothers for nonparametric regression estimation when the errors are corre­

lated? How is the performance of standard model selection techniques affected by correlation 

of the errors? Can better model selection techniques be devised for use with correlated data? 

Kernel smoothing is a common method of estimating the mean function in the nonpara­

metric regression model 

y = f(x) +e: (1) 
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where f(x) is a smooth deterministic mean function, and~ is an error process with mean zero. 

In this paper, the kernel estimators of Priestley and Chao (1972) are used. These have the 

form 

where the weights are 

n 

/>.,n(x) = L W>.,n(x,j)yn,j 
j=O 

. K(X-~n,j) 

W,\,n(X,}) = n.A . 

(2) 

(3) 

K is called the kernel function, .A is a smoothing parameter, called the bandwidth, and n is 

the sample size. 

Only kernels with the following properties are considered: 

A) K is symmetric about 0. 

B) K has support only on the interval ( -~, ~). 

C) K is Lipschitz continuous of order a> 0. 

K is called a kernel of order p if the first p -1 moments of K are 0, and the pth moment, 

(4) 

is not zero. The squared norm of K 

WK = J K 2(x)dx (5) 

is also needed. 

2.MODELS 

For sample size n, the observations Yn,l ... Yn,n are assumed to be generated by the non­

parametric regression model (1), with observations taken at regularly spaced design points ~· 

The errors are assumed to come from a stationary process with covariance function 

(6) 

where the variance, u 2 , is independent of nand Pn(k) is a correlation function depending on 

n. The variance matrix of the errors will be denoted by ~. This formulation of the covariance 
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function allows the autocorrelation among the errors to vary both with the distance between 

the design points, and the sample size. 

An important special case of this model is the process with Pn(i) = p(~) where p(x) is 

continuous. Then the error process is a realization of a continuous parameter process on [0, 1]. 

This process has been discussed by Hart and Wehrly (1986) and Parzen (1959, 1961). An 

important result from these papers is that, if only a single realization of the process has been 

observed, there are no consistent linear estimators of the mean function as the design points 

are sampled more and more densely on the unit interval. Parzen 's results show that the only 

unbiased linear estimator of f(x) is 'Yx (with variance cr2). Hart and Wehrly show that kernel 

estimators converge to random variables under this model, and that considerable improvement 

(in terms of mean squared error) can be made by using kernel estimators with A > 0. 

A second important special case is the process with Pn(i) = p(i). In this case, the 

error process is constant, regardless of how close together the design points become. Models 

intermediate between the continuous parameter process and this process are also allowed by 

model (6). 

The results in this paper require absolute summability conditions, D and Eon the sequence 

of correlation functions either: 
k 

D) EJ IPn(i)l converges as n and k-+ oo. 

This condition, which is common in time series analysis, ensures that observations suffi.-

ciently far apart are essentially uncorrelated. The following condition is also needed: 
k 

E) El::1 ipn(i) = o(k) as n and k-+ oo. 

Under condition D, the sum of the correlations, Sp, 1s well-defined. Let Spn(k) 

" EJ=l Pn(J'). 

(7) 

3.MEAN SQUARED ERROR 

When the errors are assumed to have finite second moments, the MSE, defined by 

MSE(x,.A,n) = E(J>.,n(x)- /(.x))2 (8) 
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is often used as a goodness of fit criterion and as a means of assessing the asymptotic properties 

of the estimators. The optimal smoothing parameter is often considered to be the one which 

minimizes the MSE totalled, or equivalently, averaged, over the design points. 

Let ~ denote the covariance of the observation, u( •) denote the column vector u(j) and 

u'(•) the transpose of u(e). Simple algebra gives us 

(9) 

Notice that the bias,w~,n (x, • )/( • )-f(x) depends on the sample size only via the selection 

of design points and is not affected by the correlation structure. For mean functions with at 

least p derivatives, and kernels of order p, Gasser and Muller (1979) computed the asymptotic 

form of the bias (when the design points become dense on the interval) to be 

(10) 

when A-+ 0 and nA-+ oo and ~ < x < 1- ~· The estimators are asymptotically unbiased 

under these conditions. 

Correlation of the errors can affect the variance term, w~,n ( x, •) ~ w .x,n ( x, •) very strongly. 

When the errors are i.i.d., the variance term is u2 II w.x,n(x,•) W, where 11•11 is Euclidean 

norm. As the design points become dense on the interval, II w.x,n(x,e) W-+ ~f, so the 

variance function decreases as O(n\) regardless of the shape of the kernel. When the errors 

are correlated, the behavior of the variance term as a function of the bandwidth depends on 

both the correlation function and the kernel. 

In Theorem 1, MSE(x,A,n)is computed. It is shown that, underfairly general conditions 

on the kernel and the correlation function, w~,n ( x, •) ~ w .x,n ( x, •) ~ u2 ~f ( 1 + 25 p) where S p 

was defined by equation (7). 

