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Abstract 

Bipolar II disorder is characterized by alternating hypomanic and ma­
jor depressive episodes. A negatively damped harmonic oscillator is used to 
model the periodic mood variations of a single bipolar II individual. 'freat­
ment is modeled via an autonomous forcing function that is capable of sta­
bilizing, within some boundaries, the mood variation of the patient. In this 
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paper we study the dynamics of two individuals with bipolar II disorder who 
interact with each other. The interaction of two subjects living together who 
experience bipolar II disorder is modeled via two weakly-coupled, weakly­
damped harmonic oscillators. 

1 Background 

Bipolar disorder affects about one percent of the general population [5]. 
This disorder presents many unique problems to current clinical practition­
ers, such as the difficulty in diagnosing the disorder, patient non-adherence to 
treatment and/ or medication, and the fact that most drugs, if taken individ­
ually, have a toxic level of efficacy [8]. Psychiatrists have established a broad 
range of criteria for classifying this disorder in the Diagnostic and Statistical 
Manual of Mental Disorders, Fourth Edition (DSM IV) [1]. The disorder has 
a variety of characteristics which may or may not be present in all patients, 
including mixed episodes, in which it is possible to simultaneously experience 
symptoms of both mania and depression, and rapid cycling, where a patient 
experiences at least 4 cycles per year [5]. Bipolar Disorder can be separated 
into several distinct groups. Bipolar I disorder is characterized by a combina­
tion of manic and depressive episodes with the possibility of mixed episodes, 
while bipolar II disorder is characterized by a combination of hypomanic and 
depressive episodes [1], [3]. Patients with bipolar II disorder tend to be more 
prone to rapid cycling especially if initially treated only with antidepressants 
[8]. 

Treatment for bipolar disorder ideally includes a combination of medica­
tion and therapy. The typical drug treatment includes mood stabilizers, an­
tipsychotics, antidepressants, and other drugs found to be effective (i.e.,some 
select anticonvulsants). Some names for a few of the more commonly used 
drugs are Lithium, Valproate (also know as Depakote), Carbamazepine (also 
known as Tegretol), and Prozac. The mood controlling drugs such as Lithium 
take 4 to 10 days to reach therapeutic levels in the blood stream, so initially 
treatment is likely to include antidepressant and antipsychotics [3]. Dur­
ing the maintenance state antidepressant or antipsychotics are likely to be 
used in addition to mood stabilizers. Monotherapy (single drug therapy) is 
generally avoided by clinicians due to the strong side effects of some of the 
drugs used. Other drugs that can be used are selective serotonin reuptake in­
hibitors (SSR1) and monoamineoxidase inhibitors (MAOI) both of which are 
generally used for depression [3]. In some cases, special care must be taken 
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to ensure that the individual does not fall into a pattern of rapid cycling or 
become addicted to some of the medication because substance abuse is an 
associated problem with bipolar disorder [3]. 

Bipolar II disorder is highly heritable. It has been reported that for 
people with bipolar II disorder there is a 35 percent chance that offspring 
will also be bipolar II. We know that family units do exist with more than 
one individual with bipolar II disorder. We seek to examine the dynamics of 
a closely interacting pair of bipolar individuals 

2 Introduction 

For the purpose of our model some simplifying assumptions need to be 
clarified. First, while bipolar II disorder can be somewhat erratic, there exist 
patterns of recurrence to the episodes. For a group of patients with the dis­
order, there is a periodicity which governs the manic and depressive episodes 
[9]. Also, it is a common assumption that if the disorder is left untreated 
it will severely progress. Therefore, the negatively damped harmonic oscil­
lator is one possible model that captures qualitatively the mood variations 
of a single patient diagnosed with bipolar II disorder. Hence, the governing 
equation is 

{1) 

where x is the emotional state of the patient, :i: is the rate at which mood 
changes between hypomania and severe depression, and a > 0 and w are 
parameters. In order to establish a biologically reasonable scale for mood 
variations we consider values lxl 5 10, where x = 10 arbitrarily represents the 
most severe hypomania while x = -10 represents the most severe depression. 

