HYPOTHESIS TESTING IN RESTRICTED LINEAR MODELS: CORRECTING AN ERROR

S. R. Searle
Biometrics Unit, Cornell University, Ithaca, N. Y.

Abstract

The numerator sum of squares in the F-statistic for testing a hypothesis in a linear model containing restrictions involving estimable functions is incorrect in Searle [1971]. The correction has been provided by Timm and Carlson [1973], for the full rank model. Details for the non-full rank model are given here.

The restricted linear model we consider is \(y = Xb + e \) subject to restrictions \(P'b = \delta \) where \(P'b \) is a set of \(r \) linearly independent estimable functions. For this model Searle [1971, p. 206] shows that a solution vector for \(b \) is

\[
b^0_r = b^0 - GP(P'GP)^{-1}(P'b^0 - \delta)
\]

(1)

where \(b^0 = GX'y \) and \(X'X = X'X \). The error sum of squares given on the same page is

\[
SSE_r = SSE + (P'b^0 - \delta)'(P'GP)^{-1}(P'b^0 - \delta)
\]

(2)

where \(SSE = y'[I - X(X'X)^{-1}]y \).

In testing the hypothesis \(H : K'b = m \) where \(K'b \) represents \(s \) linearly independent estimable functions, we confine attention to the case where the row spaces of \(P' \) and \(K' \) are linearly independent. On defining
The F-statistic for testing H is then derived in Searle [1971] with numerator
\[SSE_{r,H} - SSE = (Q'b^0 - \ell)'(Q'GQ)^{-1}(Q'b^0 - \ell). \]

This, as Timm and Carlson [1973, p. 33] point out, is wrong. It should be
\[SSE_{r,H} - SSE = (Q'b^0 - \ell)'(Q'GQ)^{-1}(Q'b^0 - \ell) - (P'b^0 - \delta)'(P'GP)^{-1}(P'b^0 - \delta). \]

We show how this simplifies. From (3)
\[\begin{bmatrix} P'GP \\ K'GP \\ K'GK \end{bmatrix}^{-1} \begin{bmatrix} P'GK \\ K'GP \\ K'GK \end{bmatrix}^{-1} = \begin{bmatrix} (P'GP)^{-1} & 0 \\ 0 & 0 \end{bmatrix} + \begin{bmatrix} -(P'GP)^{-1}P'GK \\ 0 \end{bmatrix}W^{-1}[-K'GP(P'GP)^{-1} I] \]

with $W = K'GK - K'GP(P'GP)^{-1}P'GK$. Hence, using (3) again, (5) becomes
\[SSE_{r,H} - SSE = \left(\begin{array}{c} (P'b^0 - \delta) \\ (K'b^0 - m) \end{array} \right)' \left(\begin{array}{c} (P'b^0 - \delta) \\ (K'b^0 - m) \end{array} \right) \]

\[= W^{-1} \tau \text{ with } \tau = K'b^0 - m - K'GP(P'GP)^{-1}(P'b^0 - \delta) \]

\[= \left(K'b^0 - m \right) \text{ from (2)} \]
Hence
\[\text{SSE}_{r,H} - \text{SSE}_r = (K'\mathbf{b}^o_1 - \mathbf{m})'[K'GK - K'\mathbf{G}
\begin{bmatrix} \mathbf{P}' \mathbf{P} \end{bmatrix}^{-1} \mathbf{P}'GK]^{-1}(K'\mathbf{b}^o_1 - \mathbf{m}) \]
and
\[F(H_r) = \frac{\text{SSE}_{r,H} - \text{SSE}_r}{\hat{\sigma}^2_r} \text{ with } \hat{\sigma}^2_r = \frac{\text{SSE}_r}{N - r(X) + q}. \]

Timm and Carlson further reduce the symbolism by writing
\[A = \mathbf{I} - \mathbf{G}\mathbf{P} (\mathbf{P}'\mathbf{G})^{-1} \mathbf{P}' \]
and having the inverse matrix as \((K'\mathbf{A}GK)^{-1}\).

The differences in the notations used in the two references are seen in the following table.

<table>
<thead>
<tr>
<th></th>
<th>Searle</th>
<th>Timm and Carlson</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>(\mathbf{y} = \mathbf{X}\mathbf{b} + \mathbf{e})</td>
<td>(\mathbf{y} = \mathbf{W}\mathbf{u} + \mathbf{e})</td>
</tr>
<tr>
<td>Inverse</td>
<td>(\mathbf{G} = (\mathbf{X}'\mathbf{X})^{-1})</td>
<td>(\mathbf{D}^{-1} = (\mathbf{W}'\mathbf{W})^{-1})</td>
</tr>
<tr>
<td>Solution</td>
<td>(\mathbf{b}^o_1 = \mathbf{G}\mathbf{X}'\mathbf{y})</td>
<td>(\hat{\mathbf{u}} = \mathbf{D}\mathbf{W}'\mathbf{y})</td>
</tr>
<tr>
<td>Restrictions</td>
<td>(\mathbf{P}'\mathbf{b} = \mathbf{0})</td>
<td>(\mathbf{R}'\mathbf{u} = \mathbf{0})</td>
</tr>
<tr>
<td>Solution</td>
<td>(\mathbf{b}^o_1 \mid \mathbf{r})</td>
<td>(\hat{\mathbf{u}} \mid \mathbf{\Omega})</td>
</tr>
<tr>
<td>Hypothesis</td>
<td>(\mathbf{H}: \mathbf{K}'\mathbf{b} = \mathbf{m})</td>
<td>(\mathbf{H}: \mathbf{C}'\mathbf{u} = \mathbf{0})</td>
</tr>
<tr>
<td>Solution</td>
<td>(\mathbf{b}^o_1 \mid \mathbf{r}, H)</td>
<td>(\hat{\mathbf{u}} \mid \mathbf{\bar{\Omega}})</td>
</tr>
</tbody>
</table>

References
