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ABSTRACT

Computer simulation studies have been made of the distribution of between-
group variance component estimates customarily derived from unbalanced data of a
l-way classification model. Under normality assumptions, the distribution is, in
many instances, akin to a xe, although in some cases it 1s exponential in nature.
An approximation to the distribution function appears feasible in some situations

but not in others.
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Introduction

Analysis of data on a between- and within-groups basis arises on many occa-
sions: between and within groups of people, between and within the crosses of two
species, between and within litters of pigs, or herds of cows, or flocks of
poultry; and between and within replications of technological processes. The
statistical model appropriate to many of these situations is the well-known
random effects model, viz. Model II of Eisenhart (1947). 1If data consist of n,
observations in the i'th group, for i = 1,2,...,c, the equation of the model for
yij’ the j'th observation in the i'th group is

= + +
Vig =H T3 T Sy

where p is a general mean, &y is the effect due to the i'th group and eij is a
random error term. In the random model the a, are assumed to be a random sample
of a's from a population having zero mean and variance Ui, being uncorrelated
with each other and with the eij—terms which themselves are assumed to have zero

mean and variance cg, they too being uncorrelated with each other. In this
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context the matter of interest is to estimate the variance components Ji and e'g '

from observations yij for j = l,2,...,ni, and 1 = 1,2,...,c. 1i.e. a situation

where the data come from ¢ groups with n, observations in the i'th group, a total

c
of N = X n, observations in all. Having obtained estimates of a:
i=1l

also interested in the sampling distribution (and variance) of the estimates.

and 3°
e

one is
No great problems arise when there is-the same number of observations in
each group, n, =n say, for all i. Data of this nature are usually referred to
(and shall be here) as balanced data, and in this situation the distribution of
the customary estimator of 02, the between groups variance component, can be de-
rived (Robinson, 1966 and Wang, 1967). However, in many instances data are such
that the groups do not each have the same number of observations. These data are
called unbalanced. Theoretical considerations of the distribution of the esti-
mator of ci are then more complex) and light can be shed on the properties of
this distribution by means of computer simulation. Leone and Nelson (1966) have ‘
recently pursued this approach for a L-stage balanced nested design. Anderson
and Crump (1967) have also used the same approach for some unbalanced designs,
giving major consideration to just the sampling variance of estimators. The
designs they deal with are unbalanced but in a manner that could be called
planned, for they are largely concerned with the allocation of resources in situ-
ations pertinent to industrial experiments. Bainbridge (1963) and Bush and Ander-
son (1963) have also considered other planned, unbalanced designs suited to in-
dustrial contexts, where the inequality of the numbers of observations in the
groups is, in some sense, more or less under control. But in biology these num-
bers are often under little or no control at ally; animals in experiments die at
will and organisms reproduce freely — and with survey data, such as are available

in dairy herd breeding and poultry breeding, for example, the statisticilan is
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given the data just as they are, with scant possibility for determining group
sizes or even the number of groups. Yet, in genetics especially, we frequently
derive estimates of variance components from data of this sort, so it is important
that studies be made of the sampling distributions of such estimates. Some of

the problems involved and results obtained from initial studies are considered

below.

Customary estimates

The usual procedure for deriving estimates from the data having n, obser-
vations in the i'th group, vide Henderson (1953), is to calculate the between-

and within-group mean squares,

c 2
1 =

MSB [ z :> - VZy.. :) N
c - 1L (=1 —l 13 ij iJ J

NS

1 ¢ M
i 5 - by
and ISW N_c[ Zy z:( y13>/

i=1l j=1 i3 i=

and equate these values tc their expectations. Solving the resulting equaticns
for oi and Og leads to estimators

MSB - MSW

B = ‘\ 2 T ——————— - - -
62 = uSW , and 02 - . (2)

N2 - % nf
i=1
N(c - 1)
Distributional properties of these estimators are usually considered only on

the basis of normality assumptions, namely that the ay and eij of the model have

the properties already alluded to and, additionally, are normally distributed.



2 estimator, which is the within-group mean square, ‘

Under these conditions the ¢
has a X2-distribution or, more accurately, (N - c)MSW/ o2 has a x*-distribution

with (N - c¢) degrees of freedom. Hence the variance of 62 is
ne l&
var(oe) = 206/(N -c) . - - - (3)

Thus the sampling distribution and variance of ’c}g are readily established. How-
ever, as 1s well-known, the same is not true of ’Gi and indeed, the two cases of

balanced and of unbalanced data are initially best distinguished.

Balanced data

When each group has the same number of observationms, n, =n for all i and

in (2) the estimate of Oz becomes

Gi = (MSB - MSW)/n .

Furthermore, (c - l)MSB/(nGi + si) has a X®-distribution with ¢ - 1 degrees of
freedom, independently of (N - c)MSW/ c: which also has a XZ-distribution with
N - c degrees of freedom, with N = nc. Hence 'di is the weighted difference

between two independent %2 distributions:

o2 + oi/n

52 & (¢ - 1)MSB 1 _ [ (N - C)MSW 1
a c -1 ‘”n02+32'j n(N—c) B
a e %
’Ji + sg/n 3:
_ ' 2 2 ) ..
=T -1 X-1 nc(n - 1) Xc(n-l) ()

The density function of (4), as available from results of Robinson (1965) a
Wang (1967), is a confluent hypergeometric function involving the coefficients of

the x2's in (4) and so involves the parameters we seek to estimate, o: and 32, in '
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no straightforward manner. Wang (1967) considers this distribution in some de-
tail, and we shall treat it solely as a special case of unbalanced data. Its

variance is

2(no® + o2)2. o
var(92) = 2 S =
& n®(c - 1) n2c(n - 1)

and the covariance between 6: and 6§ is

cov(ﬁi, “g) = -(l/n)var(ﬁg)

Unbalanced data

For data where the number of observations is not the same in every group,
the estimator of 0: is as given in (2). But now MSB is not a XZ-variable: it is
a weighted sum of l-degree-of-freedom x2-variables. The procedure of Robinson
r s

(1965), who obtains the density of T a,x2 - Zp.xZ for independent x>-
i=1 VP g1 Y

variables and constants oy and Bj’ could thus be invoked except that the con-

stants involved in Gi are functions of oi, oi

and the n., since the weights in
MSB are in terms of expansions like ni/(nioi + ag). Despite this, the cumulants
of the distribution are available, simulation of it can be undertaken, and evalu-

ation can be made of an approximation to the distribution derived from an analogue

of that for balanced data. To these topics we now turn.

Variance of Between-Groups Estimate

The estimator G: given in (2) is not maximum likelihood, as are those of

Herbach (1959) and Thompson (1962) nor is it admissible, Robson (1965). It is,

however, unbiased no matter what underlying form of distribution is attributed to

the a,'s and eij‘s — so long as they have zero means, variances oi and o: and are
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uncorrelated, as previously described. Under normality assumptions the variance .

of 32 is

a

o 20°02  (N®S.+S2-2NS.)
var(%%) = 2N r N(Nzl)(g-l) 2 + =2 g 2 S (5)
a L N-c 2_ 2 2_ 2_ 2 a |
(N5-8,)% = N=-8, N(N=-5,)
where S, = ™? and S, = Zn3 , and the covariance between 3% and 32 is
2 i 3 i a e

-N(c-l)varﬁg

cov(G:, Gi) = ~
N -82

Expressions given earlier for this variance and covariance are, of course, special

cases of these formulae with ni =n for all i.

The variance of 32

in (5) is a special case of the familiar result that the
r'th cumulant of the quadratic form y'Fy (F being symmetric) is oF-1 trace(VF)"
where V is the variance-covariance matrix of y, a vector of normally distributed .
random variables having zero mean.
Derivation of (5) is given in Searle (1956); a typographical correction to

2

the expression shown there is that the term in Uaag should include the coefficient

2 as shown in (5) above. A correction to Crump's (1951) expression for var(%i)
might also be noted here. He uses notation akin to n_ for (N2 - 82)/N(c - 1) and

w, for ni/(l + nics/og) and in this way var(@i) can be written as

L 2 2 2 3
20 ns n< n:

var(%%) = e{ = [(%Zﬁ>+}:—]¢-§-di]+l\1]_'c}.
a ni (¢ - 1)2 i wi wi

Unfortunately Crump (1951) omits the 1/N from the first term. The equivalence
of the above expression to (5) is readily shown. Summation is with respect to i,

for i = 1,2,...,c.



