
IDENTIFIABLE REPARAMETERIZATION OF AN OVER-PARAMETERIZED 

LIKELIHOOD FUNCTION 

D. S. Robson 

BU-576-M January, 1976 

Abstract 

A likelihood function eL(~;~) of an observable variable x and an unobserv-
"" 

able parameter~= (e1, ••• , ep) is overparameterized if the rank of the infor

mation matrix is k < p. If the p - k linear dependencies among the p partials 

i1L/oe j are expressed in the form 

nt 
-= 
oe. 

~ 

k L oL 
t?> • • ( e ) ___....;;..;::;..__ 
~J - ~ 

. 1 ue k . J= p- +J 

i = 1, ••• J p - k 

then the solution to the system of partial differential equations 
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i = 1, ••• ' p - k 

j = 1, ••• J k 

defines an identifiable, k-dimensional reparameterization. 
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Over-parameterization of a statistical model is a common though sometimes 

inadvertent practice in applied statistics. Examples of the common practice 

are umain effect plus interactionu linear models of cell means in two- and 

higher-way cross-classifications, where linear constraints such as 11main effects 

sum to zero" must then be imposed to reduce the dimensionality of the parameter 

space to at most the dimensionality of the space of observed cell means. Exam-

ples of inadvertent over-parameterizations are rare in the literature because 

nonidentifiability is ordinarily detected before the publication stage, and 

either an identifiable reparameterization of the original statistical model 

appears in published form or the model is not :published at all. Perhaps the 

most common such correction is the change from absolute values to relative values 

of certain parameters in the model, typically reducing the dimensionality of the 

original parameter space by one in order to achieve identifiability. 

A problem in applied statistics may usually be partitioned longitudinally 

into several component problems, one of which is to devi·se a stochastic model 

which approximately characterizes the data generating process. Typically, the 

stochastic model takes the form of a specific parametric family FX(~;~) of 

possible probability distributions of the observable random variable ~' where 

at least some of the components of the parameter 9 are unobservable and unknown. 

For present purposes all components of ~ are assumed to be in this category, 

vli th any observable parameters being subsumed in the functional form of FX. 

-
A stochastic model of an observable random variable X is called a statistical -
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.... -· .. 
model, or at least becomes so in the next component of the problem which is to 

devise formal methods of ·making inferences about the unknown ~ on the basis of 

the observed value x of the random variable X. Identifiability, which is not an 

issue in stochastic modeling, becomes an issue when addressing questions con-

cerning which values of ~ governed the process which generated the observation 

x. If more than one value of~ can produce the same probability distribution 

of the observable random variable X then the data x provide us '\d th zero capa-... ... 
bility for distinguishing among such values of~· In this circumstance e -
(or F~(~;~)) is said to be nonidentifiable or nonestimable, though in some 

statistical circles "estimable" is used in the more restricted sense of the 

existence of an unbiased estimator. 

Inadvertent nonidentifiability is probably not an infrequent occurrence in 

the practice of an applied statistician who is called upon to develop statisti-

cal models in unfamiliar subject matter areas. Its surprise occurrence almost 

always causes some distress, particularly when discovered after the data x have 

been collected, and more particularly when the statistican had a voice in the 

critical matter of determining which variables were to be observed. Distress 

may be only temporary, however, if an identifiable reparameterization of the 

statistical model FX(~;2) adequately serves the purposes of the investigator 

as, for example, when identifiable relative values of some parameters serve his 

purpose as well as nonidentifiable absolute values. 

Nonidentifiability, planned or inadvertent, introduces additional compon-

ents into the statistician's problem; namely, the problem of fitting the data 

to a nonidentifiable model and usually also the problem of constructing an iden-

tifiable reparameterization which the client finds comprehensible and suitable 

for his needs. The order in which these two component problems are attacked 
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need not be critical, as in the case of over-parameterized linear models where 

linear constraints may be imposed first in order to reduce the "design matrix" 

to full column rank for computational convenience in fitting the model, or 

generalized inverse matrices may be employed to fit the over-parameterized 

model vdth no constraints imposed on these excessively abundant parameters. 

