A Solution to Problem 19-1 in IMAGE No. 19

Shayle R. Searle
Biometrics Unit and Statistics Department
Cornell University, Ithaca, N.Y., U.S.A.

BU-1401-M

December 1997

Abstract

A solution is offered for an eigenvalue problem posed in the Problem Corner of IMAGE, Number 19.

Key words

Eigenvalue.

IMAGE, the Bulletin of the International Linear Algebra Society, regularly publishes problems (and subsequently solutions) in matrix and linear algebra. Issue number 19, summer/fall 1997, contains the following problem, proposed by Jürgen Groβ and Götz Trenkler of the Universität Dortmund, Germany.

Problem 19-1. Let \(a\) and \(b\) be two nonzero \(n \times 1\) vectors and consider the matrix

\[
A = \alpha a a' + \beta a b' + \gamma b a' + \delta b b'
\]

where \(\alpha, \beta, \gamma\) and \(\delta\) are real scalars such that \(\beta = -\gamma\) and \(\gamma^2 = -\alpha \delta\). Find the (nonzero) eigenvalues of \(A\).
Solution

By conjecturing that $A = w_1 w_2^t$ where $w_i = h_i a + k_i b$ for $i = 1, 2$, where h_i and k_i are scalars, it is easily ascertained that

\[A = \left(\frac{-\gamma a}{m_2} + \frac{\delta b}{m_2} \right) \left(\frac{-m_2 \alpha}{\gamma} a + m_2 b \right) \]

\[= (-\gamma a + \delta b) \left(\frac{\alpha}{\gamma} a + b \right). \]

Hence

\[A = t_1 t_2^t \quad \text{for} \quad t_1 = -\gamma a + \delta b \quad \text{and} \quad t_2 = -\frac{\alpha}{\gamma} a + b. \]

Now suppose that λ is a nonzero eigenvalue of A, and u its associated eigenvector, so that $Au = \lambda u$. Hence

\[t_1 t_2^t u = \lambda u \quad (1) \]

and so

\[t_2^t t_1 t_2^t u = \lambda t_2^t u \quad (2) \]

Since λ is defined as being nonzero, and u is non-null (because being null would be meaningless), it follows from (1) that $t_2^t u$ is nonzero. Therefore (2) reduces to $t_2^t t_1 = \lambda$. Thus, with A having rank 1, its only nonzero eigenvalue is

\[\lambda = t_2^t t_1 = \left(\frac{-\alpha}{\gamma} a + b \right)^t (-\gamma a + \delta b) = \alpha a + \beta b + \gamma b + \delta b'. \]