Unbalancedness

Data wherein all groups have the same number of observations are called
balanced; and those where the groups have differeﬁt numbers of -observations are
called unbalanced. The characteristic of unbalancedness is not, however, a di-
chotomy, for it can be evident in varying degrees. For example, with five groups
and 25 observations balanced data have ni-values of 5, 5, 5, 5, and 5; moderately
unbalanced data might be considered as those having n, values of 1, 1, 3, 10 and
10; and severely unbalanced data would be those with ni-values of 1, 1, 1, 1 and
21. Sets of ni-values such as these will be referred to as n-patterns and the
effects of unbalancedness will be studied by considering a variety of such pat-
terns. There is, of course, no end to the number of possible u-patterns that
could be used for this purpose so, in order to confine the problem, we limit our-
selves in this paper almost entirely to n-patterns of 5 groups having a total of
25 observations (¢ = 5, N = 25). Some simple variants thereof are also used, as
shown in Table 1. The nine m=patterns shown there represent unbalancedness of
quite widely differing degrees and provide opportunity for comparisons. Pattern

P, is the balanced case; patterns P2 and P

1 are moderately unbalanced and Ph and

3

(Show Table 1)

P_ are seriously unbalanced. P6 is merely P. with 20 observations added to one

5

of the single-observation groups; and P,

T’

five times as many observations per group.

5

P8 and P, are just P, , P_ and P6 with

9 >

The descriptions "moderately" and "seriously'" unbalanced used in Table 1 are
adopted on empirical grounds: no quantitative measure of the degree of unbalanced-
ness 1is specified, although one might seek a statistic of unbalancedness based,

presumably, on the ni-values in an n-pattern. An obvious possibility is the



variance of the ni's, .

I 2 ‘@ . n2
™ (Eni) /e S, - W /c

i T ¢ - 1 =T -1

or, alternately, the ratio of v to its maximum value for given N and c, this
maximum being achieved when ¢ - l\groups have 1 observation each and one has

N - ¢ + 1 observations, so giving

y &-1+tMW-c+ 1)2 - %/c _ (N -c)?
max c -1 c )

Then V/V'maX = cv/(N - ¢)2 could bé suggested és a statisfic of unbalancedness.
However, as shall be indicated, neither this nor any other statistic based sclely

on ni-values is uniformly suitable for considering the effects of unbalancedness

on distributional propertiesr(the variahce, for example) of 8:. This is so

because of the way.:?.n which n-patterns of differing degrees.v of unbalancedness ‘

(P2 and P_, for example) can affect the distribution of Giz the differences in

57
their effects on the distribution vary according to thevunderlying value of ci.
Thus the effect of unbalancedness is a function of both the.n-pattern and oi and
so, in terms of the effects of unbalancedness on the distribution (variance) of
ﬁz, it seems that a statistic for unbalancedness cannot be one based solely on
the n~-pattern.

In considering the effects of unbalancedness on the variance of 8: one might
look for the n-pattern which, for given N and ¢, maximizes var(ﬁi) shown in (5).
Anderson and Crump (1967) consider the problem of minimizing var(Gi) when it is
known that the 0, cannot all be the same (equal n, minimizes it absolutely); but
if, for a given N and c, the maximum of var(ﬁi) could be found, then the value of
var(ﬁi) for the particular n-pattern at hand could be considered relative to the

maximum, which would presumably represent the worst case of unbalancedness for .

that N and c.
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It is clear from the form of (5) that its first two terms are maximum, re-
gardless of 02 and ci, when S, is greatest, and this occurs when the n-pattern

has the form 1,1,1,...,1,N - ¢ + 1, examples of which are patterns P5 and P8 in

Table 1. However, this kind of n-pattern does not maximize the third term in (5).

The coefficient of Eoi in that term is

2% Ins n2 +S % ¥, oy (ng + ng + )
2 2
NS, + S5 - 2NS, Tie i et %% Oy
(N2 - 8.)% (£ ™m.n,)?
2 i< i’J

2z ann2 + L% Tnnmn (n toy o+ nk)
i<j J i<i<k J

22 ™n®n? + LT £ In.n.n (n tog o+ ) + 125 © £ ™. B mn

i<j +d i<j<k 1k " i<j<k<h 1gkh

where, as usual, the limitefall summations is ¢, the number of groups. The value
of this expression is clearly less than unity, but its complexity, as a functiocn
of the ni‘s, appears to preclude ascertaining what n-patterns (if any) maximize

it. The intractability is reduced somewhat when c¢ = 3, for then the last term of

the denominator does not exist, and the coefficient reduces to

3N/2
]_ -
n.n n.-n n-n
12,723,713, 5
n3 nl n2

which is maximum when the n-pattern is 1, (N - 1)/2, (N - 1)/2, provided N > 6.
It was this n-pattern, extrapolated to more than 3 groups, which prompted the use
of patterns Ph’ P7 and P9 shown in Table 1. Patterns of this nature maximize, of

course, only the third term in (5) and the whole expression will then be a maxi-

mum only for sufficiently large values of ci. Thus it appears that in general
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one cannot find n-patterns, for given N and c, whicn maximize var(@i) uniformly ’

2

for all values of oZ 2

and g This reaffirms the suggestion that the effects of

unbalancedness are relative to the underlying values of c: and ai

and not inde-
pendent of them.
Although no n-pattern has been found that maximizes var(ﬁz) uniformly for

all Gg and oi, it is clear from (5) that

2
2 o

var 6: s 2N (W-1)(c-1) oi for =< 1 .
(¥ - ¢)(NZ - 8,)% o2

This is maximum when S, is, i.e. when v(ni) is, and so when Gi/cg < 1 a suitable
statistic for unbalancedness might be v(ni)/vmax =_cv(ni)/(N - ¢)2, as suggested
earlier. At the other end of the scale, when ci/ai > 1, the approximate value of

var(ﬁi) is, from (5),
var(o®) = 2ua" for o2/c® > 1 , .
a a al "e

N3S,. + 82 - 2NS
where U = e 2 3 .

(N2 = 82)2

Although no n-pattern has been found that maximizes this, we have seen that for

¢ = 3 it is maximized, for N > 6, when the n-pattern is [1, #(N - 1), 5(IV - 1)].
Furthermore, it can be shown that increasing N without increasing c can increase
U. For example, for the n~-pattern P5, (1, 1, 1, i; 21), U = .398, for

(1, 1, 1, 1, 41), U = .416, and for n-pattern P (1, 1, 1, 21, 21), U = .699.
Hence, when cZ/oi > 1, it is possible for var(@i) to be increased by the addition
of observations to the dataj in other words, increasing the amount of data can
increase the variance of the estimator, somewhat of a paradoxical situation. It

would seem that an implication of this result is that in situations when ci/og > 1
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one  should strive for having as many groups as possible in one's data, rather
than numerous observations in each group. In this context it is also interesting
to note that if each n, is increasing by the same fraction, A, say, then U is not

altered, and so var(ﬁi) will be affected very little, especially when 0:/0§ > 1.

Calculated values of var(ﬁi)

In light of the above discussion the effects of unbalancedness on var(ﬁi)
have been studied by computing var(ﬁi) for the n-patterns shown in Table 1, each
with the series of values for Gi and cﬁ shown in the same table. At all times
o§ = 1 has been used, in combination with each of the eleven values for oi seen
in Table 1. Each combination has then been used with each n-pattern to calculate

var(@i) from (5). The results are shown in Table 2. As would be expected, for
(Show Table 2)

each n-pattern this variance increases as Oz increases; and, as indicated in

footnotes to the table, other points of interest are also evident.

(1) In n-patterns P, through P., N and ¢ remain constant, and the largest

1 57
value of var(G:) for given oi is either in Py, (1, 1, 1, 11, 11), or in P5’
(1, 1, 1, 1, 21). This suggests that for given N, c¢ and oi the largest value of
var(BZ) may be when the n-pattern is of the form (1, 1, ..., k) or (1, 1, 1, ...,
q, q) where k =N - ¢ + L and q = 3(N - ¢ + 2).

