ORTHOGONAL SERIES 1 BALANCED INCOMPLETE BLOCK DESIGNS

A FURTHER NOTE

Joiner, J. R. and Federer, W. T.

BU-452-M February, 1973

ABSTRACT

The incidence matrix of the orthogonal Series 1 Balanced Incomplete Block Design has parameters

\[v = n^2 \quad b = n(n+1) \quad r = n+1 \quad k = n \quad \lambda = 1. \]

The existence of \(n-1 \) orthogonal latin squares of order \(n \) is sufficient to construct this design.

This paper utilizes a latin square, \(L_0 \), of order \(n=p^s \), \(p \) a prime, constructed by an automorphism of order \(t=p^s-1 \) acting on the elements of the Galois Field, \(\text{GF}(p^s) \), to construct the incidence matrix mentioned above. It is shown that \(L_0 \) induces \(n \) permutation matrices of order \(n \times n \), \(P_1, P_2, P_3, \ldots, P_r \), which taken together with the matrices \(T_i \) of order \(n \times n \) composed of 1's in the \(i \) th column and 0 elsewhere can be put in the following form:

\[
N = \begin{bmatrix}
T_1 & P_1 & P_1 & \cdots & P_1 & P_1 \\
T_2 & P_{j_2,1} & P_{j_2,2} & \cdots & P_{j_2,n-1} & P_1 \\
T_3 & P_{j_3,1} & P_{j_3,2} & \cdots & P_{j_3,n-1} & P_1 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
T_{n-1} & P_{j_{n-1,1}} & P_{j_{n-1,2}} & \cdots & P_{j_{n-1,n-1}} & P_1
\end{bmatrix}
\]

with the result that \(NN' = nI + J \). The choice of \(P_{j_1,k} \) depends on the automorphism.

An example with \(n=3^2 \) is given.
ORTHOGONAL SERIES 1 BALANCED INCOMPLETE BLOCK DESIGNS

A FURTHER NOTE

Joiner, J. R. and Federer, W. T.

BU-452-M

February, 1973

INTRODUCTION

Federer and Raghavarao (1972) constructed an OSl Balanced Incomplete Block design as follows: Let T_i be an $n \times n$ matrix with 1's in the i^{th} column and 0's elsewhere for $i=1,2,\cdots,n$. Let P_0,P_1,\cdots,P_{n-1} be matrices of order $n \times n$ obtained by cyclic permutation of the identity matrix of order n. When n is a prime number,

$$
N = \begin{bmatrix}
T_1 & P_0 & P_1 & P_2 & \cdots & P_{n-1} \\
T_2 & P_1 & P_3 & P_5 & \cdots & P_{n-1} \\
T_3 & P_2 & P_5 & P_8 & \cdots & P_{n-1} \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
T_n & P_{n-1} & P_{n-1} & P_{n-1} & \cdots & P_{n-1}
\end{bmatrix}
$$

and is the incidence matrix of the BIB design with parameters

$$v=n^2, \quad b=n(n+1), \quad r=(n+1), \quad k=n, \quad \lambda=1$$

In an addendum it was shown that the use of transversals of a latin square of order 4 along with proper choice of the subscripts of the P_i's would make a similar construction for $n=2^2$.

Paper Number BU-452-M in the Mimeograph Series of the Biometric Unit, Cornell University.
This paper presents a construction for $n=3^2$, a relationship between n permutation matrices induced by a latin square of order n constructed by the group automorphism technique, and a method of viewing the square as a multiplication table of the permutation matrices. This represents an extension of results by Hedayat and Federer (1969). Lastly, a proof is given to show that a construction is possible for any $n=p^8$ for p a prime number.

The 3^2 Construction

The construction of 3^2 starts with the following square from page 63 of Fisher and Yates (1948).

\[
\begin{array}{cccccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
3 & 1 & 2 & 6 & 4 & 5 & 9 & 7 & 8 \\
2 & 3 & 1 & 5 & 6 & 4 & 8 & 9 & 7 \\
7 & 8 & 9 & 1 & 2 & 3 & 4 & 5 & 6 \\
9 & 7 & 8 & 3 & 1 & 2 & 6 & 4 & 5 \\
8 & 9 & 7 & 2 & 3 & 1 & 5 & 6 & 4 \\
4 & 5 & 6 & 7 & 8 & 9 & 1 & 2 & 3 \\
6 & 4 & 5 & 9 & 7 & 8 & 3 & 1 & 2 \\
5 & 6 & 4 & 8 & 9 & 7 & 2 & 3 & 1 \\
\end{array}
\]

