INITIAL PARAMETER ESTIMATES FOR
NONLINEAR REGRESSION MODELS

Michael P. Meredith

BU-887-M

August, 1985

Abstract

Simple methods are presented for determining estimators to be
used at the first stage of a nonlinear least squares or Maximum
Likelihood estimation procedure. Focus is upon nonlinear models
that are commonly used in biological studies. The exponential
growth and decay, Logistic, Mitscherlich and Gompertz models are
discussed. Curve "peeling" and the method of partial totals are
discussed for models based upon sums of exponentials. Much of
the development requires equally spaced time intervals, although
this is not a great restriction in practice.

* In the Biometrics Unit, Cornell University, Ithaca, NY 14853.
Introduction

There has been considerable effort expended investigating the properties of nonlinear least squares (NLLS) estimators in the theoretical literature (Clarke, 1980; Hartley and Booker, 1965; Jennrich, 1969; Malinvaud, 1970). The actual task of computing parameter estimates for a nonlinear model typically employs an iterative scheme that may be computationally costly. Jennrich (1969) points out that NLLS converges with probability one to the "correct" estimate (i.e., the estimate which achieves a global minimum on the error sum of squares surface) only if the initial estimate is contained in a sufficiently small neighborhood of the correct estimate. He recommends a two-step procedure suggested by Hartley and Booker (1965) wherein consistent estimators of parameters are used as initial estimates to enter the iterative NLLS procedure.

In the following discussion it will be assumed that the y_i are observable random variables and define $Y_i = E[y_i] = f(x_i, \theta)$, $i = 0,1,2,\ldots,n$. The x_is are fixed (such as time) and θ is a p-dimensional vector of unknown parameters. The error structure will be left unspecified and should be investigated upon fitting the model.

Computer software packages often suggest supplying the NLLS program with a p-dimensional grid of potential starting values. The element of the grid that results in the smallest residual sum of squares (RSS) is taken as the initial estimate for the parameter vector. Thus, if there are k_j values for each of the $j = 1,2,\ldots,p$ parameters, then a total of $\prod_{j=1}^{p} k_j$ residual sum of squares must be calculated before the iterative phase even begins. Clearly, supplying an extensive grid in the hope of obtaining good initial estimates is both naive and wasteful. Such an approach gives little credibility to the resultant estimates since they may represent local minima on the RSS surface. Indeed, the suggestion is often made that additional grids be tried to help establish the credibility of the estimates obtained from such a "hit or miss" procedure.
Discussion

Initial parameter estimates are determined for nonlinear growth models that are commonly used in biological research. The simplest initial estimates are found when the \(x_i \)s are equally spaced. If the \(x_i \)s are equally spaced then we may assume without loss of generality that \(x_0 = 0, x_1 = 1, \ldots, x_n = n \). In general, denote \(x_{i+1} - x_i = \Delta x_i \) and \(y_{i+1} - y_i = \Delta y_i \).

Most of the models include a term which may be written as \(p \times \exp(-a) \), where \(a \) represents a growth rate parameter from the defining differential equation. Since \(\exp(-a) = 1 - a + a^2/2 - \ldots \) then, for small \(a \), we have \(1 - p \approx \alpha \). This relationship will prove useful in finding initial estimates that are derived from a first order approximation to the defining differential equation.

The methods for finding initial estimates may be placed into any of three categories: 1) Simple functions of ratios and differences of the observations; 2) linearization of the nonlinear model; or, 3) first order approximations to the defining differential equation.

These methods are simple and easily implemented by hand, hand calculator or a simple statistical software package such as Minitab. These initial estimates are then used to enter a sophisticated statistical software program such as BMDP3R, BMDPAR or PROC NLIN in SAS.

The requirement of equally spaced \(x \)s appears to be a severe restriction, although in practice this is not the case. Simply plot the observed response curve and use "eyeball interpolation" to insert enough data to allow for the calculation of initial estimates.

Exponential growth and decay

This model may be written as \(Y_i = \beta e^{\alpha x_i} \). Equally spaced \(x \)s allow the model to be written as \(Y_i = \beta p^i \).

(i) Note \(Y_{i+1} = \rho Y_i \) so an obvious estimator of \(\rho \) is given by
\[\rho_0 = \frac{\sum_{i=0}^{n-1} y_i y_{i+1}}{\sum_{i=1}^{n} y_i^2}. \]

This will typically underestimate \(\rho \).

(ii) Suppose \(n = 2r-1 \) and let \(S_1 = \sum_{i=0}^{r-1} y_i \) and \(S_2 = \sum_{i=r}^{2r-1} y_i \). Then, \(E[S_1] = \beta \left(\frac{1-\rho}{1-\rho^r} \right) \) and \(E[S_2] = \beta \rho \left(\frac{r}{1-\rho^r} \right) \) giving \(S_2/S_1 \approx \rho^r \), or \(\rho_0 = \left(\frac{S_2}{S_1} \right)^{1/r} \).

This is a consistent estimator of \(\rho \) since it represents a function of independent consistent estimators. Consistency follows by an application of Slutsky's Theorem (Cramer, 1946). This estimator is discussed by Cornell (1962).

(iii) Let \(r_i = y_{i+1}/y_i \), \(i=0,1,\ldots,n-1 \), then choose \(\rho_0 = \text{median}(r_i) \). Alternatively, consider \(r_{[k]} = \frac{y_{i+k+1} - y_{i+1}}{y_{i+k} - y_i} \) and proceed similarly. Clearly, other ratios of linear combinations of observations could be constructed. Choosing \(r = \frac{1}{n} \sum_{i=0}^{n-1} r_i \) results in an estimator sensitive to extreme \(r_i \). A trimmed mean would be a preferred alternative to the usual mean. Unfortunately these simplest of estimators are typically very unstable.

