RELATION BETWEEN POISSON AND MULTINOMIAL DISTRIBUTIONS

Robert G.D. Steel

April, 1953

Introduction. It is usual to see the Poisson distribution developed from the binomial distribution by removing the restriction on the exponent. Here it is shown that the imposition of a fixed total on the number of successes observed in several Poisson populations leads to the multinomial distribution. Fisher (1) has obtained the same result under other circumstances.

Theory. Let \(x_1, \ldots, x_k \) be the numbers of successes observed in \(k \) trials on Poisson populations with means \(\mu_1, \ldots, \mu_k \) respectively. The joint distribution of the observations is

\[
(1) \quad f(x_1, \ldots, x_k) = \frac{e^{-\sum \mu_i} x_1 \mu_1 \cdots x_k \mu_k}{x_1! \cdots x_k!}, \quad x_i = 0, 1, 2, \ldots, i=1, \ldots, k
\]

Set \(\Sigma x_i = n \) and consider (1) as the joint distribution of \(n \) and some \(k-1 \) of the \(x_i \)'s, say \(x_1, \ldots, x_{k-1} \).

For the marginal distribution of \(n \), we require

\[
P(\Sigma x_i = n) = \sum_{x} \frac{e^{-\sum \mu_i} x_1 \mu_1 \cdots x_k \mu_k}{x_1! \cdots x_k!}
\]

where \(\sum \) is the sum for all configurations of the \(x_i \) such that \(\Sigma x_i = n \).

From

\[
(\mu_1 + \cdots + \mu_k)^n = \sum \frac{n!}{x_1! \cdots x_k!} \mu_1^{x_1} \cdots \mu_k^{x_k}
\]

where \(\Sigma x_i = n \), we have

\[
\frac{(\mu_1 + \cdots + \mu_k)^n}{n!} = \sum \frac{\mu_1^{x_1} \cdots \mu_k^{x_k}}{x_1! \cdots x_k!}
\]

Hence

\[
P(\Sigma x_i = n) = \frac{e^{-\sum \mu_i} (\Sigma \mu_i)^n}{n!}
\]
and the marginal distribution of n is

$$f(n) = \frac{e^{-\sum_{i} \mu_i} (\sum_{i} \mu_i)^n}{n!}, \quad n = 0, 1, 2, \ldots,$$

a Poisson distribution with parameter $\sum_{i} \mu_i$.

From (1) and (2), the conditional distribution of x_1, \ldots, x_{k-1} is

$$f(x_1, \ldots, x_{k-1}|n) = \frac{n!}{x_1! \cdots x_{k-1}!} \frac{\mu_i}{(\sum_{i} \mu_i)}^{x_k}, \quad \text{with } x_k = n - \sum_{i=1}^{k-1} x_i.$$

This is clearly a multinomial distribution.

REFERENCE