(2) 1If, for given N and c, the n-pattern giving largest var(@i) is of the
form (1, 1, ..., 1, q, q) then the pattern (1, 1, ..., 1, k) does not necessarily

give the next largest. For example, with cz = 10 pattern P, gives var(ﬁi) = 113

and P, not P5, gives the next largest value of var(ai), namely 90.
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(3) Increasing the total number of observations, N, can increase var(’c‘r:), as .

already discussed. Thus for Oi 21, var(@i) is larger with Po than P7; and for

oi > %, its values are larger with P_ than with Pg-

9

(4) Increasing each n, by the same proportion does not greatly decrease

var(’c‘rz) when 0‘:/ Oi > 1. For example, the values in Table 2 for Py Pg and Py

and P6’ although they contain

, for
02 > 1, are very little less than those for P, , P

5

five times as many observations.

Frequency Distributions of Simulated Components

As already indicated, the distribution of 82 is not known explicitly in the
case of unbalanced data, Gi being a linear function of “SW which is a multiple of
a xe-variable and of MSB which is a weighted sum of other l-degree-of-freedom ¥Z- .
variables. Empirical investigation of the distribution has. therefore been made

2

by means of computer simulation, using the n-patterns and the values of oe 2

and ©

a
shown in Table 1. Leone and Nelson (1966) report studies of this nature for
balanced data in a 5 X 2 X 2 X 2 nested design, but few studies for unbalanced
data, of a survey nature, have been made.

. With each combination of n-pattern and ¢

a—value that was used, 2,000 simu-

lations were made of the estimator ﬁi. On each occasion Sg was derived from a
simulated Xﬁ-c variate using procedures given in U. S. Steel (1962) for N - c <
30 and in Zelen and Severo (1964) for N - ¢ > 30. In this way only group means
and not individual observations had to be simulated. The means were derived by
pseudo-random sampling of 1,000 abscissae that are medians of 1,000 equi-probable

areas of the standardized normal distribution, using a multiplicative congruential
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generator for the pseudo-random sampling. (The medians of the 1,000 equi-probable
areas of the normal distribution are discussed in Searle (1966): their first three
even-order moments are .999, 2.965 and 14.266 respectively.) Thus when the ran-
domly generated integer between 1 and 1,000 was r, the r'th median was chosen, m
say, and for a group having n, observations the group mean, 51., was simulated as
om, + l//E; . Then, using Gi derived from the simulated X;-c variate, the simu-

lated value of Gi was, in accord with (1) and (2), computed as

N(e - 1)(4sB - %)

@
[ ]

2
N 82

1 ¢ _ ¢ _ 2 =
where MSB = [ £ny2 -( £y, ) /N ] .
N-c . i71i. . ivi.
. i=1 i=1

Frequency distributions were then made of these simulated 6:'5’ grouping
them into 53 intervals based on 02 and the standard error of its estimate, namely
SE = «/ var('B:) derived from (5). Fifty-one intervals of finite width {0.1)SE
were used, with center points at oz - 2SE through to ci + 3SE, tail intervals
being from ~-® to oi - 2.058E and from ci + 3.05 to +». This choice resulted in
barely 2% of the simulated Gz-values being in the tail intervals, and it was also
convenient for computer generation of frequency polygons and cumulative frequen-
cies. However, before discussing the results of these simulations other comments

are in order.

Negative estimates

It is well known that negative estimates of Gi can be derived by the methods

being considered here, namely (2). The frequency with which negative estimates

occurred among the simulated estimates i1s therefore of some interest. Indication
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of the extent of this occurrence is shown in Table 3, wherein is given the per- ‘
centage of the 2,000 simulated values of 8; that were negative in various com-
binations of n-pattern and Gj values. It is clear that for situations in which

2

o- is close to zero there may be many negative estimates ﬁi, but even when oi/o:

(Show Table 3)

is in the neighborhood of 0.25 to 0.50 there still seems to be an appreciable
likelihood of getting a negative estimate. If this is indeed the case it gives
credence to results often obtained by geneticists and others for whom the vari-
ance ratio is customarily in this range. Wang (1967) also reports the frequency
of negative estimates, as do Leone and Nelson (1966) for their balanced design,

in which case they were able to derive analytical expressions for the frequency,
due to the X2 distributional properties of the mean squares. This is not so here,

and we must be content with the empirical results given in Table 3. ‘

Monte Carlo methods

The procedure described above for generating frequency distributions is
purely one of simulation. It makes no use of an available (conditional) distri-
bution property of 82. This can be utilized in a method which we call Monte Carlo,
distinct from the method already discussed, henceforth called the simulation
method.

The between- and within-group sums of squares are, from (1), SSB = (c-1)MSB

and SSW = (N-c)MSW respectively, and with these equation (2) can be written as

82 A SSB - xe(ssw/og) - - - (6)

for

2
N(c l)ce

Ay = - - - (T
2 (2 -s)( - c) )
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and A, = N(NZ - 82). From (6) it is seen at once that the conditional variable
(3§|SSB) has a X2-distribution (multiplied by a constant). Therefore, for any
interval Ik on the real line, one can simulate SSB and thence calculate the proba-
bility Py = Pr(3§|SSB € Ik]. On dividing the real line into n intervals Ik’ k =
1,2,...,m, p, can then be found for every interval for each simulated SSB, and '
averaging each P, over a series of simulations wculd give an estimated probability
density function of Gj. The apparent advantage of this procedure over the simu-
lation method is that each simulated SSB contributes information to each of the

Ik intervals, whereas in the simulation method each simulated ﬁi contributes in-
formation to only one interval. Hopefully, for equivalent information about the
whole curve, this should mean that the Monte Carlo procedure would require less
simulations (of SSB) than would the simulation method (of ﬁi). Unfortunately

this advantage does not always occur in practice. The difficulty is that when

the interval I has length (0.1)SE say, as used in the simulation method, then

P is the probability that a XZ-variable lies in an interval of length SE/lOk2
with Xe as in (7). And this interval can turn out to be so large that the proba-
bility content of five, or even fewer, adjacent intervals can be so close to 1.00
as to leave other intervals with near-zero probability. For example, in Table 1
with 0: = 1 and n-pattern (1,1,1,11,11), var(ﬁi) = 1.41, and so (0.1)SE = 0.118.
But xe = 25(4)1/380(20) = 1/76, so that the interval has length 76(0.118) = 8.7,
and the 1% and 99% points respectively of the xgo distribution are 8.26 and 37.57.
Hence four adjacent intervals of length 8.7 include nearly all of the probability
so that, in this case, a simulated SSB would be contributing non-zero information
not to all the intervals but only to about four of them. Furthermore, computer
time for calculating the probabilities Py exceeds that of calculating additional
6: values in the simulation method. Thus the apparent advantage of the Monte

Carlo method does not materialize.
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Wang's density function ‘

Wang (1967) considers the variable

- 2 2
= ax2_ - px2 - - (8)

where 0 and B are constants and xgn and xgm are two independent xZ-variables with
2n and 2m degrees of freedom, respectively, n and m being integers. (This n is
not the same as the n used earlier in discussing balanced data.) The density

function is defined in two parts, for Z negative and for Z positive. With the

constant

am’l Bn-l

= - - - (9
2" P(n) P()(@ + 8)"" )

the part of the function for negative Z is

£ (z) = ke?/ 28 f o~Ftyn-1 {: t -z (é + —é— ) ]m—ldt | - - - (10)
0

which, when m is integer, expands to

1 Z/QB m-1 _ (n-1-3)" '
£ (z) = <a+B 2(oz+(3) jfo Cé‘;) <a+5> 3 (mr-ll j‘§ ooy (D

as given by Wang (1967). And that part of the function for positive Z is

f,(z) = Ke'Z/eo‘ f e'%'ttm'l [ t+ 2 Cé + 'Bl' > T'ldt s - - - (12)
0

which Wang also writes as a sum, analogous to (11), when n is integer.
This distribution cannot be used directly on ’6;, because it is not a weighted

difference between two independent x2's, as is Z. But let us approximate by ‘



-17 -

82 = oxZ - AXE s - - - (13)

q C

here Y2
where XS

that xé is independent of Xﬁ-c' Then (13) is the same form as Z and equating the

corresponds to SSW/Jg in (€), A, coumes from (7), and where we assume

first two moments of both sides of (13) yields values of & and q that can be used,
by means of (13) and (8), to derive an approximate distribution of 82. This pro-

cedure is that alluded to in Wang (1967). Equating the moments of (13) gives

N2\ _ ~2 _
E(oz) =0 =aq - KE(N - c)
and var(ﬁz) = 20°q + 2AS(N -c)

which can be solved for & and q by using (5) for var(ﬁi) and (7) for Xg. Writing

T = Ui/Gg the sclutions are

2rn2(a o . 2 _ 2 2 _ 2
Ge[N (¢ = 1) + 2n(N 82)1 + (N S, + 83 2N33)T ]

o = - - (1)
(w2 - 82)[(N2 - 32)1 + N(c - 1)]
(v - 8,)%
(c - 1)[N3(c - 1) + oN(N® - S )T + ———-——Ig—— 2]
and Q== . 52 2 - poll - - (15)
[N2(c - 1) + 2N(N® - 82)T + (N 8, + 87 - ENS3)T ]

