ON THE SINGER 1-PERMUTATION

A. Hedayat
Cornell University

Abstract

This paper gives a simple method of constructing a linear set of
directrices of the n-sided Latin square $A = (a_{ij})$ whose rows are the
successive cyclic permutations of the integers 0, 1, ..., n-1, so that
$a_{ij} = i + j \pmod{n}$. Therefore it gives a lower bound on the total
number $N(n)$ of directrices which A contains.

Paper No. BU-176 in the Biometrics Unit series, and No. 572 in the
Department of Plant Breeding and Biometry.
ON THE SINGER 1-PERMUTATION
A. Hedayat
Cornell University

0. Summary

This paper gives a simple method of constructing a linear set of directrices of the n-sided Latin square $A = (a_{ij})$ whose rows are the successive cyclic permutations of the integers $0,1,\ldots,n-1$, so that $a_{ij} \equiv i + j \pmod{n}$. Therefore it gives a lower bound on the total number $N(n)$ of directrices which A contains.

1. Introduction

An n-sided Latin square (L.sq.) is an arrangement of n distinct symbols into an $n \times n$ matrix $B = (b_{ij})$ in such a way that no row and no column contains any symbol twice. Two n-sided L.sqs. $B = (b_{ij})$, $C = (c_{ij})$ are mutually orthogonal if the n^2 ordered pairs (b_{ij}, c_{ij}) are all distinct. A set $\{A_1, A_2, \ldots, A_t\}$ of n-sided L.sqs. is called orthogonal if A_i and A_j are orthogonal for all $i \neq j$. It is easy to see that $t \leq n-1$. If n is a power of a prime, then it is well known that there exists a set of $n-1$ mutually orthogonal L.sqs.
A collection of n cells in an n-sided L.sq. such that no row and no column contains two cells of the collection, and no two cells of the collection contain the same symbol is called a directrix\(^1\) \((d)\) of the L.sq. Two directrices are said to be parallel if they have no cell in common. A set \(\{d_1, d_2, \ldots, d_r\}\) of directrices of a L.sq. is called a linear set if \(d_i\) and \(d_j\) are either parallel or they have only one cell in common for \(i \neq j\). We denote such a set by \(L\).

We define the arithmetic function \(N(n)\) to be the total number of directrices which a given n-sided L.sq. contains.

2. The Problem

Let \(A = (a_{ij})\) be the n-sided L.sq. whose rows are the successive cyclic permutations of the integers \(0, 1, \ldots, n-1\) so that \(a_{ij} \equiv i + j \pmod{n}\). The Singer problem [3] can be stated as follows: Given \(n\), what is the value of \(N(n)\) for \(A\). Singer [3] has easily shown that

\[N(n) = 0 \text{ if } n \equiv 0 \pmod{2}.\]

For \(n \equiv 1 \pmod{2}\) Singer [3] gives the following values, \(N(1) = 1, N(3) = 3, N(5) = 15, N(7) = 133, N(9) = 2025,\)

\(^1\) Some writers prefer to call such a collection a transversal or a \(1\)-permutation. But for the historical reasons, we prefer to use the term directrix.
N(ll) = 37,851, and in an effort to shed some light on the values of \(N(n) \) for large values of \(n \) he has related the problem to a special group \(\mathcal{G} \) of order \(6n^2\varphi(n) \), where \(\varphi(n) \) is the familiar Euler \(\varphi \)-function.

In this paper, we give an explicit method of constructing a non-empty linear set of directrices for all \(n \equiv 1 \pmod{2} \) and hence a lower bound (obviously crude for large \(n \)) on the values of \(N(n) \). The construction to be presented relies on an appreciation of orthogonal L.sqs.

3. **Group Solution of the Problem**

Consider for each positive integer \(n \) an abstract group \(G \) of order \(n \). Let \(\Omega \) be the collection of all one-to-one mappings of \(G \) into itself.

Definition 1. Two maps \(\alpha \) and \(\beta \) in \(\Omega \) are said to be orthogonal if for any \(g \in G \),

\[
(\alpha z)\#(\beta z)^{-1} = g
\]

has a unique solution \(z \in G \).

Definition 2. A non-empty subset \(\omega \) of \(\Omega \) is said to be a mutually orthogonal subset (m.o.sub.) if any two nonidentical maps of \(\omega \) are orthogonal.
Definition 3. A m.o.sub. \(w^* \) of \(\Omega \) is said to be a maximal mutually orthogonal subset (m.m.o.sub.) if the number of maps in \(w^* \) is at least as large as the number of maps in \(H \), for any other m.o.sub.

Remark. The identification of \(w^* \) is an unsolved problem at the present, except when the order of \(G \) is a power of a prime.

Let \(L(\cdot) \) be an n x n square. We make a one-to-one correspondence between the rows of \(L(\cdot) \) and the elements of \(G \). Thus, by row \(x \) we shall mean the row corresponding to the element \(x \) in \(G \). Similarly we make a one-to-one corresponding between the columns of \(L(\cdot) \) and the elements of \(G \). The cell of \(L(\cdot) \) which occurs in the intersection of row \(x \) and column \(y \) is called the cell \((x,y) \).

