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ABSTRACT 

Computer simulation studies have been made of the distribution of between-

group variance component estimates customarily derived from unbalanced data of a 

1-way classification model. Under normality assumptions, the distribution is, in 

many instances, akin to a x2 , although in some cases it is exponential in nature. 

An approximation to the distribution function appears feasible in some situations 

but not in others. 
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Introduction 

Analysis of data on a between- and within-groups basis arises on many occa-

sions: between and within groups of people, between and within the crosses of two 

species, between and within litters of pigs, or herds of cows, or flocks of 

poultry; and between and within replications of technological processes. The 

statistical model appropriate to many of these situations is the well-known 

random effects model, viz. Model II of Eisenhart (1947). If data consist of n. 
l 

observations in the i'th group, fori= l,2, ... ,c, the equation of the model for 

yij' the j'th observation in the i'th group is 

Yl·J· = ~ + a. + e .. l lJ 

where ~ is a general mean, a. is the effect due to the i'th group and e .. is a 
l lJ 

random error term. In the random model the a. are assumed to be a random sample 
l 

of a's from a population having zero mean and variance cr2 , being uncorrelated a 

with each other and with the e .. -terms which themselves are assumed to have zero 
lJ 

mean and variance a~, they too being uncorrelated with each other. In this 
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context the matter of interest is to estimate the variance components o2 and r;2 a, 
a e -

from observations y .. for j = 1,2, ... ,n., and i = l,2, •.. ,c. i.e. a situation 
lJ l 

where the data come from c groups with ni observations in the i'th group, a total 

of N 
c 
En. observations in all. 

i=l l 
Having obtained estimates of cr2 and J 2 one is a e 

also interested in the sampling distribution (and variance) of the estimates. 

No great problems arise when there is-the same number of observations in 

each group, n. = n say, for all i. Data of this nature are usually referred tv 
l 

(and shall be here) as balanced data, and in this situation the distribution of 

the customary estimator of o2 , the between groups variance component, can be de
a 

rived (Robinson, 1966 and Wang, 1967). However, in many instances data are such 

that the groups do not each have the same number of observations. These data are 

called unbalanced. Theoretical considerations of the distribution of the esti-

mator of o2 are then more complex, and light can be shed on the properties of a 

this distribution by means of computer simulation. Leone and Nelson (1966) have 4lt 
recently pursued this approach for a 4-stage balanced nested design. Anderson 

and Crump (1967) have also used the same approach for some unbalanced designs, 

giving major consideration to just the sampling variance of estimators. The 

designs they deal with are unbalanced but in a manner that could be called 

planned, for they are largely concerned with the allocation of resources in situ-

ations pertinent to industrial experiments. Bainbridge (1963) and Bush and Ander-

son (1963) have also considered other planned, unbalanced designs suited to in-

dustrial contexts, where the inequality of the numbers of observations in the 

groups is, in some sense, more or less under control. But in biology these num-

bers are often under little or no control at all; animals in experiments die at 

will and organisms reproduce freely - and with survey data, such as are available 

in dairy herd breeding and poultry breeding, for example, the statistician is 
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given the data just as they are, with scant possibility for determining group 

sizes or even the number of groups. Yet, in genetics especially, we frequently 

derive estimates of variance components from data of this sort, so it is important 

that studies be made of the sampling distributions of such estimates. Some of 

the problems involved and results obtained from initial studies are considered 

below. 

Customary estimates 

The usual procedure for deriving estimates from the data having n. obser
l 

vations in the i'th group, vide Henderson (1953), is to calculate the between-

and within-group mean squares, 

MSB = c-::-r 1 
n. 

c l 

I z C r. y .. 
.... i=l j=l lJ 

C "E.Iy .. )
2

/ N '""! 
ij lJ j 

- - - (l) 

and 

n. 
1 [ 

c l 

ASW z 2 

N 
L: y .. - c i=l j=l lJ 

~ en~ y .. )2/ n).. lj. 
i=l j=l lJ 

and equate these values to their expectations. Solving the resulting equations 

for cr2 and a2 leads to estimators 
a e 

MSB - ; .. mw 
(J2 ;,mw and (J2 - - - (2) e ' a c 

N2 - I: n~ 
i=l 

). 

N(c - 1) 

Distributional properties of these estimators are usually considered only on 

the basis of normality assumptions, namely that the a. and e .. of the model have 
l lJ 

the properties already alluded to and, additionally, are normally distributed. 
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Under these conditions the cr2 estimator, which is the within-group mean square, 
e 

has a x2 -distribution or, more accurately, (N- c)~IDW/a2 has a x2 -distribution e 

with (N - c) degrees of freedom. Hence the Variance of a2 is e 

- - - (3) 

Thus the sampling distribution and variance of a2 are readily established. Havr
e 

ever, as is well-known, the same is not true of a2 and indeed, the two cases of 
a 

balanced and of unbalanced data are initially best distinguished. 

Balanced data 

When each group has the same number of observations,n. 
]_ 

n for all i and 

in (2) the estimate of a2 becomes a 

a2 (MSB - 0illW)/n • 
a 

Furthermore, (c - l)fillB/(no2 + a2 ) has a x2 -distribution with c - l degrees of 
a e 

freedom, independently of (N - c )M.SW/ a2 which also has a x2-distributio~ with 
e 

N - c degrees of freedom, with N = nc. Hence o2 is the weighted difference 
a 

between two independent x2 distributions: 

a2 + a2 /n 
[ (c l)MSB 

a2 

[ (N - c )1•iSW l (J2 a e - l e 
- l I n(N - c) a c na2 + ::;2 ..J a2 -' 

a e e 

02 + a2 /n ~2 
J 

a e 2 e 2 
xc-1 - nc(n - l) Xc(n-1) - - -c - l 

( 4) 

The density function of (4), as available from results of Robinson (1965) and 

Wang (1967), is a confluent hypergeometric function involving the coefficients of 

the x2 's in (4) and so involves the parameters we seek to estimate, a2 and 72 , in~ 
a e W 
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no straightforward manner. Wang (1967) considers this distribution in some de-

tai~ and we shall treat it solely as a special case of unbalanced data. Its 

variance is 

var(~) = a 

2(ncr2 + a2).2 .. 2a'lf 
a e + e 

n2 (c - l) n2 c(n - l) 

and the covariance between cr2 and cr2 is 
a e 

Unbalanced data 

For data where the number of observations is not the same in every group, 

the estimator of a2 is as given in (2). But now I\ffiB is not a x2 -variable: it is a 

a weighted sum of 1-degree-of-freedom x2 -variables. The procedure of Robinson 

(1965), who obtains the density of 

variables and constants ai and ~j' 

r 
~ a.x2 -

i=l l. pi 
could thus 

s 
~ ~.x2 for independent x2 -

j=l J qj 
be invoked except that the con-

stants involved in 02 are functions of a2, cr2 and then., since the weights in a a e 1. 

MSB are in terms of expansions like n./(n.a2 + a2 ). Despite this, the cumulants 
1. 1. a e 

of the distribution are available, simulation of it can be undertaken, and evalu-

ation can be made of an approximation to the distribution derived from an analogue 

of that for balanced data. To these topics we now turn. 

Variance of Between-Groups Estimate 

The estimator 02 given in (2) is not maximum likelihood, as are those of a 

Herbach (1959) and Thompson (1962) nor is it admissible, Robson (1965). It is, 

however, unbiased no matter what underlying form of distribution is attributed to 

the a.'s and e .. 's- so long as they have zero means, variances cr2 and a2 and are 
1. l.J a e 
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uncorrelated, as previously described. Under normality assumptions the variance ~ 

of cr2 is a 

(N2 S2 +S~-2NS 3 ) 

N(N2 -S )2 
2 

a4 ' - - - (5) 
a J 

where s2 = Lh~ and s3 = Lh~ and the covariance between 02 and '02 is 
1 1 7 a e 

-N(c-l)varcr2 
cov( 1J2 1J2) = _____ e 

a' e 

Expres~ given earlier for this variance and covariance are, of course, special 

cases of these formulae with n. = n for all i. 
l 

The variance of B2 in (5) is a special case of the familiar result that the a 

r'th cumulant of the quadratic form y'Fy (F being symmetric) is 2r-l trace(VF)r 

where V is the variance-covariance matrix of y, a vector of normally distributed 

random variables having zero mean. 