Since all individuals experience some mood variation, we will establish a 
threshold of ±1 in mood variations to indicate the clinical diagnosis of bipolar 
II disorder. That is, a patient is classified as having bipolar II disorder when 
x ranges beyond ±1. We realize that many considerations actually go into 
the proper diagnosis of the disorder. In our model, by the time the oscillator 
is able to reach an x value of ±1, a sufficient number of the classifying 
criteria are assumed to have been met to be able to diagnose the individual 
with the disorder. The emotional state where a patient is able to perform 
everyday activities without the hindrances normally associated with bipolar 
II disorder is arbitrarily define to be lxl 5 0.3. Since we are seeking a 
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qualitative analysis, our scales are chosen only as a caricature of the general 
behavior. 

3 Typical Untreated Bipolar II Patient 

The typical bipolar II patient is expected to experience fewer than four 
cycles per year and is usually diagnosed between the ages of 18 and 24 [5]. 
Also, a typical bipolar II patient is usually diagnosed when they are in a 
depressive episode rather than in a hypomanic episode [9]. Setting the pa­
rameters a= 1/2 and w = 20 with initial conditions to= 0, x(O) = 0, and 
x(O) = 0.07, allows for the modeling of such a patient (see Figure 3.1). There 
are many initial conditions that we can consider, but the qualitative behavior 
that occurs when medication is applied remains the same, for any biologically 
reasonable initial conditions. Also, the time at which we choose to apply the 
medication function will be arbitrary up to the point that the amplitude is 
greater than ±1, this means the patient can be diagnosed during either a 
manic or a depressive episode. Equation (1) can solved exactly for x(t) [7]. 
The solution is 

(t) [ . (9V79 ) (gy'79 )] x(t) = exp 4 Asrn - 4- t + Bcos - 4- t (2) 

where A and B are determined by the initial conditions. Substituting t = 0 
into Equation (2) we obtain B = 0. To find A, we differentiate Equation (2) 
with respect tot to obtain 

x = expWGA-B)·m(9~~) 
( t \ (gy'79 1 ' ( gy'79 \ 

+exp 4) - 4-A + 4B} cos \-4- t} (3) 

Substituting B = 0 and t = 0 into Equation (3) we obtain A = Jiffi. Using 
our chosen values for a, w, A, and B we have 

7v'79 (t) . (gJ79 ) x(t) = 17775 exp 4 sm -4- t (4) 
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Figure 3.1: Typical patient: mood variations with onset of bipolar II disorder 

and 

. 7Vf§ / t) [. lg.,j79 \ (gj79 \1 
x = 71100 exp l4 sm \-4- t) + 9V79'cos - 4- tJ j- (5) 

We are interested in calculating the approximate age at which a typical 
patient has the first episode of hypomania and severe depression. This can 
be obtained by solving Equation {4) for t 1 such that x{t1) = 1 and t2 such 
that x(t2) = -1, respectively. In this system, x(t1 ) = 1 at about t1 ~ 22.69 
and x(t2) = -1 at about t2 ~ 22.84 (see Figure 3.2). 
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Figure 3.2: Typical patient: first hypomanic and depressive episodes 

Thus, a typical patient experiences the first episode of hypomania and severe 
depression at approximately age 22.69 and 22.84 respectively. 

We are also interested in approYJmating the ages at which the typical 
patient reaches the most extreme level of severe depression, exits the severe 
depression level, and reaches a reasonable functional state. Setting Equation 
(2) equal to -1 and t from 22.85 to 23 we obtain t3 ~ 22.87. This implies 
that at about age 22.87 the typical patient will reach the most extreme level 
of severe depression. We anticipate that the most extreme level of severe 
depression will occur between the ages 22.84 to 22.87 (approximately 11 
days). We found that the system reaches a minimum when x ~ -1.06 and 
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t4 ~ 22.86. This implies that at about age 22.86 a typical patient reaches the 
most extreme level of severe depression. Setting Equation (2) equal to -0.3 
and allowing t to vary from 22.85 to 23 we obtain t ~ 22.92, which implies 
that at about age 22.92 the patient reaches a reasonable functional state 
(see Figure 3.3). 
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Figure 3.3: Typical patient with onset of bipolar II disorder: Depressive 
episode 
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4 Typical Treated Bipolar II Patient 

