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ABSTRACT 

Anderson eta!. (1974) present four methods of constructing pair-wise orthogonal 
F(2k, 2) squares, i.e. there are k symbols with each symbol appearing twice in a row and 
twice in the column of the 2k x 2k square. These methods are briefly discussed and 
illustrated. Comments are given about the generality of their results. A new method of 
constructing pair-wise orthogonal F(n, 2), n = 2k, squares is presented. In addition, one 
of the methods of the above cited authors involves the use of permutations of the 
numbers -t through t. They give no hint as to how such permutations are derived. A 
method for constructing these permutations is presented. To do this, use is made of a set 
of mutually orthogonal pair-wise Latin squares for n a prime number, MOLS(n, n- 1). 
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• INTRODUCTION 

• 

• 

Anderson et al. (1974) present four methods for constructing a set of orthogonal 
F(2k, 2) squares where a F(2k, 2) square is a 2k x 2k square of k elements with each 
element occurring two times in each row and in each column. The four methods are: 

(i) method of differences of permutations, 
(ii) method ofbalanced incomplete block design, 
(iii) method of difference composition, and 
(iv) method of orthogonal arrays. 

Each of the methods is briefly discussed and another method of constructing a set of 
orthogonal F- squares, Kronecker product method, is presented and illustrated for 2k 
from 6 to 50. In addition, a method of constructing permutations of the integers -t 
through t is given. This method involves the use of differences of the first columns of a 
mutually pair-wise orthogonal set of Latin squares, i.e., MOLS(n, n- 1) set, n a prime 
number. Anderson et al. ( 197 4) make no mention of a method for constructing a set of 
permutations of-t through t which satisfy the conditions of their theorem 2.1. The F(n, 2) 
squares produced, are only proportionally orthogonal but are not orthogonal. 

METHOD OF DIFFERENCES OF PERMUTATIONS 

A set of 2t + 1 permutations from -t through t is selected in such a manner that 
differences of any pair of permutations reproduces 0 once and 1, 2, ... , t each two times 
modulo t. Anderson et al. (1974) present of five permutations for 2k = 6 that have this 
property (Federer, 2002). When their method was attempted for 2k = 10, only pairs of 
permutation were found which had this property. A set obtained by Federer (2002) is 

-4 -3 -2 -1 0 1 2 3 4 
-3 0 -4 1 4 -2 2 -1 3 
-2 -4 1 3 0 -3 -1 4 2 
-1 -2 2 -3 -4 0 4 3 1 
0 -1 1 -4 -2 -3 3 2 4 
-4 -2 -3 3 2 4 -1 1 0 
-3 -4 1 3 0 -2 4 -1 2 
-2 1 -3 -4 3 -1 2 4 0 
-1 1 0 -4 -2 -3 2 4 3 
0 -1 1 -3 -4 -2 2 4 3 
-3 -1 1 -4 4 0 -2 3 2 
-4 1 -1 2 -2 -3 4 0 3 
0 -3 1 -4 2 -1 -2 4 3 
-2 0 -1 -4 4 -3 2 1 3 



• Each of the last 13 permutations has the desired property with the first (ordered) 
permutation but no pair of these 13 has this property with each other. Federer (2002) 
raises the question as whether or not the method applies only to 2k = 6 as he was unable 
to find three permutations for 2k = 10 with the desired property. 

METHOD OF BALANCED INCOMPLETE BLOCK DESIGN 

This method uses an ordered F(2k, 2) square as a starting point. Then a 
resolvable balanced incomplete block design, BIBD, is obtained for v items in incomplete 
blocks of sizes= 2 with b = v(v- 1 )/2 incomplete blocks and r = bs/v. The 2k rows of 
the F(2k, 2) square are numbered from 1 to 2k. The rows of the r F-squares are obtained 
from the BIBD. To illustrate, let 2k = 6. Then the F(2k, 2) square and the BIBD for v = 

6, s = 2, b = 15, r = 5 are 

F(6, 2) Rep1 Rep2 Rep3 Rep4 Rep5 
001122 1 2 1 3 1 4 1 5 1 6 
001122 3 4 2 6 2 5 2 3 2 4 
112200 5 6 4 5 3 6 4 6 3 5 
112200 
220011 
220011 

• The first columns of the five F-squares, which represent the row orderings, are: 

• 

Rep 1 
0 
0 
1 
1 
2 
2 

Rep2 
0 
1 
0 
2 
2 
1 

Rep3 
0 
1 
2 
0 
1 
2 

Rep4 
0 
2 
2 
1 
0 
1 

Rep 5 
0 
2 
1 
2 
1 
0 

These orderings produce five orthogonal F(6, 2) squares. 
This method did not appear to work to produce orthogonal F(lO, 2) squares. For 

the BIBD used by Federer (2002), no orthogonal F-squares were produced but this may 
need further investigation. 

