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For the one-sided hypothesis testing problem it is shown 

that it is possible to reconcile Bayesian evidence against H0 , 

expressed in terms of the posterior probability that H0 is true, 

with frequentist evidence against H0 , expressed in terms of the 

p-value. In fact, for many classes of prior distributions it is 

shown that the infimum of the Bayesian posterior probability of 

H0 is equal to the p-value; in other cases the infimum is less 

than the p-value. The results are in contrast to recent work of 

Berger and Sellke (1985) in the two-sided (point null) case, 

where it was found that the p-value is much smaller than the 

Bayesian infimum. Some comments on the point null problem are 

also given. 

KEY WORDS AND PHRASES: Posterior probability; p-value; Prior 

distribution. 



Reconciling Baye•ian and Frequentist Evidence 

in the One-Sided Testing Problea 

GEORGE CASELLA and ROGER L. BERGER.* . 

1. IRTR.ODUCTIOIJ 

In the problem of hypothesis testing, 'evidence' can be thought of as 

a post-experimental (data-based) evaluation of the tenability of the null 

hypothesis, H0 • To a Bayesian, evidence takes the form of the posterior 

probability that H0 is true, while to a frequentist, evidence takes the 

form of the p-value, or the observed level of significance of the result. 

If the null hypothesis consists of a single point, it has long been known 

that these two measures of evidence can greatly differ. The famous paper 

of Lindley (1957) illustrates the possible discrepancy in the normal case. 

The question of reconciling these two measures of evidence has been 

treated in the literature. For the most part, the two-sided (point null) 

problem has been treated, and the major conclusion has been that the 

p-value tends to overstate the evidence against H0 (that is, the p-value 

tends to be smaller than a Bayesian posterior probability). Many refer­

ences can be found in Shafer (1982). However, Pratt (1965) does state that 

in the one-sided testing problem the p-value can be approximately equal to 

the posterior probability of H0 . 

A slightly different approach to the problem of reconciling evidence 

is taken by DeGroot (1973). Working in a fairly general setting, DeGroot 

constructs alternative distributions and finds improper priors for which 

the p-value and posterior probability match. DeGroot assumes that the 

alternative distributions are stochastically ordered which, although he 
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does not explicitly state it~ essentially puts him in the one-sided testing 

problem. 

Dickey (1977), in the two-sided problem, considers classes of priors, 

and examines the infimum of the "Bayes factor," which is closely related 

to the posterior probability of H0 • He also concludes that the p-value 

overstates the evidence against H0 , even when compared to the infimum of 

Bayesian measures of evidence. 

A recent paper by J. Berger and T. Sellke (1985) has approached the 

problem of reconciling evidence in a manner similar to Dickey's approach. 

For the Bayesian measure of evidence they consider the infimum, over a 

class of priors, of the posterior probability that H0 is true. For many 

classes of prior it turns out that this infimum is much greater than the 

frequentist p-value~ leading Berger and Sellke to conclude that"··· 

significance levels can be highly misleading measures of the evidence 

provided by the data against the null hypothesis." 

Although their arguments are compelling, and may lead one to question 

the worth of p-values, their analyses are restricted to the problem of 

testing a point null hypothesis. Before dismissing p-values as measures of 

evidence, we feel that their behavior should be examined in other hypothe­

sis testing situations. 

The testing of a point null hypothesis is one of the most misused 

statistical procedures. In particular, in the location parameter problem, 

the point null hypothesis is more the mathematical convenience rather than 

the statistical method of choice. Few experimenters, of whom we are aware, 

want to conclude "there is a difference." Rather, they are looking to 

conclude "the new treatment is better." Thus there is a direction of 

interest in many experiments, and saddling an experimenter with a two-sided 

test would not be appropriate. 
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In this paper we consider the problem of reconciling evidence in the 

one-sided testing problem. We find, in contrast to the results of Berger 

and Sellke, that evidence can be reconciled. For classes of reasonable, 

impartial priors, we obtain equality between the infimum of the Bayes 

posterior probability that H0 is true and the frequentist p-value. In 

other cases this Bayesian infimum is shown to be a strict lower bound on 

the p-value. Thus, the p-value may be on the boundary or within the range 

of Bayesian evidence measures. 