Most patients with bipolar II disorder are diagnosed when they are in a 
depressive episode because hypomania usually does not prevent the normal 
function of individuals. In many cases hypomania enhances functionality in 
the short term [5]. For this reason, we assume treatment begins at approx­
imately age 22.84. Autonomous forcing functions, which will represent the 
treatment of the patient, are introduced into the negatively damped harmonic 
oscillator, Equation {1), to obtain 

{6) 

The autonomous forcing function {3x2± represents overall treatment which 
includes a combination of antidepressant, mood stabilizers, psychotherapy, 
and either antipsychotics or tranquilizers, to control the mood variations 
of bipolar II patients. We have chosen this particular autonomous forcing 
function because treatment is dependent upon the severity of the mood and 
the rate at which they vary. This particular autonomous forcing function 
with {3 = -50 is a caricature of the effects of the overall treatments given 
to bipolar II patients. Successful treatment is characterized by limiting the 
mood variation where lxl ~ 0.3. 

We are interested in finding the time the patient spends in a severe de­
pressive state (t5 - t2 ), the time it takes to reach a reasonable functional 
state (t6 - t2 ), and the time and degree of the next peak in the cycle of mood 
variations (t7 , x7 ). The ODE45 function in MatLab (see Appendix A) facili­
tated these calculations. It was determined that the patient exits the severe 
depressive state at time t 5 ::::::: 22.868, so t 5 - t 2 ::::::: 0.028 (approximately 10.22 
days). The patient then enters a reasonable functional state at t6 ::::::: 22.951, 
so t 6 - t 2 ::::::: 0.112 (approximately 40.88 days). Finally, the peak is reached 
at time t1 ::::::: 23.05 with a maximum value of x1 ::::::: 0.561. 

4.1 Limit Cycle 

After examining the numerical simulations of our model we observed that 
adding the forcing function generates a limit cycle (see Figure 4.1). 
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Figure 4.1: Mood variations of a treated bipolar II patient; limit cycle 
achieved {J = -50 , a= ~, w = 20 

To prove the stability of this limit cycle we re-write our model with treat­
ment as 

(7) 

If we let f(x) = -{Jx2 -a and g(x) = w2x, then Equation (7) satisfies all 
the criteria required by Lienard's Theorem. 
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Lienard Theorem: [10) 
Suppose that f(x) and g(x) satisfy the following conditions: 

{1} f(x) and g(x) are continuously differentiable for all x; 
{2} g( -x) = -g(x) for all x {i.e., g(x) is an odd function); 
{3} g(x) > 0 for all x > 0; 
(4) f( -x)=f(x) for all x {i.e., f(x) is an even function}; 
{5) The odd function 

F(x) = Lz f(u)du 

has exactly one positive zero at x = a, is negative for 0 < x < a, is positive 
and nondecreasing for x > a, and 

F(x)-+ oo as x-+ oo 

Then the system has a unique, stable limit cycle surrounding the origin in 
the phase plane. 

Therefore, Equation (7) has a unique, stable limit cycle surrounding the 
origin in the phase plane. This indicates that after our patient is given 
treatment the patient's mood variations will oscillate within a range of x 
values to be determined by the parameter. To approximate the amplitude of 
this limit cycle we will look at the first harmonic of the Fourier Series that 
will represent x(t), a technique also known as harmonic balance. 
Let 

x(t) = Asin(fU) 

Substituting Equation (8) into Equation (7) we obtain 

-A02 sin(Ot)- ~A30,B cos(Ot) + ~A30,B cos(30t) 

-AOacos(Ot) +w2Asin(Ot) = 0 

We collect all the terms with sin(Ot) and set 

( -A02 + w2 A) sin{Ot) = 0 

Solving Equation (10) for n we obtain 

O=±w. 
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We then collect all the terms with cos(Ot) and set 

(~A30,8- Ana) cos(Ot) = o. 

Thus, 

A=O, ±2~ 

(12) 

{13) 

The amplitude A = 2# in Equation {13) is an approximation of the true 

amplitude. 

