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Abstract

A constant risk minimax estimator of the reciprocal of
population size is conjectured to exist for the case of a two-sample
mark-recapture experiment when loss is measured by squared error. For
samples of size n = 1 from a population containing D marked members
this estimator exists and takes the value 1/(12D) when the sampled item
is unmarked, and takes the value 5/(12D) when the samples item is a
recapture; the constant risk is 1/(12D)2. For n = 2 the constant risk

minimax estimator is obtained from the solution of a cubic equation.
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INTRODUCTION
One of the earliest solutions to a minimax point estimation problem
concerned estimation of the proportion of "defective" <;%j> in a lot of N items
from which n are randomly selected and X are observed to be defective. In this
case a linear function aX + b can be constructed which has constant mean squared
error for all integer values D, O < D < N. The two-sample mark-recapture problem
is dual of the above problem in the sense that--N rather than D is the unknown

parameter, and since survival rate is given by

S =

=i

(number of survivors at some later date)

there is some value constructing a minimax estimator of 1/N or, since D is a

known constant, a minimax estimator of D/N.

We offer the conjecture that a minimax estimator also exists for this
situation, having constant mean squared error for all integer values of
N =2 max(D,n). In support of the conjecture we construct such an estimator for

n=1andn=2.

MINIMAX ESTIMATOR OF 1/N WHEN n = 1 AND n = 2
The probability distribution of X when n = 1 is given by Py = (N-D)/N

i of 1/N is
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and Py = D/N, so the mean squared error of an estimator T
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If this risk function is to be constant with respect to N,
E TX-%>2 = C®
then .
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or
3 (15-02) + w@ (23p-m8p-21,) + v (221 0-21D) =
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Thus, the coefficients of N3,I\I2 and N in this polynomial must all be zero,
giving
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For n = 2 we obtain the corresponding polynomial in N with coefficients

depending on TO’ Tl’ T2 and C:
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In terms of C the solution is e
[hDA/CZDz + 0D - 20D(D+1) - 1]

T =C T=/02+c/D T =
0 1 A 2 QD(D-l)

and C is determined as the root of a cubic equation.