(iv) An initial estimate for \(\beta \) may be written as \(\beta_0 = \left(\frac{1-\rho_0}{1-\rho_0^{n+1}} \right) S \approx (1-\rho_0)S \), where \(S = \sum_{i=0}^{n} y_i = S_1 + S_2 \) and \(\rho_0 \) is determined from either i, ii or iii above.

(v) A less simple initial estimate of \(\beta \) is given by \(\beta_0 = \frac{\sum_{i=0}^{n} \rho_0^i y_i}{\sum_{i=0}^{\infty} \rho_0^i} \) derived by solving \(y_i = \beta \rho_0^i \) for \(\beta \) via least squares.

(vi) A further easy estimate of \(\beta_0 \) is given by \(\beta_0 = (1+\rho_0) \frac{\sum_{i=0}^{n} y_i^2}{\sum_{i=0}^{n} y_i} \). This follows since \(\sum_{i=0}^{n} y_i^2 = \beta^2 \left(\frac{1-\rho^{2n}}{1-\rho^2} \right) \) and \(\sum_{i=0}^{n} y_i = \beta \left(\frac{1-\rho^n}{1-\rho} \right) \) gives \(\frac{\sum_{i=0}^{n} y_i^2}{\sum_{i=0}^{n} y_i} = \beta \left(\frac{1-\rho^{2n}}{1-\rho^2} \right) \left(\frac{1-\rho}{1-\rho^n} \right) \approx \frac{\beta}{1+\rho_0}. \) This estimator may be expected to have an upward bias that may be adjusted by dividing \(\beta_0 \) by \(1+\rho_0^n \).
(vii) If the x_i's are unequally spaced the usual approach is to fit a straight line to the logarithm of the responses. That is, fit $\log(y_i) = \log(\beta) + (\log \rho)x_i$ and choose $\hat{\beta}_0 = \exp(\hat{\log}(\beta))$ and $\rho_0 = \exp(\hat{\log}(\rho))$, where $\hat{\log}(\beta)$ and $\hat{\log}(\rho)$ are the usual least squares estimators. This approach is reasonable if the errors are multiplicative on the original scale of measurement.

(viii) Another, perhaps simpler approach to unequally spaced x's is given by recognizing that

$$r_i = \frac{y_{i+1}}{y_i} \approx \rho, \quad \rho \approx \left(\frac{1}{\Delta x_i} \sum x_i \log r_i\right)^{\frac{1}{\Delta x_i}}$$

and choose $\rho_0 = \frac{\sum \rho_0 y_i}{2\sum x_i}$. As for equally spaced xs, this estimator is unstable.

(ix) In a manner similar to (viii) recognize that $\log(y_i) = \Delta x_i (\log \rho)$ giving $\log \rho \approx \frac{\Delta \log y_i}{\Delta x_i}$, and thus $\rho_0 = \text{median} \left[\exp \left(\frac{\Delta \log y_i}{\Delta x_i} \right) \right]$. Again, this estimator is unstable.

Example

Data (data set 1 in the appendix) have been generated from the model

$$y_i = 10^{(0.8)z_i}, \quad i=0,1,\ldots,19,$$

where $z_i \sim \text{iid } N(0,1)$ and $\sigma = 0.25$. Hence, $\beta=10$ and $\rho=0.8$. The results for methods (i) through (vii) follow.

(i) $\rho_0 = 0.781$.

(ii) $\rho_0 = 0.785$ using $r=10$, $S_1 = 45.441$ and $S_2 = 4.034$.

(iii) $\text{median}(r_i) = 0.874$, $\bar{r} = 0.857$, a 5% trimmed mean gives $\bar{r}_{.05} = 0.860$ and $\text{median}(r_{[2]1}) = 0.68$.

(iv) $\beta_0 = 10.84$ using ρ_0 from (i).

$\beta_0 = 10.63$ using ρ_0 from (ii).

$\beta_0 = 6.23$ using ρ_0 from (iii) as $\text{median}(r_i)$.
Similarly for (v) and (vi) we have:

(v) \(\beta_0 = 10.18 \)
(vi) \(\beta_0 = 10.22 \)
\(\beta_0 = 10.12 \)
\(\beta_0 = 10.24 \)
\(\beta_0 = 7.84 \)
\(\beta_0 = 10.75 \)

(vii) \(\log \beta = 2.301 \) giving \(\beta_0 = 9.97 \) , and \(\log \rho = -0.2317 \) giving \(\rho_0 = 0.793. \)

Mitscherlich model

This model may be written as \(Y_i = \beta - \gamma e^{-ax_i} \). Equal spacing of the \(x_i \)'s gives \(Y_i = \beta - \gamma \rho^i \).

(i) Suppose \(n = 3r-1 \) and let \(S_k = \sum_{i=(k-1)r}^{kr-1} y_i, k=1,2,3. \) Then, it is easily shown that \(\rho_0 = \left(\frac{S_3-S_2}{S_2-S_1} \right)^{1/r}, \beta_0 = \frac{S_2-S_1 S_3}{r(S_3-2S_2+S_1)}, \text{and } \gamma_0 = \frac{1-\rho_0}{(1-\rho_0)^2} (S_2-S_1). \)

Notice that the numerators are not independent of denominators in the above expressions. The following estimator avoids this shortcoming to give a consistent estimator of \(\rho \), but more data are required for any precision.

(ii) Suppose \(n=4r-1 \) and define \(S_k = \sum_{i=(k-1)r}^{kr-1} y_i, k=1,2,3,4. \) Then, \(\rho_0 = \left(\frac{S_4-S_3}{S_2-S_1} \right)^{1/2r} \) provides a consistent estimator of \(\rho \).

