A Minimax Estimator of the Bernoulli Variance \(p(1-p) \)

D. S. Robson, Cornell University*

ABSTRACT

An estimator of \(p(1-p) \) which is minimax with respect to mean squared error is a linear function of the minimum variance unbiased estimators

\[
s^2 = \frac{n\bar{x}(1-\bar{x})}{n-1},
\]

where \(\bar{x} \) is the proportion of "successes" in \(n \) Bernoulli trials. This minimax estimator, given by

\[
(1 + \sqrt{\frac{4n-6}{n^2(n-1)}})^{-1} \left[\sqrt{\frac{n-1}{4n^2(4n-6)}} + \frac{n\bar{x}(1-\bar{x})}{n-1} \right] = a + bs^2
\]

has a constant mean squared error equal to \(a^2 \) and is admissible.

* Paper No. BU-113 in the Biometrics Unit, and No. 491 in the Plant Breeding Department, Cornell University, Ithaca, New York.
A Minimax Estimator of the Bernoulli Variance \(p(1-p) \)

D. S. Robson, Cornell University*

The standard unbiased estimator of the Bernoulli variance \(p(1-p) \) based upon \(n \) independent and identically distributed Bernoulli variables \(X_1, \ldots, X_n \),

\[
s^2 = \frac{1}{n(n-1)} \sum_{i=1}^{n} (X_i - \bar{X})^2 = \frac{n}{n-1} \bar{X}(1-\bar{X})
\]

is itself subject to a sampling variance of

\[
E[s^2 - p(1-p)]^2 = \frac{p(1-p)}{n} - \frac{p^2(1-p)^2(4n-6)}{n(n-1)}
\]

In this note we derive a minimax estimator of the form \(a + bs^2 \) with

\[
E[a + bs^2 - p(1-p)]^2 = a^2,
\]

\[0 \leq p \leq 1\]

The mean squared error of a linear function of \(s^2 \),

\[
b^2E[s^2 - p(1-p)]^2 + [E(a + bs^2) - p(1-p)]^2
\]

\[= a^2 + \left[\frac{b^2}{n} - 2a(1-b) \right] p(1-p) - \left[\frac{b^2(4n-6)}{n(n-1)} - (1-b)^2 \right] p^2(1-p)^2\]

is identically \(a^2 \) when \(a = b^2/[2n(1-b)] \) and \(b \) is chosen as either of the two

* Paper No. BU-113 in the Biometrics Unit, and No. 491 in the Plant Breeding Department, Cornell University, Ithaca, New York.
Since the values a_+ and a_- corresponding to these two roots satisfy the relation $|a_+/a_-| = b_+/b_- < 1$ then only the estimator $a_+ + b_+ s^2$ is a candidate for the minimax strategy.

The minimax property and also admissibility are then confirmed by noting that this estimator is a Bayes solution with respect to a (symmetric) Beta prior distribution

$$I_p(\theta, \theta) = \frac{\Gamma(2\theta)}{\Gamma(\theta)^2} \int_0^\theta x^{\theta-1} (1-x)^{\theta-1} \, dx .$$

The a posteriori distribution is then $I_p(\theta+n\bar{x}, \theta+n(1-\bar{x}))$, and the Bayes solution

$$E[p(1-p)|\bar{x}] = \frac{(\theta+n\bar{x})(\theta+n(1-\bar{x}))}{(n+2\theta)(n+2\theta+1)}$$

$$= \frac{\theta(n+\theta)}{(n+2\theta)(n+2\theta+1)} + \frac{n(n-1)s^2}{(n+2\theta)(n+2\theta+1)}$$

is then equal to $a_+ + b_+ s^2$ for

$$\theta = \frac{n}{2} \left[-1 + \sqrt{1 + \frac{4(n-1)a_+}{nb_+}} \right] > 0 .$$