Theorem. 1: Suppose the mean function f, has p derivatives and, the kernel function 

K is of order p and satisfies conditions A - C. Suppose the design points are equally spaced 

on the interval of estimation, and the errors are stationary and satisfy conditions D and E. 
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Then for ~ < :JJ < 1 - ~ 2- - 2 

(11) 

The proof is in the Appendix section A.l. 

At boundary points (points distance q..\ away from an endpoint, with q < ~,) the kernel 

function is truncated, introducing considerable bias into the regression estimate. Modifications 

to the kernel function to maintain the same order of bias and variance (in the i.i.d case) have 

been suggested (Gasser and Muller 1979; Rice, 1984b). If the "boundary kernel," Kq(:JJ), 

satisfies conditions (A.1)- (A.3) in the appendix, then 

Corollary (l.l):Under the conditions of Theorem 1, the asymptotically optimal bandwidth 

at :JJ is 

(12) 

Corollary (1.2): Let Zx be the process generated by 

where the errors ux are i.i.d. with variance o-2 (1 + 2Sp), and z has the same mean function as 

y. Under the conditions of Theorem 1, asymptotically, as..\--+ 0 and n..\--+ oo, 

MSEy(:JJ,..\,n)--+ 1. 
MSEz(:JJ,..\,n) 

Corollary (1.3): Under the conditions of Theorem 1, kernel estimators are consistent (as 

..\--+ 0 and n..\--+ oo). 

The corollaries follow simply from Theorem 1. 

Corollaries 1.1 and 1.2 provide simple means of comparing the correlated process with 

variance o-2 to the i.i.d. process with the same variance, o-2 • Let Vx = f ( :JJ) + 'lx where 'lx is 
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i.i.d. with variance q 2 • Then, if Sp > 0( < 0), the optimal bandwidth for z (and hence for y) 

is greater (smaller) than the optimal bandwidth for v, and the MSE achieved at the optimal 

bandwidth is also greater (smaller). 

Corollary 1.2 also shows that the results of Gasser and Muller (1979) about the shapes of 

optimal kernels continue to hold when the errors are correlated. 

4. SELECTING A SMOOTHING PARAMETER 

For a given, finite set of observations, choice of an effective smoothing parameter is of 

considerable interest. A "good" value of the smoothing parameter will result in a small value 

of MSE(x,J..,n). 

Several criteria based on the data have been used for bandwidth selection. Those most 

commonly used are CV, (Allen 1974; Geisser 1975; Stone 1974), generalized cross-validation, 

GCV (Craven and Wahba 1979), and Mallows GL (Mallows 1973). The properties of these 

criteria, including convergence of the smoothing parameter chosen by one of the selection 

criteria to the truly optimal value, and the asymptotic equivalence of the the criteria have 

been explored in some detail by the authors above, as well as by others, (for example: Efron 

1986; Hardie, Hall and Marron 1987; Hardie and Marron 1985; Li 1984, 1985; Stone 1977). 

Mallows' GL, CV and GCV can all be viewed as estimators of expected squared prediction 

error (ESPE) based on a correction to the observed squared residual. The errors in the new 

observations are independent of errors in the original observations, so : 

ESPE(x,J..,n) = E(Ynew(x)- />.,n(x)) 2 

= q 2 + MSE(x,J..,n). 

(13) 

( - . ) 2 The squared residual, r2(i, >.., n) = Yn,i- l>.,n(;) is biased as an estimator of 

ESPE(-!i,>..,n), as it has expectation 

. . . 
E(r2(i,J..,n)) = u2 + MSE(.!..,>..,n)- 2q2w>.,n(.!..,i)- V2(.!..,>..,n). (14) 

n n n 

The term 2q2w>.,n(~,i) arises because Yn,i is both a term in the estimator, />.,n(!i), and 
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the estimate of Ynew ( ~). The additional variance term, 

(15) 

arises because of the correlation between ~n,i and the other errors. 

Remark: Note that in the region~ < ~ < 1- ~ the weights do not depend on i and so both 

w..x,n(~,i) and V2(~,A,n) are independent of i. 

Mallow's CL is defined by 

(16) 

where G-2 is some unbiased estimator of u 2• (In Mallows' original paper, the criterion is divided 

by G- 2 .) For bandwidth selection, the criterion is usually totalled over all the design points. 

However, the theoretical computations in this section are done pointwise. 

CV and GCV are criteria which are asymptotically equivalent to CL (when the errors are 

i.i.d. and the design points are equally spaced on the interval) but which do not require an 

estimate of u 2 • The CV criterion is 

2 (' , ) r2(i,A,n) 
rev ,,#\,n = 2' 

(1- W>.,n(~,i)) 
(17) 

CV 1s based on a simple heuristic for estimating ESPE: Estimate 

Ynew(i) by Yn,i and leave Yn,i out of the estimator. 