Nine permutation matrices $P_1=I$, P_2, ..., P_9 are formed by inserting a 1 in P_i where i appears in the above square. These matrices form a group under matrix multiplication and their multiplication table is represented by the above square using the first column and row as headings. The arrangement which forms the incidence matrix of a BIB is
since \(N N' \) is of the desired form, \(9I + J \). The second to the ninth columns of the above matrix correspond to the first columns of the 8 orthogonal squares for a latin square of order 9 as given in Fisher and Yates (1948) with the column of T's and \(P_1 \) added.

The Matrices as a Group

Let \(L_0 \) be a latin square of order \(n=p^s \), \(p \) a prime number, which was constructed by an automorphism, \(A \), of order \(t=p^s-1 \). Using the Galois Field \(GF(p^s) \), such an automorphism is known to exist, and \(L_0 \) can have the following construction for \(x \) an element of \(GF(p^s) \):

\[
L_0 = \begin{bmatrix}
0 & A(x) & A^2(x) & A^3(x) & A^t(x) \\
A(x) & A(x)A(x) & A(x)A^2(x) & A(x)A^3(x) & \ldots & A(x)A^t(x) \\
A^2(x) & A^2(x)A(x) & A^2(x)A^2(x) & A^2(x)A^3(x) & \ldots & A^2(x)A^t(x) \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
A^t(x) & A^t(x)A(x) & A^t(x)A^2(x) & A^t(x)A^3(x) & \ldots & A^t(x)A^t(x)
\end{bmatrix}
\]

0 is the identity element of the addition table and * is the additive operation on
Obviously L_0 can be regarded as an addition table for $0, A(x), \ldots, A^t(x)$ under \ast. Permute the rows of L_0 to M_0 such that 0 is on the diagonal and form the set $P = \{ P_0 = I, P_1, \ldots, P_{n-1} \}$ where P_i is formed by putting a 1 in the locations in P_i where $A^i(x)$ appears in M_0; P_0 represents 0 in this manner.

Theorem 1: The set P forms a group under matrix multiplication and M_0 (or L_0) represents the multiplication table of this group with \ast interpreted as matrix multiplication and 0 as the identity for multiplication.

P is closed because if one multiplies P_m by P_r, the resulting 1 in (say) the (i,j) location represents the product of 1's in the locations in P_r and P_m where in M_0,

$$A^i(x) \ast A^k(x) = A^r(x)$$
$$A^l(x) \ast A^j(x) = A^m(x)$$

$A^k(x)$ is in the k^{th} column and $A^l(x)$ must be in the k^{th} row; hence, since M_0 has 0's on the diagonal, $A^k(x)$ and $A^l(x)$ are inverses under \ast. From the preceding

$$A^i(x) \ast A^k(x) \ast A^l(x) \ast A^j(x) = A^i(x) \ast A^j(x) = A^r(x) \ast A^m(x) = \text{Constant}.$$

This shows closure of P and the use of M_0 as its multiplication table.

The inverse of P_i is its transpose. Suppose that P_i has a 1 in (k,j). Since only the rows of M_0 were permuted, the entry in M_0 corresponding to (k,j) in P_i is

$$A^k(x) \ast A^j(x) = A^i(x),$$

and its transpose is

$$A^s(x) \ast A^m(x) = A^l(x).$$

But $A^i(x)$ and $A^s(x)$ are in the j^{th} column and row respectively and hence are inverses. Likewise, $A^k(x)$ and $A^m(x)$ are in the same row and column; therefore,
This shows that $A^j(x)$ is the inverse of $A^i(x)$ under \ast and that $P_i = P_j$. This completes the proof, since associativity obviously holds. The conditions of the theorem are not necessary but are compatible with the purpose of this paper.