(iii) Notice that \(Y_i = \beta \rho^i (1-\rho) \) which suggests \(r_i = \frac{\Delta y_i}{\Delta y_{i-1}} = \frac{\beta \rho^{i+1}(1-\rho)}{\beta \rho^i (1-\rho)} = \rho, \) and choose \(\rho_0 = \text{median}(r_{[k]}). \) Alternatively, let \(d_{[k]} = y_{i+k} - y_i \) \(\approx \beta \rho^i (1-\rho) \), and \(r_{[k]} = \frac{d_{[k]}}{d_{[k]} + 1} \) and choose \(\rho_0 = \text{median}(r_{[k]}). \) Once again, \(\bar{r} = 1/(n-1) \sum r_i \) is particularly sensitive to outlying values.

These estimators are found to be unstable in practice.
(iv) Notice that \(Y_{i+1} = \beta(1-p) + \rho Y_i \) and proceed to regress \(y_{i+1} \) on \(y_i \) to give \(\rho_0 = \hat{\rho} \) and \(\beta_0 = \frac{\hat{\beta}(1-p)}{1-p} \), where the \(\hat{\cdot} \) indicates an ordinary least squares estimator. Properties for \(n=3 \) are discussed in Finney (1958).

(v) An estimation technique similar to the preceding was given by Hartley (1948), who suggested regressing \(y_{i+1} - y_i \) on \(y_{i+1} + y_i \), having noted that \(Y_{i+1} - Y_i = 2\beta \frac{(1-p)}{1+p} (Y_{i+1} + Y_i) \). Identifying \(z_i = y_{i+1} - y_i, w_i = y_{i+1} + y_i, b_0 = 2\beta \frac{(1-p)}{1+p} \) and \(b_1 = -\frac{(1-p)}{1+p} \), proceed to fit \(z_i = b_0 + b_1 w_i \) via ordinary least squares. Thus, determine \(\rho_0 = \frac{1+b_1}{1-b_1} \) and \(\beta_0 = \frac{-b_0}{2b_1} \). In practice, method (iv) is preferred as well as being more easily computed. Finney (1958) discusses properties of these estimators for small values of \(n \).

(vi) For unequally spaced \(x_i \)s the usual approach is to linearize the Mitscherlich equation by choosing \(\theta_0 > \max (y_i) \) and writing \(\log(\theta_0-y_i) = \log \gamma - (\log \rho)x_i \). Then, \(\gamma_0 \) and \(\rho_0 \) are determined from the back transformed least squares estimates. In general, \(\theta_0 \) is too large which consequently affects the \(\gamma_0 \) and \(\rho_0 \) estimates as well.

Example

Data (data set 2 in the appendix) have been generated from the model \(y_i = 10 - 10(0.8)^i + \sigma z_i, i=0,1,\cdots,19, z_i \sim iid N(0,1) \) and \(\sigma = 0.5 \). Hence, \(\theta=10, \gamma=10 \) and \(\rho=0.8 \). The results for methods (i) through (vi) follow.

(i) \(\rho_0 = 0.840, \theta_0 = 11.00 \) and \(\gamma_0 = 10.38 \) for \(r=6, S_1 = 23.890, S_2 = 51.180 \) and \(S_3 = 60.780 \). Note that the last two observations were discarded for these computations.
(ii) $\rho_0 = 0.830$ using $r=5$, $S_1 = 17.140$, $S_2 = 40.410$, $S_3 = 47.185$ and $S_4 = 50.785$.

(iii) $\text{median}(r_i) = 0.50$. The mean, \bar{r}, for these data was -3.9!

(iv) $\rho_0 = 0.797$ and $\beta_0 = 10.12$.

(v) $\rho_0 = 0.807$ and $\beta_0 = 10.25$.

(vi) Note that the maximum y_i was 10.55. Then, choosing $\beta_0 = 10.56$ gives $\gamma_0 = 11.01$ and $\rho_0 = 0.800$; choosing $\beta_0 = 10.65$ gives $\gamma_0 = 9.55$ and $\rho_0 = 0.829$; choosing $\beta_0 = 11.00$ gives $\gamma_0 = 8.71$ and $\rho_0 = 0.865$; and, choosing $\beta_0 = 11.55$ gives $\gamma_0 = 8.69$ and $\rho_0 = 0.892$.

Gompertz model

The model may be written as $Y_i = \gamma \exp(-\beta r_i^x)$. On the logarithmic scale we have $\log(Y_i) = \log \gamma - \beta r_i^x$. In this form the log of the Gompertz model is recognized as the Mitscherlich model. Thus, the same methods developed for the Mitscherlich model may be used for determining initial parameter estimates for the Gompertz model.

Logistic model

The logistic model has received attention by many authors. Nair (1954) reviews methods proposed by Fisher, Yule, Hotelling and others for fitting the logistic curve $Y_i = \frac{\beta}{1 + \gamma r_i^x}$. Often, β is assumed to be known and occasionally γ as well. For equal spacing of the x_is the model may be written as $Y_i = \frac{\beta}{1 + \gamma r_i^x}$.

(i) Note that we may write $\frac{1}{Y_{i+1}} = \left(1 - \frac{\beta}{\hat{\alpha}}\right) + \rho\left(\frac{1}{Y_i}\right)$. Identify $\alpha = \frac{1 - \rho}{\beta}$, then $\rho_0 = \hat{\beta}$ and $\beta_0 = \frac{1 - \rho}{\alpha}$ from simple linear regression of $\frac{1}{Y_{i+1}}$ on $\frac{1}{Y_i}$. This method was suggested by Rhodes (1940).
(ii) Recall that the differential equation defining logistic growth may be written as

\[\frac{1}{Y} \frac{dY}{dx} = \alpha [1 - (Y/B)] \]

Thus, an obvious approximation would be provided by the following difference equation

\[\frac{1}{Y_i} (\Delta Y_i) \approx \alpha [1 - (Y_i/B)] \approx (1-\rho) [1 - (Y_i/B)] \]

Let

\[z_i = \frac{(y_{i+1} - y_i)}{y_i}, \]

\[b_0 = 1-\rho \quad \text{and} \quad b_1 = (\rho - 1)/\beta. \]

Fit the equation \(z_i = b_0 + b_1 y_i \) to determine the least squares estimates of \(b_0 \) and \(b_1 \). Then, find initial estimates for \(\rho \) and \(B \) as

\[\rho_0 = 1 - \hat{b}_0 \quad \text{and} \quad \beta_0 = -\hat{b}_0 / \hat{b}_1. \]

This method was used by Yule (1925).