Generalized cross-validation was proposed by Craven and Wahba (1978) as an adjustment 

to cross-validation that is more nearly unbiased for ESPE in the case of unequally spaced points, 

if the design points are considered to be fixed. The GCV criterion is 

2 c· ' ) r2(i,A,n) 
racv '' #\' n = 2 (1- ~irW>.,n) 

(18) 

where W..x,n is the matrix [w..x,n(~,j)] and irW..x,n = L~=O W>.,n(~,i). If A is small, 

trW>.n (i ') K(O) CV d GCV d':ffi l' l AT l . . n ~ w..x,n n'' ~ fiX""" so an 1 er very 1tt e. ay or senes expansion 

of (17) or (18) gives the asymptotic equivalence of the 3 criteria: 

2 . 2 (i (i ( 2 1 E(rmcv(,,A,n)=u +MSE -,A,n)-V2 -,A,n)+o A P)+o(-d· 
n n n#\ 

(19) 
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So, asymptotically, CL , CV, and GCV have the same expectation for equally spaced design 

points. Theorem 2 describes the behavior of this expectation. 

Lemma 2.1: If the kernel function satisfies conditions A-C, and the correlation function 

satisfies conditions D and E, then for ~ < :c < 1- ~. 

i 21((0) 1 
V2(-,..\,n)=4u -,-Sp+o(-\). 

n nA nA 

The proof is in the Appendix section A.2. 

Theorem 2: Under the conditions of Theorem 1, for ~ < :c < 1 - ~ 

where Cis one of CL, CV or GCV. 

Proof: The result follows simply from Theorem 1, and Lemma 2.1. 

For points :c, distance q..\ from the endpoints, l(q may be substituted for 1( in the variance 

terms. The bias term depends on the order of the boundary kernel, but is the same as the bias 

term of MSE(f;,..\,n) 

Hardie, Hall and Marron, (1987), show that, for i.i.d. errors, the bandwidths selected by 

minimizing squared error, MSE, and the bandwidth selection criteria are asymptotically equiv­

alent in the sense that the ratio of selected bandwidths tends in probability to 1. Corollary 

1.2 suggests that in the correlated case, the bandwidth selected by minimising MSE should 

tend to the bandwidth which is optimal for an i.i.d.process with variance u 2(1 + 2Sp)· How­

ever, Theorem 2 suggests that, when 1 + 2Sp(1- 2K(O)/WK) > 0 the bandwidth chosen by 

the selection criteria should tend to the bandwidth which is optimal for an i.i.d.process with 

variance u2 {1 + 2Sp(1- 2~>)). So, for kernels with 2K(O) > WK, when Sp < 0 (> 0), the 

criteria tend to choose bandwidths that are too large (small). If 2K(O) > WK (which is the 

case for all kernels in common use) and Sp is sufficiently large, 1 + 2Sp(1- 2K(O)/WK) can be 

negative. In this case, the expectation of r~ is strictly increasing with ..\, and, asymptotically, 

the bandwidth selection criteria should tend to select interpolation. Hart (1986) shows, un-
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der conditions similar to these, that with probability tending to 1, CV picks arbitrarily small 

bandwidths. 

5.CORRECTING FOR CORRELATION 

In this section, two methods are suggested for correcting the selection criteria when the 

correlation function is known. The direct method adjusts the criteria to make them more nearly 

unbiased for ESPE. The indirect method transforms the residuals to produce transformed 

residuals which are less correlated. 

If the correlation function, Pn, is known, with corresponding correlation matrix, Rn,, 

Mallow's CL can be corrected to be an unbiased estimator of ESPE. 

From equation (16) an appropriate adjustment for Mallow's CL criterion is 

~2).] . 

rbL,p(i,.\,n)=r2(i,.\,n)+2u2 2: W>.,n(;;,i+j)pn(j). 
j=- ~2).] 

(21) 

Corresponding adjustments for CV and GCV are intended to match the low order terms in the 

Taylor series expansion in equation (19) to the adjusted CL criterion in equation (21). One 

way to do this is to set 

(22) 

and 

2 c· ) r2(i,.\,n) 
rGcV,p ,,.\,n = (1-~trW>.,nRn.F (23) 

We will call this the direct method of correcting for correlation, and denote the corresponding 

bandwidth selection criteria by CVp and GCVp respectively. 

Another approach to the problem when the correlation matrix is known, is to compute the 
_l 

transformed residuals: rp-1(•,.\,n) = Rn 2 r(•,.\,n). This has been used with some success in 

the context of spline smoothing with normal AR(1) errors, (Diggle 1985; Diggle and Hutchinson 

1985; Engle, Granger, Rice, Weiss, 1986). The goodness of fit criterion is then the total 

weighted MSE, 

(24) 
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The totalled CL criterion based on the transformed residuals, 

n 

Lr~L,p-1 = "2:r;-1(i,..\,n) + 2<12 tr W>.,n, 
i=O 

(25) 

is then asymptotically unbiased for the expected value of the prediction sum of squares for the 

transformed residuals. 

