GENERAL BINARY PARTIALLY BALANCED BLOCK DESIGNS

by

Muhammad Shafiq and Walter T. Federer

University of Riyadh, Riyadh, Saudi Arabia

and

Cornell University, Ithaca, New York, U.S.A.

AMS 1970 subject classification: Primary 62K10; Secondary 62K05

abstract classification: 9.1, 7.1

Key words and phrases:

Basic binary partially balanced incomplete block designs, A-, D-, E-optimality, group divisible, triangular association scheme, latin square type association scheme, efficiency, construction, existence.

Paper No. BU-656-M in the Biometrics Unit, Cornell University. Revised 10/82.
GENERAL BINARY PARTIALLY BALANCED BLOCK DESIGNS

by

Muhammad Shafiq and Walter T. Federer
University of Riyadh, Riyadh, Saudi Arabia
and
Cornell University, Ithaca, New York, U.S.A.

Summary

Binary partially balanced incomplete block design theory has been generalized in the sense that the i'th treatment occurs either \(m_0 \) or \(m_1 \) times, \(0 \leq m_0 < m_1 \), in the j'th block rather than zero or one time as in traditional design theory. The intrablock analysis for general binary partially balanced block designs with s associate classes is described along with solutions for effects, variances, and efficiencies. The existence of these designs is proved and a method of construction is given. Optimality criteria are developed for selecting an optimal design or designs from the constructed class of group divisible binary partially balanced block designs. Eigenvalues were evaluated for group divisible, triangular association scheme, and latin square association scheme general binary partially balanced block designs. An example is presented showing how to construct a class of general binary partially balanced block designs and to use the six optimality criteria developed in selecting an optimal design or designs.
1. Introduction

Statistical literature on binary partially balanced incomplete block designs has been confined almost entirely to the case wherein the occurrence, \(n_{ij} \), of the \(i \)'th treatment in the \(j \)'th block is either zero or one. Cheng (1977), Shafiq (1978), and Shafiq and Federer (1979), have considered more general situations. The former considered, among other items, the case where \(n_{ij} \) was either \(m \) or \(m+1 \), and the latter considered the case where \(n_{ij} \) was either \(m_0 \) or \(m_1 \), \(0 \leq m_0 < m_1 \), \(m_0 \) and \(m_1 \) being positive integers.

When \(n_{ij} \) is zero or one, the design is denoted as a basic binary partially balanced incomplete block design; the design parameters are the number of treatments \(v \), the number of blocks \(b \), the number of replicates \(r \), of each treatment, the size of the block \(k \), and the number of treatments \(n_a < v \ (a = 1, 2, \ldots, s) \) which have pairs of treatments occurring in exactly \(\lambda_a \) blocks where at least two of the \(\lambda_a \) are unequal. The parameters of the general binary partially balanced block design are defined as functions of the parameters of the basic design, \(m_0 \), and \(m_1 \). Complete, incomplete, and orthogonal general binary partially balanced block designs (GBPBBD) are defined. Conditions on the coefficient matrix \(\Omega^{*} \) of a GPBBD with \(s \) association classes are given for a design to be \(s \)-partially variance balanced. A result from Bose and Mesner (1959) is generalized and used extensively in obtaining the intrablock analysis for a GPBBD. Intrablock solutions for treatment effects and the various variances of a difference between two effects are given. Relative efficiencies of two designs for special cases are also presented.

The eigenvalues of \(n^*, n^* ' \), where \(n^* \) is the incidence matrix of a GPBBD, and of the coefficient matrix \(\Omega^* \) were obtained. The results are applied to find the eigenvalues of three classes of designs; group divisible GPBBD, GPBBD having a triangular association scheme, and GPBBD having a latin square association scheme.
[see, e.g., Bose, Clatworthy, and Shrikhande (1954)].

The existence of a basic binary partially balanced incomplete block design (BBPBI B D) implies the existence of a class of GBPBBBD's for given \(v \) and \(b \). In Theorems 5.1, 5.2, and 5.3, criteria are developed for A-, E-, D-optimality of a design in the class of two associate group divisible GBPBBBD's. An example is included to illustrate the consequences and uses of Theorems 5.1 to 5.3. It should be noted that the results can be extended to more than two associate classes, but the accompanying algebra becomes laborious.

