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Abstract 

This note presents some modifications to an algorithm given by Johnson a.nd 

Kotz for computing the distribution of a linear combination of central chi-squares. 

The modifications result in less storage requirements and improved computational 

efficiency. The extension of the algorithm to the non-central case is also pre-

sen ted. 
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1. Introduction 

In many practical situations the statistics used in testing or estimation 

procedures can be expressed as quadratic forms in jointly normally distributed 

random variables where the matrix of the quadratic form .is not :i;.dempotent. Exazrq;>les 

of such situa~ions include inferences on variance components, certain variable 

selection problems, and synthesis of error terms in unbalanced data. 

The problem of computing the cumulative distribution function of these sta-

tistics is complicated. A convenient approximation to the c.d.f. for positive 

definite quadratic forms is given by Jensen and Solomon (2] who also review various 

other approximations. Algorithms for the computation of the exact c.d.f. are given 

by Imhof [1] for general non-definite forms, and Johnson and Kotz [3] for positive 

definite central forms. 

This note presents some modifications to the recursion formulae given by 

Johnson and Kotz which alleviate some of the computational disadvantages of their 

algorithm. The extension of the algorithm to the non-central case is also provided 

and some results on the stability of the modified formulae are presented. 

2. The Central Case 

Let Q = !'A! where ! is an n X 1 vector of random variables with a multi­

variate normal distribution with mean vector 0 and variance matrix ~ = T'T which -

Paper No • .BU-556-M in the Biometrics Unit Mimeo Series, Department of Plant Breed­
ing and Biometry, Cornell University, Ithaca, New York 14853· 



- 2 -

is assumed positive definite. Then 

n 

{2.1) Q = Laiz~ 
i=l 

where a 1 :;:; • • • :;:; an are the characteristic roots of TAT' and zi = Ei.T'-~ where Ei 

is the characteristic vector of TAT' associated with ai. The zi are i.i.d. N{O,l). 

Based on earlier analytic work (Kotz, Johnson, and Boyd [4]) Johnson and Kotz give 

the c.d.f. of Q as 

(2.2) F(y) = Pr(Q ~ y) 

CX> 

= Pr(X2:;; y) + (y/2f3)n/2e-y/2f3 • ~ cJ./.j(n+2)(y/2f3) 
n r(n/2 + 1) 

j=l 

where X2 denotes a central chi-squared random variable with n degrees of freedom 
n 

and 

in)(x) = F (-j; in; x) = r(n/2) • j! • L(n/2-l)(x) 
j r 1 r(n/2 + J) J 

¥71th L~a)(x) being the generalized Ieguerre polynomial of degree j, 

(2.4) 

(2.5) 

with 

j-1 
.-1 \ 

c0 = 1, cj = J ~ dj-i • c1 , j = 1, 2, ••• 

i=O 

n n 

'\ = ~ • L (1 - a/f3)k = 'i · ~ ~ . 
i=l i=l 
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Let t = y/(3. Then the Johnson and Kotz algorithm computes the .t(n+2){t/2) 
j 

from the recursion 

Po = 1, p1 = 1 - t/n, 

• p -j-1 

and computes the c _ directly from (2.5). The summation is carried out until two 
J 

successive terms are less than some prescribed tolerance. 

The use of ( 2. 5) to compute the c j implies two related disadvantages: 

{a) All of the previously computed cj and dj must be held in storage. This 

means that two work vectors are required, the dimension of which depends 

(b) 

on the number of partial sums required for convergence. This is generally 

much greater than n, the dimension of !• 

The number of operations required to COJitPUte c. is a :f'Unction of j. As 
J 

more coefficients are computed, more and more operations are needed to 

compute the next coefficient. 

The following modifications of (2.5) overcome both of these disadvantages. 

We have from (2.5): 

j-1 

j • cj = L dj-i 
1=0 

• c 

j 

= \ d c. f- S J-S 

s=l 

. s=l r=l 

1 

c j-s 
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n j 

= ~ • I (I v~ • c ) 
j-s 

r=l s=l 

n 

=! . L br,j with b r,j 
r=l 

n 

(j + 1) • cj+l = t. Lbr,j+l 
r=l 

j+l 

with br,j+l = L v~ • cj+l-s 
s=l 

c .. 
J-l. 

j 

= I v~ • c 

s=l 

j 

= vr • c j + Yr • L v! . c j-i 
i=l 

= V • (cj + b .). r r,J 

j-s 

There are only n of the b j's which are updated (i.e., overwritten) recursively r, 

using (2.7), and then cj+l computed using (2.6). Only the last coefficient needs 

to be saved rather than all of the previous coefficients. 

A comparison of the number of multiplications required by the two methods 

illustrates the advantages of equations (2.6) and (2.7). Using (2.5) directly, 

n multiplications are required in order to compute dj+l with j additional multi­

plications needed in order to form the inner product of the d's and c's. With 
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equation {2.·(), n multiplications are needed to update the b . 's. No additional r,J 

multiplications are needed in equation (2.6). The dj's are never computed ex-

plicitly and hence do not require any storage. Clearly, as j increases the accumu-

lated savings become quite significant. 

3· The Non-Central Case 

As before, let Q = !'A! where ! is an n X 1 vector of random variables with 

a multivariate normal distribution. However, now the mean vector of ! is t: I: 2 

and the variance matrix of Y is .E = T'T which is positive definite. Then 

(3.1) 

n 

Q = I ai ( zi + 8i )2 
1=1 

where a1 ~ ••• ~a are the characteristic roots of ~T', z. = pi'(~'-ly- T'-1~), 
n ~ - • -

_ 1 ,-1 
8i- ~iT ~~where ~i is the characteristic vector of TAT' associated with a1. 