The totalled CV and GCV criteria based on the transformed residuals can also be readily 

defined. They are 

(26) 

and 

(27) 

We will call this the indirect method of correcting for correlation, and denote the corresponding 

bandwidth selection criteria by 2:: CVp-1 and 2:: GCVp-1 respectively. Although these criteria 

are based on a somewhat different goodness of fit statistic than the others, the simulations 

described in section 7 show that they lead to estimators with comparable unweighted TSE. 

6.ESTIMATING THE CORRELATION FUNCTION 

Usually the correlation function is unknown and must be estimated from the data. In the 

context of growth curves, where many curves were expected to have similar error structures, 

Hart and Wehrly (1986) successfully used the standard method of moments (MM) estimators 

for the correlations, averaged over the curves. Estimating the autocorrelations from a single 

realization is more challenging. 

A simple approach is to smooth the data, compute the low-order sample autocorrelations 

of the residuals and fit an autoregressive-moving average (ARMA) model (Box and Jenkins 

1976). A more detailed look at these methods is in Altman (1988). 

Theorem 3 below, shows that the MM estimator of Pn(s) is consistent under mild regu­

larity conditions on the errors. 

Theorem 3: Suppose the data and kernel satisfy the conditions of Theorem 1 and the mean 

function has pth derivative which is Lipschitz of order 7 > 0. Suppose, as well, the errors 
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satisfy the following regularity condition: 

F) ~n,t = L~-oo VtjZt-j 

Zt i.i.d. 

with L~-oo 11/til < oo 

with E(zt) = 0 

E(zt) = u 2 

E(zt4) < oo 

For fixed s, nand .A, define the method of moments estimator of p(s) by: 

and 

Var(fo>.,n(s)) = o(n\) 

The proof is in Altman (1989). 

It is easy to show from Theorem 3 that, if 2K(O) ~ Wx, then Pn(1, .A) has bias which is 

. . . ' d h . l . . f I (p) (1;J2 dx d . d . . S mcreasmg m ""' an t e .s1gna to n01se ratio, · u 2 , an 1s ecreasmg m p· 

7.SIMULATION RESULTS 

A simulation study was carried out to test the theoretical results of this paper. For each 

experiment, three second order kernels and a fourth order kernel were used. The definitions of 

the kernels are displayed in Table 1. The fourth order"spline" kernel is a truncated version of 

the effective kernel for the cubic smoothing spline with equally spaced design points (Silverman 

1984, 1985). 
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Table 1. Kernels 

Kernel equation K(O) WK 
uniform 1 1 1 
triangular 4(~ -lxl) 2 1.333 
quadratic 6(%- a;2) 1.5 1.2 
spline 8exp( -lxl/16v'2)sin(lxl/16v'2 + 1f/4) 4v'2 3v'2 

At the boundary, the kernels were adjusted by reweighting to 

w:X,n(~,j) = W>.,n(~,j)/ ~ W>.,n(~, k ). While reweighting is not as good as the use of a bound­

ary kernel for bias reduction, (Gasser and Miiller 1979, Rice 1984b) the added bias is the same 

for MSE and for the bandwidth selection criteria. 

A small preliminary study showed, empirically, that, for the sample sizes and the mean 

function used in this study, and for i.i.d. errors, the optimal bandwidths for the uniform, 

triangular and quadratic kernels were about the same. The optimal bandwidth for the spline 

kernel was about three times as large so, when bandwidth ~ was used for the other kernels, 

bandwidth 3~ was used with the spline kernel. 

The mean function for all three experiments was 

/(x) = cos(3.151fx) for a; in [0, 1]. 

The errors were generated from a Gaussian AR(1) process, with p(1) = -.9, -.6, -.3, 0, .1, .2, 

.3, .6, .9. At each value of p(1), 50 realizations of the process were generated. As has been 

noticed by others (Wendelberger 1987), when the errors are correlated the bandwidth selection 

criteria often have many local minima for a given realization. So the minimizing bandwidths 

were selected from the 15 values: .02, .04, .06, .08, .10, .12, .16, .20, .24, .28, .32, .38, .42, .46, 

and .50. With each value of p(1), three combinations of sample size and variance were used, 

n = 128 and u 2 = .01 and 1.0, and n = 256 and u 2 = 1.0. Each set of simulations was repeated 

50 times. 

Table 2 is a summary of the numerical results for n = 128 for the uniform and spline 

equivalent kernels. Results for n = 256 were similar. Results for the triangular and quadratic 

kernels were similar to those for the uniform kernel. Results for CV and GCV were practically 
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identical (since the design points are equally spaced) and so only GCV is listed here. The 

average squared error (ASE), rather than the total squared error, is used here to standardize 

for sample size. 