2. Parameters of general binary partially balanced block design (GBPBBBD) and some definitions

Definition 2.1. Given a basic binary partially balanced incomplete block design (BBPBI B D) with design parameters \((v, b, r, k, \lambda_1, \lambda_2, \cdots, \lambda_s; n_{ij} = 0 \) or 1) and an association scheme with the parameters \((n_u, p_{j,u}^i; i,j,u = 1, 2, \cdots, s) \), a general binary partially balanced block design (GBPBBBD) with parameters \((v, b, r^*, k^*, \lambda_1^*, \lambda_2^*, \cdots, \lambda_s^*; n_{ij}^* = m_0 \) or \(m_1 \)) and the same scheme as given above, is defined to be an arrangement of \(v \) treatments in \(b \) blocks each of size \(k^* \) (\(k^* \) not necessarily less than \(v \)) such that its incidence matrix is defined by

\[
\begin{align*}
n^* &= n(m_1 - m_0) + jm_0 \\
\end{align*}
\]

where \(n \) is a \(v \times b \) incidence matrix of a BBPBI B D, \(J \) is a \(v \times b \) matrix with unit entries everywhere, and \(0 \leq m_0 < m_1, m_0 \) and \(m_1 \) being any two positive integers.

The parameters of a GBPBBBD are:

\[
\begin{align*}
r^* &= rm_1 + (b - r)m_0, \\
k^* &= km_1 + (v - k)m_0, \\
\sum_{i=1}^{s} n_{ij}^* &= r^*(k^* - m_1 - m_0) + bm_1m_0,
\end{align*}
\]
\[b \sum_{j=1}^{n_{ij}m_i} h_j^* = \begin{cases} \lambda_0^* & \text{if } g = h, \\ \lambda_i^* & \text{if } (g, h) \text{ are } i^{th} \text{ associates}, \end{cases} \quad (2.5) \]

\[\lambda_0^* = r^* (m_1 + m_0) - bm_1 m_0, \quad (2.7) \]

\[\lambda_i^* = \lambda_i (m_1 - m_0)^2 + 2r (m_1 - m_0) m_0 + bm_0^2, \quad (2.8) \]

and

\[v_{r^*} = b k^* = N^*. \quad (2.9) \]

Definition 2.2. A GBPBBD is said to be incomplete if \(m_0 = 0 \), otherwise, it is complete.

Definition 2.3. A complete GBPBBD is said to be orthogonal if \(r_{ij}^* = r_i^* k_j^*/N^* \), where \(N^* \) is the total number of observations, \(r_i^* \) is the number of replications of the \(i^{th} \) treatment, \(k_j^* \) is the number of entries in the \(j^{th} \) block and \(r_{ij}^* \) is the \((i,j)^{th}\) entry of \(n^* \).

Definition 2.4. A GBPBBD with \(s \) association classes is said to be \(s \)-partially variance balanced if the coefficient matrix \(\lambda^* \) can be expressed as

\[\lambda^* = \lambda_0^* + \lambda_1^* + \cdots + \lambda_s^* B_s, \quad (2.10) \]

where \(\lambda_0^* \) and \(\lambda_1^* \) are as defined above,

\[c_0^* = r^* - \lambda_0^*/k^* + \lambda_1^*/k^* , \]

\[c_1^* = -\lambda_1^*/k^* , \]

\[c_i^* = -(\lambda_i^* - \lambda_1^*)/k^*, \quad i = 2, 3, \ldots, s, \]

and

\[J = B_0 + B_1 + \cdots + B_s , \]

where

\[B_0 = I \quad \text{and} \quad B_i = (p^h_{gi}) \]

and
3. Intrablock analysis of general binary partially balanced block design (GBPBBD) with s association classes

Using the usual linear model for a GBPBBD under the assumptions of homoscedasticity and uncorrelated errors, the best linear unbiased estimate of the treatment effects may be obtained from the reduced normal equations as:

\[
C^* \tau = Q,
\]

where

\[
C^* = r^* I - \frac{n^* n^{**}}{k^*},
\]

\[
Q = T - B^* / k^*,
\]

\[T\text{ and } B\text{ are vectors of treatment and block totals, respectively,}
\]

\[
n^* n^{**} = \lambda^* B_0 + \lambda^* B_1 + \cdots + \lambda^* B_s.
\]

Equation (3.4) is an extension of the equation \(n n' = r_0 B_0 + \lambda_1 B_1 + \lambda_2 B_2 + \cdots + \lambda_s B_s\) from Bose and Mesner (1959), and it reduces to their result if \(m_0 = 0\) and \(m_1 = 1\).