5 Two Bipolar II Patients Interacting 

Now that we have examined the situation of an individual undergoing 
treatment, we will look at the interactions between two bipolar II patients. 
We are interested in modeling the possible effect two patients will have on 
each other while undergoing treatment. Consider our two individuals, each 
separately given by Equation 7 in polar coordinates as such 

ft - -,Br~( cos 8t)2(sin 81)2 

+rt sin81 [asin(Bt) + cos(Bt)- w2 cos(Bt)] + K1(r2- r1) (14) 

81 - asin(Bt) cos(81)- (sin81)2 -

w2(cos81 )2- ,Br~(cos81 )3 sin(Ot) + K2(82- 81) (15) 

r2 - -,Br~ cos822{sin 82)2 

+r2sin82[asin{82) + cos(82)- w2cos(8t)] + K3(r1- r2) {16) 

02 - asin(82) cos(82)- (sin82)2 -

w2(cos82)2 - ,Br~(cos82)3 sin(82) + K4(81- 82), (17) 

where K 1, K2, K3, K4 represent the coupling coefficients. 
We use polar coordinates in order to facilitate the adding of coupling 

terms which will represent interaction between two patients. We assume 
that the phase difference will only affect the phase terms and the amplitude 
difference will only affect the amplitude terms. We propose that the purpose 
of these coupling functions is to average out, between the 2 individuals, the 
difference in the magnitude of the mood variations and the difference in the 
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rate at which the episodes are occuring. One important detail to note is that 
in Equations {15) and {17) we use coupling terms of(} without any limitation 
on the phase angle. That is, in this system, if the difference in 01 and 02 were 
to increase beyond 271" then our model would be invalid. This consideration 
is unnecessary, however, when we convert back into rectangular coordinates, 
because the coupling terms remain bounded due to our terms of Jx~ + ii2 

and arctan(~). For the program we use the numerical integration will only 
return values between -7r /2 and 1r /2 for arctan. Even though the arctangents 
in our rectangular equations create a discontinuous vector field, we feel that 
the behavior seen near the discontinuities still models the biology seen in 
cases where 2 patients with bipolar disorder are interacting (fluctuation near 
in-phase and out-of-phase modes). When we couple two similar individuals, 
they have the same values of a, w, and /3, then the four dimensional system 
of equations that involves i1. 'Jh, i 2 , and 1h are 

il = Yl- K2Y1 (arctan(~:)- arctan(~:)] 
( Jx'+y') (18) +K1x1 J ~ ~ - K1x1 

xl +Y1 

'!h - f3Ix~yl + a1Y1 - wix1 + K2x1 [arctan ( ~:) - arctan ( ~:)] 

( Jx'+y') (19) -K1Y1 + K1Y1 J ~ ~ 
xl +Y1 

i2 - Y2 - K4Y2 [arctan ( ~: ) - arctan ( ~:)] 
( Jxi+vl) (20) +K3x2 J 2 2 - K3x2 

X2 +y2 

'!h - [hx~y2 + a2Y2 - w~x2 + K4x2 [arctan ( ~:) - arctan ( ~:)] 

( Jx'+Y') {21) ·-K3y2+K3Y2 .j ~ ~ · 
X2 +Y2 
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5.1 Qualitative Behavior for the Simplest Model of the 
Coupled System 

1~~------------~------~------~----~------~ 

0.5 

..t' 0 

-0.5 

-1 

-1.5L-------'-------L..-------'-------"'--------'---------1 
-1.5 -1 -0.5 0.5 1.5 

Figure 5.1: Simplest case periodic orbits 

We consider the interaction of two patients in order to determine any 
joint behavioral patterns. For our system of coupled equations, we chose, for 
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our simplest case, 

f3t = !32 = 100 
1 

0:'1 = 0:'2 =-
2 

w1 = w2 = 20 

Kt = K2 = K3 = K4 = 1. 