The entries in the table are 

min ASE The actual minimum of the average squared error for the realization 

min GCV The value of the ASE at the bandwidth minimizing (standard) I: GCV 

min GCVp-1 The value of the ASE at the bandwidth minimizing I: GCVp-1 

min GCVp The value of the ASE at the bandwidth minimizing I: GCVp 

min GCVP'-1 The value of the ASE at the bandwidth minimizing E GCVP'-1 

min GCVP' The value of the ASE at the bandwidth minimizing I: GCVP' 

The minimum ASE is tabulated as a raw value. (For u 2 = 1.0, the ASE has been multiplied 

by 100, and for u 2 = .01, by 10000.) The other entries are expressed as a multiple of ASE. 

The percentage is estimated for each realization, and the median over the 50 realizations is 

reported. Bracketing each median, in smaller print, are the quartiles. The last two entries are 

corrected criteria using p, an estimate of the correlation computed from the residuals. 

Figure 2 contains plots of TSE, I: GCV -nu2 , E GCVp -nu2 , and E GC~-1 -nu2 versus 

bandwidth for the uniform kernel with n = 128 and u 2 = 1.0, where EGCV, EGCVp, and 

E GCVp-1 are, respectively, the sum of the uncorrected, and directly and indirectly corrected 

GCV criteria defined by (18), (23), and (27). (The plots for the other kernels, and other values 

of n and u 2 are similar, as are the plots for CV.) The minimum is marked on each curve with 

an asterisk. 

The large effect of correlation on both the magnitude of the TSE and the location of the 

minimum can clearly be seen. Also notable is that the TSE curves are quite flat near their 

minima for large values of p(1). The large differences between the TSE curves is due solely to 

the effect of the correlation on the variance term. 

Correlation has a large effect on the performance of the bandwidth selection criteria. The 

differences in TSE at the truly optimizing bandwidth, and the bandwidths picked by CV and 

GCV are notable. As predicted by Theorem 1, the criteria pick bandwidth too large when 
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p(l) is negative, and too small when p(l) is positive. For p(l) ~ .3, the criteria tend to pick 

interpolation, no matter what the variance or sample size. However, when either direct and 

indirect corrections were made to the bandwidth selection criteria using the true correlation 

coefficients, the corrected criteria performed well. 

As can be seen in Figure 2, E GGVp has much the same shape as the TSE curve, while 

E GCVp-1 has a somewhat different shape. However, all three curves have minima that are 

very close together for negative values of p(l). For positive p(l), E GCVp-1 has a minimum at 

bandwidths that are much smaller than the optimal bandwidths for unweighted TSE. However, 

as the TSE curve is quite flat near its minimum, the resulting estimator has similar TSE. This 

can be seen in Table 2. 

7.1 Performance of Corrected Band width Selection Criteria with the Estimated 

Correlation Function 

As a final step, the correlations were estimated from the data. The estimated correlations 

were then used to compute E GCVp- and E GCVp--l which were used to select the bandwidth 

for the final smooth. 

In each case, the same kernel was used to estimate the correlations and the mean function. 

The correlations were estimated from the residuals from the kernel smooth with bandwidth 

.25. Three estimators of correlation were tried, Pn,>.(s), P~>.(s), a MM estimator based on the 

centered residuals r(i, ..\, n)- ~ E r(j, A,n ), P~>. (s ), and Pn,>.(s) a "running" version of pM (s, ..\) 

using 1/4 of the data. However, as mean of the residuals was close to zero for these trials, all 

three estimators produced very similar results. Only the results for Pn,>.(s) are presented here. 

While estimates of individual correlation coefficients are consistent, the sum of the esti­

mated coefficients is not necessarily a good estimate of Sp (since the sample periodogram is 

not a consistent estimator of the the spectrum). An approach which appears, empirically, to 

have some promise, is to compute a few, low-order autocorrelations, and then to fit a low order 

autoregressive-moving-average (ARMA) model (Box and Jenkins 1976). For these simulations, 

the first two correlations were estimated directly and constrained by truncation to lie in the 

region of stationarity for an AR(2) process. The correlations at higher lags were generated 

from the AR(2) process with these two values at the first 2 lags. 
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The direct correction was based on the AR(2) estimate of the correlation function. Since 

the errors are actually AR(1), this procedure introduces additional error in estimating the 

correlation. However, in a real data situation, the order of the error process will not be known, 

so this method provides a fair assessment of how estimating the correlations will perform in 

practise. 

For computational simplicity, the indirect correction was based on the partially differenced 

residuals, r(i+ 1, l,n)- .Pn,.x(1)r(i, l,n), which is appropriate when the errors are AR(1). This 

means that the simulation method is somewhat biased in favor of the indirect correction. This 

becomes apparent when the signal to noise ratio is large, due to the large error in estimating 

the correlations in this case. 

The results of Theorem 3 show that, if 2K(O) ~ WK, then the bias in estimating the 

correlation is increasing in the signal to noise ratio, and is decreasing in Sp. As predicted, 

the estimates of correlation were more accurate when the signal to noise ratio was larger, and 

the correlations were smaller. The simulation results for estimating the correlation function 

are reported in full in Altman 1989. In general, the estimates ofcorrelation were good when 

u2 = 1.0 and poor when u2 = .01. However, even when u2 = .01, the estimates appear to be 

adequate to correct the bandwidth selection criteria. 