METHOD OF DIFFERENCE COMPOSITION 

For the difference composition method, a set of mutually orthogonal Latin squares 
of order pis required. Anderson et al. (1974) say to let p = 4t + 3, a prime number. They 
let p = 11 and were only able to produce a sequence ofF(10, 2) squares where adjacent 
squares in the sequence were orthogonal but non-adjacent F-squares were not orthogonal. 
That is, they could not produce a triple ofF(10, 2) squares which were orthogonal. They 



• say that "in general, theorem 4.1 produces sets of sequences of F(p - 1, 2) squares such 
that adjacent pairs are orthogonal". 

METHOD OF ORTHOGONAL ARRAYS 

An orthogonal array, (N, k, n, t), oflength N with k rows and n elements or 
symbols is required to use this method. Hence, the method does not appear usable to 
construct a set of unknown mutually orthogonal F-squares. 

KRONECKER PRODUCT METHOD 

Let J be a square matrix with all elements equal to one. Let F(2k, q) denote an F­
squares with m = 2k/q symbols or elements. Also, let k be a prime number or power of a 
prime number. Let Li be one of the t Latin squares in the mutually orthogonal set 
MOLS(k, t), i = 1, 2, ... , t. To illustrate for 2k = 6, the MOLS(3, 2) set is 

L1 = 0 1 2 
1 2 0 
2 0 1 

L2 = 0 1 2 
2 0 1 
1 2 0 

J= 1 1 
1 1 

• The two F(6, 2) squares obtained are where* denotes Kronecker product: 

• 

J*L 1 = 0 1 2 0 1 2 J*L2 = 0 1 2 0 1 2 
1 2 0 1 2 0 2 0 1 2 0 1 
2 0 1 2 0 1 1 2 0 1 2 0 
0 1 2 0 1 2 0 1 2 0 1 2 
120120 201201 
201201 120120 

We now demonstrate the method for 2k = 8 through 50. 

2k= 8: 

The MOLS(4, 3) set ofL1, L2, and L3 may be used to construct three orthogonal 
F(8, 2) as follows: 

J*L1 J*L2 J*L3 

2k = 10: 

The MOLS(5, 4) set may be used to construct four F(IO, 2) squares as follows; 

J*Ll J*L2 J*L3 J*L4 



• 2k= 12: 

• 

• 

Since there are no orthogonal Latin squares of order six, no orthogonal F(12, 2) 
squares can be formed. However, using a J matrix of order three and an MOLS(4, 3) set, 
three mutually orthogonal F(12, 3) squares are formed as: 

J*Ll J*L2 J*L3 

Likewise, two orthogonal F(12, 4) squares may be constructed from an MOLS(3, 2) set. 

2k= 14: 

The MOLS(7, 6) set may be used to form six orthogonal F(14, 2) squares as 
follows: 

J*Ll J*L2 J*L3 J*L4 J*L5 J*L6 

2k= 16: 

Seven orthogonal F(16, 2) squares may be formed using an MOLS(8, 7) set as: 

J*Ll J*L2 J*L3 J*L4 J*L5 J*L6 J*L7 

Also, three orthogonal F(16, 4) squares maybe formed from the MOLS(4, 3) set as: 

J*L 1 J*L2 J*L3 

2k= 18: 

The MOLS{9, 8) set may be used to form eight orthogonal F(18, 2) squares as: 

J*L1 J*L2 J*L3 J*L4 J*L5 J*L6 J*L7 J*L8 

Also, two orthogonal F(18, 6) squares may be formed from the MOLS(3, 2) set with J of 
order six as: 

J*L1 J*L2 

2k= 20: 