For balanced data these expressions reduce to a = (oi + ci/n)/(c - 1) and
g = c - 1, as one would expect from equation (k). In addition, when O: = 0, the

value of d is'élways ¢ -1, and o is then NGi/(Ng - S The approximate degrees

- 2).
of freedom q is, from (15), a multiple of ¢ - 1, the degrees of freedom in the

2

balanced case. Furthermore, when 0: is large, relative to oz, we have
(v - 5,)%
lim g = ) - - (16)
T NZs, + 82 - 2NS

2 2 3
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the inverse of the coefficient of 202 in var(cg) considered earlier. We return .
to this expression later.

Computed values of o and q for the n-patterns and oi values of Table 1 are
shown in Table 4. Apparent trends are that for each n-pattern a increases and q
decreases as Oi increases; and no value of g exceeds ¢ -~ 1. Because of the limi-

ted extent of this table it would be unwise to speculate on the significance of
(Show Table 4)

trends in ¢ and/or q in terms of unbalancedness, although a more extensive tabu-
lation might lead to developingment of an index of unbalancedness. Clearly it

will depend on 0:.

Graphs of simulations and Wang-type approximetions

Using @ from (14), n = 3q from (15), B = A, from (7) and m = (N - c), .
equations (11) and (12) now provide the approximate distribution of 82. For all
cases in which frequency polygons of simulated values of 32 were obtained, so
also was this approximation, computed in each“éase plotting the twc curves along-
side one another. The procedures used for computing (11) and (12) are outlined
in the Appendix, and the results are shown in Figures I - VI.

The Figures show the computer output as obtained. Headings to each figure

show: the n-pattern; the value of oi

used in the simulation, denoted by A (A =
0.25, for example, in Figure 1); the value of var(ﬁi) calculated from (5) and

denoted by var(A); and in most cases the sample mean and variance of the 2,000
values of 3: obtained from the simulation.

To facilitate computer generation, frequencies have been measured on the

horizontal axis, rather than the vertical, with the intervals measured on the
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vertical axis. The values of the center points, from Ji - 28E to ci + 3SE, of
the 51 finite intervals of width 0.1(SE) are shown in the left-hand columns of
the graphs, with an additional colwm indicating the tail intervals and the posi-
tion of A, A + 1.00(SE), A + 2.00(SE) and A + 3.00(SE). Thus in Figure 1,A = .25,
var(A) = .11 (shown as .105 in Table 2), SE = /.105 = .32 and A - 1.00(SE) = -
-0.07.

The full width of the horizontal axis represents a frequency of 0.19, this
and the zero frequency points being indicated by arrows and the notations FREQ =
0 and FREQ = .19 in the headings. In all figures except III there is alsc a
right-hand column showing the cumulative frequency of the simulated 85 values.
This and the 0.19 frequency indicator are not shown in Figure III. 1In all cases
the frequency polygon of the simulated values is plotted with an X and that for
the approximate density function is plotted with *, the latter being used whenever
the two values in an interval coincide. For the approximate density function,
values were calculated from (11) and (12) and multiplied by (5.1)SE/51 = 0.1(SE)
to put the function on the same scale as that of the simulated values.

Figures I - V pertain largely to n-patterns with N = 25 and ¢ = 5, patterns
Pl through P5 of Table 1. With one exception, other n-patterns of that Table
have not been used but instead, Figure VI shows a much more unbalanced n-pattern,

where N = 60 and ¢ = 20 with 19 groups having one observation and one having 41.

Comments on the individual figures follow.

Figure 1. This is the balanced case, (5,5,5,5,5), with & = %, a relatively
small value. The two curves (the frequency polygon of simulated values and the
approximate density function) appear to be quite similar and not unlike a x2

curve.
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Figure II. This is the same balanced case, (5,5,5,5,5), as in Figure I but with ’
a much larger value for oi, namely 02 = 20. The curves are quite similar to those

of Figure I except for being a little steeper at values less than A - 1.00(SE).

Figure TTI. Six pairs of curves are shoWn here for a moderately unbalanced situ-
ation, (1,1,7,8,8), over a range of values for oi, namely %, 1, 2, 5, 10 and 20.
The curves are still somewhat like a xz,‘with the steepness on the negative side

increasing for the larger values of Gi

(e.g. section 6 where G: = 20, compared to
section 2 where ci = 1). There also appears to be a tendency for the curves of
the simulated values to be slightly 'squeezed' compared to those of the approxi-

mate theoretical densities (sections 4 and 5, for example), the simulated curves

having "higher and steeper peaks" than those of the density curves.

Figure IV. The four graphs here are for a very unbalanced case, (1,1,1,11,11),
with oi = —?;, 1, 5 and 20. The increasing steepness as o: increases is now quite .
noticeable, the curves for oz = 5 and 20 being almost exponential in type, corres-

ponding to the approximate degrees of fréedom, q, being close to unity, 1.91 and

1.83 respectively, from Table k4.

F'gure V. The four cases shown in this figure illustrate effects of increasing
unbalancedness when keeping Gi constant, equal to unity: (5,5,5,5,5), the balanced
case; (1,1,3,10,10), moderate unbalancedness; (1,1,1,1,21), very unbalanced, these
three all having 5 groups and 25 observations; and in section 4, (1,1,1,21,21),
representing both severe unbalancedness and the addition of 20 observations com-
pared to (1,1,1,1,21) shown in 3. The trend for these cases seems clear: as
unbalancedness increases there is increasing steepness on the left, with
(1,1,1,21,21) being like an exponential, again corresponding to q < 2, in this

case q = l.41. (Table k4) . .
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Figure VI. This shows the very unbalanced case of (1,1,1,... for 19 groups, L1),
for 60 observations in 20 groups, with four values of 02 =%, 1, 5 and 20. Two
points of interest can be noticed: (i) the simulated curves are 'squeezed' con-
siderably compared to the theoretical approximations, to the point of the latter
appearing to be quite a poor fit; (ii) the values of oi are the same as those
used with (1,1,1,11,11) in Figure IV where, for ai = 5 and 20, the curves are
exponential in type with a g-values (degrees of freedom) 1.91 and 1.83: but they
are not exponential in Figure VI where the corresponding g-values are 8.35 and
5.11. Thus for large values of oi, q < 2 appears to indicate that the distribu-
tion of 32 is exponential in nature, as would be expected from q being the degrees
of freedom of a ¥Z variable. 1In this connection the limiting value of q for in-
finite 02, as given by (16), is 1.81 for the n-pattern of Figure IV, corresponding
to the exponential-style frequencies seen there, and it is 4.90 for the n-pattern
of Figure VI where the curves are X2 in character. This limiting value, be it
noted, is not affected by any proportional change in the ni's of an n-pattern;
i.e. (16) remains unchanged if every n, of an n-pattern is multiplied by the same
constant.