From Table 2, when u 2 = 1.0, GCV, and GCV,-1 both perform well. When the corre­

lations are computed from the data, the corrections are, in general, not as good, but are an 

improvement over ordinary GCV. However, for large negative p, the estimated correlations per­

form somewhat better than the true values, possibly indicating that the corrections suggested 

by the asymptotic expansion are too extreme for samples of this size. 

When u 2 = .01, the criteria corrected with the true value of the correlations perform quite 

well, and are improvements over uncorrected GCV. Despite the large positive bias in estimating 

the correlations, GCVp--1 performs very well, even for negative correlations. However, due to 

the large upwards bias of p(2, .25, 128), GCV,. performs poorly when the correlation is negative, 

and is not as good as the uncorrected criterion in this case. 

Of course, in real use, the correlations are never known. The real choice is between using 

the uncorrected criteria, or estimating the correlations and using the estimates to make direct 
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corrections to the selection criteria. This study suggests that, despite the poor quality of the 

correlation estimates, corrections to the selection criteria considerably improve the choice of 

bandwidth, and thus the quality of the estimate of the mean function. 

The simulation results show that even very rough estimates of the correlation function 

based on the data can be quite effective in correcting the bandwidth selection criteria for the 

effects of correlation. The noisier the data, the better the estimate of the correlation function, 

and the more important the effects of choosing the correct bandwidth for the smooth. 

8. EXAMPLE: SEA SURFACE TEMPERATURE DATA 

The methodology of the previous section was applied to a data set of 4380 sea surface 

temperatures collected daily at Granite Canyon, California (Breaker and Lewis, 1988). This is 

a complicated data set, with larger events, called El Niiio episodes, superposed on asymmetric 

seasonal and shorter term periodic effects. The correlation function of the errors was estimated 

from the data. The estimated correlations were used to compute GCV,. and the data was 

smoothed with the selected bandwidth. 

The uniform and quadratic kernels were used. The bandwidths were constrained to lie 

between 3 days and half a year and GCV,. was computed at 50 evenly spaced bandwidths 

in this interval. No attempt was made to estimate, or adjust for, any seasonal effects. The 

correlations were estimated using a running MM estimate based on the residuals from a smooth 

with bandwidth of 73 days. The first two autocorrelations were computed directly, and the 

rest estimated from these according to the law of an AR(2) process. (A more sophisticated 

approach would be to estimate several autocorrelations, and fit a low order ARMA model.) 

Using the uniform kernel, the first two estimated correlations were 0.85 and 0.69. GCVP' 

selected 87 days, or about a quarter of a year. Using the quadratic kernel, the first two 

estimated correlations were 0.82 and .65. Despite the difference in the estimated correlations, 

the bandwidth selected by GCV,. was very similar- 93 days. For both kernels, ordinary GCV 

selected the smallest band width allowed by the program- three days - which produced almost 

no smoothing. 

Figure 3 is a plot of the raw data, the quadratic smooth and the residuals from the 
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smooth. The quadratic smooth is somewhat smoother than running means. Both smooths 

show the long term trends in the data that are obscured by the variability in the raw data. 

The seasonal effects in the data are clearly seen in the smooth. The larger peaks in 1973 and 

1977 are El Nifio events. There was also an El Nifio in 1979, which consists of several sharp 

peaks, and does not appear in the smooth. The residuals appear to have a stationary mean, 

but there is some suggestion that the variance varies with the mean temperature. 

9.CONCLUSIONS 

The increasing popularity of smoothing techniques is evident from the explosion of papers 

on the topic in statistical journals, (see for example, the bibliography by Collomb, 1985) and 

the increasing use of data smooths in the applied literature (for example, Engle et al 1986; 

Williams et al 1985). Smoothing is also used as a computational subprocedure in other data 

analytic techniques such as projection pursuit (Friedman and Stuetzle 1981; Huber 1985) and 

the alternating conditional expectations (ACE) method of computing the maximal correlation 

(Brieman and Friedman 1985). 

This paper shows that kernel regression performs well for data with correlated errors, as 

long as the correlations are sufficiently short-term. If an appropriate bandwidth must be chosen 

from the data, the bandwidth selection criteria must be suitably corrected for the correlation. 

MM estimates of the correlation, based on residuals from a preliminary smooth, may be used 

for this purpose. 