Two orthogonal F(20, 2) squares may be formed the MOLS(IO, 2) set as 

J*L1 J*L2 
Three orthogonal F(20, 5) squares may be formed from the MOLS(4, 3) set as 



• 

• 

• 

J*Ll J*L2 J*L3 

Four orthogonal F(20, 4) squares may be formed using the MOLS(5, 4) set as 

J*Ll J*L2 J*L3 J*L4 

2k= 22: 

Use MOLS(11, 10) to obtain ten orthogonal F(22, 2) squares as 

J*Ll J*L2 J*L3 J*L4 J*L5 J*L6 J*L7 J*L8 J*L9 J*L10 

2k=24: 

Use the MOLS(12, 5) set to obtain five orthogonal F(24, 2) squares as: 

J*Ll J*L2 J*L3 J*L4 J8L5 

Use the MOLS(8, 7) set to obtain seven orthogonal F(24, 3) squares as: 

J*Ll J*L2 J*L3 J*L4 J*L5 J*L6 J*L6 J*L7 

Use the MOLS( 4, 3) set to obtain three orthogonal F(24, 6) squares as: 

J*Ll J*L2 J*L3 

The MOLS(3, 2) set may be used to construct two orthogonal F(24, 8) squares as: 

J*Ll J*L2 

2k= 26: 

Use the MOLS(13, 12) set to obtain 12 orthogonal F(26, 2) squares as; 

J*L1 J*L2 J*L3 J*L4 J*L5 J*L6 J*L7 J*L8 J*L9 J*L19 J*Lll J*L12 

2k= 28: 

The MOLS(4, 3) set may be used to construct three orthogonal F(28, 7) squares. 
The MOLS(7, 6) set may be used to form six orthogonal F(28, 4) squares. The 
MOLS(14, t) set may be used to produce t orthogonal F(28, 2) squares. 

2k= 30: 



• 

• 

•• 

The MOLS(15, 4) set may be used to construct four orthogonal F(30, 2) squares . 
The MOLS(5, 4) set may be used to form four orthogonal F(30, 6) squares. The 
MOLS(10, 2) set may be used to construct two orthogonal F(30, 3) squares. 

2k= 32: 

Using the MOLS(16, 15) set, 15 orthogonal F(32, 2) squares may be formed. The 
MOLS(8, 7) set may be used to construct seven orthogonal F(32, 4) squares. The 
MOLS(4, 3) set may be used to construct three orthogonal F(32, 8) squares. 

2k= 34: 

Using the MOLS(17, 16) set, 16 orthogonal F(34, 2) squares may be constructed. 

2k = 36: 

The MOLS(9, 8) set may be used to construct eight orthogonal F(36, 4) squares. 
Using the MOLS(4, 3) set, three orthogonal F(36, 9) squares. The MOLS(3, 2) set may 
be used to construct two orthogonal F(36, 12) squares. Using the MOLS(18, t) set, t 
orthogonal F(36, 2) squares may be produced. 

2k= 38: 

The MOLS(19, 18) set may be used to produce 18 orthogonal F(38, 2) squares. 

2k= 40: 

Using the MOLS(4, 3) set, three orthogonal F(40, 10) squares maybe formed. 
The MOLS(5, 4) set may be used to construct four orthogonal F(40, 8) squares. The 
MOLS(lO, 2) set maybe used to construct two orthogonal F(40, 4) squares. The 
MOLS(20, t) set may be used to produce t orthogonal F( 40, 2) squares. 

2k= 42: 

For n = 3, 7, 14, or 21, the MOLS(n, t) set may be used to construct the 
corresponding orthogonal F( 42, 42/n) squares. 

2k= 44: 

Using the MOLS(11, 10) set ten orthogonal F(44, 4) may be constructed. 
Likewise, the MOLS(4, 3) set may be used to construct three orthogonal F(44, 11) 
squares. The MOLS(22, t) set may be used to form t orthogonal F( 44, 2) squares. 

2k= 46: 

The MOLS(23, 22) set may be used to construct 22 orthogonal F(46, 2) squares. 



• 2k=48: 

• 

• 

The MOLS(4, 3), the MOLS(8, 7), the MOLS(16, 15) sets maybe used to 
construct three orthogonal F(48, 12) squares, seven orthogonal F(48, 6) squares and 15 
orthogonal F(48, 4) squares, respectively. The MOLS(24, t) set may be used to form t 
orthogonal F( 48, 2) squares. 