(iii) Nair (1954) suggested regressing \(\frac{1}{y_{i+1}} \), \(\frac{1}{y_i} \) on \(\frac{1}{y_{i+1}} + \frac{1}{y_i} \), since the following relationship holds:

\[\frac{1}{y_{i+1}} - \frac{1}{y_i} = \frac{\rho - 1}{\rho + 1} \left(\frac{1}{\beta} \right) + \frac{1-\rho}{1+\rho} \left(\frac{1}{y_{i+1}} + \frac{1}{y_i} \right) \]

Thus, initial estimates for \(\rho \) and \(B \) are given by

\[\rho_0 = \frac{1 - \hat{b}_1}{1 + \hat{b}_1} \quad \text{and} \quad \beta_0 = -2(\hat{b}_1 / \hat{b}_0), \]

where \(\hat{b}_0 \) and \(\hat{b}_1 \) are the least squares estimates of the intercept and slope, respectively, from the above equation.

(iv) Let \(d_i = \frac{1}{y_i} - \frac{1}{y_{i+1}} \) and define \(r_i = \frac{d_{i+1}}{d_i} \). Then, choose \(\rho_0 = \text{median}(r_i) \).

This estimator is found to be unstable in practice.
(v) Suppose \(n = 3r - 1 \) and define \(S_k \) as

\[
S_k = \sum_{i=(k-1)r}^{kr-1} \frac{1}{y_i} \quad \text{for } k=1,2,3.
\]

Then, \(S_k \approx \frac{1}{\beta} \left[r + \gamma \rho^{(k-1)r} \left(\frac{1-\rho^r}{1-\rho} \right) \right] \) and hence \(D_1 = S_1 - S_2 \approx \frac{1}{\beta} \left(\frac{1-\rho^r}{1-\rho} \right) (1-\rho^r) \)

and \(D_2 = S_2 - S_3 \approx \frac{1}{\beta} \left(\frac{1-\rho^r}{1-\rho} \right) \rho^r \), giving \(\rho^r \approx D_2 / D_1 \), or \(\rho_0 = \left(\frac{D_2}{D_1} \right)^{1/r} \).

Also, \(\frac{r}{\beta_0} = S_0 - \frac{D_1^2}{D_1 - D_2} \) which yields \(\beta_0 = r \left(S_0 - \frac{D_1^2}{D_1 - D_2} \right)^{-1} \). Finally,

\[
\gamma_0 = \frac{\beta_0 (1-\rho_0)}{1-\rho_0} \left[\frac{D_1^2}{D_1 - D_2} \right].
\]

(vi) If the \(x_i \)s are not equally spaced then choose \(\beta_0 > \max y_i \) and let

\[
z_i = \log \left(\frac{\beta_0}{y_i} - 1 \right) = \log \gamma + (\log \rho) x_i.
\]

Find

\[
\gamma_0 = \exp(\hat{\gamma}) \quad \text{and} \quad \rho_0 = \exp(\hat{\rho})
\]

from least squares.

As in the Mitscherlich case, the possibility of overestimating \(\beta \) with \(\beta_0 \) is very likely.

Example

Data (data set 3 in the appendix) have been generated from the model

\[
y_i = \frac{10}{1 + 5(0.8)^i} + \sigma z_i, \quad i=0,1,\ldots,19.
\]
$z_i \sim \text{iid } N(0,1)$ and $\sigma=0.5$. Hence, $\beta=10$, $\gamma=5$ and $\rho=0.8$. The results for methods (i) through (vi) follow.

(i) $\rho_0 = 0.672$ and $\beta_0 = 7.73$.

(ii) $\rho_0 = 0.624$ and $\beta_0 = 9.79$ using $\Delta y_i/y_{i+1}$, whereas $\rho_0 = 0.762$ and $\beta_0 = 10.38$ when using $\Delta y_i/y_i$.

(iii) $\rho_0 = 0.690$ and $\beta_0 = 8.33$.

(iv) $\text{median}(r_i) = 0.12$ and $\bar{r} = 0.00$, not too useful.

(v) $\rho_0 = 0.748$, $\gamma_0 = 8.00$ and $\beta_0 = 9.16$ where $S_1 = 3.5160$, $S_2 = 1.1578$, $S_3 = 0.7432$, $D_1 = 2.3583$ and $D_2 = 0.4145$. The last two observations were discarded for these calculations.

(vi) Note that the maximum y_i was 9.57. Then, choosing $\beta_0 = 9.6$ gives $\gamma_0 = 9.52$ and $\rho_0 = 0.732$; choosing $\beta_0 = 10$ gives $\gamma_0 = 7.55$ and $\rho_0 = 0.777$; and choosing $\beta_0 = 11$ gives $\gamma_0 = 7.13$ and $\rho_0 = 0.811$.

Linear combinations of exponentials

Linear combinations of exponentials arise naturally in the study of decay and tracer problems. Pharmacokinetic and compartmental models are common examples. When determining parameter estimates for these models it is critical to have good initial estimates upon entering an iterative nonlinear optimization routine. Two methods will be discussed here.

The first method is known as "curve peeling" (Foss, 1969). This is an intuitive procedure that requires practice and subjectivity. A justification for the peeling technique will be outlined. The second method is called the "method of partial totals" (Cornell, 1962). The method of partial totals is straightforward, produces consistent estimators, but requires equally spaced xs.