Derivation of (5) is given in Searle (1956); a typographical correction to 

the expression shown there is that the term in a2a2 should include the coefficient a e 

2 as shown in (5) above. A correction to Crump's (1951) expression for var(cr2 ) a 

might also be noted here. He uses notation akin to n0 for (N2 - s2 )/N(c - l) and 

w. for n./(1 + n.a2 /a2 ) and in this way var(cr2 ) can be written as 
1 1· 1 a· e a 

3 
2 >:;ni J + 
N w~ 

]. 

Unfortunately Crump (1951) omits the 1/N from the first term. The equivalence 

of the above expression to (5) is readily shown. Summation is with respect to i, 

fori= 1,2, ... ,c. 
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Unbalancedness 

Data wherein all groups have the same number of observations are called 

balanced; and those where the groups have different numbers of observations are 

called unbalanced. The characteristic of unbalancedness is not, however, a di-

chotomy, for it can be evident in varying degrees. For example, with five groups 

and 25 observations balanced data have n.-values of 5, 5, 5, 5, and 5; moderately 
:l 

unbalanced data might be considered as those having n. values of 1, 1, 3, 10 and 
:l 

10; and severely unbalanced data would be those with n.-values of 1, 1, 1, land 
:l 

21. Sets of n.-values such as these will be referred to as n-patterns and the 
1 

effects of unbalancedness will be studied by considering a variety of such pat-

terns. There is, of course, no end to the number of possible n-patterns that 

could be used for this purpose so, in order to confine the problem, we limit our-

selves in this paper almost entirely to n-patterns of 5 groups having a total of 

25 observations (c 5, N = 25). Some simple variants thereof are also used, as 

shown in Table l. The nine n=patterns shown there represent unbalancedness of 

quite widely differing degrees and provide opportunity for comparisons. Pattern 

P1 is the balanced case; patterns P2 and P3 are moderately unbalanced and P4 and 

(Show Table 1) 

P5 are seriously unbalanced. P6 is merely P5 with 20 observations added to one 

of the single-observation groups; and P7 , P8 and P9 are just P4, P5 and P6 with 

five times as many observations per group. 

The descriptions "moderately" and "seriously" unbalanced used in Table 1 are 

adopted on empirical grounds: no quantitative measure of the degree of unbalanced-

ness is specified, although one might seek a statistic of unbalancedness based, 

presumably, on the n.-values in an n-pattern. An obvious possibility is the 
:l 
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variance of the ni's, 

in~ (rn.) 2 /c 
v = v( n1. ) = --.,-1 ---=-1-- = 

c - 1 ' 

or, alternately, the ratio of v to its maximum value for given N and c, this 
,•.;·. 

maximum being achieved when c - 1 groups have 1 observation each and one has 

N - c + 1 observations, so giving 

v max 
= c - 1 + (N - c + 1) 2 - N2 /c = (N - c) 2 

c - 1 c 

Then v/v = cv/(N - c) 2 could be suggested as a statistic of unbalancedness. 
max 

However, as shall be indicated, neither this nor any other statistic based solely 

on n.-values is uniformly suitable for considering the effects of unbalancedness 
l. 

on distributional properties (the variance, for example) of ~2 • This is so a 

because of the way in which n-patterns of differing degrees of unbalancedness 4lt 
(P2 and P5, for example) can affect the distributi.on of 

their effects on the distribution vary according to the 

B2: the differences in a 

underlying value of cr2 . a 

Thus the effect of unbalancedness is a function of both the n-pattern and cr2 and a 

so, in terms of the effects of unbalancedness on the distribution (variance) of 

~2 it seems that a statistic for unbalancedness cannot be one based solely on 
a' 

the n-pattern. 

In considering the effects of unbalancedness on the variance of ~2 one might 
a 

look for then-pattern which, for given Nand c, maximizes var(~) shown in (5). a 

Anderson and Crump (1967) consider the problem of minimizing var(~2 ) when it is a 

known that the n. cannot all be the same (equal n. minimizes it· absolutely); but 
l. l. 

if, for a given Nand c, the maximum of var(~2 ) could be found, then the value of a 

var(~2 ) for the particular n-pattern at hand could be considered relative to the 
a 

maximum, which would presumably represent the worst case of unbalancedness for ~ 

that N and c. 
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It is clear from the form of (5) that its first two terms are maximum, re

gardless of a2 and a2, when 82 is greatest, and this occurs when the n-pattern a e 

has the form l,l,l, ..• ,l,N- c + 1, examples of which are patterns P5 and P8 in 

Table 1. However, this kind of n-pattern does not maximize the third term in (5). 

The coefficient of 2cr4 in that term is 
a 

N2 8 + 82 _ 2N8 2E En~n~ + 'E E tn.n.~(n. + nJ. + ~) 
2 2 3 = _i<_...j_~_J __ i_< ... j_<k __ ~_J ___ ~ ____ _ 

(N2 - 82 ) 2 (E rn.n.) 2 
i<j ~ J 

2E En~~ + E E ~.n.nk(n. + n. + ~) 
i<j ~ J i<j<k ~ J .l:.. .. J 

= ----------~-~----~~-~~--------------------------
2E tn~n~ + 4E E En.n.nk(n. + n. + ~) + l2E E E En.n.nknh 

i<j ~ J i<j<k ~ J ~ J K i<j<k.<h ~ J 

where, as usual, the limitd all sUllllilait:ions is c, the number of groups • The value 

of this expression is clearly less than unity, but its complexity, as a function 

of the n.'s, appears to preclude ascertaining what n-patterns (if any) maximize 
~ 

it. The intractability is reduced somewhat when c = 3, for then the last term of 

the denominator does not exist, and the coefficient reduces to 

3N/2 
1 - -------------------------

which is nmximum when then-pattern is 1, (N- l)/2, (N- l)/2, provided N·> 6. 

It was this n-pattern, extrapolated to more than 3 groups, which prompted the use 

of patterns P4 , P7 and P9 shown in Table 1. Patterns of this nature maximize, of 

course, only the third term in (5) and the whole expression will then be a maxi-

mum only for sufficiently large values of a2. Thus it appears that in general 
a 
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one cannot find n-patterns, for given N and c, whicn maximize var(~) uniformly e 
for all values of o2 and cr2 • This reaffirms the suggestion that the effects of e a 

unbalancedness are relative to the underlying values of o2 and o2 and not mnde-a e 

pendent of them. 

Although no n-pattern has been found that maximizes var(G2) uniformly for a 

all o2 and cr2, it is clear from (5) that a e 

var ~2 * 2N2(N - l)(c - l) 04 
a (N - c)(N2 - S )2 e 

2 

a2 
for 2: < 1 . 

a2 
e 

This is maximum when s2 is, i.e. when v(ni) is, and so when cr:/o~ < l a suitable 

statistic for unbalancedness might be v(ni)/vmax =. cv(ni)/(N- c) 2, as suggested 

earlier. At the other end of the scale, when 0:1~ > 1, the approximate value of 

var(~2 ) is, from (5), 
a 

where u 

for a2/ cr2 > l , a- e 

Although no n-pattern has been found that maximizes this, we have seen that for 

c = 3 it is maximized, for N > 6, when then-pattern is [1, ~(N- 1), t(N - 1)]. 

Furthermore, it can be shown that increasing N without increasing c can increase 

u. For example, for the n-pattern P5, (1, 1, 1, 1, 21), U = -398, for 

(1, 1, 1, 1, 41), U = .416, and for n-pattern P6 , (1, 1, 1, 21, 21) J u .699· 

Hence, when cr2/ cr2 > 1, it is possible for var(~2 ) to be increased by the addition a e . a 

of observations to the data; in other words, increasing the amount of data can 

increase the variance of the estimator, somewhat of a paradoxical situation. It 

would seem that an implication of this result is that in situations when cr2/cr2 > 1 
a e e 
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one should strive for having as many groups as possible in one's data, rather 

than numerous observations in each group. In this context it is also interesting 

to note that if each n. is increasing by the same fraction, ~' say, then U is not 
~ 

altered, and so var(~2 ) will be affected very little, especially when cr2/o2 > 1. a a e 

Calculated values of var(~2 ) a 

In light of the above discussion the effects of unbalancedness on var(~2 ) 
a 

have been studied by computing var(~2 ) for the n-patterns shown in Table 1, each a 

with the series of values for a2 and a2 shown in the same table. At all times 
a e 

cr2 = 1 has been used, in combination with each of the eleven values for o2 seen 
e a 

in Table 1. Each combination has then been used with each n-pattern to calculate 

var(~2 ) from (5). The results are shown in Table 2. As would be expected, for a 

(Show Table 2) 

each n-pattern this variance increases as a2 increases; and, as indicated in a 

footnotes to the table, other points of interest are also evident. 