To derive (3.4) we write

\[
n^* n^{**} = [n(m_1 - m_0) + jm_0] [n'(m_1 - m_0) + j'm_0]
\]

\[= \lambda^* r^* + \lambda^* B_1 + \cdots + \lambda^* B_s.
\]

Thus, equation (3.2) may be rewritten as:

\[
C^* = \frac{(r^* k^* - \lambda^*_0 + \lambda^*_1)}{k^*} I - \frac{1}{k^*} J - \frac{1}{k^*} \sum_{i=2}^{s} (\lambda^*_i - \lambda^*_1) B_i.
\]

Now, normal equation (3.1) may be written as:

\[
\begin{bmatrix}
\frac{(r^* k^* - \lambda^*_0)}{k^*} B_0 - \frac{\lambda^*_1}{k^*} B_1 - \frac{\lambda^*_2}{k^*} B_2 - \cdots - \frac{\lambda^*_s}{k^*} B_s
\end{bmatrix} \tau = Q.
\]
After some lengthy algebraic manipulations, a solution of (3.6) is obtained as:

\[
\hat{\tau}_g = \left(r_{k^*} - \lambda^*_0 \right) Q_g - \frac{1}{r_{k^*} - \lambda^*_0} \sum_{i=1}^{s} \sum_{u=1}^{s} d_{iu}^{*} \lambda_i^{*} s_u(Q_g),
\]

(3.7)

where \(\sum_{g=1}^{v} \hat{\tau}_g = 0 \), \(S_u(\hat{\tau}_g) \) is the \(g \)'th element of the vector \(\hat{\tau}_u \), \(S_u(Q_g) \) is the \(g \)'th element of the vector \(B_u Q \), \(d_{iu}^{*} \) are elements of the matrix \(D \) in the matrix equation\(B_u \hat{\tau}_u = DB_u Q \), and the other symbols are as defined previously; \(d_{iu}^{*} \) is the \((i,u)\)'th entry of \((d_{iu}^{*})^{-1}\), the inverse matrix \((d_{iu}^{*})\), where

\[
d_{iu}^{*} = \frac{u_i^* u_{u}^* - \hat{P}_{u1}^* - \hat{P}_{u2}^* - \ldots - \hat{P}_{us}^*}{k^*}, \text{ if } u \neq i
\]

\[
d_{uu}^{*} = \left(r_{k^*} - \lambda^*_0 + u_i^* u_{u}^* - \hat{P}_{u1}^* - \hat{P}_{u2}^* - \ldots - \hat{P}_{us}^* \right)/k^*.
\]

When treatments \(g \) and \(h \) are \(u \)'th associates,

\[
\text{Var}(\hat{\tau}_g - \hat{\tau}_h) = \frac{2\sigma^2}{r^*} \left[\lambda^*_0 - \sum_{i=1}^{s} d_{iu}^{*} \lambda_i^{*} \right].
\]

(3.8)

The estimate of error variance may be obtained from the analysis of variance for a GBPPBD for \(s \) association classes as given in Table 3.1.

Table 3.1. Analysis of Variance for a GBPPBD

<table>
<thead>
<tr>
<th>Source of Variation</th>
<th>d.f.</th>
<th>S.S.</th>
<th>M.S.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blocks (unadjusted)</td>
<td>(b-1)</td>
<td>(\hat{\beta}'B)</td>
<td></td>
</tr>
<tr>
<td>Treatments (adjusted)</td>
<td>(v-1)</td>
<td>(\sum_{g=1}^{v} \hat{\tau}_g Q_g)</td>
<td>(\frac{\text{S.S. Treatment}}{v-1})</td>
</tr>
<tr>
<td>Residual</td>
<td>(N^* - b - v + 1)</td>
<td>(\hat{\gamma}'Y - \frac{\hat{\beta}'B}{N^*} - \hat{\tau}'Q)</td>
<td>(\hat{\gamma}^2 = \frac{\text{S.S. Residual}}{N^* - b - v + 1})</td>
</tr>
<tr>
<td>Total</td>
<td>(N^* - 1)</td>
<td>(\hat{\gamma}'Y - \frac{\hat{\beta}'B}{N^*})</td>
<td></td>
</tr>
</tbody>
</table>
For two associate class designs the equations (3.7) and (3.8) may be written as:

\[\hat{\tau}_g = \frac{k^*}{r^*k^* - \lambda^*_0} Q_g + \frac{1}{r^*k^* - \lambda^*_0} \left[(a^{*11}_1 + a^{*21}_2)S_1(q_g) \right. \]

\[\left. + (a^{*12}_1 + a^{*22}_2)S_2(q_g) \right] \]

(3.9)

and

\[\text{Var}(\hat{\tau}_g - \hat{\tau}_h) = \left(\frac{k^* - a^{*1u}_1 - a^{*2u}_2}{k^* - \lambda^*_0/r^*} \right)^2 \sigma^2, \]