The model may be written as:

$$y_i = \sum_{k=1}^{p} \beta_k e^{-\alpha_k x_i}.$$
or, in the case of equally spaced xs:

\[Y_i = \sum_{k=1}^{p} \beta_k \rho_k^i. \]

Curve peeling

Curve peeling is a process whereby estimates of \(\beta_k \) and \(\alpha_k \) are successively determined. If the \(\alpha \)'s are ordered such that \(\alpha_1 > \alpha_2 > \cdots > \alpha_p \), then it is intuitively clear that for large \(x \) all but the exponential term in \(\alpha_p \) have decayed to zero. Thus, when plotting \(\log(y_i) \) vs. \(x \) the responses corresponding to the largest xs will tend to fall on a straight line. It is from this part of the curve that the estimates of \(\beta_p \) and \(\alpha_p \) are "peeled" off.

The procedure may be described in the following steps.

Step 1: Plot \(\log(y_i) \) vs. \(x_i \) and determine the linear segment associated with the m largest xs (preferably m should be greater than two). Regress \(\log(y_i) \) on \(x_i \) for the m points to determine the least squares estimates \(\hat{\alpha}_p \) and \(\hat{\beta}_p \). Thus, determine \(\hat{\beta}_p = \exp(\log(\hat{\beta}_p)) \). Now, calculate \(y_{i,p} = y_i - \hat{\beta}_p \exp(-\hat{\alpha}_p x_i) \) for \(i = 0, 1, 2, \ldots, n \). Discard at least m \(y_{i,p} \)'s associated with the m observations used to calculate \(\hat{\alpha}_p \) and \(\hat{\beta}_p \).

Step 2: Plot \(\log(y_{i,p}) \) vs. \(x_i \), \(i = 0, 1, 2, \ldots, n-m_p \). Regress \(\log(y_{i,p}) \) on the \(m_{p-1} \) largest xs to obtain \(\hat{\alpha}_{p-1} \) and \(\hat{\beta}_{p-1} \) as in Step 1. Calculate \(y_{i,p-1} = y_{i,p} - \hat{\beta}_{p-1} \exp(-\hat{\alpha}_{p-1} x_i) \), \(i = 0, 1, 2, \ldots, n \). Again, discard the \(y_{i,p-1} \)'s associated with the largest \(m_p + m_{p-1} \) xs.

Step 3: Continue to "peel off" estimates until \(\hat{\alpha}_1 \) and \(\hat{\beta}_1 \) are calculated from \(\log(y_{1,2}) \) vs. \(x_i \). The \(y_{1,1} \)'s will be the residuals.

Note: Clearly, we must have a minimum of \(n = 2p \) observations to obtain estimates of all \(\beta \)'s and \(\alpha \)'s. In practice many more observations are desired.
Justification of the "peeling" procedure

A justification for the method is examined for p=2. The results easily extend for any p.

Suppose, without loss of generality, that \(\alpha_1 > \alpha_2 > 0 \). Write \(Y_1 = \beta_1 e^{-\alpha_1 x_1} + \beta_2 e^{-\alpha_2 x_1} \), then

\[
\log(Y_1) = \log \left\{ \beta_2 e^{-\alpha_2 x_1} \left[1 + \frac{\beta_1}{\beta_2} e^{-(\alpha_1 - \alpha_2)x_1} \right] \right\} \\
= \log \beta_2 - \alpha_2 x_1 + \log \left[1 + \frac{\beta_1}{\beta_2} e^{-(\alpha_1 - \alpha_2)x_1} \right].
\]

Recall that \(\log(1+z) = z - \frac{1}{2} z^2 + \frac{1}{3} z^3 - \cdots \) for \(|z| < 1 \). Hence, for curve peeling to be successful observations are required at large enough levels of \(x \) so that \(\frac{\beta_1}{\beta_2} e^{-(\alpha_1 - \alpha_2)x_1} \ll 1 \). If this is so then we may write

\[
\log(Y_1) \approx \log \beta_2 - \alpha_2 x_1 + \log \left[1 + \frac{\beta_1}{\beta_2} e^{-(\alpha_1 - \alpha_2)x_1} \right].
\]

For sufficiently large \(x \) the bracketed series is negligible. Thus, regressing \(\log(Y_1) \) on \(x \) will yield viable estimates of \(\alpha_2 \) and \(\beta_2 \).

How does the bias effect the estimates of \(\alpha_2 \) and \(\beta_2 \) if observations are not taken at sufficiently large values of \(x \)? Clearly the bias is positive and depends upon \(x \). In fact, a linear approximation to the bias may be given by \(k_1 - k_2 x_1 \) where \(k_1, k_2 > 0 \). Thus, the equation for \(\log(Y_1) \) including the linear approximation for bias becomes:

\[
\log(Y_1) \approx (\log \beta_2 + k_1) - (\alpha_2 + k_2)x_1.
\]

Consequently, one would expect \(\hat{\alpha}_2 \) and \(\hat{\beta}_2 \) to be biased upwards. This is indeed the case in the following example.
Example of curve peeling for \(p=2 \)

Data (data set 4 in the appendix) are generated from the equation

\[
Y_i = 10 \exp(-1.0 x_i) + 2 \exp(-0.2 x_i), \quad i=0,1,2,\ldots,24.
\]

The \(x \)'s lie between 0 and 6 in increments of 0.25. No random errors have been added to the data.

The following table illustrates the behavior of the estimates due to regressing \(\log(Y_i) \) on the last \(m \) \(x \)'s. The estimates of \(\alpha_1 \) and \(\beta_1 \) were calculated using \(Y_{i,2} = Y_i - \hat{\beta}_2 \exp(-\hat{\alpha}_2 x_i) \), \(i=0,1,\ldots,9 \).