The zi are i.i.d. N(O,l). 

Kotz, Johnson, and Boyd [ 5] give the c.d.f. of Q by the expansion (2.2) where 

the coefficient c are now determined by 
J 

(3.2) • c 
1 

n n 

(3-3) 

with <\ = -tk • I 8i • ~-l + i • L (1 + k • 8f)v~ 
i=l i=l 

Algebra similar to that preceding (2.6} gives: 

+~· 

n 

L vr • fr,j - ~ • 
r=1 
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where b j is given by (2.6) and . r, . 

vle have also that: 

(j + 1) • cj+l = ~ • 
n 

\ b "+1 + ~ • L r,J 
r=l 

n 

L Yr • fr,j+l - i · 
r=l 

Equation (2.7) can be used to update the b j's. For the f j's, we have: r, r, 

i-1 
'Vr • cj+l-i 

j 

52 • ~ (s + 1) • s = y • c . r r J-6 
s=O 

j. j 

= 52• I 'V~ • + y • 52 • La . s-1 c . c. Yr • r J·S r r J-S 
s=O s=l 

= 52 • ( c . + b . ) + y • f . 
r J r,J r r,J 

= 82 • (c. + b . ) + f j.....l.. • 
r J r,J r, ~ 

Tnen the algorithm to compute c. from the b j 1 •s and the f j ~·s would be as 
J r, - r, ·I 

follows: 

(i) Compute b . using (2.7). 
r,J 

(ii) Compute f j using (3.4), r, 

n n 
(iii) One = ( I:: br j) - ( I:: fr . ). 

r=l ' r=l ,J 
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(iv) Compute f ·+4 = y • f .• 
r,J·~ r r,J 

(v) 
n 

Two = E f -~· 
r=l r,J 2 

(vi) c.= (one+ two)/(2 • j). 
J 

4. A Simple Error Analysis 

Assume that at the kth stage the coefficients c. have been computed such that 
. l. 

ci = ci + €i' i = 0, 1, ···, k- 1, where ci is the true coefficient. Using {2.5), 

ck would be eva.1ua ted as: 

k-1 

ck = L \.-i' • c 
i 

i=O 

k-1 

= I ~-i • (ci + ei) 
i=O 

k-1 k-1 

= I \.-1 · ci + L ~-i 
i=O i=O 

k-1 
= c' + \' d 

k ~ -1t-i 
i=O 

Using (2.6) and (2.7), we have: 

n 

'1t = I br,k 
r=l 

n 

= I Yr • (ck-1 + br,k-1) 
r=l 

• € 
i 
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n 

• L Yr • (~-1 + 'k-1 + br,k-1) 
r=l 

n 

{~-1 + br,k-1) + ~-1 L Yr 
r=l 

In other '\-lords, using (2.6) and (2.7) the error in the computed value of ~ is a 

function of the error in only the last coefficient, whereas using (2.5) involves 

an error which is a linear combination of the errors in all the previous co• 

efficients. The same would be true in the non-central case. 

The above comments neglect'errors in the d's and the b k's. However, it is r r, 

clear from (2.5) that the dr 18 would be couputed as e 
n 

d = \ y • d where r L. r r,k-1 
k-1 

d = y r,k-1 r 
r=l 

This is essentially the same recurrence as used in (2.7) and it then seems reason-

able to assume that the d k's and the b k•s are computed with approximately the r, r, 
same relative precision. 

5. Some Refinements 

A considerable increase in efficiency in terms of both storage requirements 

and number of operations can be achieved if the number of distinct roots of 

TAT' is much less than n. If there are k distinct roots occurring with multi-

plicities mi, i = 1, 2, •••, k, then there are onlyk distinct yr's and equation 

{2. 6) becomes: 
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k 

(5.1) (J .. + 1) • ~ • : \ b 
cj+l = 2 Lmr • r,j+l 

r=l 

Only the distinct b .'s are required in storage (along with the corresponding m) r,J , __ · , r 

and are updated in the same way as before. A similar modification to (3.3) gives: 

(5.2) 

(5-3) 

k 

j•c "'1.. \mr 
J 2 L. 

r=l 

k 

b.+~· \Yr' r,J I-
r=l 

Suppose that it is desired to evaluate 

n. ·- m 

k 

f --~·'f .. r,J L r,J 
r=l 

Pr[I o:i. (zi + oi)2-~ 
i=l 

Lf'j ., (wj + '>-)2] 
j=l 

where the zi a.nd wi are i.i.d. N(OJl). Writing this as 

m 

• (zi + oi)2 ~ I ~j 
j=l 

• (x. + A.) 2]lvl. = x., j = 1, •• • ml 
I 'f I J J J J 

the preceding algorithm can be used at each point of a quadrature formula to 

numerically evaluate (5.3). Noting that the coefficients cj depend only on the 

a. and the o. and not on the point at which the c,d.f. is evaluated, it is not 
~ J. 

necessary to recompute them at every point of the quadrature if they can be held 

in storage. If m is small, this can be expected to be reasonably efficient. In 

particular if there is only one distinct value of~- occurring with multiplicity 
J 

m, the modifications presented above lead to an efficient algorithm for computing 

the c,d.f. of the doubly non-central F statistic. 
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