Construction of the Incidence Matrix N

The elements of the automorphism A form a group under a composition of mappings. We form a $t \times t$ matrix, M whose i^{th} column is the result of $A^i(A^j(x))$ where $A^j(x)$ is the entry in the successive rows in the first column of M_0, $j=1,2,\ldots,t$.

$$M = \begin{bmatrix}
A^j_1(A^{k_1}(s)) & A^j_2(A^{k_1}(x)) & \ldots & A^j_t(A^{k_1}(x)) \\
A^j_1(A^{k_2}(x)) & A^j_2(A^{k_2}(x)) & \ldots & A^j_t(A^{k_2}(x)) \\
\vdots & \vdots & \ddots & \vdots \\
A^j_1(A^{k_t}(x)) & A^j_2(A^{k_t}(x)) & \ldots & A^j_t(A^{k_t}(x))
\end{bmatrix}$$

where $j_i=1,2,\ldots,t$ for $i=1,2,\ldots,t$ and k_{-1}^i ranges over the same values. Note that the 0 entry in the top of the first column of M_0 is not used.

Theorem 2: The vector $t' = (A^j_1(A^{k_1}(x)) \ast A^j_2(A^{k_2}(x)), A^j_1(A^{k_1}(x)) \ast A^j_2(A^{k_2}(x)), \ldots, A^j_t(A^{k_1}(x)) \ast A^j_2(A^{k_t}(x)))$ contains the distinct elements $A^1(x), A^2(x), \ldots, A^t(x)$ in some order, for any choice of $k,m, k \neq m$.

Suppose that

$$A^j_1(A^{k_1}(x)) \ast A^j_1(A^{k_2}(x)) = A^j_1(A^{k_1}(x)) \ast A^j_1(A^{k_2}(x))$$

Since A is a homomorphism,

$$A^j_1(A^{k_1}(x) \ast A^{k_2}(x)) = A^j_1(A^{k_1}(x) \ast A^{k_2}(x))$$
or

\[A^j_1(x) = A^j_s(x) \]

which contradicts the assumption that \(A \) is of order \(t \).

Since \(P_1 \) and \(A^j(x) \) have the same multiplication table setting \(P = A^j_1(A^{k_n}(x)) \) for each entry in \(M \) forms a matrix \(M^* \) with the same properties as \(M \). Specifically, the products of any two rows of \(M^* \) result in the \(t \) distinct products, \(P_1, P_2, \ldots, P_t \) and the sum of these is \(J - I \).

Theorem 3:

\[
N = \begin{bmatrix}
T_1 & P_0 & P_0 & \cdots & P_0 \\
T_2 & & & & \\
& & M^* & & \\
& & & & \\
T_n & & & P_0 & \\
\end{bmatrix}
\]

\(n \times n \)

is the incidence matrix of a BIB design, that is, \(NN' = nI + J \).

Lemma: If row \(i \) of \(M^* \) contains \(P_{j_1}, P_{j_2}, \ldots, P_{j_t} \) in that order then there is a row in \(M^* \) containing \(P'_{j_1}, P'_{j_2}, \ldots, P'_{j_t} \) in the same order.

The proof of the lemma depends upon the properties of \(A \). \(P_{j_1} \) in \(M^* \) corresponds to \(A^s(A^t(x)) = A^{j_1}(x) \) in \(M \). There is a row in the same column of \(M \) as \(P_{j_1} \) where \(A^s(A^m(x)) = A^u(x) \) is the inverse under \(* \) of \(A^{j_1}(x) \). This means that

\[
A^s(A^t(x)) \ast A^s(A^m(x)) = A^s(A^t(x) \ast A^s(x)) = 0 ,
\]

which implies that

\[
(1) \quad A^t(x) \ast A^m(x) = 0 .
\]

Since (1) holds across the entirety of the two rows in question, \(A^{j_1}(x) \) in row \(i \) is inverse to every element in the row where \(A^{j_1}(x) \) has its inverse equal to \(A^u(x) \).
To return to the proof of the theorem, note that the diagonal elements of NN'
are of the form $(T_i T_i' = J) + \left(\sum_{k=1}^{t} P_j P_j' = nI \right) = J + nI$. On the off-diagonal
one has the sum of 3 items:

a. $T_i T_j' = 0$

b. $P_{j_1} P_{k_1}' + P_{j_2} P_{k_2}' + \ldots + P_{j_t} P_{k_t}'$

but the lemma shows that this is just the product of two
rows of M^* and hence is equal to $J - I$.

c. $P_{0} P_{0}' = I$

The sum of quantities in a, b, c is J. This completes the proof of theorem 3.

References

