Consider the model
\[Y_i = \mu + \beta x_i + \epsilon_i \]
where \(x_i = x_i - \bar{x}, i=1, \ldots, n \), and \(\epsilon_i \) is normally distributed with zero mean.

The complete set of observations may be written as
\[Y = X(\mu) + R \]
where \(Y \) and \(R \) are \(n \times 1 \) matrices and \(X \) is an \(n \times 2 \) matrix. Let the covariance matrix of the \(\epsilon_i \)'s, i.e. \(RR' \), be \(M \).

In the usual regression, we assume \(M = \sigma^2 I \), i.e. the \(\epsilon \)'s are independent and have a common variance. A fairly common regression problem arises when
\[
M = \begin{pmatrix}
 w_1 & 0 & \cdots & 0 \\
 0 & \ddots & \ddots & \vdots \\
 \vdots & \ddots & \ddots & 0 \\
 0 & \cdots & 0 & w_n
\end{pmatrix} \sigma^2,
\]
i.e. when the \(\epsilon \)'s are assumed to be independent but are multiples of a common variance; a regression of means, based on different numbers of observations, on an independent variable exemplifies this case. The least common case, where \(M \) is a non-singular, covariance matrix, arises when the assumptions of independence are not justified.

When normality is assumed, the joint distribution of the \(Y_i \)'s requires the quadratic form
\[
Q = \frac{1}{2} \sum_{i,j} \sigma^{ij}(Y_i - \mu - \beta x_i)(Y_j - \mu - \beta x_j)
\]

Cornell University, Ithaca, New York
where \(\sigma^{ij} \) is an element of \(M^{-1} \). It is required to minimize this expression by appropriately estimating \(\mu \) and \(\beta \).

The partial derivatives are:

\[
\frac{\partial Q}{\partial \mu} = - \sum_i (Y_i - \mu - x_i \beta) \sum_j \sigma^{ij} \\
\frac{\partial Q}{\partial \beta} = - \sum_i (Y_i - \mu - x_i \beta) \sum_j \sigma^{ij} x_j
\]

Equating the derivatives to zero, we obtain

\[
(\sum_i \sigma^{ij}) \hat{\mu} + (\sum_i x_i \sum_j \sigma^{ij}) \hat{\beta} = \sum_i Y_i \sum_j \sigma^{ij} \\
(\sum_i x_i \sum_j \sigma^{ij} x_j) \hat{\mu} + (\sum_i x_i \sum_j \sigma^{ij} x_j) \hat{\beta} = \sum_i Y_i \sum_j \sigma^{ij} x_j
\]

Solution of these equations is given by

\[
\hat{\mu} = \frac{\sum \sigma^{ij} \sum_i x_i \sum_j \sigma^{ij} \sum_i Y_i \sum_j \sigma^{ij}}{\sum \sigma^{ij} \sum_i x_i \sum_j \sigma^{ij}} \\
\hat{\beta} = \frac{(\sum \sigma^{ij} \sum_i x_i \sum_j \sigma^{ij})/ \sum \sigma^{ij}}{(\sum \sigma^{ij} \sum_i x_i \sum_j \sigma^{ij})/ \sum \sigma^{ij}}
\]

If we define \(\bar{x} \) as

\[
\frac{(\sum_i x_i \sum_j \sigma^{ij})/ \sum \sigma^{ij}}{(\sum \sigma^{ij} \sum_i x_i \sum_j \sigma^{ij})/ \sum \sigma^{ij}}
\]
then \[\frac{\sum (\sum_{i} \epsilon_{i} \sigma_{i} \sigma_{j})}{\sigma_{i} \sigma_{j}} = 0 \]

\[
\hat{\mu} = \frac{\sum_{i} \sigma_{i} \sigma_{j}}{\sigma_{i} \sigma_{j}}.
\]

When the \(\epsilon \)'s are independent and their variances are multiples of a common variance, equations (1) and (2) reduce to

\[
\hat{\mu} = \begin{bmatrix}
\sum_{i} \epsilon_{i} \sigma_{i} \sigma_{j} & \sum_{i} \epsilon_{i} \sigma_{j} \\
\sum_{i} \epsilon_{i} \sigma_{i} \sigma_{j} & \sum_{i} \epsilon_{i} \sigma_{j} \\
\sum_{i} \epsilon_{i} \sigma_{i} \sigma_{j} & \sum_{i} \epsilon_{i} \sigma_{j}
\end{bmatrix}
\]

\[
\hat{\beta} = \frac{\sum_{i} \epsilon_{i} \sigma_{i} \sigma_{j}}{\sum_{i} \epsilon_{i} \sigma_{i} \sigma_{j}}
\]

since the \(\sigma_{i}^{2} \)'s now cancel. In this case, it is customary to define \(\bar{x} \) as \(\frac{\sum_{i} \epsilon_{i} \sigma_{i} \sigma_{j}}{\sum_{i} \epsilon_{i} \sigma_{j}} \). Then \(\sum_{i} \epsilon_{i} \sigma_{i} \sigma_{j} = \hat{\mu} \frac{\sum_{i} \epsilon_{i} \sigma_{i} \sigma_{j}}{\sum_{i} \epsilon_{i} \sigma_{j}} \).