Two final, minor comments can be made. In almost all cases 95% of the esti-
mates Gj lay in the interval o: - l;S(SE) to 6§ + 2.0(SE), and in all cases the
mode of the distributions was considerably less than the mean. This raises the
question of the unbiasedness of the estimator 8:. It is, as in most estimation
procedures, mean unbiased, a concept well-suited to estimation in fixed effects
models where one customarily thinks of unbiasedness in terms of repeated sampling
and averaging of several estimates of the same parameter. But this concept may
not necessarily be appropriate in variance component models where, in the esti-
mation procedure, one might seldom envisage repeated sampling, least of all with
the same n-pattern. This being so, estimation might be more truly considered as
a one-time-only procedure, and so an estimator that is modally unbiased might be

more appropriate.
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Appendix: Computing Wang's density function

We here outline the procedures used for computing (11) and (12) when a is
in (14), n = 3q from (15), B = Ka of (7) and m = 3(N - ¢).
First, the part for negative Z, shown in (11): by suitable choice of N and

c, m=3(N - c) is an integer and so the sum in (11) is finite. Thus with

= 3" %Y (@ + B - - - (A1)
(11) can, on replacing m - 1.- j by j, be written as
f(z) =L Z/"’B )("”5) o+ -2 - ) - - - (s2)
- j'm-1-3)(n-~-1)! "
From (10), we find on putting z = O and using (9) and (Al) that
_I'(m +n - 1)
£.0) = mTm
Writing this as
v _WMm+n-1) Lm+n-2)m+n-3)...(n+1)n - - (a3)
o I'(m) I'(n) (m=-21)(m~-2) .... 2. 1. ,
(A2) can be written
m-1
)—eZ/QBZv, - ~ - (A4)
j=0 Y
the vJ.'s being a readily computable recurrent series
_[ mz(a +B) " (m - §) > - -
=[R2 (85)

the initial term being v_ in (A3).
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The other part of the density function is for positive Z: here we use (1Z)
and cannot invoke binomial expansion because n is not integer and t takes all

values from O to ®. Instead we use the transformation
t =2z —+-—>tan29
and find that f;(z) reduces to

(1 )m+n—l -z/2a ﬁ/d 2m-~ l

: ' -z(a_+ p)tan39 i
) I R (Go——~D LI

Calculation of f_(z) was thus achieved from (Ak) using (A3) and (A5), and of
f+(z) from (A6). No numerical problems arose in (A4) but some did occur with
(A6): those encountered and overcome are detailed in Townsend (1967). In gen-
eral, the integral in. (A6) was computed by the trapezoidal rule”with 200 intervals
between O and n/2, except in some cases where the integrand was effectively zero
beyond some value 8, 8' say, appreciably less than m/2. In such cases the trape-
zoidal rule with 150 intervals between O and ©' was used. For a wider range of
n-patterns than those of Table 1 the Romberg integration algorithm of Bauer (1961)

would probably be more suitable.
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Pl
Tgble 1. n-patterns and population variances used in simulation studies

n-patterﬁ
Pattern |
Number Numbers of observations
Py 5 5 5 5 5 (balanced)
P, 1 1 3 10 10
(moderately unbalanced)
P, 1 1 7 8 8
hY
P, 1 1 1 11 1
» (seriously unbalanced)
P5 1 1 1 1 21 'r
N\
P6 1 1 1 21 21
P7 5 5 5 55 55
> (for comparisons)
Pg 5 5 5 5 105
P 5 5 5 105 105
9 J
Variances
a2 1
e
52 0 3 3 2 1 2 3 4 5 10 20




- 27 =~

Table 2. Values of var(ai) for 9 n-patterns and 11 sets of oi, with oi = 1.
Values of oi
n-pattern
0 % 5 3 1 2 3 4 5 10 20

Pl 555 5 5,024 .105 .25 .46 72 2.4 5.1 9 14 52 204
P,{113 10 10}.035 .150 .37 .71 1.15 L.o 8.6 15 23 90* 354
P3 117 8 81.030 .13% .33 .62 1.01 3.5 7.5 13 20 78 308
P {111 11 11§ .0k2 .177 .45 .86 1.41 5.0* 10.8 19 29 113* 448
P11l 1 21).185 .37k .66 1.05 .1.53 4.5 9.0 15 23 85 330
Ppfl111 21 21 L0k J1k1 0 bk .92 1.56® 5.9 13.1 23 36 141 562*
R7 555 55 55].001 .084 .30 .66 1.16 4.5 10.1 18 28 112  Lhh
Pgi555 5105 .006 .084 .26 .54 .91 3.4 7.5 13 20 81 320
P9 555 105 105 | .001 .0958 .37 .81 1.3 5.7 1l2.7 22 35 14O 560"lt

" For given N and o>

¥

s var(@i) is usually maximum for n-pattern (1, 1, 1, 1, k)

or (1, 1, 1, k, k).

If n-pattern (1, 1, 1, k, k) gives maximum var(G:), pattern (1, 1, 1, 1, k)

does not necessarily give the next largest value.

Increasing N can increase var(ﬁj).

Increasing every ns by the same proportion does not greatly decrease var(ﬁi),

for o 2 1.
a
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2

Table 3. Percentage of negative estimates of oy in 2,000 simulations.
Value of cj
n-pattern
0 : & 2 1 2 3
Per Cent

P 5 5 5 5 566 23 v 7 5 % 1
P, 1 3 10 10 56 31 19 13 13 6 2
P3 1 7 8 8 58 29 20 15 12 6 3
PA 1 1 11 llr 59 32 23 18 1L 7 6
P5 1 1 1 21 59 Lo 31 29 23 15 8
P6 1 1 21 21 60 29 19 17 15 8 8
P9 5 5 5 105 63 17 10 6 6 3 1
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. Table 4. Values of @ and q in the approximation 8’: = axczl - A obtained by

2
2XN-c
fitting the first two moments of 32 [see equations (12) and (13)].

Values of o:
n-pattern
o ¥ 3 £ 1 2 3 L 5 10 20
The multiplier a:
P, 555 5 5 .05 .11 .18 .24 .30 .55 .80 1.05 1.30 2.55 L4.05
P, 113 10 10 ! .06 .15 .25 .35 .46 .891.331.77 2.20 4.39 8.76
P,l 117 8 8 | .06 .1 .23 .31 .kl .79 1.17 1.55 1.93 3.82 .62
Py 111 11 11 .07 .17 .29 .42 .56 1.10 1.65 2.20 2.76 5.52 11.05
P5 111 1 21 Ak .21 .30 .39 .48 .87 1.26 1.66 2.06 L.ok 8.02
P | 111 21 21 é O .17 .3k .51 .68 1.37 2.07 2.77 3.46 6.96 13.9%
. P7 555 55 55 .01 .14 .28 .41 .55 1.10 1.66 2.21 2.76 5.53 11.06
Py 5 5 105 .03 .12 .21 .31 .41 .81 1.20 1.60 2.00 3.9 7T.97
P9 55 5 105 105 .01 .17 .34 .51 .69 1.39 2.09 2.78 3.49 6.98 13.97
Degrees of freedom q:
P, 555 5 5 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00
P, 113 10 10 4.00 3.35 2.98 2.80 2.69 2.50 2.43 2.40 2.38 2.33 2.31
P3 117 8 8 4.00 3.50 3.20 3.06 2.97 2.82 2.76 2.73 2.71 2.67 2.66
P, 111 11 11 4.00 3.11 2.63 2.40 2.27 2.05 1.97 1.93 1.91 1.85 1.83
P5 111 1 21 4.00 3.78 3.53 3.35 3.21 2.93 2.81 2.75 2.70 2.61 2.56
Pg 111 21 21 4.00 2.38 1.96 1.80 1.71 1.57 1.53 1.50 1.49 1.46 1.45
P7 555 55 55 4.00 2.19 2.00 1.9% 1.91 1.86 1.84 1.83 1.83 1.82 1.81
Pg 555 5105 4.00 3.12 2.86 2.76 2.70 2.61 2.57 2.56 2.55 2.53 2.52
P9 55 5 105 105 4.00 1.65 1.54 1.51 1.49 1.46 1.45 1.45 1.44 1.44 1.43
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N .861 890

877 899

.891 .909

903 918

910 974

. 1916 . 931

927 .938

* R RO

. .98 951

b 942 957

N .946 L9860

. 1950 .963

. 955 967

xe .958 .90

. . ‘o61 K32

. . X SINULATED ‘965 X SIMULATED 077

ox * TMEDRETICAL(APPROX) .969 ¢ [HEORETICAL(APPROX) R
. 7 .