2k =50: 

The MOLS(25, 24) set may be used to construct 24 orthogonal F(50, 2) squares. 
The MOLS(5, 4) set may be used to construct four orthogonal F(50, 10) squares, and the 
MOLS(10, 2) set may be used to construct two orthogonal F(50, 5) squares. 

ON A METHOD FOR CONSTRUCTING PERMUTATIONS WITH PROPERTY A 

Property a of theorem 2.1 of Anderson et al. (1974) states that differences of 
permutations of-t through t (or 1 through 2t + 1) need to reproduce the numbers -t 
through t. It has been found that if one takes the first columns of a set of pair-wise 
mutually orthogonal Latin squares, MOLS(n, n- 1), the differences of the columns 
produces the numbers -t through tor a set similar to this. For n = 5, two sets of 
differences (see Appendix), i.e., A= -2-1 0 1 2 and B = -3 -1 0 1 3 were obtained. The 
permutation A is the one referred to in theorem 2.1 of Anderson et al. (1974). The 
permutations obtained as differences between columns of the four squares are: 

Square 
Square 2 3 4 
1 A A B 
2 B A 
3 A 

Differences of columns 1 minus 2, 1 minus 3, 2 minus 4, and 3 minus 4 resulted in a 
permutation of -2, -1, 0, 1, and 2. Using these four permutations with the ordered 
permutation, four F(6, 2) squares were formed. These squares are not pair-wise 
orthogonal as the ratio of occurrences is 8 times for the same item and 2 times for the 
other items, i. e., they are proportionally orthogonal. The desired ratio is 4:4:4 rather than 
8:2:2. Taking different columns for L1 to L4 did not change the ratio. It appears that this 
method obtains proportionally orthogonal F(6, 2) squares. The question arises as to the 
possibility of changing the construction method in such a manner as to obtain orthogonal 
F(6, 2) squares. 

For n = 7, three types of permutations of numbers were obtained, i.e., A= -3 -2-
1 0 1 2 3, B = -4 -2 -1 0 1 2 4, and C =-5-3 -1 0 1 3 5. The permutations obtained as 
differences between the columns ofthe six squares are: 

Square 



• Sguare 2 3 4 5 6 
1 A B A B c 
2 B A c B 
3 c A B 
4 B A 
5 A 

For n = 11 and A= -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, the differences listed below 
were of the desired type of permutation, i.e. A: 

Square 
Square __ _.:.2::::__ _ _:::3~ _ _!_4 _ ____,5:::..___~6~ _ _!_7 _ ____:8~_~9:....___~1 0 

1 A A 
2 
3 
4 
5 
6 
7 
8 
9 

A 
A A 

A 
A A 

A 

A 

• The four other symmetrical permutations obtained were B = -6 -4 -3 -2 -1 0 1 2 3 4 6, C = 

-7-6 -3 -2 -1 0 1 2 3 6 7, D = -8 -5-4-2-1 0 1 2 4 58, and E = -9-7-5 -3 -1 0 1 3 57 9. 

• 

APPENDIX 

The first columns of an MOLS(n, n - 1) set are: 

MOLS(5, 4) 
1 1 1 1 
2345 
3524 
4253 
5432 

MOLS(7, 6) 
1 1 1 1 1 1 
234567 
357246 
473625 
526374 
642753 
765432 

MOLS(9, 8) 
1 1 1 1 1 1 1 1 
29876543 
32987654 
43297765 
54329876 
65432987 
76543298 
87654329 
98765432 

MOLS(11, 10) 
1111111111 
2 3 4 5 6 7 8 9 10 11 
3 5 7 9 11 2 4 6 8 10 
4 7 10 2 5 8 11 3 6 9 
5 9 2 6 10 3 7 11 4 8 
6 11 5 10 4 9 3 8 2 7 
7 2 8 3 9 4 10 5 11 6 
8 4 11 7 3 10 6 2 9 5 
9 6 3 11 8 5 2 10 7 4 
10 8 6 4 2 11 9 7 5 3 
1110 9 8 7 6 5 4 3 2 

The MOLS(9, 8) set is the one given by Hedayat and Federer (1970) . 
To obtain the permutations, simply take differences as follows for n = 5: 