When the \(\epsilon \)'s are independent and have a common variance, equations (1) and (2) become

\[
\hat{\mu} = \begin{bmatrix}
\sum_{i} \epsilon_{i} \sigma_{i} \sigma_{j} & \sum_{i} \epsilon_{i} \sigma_{j} \\
\frac{\sum_{i} \epsilon_{i} \sigma_{i} \sigma_{j}}{n} & \frac{\sum_{i} \epsilon_{i} \sigma_{j}}{n}
\end{bmatrix}
\]
\[\hat{\beta} = \frac{\begin{bmatrix} n & \Sigma X_i \\ \Sigma X_i & \Sigma X_i Y_i \end{bmatrix}}{(\text{as for } \hat{\mu})} \]

and the \(\sigma^2 \)'s again cancel. Here we define \(\bar{x} \) as \((\Sigma X_i)/n \). Now \(\Sigma X_i = 0 \) and \(\bar{\mu} = \Sigma X_i/n \).

In the general case, i.e. correlated \(\epsilon_i \)'s, we have assumed that \(M \) was at our disposal. Since \(\hat{\mu} \) and \(\hat{\beta} \) turn out to be linear combinations of the \(Y \)'s, we are able to compute their variances and covariance. In the two special cases, the same is true. However if \(\sigma^2 \) is unknown, it is now possible and relatively easy to estimate \(\sigma^2 \) and, in turn, compute an estimate of the variances and covariance. Known sampling distributions apply to these two special cases.

Example

Consider the following set of data

<table>
<thead>
<tr>
<th>i</th>
<th>x</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-1</td>
<td>114</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>124</td>
</tr>
<tr>
<td>3</td>
<td>+1</td>
<td>143</td>
</tr>
</tbody>
</table>

with

\[
M = \begin{pmatrix}
7/24 & 1/6 & 1/12 \\
1/6 & 4/6 & 2/6 \\
1/12 & 2/6 & 7/6
\end{pmatrix}
\]
and

\[M^{-1} = \begin{pmatrix} 4 & -1 & 0 \\ -1 & 2 & -1/2 \\ 0 & -1/2 & 1 \end{pmatrix}; \quad \Sigma_1^{1j} = 3; \quad \Sigma_2^{2j} = 1/2; \quad \Sigma_3^{3j} = 1/2 \]

Applying equations (1) and (2), we find

\[
\hat{\mu} = \begin{bmatrix} 3(114) + \frac{1}{2}(124) + \frac{1}{2}(143) \\ -4(114) + (1-\frac{1}{2})(124) + 1(143) \\ 3(-1) + 1(\frac{3}{2}) \end{bmatrix} \begin{bmatrix} -1(3) + 1(\frac{3}{2}) \\ -1(-4) + 1(1) \\ 5 \end{bmatrix} = 127.3 \]

\[
\hat{\beta} = \begin{bmatrix} 4 \\ -2.5 \end{bmatrix} \begin{bmatrix} 475.5 \\ 55/4 \end{bmatrix} = 13.4 \]

If there were zero covariances and the variances were $7/24$, $4/6$ and $7/6$, then

\[
M = \begin{pmatrix} 7/24 & 0 & 0 \\ 0 & 4/6 & 0 \\ 0 & 0 & 7/6 \end{pmatrix} \quad \text{and} \quad M^{-1} = \begin{pmatrix} 24/7 & 0 & 0 \\ 0 & 6/4 & 0 \\ 0 & 0 & 6/7 \end{pmatrix} \]

Now

\[
\bar{x} = \frac{\Sigma w_i x_i}{\Sigma w_i} = \frac{\frac{24}{7}(-1) + \frac{6}{4}(0) + \frac{6}{7}(1)}{\frac{24}{7} + \frac{6}{4} + \frac{6}{7}} = -\frac{4}{9} \]
and \(x_1^* = -\frac{5}{9}, \ x_2^* = \frac{4}{9}, \ x_3^* = 1 \frac{4}{9} \).

\[
\hat{\mu} = \frac{\sum w_i y_i}{\sum w_i}
\]

\[
= \frac{\frac{24}{7}(114) + \frac{6}{4}(124) + \frac{6}{7}(143)}{\frac{24}{7} + \frac{6}{4} + \frac{6}{7}}
\]

\[
= 126.8
\]

\[
\hat{\beta} = \frac{\sum w_i x_i y_i}{\sum w_i x_i^2}
\]

\[
= \frac{\frac{24}{7}(-\frac{5}{9})114 + \frac{6}{4}(\frac{4}{9})124 + \frac{6}{7}(\frac{13}{9})143}{\frac{24}{7}(\frac{5}{9})^2 + \frac{6}{4}(\frac{4}{9})^2 + \frac{6}{7}(\frac{13}{9})^2}
\]

\[
= 13.5
\]

If the variances were equal, then we would find

\[
\hat{\mu} = \frac{\sum y}{3}
\]

\[
= 127
\]

\[
\hat{\beta} = \frac{\sum xy}{\sum x^2}
\]

\[
= 14.5
\]

References