. R4 : L5682

Xe 979 983

1,47 . . ‘or9 985

1,31 <3, 008E o T981 4,56 <3,00SE o 1987
+3,0%5€ x 1,000 >+3.05SE x . 1.000

N v:-m“mw:nznu a_wu..;:_:azn._: -._.w AMCNG GROUPS VARIANC COMPONENY ESTIMATED FROM A 1-WAY ANALYSIS OF VARIANCE FREQUFNCY Em;;::ox»cw THE AMONG GROUPS VARIANC- COMPONENT ESTIMATED FROM A 1eWAY ANALYSIS OF VARIANCE
a . N-PATTEQN) 1 1 1 111
POY, PARAMETERSIA®  5.00,VAR(A)2 29.02. 2000 SIMJLATIO S YIELDED MEANCA): 3,.038,VAR(A)T 30,363, POP, PARAMETERSIA 20.00,VAR(A)s 447.96. 2000 SINULATIO S YIELDED MEANCA)s 20,604,VARCAIe 478,604,
CENTER POINTS  4FKEQ20 FREQS.194 CUM F CENTER POINTS 4FKEQEQ FREQ2,194 CUM +
€=2,098E x 0 <=2,05SE X
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~1,008€ xe 006 “1,17  -1,008E ¢
¥ . . L0686 95 x M
X L154 3,07 X e
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. . X - L4168 9,42 . .
. x .489 11,53 . x
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X 591 15,77 .o x
cr 638 17.88 xe
. X e 671 20,00 A Xe
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. . . V235 24,23 X e
. x L7166 26,35 X e
* 791 28,47 X e
=0 .808 30,58 .
. LI .821 32,70 o x
xe a3 34,82 .
e .852 36,93 Xe
<1.008€ e : 865 39,05 +1,00SE xe . .
. .878 41,17 X i
b .887 43,28 X
xe . ‘897 45,40 5
ox 906 NV 11 B
ot 918 49,63 .
. .927 51,75 .
. L9de 53,86 X .
. 940 55,98 xe
xe 945 33,10 o
. .9%0 60,21 .
©2,008E x 950 62,33 42,00SE X*
xe L954 84,45 .
xe 1957 66,56 xe ~
X 1958 69,68 Xe
LN X SIMULATED L9064 72.80 ox . A SIMULATED
. © THEDRETICAL(APPROX) 967 72,91 . o THEQRETICAL(APPROX)
. 1970 75,03 .
o 1975 77,15 .
. .98 79,26 X -
1o 980 a1.38 .
L0318 o .980 83,50 +3,00SE ex *

»e1.038¢ x . 1.000 »43,198F x
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ATYERN) 5 S 5 5
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.
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. .
xe
ox
Xe
o
o
xe
.
.
.
o2,0030 .
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xeo
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»ed, 0335 X

ANALYSIS OF VARIANCE

730,

FREQ®,19, CumM

FREQUENCY DISTRIBUTION OF TRE AMONG GROUPS VARIANC: COMPONENT ESTIMATED FROM A LWAY ANALYSIS OF VARJANCE
1 1

Y-PaTTERY) 1 1 2
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CENTER POINTS FREQsD
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.
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1.97 «1,008€ Xe 834
2,67 . . L8068
2,18 . .880
2,29 o L8093
2,3y xe L9001
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3,79 . 974
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<€=2,05SE X o
*1,51 <2,008E ¢ o
-1,38 . 0
-1,2% . . 0
-1,13 . [
-1.00 . . .nv 0
-.88 . ]
-7 . ¢
-.63 . 0
-.50 . 0
-.38 . . [}
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2.5 . . .91
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2,88 X o L9039
3,00 X Loy
3,13 xe 1952
3.2% Xe 958
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3,51 «2,n08E xeo M 1Y
3,63 . 987
374 . 970
3,88 . 072
4,01 Xe X SIMULATED 974
.13 . ® THEORETICAL(APPADX) %77
L 4,28 Xe B
3 Xe 979
451 Xe .08l
4,63 Xe . 0A1
4,76 +3,00SE o K1
»3,058E x 1,000




FREQUENCY DISTRIBUTION OF THE AMENG GROUPS VANIANC COMPONEN' FSTIMATED FROM A 1-WAY ANALYSIS
1 1 t 1 1 1 1 1 1

NeRATTERN) 1 tor o vor ot
PP, PARANETERSIA® 2%, VARLAD . L1, 2000 SIWJLATIN S YIELDED HMEAN(A)s L235, vaR(A)s L1009
CENTER POINTS  4FREQeQ
€*2,0%98E - X
~2.003E Xe
Xe
ox
o |
.
X .
. .
. x
o ox
'
ox
xe
.
‘ . . 3
. x
. .
. x
. .
.
xe
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.
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.
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Appendix
Inverse of V
a
. +
Since V = X Yi’ as in (19) it is clear from the nature of a direct sum
i=1
that
- 8y =1
v 1 _ 5 Yi .
i=1

For this, Y;l is derived from the following theorem tsken from Urquhart (1962).

e P Pt D -

A= {épq of order nP X nq} for p,q=1, 2, ..., N (AL)*
such that
A =DbT 5
%pp = Ppin_ * Eppln (a2)
p p
P q
with G = { } ] "
27 8 (ab)

Then the inverse of A is

-1 -1
AT = {A f ord } . A
A (_ zpq of order n, x n, (a5)
-1
i = (1/v )1 k J A6
with (a )pp (1/ pIn + T (46)
p P
-1
and (A )pq = kpq‘-In «p fOrD £q - (A7)
p" q :
where K = {k }
- pa.
Tt -t (28)
with D = diag {ny, ..., nN} and B = diag {bl, cens bN} . (a9)
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The notation in (A9) indicates that D and B are diagonsl meatrices, end in
(A5) - (A7) the notation (1;\-1)pq does not indicate the inverse of a metrix; it is
the pq'th sub-metrix of the inverse of A.

Comparing the definition of V. in (20) - (22) with that of A in (Al) - (A3)
indicates that in applying the theorem to find YEI the N of the theorem is s bp
is e, gpp is @ + B and gpq is o for p # q, forp, g=1, 2, ..., c; - Hence G of
(A4), which we now subscript with i to go with V., is
G, =BI, +oJ . (a10)

i i

Then from (A5)

T P L
v, = {(Yi )jf of order ng s X nij'} for j, j' =1, 2, ..., c

i
(A11)
with, from (A6) and (A7),
-1
(Vv:).. =(1/e) I +h, ..J (A12)
i35 nij 1,Jg—nij
and
) for j £ ' (a13)
-i 733" i,jj'-n, .x n, .,
i 13
where, from (A8)
.. r -1 -1 -1
{hi,jj'} for J’J - 1’ 2’ bR ] Ci, - I;Ii - L(gi]‘?l + @i) = }éi ...i ]_Di (Alh’)

with (A9) giving

[}

-=c, °

Pi diag {nil’ cres nici} and gi = el ;

Hence to obtain YEl we need H, of (All), first finding the inverse of
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G.D; +B; = nil(d +B) +e n, @ ces nicia . (A15
n, @ niQ(d +B) +e ... nicla
. . o
n o n, o . nlci( +B) +e

For convenience define,

= 16
mij nijB + e, (A16)
o (a17)
p. =T m ., ALT
iy, 1
c
ing.
and . =1l +ayx —& (218)
i Zoom, .
Jj=1 "1ij

D, +B, = |n,.@ +m, n, o .o n, o |
91-1 =i il il i2 1ci
n, o n, o + m, n,
il i2 i2 1cid
n,. o n, o .o n +m
il i2 ic 10i
L .

with the determinant being, from diagonal expansion,

C. C. n..o
B m m (1 + Zl L ) p.q (A290)
+ . = . = Q. . o
J.=l 1] j=l m_j-‘_j 171

To find the inverse of 9191 + §i we find the cofactors of its elements. That

of its j'th diagonal element is, by snalogy with (A20)