(l) In n-patterns P1 through P5, N and c remain constant, and the largest 

value of var(cr=) for given ~ is either in P4, (1, 1, 1, 11, 11), or in P5, 

(1, 1, 1, 1, 21). This suggests that for given N, c and cr2 the largest value of a 

var(cr2 ) may be when then-pattern is of the form (1, 1, ... , k) or (1, 1, 1, ... , a 

q, q) where k = N- c +land q = ~(N- c + 2). 

(2) If, for given Nand c, then-pattern giving largest var(cr2 ) is of the a 

form (1, 1, •.. , 1, q, q) then the pattern (1, 1, •.. , 1, k) does not necessarily 

give the next largest. For example, with cr2 
a 

and P2 , not P5, gives the next largest value 

= 10 pattern P4 gives var(cr=) 

of var(~), namely 90. a 

= 113 
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(3) Increasing the total number of observations, N, can increase var(cr~), as e 
already discussed. Thus for cr~ ~ 1, var(~) is larger with P6 than P7; and for 

cr~ > t, its values are larger with P9 than with P8 . 

(4) Increasing each n. by the 
~ 

same proportion does not greatly decrease 

var(cr2 ) when a2/ a2 > l. 
a a e For example, the values in Table 2 for P7, P8 and P9, for 

a~ > 1, are very little less than those for P4 , P5 and P6 , although they contain 

five times as many observations. 

Frequency Distributions of Simulated Components 

As already indicated, the distribution of a2 is not known explicitly in the a 

case of unbalanced data, '02 being a linear function of 1·1SW which is a multiple of 
a 

a x 2 -variable and of MSB which is a weighted sum of other 1-degree-of-freedom x 2 -

variables. Empirical investigation of the distribution has. therefore been made 

by means of· computer simulation, using the n-patterns and the values of o2 and o2 
e a 

shown in Table l. Leone and Nelson (1966) report studies of this nature for 

balanced data in .a 5 X 2. X 2 X 2 nested design, but few studies for unbalanced 

data, of a survey nature, have been made . 

. With each combination of n-pattern and o2 -value that was used, 2,000 simua 

lations were made of the estimator 02. On each occasion cr2 was derived from a a e 

simulated xN2 variate using procedures given in U. S. Steel (1962) for N - c .:;; -c 

30 and in Zelen and Severo (1964) for N - c > 30. In this way only group means 

and not individual observations had to be simulated. The means were derived by 

pseudo-random sampling of 1,000 abscissae that are medians of 1,000 equi-probable 

areas of the standardized normal distribution, using a multiplicative congruential 
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generator for the pseudo-random sampling. (The medians of the 1,000 equi-probable 

areas of the normal distribution are discussed in Searle (1966): their first three 

even-order moments are .999, 2.965 and 14.266 respectively.) Thus when the ran-

domly generated integer between l and 1,000 was r, the r'th median was chosen, a. 
r 

say, and for a group having n; observations the group mean, y. , was simulated as ... ~. 

cr m + l/1;;: • Then, using 02 derived from the simulated xN2 variate, the simu-a r ~ e -c 

lated value of B2 was, in accord with (l) and (2), computed as a 

where 

N(c - l)(l~B - 02) e 

l 
;viSB - --- N - c 

[ 
c 

-2 r: n.y. 
i=l ~ 1.. 

-( ~n.y. ) 2 /NJ-
i=l ~ 1.. 

Frequency distributions were then made of these simulated ~2 's, grouping 
a 

them into 53 intervals based on cr2 and the standard error of its estimate, namely a 

SE = jvar('02 ) derived from (5). Fifty-one intervals of finite width (O.l)SE 
" a 

were used, with center points at o2 - 2SE through to cr2 + 3SE, tail intervals a a 

being from -~to a2 - 2.05SE and from a2 + 3.05 to +00 • This choice resulted in a a 

barely 2% of the simulated ~2-values being in the tail intervals, and it was also a 

convenient for computer generation of frequency polygons and cumulative frequen-

cies. However, before discussing the results of these simulations other comments 

are in order. 

Negative estimates 

It is well known that negative estimates of a2 can be derived by the methods a 

being considered here, namely (2). The frequency with which negative estimates 

occurred among the simulated estimates is therefore of some interest. Indication 
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of the extent of this occurrence is shown in Table 3, wherein is given the per-

centage of the 2,000 simulated values of '0: that were negative in various com

binations of n-pattern and a2 values. It is clear that for situations in which 
a 

a2 is close to zero there may be many negative estimates '02, but even when a2 /a2 
a a a e 

(Show Table 3) 

is in the neighborhood of 0.25 to 0.5,0 there still seems to be an appreciable 

likelihood of getting a negative estimate. If this is indeed the case it gives 

credence to results often obtained by genetfcists and others for whom the vari-

ance ratio is customarily in this range. Wang (1967) also reports the frequency 

of negative estimates, as do Leone and Nelson (1966) for their balanced design, 

in which case they were able to derive analytical expressions for the frequency, 

due to the X2 distributional properties of the mean squares. This is not so here, 

and we must be content with the empirical results given in Table 3· 

Monte Carlo methods 

The procedure described above for generating frequency distributions is 

purely one of simulation. It makes no use of an available (conditional) distri-

but ion property of '02. This can be utilized in a method which we call Monte Carlo, a 

distinct from the method already discussed, henceforth called the simulation 

method. 

The between- and within-group sums of squares are, from (1), SSB = (c-l)MSB 

and SSW = (N-c)MSvJ respectively, and with these equation (2) can be written as 

for 

N(c - l)a2 
e 

)..2 =-------
(N2 - s2 )(N - c) 

- - - (6) 

- - - (7) 
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and ~l = H(N2 - s2 ). From (6) it is seen at once that the conditional variable 

(a:!ssB) has a x2 -distribution (multiplied by a constant). Therefore, for any 

interval Ik on the real line, one can simulate SSB and thence calculate the proba

bility pk = PrfO:IssB E ~). On dividing the real line into n intervals ~' k 

1,2, ... ,m, pk can then be found for every interval for each simulated SSB, and 

averaging each pk over a series of simulations would give an estimated probability 

density function of 02. The apparent advantage of this procedure over the simu-a 

lation method is that each simulated SSB contributes information to each of the 

~ intervals, whereas in the simulation method each simulated a: contributes in

formation to only one interval. Hopefully, for equivalent information about the 

whole curve, this should mean that the Monte Carlo procedure would require less 

simulations (of SSB) than would the simulation method (of a2 ). Unfortunately 
a 

this advantage does not always occur in practice. The difficulty is that when 

the interval ~ has length (O.l)SE say, as used in the simulation method, then 

pk is the probability that a x2 -variable lies in an interval of length SE/10~2 

with A2 as in (7). And this interval can turn out to be so large that the proba

bility content of five, or even fewer, adjacent intervals can be so close to 1.00 

as to leave other intervals with near-zero probability. For example, in Table 1 

with a2 = 1 and n-pattern (l,l,l,ll,ll), var(B2) = 1.41, and so (O.l)SE = 0.118. a a 

But ~2 = 25(4)1/380(20) = 1/76, so that the interval has length 76(0.118) = 8.7; 

and the 1% and 99% points respectively of the x~0 distribution are 8.26 and 37.57. 

Hence four adjacent intervals of length 8.7 include nearly all of the probability 

so that, in this case, a simulated SSB would be contributing non-zero information 

not to all the intervals but only to about four of them. Furthermore, computer 

time for calculating the probabilities pk exceeds that of calculating additional 

a2 values in the simulation method. Thus the apparent advantage of the Monte 
a 

Carlo method does not materialize. 
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Wang's density function 

Wang (1967) considers the variable 

- - - (8) 

where a and ~ are constants and x~n and x~m are two independent x2 -variables with 

2n and 2m degrees of freedom, respectively, n and m being integers. (This n is 

not the same as then used earlier in discussing balanced data.) The density 

function is defined in two parts, for Z negative and for Z positive. With the 

constant 

m-1 n-1 
K== a f3 

2n+m r(n) r(m)(a + ~)n+m-l 

the part of the function for negative Z is 

f_(z) = Kez/2~ J e-~ttn-l [ t- z (~ + ~) Jr-1dt 

0 

which, when m is integer, expands to 

- L )n-1 l ez/2f3 m~l c· ~ )m-1-j ( ..£_ )j 
f- ( z ) - ( a+~ 2 (a+~) j =O 2~ a+~ 

- - - (9) 

- - - (10) 

(ll) 

as given by Wang (1967). And that part of the function for positive Z is 

00 

-z/2a J -~t m-1 [ ( l l ) lp-1 f+(z) = Ke e - t t + z a + ~ J dt , - - - (12) 

0 

which Wang also writes as a sum, analogous to (11), when n is integer. 