The evidence from the simulations done here, as well as those reported by Hart (1989), 

suggest that corrections to the bandwidth selection criteria based on even rough estimates of 

the correlation function are considerable improvements on the standard criteria. Therefore, 

the bandwidth for the preliminary smooth need not be too accurate. Equation (20) and the 

discussion following, show that for kernels with 2K(O) > WK, overestimation of the correla­

tions is less serious than underestimation (which may lead to interpolation). Therefore, it is 

preferable for the preliminary estimate to oversmooth the data. When the signal to noise ratio 

is very small, the bias in estimating correlation is mainly due to the correlation between the 

observations and the estimates. In this case, the bandwidth for the preliminary smooth should 
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be chosen very large- use of Yn,i - iln, corresponding to a very large .;\ may be preferred. When 

the signal to noise ratio is very small, a preliminary estimate of a bandwidth which mildly 

oversmooths can readily be obtained by inspection. 

Smoothing data with correlated errors is a useful technique for estimating an unknown, 

nonlinear mean function. If a rough estimate of the correlation function can ~e m.ade, band­

width selection can be done automatically. If no estimate of the correlations is available, an 

effective bandwidth can be estimated subjectively by viewing smooths computed at several dif­

ferent bandwidths. In either case, smoothing offers considerable variance reduction compared 

to interpolation, and is more flexible than parametric techniques. 

APPENDIX: PROOF OF THEOREMS 

A.l Proof of Theorem 1 

Lemma A.l: If K satisfies condition C then 

(A.1) 

Lemma A.2: If K satisfies conditions A-C then for 1 < ~ < 1- ~and O<js[n{] 

I r-2).}-j . . . I 1 
L W>.,n(~,i)(w>.,n(~,i+j)-w>.,n(~,i) =o(~). 
i=l n n n n 

(A.2) 

Also, letting Sj = 2[n{]- j + 1 

I r-2). l . . . I 1 L W>.,n( ~~ i)(w>.,n(.!.., Sj- i)- W>.,n( .!.., i)) = o( --\). 
n n n nA 

i=sj-f-2>.] 

(A.3) 

Lemma A.3: If the correlations satisfy condition E, as .;\ -+ 0 and n.;\ -+ oo then, letting 

S j = 2 [n{] - j + 11 

(A.4) 
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Lemm.a A.4: If the hernel weight. satisfy conditions A.1 - A.3 and the errors satisfy condition 

D and A.-4 then for ~ < ~ < 1 - ~ 

where WK = J K 2(x)dx and Sp is defined 6y (7). 

proof of A.-4: Let~ 6e the (2[nf] + 1) X (2[nf] + 1) circulant matrU: 

and let Sj = 2[nf]- j + 1. Direct computation gives 

Let L = max:~:K(x). ~ and the (2[nf] + 1) X (2(n,;] + 1) variance matrU: for the design points 

receiving positive weig~t are the same on the first [n2>.] + 1 diagonals, and the correlations satisfy 

condition E, so 

I . . . . I (L)2[!!2A] 
w~( .!.., •)~w>.,n( .!..,•)- w~,n( .!.., e)R~w>.,n( .!.., •) ::;; 2 l' Li IPn(i)- Pn(s;)l 

n n n n n" . 1 J= 

1 
=o(-) nA 

The proof of Theorem 1, follows from equation (10) and lemma A.4. 

A.2 Proof of Lemma 2.1 

Proof: Let SIPI = ,E~1 IP(i)l. Pick ~ > 0. Let Xe = inf{x > 0, IK(x)- K(O)I > ~Pl. 
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Let L = ma:.&:cK(:.&). Pick N~ so that n > N~ implies L~[n~el+liPn{i)l < tr_. Then, for 

n>. > 1, 

K(O) Ffl . oo P.~:cel . 
n>.I-;;:\SP-:?: W~,n(;;,i + j)p(j)l ~ 2L I: IPn(j)l + :?= IK(O)- K(:;.)IIPn{i)l 

J=l j=[n~:ce]+l ;=1 

~ ~-
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u 2 = 1.0 u2 = .01 
Uniform Kernel Spline Kernel Uniform Kernel Spline Kernel 