¢ Ci n, .o n .o P, n, .o
(1/m,.) "m, .1+ = Jo . 2 ) = <q. - -—Q—) $ (a21)
ij’. ij m, . m, . m, ., Vi n, .
Jj=1 J=1 "ij ij ij ij
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and that of its (jj')'th off-diagonal element for j # j' is (- l)J+J ]_1 33" where

L is the corresponding minor. In subtrscting the (j' - 1)'th row of

b

_ . f < s Sr ot _
IMi,jj'l which, for j j', has come from the j th row of 9191 + @i from

every other row of |M. jj,[ we find that for t # j # j' 21l elements
b

nlt(a + B) + e become nitB + e and elements n. .

zero element in the j'th column is nijd in the (j' - 1)'th position. Expanding

@ become zero; and the only non-

|M1 L35 | by elements of this column gives

ci j'-1
(- 1)3 1+jn o T (nijB +e) = ('1)3 +Jn QP /m

M, ] =
tsJd RIEPEVL i3mig"

This is for j < j'. When j > j', the effect is to interchange j and j' in the

above result, which merely replaces nij by nij" Hence the cofactor of the element

in the (jj')'th position, for j # j', is

J+3'
1 M = m,.m . A22
(133 |, L) = oy oy (122)
Dividing © (A21) and (A22) by (A20) shows that (gigi + g.)-l has its
1 n, .o
j'th disgonal element = —— - J
MM Y
and its
- nij'a
(j3')'th element, j £ j', = T

= (1/e)I, , the metrix H,

. -1 _ .. } -1
Therefore, with D,” = diag {l/nil’ cees l/n.lci and B, .

of (All) has diegonal elements

n 04
. o 1",
hi§i = [ ml - - o El" (a23)
’ ij m.. q. iJ

ij *i

which, from (A16) reduces to



-8 __Z — . "
hi’jj = m e 2 for j =1, 2, ..., o3 (24)
J i 4
and off-diagonsl elements
By e for 343 =12, e, . (825)
sJd ij ij' qi 1
With these terms used in (A12) and (Al3). Y{l of (All) is determined and so
a
vt o 5 v, is known.
i=1

Elements of T

To derive taB = tr(Y-lYay-IYB) for example, we need the differentials of V
a
with respect to o and B. This, because V = _2; Vi’ requires the differentials
- 401 -

of V., end from the definitions given in (20) - (22) it is readily seen that

2
i, aYi/aca = gni ’
C.
2 1
V., . =09V./30s = £'J ,
-1’6 -1 B j=l-nij
and -i,e = BYi/B e~ Ini

With these values, and obtsining y;1 of (All) by using (A23) - (A25) in (A12) end

(A13) we now derive the t's. First, t ., utilizing V = z v, =nd
¥y=.,5 =

- a -
v o gt vl

i=1 %

ct
1

er(V Y,

(o404

Z tr(V Xy,

-i Q—l -1 Q)

= 2 tr(YiJ )2
i.
p Dj, -1
= £ " i.p.o. (r'th row of V, J_ )
i=]l r=1 -1 -n

i.

and (r'th column of Yzlgn )
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. . . -1 .
where i.p.o. stands for "inner product of". Wow in V,'J, every element in a row

i
is the same; and so the columns ere equal. Therefore
& i -1 -1
tay = = I (element of r'th row of V. J Y(column sum of V., J_ ) (A26)
i=1 r=1 TRy, w7y

Now, by the nature of V;l, the n, rows of Y{lgn are grouped naturally into

i.
N sets of ni, rows each, for j =1, 2, ..., c . Therefore instead of considering
the
the r'th row of Y;lJn in taa we consider the k'th rowin/ j'th set of rows, and
n; Cci nij

replace the summetion X by T I . Then
r=1 J=1 k=1

an element in the k'th row of the j'th set of rows of Y;lgn

.

= ¥ elements in the k'th row of the j'th set of rows of Ygl s
and from the nature of (A12) snd (Al3) this is

h

= (1l/e +n.. h + X n,. .
(a/ i ) jrig W53

J 1,33

which, on substituting from (A23) and (A25) is

1 nij o e nij' o
T m, . 2 v /s M. M, ., Q.
13 mya £33 it M
I S & IR ( ;i By 13)
Tm, , 2 m, . q, %, .M., m.
ij 13 a ij "1 3'=l 7ij ij
cs n
1 o 17 1 1
m. m.q 2 4 m. m (g; - 1)
. . Q. . . . .. Q. i
ij ij "1 3=1 ij ij ij i
1
e (e7)
ij i

on making use of (A16) and (A18) in this reduction. Thus en element in the k'th

row of the j'th set of rows of Y{lgn is l/mijqi’ and summing this over all rows
i.
gives
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_ Cy nj_j Cj n..
column sum of Yilg = - L =L = Eﬁg-. (A28)
i, =1 k=1 M3 %4 9 o5=1 Myj
Substituting (A27) end (A28) in (A26) gives
e £ BB (L gy P (Y
= AT NV a 2 '
A R R T T e P v SR €
Now define
ci np
A, =¥ _1iJj for integers p and q,
R B R
ij

as in (25), noting from (A18) that

Q
I
o]
+
8

’_J
[

!
]
+

R
-
'_-l

as in (26). Then t o Bets written es

tOlOl

&
> 2
I ATy /q
i=1

as shown in (27).
The definitions and procedures introduced in deriving this result are used

repeatedly below in obtaining the other t's.

taB

1]

e (VYY)

;tr(\_lex_r. voly, )
i=1

i,o=i =-1i,8

]

ser(vits o vilst o)
N -1 -Nn, =1 ., -N. .
i i. J - J

2 i.p.o. (r'th row of Y;lgn ) and(r'th column of Y;lz+ . )
- . 3

i 1. ) lJ
ng I
=% ¥ “(element of r'th row of V., )(T elements in r'th column of

S
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a cqy ng
-3 Z (l/mi q )(Z elements in k'th column of j'th set of columns of
i3 k=1 J
1Z+
-i . —n.
J 13
=225 (1/m, . q.) {z elements in the column [(O0 ... 01_ O ... o)le]'}
ijk ij i =0y 5 -i
=TIz (l/mij qi)(Z ell elements in the j'th set of columns of Y{l)
ijk
=22 x (1/m, . q.) {ﬁ all elements in [(vfl).. + Z (Vfl):..]}
ijk o =133 7 gy -1 73
= 1/m, . n;./e + n.. . s+ Zn..n.., h, ..
? § : (a/ 15 %) / %,43 jrig 3R i,35")
=228 (1/m,, a; )(n /m 3 q.) from (A27)
o ij i
1jk
n2
1
=% 5
iaqJ m i3
= % A.../da° as shown in (28)
5 i22’ *i ¢
Similarly
-1 -1
tae - tr(Y YQY Ye)
= E tr(V lV vily, )
o1 i,o=i ~i,e
= tr(vit g vTh
- -i =n, -i
i i,
= ¥ T (element in r'th row of V;]'Jn )(T elements in r'th column of V;l)
ir -t T, -
=2 Z X (1/m, J)(l/e+n,.h, ..+ Zn ., h ..
ik 1/ i3 3/ 13 71,33 C5gy 13 1,33")
n,
=%y —id ( = ) from (A26)
S Tm, . q, Vm, . q.
1J 13 1 ij "1

2 . .
AilQ/qi , given in (29).

1]
F ™



In deriving

tag
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the term
= tr(Y—lYBY-lYB)
- = (=%, P

i J ij

we use the partitioning

+ -1
(; gn..)Yi

J 1J
with P. ..
=1,JJ

and

P. ..,
=1,4J

This gives

BB

{ -i,33" } for §,3' =

-1
YV, 7).
nij =1 "JJ

(z*s
J

= =ty Y,
j Py TH Al

n,.
1J

i

z tr({P.
. -i,
i

i3} 353"

+ B
J

T tr(x P?

;s z P,
i 3 =~1,4dJ

Jd 7

PHD¥ tr(P
i L

TP

343

tr[(l/e )nlJJn +
i3

. +
PHDS
i3]

+ Xn

= (1/e)3,

P,
-v# =1,33'=1,3'3

. . P,
-1,33'-1,3'3

s 2

o0 ey Ci

n

+n,.
13

J
. . -n
1J

h, ..
1,JJ ij

In

h, ..
i, 33’ ij Xn,., .