In Section 2 we present some necessary preliminaries, including the 

classes of priors we are considering and how they relate to those con­

sidered in the two-sided problem. Section 3 contains the main results 

concerning the relationship between Bayesian and frequentist evidence, and 

Section 4 contains comments, in particular about the case of testing a 

point null hypothesis. 
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2. PRELIMIIIARIES 

We consider testing the hypotheses 

vs. (2.1) 

based on observing X=x, where X has location density f(x-a). Throughout 

this paper we will often assume that 

i) f(·) is symmetric about zero 

ii) f(x-a) has monotone likelihood ratio (mlr) 

but we will explicitly state these assumptions whenever used. Recall that 

ii) implies that f(•) is unimodal (Barlow and Proschan, 1975, p. 76). 

If X=x is observed, a frequentist measure of evidence against H0 is 

given by the p-value 

01) 

p(x) • P(X ~ xJS•O) = f f(t)dt 

X 

(2.2) 

A Bayesian measure of evidence, given a prior distribution ~(8), is the 

probability that H0 is true given X•x, 

0 

J f(x-9)d~( a) 

P(H0 Jx) • P(a~OJx) = 
-01) 

( 2. 3) 
01) 

J f(x-a)d~(a) 
-01) 

Our major point of concern is whether these two measures of evidence 

can be reconciled, that is, can the p-value, in some sense, be regarded as 

a Bayesian measure of evidence. Since the p-value is based on the objec-

tive frequentist model, it seems that if reconciliation is possible, we 

must consider impartial prior distributions. By impartial we mean that the 
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prior distribution gives equal weight to both the null and alternative 

hypotheses. 

Four reasonable classes of distributions are given by 

rA = {all distributions giving mass t to each of ( -G),O] and ( 0 , a1) } 

rs = {all distributions symmetric about zero} 
(2.4) 

rus = {all distributions with unimodal densities, symmetric about zero} 

fNOR = {all normal (O,'t 2 ) distributions, O~'t 2 <a1} 

As our Bayesian measure of evidence we consider inf P(H0 1x), where the 

infimum is taken over a chosen class of priors. We then examine the 

relationship between this infimum and p(x), and see if there is agreement. 

If so, then we have obtained a reconciliation of Bayesian and frequentist 

measures of evidence. 

This development is, of course, similar to that of Berger and Sellke 

(I985), who consider the two-sided hypothesis test H0 : a•O vs. HI: a~O. 

They use priors that give probability ~O and I-~0 to H0 and HI' respective­

ly, and spread the mass over HI according to a density g(8), allowing g(·) 

to vary within a class of distributions similar to the classes in (2.4). 

For any numerical calculations they choose ~0 = t, asserting that this 

provides an impartial prior distribution. We will discuss this choice in 

Section 4. 

For testing H0 : a ~ 0 vs. HI: a > 0, we will mainly be concerned with 

evidence based on observing x > 0. If f is symmetric with mlr, then for x 

< 0, p(x) > t and inf P(H0 1x) • t, where the infimum is over any class in 

(2.4) except rA. Thus, for x < 0, neither a frequentist nor a Bayesian 

would consider the data as giving evidence against H0 • 
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3. COMPAitiliG MEASURES OF EVIDEIICE 

In this section we consider prior distributions contained in the 

classes given in (2.4), and various types of sampling densities. We 

compare inf P(H0 1x) with p(x) under different assumptions and find many 

situations in which inf P(H0 1x) $ p(x). For the classes fUS and fNOR' as 

well as some others, we show that inf P(H0 1x) = p(x) if f is symmetric and 

has mlr. 

We begin with a computational lemma that will facilitate many subse-

quent calculations. The essence of the lemma is that inf P(H0 1x) is the 

same whether we take the infimum over a given class of priors, or over the 

class of all mixtures of members of the class. Since many interesting 

classes can be expressed as mixtures of simpler distributions, this lemma 

will prove to be extremely helpful. 

Lemma 3.1: Let f = {~ : aeA} be a class of prior distributions on a 

the real line indexed by the set A. Let fM be the set of all mixtures of 

elements of r, that is, 

~ e rM H ~(B) K f ~a(B)dP(a) 
A 

for some probability measure P on A and all measurable B. Then 

Proof: We use the notation P~(H0 1x) to indicate that ~ is the prior 

used in calculating a posterior probability. 