(3.10)

where \((g,h)\) are the \(u\)'th associates \((u = 1, 2)\). The values of \((a^{*iu})\) and the
value of determinant of \(D^{-1}\) may be obtained as:

\[a^{*11} = \frac{(r^*k^* - \lambda^*_0 + \lambda^*_1 + r^*k^* - \lambda^*_1)}{k^* \text{det}} \]

\[a^{*12} = \frac{p^1_{12}(\lambda^*_2 - \lambda^*_1)}{k^* \text{det}} \]

\[a^{*21} = \frac{p^1_{12}(\lambda^*_1 - \lambda^*_2)}{k^* \text{det}} \]

\[a^{*22} = \frac{(r^*k^* - \lambda^*_0 + \lambda^*_1 + p^1_{12}(\lambda^*_2 - \lambda^*_1))}{k^* \text{det}} \]

where

\[k^* \text{det} = (r^*k^* - \lambda^*_0 + \lambda^*_1)(r^*k^* - \lambda^*_0 + \lambda^*_2) \]

\[+ (\lambda^*_1 - \lambda^*_2)(p^1_{12}(r^*k^* - \lambda^*_0 + \lambda^*_2) - p^2_{12}(r^*k^* - \lambda^*_0 + \lambda^*_1)). \]

Then, we may rewrite equations (3.7) and (3.8) as:

\[\hat{\tau}_g = \frac{r^*k^* - \lambda^*_0 + \lambda^*_1 + (p^1_{12} - p^2_{12})(\lambda^*_1 - \lambda^*_2)}{k^* \text{det}} Q_g + \frac{\lambda^*_1 - \lambda^*_2}{k^* \text{det}} S_1(q_g), \]

(3.11)

\[\text{Var}(\hat{\tau}_g - \hat{\tau}_h) = \frac{2\sigma^2 k^*}{k^* \text{det}} \left[(r^*k^* - \lambda^*_0 + \lambda^*_1) + (p^1_{12} - p^2_{12})(\lambda^*_1 - \lambda^*_2) \right], \]

if \((g,h)\) are first associates, \(3.12\)

and

\[\text{Var}(\hat{\tau}_g - \hat{\tau}_h) = \frac{2\sigma^2 k^*}{k^* \text{det}} \left[(r^*k^* - \lambda^*_0 + \lambda^*_1) + (p^1_{12} - p^2_{12})(\lambda^*_1 - \lambda^*_2) \right], \]

if \((g,h)\) are second associates. \(3.13\)
The eigenvalues of \mathcal{C}^*, denoted by $\theta_i(\mathcal{C}^*)$, may be written as:

$$
\begin{align*}
\theta_0(\mathcal{C}^*) &= r^* - r^*k^*/k^* = 0, \\
\theta_1(\mathcal{C}^*) &= \frac{r^*k^* - \lambda^*_0 + \frac{1}{2}(\lambda^*_1 - \lambda^*_2)(p^1_{12} - p^2_{12} - \sqrt{\Delta}) + \lambda^*_1 + \lambda^*_2}{k^*}, \\
\theta_2(\mathcal{C}^*) &= \frac{r^*k^* - \lambda^*_0 + \frac{1}{2}(\lambda^*_1 - \lambda^*_2)(p^1_{12} - p^2_{12} + \sqrt{\Delta}) + \lambda^*_1 + \lambda^*_2}{k^*}
\end{align*}
$$

and

where $\Delta = (p^2_{12} - p^1_{12})^2 + p^2_{12} + p^1_{12} + 1$.

The multiplicities of the roots of \mathcal{C}^* are:

$$
\alpha_0 = v - \alpha_1 - \alpha_2 = 1,
\alpha_1 = \frac{n_1 + n_2}{2} - \frac{(r^*k^* - \lambda^*_0 + \lambda^*_1 + \lambda^*_2)(n_1 + n_2) + n_1 - n_2}{2\sqrt{\Delta}},
\alpha_2 = \frac{n_1 + n_2}{2} + \frac{(r^*k^* - \lambda^*_0 + \lambda^*_1 + \lambda^*_2)(n_1 + n_2) + n_1 - n_2}{2\sqrt{\Delta}}.
$$

For special classes of two associate class designs, the θ_i and α_i, $i = 0, 1, 2$, take on the following values:

(i) For a GBPBBD having a group divisible association scheme, $\theta_0(\mathcal{C}^*) = 0$, $\theta_1(\mathcal{C}^*) = v\lambda^*_2/k^*$, and $\theta_2(\mathcal{C}^*) = (r^*k^* - \lambda^*_0 + \lambda^*_1)/k^* = [n\lambda^*_1(v - n)\lambda^*_2]/k^*$, with multiplicities $\alpha_0(\mathcal{C}^*) = 1$, $\alpha_1(\mathcal{C}^*) = m - 1$, and $\alpha_2(\mathcal{C}^*) = mn/2$.

(ii) For a GBPBBD having a triangular association scheme, $\theta_0(\mathcal{C}^*) = 0$, $\theta_1(\mathcal{C}^*) = [r^*k^* - \lambda^*_0 - (n - 4)\lambda^*_1 + (n - 3)\lambda^*_2]/k^*$, and $\theta_2(\mathcal{C}^*) = [r^*k^* - \lambda^*_0 + \lambda^*_1 + (\lambda^*_1 - \lambda^*_2)]/k^*$, with multiplicities $\alpha_0(\mathcal{C}^*) = 1$, $\alpha_1(\mathcal{C}^*) = n - 1$, and $\alpha_2(\mathcal{C}^*) = n(n - 3)/2$.