13

2
1, 2, ..., C.)

1

)

)

2 h2

"1371,33713 n * 2<i/e)niéhi, T ade

..h. ..'J n"'ih'.,'| tI
g1y 131,330y g% 0y 13T J nygeX nij]
o 2 2
=33 n l/e + n,.h . +n, . n,.
ij [ny 5 / i3 l,da) J g14y 1 ,ja’]
2
n o2 n, [’ Y
_ 2 (A ig ) 2 i3’ i
= ? z [ﬁij ( T g2 + D5 .,i. 2z 2 7]
N ag Qni. nij a2 ni., ni.
=22[ <1+ J'2‘m lqa)"z 2(2 2 “23)]
L . 21
miyqy R myga; 30 mys By



Bgg  2Yng, Ry 5 ij!
=Lz ( 5 "3 YT z i
15 M3 %4 9 My 9 My
= g (A - 20° A Ja. + o /q2) as in (30)
2 Piee o 433/ * %Pioe/ Y .

The penultimete term is

e (VYT

tBe

i}

- -1
z (V3T g¥ )

2 tr[(Z I )v 1V"1]

-l
= % trlzp; J(V )jj + I 2R (V)]

333
Tz tr{[(l/e)gn +n,.h, ..J J[(l/e)I +h, ..J ]
ij i3

ij1 JJ"n ij l’JJ-nij
Z 3
+ n ) h, 1.

543 ia 1,33'=n,; x n, L i,33'=n, 130 ¥ B

2.2

Tz tr[(l/e ), o+ 2(1/e)n13 1 jagn + nijhi,jj-n.

i P13 ij ij

2
* .ianljnls Bi,5572n, ]

ij
2 2

=2 Z (n /e + 2n°.h, Je + ke . +n°, T n,. )

1j 171,33 131,33 1 5145 13" ,JJ

2

=X Z ng 1/e + n. .h. + z

iJ [ ( / ij 1333) 1J j % ' 1’j3’]

2 2 2 0
(¢4 —_
AR N O i _%u“>+%j o JhgY
=l mz 22 Ty 222 2 /-
3 Ty 135%4 1534 1534 15 13

and, similar to the final reduction of tBB’ this becomes, as shown in (31),

a
-.:Z(A
i=1

L 2
*Be 112 " 2G§A123/qi + CoAi1ohi00/a3)
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Finally we have

er(Y VYY)

c+
i

ee

) tr(y;1)2
i

25 er{l1;,0% + 2 (5 550004}
i3] 3'#3

and on substituting from (A12) and (A13) this becomes

2
. {
b =Z 2 tr l/e )I o+ 2(l/e)hlJJ I+ hi,jjnijgn..
i 13 ij 1]
+ Z h, 'J h, ..,Jd }
3143 i,jj'=n, 13 X Byyr 13370y 4 x n,,

2.2 2
=22(n/e n, h, ../e +nins .. +n, . T n b7 .,)
13 137,33 131,33 ddgiyy 130133
=z Z [(n - 1)/e + (/e + n, hy )2 +n,.Z ni.,hi..,]
ij 31,33 Jj'%j J JdJ

n - - ; 33012 Qnija‘
= -—e-—— Z‘L — 1 4+ == m2 q2 - :“;"‘) +
iJ ij 1 o
2= (. 4)]
T2 2 i 2
13 4 J'#3 15
=(n =-c )/e + 2 (A - 202 /q + /q )
oo 121 02 o 113 a 112

as shown in (32).

Balanced Data

With n,., =1n, ¢, = c, for all i and j,
ij i

P
cn cn + nB + e
m.. =nf + e A. = m— and q. =

ij ipqg (0g + e)q i ng + e
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X:u y = 8 and Z-_—-aﬂn—:-—ll

(np + e)2 ’ (cno + ng + e) e

we obtain, from (27) -~ (32):

£ < a( ‘cn )2 ( ng + e )2 _ c2n2y
oo ng + e cn® + nf + e ?

£ = acn® ( ng + e >2 _ cn2y
op (ng + e)2 cn® + nB + e ’

£ = acn ( ng + e )2 - eny
oe (ng + e)2 cne + nB + e ’

and

£ = sen” [ _ 2on cof n° 7

B8 (np + e)2 cne + nj + e (cno + ng + e)2 .

]

an® [ c(cno + nB + e)2 - 2 cnocno + nB + e)2 + c“n°df ]

(nB + e)2 (cno + nB + e)2

in which the numerator inside the square brackets can be simplified as

(np + e)2 + (c=1)(np + e)2 + Il 4 2c2na(n3 + e) =2cno(en® + ng + €) + enoP

(nB + e)2 + (c=1)(np + e)2 + (c-l)czneag + 2cnofc(np + e) - (cnaq-na-+e)4-cnd]

(nB + e)2 + (c=1)(cno + np + e)2

and so

2 2
_an“(c-1) . an _ n2(x +y) .

t . =
BB (np + e)2 (cno + ng + e)2

Furthermore, since in (31) the powers of n in the A~terms are one less than

those in (30)

t =n(x+7y) .

ge = pp/"
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And similarly for the first term of (32), so that

2
tee = tBe/n + (acn - ac)/e“ =x +y + z.

The l-way classification

With o> = O and using w, = nie/(e + nia), (25) and (26) give

B
_=q, P
Bipg T° 7 2 My
J
and q; = (e + ni.a)/e = ni./wi .

Thus from (27), (29) and (32)

222,72 -2 .2

Yo =T € MW/ /ng =e T W,
-2 2,2 -2 2
tae = T € ngwi/ny = e T /o,
and
c n °n° n c
r . . -
tee =z L _% - egi ; o —%.+ = 4 + == 2 ;
e i. e (e + n,@)%ek e
- ( ;2 -2
=e e[é(ci -1) + =1 ~ g—:—ﬁza) ] + e (n.. - c‘)

-2 2,2
e (T Wi/ni.+ n - 8),

as shown in (33).

The Lagrange identity is

2 .2 > . 2
Zaj Zb; ~(Zaby)” = 3T T (50, - 8;.0;)".
1714 i il

Hence, with W, = ni.e/(ni.a + e)
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2 _ 2,2 2 2
zwy Dwi/ng - (Dwi/n; )

s e |
1714 i
2
( ./ /o, ) =4 ViWy ( B ni') B
=3T % W, /By = wewe /0, ) = Z 5 -
i1’ AL i - nl.nll -
2 2
e (n - n, ) R en, (n o+ e) - en, ,(n o+ e)m
= [%h dl; e)(n e ey T g r %n @+ e)(n & ¥ e) N
i1t - ifir - i. il
=4r 5 (w - w.,)2 = (a - 1) Zw -2Z T wuw,
141! t i i>i’

2 2
a owy - (Ewi) .

[}

Hence in (3L4)

- - 7 -
|| = e e Zwi - (Zwi)g + (n. a) Zwi] = e ﬂ:n..zwg - (Zwi)éj =e uD
as in (35).

Estimation of

-1‘Y-l¥ = ©(Z elements in YiY;l)

i

=Z Iy k(E elements in k'th row of j'th set of rows of V )
ijk

=L XXy 1/e + n,.h, n,.h, .. from (A12) and (L1 3
L3 x k( / 131,33 j'?j lJ' l,JJ’)’ ( ) a ( 3):

=TI Iyg/ma; from (A27)
ijk

=¥ Sn,,vy.. /m.q
i3]

ij Jij. 7 ijTi

.

1 n,
=2_'ZE°J' es in (37).
i q iJ i3 i3
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}'Y-l} = %(L all elements in Y;l)

i

2y (/e +n,h, ..+ £ on, ,h .. ) from above,
ijk 1J 1,43 j';é.] 1] 1,Jd

1 M5 ¢ o P Ti3\]
TIZ - - Y === - —) |, from (A23 and (A25)
. .. 2 m, . q. m, . m, ./

ijk ij mij qi ij ij

z(z )(1- z—-—s’-)

]

and using the definition of qi this becomes

n, .
l'V-ll =X (Z id) L as in (38).
i J ij i