Consider the random triple (A,9,X) with joint distribution defined by: 

The distribution of Xl9=a has density f(x-e), the distribution of 9IA•a is 

wa, and the distribution of a is P. Then for any ~ e fM, 
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P (H0 1x) = P (e~OIX=x) 
'If 'JI' 

= EA[P(9~0IA=a,X=x)IX=x] 

= EA [P'JI'(e~OIX=x)IX=x] 
a 

• in£ P (e~OIX=x) 
aEA 'Ira 

= in£ P(H0 1x) 
1r er 

a 

The opposite inequality is true since r c rM, and (3.1) is established. D 

We note that this theorem can be proved in greater generality than is 

done here but, as stated, it will serve our purposes. 

By using Lemma 3.1 we can obtain conditions under which p(x) is an 

upper bound on inf P(H0 1x) for the class r 5 through consideration of a 

smaller class contained in rs, 

r2PS = {all two-point distributions symmetric about 0} 

since r5 is the class of all mixtures of distributions in r 2PS' 

Theorem 3.1.: For the hypotheses in (2.1), iff is symmetric and has 

mlr and if x>O, then 

(3.2) 

Proof: The equality in (3.2) follows from Lemma 3.1. For the 

'JI' E fZPS that gives probability t to the two points 9 = ±k we have 

f(x+k) 
P(Holx) = f(x-k)+f(x+k) 
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The assumptions on f imply that, for x>O, P(H0 1x) is decreasing in k and 

hence 

i f ( I ) • i f(x+k) 'i ~----::1~~ 
n P Ho x = k~ ~ f(x-k)+f(x+k) = ~ m 1 + f(k-x) 
~er2Ps ~ k~ - -f(k+x) 

where we have used the symmetry of f in the second equality. For the 

remainder of the proof assume that f'(t) exists for all t and the support 

of f is the entire real line. If either of these conditions fail to hold, 

the proof can be suitably modified. 

Since f has mlr we can write f(t) = exp[-g(t)] where g is convex, i.e, 

f is log concave. Now 

f(k-x) = exp{g(k+x) - g(k-x)} 
f(k+x) 

~ exp{2xg'(k-x)} 
(3. 3) 

by the convexity of g. Define 1- = 1-im g'(t), which must exist since g'(t) 
t~ 

is increasing. If 1-z~ the theorem is trivally true~ so assume that 1-<~. 

Substituting 1- for g'(k-x) in (3.3) gives a lower bound on the ratio 

f(k-x)/f(k+x), and it then follows that 

in£ P(H0 1x) 
11Ef2PS 

Next note that for t>O, the ratio 

f(t) ,tt-g(t) 
-1-t = e 

e 

is increasing in t, since 1- ~ g'(t). This implies that 

~ ~ 

f f( t)dt J e -1-tdt 

p(x) ,.. X 
~ 

X = te-,tx 
~ ~ 

2/f(t)dt zf e-,ttdt 

0 0 
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by an application of the Neyman-Pearson Lemma together with a corollary 

relating power to size (Lehmann, 1959, Corollary 1, p. 67). 

Combining this inequality with that for inf P(H0 1x), it is straight­

forward to verify that 

proving the theorem. II 

1 

1 2'-x + e 
2: inf P(H0 1x) 

1rEf2PS 

For densities f whose support is the entire real line, it must be the 

case that "~0 so the inequality between inf P(H0 1x) and p(x) is strict. 
'1fEf2PS 

If f has bounded support then equality may be attained. 

Table 1 gives explicit expressions for some common distributions, the 

first three satisfying the conditions of Theorem 3.1. Note in particular 

that the values calculated for the double exponential distribution are 

quite similar to the bounds obtained in the above proof, suggesting that 

this distribution plays some role as a "boundary" distribution. The Cauchy 

distribution, which is symmetric but does not have mlr, does not attain its 

infimum at k=~ but rather at k = (x2 +1)t. The exponential distribution, 

which has mlr but is asymmetric, attains its infimum at k=x. For both of 

these distributions p(x) is greater than inf P(H0 1x). 