• 

• 

• 

1 2 3 4 5 
1 3 5 2 4 
0 -1 -2 2 1 

1 4 2 5 3 
1 5 4 3 2 
0 -1 -2 2 1 

1 2 3 4 5 
1 4 2 5 3 
0 -2 1 -1 2 

1 2 3 4 5 
1 5 4 3 2 
0 -3 -1 1 3 

1 3 5 2 4 
1 4 2 5 3 
0 -1 3 -3 1 

1 3 5 2 4 
1 5 4 3 2 
0 -2 1 -1 2 

Using these permutations, let us construct some F(6, 2) squares. Starting with the matrix 

Row: 
Column: 
Treat 1: 
Treat 2: 
Treat 3: 
Treat 4: 

k k 
k-2 k-1 
k+O k-1 
k+O k-2 
k+O k-2 
k+O k-1 

k k 
k+O k+1 
k-2 k+2 
k+1 k-1 
k+1 k-1 
k-2 k+2 

k k 
k+2 k+3 
k + 1 k 
k+2 k 
k+2 k 
k+ 1 k 

Letting k = 0, 1, 2, 3, 4, and 5, the first row designating the row, the second designating 
the column number, the third to sixth rows the treat i, i = 1, 2, 3, 4, the F(6, 2) squares, 
mod(3), are: 

0 
1 
0 
2 
0 
2 
1 

0 
1 
2 
2 
0 
0 
1 

Column and treat 1 
1 2 3 4 
2 1 0 0 
2 0 2 1 
1 0 1 0 
0 2 1 2 
1 1 0 2 
0 2 2 1 

Column and treat 3 
1 2 3 4 
2 2 0 0 
2 0 0 1 
0 0 1 1 
0 1 1 2 
1 1 2 2 
1 2 2 0 

5 
2 
1 
2 
1 
0 
0 

5 
1 
1 
2 
2 
0 
0 

0 
1 
2 
2 
0 
0 
1 

0 
1 
0 
2 
0 
2 
1 

Column and treat 2 
1 2 3 4 
2 2 0 0 
2 0 0 1 
0 0 1 1 
0 1 1 2 
1 1 2 2 
1 2 2 0 

Column and treat 4 
1 2 3 4 
2 1 0 0 
2 0 2 1 
1 0 1 0 
0 2 1 2 
1 1 0 2 
0 2 2 1 

5 
1 
1 
2 
2 
0 
0 

5 
2 
1 
2 
1 
0 
0 

To obtain the permutations for n = 7, simply take differences of first columns of 
the MOLS(7, 6) set as: 

12345671234567123456712345671234567 
13572461473652152637416427531765432 
0 -1 -2 -3 3 2 1 0 -2 -4 1 -1 4 2 0 -3 1 -2 2 -1 3 0 -4 -1 2 -2 1 4 0 -5 -3 -1 1 3 5 



• 

• 

• 

13572461357246135724613572461473625 
14736521526374164275317654321526374 
0-1 -2 4-4 2 1 0-2 3 1 -1 -3 2 0-3 1 5-5-1 3 0-4-1 2-2 1 4 0-1 5-3 3-5-1 

14736251473625152637415263741642753 
16427531765432164275317654321765432 
0 -2 3 1 -1 -3 2 0 -3 1 -2 2 -1 3 0 -1 -2 4 -4 2 1 0 -2 -4 1 -1 4 2 0 -1 -2 -3 3 2 1 

The permutations from differences of first columns ofthe MOLS(9, 8) are not of 
the desired type. For example differences of the first three columns are: 

1 2 3 4 5 6 7 8 9 
1 9 2 3 4 5 6 7 8 
0-7 1 1 1 1 1 1 1 

1 2 3 4 5 6 7 8 9 
1 8 9 2 3 4 5 6 7 
0 -6 -6 2 2 2 2 2 2 

1 9 2 3 4 5 6 7 8 
1 8 9 2 3 4 5 6 7 
0 1 -7 1 1 1 1 1 1 

Instead of taking first columns ofL1 to L8, one could take different columns from 
each square. For the first three squares L1 to L3, this results in 

1 
2 
3 
4 
5 
6 
7 
8 
9 

2 
3 
6 
4 
9 
8 
1 
5 
7 

The column differences are: 