The latter tactic, however, usually amounts to only a postponement of the ques

tion of identifiable (estimable) reparameterizations; i.e., the needs of the 

client are usually not fully met simply by producing a fit to the nonidentifiable 

model. In an estimation problem, identifiable parameters need to be specified, 

point and/or interval estimates computed and interpreted; in an hypothesis 

testing problem nonidentifiable alternative hypotheses need to be characterized 

in a comprehensible manner so that the investigator will understand vrhat hypoth

esis is being.rejected or accepted. 

Confronted with a nonidentifiable statistical model, the statistician's 

first task is to analyze.the nonidentifiability to determine which if any of 

the components of ~ are identifiable and to determine the dimension of the 

identifiable parameter space. In the linear model context the latter is simply 

the (column) rank of the design matrix, and in the likelihood context is the 

rank of the information matrix. A design matrix is observable, however, v1hile 

entries in an information matrix are more generally functions of the unobserv

able, unknovm, nonidentifiable parameters. The tasks facing the statistician 

are therefore somewhat different in these two circumstances, and considerations 

here will be focused upon the more general case of an over-parameterized 

likelihood function in which'none of the parameters are identifiable. 

The following "fitness" example from the field of population genetics is 

given to illustrate and motivate one approach to the analysis of a nonidentifiable 
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likelihood function. In the absence of perturbing forces the three genotypes 

AJi.., Aa, and aa should occur with relative frequencies p AA ::: p2 , p Aa = 2pq, and 

p = q2 in a randomly mating (infinite)_ population, where 
aa 

p + q = 1 

If rates of survival to adulthood differ among the three :types, ho~qever, th~n 

relative frequencies in the next mating generation become. 

where SAA' SAa' Saa are survival probabilities conditional on genotype and 

S ::: pAASAA + pAaSAa + Paasaa is the marginal probability of survival to adult

hood. Parameters called "fitness values" are defined as relative survival 

rates, thus w1 = SAA/SAa' w2 = Saa/SAa are the fitness values of the two homo

zygotes relative to the fitness of the heterozygous genotype, and 

W = W1p2 + 2pq + w2q2 is called the average (relative) fitness. 

The parameters (W1, w2, p) obtained by this reduction from (SAA' SAa' Saa' p) 

are still not identifiable, ho~11ever, with respect to the counts X11111 XA , X 
nn a aa 

of genotypes in a random sample of fixed size n = XAA + XAa + Xaa ~rom the 

(infinite) population of adult survivors. The linear dependency among the ob-

servations automatically precludes the possibility of estimating three linearly 

independent parameters (w1, w2, p) from such data obtained at a single point in 

time. This nonidentifiability would become immediately apparent if an attempt 

were made to construct ma.xi'mum likelihood estimators of w1, w2, and p from the 

trinomial likelihood 
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A linear dependence is seen to exist among the three partial derivatives of 

L(~; W1, W2, p), namely, 

and the 3 X 3 matrix of expected values of the second partials of L would be 

found to have rank 2. 

A similar result obtains if independent samples are selected frcm k diff-

erent local populations having different "gene frequencies" p. but subjected 
~ 

to common selection forces vmich produce common fitness values w1, w2 ; thus, if 

then 

k 

r(~;wl, w2, P1' · · · 'Pk) = L r{~i ;wl, w2' Pi) 
1 

dL == W OL 

opi 1 ovr1 

w -~ 
2 ow 2 

The observation variable 35- now consists of 2k linearly independent variables 

(1) 

while the parameter space has dimension only k + 2; but Neyman-factorization of 

the likelihood would helpfully reveal a sufficient statistic of dimension only 

k + 1, obviating a.ny need in this case to use numerical methods in determining 

the dimension of an identifiable parameter space. With this information in 

hand, knowing that a linear dependency lies r.d.dden among the likelihood equations, 

the statistician could presumably stare at the partial derivatives of L until (l) 

is revealed unto him. 
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Knowing a specific form (1) of the linear dependency is not essential, how-

ever, in solving the likelihood equations; for when all of the parameters are 

nonidentifiable then one :possible tactic is simply to assign an arbitrary numer-

ical value to one of the parameters and eliminate the corresponding likelihood 

equation. The only precaution required is to avoid boundary values in this 

assignment; i.e., avoid the value 0 or 1 for :pi or the value 0 for w1 or w2 • 

Letting w2 = 1, for example, reduces the space of unknown parameters to a k + 1 

dimensional linear subspace of the original parameter space; this tactic thus 

carries over from the familiar methods of analysis of over-parameterized linear 

models. 