(iii) For a GBPBBD having a latin square type association scheme, $\theta_0(\mathcal{C}^*) = 1$, $\theta_1(\mathcal{C}^*) = [r^*k^* - \lambda^*_0 - (s - i)\lambda^*_1 + (s - i + 1)\lambda^*_2]/k^*$, and $\theta_2(\mathcal{C}^*) = [r^*k^* - \lambda^*_0 + i\lambda^*_1 - (i - 1)\lambda^*_2]/k^*$, with multiplicities $\alpha_0(\mathcal{C}^*) = 1$, $\alpha_1(\mathcal{C}^*) = i(s - 1)$, and $\alpha_2(\mathcal{C}^*) = (s - i + 1)(s - 1)$.
4. Relative efficiency of a GBPBBD

A method of comparing two designs is to compute the relative efficiency of one design over the other. Thus, given \((v, b, r^*, k^*) \), the efficiency of a GBPBBD relative to a general binary balanced block design (GBBBD) [if such designs exist] may be obtained as follows. Let \((g,h)\) be the first associates, then for a GBPBBD, the

\[
\text{Var}(\hat{\tau}_g - \hat{\tau}_h) = \frac{2\sigma^2}{r^*} \cdot \frac{r^*k^*}{v\lambda^*} \left[\frac{v\lambda^* r^*k^* - \lambda^*_0 + \lambda^*_2 + (p^1_{12} - p^2_{12})(\lambda^*_1 - \lambda^*_2)}{k^* \det} \right]
\]

and for a GBBBD, the \(\text{Var}(\hat{\tau}_g - \hat{\tau}_h) = (2\sigma^2)/r^* \cdot (r^*k^*/v\lambda^*) \) [see Shafiq and Federer (1979)]. The efficiency of a GBPBBD relative to a GBBBD, where \((g,h)\) are first associates, is:

\[
E_1(\text{GBPBBD}/\text{GBBBD}) = \frac{r^*k^* - \lambda^*_0 + \lambda^*_2}{v\lambda^*} \left[\frac{v\lambda^* r^*k^* - \lambda^*_0 + \lambda^*_2 + (p^1_{12} - p^2_{12})(\lambda^*_1 - \lambda^*_2)}{k^* \det} \right] \quad (4.1)
\]

Similarly, \(E_2(\text{GBPBBD}/\text{GBBBD}) \) denotes the efficiency of GBPBBD relative to GBBBD, where \((g,h)\) are second associates, thus:

\[
E_2(\text{GBPBBD}/\text{GBBBD}) = \frac{r^*k^* - \lambda^*_0 + \lambda^*_2}{v\lambda^*} \left[\frac{v\lambda^* r^*k^* - \lambda^*_0 + \lambda^*_2 + (p^1_{12} - p^2_{12})(\lambda^*_1 - \lambda^*_2)}{k^* \det} \right] \quad (4.2)
\]

For group divisible designs having two association classes, we may write \(\hat{\tau}_g \), variances of the difference of \(\hat{\tau}_g - \hat{\tau}_h \), and efficiencies as:
\[\hat{\tau}_g = \frac{k^*}{\nu \lambda^*_2} \left[\left(\frac{\lambda^*_1 + (v - 1) \lambda^*_2}{n \lambda^*_1 + (v - n) \lambda^*_2} \right) Q_g + \frac{\lambda^*_1 - \lambda^*_2}{n \lambda^*_1 + (v - n) \lambda^*_2} S_1(Q_g) \right], \quad (4.3) \]

\[\text{Var}(\hat{\tau}_g - \hat{\tau}_h) = 2\sigma^2 \frac{k^*}{n \lambda^*_1 + (v - n) \lambda^*_2} \text{ if } (g, h) \text{ are first associates}, \quad (4.4) \]

\[\text{Var}(\hat{\tau}_g - \hat{\tau}_h) = 2\sigma^2 \frac{k^*}{\nu \lambda^*_2} \left(\frac{\lambda^*_1 + (v - 1) \lambda^*_2}{n \lambda^*_1 + (v - n) \lambda^*_2} \right) \text{ if } (g, h) \text{ are second associates}, \quad (4.5) \]

\[E_1^*(\text{GDGBPBBD/GBBBD}) = \frac{n \lambda^*_1 + (v - n) \lambda^*_2}{\nu \lambda^*_2} \text{ if } (g, h) \text{ are first associates}, \quad (4.6) \]

and

\[E_2^*(\text{GDGBPBBD/GBBBD}) = \frac{\lambda^*_2}{\lambda^*_1} \left(\frac{n \lambda^*_1 + (v - n) \lambda^*_2}{\nu \lambda^*_2} \right) \text{ if } (g, h) \text{ are second associates}. \quad (4.7) \]