This distribution cannot be used directly on~' because it is not a weighted a 

difference between two independent x2 's, as is z. But let us approximate by ~ 
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- - - (13) 

where x~-c 

that X~ is 

corresponds to SSW/:;2 in (6), \,_, cowes fron1 (7), anJ.wherevre assume 
e c:. 

independent of x2 
N-c 

Then ( 13) is the sarlle form as Z and equating the 

first two moments of both sides of (13) yields values of a and q that can be used, 

by means of (13) and (8), to derive an approximate distribution of c2 . This pro
a 

cedure is that alluded to in Wang (1967). Equating the moments of (13) gives 

and 

which can be solved for a and q by using (5) for var(a~) and (7) for ~ 2 . Writing 

, = J 2 /a2 the solutions are 
a e 

anc! 

ex 

q 

cr~[N2 (c - l) + 2N(N2 - s2 )1- + (N2 S2 + S~ - 2NS 3).2 ] 

(N2 - s2)[(N2 - s2), + N(c - l)] 
- - ( 14) 

- - ( 15) 

For balanced data these expressions reduce to ex= (a2 + a2 /n)/(c - l) and a e · 

q ~ c - l, as one would expect from equation (4). In addition, when cr2 ~ 0, the 
a 

value of q is always c - 1, and a is then Ncr~/ (N2 - s2 ). The approximate degrees 

of freedom q is, 'from (15), a multiple of c - 1, the degrees of freedom in the 

balanced case. Furthermore, when cr2 is large, relative to cr2 vTe have a e' 

(N2 - S )2 
2 lim q -- ____ __...;. __ _ 

'~~ N2 S + S2 - 2NS 
2 2 3 

- - - (16) 



- 18 -

the inverse of the coefficient of 2cr4 in var(a2 ) considered earlier. We return 
a a 

to this expression later. 

Computed values of a and q for the n-patterns and cr2 values of Table l are 
. a 

shown in Table 4. Apparent trends are that for each n-pattern a increases and q 

decreases as a~ increases; and no value of q exceeds c - l. Because of the lDni

ted extent of this table it would be unwise to speculate on the significance of 

(Show Table 4) 

trends in a and/or q in terms of unbalancedness, although a more extensive tabu-

lation might lead to developingment of an index of unbalancedness. Clearly it 

will depend on a2 • 
a 

Graphs of simulations and Wang-type approximations 

Using a from (14), n = tq from (15), t3 = A.2 from (7) and m = *(N - c), 

equations (ll) and (12) now provide the approximate distribution of 02. For all a 

cases in which frequency polygons of simulated values of 02 were obtained, so 
a 

also was this approximation, computed in each. case plotting the two curves along-

side one another. The procedures used for computing (ll) and (12) are outlined 

in the Appendix, and the results are shown in Figures I VI. 

The Figures show the computer output as obtained. Headings to each figure 

show: the n-pattern; the value of a2 used in the simulation, denoted by A (A = . a 

0.25, for example, in Figure l); the value of var(cr2 ) calculated from (5) and a 

denoted by var(A); and in most cases the sample mean and variance of the 2,000 

values of B~ obtained from the simulation. 

To facilitate computer generation, frequencies have been measured on the 

horizontal axis, rather than the vertical, with the intervals measured on the 
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vertical axis. The values of the center points, from . .:;2 - 2SE to d2 + 3SE, of 
a a 

the 51 finite intervals of width O.l(SE) are shown in the left-hand columns of 

the graphs, with an additional colwnn indicating the tail intervals and the posi-

tion of A, A± l.OO(SE), A± 2.00(SE) and A+ 3.00(SE). Thus in Figure l,A = .25, 

var(A) = .11 (shown as .105 in Table 2), SE /.105 = . 32 and A - l.OO(SE) = . 

-0.07. 

The full width of the horizontal axis represents a frequency of 0.19, this 

and the zero frequency points being indicated by arrows and the notations FREQ = 

0 and FREQ .19 in the headings. In all figures except III there is also a 

right-hand column showing the cumulative frequency of the simulated ~2 values. 
a 

This and the 0.19 frequency indicator are not shmm in Figure III. In all cases 

the frequency polygon of the simulated values is plotted with an X and that for 

the approximate density function is plotted with ~~, the latter being used whenever 

the two values in an interval coincide. For the approximate density function, 

values were calculated from (ll) and (12) and multiplied by (5.l)SE/5l = O.l(SE) 

to put the function on the same scale as that of the sbnulated values. 

Figures I - V pertain largely to n-patterns with N = 25 and c = 5, patterns 

P1 through P5 of Table l. With one exception, other n-patterns of that Table 

have not been used but instead, Figure VI shows a much more unbalanced n-pattern, 

where N = 60 and c = 20 with 19 groups having one observation and one having 41. 

Comments on the individual figures follow. 

~· This is the balanced case, (5,5,5,5,5), with'? a 
l_ 
-;;-, a relatively 

small value. The two curves (the frequency polygon of simulated values and the 

approximate density function) appear to be quite similar and not unlike a x2 

curve. 
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~i~~~· This is the same balanced case, (5,5,5,5,5), as in Figure I but with ~ 

a much larger value for a2 , namely a2 = 20. The curves are quite similar to those a a 

of Figure I except for being a little steeper at values less than A- l.OO(SE). 

~· Six pairs of curves are shown here for a moderately unbalanced situ-

( 8 8) f 1 f 2 ~ ation, 1,1,7, , , over a range o va ues or cra' namely T, 1, 2, 5, 10 and 20. 

The curves are still somewhat like a x2 , with the steepness on the negative side 

increasing for the larger values of cr2 (e.g. section 6 where cr2 = 20, compared to a a 

section 2 where cr2 = 1). There also appears to be a tendency for the curves of a 

the simulated values to be slightly 'squeezed' compared to those of the approxi-

mate theoretical densities (sections 4 and 5, for example), the simulated curves 

having "higher and steeper peaks" than those of the density curves. 

Figure IV. The four graphs here are for a very unbalanced case, (l,l,l,ll,ll), 
~ 

with ~ = ±, l, 5 and 20. The increasing steepness as cr2 increases is now quite 
a 

noticeable, the curves for a2 = 5 and 20 being almost exponential in type, corresa 

ponding to the approximate degrees of freedom, q, being close to unity, 1.91 and 

1.83 respectively, from Table 4. 

~· The four cases shown in this figure illustrate effects of increasing 

unbalancedness when keeping a2 constant, equal to unity: (5,5,5,5,5), the balanced a 

case; (l,l,3,lO,lO), moderate unbalancedness; (l,l,l,l,2l), very unbalanced, these 

three all having 5 groups and 25 observations; and in section 4, (l,l,l,21,21), 

representing both severe unbalancedness and the addition of 20 observations com-

pared to (l,l,l,l,2l) shown in 3· The trend for these cases seems clear: as 

unbalancedness increases there is increasing steepness on the left, with 

(l,l,l,2l,2l) being like an exponential, again corresponding to q < 2, in this 

case q = 1.41. (Table 4) 
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Figure VI. This shows the very unbalanced case of (1,1,1, ••. for 19 groups, 41), 
~~ 

for 60 observations in 20 groups, with four values of 0: = !, 1, 5 and 20. Two 

points of interest can be noticed: (i) the simulated curves are 'squeezed' con-

siderably compared to the theoretical approximations, to the point of the latter 

appearing to be quite a poor fit; (ii) the values of a2 are the same as those a 

used with (1,1,1,11,11) in Figure IV where, for 0: = 5 and 20, the curves are 

exponential in type with a q-values (degrees of freedom) 1.91 and 1.83: but they 

are not exponential in Figure VI where the corresponding q-values are 8.35 and 

5.11. Thus for large values of a2, q < 2 appears to indicate that the distribua 

tion of o2 is exponential in nature, as would be expected from q being the degrees a 

of freedom of a x2 variable. In this connection the limiting value of q for in-

finite a2, as given by (16), is 1.81 for the n-pattern of Figure IV, corresponding a 

to the exponential-style frequencies seen there, and it is 4.90 for the n-pattern 

of Figure VI where the curves are x2 in character. This limiting value, be it 

noted, is not affected by any proportional change in the n.'s of ann-pattern; 
~ 

i.e. (16) remains unchanged if every ni of an n-pattern is multiplied by the same 

constant. 