1 2 3 4 5 6 7 8 9 
2 3 6 4 9 8 1 5 7 
-1-1-3 0-4-26 3 2 

3 
6 
8 
4 
7 
5 
2 
9 
1 

1 2 3 4 5 6 7 8 9 
3 6 8 4 7 5 2 9 1 
-2-4-5 0-215-18 

2 3 6 4 9 8 1 5 7 
3 6 8 4 7 5 2 9 1 
-1-3 -2 0 2 3 -1 -4 6 

These differences are not of the desired type of -4 through 4 but they are closer than 
using first columns differences. It appears that the method only works for n a prime 
number. 

To obtain the permutations for n = 11, simply take differences of first columns of 
the Latin squares in the MOLS(11, 10) set as: 

1234567891011 
1357911246810 
0 -1 -2 -3 -4 -5 5 4 3 2 1 

1 2 3 4 5 6 7 8 9 10 11 1 2 3 4 5 6 7 8 9 10 11 
1 4 7 10 2 5 8 11 3 6 9 1 5 9 2 6 10 3 7 11 4 8 
0 -2 -4 -6 -3 1 -1 -1 6 4 2 0 -3 -6 2 -1 -4 4 1 -2 6 3 



• 1 2 3 4 5 6 7 8 9 10 11 1 2 3 4 5 6 7 8 9 10 11 1 2 3 4 5 6 7 8 9 10 11 
1 6 11 5 10 4 9 3 8 2 7 1 7 2 8 3 9 4 10 5 11 6 1 8 4 11 7 3 10 6 2 9 5 
0 -4 -8 -1 -5 2 -2 -5 1 8 4 0 -5 1 -4 2 -3 3 -2 4 -1 5 0-6-1-7-2 3-3 2 716 

1 2 3 4 5 6 7 8 9 10 11 1 2 3 4 5 6 7 8 9 10 11 1 2 3 4 5 6 7 8 9 10 11 
1 9 6 3 11 8 5 2 10 7 4 1 10 8 6 4 2 11 9 7 5 3 1 11 10 9 8 7 6 5 4 3 2 
0 -7 -3 1 -6 -2 2 6 -1 3 7 0 -8 -5 -2 1 4 -4 -1 2 5 8 0 -9 -7 -5 -3 -1 1 3 5 7 9 

1 3 5 7 9 11 2 4 6 8 10 1357911246810 1 3 5 7 9 11 2 4 6 8 10 
1 4 7 10 2 5 8 11 3 6 9 1 5 9 2 6 10 3 7 11 4 8 1 6 11 5 10 4 9 3 8 2 7 
0 -1 -2 -3 7 6 -6 -7 3 2 1 0 -2 -4 5 3 1 -1 -3 -5 4 2 0 -3 -6 2 -1 7 -7 1 -2 6 3 

1 3 5 7 9 11 2 4 6 8 10 1 3 5 7 9 11 2 4 6 8 10 1 3 5 7 9 11 2 4 6 8 10 
1 7 2 8 3 9 4 10 5 11 6 1 8 4 11 7 3 10 6 2 9 5 1 9 6 3 11 8 5 2 10 7 4 
0 -4 3 -1 6 2 -2 -6 1 -3 4 0 -5 1 -4 2 8 -8 -2 4 -1 5 0 -6 -1 4 -2 3 -3 2 -4 1 6 

1 3 5 7 9 11 2 4 6 8 10 1 3 5 7 9 11 2 4 6 8 10 1 4 7 10 2 5 8 11 3 6 9 
1 10 8 6 4 2 11 9 7 5 3 1111098765432 1 5 9 2 6 10 3 7 11 4 8 
0-7-31 5 9-9-5-1 3 7 0 -8 -5 -2 1 4 -4 -1 2 5 8 0 -1 -2 8 -4 -5 5 4 -8 2 1 

1 4 7 10 2 5 8 11 3 6 9 1 4 7 10 2 5 8 11 3 6 9 1 4 7 10 2 5 8 11 3 6 9 
1 6 11 5 10 4 9 3 8 2 7 1 7 2 8 3 9 4 10 5 11 6 1 8 4 11 7 3 10 6 2 9 5 