The average variance for a group divisible GBPBBDD is obtained as:

\[\bar{\nu} = 2\sigma^2 \frac{k^*}{(v - 1) \lambda^*_2} \left[\frac{\nu \lambda^*_2 + (\lambda^*_1 - \lambda^*_2)}{\nu \lambda^*_2 + n(\lambda^*_1 - \lambda^*_2)} - \frac{1}{v} \right]. \quad (4.8) \]

The average efficiency is:

\[E^*(\text{GDGBPBBD/GBBBD}) = (v - 1) \lambda^*_2 / \nu \lambda^*_2 \left[\frac{\nu \lambda^*_2 + (\lambda^*_1 - \lambda^*_2)}{\nu \lambda^*_2 + n(\lambda^*_1 - \lambda^*_2)} - \frac{1}{v} \right]. \quad (4.9) \]

5. **Existence and optimality of GBPBBDD**

The existence of a basic binary partially balanced incomplete block design (BBPBBDD) with parameters \((v, b, r, k, \lambda_1, \lambda_2, \ldots, \lambda_s; n_{ij} = 0 \text{ or } 1)\) and the parameters of the association scheme \((n_1, n_2, \ldots, n_s, p_{jk}^i (i, j, k = 1, 2, \ldots, s))\) implies the existence of a general binary partially balanced block design (GBPBBDD) with parameters \((v, b, r^*, k^*, \lambda^*_1, \lambda^*_2, \ldots, \lambda^*_s; n^*_{ij} = m_0 \text{ or } m_1)\) and with the same parameters of the association scheme. In the class of all equi-replicated and equi-sized block GBPBBDDs, the question arises as to which one(s) of these partially
balanced block designs has (have) the smallest average variance. We answer this question for group divisible general binary partially balanced block designs with two association classes in the next three theorems.

Theorem 5.1. In the class of all equi-replicated equi-sized block group divisible general binary partially balanced block designs (GD GBPBD) with two association classes with parameters \((m_d n_d, b_d, r_d^*, k_d^*, \lambda_1^*, \lambda_2^*; n_{ij} = m_0d \text{ or } m_1d)\) which are derived from group divisible basic binary partially balanced incomplete block designs (GD BBPBIBD) having two association classes with parameters \((m_d n_d, b_d, r_d, k_d, \lambda_1, \lambda_2; n_{ij} = 0 \text{ or } 1)\) such that \(\lambda_1 = \lambda_2 + 1\), the design(s) which maximizes the value of

\[
\frac{\{\text{tr}(C_d^*) - \frac{(m_d - 1)(v - m_d)\{n_d b_d (m_1d - m_0d)^2/v_{r_d^*}\}^2}{\text{tr}(C_d^*) + (2m_d - 1 - v)n_d b_d (m_1d - m_0d)^2/v_{r_d^*}}\}}
\]

is (are) A-optimal, where \(\text{tr}(C_d^*) = [(v - 1)r_d^* - r_d (b_d - r_d) (m_1d - m_0d)^2/r_d^*].\)

Theorem 5.2. In the class of all equi-replicated and equi-sized block group divisible general binary partially balanced block designs (GD GBPBD) having two association classes with parameters \((m_d n_d, b_d, r_d^*, k_d^*, \lambda_1^*, \lambda_2^*; n_{ij} = m_0d \text{ or } m_1d)\) which are derived from group divisible basic binary partially balanced incomplete block designs (GD BBPBIBD) having two association classes with parameters \((m_d n_d, b_d, r_d, k_d, \lambda_1, \lambda_2; n_{ij} = 0 \text{ or } 1)\) such that \(\lambda_1 = \lambda_2 + 1\), and design(s) having the minimal value of \(r_d (b_d - r_d) + b_d (n_d - 1) (m_1d - m_0d)^2\) is (are) E-optimal.

Theorem 5.3. In the class of all equi-replicated and equi-sized blocks group divisible general binary partially balanced block designs (GD GBPBD) having two association classes with parameters \((m_d n_d, b_d, r_d^*, k_d^*, \lambda_1^*, \lambda_2^*; n_{ij} = m_0d \text{ or } m_1d)\) which are derived from group divisible basic binary partially balanced incomplete block designs (GD BBPBIBD) having two association classes with parameters \((m_d n_d, b_d, r_d, k_d, \lambda_1, \lambda_2; n_{ij} = 0 \text{ or } 1)\) such that \(\lambda_1 = \lambda_2 + 1\),
\[\begin{align*}
&b_d, r_d, k_d, \lambda_{1d}, \lambda_{2d}, n_{ij} = 0 \text{ or } 1 \text{ such that } \lambda_1 = \lambda_2 + 1, \text{ the design(s) having} \\
&\text{the minimal values of} \\
&\left\{ r_d (b_d - r_d) + b_d (n_d - 1) \right\} (m_{1d} - m_{0d})^2 \\
&\text{and} \\
&\left\{ r_d (b_d - r_d) - b_d (1 - \frac{1}{m_d}) \right\} (m_{1d} - m_{0d})^2 ,
\end{align*} \]

is(are) D-optimal.