Two final, minor comments can be made. In almost all cases 95% of the esti

mates o2 lay in the interval cr2 - 1.5(SE) to Q2 + 2.0(SE), and in all cases the a a a 

mode of the distributions was considerably less than the mean. This raises the 

question of the unbiasedness of the estimator o2 . It is, as in most estimation a 

procedures, mean unbiased, a concept well-suited to estimation in fixed effects 

models where one customarily thinks of unbiasedness in terms of repeated sampling 

and averaging of several estimates of the same parameter. But this concept may 

not necessarily be appropriate in variance component models where, in the esti-

mation procedure, one might seldom envisage repeated sampling, least of all with 

the same n-pattern. This being so, estimation might be more truly considered as 

a one-time-only procedure, and so an estimator that is modally unbiased might be 

more appropriate. 
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Appendix: Computing Wang's density function 

We here outline the procedures used for computing (11) and (12) when a is 

in (14), n = ~q from (15), $ = ~2 of (7) and m = i(N- c). 

First, the part for negative Z, shown in (11): by suitable choice of N and 

c, m = ~(N - c) is an integer and so the sum in (11) is finite. 

~ m-1 n-1/( )m+n-1 L=2Q: $ a+l3 

(11) can, on replacing m- 1·- j by j, be written as 

1 . . 
f_(z) = Lez/213 m~ c~ )J(a + t3 )J (m + n- 2- j)! 

j=O 213 .· a j!(m - l j)!(n - l)! 

From (10), we find on putting z = 0 and using (9) and (Al) that 

_ Lf(m + n - l) 
f_(o) - r(m) r(n) 

Hriting this as 

_ Lf(m + n - 1) 
vo - r(m) r(n) 

(A2) can be written 

f_(z) 
z/213 m-l 

= e E v. , 
j=O J 

= L(m + n - 2) ~m + n - 3) ... (n + l)n 
(m- 1 (m- 2) .... 2. 1. 

the v.'s being a readily computable recurrent series 
J 

the initial term being v0 in (A3). 

Thus with 

- - - (Al) 

- - - (A2) 

- - - (A3) 

- - - (A4) 

- - - (A5) 
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The other part of the density function is for positive Z: here we use (12) 

and cannot invoke binomial expansion because n is not integer and t takes all 

values from 0 to 00 • Instead we use the transformation 

and find that f+(z) reduces to 

2 . 2m-l 
exp[ -z(a; + (3)tan 8 J c Sl.n 9 ) de 

2~ 2m+2n-l8 • cos 
- - - (A6) 

Calculation of f_(z) was thus achieved from (A4) using (A3) and (A5), and of 

f + ( z) from (A6). No numerical problems arose in (A4) but some did occur 1vi th 

(A6): those encountered and overcome are detailed. in Townsend (1967). In gen-

eral, the integral in (A6) was computed by the trapezoidal rule with 200 intervals 

between 0 and n/2, except in some cases where the integrand was effectively zero 

beyond some value e, 9' say, appreciably less than rr/2. In such cases the trape-

zoidal rule with 150 intervals bet-vreen 0 and e' was used. For a wider range of 

n-patterns than those of Table l the Romberg integration algorithm of Bauer (1961) 

would probably be more suitable. 
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T§ble l. n-patterns and population variances used in simulation studies 

Pattern 
Number 

pl 

p2 

p3 

p4 

p5 

p6 

p7 

p8 

p9 

l 

0 

5 

l 

l 

l 

l 

l 

5 

5 

5 

.l. 
4 

5 5 

1 3 

1 7 

1 1 

l l 

l l 

5 5 

5 5 

5 5 

n-pattern 

Numbers of observations 

5 5 (balanced) 

10 10 } (moderately unbalanced) 
8 8 

' ll 11 I 

f (seriously unbalanced) 
1 21 

21 21 

55 55 
(for comparisons) 

5 105 

105 105 

Variances 

l 2 3 4 5 10 20 
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Table 2. Values of var(02) for 9 n-patterns and ll sets of a2 with a2 = 1. 
a a' e 

Values of a2 
a 

n-pattern 
~ !?-0 1,. l 2 3 4 5 10 20 4 
.,. 

pl 5 5 5 5 5; .024 .105 .25 .46 ·72 2.4 5.1 9 14 52 2o4 

10 1·035 p2 l l 3 10 .150 . 37 . 71 1.15 4.0 8.6 15 23 90t 354 

p3 1 l 7 8 8 .030 .134 ·33 .62 1.01 3·5 7·5 13 20 78 308 

11 I .86 * ll3t p4 1 1 l ll .042 .177 .45 1.41 5-0 10.8 19 29 448 

.185 ·374 .66 * * 4.5 85 p5 l 1 1 1 21 1.05 ; 1.53 9.0 15 23 330 

p6 1 1 l 21 21 .014 .141 .44 -92 1.56 
0 

5·9 13.1 23 36 141 562* 

p7 5 5 5 55 55 .001 .084 .30 .66 1.16 4.5 10.1 18 28 112 444 

p8 5 5 5 5 105 .oo6 .084 .26 .54 .91 3·4 7·5 13 20 81 320 

p9 5 5 5 105 105 .001 
® 

.81 .096 . 37 1.43 5·7 12.7 22 35 140 560* 

* For given Nand a2 , var(o2 ) usually maximum for n-pattern (1, 1, 1, 1, k) is a a 
or (1, 1, 1, k, k). 

t If n-pattern (1, 1, 1, k, k) gives maximum var(o2 ), a pattern (1, 1, 1, 1, k) 

does not necessarily give the next largest value. 

·~ can increase var(cr~). Increasing N a 

* Increasing every n. by the same proportion does not greatly decrease var(o2 ), 
l. a 

for a2 ~ 1. 
a 



Table 3. 

pl 5 

p2 1 

p3 1 

p4 1 

p5 1 

p6 1 

p9 5 

- 28 ·::. 

Percentage of negative estimates of ::r2 in 2,000 simulations. 
a 

Value of a2 
n-pattern a 

J. ~ 1! 0 4 4 1 

Per Cent 

5 5 5 5 56% 23 14 7 5 

1 3 10 10 56 31 19 13 13 

1 7 8 8 58 29 20 15 12 

1 1 11 ll 59 32 23 18 14 

1 1 1 21 59 40 3.1 29 23 

1 1 21 21 60 29 19 17 15 

5 5 5 105 63 17 10 6 6 

2 3 

4 1 

6 2 

6 3 

7 
f c 

15 8 

8 8 

3 1 
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Table 4. Values of a and q in the approximation a2 = ax2 - ~2xN2 obtained by a q -c 

pl 

p2 

p3 
p4 

p5 

p6 

p7 
p8 

p9 

pl 

p2 

p3 
p4 

p5 

p6 

p7 
p8 

p9 

fitting the first two moments of~ [see equations (12) and (13)]. a 

Values of a2 
a 

n-pattern 
0 .1.. ~ .a l 2 3 4 5 10 20 4 2 4 

The multiElier a: 

5 5 5 5 5 .05 .11 .18 .24 ·30 ·55 .80 1.05 1.30 2.55 4.05 

l l 3 10 10 .06 .15 .25 ·35 .46 .89 1.33 1.77 2.20 4.39 8.'76 

l l 7 8 8 i .06 .14 .23 ·31 .41 ·79 1.17 1.55 1.93 3.82 "7 .62 
l l l ll ll .07 .17 .29 .42 .56 1.10 1.65 2.20 2.76 5.52 11.05 
l l l l 21 .14 .21 .30 ·39 .48 .87 1.26 1.66 2.06 4.04 8.02 

l l l 21 21 .04 .17 ·34 -51 .68 1.37 2.07 2.77 3.46 6.96 13.94 

5 5 5 55 55 .01 .14 .28 .41 .55 1.10 1.66 2.21 2.76 5·53 11.06 

5 5 5 5 105 .03 .12 .21 ·31 .41 .81 1.20 1.60 2.00 3·99 7 ·97 
5 5 5 105 105 .01 .17 ·34 .51 .69 1.39 2.09 2.78 3·49 6.98 13.97 