<table>
<thead>
<tr>
<th>(m)</th>
<th>(\hat{\beta}_2)</th>
<th>(\hat{\alpha}_2)</th>
<th>(\hat{\beta}_1)</th>
<th>(\hat{\alpha}_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2.57</td>
<td>.235</td>
<td>9.61</td>
<td>1.086</td>
</tr>
<tr>
<td>3</td>
<td>2.62</td>
<td>.238</td>
<td>9.57</td>
<td>1.094</td>
</tr>
<tr>
<td>4</td>
<td>2.69</td>
<td>.243</td>
<td>9.52</td>
<td>1.103</td>
</tr>
<tr>
<td>5</td>
<td>2.76</td>
<td>.247</td>
<td>9.47</td>
<td>1.114</td>
</tr>
<tr>
<td>6</td>
<td>2.84</td>
<td>.252</td>
<td>9.42</td>
<td>1.127</td>
</tr>
<tr>
<td>7</td>
<td>2.93</td>
<td>.258</td>
<td>9.35</td>
<td>1.141</td>
</tr>
<tr>
<td>8</td>
<td>2.98</td>
<td>.264</td>
<td>9.29</td>
<td>1.143</td>
</tr>
<tr>
<td>9</td>
<td>3.15</td>
<td>.271</td>
<td>9.21</td>
<td>1.177</td>
</tr>
<tr>
<td>10</td>
<td>3.28</td>
<td>.279</td>
<td>9.12</td>
<td>1.200</td>
</tr>
<tr>
<td>11</td>
<td>3.43</td>
<td>.287</td>
<td>9.03</td>
<td>1.227</td>
</tr>
<tr>
<td>12</td>
<td>3.60</td>
<td>.297</td>
<td>8.92</td>
<td>1.260</td>
</tr>
<tr>
<td>25</td>
<td>8.25</td>
<td>.479</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>exact</td>
<td>2</td>
<td>0.2</td>
<td>10</td>
<td>1.0</td>
</tr>
</tbody>
</table>

As indicated in the previous discussion the estimates of \(\alpha_2 \) and \(\beta_2 \) have a positive bias. In fact, we know that

\[
\text{bias} = \log \left[1 + \frac{\beta_1}{\beta_2} e^{-(\alpha_1-\alpha_2)x_i} \right] = \log \left(1 + 5e^{-0.8x_i} \right).
\]

For example, the following data were used to estimate \(k_1 \) and \(k_2 \) in order to adjust the estimates for \(m=5 \).
Thus, the revised estimates are given by

\[\hat{ \alpha}_2 = 0.247 - 0.047 = 0.200, \quad \text{and} \]

\[\hat{ \beta}_2 = \exp(0.322)2.76 = 2.00. \]

Unfortunately we do not know the true bias in practice. However, it is prudent to apply the peeling procedure several times choosing different \(m_k \)'s each time. The estimates yielding the smallest residual sum of squares should be used as the initial parameter estimates. It may also be wise to deflate the estimates of \(\alpha \) and \(\beta \) before continuing the peeling process since we know that they are likely biased upwards.

Curve peeling to determine \(p \)

Occasionally the observations must be used to determine \(p \), the number of exponentials in the sum. Curve peeling provides an easy way to make this determination at each step of the peeling process. Recall that at each stage the residuals \(y_{1,k} \) are computed. Thus, simply examine the scatter plot of these residuals versus \(x_i \) at each stage of peeling. When the residual plot reflects only random variability then choose \(p=k \). There may be an obvious trend in the residuals reflecting variance heterogeneity, but there should be no evidence of a linear or curvilinear trend remaining that could be explained by \(x \). Additionally, if the mean of the random residuals is nonzero (positive) then this provides evidence that the process under study is decaying to some constant background other than zero. This case is discussed shortly.
Method of partial totals

The method of partial totals has been discussed at length by Cornell (1962). The method requires equally spaced xs and $2pm$ observations to estimate $2p$ parameters. See Cornell (1962) for derivations and proof of consistency of the method. Related papers include Agha (1971), Della Corte, Buricchi and Romano (1974).

The model will be written as

$$Y_i = \sum_{k=1}^{p} \beta_k \rho_k^i \quad \text{for } i=0, 2, \ldots, 2pm-1.$$

It is assumed that $\beta_k \neq 0$ for all k and $\rho_k \neq \rho_{k'}$ for all $k \neq k'$. Remember that $\rho_k = \exp(-\alpha_k)$, or equivalently that $\alpha_k = -\log \rho_k$.

Define $2p$ independent partial totals (suns), each of which is the sum of m observations as:

$$S_{q} = \sum_{i=(q-1)m}^{qm-1} y_i, \quad q=1, 2, \ldots, 2p.$$

Then, the estimators of the ρ_k and β_k are found in the following two steps.

Step 1: Let R and R_{p-r+1} be $p \times p$ matrices whose u,vth elements are defined by:

$$(R)_{uv} = S_{uv-1},$$

$$(R_{p-r+1})_{uv} = \begin{cases} S_{uv-1} & \text{if } u \leq p-r \\ S_{uv} & \text{if } u > p-r \end{cases},$$

for $r=1, 2, \ldots, p$. Define $L_r = \det(R_{p-r+1})/\det(R)$, for $r=1, 2, \ldots, p$.