The proofs of the theorems have been omitted for lack of space. However, they are straightforward, and if any difficulty ensues, the reader is invited to write one of the authors. Instead, an example illustrating the results of the theorems is presented next.

6. An example

Some consequences of the theorems considered in the last section are illustrated by the following example. Before proceeding to the example, some items should be noted. The real world situation is important in applications, not some statistician’s assumptions. A frequent assumption of statisticians is that block size must be relatively small. Although this assumption may be true in many situations, it is not universally true. In sugar cane and pineapple plantations in Hawaii, sugar beet fields in Colorado, wheat fields in Kansas and Oklahoma, in a single growth chamber, etc. blocking is often of no avail in reducing variation in an experiment. Minimum, not maximum, blocking should be used to control heterogeneity in the experimental material. In some situations, quite large numbers of experimental units can be included in a block without increasing the estimated residual variance. The example given by Shafiq and Federer (1979) illustrates the efficiency of a GBBBD relative to traditional designs. Also, in some experiments, the experimental technique and procedure induce heterogeneity between blocks, whereas none may be present if uniform techniques and procedures
were used. Finally, the statistician should provide designs for all situations, not merely a subset of them.

Example 6.1. Suppose an experimenter wants to test 12 treatments in, at most, 12 blocks of homogeneous material. We know that a balanced design would require at least 22 blocks [see Raghavarao (1971)]. Possible candidates for performing this experiment would be group divisible (GD) partially balanced incomplete block designs. Suppose all the homogeneous material must be used and \(r^* = 64 \) is fixed. There are four GD basic binary partially balanced incomplete block designs having \(\lambda_1 = \lambda_2 + 1 \) [Bose, Clatworthy and Shrikhande (1954)]. These designs would be used to construct GD GBPBBBD for \(v = 12 \) and \(r^* = 64 \). The plans for these GD BBPBIBD's are given in Table 6.1. The parameters of GD GBPBBBD constructed from GD BBPBIBD-1 to GD BBPBIBD-4 in Table 6.1 and various optimality measures are presented in Table 6.2.

Twenty-four designs listed in Table 6.2 form a complete class of GD GBPBBBD with \(v = 12 \) and \(r^* = 64 \) derived from GD BBPBIBD having \(\lambda_1 = \lambda_2 + 1 \). Six different optimality measures described in Table 6.2 result in six subclasses. Optimal designs in each subclass marked \(^*\) are given in Table 6.3.

We note a few interesting results from Table 6.3. Design 24 is the only member of its class which achieves \(m_1 - m_0 = 1 \), but optimality criterion \(\gamma_d^\# \) would select Design 11 as the optimal one; and this design estimates all the elementary contrasts with the minimum average variance of \(2\sigma^2(.015627) \), and therefore is optimal. The average variance of all elementary contrasts is \(2\sigma^2(.015632) \) for Design 18 and \(2\sigma^2(.015636) \) for Design 24. Designs 11, 18 and 24 have the same minimal value 44 of \(\gamma_d^\# \); hence, they are equivalent in the sense of E-optimality.

Acknowledgment

The authors appreciate the constructive comments of the referee. They were very helpful in preparing the final version of the paper.
Table 6.1. Plans for group divisible basic binary partially balanced incomplete block designs (GD BBPBIBD)

<table>
<thead>
<tr>
<th>BBPBIBD-1</th>
<th>Blocks</th>
<th>BBPBIBD-2</th>
<th>Blocks</th>
</tr>
</thead>
<tbody>
<tr>
<td>(v = 12, \ b = 3, \ r = 2, \ k = 8)</td>
<td>(\lambda_1 = 2, \lambda_2 = 1, \ m = 3, \ n = 4)</td>
<td>(v = 12, \ b = 4, \ r = 3, \ k = 9)</td>
<td>(\lambda_1 = 3, \lambda_2 = 2, \ m = 4, \ n = 3)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Blocks</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>9</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>11</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>12</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Blocks</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>11</td>
<td>12</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>12</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>BBPBIBD-3</th>
<th>Blocks</th>
<th>BBPBIBD-4</th>
<th>Blocks</th>
</tr>
</thead>
<tbody>
<tr>
<td>(v = 12, \ b = 6, \ r = 5, \ k = 10)</td>
<td>(\lambda_1 = 5, \lambda_2 = 4, \ m = 6, \ n = 2)</td>
<td>(v = 12, \ b = 12, \ r = 4, \ k = 4)</td>
<td>(\lambda_1 = 2, \lambda_2 = 1, \ m = 6, \ n = 2)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Blocks</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>11</td>
<td>12</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>12</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 6.2. Plans for group divisible general binary partially balanced block designs derived from the designs in Table 6.1