Degrees of freedom ~: 

5 5 5 5 5 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 

l l 3 10 10 4.00 3·35 2.98 2.80 2.69 2.50 2.43 2.40 2.38 2.33 2.31 

l l 7 8 8 4.00 3·50 3.20 3.06 2.97 2.82 2.76 2-73 2.71 2.67 2.66 

l l l ll ll 4.00 3.11 2.63 2.40 2.27 2.05 1.97 1.93 1.91 1.85 1.83 
l l l l 21 4.00 3·78 3·53 3·35 3.21 2.93 2.81 2-75 2.70 2.61 2.56 

l l l 21 21 4.00 2.38 1.96 1.80 1.71 1.57 1.53 1.50 1.49 1.46 1.45 

5 5 5 55 55 4.00 2.19 2.00 1.94 1.91 1.86 1.84 1.83 1.83 1.82 1.81 

5 5 5 5 105 4.00 3.12 2.86 2.76 2.70 2.61 2.57 2.56 2.55 2-53 2.52 

5 5 5 105 105 4.00 1.65 1.54 1.51 1.49 1.46 1.45 1.45 1.44 1.44 1.43 
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,762 
,784 
,806 
,829 
,842 
,855 
,872 
,884 
,894 
,904 
,916 
,927 
,934 
,941 
,948 
,955 
.9~8 
,963 
,970 
,973 
,976 
,981 
,985 
,986 
.987 
,989 

1, 0 0 0 

e 
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Ap - 1 

Appendix 

Inverse of V 

Since V = as in (19) it is clear from the nature of a direct sum 

that 

-1 8+ -l v = E Yi • . . 
i=l . 

For this, V~l is derived from the following theorem taken from Urquhart (1962). 
-1. 

!~~~!~~ Consider a matrix ~ partitioned as 

A={~- of order n x n} for p, q = 1, 2, •.• , N - ~pq p q (Al)* 

such that 

A =bi +p,_J -pp p-n -pp-n p p 
(A2) 

and for p (= q (A3) 

with G = {g } . - pq 
(A4) 

Then the inverse of A is 

A-l = {<A-l) of order n x n} • 
- pq p q 

(A5) 

with (A6) 

and (A7) 

where ~ = {kpq} 

= r(GD + B)-l - B-ll D-l 
L.. -- - - ..l -

(AS) 

with (A9) 
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The notation in (A9) indicates that Q and ~ are diagonal matrices, Pnd in 

(A5) - (A7) the notation (A-1) does not indicate the inverse of ?. matrix; it is 
- pq 

the pq'th sub-matrix of the inverse of A. 

Comparing the definition of V. in (20) - (22) with that of A_ in (Al) - (A3) 
-~ 

indicates that in applying the theorem to find v~1 theN of the theorem is c., b 
-l l p 

is e, gpp is a+~ and gpq is a for p ~ q, for p, q = 1, 2, ••. , 

(A4), which we now subscript with ito go with V., is 
-l 

+ aJ -c. 
l 

Then from (A5) 

-1 {c -1) } = V. = V. . .. , of order n;J· x n;j, for j, j' 
-l -l JJ ... ... 

with, from (A6) and (A7), 

(v~1 ).. = (1/e) I +h ... J 
-l JJ -n. . l,JJ-n .. 

lJ lJ 

and 

-1) (v. 'j' =h ... ,J -l J l,JJ -n .. x n .. , 
lJ lJ 

for j -f j' 

where, from (A8) 

c .• 
l 

1, 2, 

Hence G of 

(AlO) 

(All) 

(Al2) 

(Al3) 

{hi,jj'} for j,j' = 1, 2, ... , 
r -1 -1l -1 

c., =H. =' (G. D. + B.) - B. D. (Al4) 
l -l L -l-l -l -l ~ -l 

with (A9) giving 

D. = diag {n. 1 , ••. , n. } and B. = ei • -l ~ lC -l --c. 
i J. 

-1 Hence to obtain V. we need H. of (Al4), first finding the inverse of 
-l -l 
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G. D. + B. = nil(a + S) + e ni2a n. a 
-l-l -l. lC. l 

nil a ni2(a + S) + e n. 0:' 
lCl 

nil a ni2a n. (a+ 13) lC. l 

For convenience define, 

m .. = n .. S + e, 
lJ l.J 

c. 
P. = nl. m .. ' 

]. . 1 l.J J= 
c 

i n .. 
and qi = 1 + a ~ _2j_ ' 

j=l mij 

where m .. and q. are exactly as in (24) and (25). Then 
l.J l 

G.D. + B. = fnila +mil ni201 n. a 
-l-l. -]. lC. 

]. 

nil a ni2a + mi2 n. 1C.a . 1 

nil a ni2 a n. + m. lC. lC. 
]. l 

with the determinant being, from diagonal expansion, 

ci ( ci n . . a ) 
IG.D. + B. I = n m .. 1 + ~ -2:.J._ = p.q .• 
-1-1. -1. . l.J m 1. 1 

J=l j=l ij 

To find the inverse of G.D. + B. we find the cofactors of its elements. -1-l. -1 

of its j'th diagon81 element is, by analogy with (A20) 

ci ( ci n . . a n . . ex) p. ( n . . rt) 
(1/m .. ) n m .. 1 + ~ -2:.L - 2.L - _1_\q _ .2L 

l.J · 1 l.J . 1 m. . m. . - m. . i m .. 
J= J= lJ lJ lJ l.J 

(Al5 

+ e 

(Al6) 

(Al7) 

(Al8) 

(A20) 

(A21) 
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and that of its (jj 1 )'th off-diagonal element for j I j 1 is (-l)j+j 1 IM ... , I where 
-l.,JJ 

M ... 1 is the corresponding minor. In subtracting the (j' - l)'th row of 
-l.,JJ 

IM. ··1 I -which, for j < j 1 , has come from the j 1 1 th row of G.D. +B. -from -l,JJ -l-1. -l 

every other row of IM ... 1 I we find that for t I j t j 1 all elements 
-l,JJ 

nit(Q' + S) + e become nitS + e and elements nitQ' become zero; cmd the only non-

zero element in the j 1 th column is n . . a in the (j 1 - l) 1 th position. ExpAnding 
1J 

!M. ··1 I by elements of this column gives 
-l,JJ 

IMi "j'' - ,J 

., 1 . ci 
- (-l)J - +Jn .. Q' TI (n .. !3 +e) = 

lJ tfjfj 1 l.J 
(-l)j'-l+j 

n .. ap./m .. m .. 1 • 
lJ l lJ lJ 

This is for j < j 1 • When j > j', the effect is to interchange j and j 1 in the 

above result, which merely replaces n .. by n .. ,. Hence the cofactor of the element 
lJ lJ 

in the (jj') 1 th position, for j f j', is 

j+j' 
(-1) !M ... ,! = -n .. rrp./m .. m .. ,. 

-l,JJ lJ l lJ lJ 
(A22) 

Dividing ) -1 
(A2l) and (A22) by (A20) shows that (G.D. + B. has its -l-1. -l 

j'th diagonal element 

and its 

1 = ---
n .. Ol 

l.J 

- n .. 1 0l 

(jj') 1 th element, j f j', = l.J 
m .. m .• , q 1. lJ lJ 

Therefore, with D~1 = diag {1/n. 1 , 
-l 1. 

of (Al4) has diagonal elements 

. . . ' 1/n. } 
lC. 

l 

[ 
1 n. · a 11 l 

h = - - ._.,_l .... J_ - - --
i,jj m. . 2 e..1 n,J. 

lJ m .. q. ... 
lJ l 

which, from (Al6) reduces to 

-1 and B . 
-1 

= (1/e)I , the matrix H. -c. -1 
l 

(A23) 



h ... 
~,JJ m . . e 

~J 
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for j = 1, 2' ... ' c. ; 
~ 

(A24) 

Bnd off-diagonal elements 

-a 
h ... ,=-----
~,JJ m .. m .. , q; 

~J ~J .L 

for j t j' = 1, 2, ... ,c. 
~ 

(A25) 

With these terms used in (Al2) and (Al3). v~ 1 of (All) is determined ann so 
-~ 

p 

E+ V. is knm·m. 
i=l -~ 

Elements of T 

To derive tae = tr(y-~cty-~13 ) for example, we need the differentials of V 
A 
+ with respect to ct and 13. This, because V = E V. , requires the differentiAls 

- i=l -~ 

of V., and from the definitions given in (20) - (22) it is readily seen that 
-~ 

v. ct = oV./ocr; = J 
-~, -~ -n. 