Lemma 1. ([1],[2]). Let \(\alpha \in \Omega \). Put in the cell \((x,y) \) of \(L(\cdot) \) the element \((\alpha x)^*y \) of \(G \). Call the resulting square \(L(\alpha) \). Then \(L(\alpha) \) is a L.sq.

Lemma 2. ([1],[2]). If \(\alpha \) and \(\beta \) are in \(\Omega \). Then \(L(\alpha) \) and \(L(\beta) \) form a pair of orthogonal L.sqs. if and only if \(\alpha \) and \(\beta \) are orthogonal.
Remark. Since there are at most $n-1$ L.sqs. in any set of orthogonal L.sqs of side n, it is obvious by lemma 2 that the number of maps in any m.m.o.sub. w^* is at most $n-1$, where n is the order of G.

In the sequel, for a given n, we restrict G to be the set $\{0,1,\cdots,n-1\}$ with addition (mod n) as the binary operation. We also suppose the standard order of taking the elements of G to be $0,1,\cdots,n-1$. In addition, let I denote the identity map in G, i.e.

$$I(i) = i, \quad i=0,1,\cdots,n-1$$

Lemma 3. If $n > 2$ and if

$$n = p_1^{t_1}p_2^{t_2}\cdots p_r^{t_r}$$

is the prime decomposition of n, then $2I,3I,\cdots,(p_m-1)I$ all belong to Ω, where

$$p_m = \min(p_1,p_2,\cdots,p_r).$$

Proof. Suppose there exist $i \leq p_m-1$ such that $iI \notin \Omega$. Then this implies that there exists x and y in G such that $x \neq y$ but
ix \equiv iy \pmod{n}.

Since i and n are relatively prime this implies that \(x \equiv y \pmod{n} \) and consequently \(x = y \), which is a contradiction.

Q.E.D.

Theorem 1. Let \(n \) be the same as in lemma 3. Then L.sqs. \(L(I), L(2I), \ldots \) \(L((p_m - 1)I) \) are mutually orthogonal.

Proof. Let \(S = \{I, 2I, \ldots, (p_m - 1)I\} \). Then by lemma 3, \(S \subseteq \Omega \). Hence by lemma 1, \(L(I), L(2I), \ldots, L((p_m - 1)I) \) are L.sqs. Now it is sufficient to prove that \(S \) is a m.o.sub. or we have to show that for any \(\alpha \) and \(\beta \) in \(S \),

\[
(1) \quad (\alpha z) \ast (\beta z) = g
\]

has a unique solution \(z \) in \(G \). With respect to the operation in our new \(G \) equation (1) becomes

\[
\alpha z - \beta z = g
\]
or

\[
(\alpha - \beta)z = g.
\]
Equivalently, we have to prove that $\alpha - \beta \in \Omega$. But this is true, since if $\alpha = kI$ and $\beta = \ell I$ ($k > \ell$ without loss of generality), then

$$\alpha - \beta = (k-\ell)I.$$

Since $k \leq p_m - 1$, $\ell \leq p_m - 1$, $k \neq \ell$ it is clear that $(k-\ell)I$ belongs to S and hence belongs to Ω.

Q.E.D.

Remark. Note that $L(I) = A$ as was defined in section 2.

Theorem 2. Let n be the same as in lemma 3. Then there exists for $L(I) = A$ a linear set L with $n(p_m - 2)$ elements. Hence $n(p_m - 2)$ is a lower bound on $N(n)$.

Proof. By construction. By theorem 1, $A = L(I), L(2I), \ldots, L((p_m - 1)I)$ are mutually orthogonal. Now consider the cells in $L(kI)$, $k \neq 1$, which contain the same integer "i". Then the corresponding cells of $L(I)$ form a directrix of $L(I)$, since $L(I)$ and $L(kI)$ are orthogonal. Since "i" and "k" can take n and $p_m - 2$ distinct values respectively, we can exhibit $n(p_m - 2)$ directrices for A. In addition, these directrices are either parallel or have one cell in common, since $A = L(I), L(2I), \ldots, L((p_m - 1)I)$ are mutually orthogonal.
Remark. For $n = 3, 5$ the above procedure gives the exact values of $N(n)$ which have been computed by Singer [3].

Example. Let $n = 3$, then

$$
A = L(I) = \begin{pmatrix}
0 & 1 & 2 \\
1 & 2 & 0 \\
2 & 0 & 1
\end{pmatrix}, \quad L(2I) = \begin{pmatrix}
0 & 1 & 2 \\
2 & 0 & 1 \\
1 & 2 & 0
\end{pmatrix}.
$$

Then the cells

$(0,0), (1,1), (2,2)$ form a directrix of A associated with 0 of $L(2I)$,

$(0,1), (1,2), (2,0)$ form a directrix of A associated with 1 of $L(2I)$, and

$(0,2), (1,0), (2,1)$ form a directrix of A associated with 2 of $L(2I)$.

References