• 0 -2 -4 5 -8 1 -1 -8 -5 4 2 0 -3 5 2 -1 -4 4 1 -2 -5 3 0 -4 3 -1 -5 2 -2 5 1 -3 4 

1 4 7 10 2 5 8 11 3 6 9 1 4 7 10 2 5 8 11 3 6 9 1 4 7 10 2 5 8 11 3 6 9 
1 9 6 J 11 8 5 2 10 7 4- 1108642119753 111 10 9 8 7 6 5 4 3 2 
0-517-9-3 3 9-7-15 0 -6 -1 4 -2 3 -3 2 -4 1 6 0 -7 -3 1 -6 -2 2 6 -1 3 7 

1 5 9 2 6 10 3 7 11 4 8 1 5 9 2 6 10 3 7 11 4 8 1 5 9 2 6 10 3 7 11 4 8 
1 6 11 5 10 4 9 3 8 2 7 1728394105116 1 8 4 11 7 3 10 6 2 9 5 
0 -1 -2 -3 -4 6 -6 4 3 2 1 0 -2 7 -6 3 1 -1 -3 6 -7 2 0 -3 5 -9 -1 7 -7 1 9 -5 3 

1 5 9 2 6 10 3 7 11 4 8 1 5 9 2 6 10 3 7 11 4 8 1 5 9 2 6 10 3 7 11 4 8 
1 9 6 3 11 8 5 2 10 7 4 1 10 8 6 4 2 11 9 7 5 3 1 11 10 9 8 7 6 5 4 3 2 
0 -4 3 -1 -5 2 -2 5 1 -3 4 0 -5 1 -4 2 8 -8 -2 4 -1 5 0-6-1-7-23-3 2 716 

1 6 11 5 10 4 9 3 8 2 7 1 6 11 5 10 4 9 3 8 2 7 1 6 11 5 10 4 9 3 8 2 7 
1 7 2 8 3 9 4 10 5 11 6 1841173106295 1 9 6 3 11 8 5 2 10 7 4 
0 -1 9 -3 7 -5 5 -7 3 -9 1 0 -2 7 -6 3 1 -1 -3 6 -7 2 0 -3 5 2 -1 -4 4 1 -2 -5 3 

1 6 11 5 10 4 9 3 8 2 7 1 6 11 5 10 4 9 3 8 2 7 1 7 2 8 3 9 4 10 5 11 6 
1 10 8 6 4 2 11 9 7 5 3 1 11 10 9 8 7 6 5 4 3 2 1 8 4 11 7 3 10 6 2 9 5 
0 -4 3 -1 6 2 -2 -6 1 -3 4 0-5 1-4 2-3 3-2 4-1 5 0 -1 -2 -3 -4 6 -6 4 3 2 1 

• 



• 

• 

• 

1 7 2 8 3 9 4 10 5 11 6 1 7 2 8 3 9 4 10 5 11 6 1 7 2 8 3 9 4 10 5 11 6 
1 9 6 3 11 8 5 2 10 7 4 1 10 8 6 4 2 11 9 7 5 3 1 11 10 9 8 7 6 5 4 3 2 
0-2-4 5-8 1 -1 8-5 4 2 0-3-62-17-71-2 6 3 0 -4 -8 -1 -5 2 -2 5 1 8 4 

1 8 4 11 7 3 10 6 2 9 5 1 8 4 11 7 3 10 6 2 9 5 1 8 4 11 7 3 10 6 2 9 5 
1 9 6 3 11 8 5 2 10 7 4 1 10 8 6 4 2 11 9 7 5 3 1 11 10 9 8 7 6 5 4 3 2 
0 -1 -2 8 -4 -5 5 4 -8 2 1 0 -2 -4 5 3 1 -1 -3 -5 4 2 0 -3 -6 2 -1 -4 4 1 -2 6 3 

1 9 6 3 11 8 5 2 10 7 4 1963118521074 1 10 8 6 4 2 11 9 7 5 3 
1 10 8 6 4 2 11 9 7 5 3 1111098765 432 1 11 10 9 8 7 6 5 4 3 2 
0 -1 -2 -3 7 6 -6 -7 3 2 1 0 -2 -4 -6 3 1 -1 -3 6 4 2 0 -1 -2 -3 -4 -5 5 4 3 2 1 
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