~. 

oyi/ocr~ 
c. 

v. s = = E~J 
-~, j=l-0 ij 

and v. = ov./o~ = I 
-~,e -~ e -n. 

~. 

With these values, and obtaining v~1 of (All) by using (A23) - (A25) in (Al2) and 
-~ 

(Al3) we now derive the t's. First, tact' utilizing y 

a -L -1 = E tr(v.-v. v. v. ~) 
i=l -~ -~,a-~ -1,~ 

n ni 
= E E ' i.p.o. 

i=l r=l 

-1 
(r'th row of V. J ) 

-~ -n. 
~. 

and (r'th column of v~1J ) 
-~ -n. 

~. 
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where i. p. o. stands for "inner product of". 
-1 

~ow in V. J every element in a row 
-~ -ni 

is the same; and so the columns ere equal. Therefore 

e ni. -1 -1 
taa = 2:: 2:: (element of r'th row of yi ~n )(column sum of yi ~n. ) (A26) 

i=l r=l i. ~. 

-1 Now, by the nature of V. , the n. 
-~ L 

-1 rows of V. J 
-~ -n. 

~. 

are grouped naturally into 

c. sets of n .. rows each, for j = 
~ ~J 

1, 2, ••• ,c .• Therefore instead of considering 
~ the 

the r'th row of v~1J 
-~ -n. 

1. 

in t 00 we consider the k'th row in/ j 'th set of rows, and 

replace the summetion 
ni ci nij 
2:: by 2:: 2:: Then 

r=l j=l k=l 

-1 an element in the k 1 th row of the j 1 th set of rows of V. J 
-~ -n. 

-1 = 2:: elements in the k 1 th row of the j'th set of rows of V. , 
-~ 

and from the nature of (Al2) and (Al3) this is 

= ( 1/ e + n. . h . . . ) + 2:: n. . 1 h. . j 1 

~J ~,JJ j'~j ~J ~,J 

which, on substituting from (A23) and (A25) is 

1 n .. a 
~J =- - 2 m .. 

~J m .. qi 
~J 

1 n .. a 
~J = -- -m .. 2 

~J m .. q. 
~J ~ 

a ( ~i nij ' _ nij) 
m. . q. . , 1 m .. , m .. 

1J 1 J = lJ lJ 

1 a --- -m .. m .. qi 1J 1J 

1 
= m. q. 1j 1 

~-

(A27) 

on making use of (Al6) and_ (Al8) in this reduction. Thus an element in the k'th 

row of the j'th set of rows of v~1J is 1/m.jq., and summing this over all rows 
-1 -n. 1 1 

~. 

gives 
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ci nij 
= E E 

j=l k=l 

Substituting (A27) and {A28) in (A26) gives 

Now define 

Ci p n .. 
A. = E . 1,1 

1pq . l q J= 
mij 

for integers p and q, 

as in (25), noting from (Al8) that 

qi = l + ~Aill = l + ~ill 

as in (26). Then t~~ gets written as 

as shown in (27). 

= ~ .!__ ( ~i nij)2 • 
. 1 2 j 1 m •. 1- q = 1J - i 

(A28) 

The definitions and procedures introduced in deriving this result are used 

repeatedly below in obtaining the other t's. 

a 
= E tr(V~~. ,,,v"-:~. f3) 

. -1 -1 ~-1 -1, 
1=1 ' 

-1 -L+ ) = E tr(V. J V. E ,J 
• -1 -n. -1 j -n .. 
1 1. . 1J 

= EE i.p.o. (r'th row of v~1J 
. -1 -n. ) and(r'th column of v~1E+ J ) 

-1 . -n .. 
1 1. J ~J 

n. 
1. ( I = E E element of r th 

i r=l 
row of v~1J )(E elements in r'th col~~ of 

-1 -n. 
1. 1 

v~ E+ J ) 
-1 . -n .. 

J 1J 
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q.)(E elements in k'th column of j'th set of columns of 
~ 

v~~+ J ) 
-~ j -nij 

= E E E (1/m .. q.) {E elements in the column [(0 ••• 0 1 0 
i j k ~J 1. -nij 

= E E E (1/m .. q.)(E all elements in the j'th set of columns of v~1 ) 
i j k l.J ~ -1. 

= E E E (1/m .. q.) {z:: all elements in [ (v~1) .. + E (v~1):., J} 
i j k lJ 1. -l JJ j~j -l JJ 

= E E E (1/m .. q.)(n .. /e + n~. h ... + En .. n .. , h ... ,) 
i j k l.J 1. ~J lJ l,JJ j'~j lJ l.J l,JJ 

= E E E (1/m .. q.) (n . ./m .. q.) from ( A27) 
l.J l lJ lJ 1. i j k 

2 

- E ~ E nij 
- . 2 . 2 

1. q. J m .. l lJ 

= E A. 22/q~ as shown in (28). 
. l l 
1. 

Similarly 

a 
= E tr(v~~. v~~- ) 

• -1. -1 a-1. -1. e 
1=1 ' ' 

-1 -1 = E tr(V. J V. ) 
• -1. -n. -1. 
1 1.. 

= E E (element in r'th row of v~1J )(E elements in r'th column of v~1) 
i r -1. -ni. -1. 

= E E E (1/m.j q.)(l/e + n .. h ... + En .. , h ... ,) 
i j k 1. l l.J L,JJ j'~j l.J l,JJ 

= ~ ~ m~~jq. ( m.~ q.) from (A26) 
1. J l.J 1. l.J 1. 

= E A. 12/q~ , given in (29). 
• 1. 1. 
1. 
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In deriving the term 

we use the partitioning 

with 

and 

(L:+J )v~1 = {P ... ,}for j,j' = 1, 2, ... ,c . . -n .. -1 -l,JJ 1 
J lJ 

P ... 
-l,JJ 

P ... , 
-l,JJ 

+ -1) I = (L: J )(v. . . = (1 e)J + n .. h ... J 
. -n.. -1 JJ -n. . lJ l,JJ -n .. J lJ lJ lJ 

+ -1 
=(L:J )(v. ) .. 

j -nij -1 JJ 
= n .. h. . . , J lJ l,JJ -n .. x n .. , • lJ lJ 

This gives 

tee= L: tr({P ... ,} j,j' = 1, 2, ... , c.) 2 
~~ i -l,JJ l 

2 = L: tr ( L: p, • • + L: L: p • • • I p • •! •) 

i j -l,JJ j j'fj-l,JJ -l,J J 

2 = L: L: tr(P ... + L: P ... ,P .. ,j) 
i j -l,JJ j'fj-l,JJ -l,J 

+ L: n .. h . .. ,J n .. ,h .. ,jJ .·· J 
• 1 _1. lJ l,JJ -n .. x n .. , lJ l;J -n .. ,x n.·. 
J rJ lJ lJ 1 J lJ 

2 I 2 2 2 2 = L: L: [n .. (1 e + n .. h. j .) + n1.J. L: n .. ,h ... ,] 
i j lJ lJ J., J j'fj lJ l,JJ 

2 

[ 2 ' l nij <Y.)2 2 '<:" nij' a l 
= L:1. L:J. nij \ m1. J' - 2 + nij . ,J_. 2 2 2j 

m1.J. qi J -,=J m .. m •• , q. lJ l.J l 

2 2 2 2 ~ 2 2 

[ n. ( n .. Cl' 2n j n1 . ( n21J., _ n
2
iJ')J = L: I: J.j 1 + l.J . - ij + J L: 

. . 2 2 2 m1 j q. 2 2 . , 
J. J m.. m .. q_. .. 1 m1.j q. J m .. , m .. lJ lJ l l lJ lJ 



= !: !: 
i j 

The penultimate term is 

tse = tr(y-~sY-~e) 

= !: tr(V-i~. 0 V71) 
• - -1,}J-1 
1 
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= L: tr[ (L:+J )v7~71] 
i j -n1j -1 -1 

as in (30). 