An identifiable parameter space is not necessarily a linear subspace of the 

original parameter space, but linear subs:paces of this particular form, say 

w2 = a constant, are necessarily identifiable. More generally, an identifiable 

parameterization is any k+l-vector:!} = (T]1, •••, Tlk+l) of (nonlinear) functions 

of the original parameters, 

i = 1, k+l (2) 

satisfying an identity of the form 

(3) 

For any fixed value of w2, say, the k + 1 equations (2) could be solved for 

, pk in terms of w2 and ], 

(4) 

a unique solution must exist because ~ is identifiable, and hence this solution 

is also an identifiable parameterization. 
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When the solution (4) is substituted into the likelihood function L it 

follows from (3) that 

Taking derivatives of both sides with respect to w2 thus gives 

oL opk oG 
+---s-::0 (5) 

()pk oW2 ~ oW2 ~ 

which must therefore be an expression of the linear dependency (1) which exists 

among the fi~s~ P~.rtials of L 1d th respect ~o the original, nonidentifiable 

parameters (w1, 1-12,p1, · · ·, pk). Relating (5) to (1) we thus obtain the k + 1 

differential equations 

c,w1 wl ()p. p. (l-p.) 
~ ~ ' ~ i l, k -= --, - = -------, = ... ' 

aw2 w2 aw2 w2 

Letting Tl = (lj_, • · ·, Tlk+l) denote the "constants of integration" we obtain 

the solutions 

i = 1, .•• ' k 

or 

i = l, ..• ' k 

(6) 

(7) 

(8) 

Provided W2 > 0 then substitution of (7) into the likelihood L 1dll indeed pro

duce a function of only x and Tj, since 
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= [ 1)1' 2Tli + 1' T]~+ 1] 

1ll+21)i+l+T]~+l 

The identifiable reparameterization B in (8) clearly occupies a nonlinear 

subspace of the original, nonidentifiable parameter space, but the equations 

(7) with w2 = 1 transform this nonlinear subspace into the k + 1-dimensional 

linear subspace described earlier. Any other identifiable reparameterization is 

likewise simply a transformation of ~; for example, let 

i = 1, k 

so that 

thus revealing to the population geneticist that unequal fitness of the two 

homozygotes is observationally indistinguishable from equal fitness in this 

context. 



-9-

The system (8) thus effectively characterizes identifiable reparameteriza-

tions, analogous to a characterization of "estimable linear functions" in the 

case of linear models, and manipulation of (8) through transformations into 

contextually meaningful parameters can be helpful in comprehending the irnplica-

tions of the nonidentifiability. One disconcerting implication is that if the 

population geneticist had originally postulated the p~, W model of equal fitness 
J. 

then identifiability vrould have obtained from the start, the above investigation 

would not have been pursued, and the observational equivalence of equal and 

unequal fitness ofhomozygotesmight well have gone unnoticed. 

The general form of the tactic illustrated by (1) -- (8) may be described 

in terms of an overparameterized log-likelihood function L(~;~) where none of 

the p components of e = (e 1 , ···,e ) are identifiable. Let~=(~, ···, n ) 
- p - 1 "'k 

denote an identifiable reparameterization of dimension k < p, so that for all 

e satisfying~.(~)=~., i = 1, ···, k, the likelihood depends only upon], say 
- J.- J. 

L(x;e) = G(x;~) 
-- X ---

If the functions ~.(e) were specified then the (row vector of) first partials 
J. -

of L with respect to e 1, .... a could be expressed as 
p 

oL(~;~) = oG(:;~) [o~i(~~] 
ae x on ae . 

- - ~ J 

(lXp) (lXk) (kXP) 

and the matrix£ of expected values of second partials of L with respect to a 

would have the corresponding form 
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£ = [o'ni <~ )] 11 [i1Tii C~J]' 
oe. oe. 