(22) 

(23) 

(24) 

(25) 

The important qualities of this particular system are that the patients are the 
same in terms of their oscillations and in terms of their individual treatment 
functions. Something else to note about the system is that their interac­
tions are the same, Patient 1 and Patient 2 affect each other equally. When 
integrated numerically we find 4 predominant orbits for.small values of x's 
andy's. Two important solutions are the in-phase mode and out-of-phase 
mode, which will be analyzed later. There are also 2 similar 4-point periodic 
oscillations. The patients go from near in-phase to near out-of-phase and 
then back again. These solutions appear stable because a solution will tend 
toward these 4-point oscillations if the initial conditions are outside the rela­
tively small basin of attraction for the in-phase and out-of-phase modes and 
far enough away from the equilibria, (see Figure 5.2). The initial conditions 
used for our figures are as follows: 

4-point curve 1: x1 = -0.291, Y1 = -7.68, x2 = 0, and Y2 = -9.5. 
4-point curve 2: x1 = 0.743, Yt = 0.743, x2 = 0.7115, and Y2 = -7.65. 
In-phase curve: XI= 0.1, Y1 = 0, x2 = 0.1, and Y2 = 0. 
Out-of-phase curve: XI = 0.1, y1 = 0, x2 = -0.1, and Y2 = 0. 
We also looked for equilibria in our system. We know there must be some 

unstable equilibrium inside the in-phase and out-of-phase modes [10]. Using 
DSTool, we observed numerically a saddle point at the origin [6]. It also 
calculated 4 additional saddle points and 8 sink points, (see Figure 5.2). 
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Figure 5.2: Simplest case periodic orbits with equilibrium points 

These equilibrium points cause our model to have very interesting mathe­
matical behavior, but we can say very little about the biological applications, 
so we must leave mathematical analysis to later work. Due to the symmetry 
in our system and the presence of 4 other saddle-sink pairs, we believe that 
there are 4 other saddle points in our system, even though we have not yet 
succeeded in finding them. 
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5.2 In-Phase/Out-of-Phase Mode 

To examine the in-phase mode, let XI = x2, and YI = Y2· Then our 
model simplifies to a two dimensional system of either XI vs YI or x2 vs y2, 

depending on which way we take our substitution. Without loss of generality, 
we consider xi vs YI· We can then apply Lienard's theorem to see that the 
in-phase mode exists and is stable in the 2-dimensional invariant manifold, 
which sits in our 4-dimensional space. We also observed numerically that our 
in-phase mode appears to be stable in the 4-dimensional system. We can see 
that if we make our substitution for the out-of-phase mode, x1 = -x2 and 
YI = -y2, then the same analysis applies and therefore the out-of-phase mode 
also exists and is stable within a 2-dimensional invariant manifold. Due to 
the other periodic motions in the system, specifically the 4-point oscillations 
(which occur for small values of k), the in-phase and out-of-phase modes, 
even though they are stable, have relatively small basins of attraction 

This means that when we couple our two individuals, if they have close to 
similar values for XI vs x2 and YI vs. y2 (similar moods and rates of change) 
then they will tend towards remaining in-phase. This is to say that as time 
progresses they will both tend towards entering a hypomanic phase together 
and both tend towards entering a depressive episode together. Since the same 
argument works for the out-of-phase mode, if the two individuals are coupled 
at a time when their moods and rates of change are almost completely out-of­
phase, then they will tend to stay out-of-phase, where one individual enters 
a hypomanic phase while the other is entering a depressive phase, and vice 
versa. 
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5.3 Degrading Orbits 

The 4-point oscillations have some very interesting behavior. We can see 
that for the simplest case scenario there are definitely stable orbits. A case 
study we undertook was to model a specific orbit (see Figure 5.3) with initial 

-0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 

Figure 5.3: Increasing K=l values 

conditions x1 = 0.743, y1 = 0.743, x2 = 0.7115, and y2 = -7.65. We increase 
the amount of interaction by increasing all of the K values ranging from 2 to 
6. At the end of every stable orbit, we used the last points as the new initial 
conditions for the next orbit (see Figures 5.4 through Figure 5.6) 
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Figure 5.4: Increasing K=2 Increasing K=3 

Figure 5.5: Increasing K=4 Increasing K=5 

Figure 5.6: Increasing K=6 Increasing K=6 second time 
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It appears that the basins of attraction for the in-phase and out-of-phase 
modes becomes larger for larger K values. For large values of K (10 through 
100) the system tends toward either the in-phase mode or out-of-phase mode. 
For large values of K, our initial conditions can be farther from the origin 
and still generate solution curves that will tend towards either the in-phase 
or out-of-phase modes. 