<table>
<thead>
<tr>
<th>GD Parameters of GD GBPBD</th>
<th>Optimality measures</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\lambda_d^{}$ $\lambda_{1d}^{}$ λ_{2d}^{*} m_{0d} m_{1d}</td>
<td>$I_d^{}$ $II_d^{}$ $III_d^{}$ $IV_d^{}$ V_d^{*}</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>GD BBPBD</th>
<th>d</th>
<th>Parameters of GD GBPBD</th>
<th>Optimality measures</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1</td>
<td>1</td>
<td>256 2048 1024 0 32</td>
<td>32 2^* 2048 672.0 663.8 11264</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>256 1926 1085 2 31</td>
<td>29 2^* 1682 677.7 672.4 9251</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>256 1816 1140 4 30</td>
<td>26 2^* 1352 682.9 679.6 7436</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>256 1718 1189 6 29</td>
<td>23 2^* 1058 687.5 685.5 5819</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>256 1632 1232 8 28</td>
<td>20 2^* 800 691.5 690.4 4400</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>256 1558 1269 10 27</td>
<td>17 2^* 578 695.0 694.4 3179</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>256 1496 1300 12 26</td>
<td>14 2^* 392 698.0 697.6 2156</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>256 1446 1325 14 25</td>
<td>11 2^* 242 700.2 700.1 1331</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>256 1408 1344 16 24</td>
<td>8 2^* 128 702.0 702.0 704</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>256 1382 1357 18 23</td>
<td>5 2^* 50 703.2 703.2 275</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>256 1368 1364 20 22</td>
<td>2 $2^$ 8$^$ 703.9 703.9 44*</td>
</tr>
<tr>
<td>-2</td>
<td>12</td>
<td>192 1324 924 1 21</td>
<td>20 3 1200 685.3 683.8 4400</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>192 1216 960 4 20</td>
<td>16 3 768 692.0 691.4 2816</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>192 1132 988 7 19</td>
<td>12 3 432 697.3 697.1 1584</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>192 1072 1008 10 18</td>
<td>8 3 192 701.0 701.0 704</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>192 1036 1020 13 17</td>
<td>4 3 48 703.3 703.2 176</td>
</tr>
<tr>
<td>-3</td>
<td>17</td>
<td>128 736 672 4 12</td>
<td>8 5 320 703.4 703.4 704</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>128 686 682 9 11</td>
<td>2 5 20 703.7 703.7 44*</td>
</tr>
<tr>
<td>-4</td>
<td>19</td>
<td>64 512 256 0 16</td>
<td>16 32 8192 576.0 572.6 11264</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>64 454 285 1 14</td>
<td>13 32 5408 619.5 618.1 7430</td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>64 408 308 2 12</td>
<td>10 32 3200 654.0 653.5 4400</td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>64 374 325 3 10</td>
<td>7 32 1568 679.5 679.4 2156</td>
</tr>
<tr>
<td></td>
<td>23</td>
<td>64 352 336 4 8</td>
<td>4 32 512 696.0 696.0 704</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>64 342 341 5 6</td>
<td>1$^$ 32 32 703.5 703.5 44$^$</td>
</tr>
</tbody>
</table>

(1) $I_d^{*} = r_d (b_d - r_d)$
(2) $I_d^{*} = r_d (b_d - r_d) (m_{1d} - m_{0d})^2$
(3) $III_d^{*} = \text{tr}(C_d^{*})$
(4) $IV_d^{*} = A$-optimality criterion
(5) $V_d^{*} = E$-optimality criterion
Table 6.3. Optimal designs in each of six subclasses

<table>
<thead>
<tr>
<th>Optimality measure</th>
<th>Optimal design number(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$m_{ld} - m_{od}$</td>
<td>24</td>
</tr>
<tr>
<td>I_{ld}</td>
<td>1 - 11</td>
</tr>
<tr>
<td>II_{ld}</td>
<td>11</td>
</tr>
<tr>
<td>III_{ld}</td>
<td>11</td>
</tr>
<tr>
<td>IV_{ld}</td>
<td>11</td>
</tr>
<tr>
<td>V_{ld}</td>
<td>11, 18, 24</td>
</tr>
</tbody>
</table>
References