We now turn to the class of distributions fUS' all priors with 

symmetric unimodal densities. We can, in fact, demonstrate equality 

between p(x) and inf P(H0 1x) for this class. We will again use Lemma 3.1 

and the fact that rus is the set of all mixtures of 

U = {all symmetric uniform distributions} 
s 
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Iheorem 3.2: For the hypotheses in (2.1), if f is symmetric and has 

mlr 

the 

and 

and if x>O then 

inf 
'lrEfus 

Proof: The first 

second equality let 

P(H0 1x) "" inf P(H0 1x) "" p(x) 
weu s 

equality in (3.4) follows from 

'1(9) be uniform (-k,k). 

0 

J f(x-9)d9 

-k 
P(H0 1x) • k 

J f(x-9)d9 

-k 

Then 

Lemma 3.1. 

"" (f(x-k)+f(x+k)) [ f(x+k) _ P(Hol x)] 
k f(x-k)+f(x+k) 

J f(x-9)d9 

-k 

(3.4) 

To prove 

(3. 5) 

We will now establish that P(H0 1x), as a function of k, has no minimum 

on the interior of (0,~). Suppose k•ko satisfies 

d 
dk P(Holx>jk k • o • 0 

It is straightforward to establish that the sign of the second derivative, 

evaluated at k•k0 , is given by 

( 3. 6) 

Since f is symmetric and has mlr, the ratio f(x+k)/f(x-k) is decreasing in 

k for fixed x>O. Therefore, the sign of (3.6) is always negative, so any 

interior extremum can only be a maximum. The minimum is obtained on the 

boundary, and it is straightforward to check from (3.5) that 
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0 

J f(x-e)de 0 

'-im ...;-~;;.._ ___ = J f(x-9)de = p(x) 
k~ J f(x-e)de -CX) 

-k 

D 

In Theorem 3.2, as well as Theorem 3.3, the infimum equals the value 

of P(H0 jx) associated with the improper prior, Lebesgue measure on (-CX>,CX>). 

Indeed, the theorems are proved by considering a sequence of priors 

converging to this "uniform (-CX>,CX>)" prior. However, in other examples, 

such as the Cauchy and exponential examples following Theorem 3.4, the 

infimum is less than the value for this limiting uniform prior. 

Certain subclasses of rUS might also be of interest, for example, 

rNOR' the class of all normal priors with mean zero. Theorem 3.3 shows 

that any class, like rNOR' that consists of all scale transformations of a 

bounded, symmetric, and unimodal density will have inf P(H0 1x) • p(x) if f 

is symmetric with mlr. Furthermore, by using Lemma 3.1, this equality will 

hold for mixtures over these classes. For example, by considering scale 

mixtures of normal distributions in rNOR' we could obtain a class that 

included all t-distributions. 

Theorem 3.3: Let g(9) be any bounded, symmetric, and unimodal prior 

density, and consider the class 

ra(g) - {'IT : 'IT (e) = g(9/a)/a, a>O} a a (3.7) 

For the hypotheses in (2.1), iff is symmetric and has mlr and if x>O, then 
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a 
Since f (g) C rUS' by Theorem 3.2 

in& P(H0 1x) ~ p(x) 
~ er (g) 

a 

To establish the opposite inequality, write 

in& P(H0 1x) ~ ~im P~ (H0 1x) 
~aer (g) a~ a 

0 

J f(x-9)g(8/a)da 

-~ = ~im ---------------­
~ 

a~ J f(x-9)g(9/a)da 

-~ 

(3.8) 

The boundedness of g allows us to apply the dominated convergence theorem 

to bring the limit inside the integral. Furthermore, since g is symmetric 

and unimodal, ~im g(9/a) = g0 (say) exists and is positive. Thus 
a~ 

= p(x) 

establishing that in& P(H0 1x) ~ p(x) which together with (3.8) proves the 
~ er (g) 

theorem. o a 

The conditions on g and f may be relaxed and a similar theorem can be 

proved. Since the proof of Theorem 3.4 is similar to that of Theorem 3.3 

we omit it. 