5.4 Varying of Parameters 

Up to this point, our two patients have been assumed to be identical (same 
a and /3). We now vary a and /3, while keeping K 1 = K2 = K3 = K 4 = 1, 
we see the following behavior 
(see Figures 5.7 and 5.8) 

Figure 5.7: Tendency to chaos Tendency to chaos 

Figure 5.8: Tendency to chaos Tendency to chaos 
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These figures seem to suggest that our system becomes chaotic by detuning 
some of our parameters. 

6 Discussion 

After analyzing the calculations of an untreated patient and those of a 
treated patient, a noticeable difference is observed. In the untreated patient, 
it takes 0.081 years~ 29.57 days from the time the patient enters a severe 
depressive episode to when the patient reaches a functional state. On the 
other hand, the treated patient takes 0.111 years ~ 40.52 days to go from 
the first sign of severe depression to a reasonable functional state. Initially, 
it appears that the treatment is prolonging the depressive episode, but in 
reality the cycle is undergoing a phase shift. The phase shift only prolongs the 
depressive episode an additional 0.03 years ~ 11 days during the initial cycle, 
but in return manages to reduce the amplitude of the cycle to x2 ~ 0.561 
where x would have exceeded 1 in the hypomanic state if left untreated. 
Overall, the autonomous forcing function causes a phase shift and diminishes 
the amplitude of the mood cycles to be within functional state (see Figure 
6.1). As a result of the relatively simple nature of our two dimensional 
system, we can see that it is relatively easy to model a single patient with 
the disorder. When we couple two patients with the disorder there is a 
major consideration, that being the equilibria. The sink points in particular, 
are not biologically reasonable. We were not able to find documented cases 
where a patient asymptotically approached some emotional state far above 
the required amount to be considered bipolar. This happens in eight distinct 
places in our model and makes analysis for the behavior in a weakly coupled 
system difficult for large values of x and y. For small values of x and y, 
however, our coupled system seems adequate. The two patients experience 
periodic mood variations, and depending on what we vary, our model can 
achieve behavior ranging from stable oscillations, to apparently chaotic mood 
variations in other parameter regimes. 
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Figure 6.1: Mood variations a bipolar II patient 

7 Future Work 

The medications administered to bipolar I! patients take days to reach 
therapeutic levels in the blood stream. The model can be modified by adding 
a time-delay function to the treatment in order to better model the delayed 
effect of the medication. Another way of improving the model is to do an 
analysis of the equilibria in the system for the simplest model with an addi­
tional search for new equilibria. By analyzing the symmetry of the system we 
might find whether or not more saddle points exits. The last recommenda­
tion is to analyze the bifurcations of the equilibria by varying the parameters. 
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If we vary several parameters we might gain insight on how these equilibria 
were born. 
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Appendix A 

Integration Script 

function [t,y,te,ye,ie]= 
integration_script(tstart, tfinal, yO, val) 

Y. [t,y,te,ye,ie]=integration_script(tstart, tfinal, yO, val) 
Y. is the calling statement 
Y. where tstart = initial time; tfinal = final time; 
Y. yO = a vector of initial conditions (ie yO=[ x-initial; 
Y. y-initial]); 
Y. val= is the values of x where MatLab will note for recalling 
Y. t-values and y-values 
Y. Note to recall t-values and y-values use: ( te; and ye; ) 
global xval 
xval=val; 
options= odeset('Events',@events, 'AbsTol', ie-8, 'RelTol', 1e-8); 

[t,y,te,ye,ie] = ode45(@f,[tstart tfinal],yO,options); 
r. -----------------------------------------------------------------
function dydt = f(t,y) 
global xval 
dydt = [y(2); .5*y(2)-400*y(1)-0*y(1)-2*y(2)]; 

r. -----------------------------------------------------------------
function [value,isterminal,direction] = events(t,y) 
global xval 
Y. Locate the time when height passes through zero in a decreasing 
Y. direction 
I. and stop integration. 
value= [y(1)-xval, y(2)]; Y. detect when height= xval 
isterminal = [0, 0]; Y. stop the integration 
direction= [0, 0]; Y. both neg/pos direction (replace (0) with 
%(-) for neg direction only 
Y. and (+) for pos direction only. 
%****************************************************************** 
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