The estimators of ρ_k^m are found to be the roots of the pth degree polynomial given by:

$$z^p - L_1 z^{p-1} + L_2 z^{p-2} - \cdots + (-1)^p L_p = 0.$$

Calculate $\hat{\beta}_k = \left[\rho_k^m\right]^{1/k}$, $k=1, 2, \ldots, p$.
Step 2: Once the estimates of the ρ_k have been determined, then the $\hat{\beta}_k$ may be found as the unique solution to the system of equations: $\mathbf{S} = \mathbf{W}\hat{\beta}$, where

\[
\mathbf{S}' = (s_1, s_2, \ldots, s_p),
\]

\[
\hat{\beta}' = (\hat{\beta}_1, \hat{\beta}_2, \ldots, \hat{\beta}_p),
\]

and \mathbf{W} is a $p \times p$ matrix with u,vth element defined by

\[
(W)_{uv} = \frac{1}{1-\hat{\beta}_v} \left[\hat{\beta}_v^{(u-1)m} (1-\hat{\beta}_v^m) \right].
\]

Alternative Step 2: An obvious alternative procedure to determine estimates of the β_k is to define the $n \times p$ matrix \mathbf{X} as:

\[
(X)_{uv} = \exp(-\hat{\beta}_v x_u) \quad \text{for } u=0,1,\ldots,n; \quad v=1,2,\ldots,p.
\]

Proceed to calculate

\[
\hat{\beta} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{y},
\]

where \mathbf{y} is the $n \times 1$ vector of observed responses. Any multiple linear regression program may be used to find $\hat{\beta}$. Remember to specify the no-intercept option of the computing package.

Example of the method of partial totals for $p=2$

The same model used for the curve peeling example will be used for this example. Use x_is for $i=0,1,\ldots,23$, giving $2p=4$ partial totals with $m=6$ observations per group. Thus, calculate

\[
S_1 = 45.7494 \quad S_3 = 7.58167
\]

\[
S_2 = 15.7104 \quad S_4 = 4.71143.
\]
Step 1

\[
\begin{align*}
\det(R) &= \det \begin{pmatrix} s_1 & s_2 \\ s_2 & s_3 \end{pmatrix} = s_1 s_3 - s_2^2 = 100.0405 \\
\det(R_1) &= \det \begin{pmatrix} s_2 & s_3 \\ s_3 & s_4 \end{pmatrix} = s_2 s_4 - s_3^2 = 16.53668 \\
\det(R_2) &= \det \begin{pmatrix} s_1 & s_2 \\ s_3 & s_4 \end{pmatrix} = s_1 s_4 - s_3 s_2 = 96.4341
\end{align*}
\]

Hence,

\[
L_1 = \frac{\det(R_1)}{\det(R)} = 0.96395 ,
\]

and

\[
L_2 = \frac{\det(R_1)}{\det(R)} = 0.16530 .
\]

The p=2 degree polynomial is given by \(z^2 - 0.96395z + 0.16530 \). The roots are 0.22313 and 0.74082. Consequently,

\[
\hat{\rho}^i_1 = 0.22313 \quad \text{giving} \quad \hat{\rho}_1 = 0.77880 \\
\hat{\rho}^i_2 = 0.74082 \quad \text{giving} \quad \hat{\rho}_2 = 0.95123
\]

In order to calculate \(\hat{\alpha}_1 \) and \(\hat{\alpha}_2 \), note that \(x_i = 0.25i, \ i=0,1,\ldots,23 \). Thus,

\[
\hat{\rho}^i_k = e^{-\mathbf{\hat{\alpha}}(0.25)i} ,
\]

or

\[
-4 \log(\hat{\rho}_k) = \mathbf{\hat{\alpha}}_k
\]

Calculate

\[
\hat{\alpha}_1 = -4 \log(0.77880) = 1.0000 ,
\]

and

\[
\hat{\alpha}_2 = -4 \log(0.95123) = 0.2000 .
\]
Step 2: Note that $S = \begin{pmatrix} S_1 \\ S_2 \end{pmatrix} = \begin{pmatrix} 45.7494 \\ 15.7104 \end{pmatrix}$ and $\mathbf{\hat{\beta}} = \begin{pmatrix} \hat{\beta}_1 \\ \hat{\beta}_2 \end{pmatrix}$. Calculate

$$
(W)_{11} = \frac{1-\hat{\beta}_1}{1-\hat{\beta}_1} = 3.5121,
$$

$$
(W)_{21} = \frac{\hat{\beta}_1(1-\hat{\beta}_1)}{1-\hat{\beta}_1} = 0.78365,
$$

$$
(W)_{12} = \frac{1-\hat{\beta}_2}{1-\hat{\beta}_2} = 5.3143,
$$

and

$$
(W)_{22} = \frac{\hat{\beta}_2(1-\hat{\beta}_2)}{1-\hat{\beta}_2} = 3.9369.
$$

Thus,

$$
W^{-1} = \begin{bmatrix} 0.40745 & -0.55001 \\ -0.08110 & 0.36349 \end{bmatrix},
$$

and

$$
\mathbf{\hat{\beta}} = W^{-1}S = \begin{pmatrix} 10.000 \\ 2.000 \end{pmatrix}.
$$

So, the estimates found from steps 1 and 2 are:

$$
\hat{\beta}_1 = 1.0000, \quad \hat{\beta}_1 = 10.000
$$

and

$$
\hat{\beta}_2 = 0.20000, \quad \hat{\beta}_2 = 2.000.
$$

Alternative Step 2: Calculate $X'X = \begin{pmatrix} 2.54148 & 3.85542 \\ 3.85542 & 9.55504 \end{pmatrix}$, $X'\mathbf{\chi} = \begin{pmatrix} 33.1256 \\ 57.6642 \end{pmatrix}$,

$$
(X'X)^{-1} = \begin{pmatrix} 1.01437 & -0.40929 \\ -0.40929 & 0.26980 \end{pmatrix}
$$

and $\hat{\mathbf{\beta}} = (X'X)^{-1}X'\mathbf{\chi} = \begin{pmatrix} 10.000 \\ 2.000 \end{pmatrix}$. Again, $\hat{\beta}_1 = 10$ and $\hat{\beta}_2 = 2$, as expected.

The estimates are exact to within rounding error because no random error was added to the model.