Theorem 3.4: Let f be any density on II , and let g be any prior that 

is bounded and left- and right-continuous at zero. Denote ~im g(9) • g(O-) 
+ a ato 

and ~im g(9) = g(O ), and define the class r (g) as in (3.7). Then for the 
e~o _ + 

hypotheses in (2.1), if xis such that max{g(O )p(x),g(O )[1-p(x)]} > 0, 
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(3.9) 

Note in particular that, in Theorem 3.4, if g(O+) m g(O-) then the 

right-most expression in (3.9) is p(x) showing that, for any location 

sampling density, the infimum over such classes of scale transformations is 

bounded above by the p-value. If f is not symmetric or does not have mlr, 

then strict inequality may obtain in (3.9). We will mention two examples. 

For both, Theorem 3.4 implies inf P(H0 !x) ~ p(x) but, in fact, the in­

equality is strict. For each example we let g be the Uniform(-1,1) density 

a so that r (g) = US. Let ~k E US denote the Uniform(-k,k) density. 

Let f be a Cauchy density, which is symmetric but does not have mlr. 

For ~k it is straightforward to calculate 

-1 -1 
P (Holx) • tan (x+k)-tan (x) 
~k tan-1(x+k)-tan-1(x-k) 

For fixed x>O, P (H0 !x) is not monotone in k, but rather attains a unique 
nk 

minimum at a finite value of k. Table 2 lists the minimizing values of k, 

inf P(H0 !x), and the p-value for selected values of x. Examination of 

Table 2 shows that inf P(H0 1x) < p(x); this observation held true for more 

extensive calculations that are not reported here. 

For our second example, let f be an exponential location density, 

which has mlr but is asymmetric. For x>O and nk e US we have 

P (H0 !x) • [exp(k)-1]/{exp[k+min(k,x)]-1} 
~k 

which is minimized (in k) at k=x, with minimum 

x 2x -x 
inf P(H0 1x) = (e -1)/(e -1) < e = p(x) 

So again, strict inequality obtains in (3.9). 
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In fact, for small values of x, the p-value can be regarded as a 

conservative Bayesian measure in this example. It is straightforward to 

calculate 

-x 
sup P(H0 1x) = max{t,e } = max{t,p(x)} 

so, in particular, if x ~ log 2 then p(x) is larger than P(H0 1x) for every 

prior in the class. 

Finally, we turn to the class fA' which contains all distributions 

giving mass t to each of H0 and H1 , and might be considered the broadest 

class of impartial priors. However, this class is really too broad to be 

of any practical interest since, for any density f, inf P(H0 1x) • 0. To ver­
~~rA 

ify this, let g be any bounded density in fA with g(O ) = 0 and g(O+) > 0. 

Then if p(x) < 1, Theorem 3.4 shows that inf P(H0 1x) = in& P(H0 1x) • 0. 
~erA ~er (g) 

However, the restriction that the priors give equal probability to H 0 

and H1 has little weight in the above argument. A prior g could assign 

probability arbitrarily near one to H0 and still we would have inf P(H0 1x) 
- + r~(g) 

= 0 if g(O ) • 0 and g(O ) > 0. It is important to note that, for any class 

of priors r possessing densities, if the class is closed under scale trans-

formations then Theorem 3.4 gives an upper bound on inf P(H0 1x) which depends 

only on the local behavior of g, the density of any element of r, at 0. 
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4. COMKEIITS 

For the problem of testing a one-sided hypothesis in a location 

parameter family, it is possible to reconcile measures of evidence between 

the Bayesian and frequentist approaches. The phrase, "the probability that 

Ho is true," has no meaning within frequency theory, but it has been argued 

that practitioners sometimes attach such a meaning to the p-value. Since 

the p-value, in the cases considered, is an upper bound on the infimum of 

P(H0 1x) it lies within or at the boundary of a range of Bayesian measures 

of evidence demonstrating the extent to which the Bayesian terminology can 

be attached. In particular, for the Cauchy (non-mlr) and exponential 

(asymmetric) sampling densities we found that, for various classes of 

priors, inf P(H0 1x) < p(x) so that p(x) is, in fact, equal to P(H0 1x) for 

some prior in the class (the prior depending on x). 

The discrepancies observed by Berger and Sellke in the two-sided 

(point null) case do not carry over to the problems considered here. This 

leads to the question of determining what factors are crucial in differen­

tiating the two problems. It seems that if some prior mass is concentrated 

at a point (or in a small interval) and the remainder is allowed to vary 

over HI' then discrepancies between Bayesian and frequentist measures will 

obtain. In fact, Berger and Sellke note that for testing H0 : 9•0 vs. 