p(l) = .9 
min ASE 21.0 35.3 57.3 21.2 35.1 58.3 38.4 63.8 86.1 34.6 59.2 78.9 

min GCV 1.60 2.24 3.72 1.60 2.26 3.11 1.11 1.23 1.46 1.22 1.37 1.75 

min GCV,-1 1.09 1.39 2.01 1.06 1.21 1.92 1.01 1.09 1.24 1.09 1.23 1.65 

min GCV, 1.05 1.17 1.48 1.01 1.07 1.50 1.00 1.04 1.08 1.00 1.04 1.14 

min GCV;-1 1.25 1.63 2.37 1.27 1.55 2.78 1.01 1.09 1.24 1.09 1.23 1.65 

min GCV; 1.06 1.22 1.63 1.26 1.70 2.16 1.02 1.09 1.24 1.22 1.48 1.73 

p(l) = .3 
min ASE 4.98 7.18 10.7 3.94 5.59 9.62 15.9 19.0 25.4 10.8 12.4 16.8 

min GCV 2.31 3.91 6.49 2.73 4.79 7.65 1.83 2.19 2.69 1.60 2.27 2.90 

min GCV,-1 1.04 1.13 1.11 1.00 1.09 1.49 1.00 1.07 1.31 1.00 1.08 1.29 

min GCV, 1.00 1.14 1.56 1.02 1.18 1.54 1.00 1.04 1.24 1.05 1.26 1.59 

min GCV;-1 1.05 1.32 1.84 1.01 1.17 1.93 1.00 1.07 1.31 1.00 1.08 1.29 

min GCV; 1.03 1.13 1.52 1.03 1.20 1.91 1.64 1.80 2.05 4.65 5.51 6.16 

p(l) = 0 
min ASE 3.46 5.48 7.45 2.74 4.45 6.36 11.1 13.5 18.1 6.16 9.71 12.1 

min GCV 1.00 1.11 1.46 1.02 1.09 1.26 1.16 1.24 1.47 1.00 1.11 1.32 

min GCV,-1 1.00 1.08 1.39 1.01 1.05 1.18 1.00 1.02 1.24 1.00 1.04 1.23 

min GCV, 1.00 1.16 1.46 1.02 1.09 1.26 1.00 1.08 1.27 1.00 1.11 1.32 

min GCV;-1 1.00 1.09 1.39 1.00 1.08 1.37 1.00 1.02 1.24 1.00 1.04 1.23 

min GCV; 1.00 1.09 1.44 1.07 1.18 1.71 2.07 2.41 2.69 5.00 6.47 8.53 

p(l) = -.3 
min ASE 2.51 3.16 4.25 1.85 2.41 3.26 7.27 8.92 11.0 4.21 5.68 6.87 

min GCV 1.04 1.20 1.46 1.01 1.09 1.36 1.34 1.47 1.66 1.00 1.00 1.08 

min GCV,-t 1.04 1.16 1.39 1.00 1.07 1.20 1.00 1.00 1.13 1.00 1.00 1.05 

min GCV, 1.06 1.23 1.74 1.01 1.08 1.21 1.00 1.02 1.29 1.00 1.11 1.24 

min GCV;-t 1.02 1.10 1.35 1.00 1.09 1.20 1.00 1.00 1.13 1.00 1.00 1.05 

min GCV; 1.00 1.16 1.36 1.01 1.13 1.47 2.90 3.34 3.89 6.34 7.56 9.68 

p(l) = -.9 
min ASE 0.59 0.85 1.00 0.26 0.31 0.48 2.67 3.34 4.06 0.73 0.93 1.26 

min GCV 1.00 1.45 2.59 1.66 2.61 3.21 3.17 3.64 4.08 1.61 2.33 4.21 

min GCV,-1 1.00 1.15 1.49 1.00 1.02 1.26 1.00 1.40 1.50 1.00 1.04 1.18 

min GCV, 1.29 2.52 5.96 1.02 1.41 4.73 1.33 1.48 1.66 1.09 1.19 1.69 

min GCV;-t 1.00 1.12 1.25 1.00 1.06 1.25 1.00 1.40 1.50 1.00 1.04 1.18 

min GCV; 1.03 1.37 1.62 1.00 1.11 2.00 2.28 2.98 4.16 12.7 15.1 20.0 

Table 2:Ef!ect. of tuing the direct and indirect Jr.~ethod• of correcting the iandwidth 
•election criteria for correlation. Both the true and estimated correlation function• are 
u1ed. The data are 118 point. from fli = cor(3.15lrz) + es where the de1ign points are 
equally •paced on [0, 1] and the error• are AR{1). Re.ult. for the uniform and 1pline 
Aemel• are 1hown. The entrie• are the median• over 50 realization• of the proce" with 
the quartile• flanloing in •maller print. "Min ASEn i1 the median ASE at the 6andwidth 
minimizing the ASE. It i1 di1played in natural unit., multiplied 6y 1001 for u2 = 1.0, or 
'hy100001 for cr = .01. The other entrier are median ASE at the minimum value of the 
6andwidth •election criterion, upre,etl as a multiple of the actual minimum. "GCVn 
i• the uncorrected GCV criterion, «GCV,-1 n i• the GCV uring the indirect correction 
with the true value of the correlation function, and lf(tCV, n i1 GCV u1ing the direct 
correction with the true value of the correlation function. IIGCVp-t n and "min GCVp n 
are the corrected GCV criteria when the correlation• have 'heen e.timated from residuals 
from a moderate 'handwidth smooth. 
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Figure 1: Raw and smoothed data for the mean function E(y)=cos(3.157tX). The error 
variance is 1.0. The bandwidth for the smooth was selected using ordinary 
cross-validation (c and d) or minimum MSE (e and f). 
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Figure 2: TSE, uncorrected and corrected GCV as a function of bandwidth for the uniform kernel with AR(1) errors. 
f(x)=cos(3.151t x) cf =1.0 n=128 various values of p (1) 
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Figure 3; Sea Surface Temperatures at Granite Canyon, California. 
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