=!: tr(i;p1· .j(v1- 1)jj + I: E ~. "j'(v71) ., .] 
i J- ,J - j j'~j1,J -1 J J 

=!: E tr{[(1le)J + n .. h ... J ][(1le)I +h ... J ] 
i j -nij l.J 1,JJ-nij -nij 1,JJ-nij 

+ E n1 .h. . . , J h. . . , J } 
j , 1 j J 1,JJ -n .. x n.j, 1,JJ -n .. , x ni. r 1J 1 1J , J 

=!: E tr[(1le2)J + 2(1le)n.jh. j.J + n~jh~ .. J 
i j -n1j 1 1, J-nij 1 1,JJ-nij 

I 2 2 I 3 2 2 2 ) =!:!: (n .. e + 2n.jhi .. e + n .. h ... + n~j E n .. ,h ... , 
1 j 1J 1 ,JJ 1J 1,JJ ~ j'fj 1J 1,JJ 

I 2 2 2 J = E!: [n .. (1 e + n.jh ... ) + n .. E n .. ,h1 j"' 
i j 1J 1 1,JJ 1J j'fj 1J ' J 

2 2 
rniJ ,. ni/~ 

= ~ ~!... 2 ~1 + 2 2 
1 J m. • m1 .q. 

1J J 1 

and, similar to the final reduction of t 1313 , this becomes, as shown in (31), 

8 a2 4 2 
tl3e =.E (Ail2 - 2 ;A123Iqi + 0~i1~i221qi). 

1=1 
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Finally we have 

t = tr(v-~ v-~ ) 
ee - -e- -e 

( -1)2 = E tr V. 
• -1. 
1. 

and on substituting from (Al2) and (Al3) this becomes 

t = E E tr{(l/e2)r + 2(1/e)h . .. J ee . . -n. . l.JJ-n .. 
2 + h. . .n . . J 
l.,JJ l.J-n .. 

l.J 

as shown in (32). 

Balanced Data 

1. J l.J l.J 

= E E (n . ./e2 + 2n .. h. . ./e + n~ .h~ j. + n .. E n1 . ,h~ .. 1 ) 

i j l.J l.J l,JJ l.J 1 ' J l.Jj'fj J l.JJ 

2 2 2 
= E E [(n .. - 1)/e + (1/e + n .. h ... ) + n .. E n .. ,h ... ,] 

. . l.J l.J l,JJ l.J. !.l· l.J l.JJ 
1. J J rJ 

n - c 
= _•;;...;•~_...;.. 

2 e 

= (n 

2if __ .- 1 ( n .. 
\. \ ' l.J 

+ LL! 2 1 + 2 2 
· m1 . m .. q. 

. . J l.J 1. 
1. J 

n .. if ( n.j 1 n. ')] l.J ~ 1. 1.1 + ~ --~ 
2 2 ·r.l· 2 2 m .. q. J rJ m .. , m .. 
l.J 1. l.J l.J 

With n .. = n, c. = c, for all i and j, 
l.J 1. 

m •. = ns + e 
l.J 

and cna + ne + e 
qi = n!3 + e • 
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_ a(c - 1} a and ac(n - lL 
X- 2 ' 

y= 2 z = 2 (ns + e) ( cna + nfj + e) e 

we obtain, from (27) - (32): 

( . 2 ( 2 2 2 t _ a en nfj + e 
Q'Q' - ns + e) cnQ' + ne + e) = c n y , 

2 
( ne + e e)2 2 

taa 
a en = en y 2 cna + n!3 + (ns + e) 

2 
t a en ( nS + e ) = 2 = cny , ae 

(nS + e) cna + nf3 + e 

and 

2 [ 2on 2 2 l 
tf3!3 

acn 1 _ CO' n = + 2 cna + n!3 + e ( cna + ns + e)2 .J (n13 + e) 

2 2 2 2 2 2 = an [ c(cna + nf3 + e) - 2 cna(cnQ' + na + e) + c n Q' J 
(n!3 + e) 2 (cna + nf3 + e) 2 

in which the numerator inside the square brackets can be simplified as 

= (nf3 + e) 2 + (c-l)(nf3 + e)2 + (c-l)c2n2cl + 2cna[c(nf3 + e) - (cna+nS +e)+ en<-¥] 

= (nf3 + e)2 + (c-l)(cnQ' + na + e)2 

and so 

= an2(c-l) + ___ a_n_2 __ --.:-2 = n2(x + y) 

(nf3 + e)2 (cnQ' + ns + e) 

Furthermore, since in (31) the powers of n in the A-terms are one less than 

those in (30) 
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And similarly for the first term of (32), so that 

t = t 0 /n + (acn - ac)/e2 = x + y + z. ee 1-'e 

The 1-way classification 

With~= 0 and using wi = nie/(e + nia), (25) and (26) give 

-q p 
A. = e L: n .. 

J.pq j l.J 

and q~ = (e + n. a)/e = n. /w .• 
.L J.. J.. J. 

Thus from (27), (29) and (32) 

and 

-2 2 2/ 2 -2 2 t = L: e n.w. n. = e E wi 
QIQI J. J. ~ 

-2 2/ 2 -2 2/ t = E e n.w. n. = e E w. n. ae J. • J. J. • J. J.. 

2 2 

t 
ee 

E r ci 2a e ni. e ni. 'l 
= L :2 - e + n.a ~ + 2 J + 

e J.. e (e + n.a) e4 
]_, 

n - c 

2 
e 

= e-~E(c1. - 1) + r:(1- ani. ) 2] + e-2(n -c) L e + n. a •• 
J.. 

-2 2/ 2 = e (E w. n. + n 
J. 1· •• 

.. a), 

as shown in (33). 

The Lagrange identity is 

2 2 ( )2 L ( 2 Ea. Eb. - Ea.b. = 2E E a.b., - a.,b.) . 
• J.. 1 • 1 J. ·1·• J. l 1 J. 
J. J. J. J.r1 

Hence, with w. = n. e/(n. a+ e) 
1 l. 1. 
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2 2/ 2 2 2 Lw. ~w. n. - (EW./n. ) 
• l_ • l_ J.. • l_ 1.. 
l_ l_ l 

2 
rw.w.,(n. - n.,) l 

= t~ ~ ( W • W. 1 /n. 1 - W. W. 1 /n. ) = *~ ~ l_ l_ 1.. l. 
i/:i 1 1. 1. 1. 1 1 l.. '-if:i 1 ..... ni.ni! ..J 

2 2 2 r e (n. - n.l) l r en.(n.,ct +e)- en.,(n. C't+ e), 
= ~~ L ! - ( 1 • ) ( 1 • l . = *I:: ~ l. l.( • ) ( L L ) 

""; 1; , L n. ct + e n. 1 ct + e )..J ,_. 1 . 1 l._ n. ct + e n. , ct + e .J LrL 1. 1. 1r1 J.. 1. 

l ( )2 = 2~ ~ W, - W. I 

• J.· ' l l 1rl 
=(a -1) l:;t:?- 2~~w.w., 

i l_ i>i' l_ l 

Hence in (34) 

as in (35). 

Estimation of 1J. 

-1 -1 
l_'V_ y_ = ~(2:: elements in y!V. ) 

-J.-1. 
i 

= ~ ~ ~ y .. k(~ elements in k 1 th row of j'th set of rows of v~1 ) 
i j k 1 J -1. 

= ~ ~ ~ y .. k(l/e + n .. h ... + ~ n .. ,h ... ,),from (.Al2) ~:md Ul3),. 
i j k l.J l.J l,JJ jlfj l.J l,JJ 

= ~ ~ ~ Y .. k/m .. q. from (A27) 
. . k 1J 1J 1 
l_ J 

= ~ 2:: n .. y .. /m .. q. . . l.J l.J. lJ l_ 
1 J 

1 n .. 
l.J -= ~- ~- y.. as in (37) . 

. q. . m. . lJ. 
l_ l_ J l.J 
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= ~ ~ I: (1/e + n .. h. . . + ~ n .. ,h. . . , ) from above, 
i j k lJ l,JJ j'fj lJ l,JJ 

[ 1 nij ~ ~ ( nij' nij)l 
= ~ ~ ~ -- - I: --- _, 1, from 

. . k m. . 2 m .. q. . , m .. , m .. ...1 
l J lJ m. . q. lJ l J lJ lJ 

lJ l 

= ~ (~. nmij) (1 - .::._ E nij) 
i J qi j mij ij 

and using the definition of q. this becomes 
l 

1'V-11 = ~ (~ :~~) ~. as in (38). 
i J lJ l 

(A23 Bnd (A25) 