In practice both curve peeling and the method of partial totals will provide initial estimates of the parameters in the model. The method of partial totals is straightforward, whereas the curve peeling technique requires some artistic subjectivity on the part of the investigator.
Sum of exponentials plus a constant

Suppose the model is written as

\[Y_i = \gamma + \sum_{k=1}^{p} \beta_k e^{-\alpha_k x_i} \]

If \(k = 1 \) the model is simply

\[Y_i = \gamma + \beta e^{-\alpha x_i} \]

and methods similar to those for the Mitscherlich model may be used. Recognize that \(\gamma \) is an asymptote to which the response now decays rather than grows as in the Mitscherlich model.

If \(k \geq 2 \) then one of several methods may be employed. An extension of the method of partial totals is discussed by Cornell (1962). A simpler approach is to take \(\gamma_0 = \min y_i \) and proceed to work with the new data as \(y_i - \gamma_0 \) via the techniques developed for sums of exponentials. It may be wise to choose \(\gamma_0 = f \min_0 y_i \) where \(0 < f \leq 1 \) since bias due to the exponential terms may be non-negligible.

Summary

All of the nonlinear models considered in this report have at least one thing in common. They are all solutions to first order differential equations (or a system of first order DEs in the case of the sum of exponentials). It is clear that initial parameter estimates are easily found using linear least squares once an estimate of the parameter \(\rho \) (or the \(\rho_k \)'s) has been determined. Similar approaches may be applied to nonlinear models not discussed here.

Probably the single most important key to successful initial estimates is common sense. It is common sense to crudely interpolate the observed responses so that simple (often consistent) methods developed for equally spaced xs may be used. It is also common sense that directs one to use estimators based upon a suitably linearized version of the model as well as past experience. These will always prove superior to "hit or miss" (sometimes aptly termed "shotgun") procedures.
References

Appendix: Data sets used in the examples

<table>
<thead>
<tr>
<th>Set 1</th>
<th></th>
<th>Set 2</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(i)</td>
<td>(x_i)</td>
<td>(y_i)</td>
<td>(i)</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>9.24197</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>5.97771</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>7.30348</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>7.30334</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>3.96406</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
<td>5.23950</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>6</td>
<td>1.79433</td>
<td>7</td>
</tr>
<tr>
<td>8</td>
<td>7</td>
<td>2.04656</td>
<td>8</td>
</tr>
<tr>
<td>9</td>
<td>8</td>
<td>1.12700</td>
<td>9</td>
</tr>
<tr>
<td>10</td>
<td>9</td>
<td>1.44355</td>
<td>10</td>
</tr>
<tr>
<td>11</td>
<td>10</td>
<td>0.64757</td>
<td>11</td>
</tr>
<tr>
<td>12</td>
<td>11</td>
<td>0.72615</td>
<td>12</td>
</tr>
<tr>
<td>13</td>
<td>12</td>
<td>0.52754</td>
<td>13</td>
</tr>
<tr>
<td>14</td>
<td>13</td>
<td>0.49025</td>
<td>14</td>
</tr>
<tr>
<td>15</td>
<td>14</td>
<td>0.63366</td>
<td>15</td>
</tr>
<tr>
<td>16</td>
<td>15</td>
<td>0.26805</td>
<td>16</td>
</tr>
<tr>
<td>17</td>
<td>16</td>
<td>0.24347</td>
<td>17</td>
</tr>
<tr>
<td>18</td>
<td>17</td>
<td>0.19073</td>
<td>18</td>
</tr>
<tr>
<td>19</td>
<td>18</td>
<td>0.21324</td>
<td>19</td>
</tr>
<tr>
<td>20</td>
<td>19</td>
<td>0.10275</td>
<td>20</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Set 3</th>
<th></th>
<th>Set 4</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(i)</td>
<td>(x_i)</td>
<td>(y_i)</td>
<td>(i)</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0.89988</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1.14275</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>1.97427</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>2.71334</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>3.21267</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
<td>2.91246</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>6</td>
<td>4.56462</td>
<td>7</td>
</tr>
<tr>
<td>8</td>
<td>7</td>
<td>4.61599</td>
<td>8</td>
</tr>
<tr>
<td>9</td>
<td>8</td>
<td>4.15900</td>
<td>9</td>
</tr>
<tr>
<td>10</td>
<td>9</td>
<td>5.59675</td>
<td>10</td>
</tr>
<tr>
<td>11</td>
<td>10</td>
<td>6.48571</td>
<td>11</td>
</tr>
<tr>
<td>12</td>
<td>11</td>
<td>6.72315</td>
<td>12</td>
</tr>
<tr>
<td>13</td>
<td>12</td>
<td>7.59674</td>
<td>13</td>
</tr>
<tr>
<td>14</td>
<td>13</td>
<td>7.47629</td>
<td>14</td>
</tr>
<tr>
<td>15</td>
<td>14</td>
<td>7.52931</td>
<td>15</td>
</tr>
<tr>
<td>16</td>
<td>15</td>
<td>7.93789</td>
<td>16</td>
</tr>
<tr>
<td>17</td>
<td>16</td>
<td>9.57398</td>
<td>17</td>
</tr>
<tr>
<td>18</td>
<td>17</td>
<td>8.72673</td>
<td>18</td>
</tr>
<tr>
<td>19</td>
<td>18</td>
<td>8.99235</td>
<td>19</td>
</tr>
<tr>
<td>20</td>
<td>19</td>
<td>9.48426</td>
<td>20</td>
</tr>
<tr>
<td>21</td>
<td>20</td>
<td>5.00</td>
<td>21</td>
</tr>
<tr>
<td>22</td>
<td>21</td>
<td>5.25</td>
<td>22</td>
</tr>
<tr>
<td>23</td>
<td>22</td>
<td>5.50</td>
<td>23</td>
</tr>
<tr>
<td>24</td>
<td>23</td>
<td>5.75</td>
<td>24</td>
</tr>
</tbody>
</table>