J J 

(:pX:p) (:pXk) (kXk) (kX:p) 

>'There .iJI is the k X k (full rank) rna trix of ex:Pected second :partials of G with 

respect to ~· 

The :p - k .linear dependencies I'Thich exist among the :p :partials oL/08., ex
~ 

:pressed in the form 

k oL(x;e) 
= ) f3 .. (e) - - -, 

."'-" lJ - oe 
J=l :p-k+j 

i ::: 1, :p - k (9) 

may then be related to the k solutions e k+.(e1 , ••. , e k;D) of the k equations 
:p- . J :p- -

TJ (e) =11, 
'V - v 

v = 1, ... J k 

solved for e:p-k+l' • • . ep in terms of el, ••• ' e:p-k and II· Evaluated at this 

solution, L(~;~) becomes the function G(~;B) which is independent of e 1' •.• ' ep-k' 

- G(x;1]) 
x, e1, . · ·,a k - -
- p-

and hence 

k 
OAp-k+j oL + L oL (.)G o, e -= oe. oe. a~ oe. 

~ j=l ~ p-k+j J. 

i = 1, •.. ' p - k (10) 

Relating (9) to (10) thus produces the system of partial differential equations 
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oe p-k+j 
.·''·i - 1., ... ' p - k 

- == -f3 .. (e), (11) 
oe. ~J - J ~· 1~ k 

l 
... ' 

An identifiable reparameterization ~ = (~1 , ···, ~k) is then obtained as 

the k "constants of integration!; in the solution of this system of differential 

equations: 

e k. = e k+.(e1,···,e ;~), j=l,···,k~ 11· =~.(e), j=l,···,k, p- +J p- J p - J J -

just as (7) ~ (8). 

The advantage of this tactic over the blind tactic of simply assigning arbi-

trary numerical values to, say, e1, ···, ep-k' is the functional characterization 

~ (2) of identifiable reparameterizations. In simple cases the latter might be 

constructed simply by inspection of L(x;e), but (9) -- (11) provide an analytical --
construction when insight fails. Insight is required, of course, in determining 

the specific form (9) of the p - k linear dependencies, as well as in determin-

ing their number, p- k, and herein lies the disadvantage as compared to.the 

blind tactic which requires only the determination of k. 

As a last resort, numerical and graphical aids to insight might be employed 

in determining the functional form of the coefficients (11) appearing in the 

linear dependencies (9). At any specified numerical value of£ the numerical 

values of {3 • • (e) could be calculated by conventional linear methods; e.g., by 
lJ -

calculating the vector oL(x;e) /oe at a number of points x i.n the sample space - - - -
and fitting the multiple linear regression equations (9) to obtain f3i.(e). Re

J -

peating this operation at several strategica.lly chosen values of e and p.lotting 

{3 • • (e) against components of e might then provide the necessary clues leading 
~J - -

to an analytical expression of (9). Note that at any fixede the "sample" 
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covariance matrix of the vector ~L(x;e)/oe obtained by this operation has rank 
. - - -

k, thus a1lo't·ling numerical determination of k without calculation of the infer-

mation matrix. 

In the special case of linear models (with known error variance) the co-

efficients ~-.(e) are independent of the (unobservable) parameter _e, so in this 
1J -

case the solution to (11) is simply 

p-k . 

e k . = TJ. - \' f3 .. s.. p- +J J L 1J 1 
j = 1, ••• ' k 

i=l 

or the identifiable parameterization 

p-k 
11 =e + '\'f3 e 

j p-k+j L ij i 
j = 1, ••• ' k 

i=l 

characterizes the "estimable linear fUnctions"; i.e., any linear function EC.T]. 
J J 

is estimable, and any estimable linear function of ~,is expressible in the form 

EC.Tj .. Identifiability in this case is achieved by imposing any set of p- k 
J J 

linearly independent nonestimable linear constraints on e. Note that this 

tactic is not applicable in the nonlinear case vThere (3 •• (e) does depend upon 
1J -

e. -
The present development treats only the case ivhere a.ll components of ~ are 

nonidentifiab.le, and hence excludes the case of overparameterized linear models 

with unknown but identifiable error variance. Tactical modifications required 

to accorrimodate such cases have not been explored by this author, but clearly 

require partitioning the vector~ into component vectors such that linear depen

dencies among the first partials· of L exist only vli thin and not between these 

components. 