HI: 9>0, the p-value and the Bayesian infimum are quite different. (For 

example, for X~ n(9,1), an observed x • 1.645 will give a p-value of .OS, 

while over all priors for which mass t is concentrated at zero, inf 

P(H0 1x=I.645) • .21.) 

Seen in another light, however, placing a point mass of t at H0 may 

not be representative of an impartial prior distribution. For the problem 

of testing H0 : 9SO vs. H1 : 9>0, consider priors of the form 

(4.1) 
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where ~O is a fixed number, and h(9) and g(a) are proper prior densities on 

(-~,0] and (0,~), respectively. It then follows that, iff is unimodal 

with mode 0 and x>O, 

0 

~0 f f(x-9)h(9)d9 

sup P(H0 1x) • sup 
h h 

-~ 

0 ~ 

~oJ f(x-9)h(9)d9+(1-~0 >/ f(x-9)g(9)de 

-~ . 0 

~ 

~0f(x)+(l-~0>/ f(x-a)g(9)d9 

0 

(4.2) 

and the last expression is equal to P(H0 1x) for the hypotheses H0 : 9•0 vs. 

H1 : 9>0 with prior giving mass ~O to 9=0 and having density (l-~0 )g(9) if 

9>0. Thus, concentrating mass on the point null hypothesis is biasing the 

prior in favor of H0 as much as possible (for fixed g) in this one-sided 

testing problem. 

The calculation in (4.2) casts doubt on the reasonableness of regard-

ing ~0=t as impartial. In fact, it is not clear to us if any prior that 

concentrates mass at a point can be viewed as an impartial prior. There-

fore, it is not surprising that the p-value and Bayesian evidence differ in 

the normal example given above. Setting ~0 -t actually reflects a bias 

toward H0 , which is reflected in the Bayesian measure of evidence. 

Indeed, any class of priors which fixes the probability distribution 

on one hypothesis and allows the probability distribution on the other 

hypothesis to vary might lead to extreme posterior probabilities. For 

example, consider prior densities of the form 
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where h and g are as above. Then under conditions similar to those of 

Theorem 3.3, if a 1 is fixed, 

but if a2 is fixed then 

Clearly, there are classes of priors for which there are large discrep-

ancies between inf P(H0 1x) and p(x); however, the fact remains that 

reconciliation of measures of evidence is possible between the Bayesian and 

frequentist approaches. Since these measures can overlap one another, 

interpretations of one school of thought can have meaning within the other 

and, contrary to the message of Berger and Sellke, p-values may not always 

overstate evidence against H0 in that P(H0 1x) < p(x) for some priors under 

consideration. 
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Table 1. P-Values and inf P(H0 1x) for the Classes of 

S,..atric Two-Point Distributions and All 

Syaaetric Distributions (x>O) 

Distribution p(x) inf P(H0 I x) 

Normal 1 - t(x) 0 

Double exponential te-x (l+e2x) -1 

Logistic (1 + ex)-1 (l+e2x) -1 

tan -1 l+(x-(xZ +q t p Cauchy t -
X 

1f 2+[x-(x2 +l)t] 2 +[x+(x2+1)t]z 

Exponential -x (l+e2x)-1 e 
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Table 2. P-Values and inf P(H0 1x) for X ~ Cauchy, 

Infiaat Over U 
s 

X k min p(x) inf P(H0 I x) 

.2 2.363 .437 .429 

.4 2.444 .379 .363 

.6 2.570 .328 • 306 

.8 2.727 .285 .260 
1.0 2.913 .250 .222 
1.2 3.112 .221 .192 
1.4 3.323 .197 .168 
1.6 3.541 .178 .148 
1.8 3.768 .161 .132 
2.0 3.994 .148 .119 
2.5 4.572 .121 .094 
3.0 5.158 .102 .077 
3.5 5. 746 .089 .065 
4.0 6.326 .078 .056 
5.0 7.492 .063 .044 

10.0 13.175 .032 .020 
25.0 29.610 .013 .007 
50.0 56.260 .006 .004 
75.0 82.429 .004 .002 

100.0 108.599 .003 .002 


