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ABSTRACT 

The generalized linear mixed model (GLMM) generalizes the standard linear 
model in three ways: accommodation of non-normally distributed responses, specification 
of a possibly non-linear link between the mean of the response and the predictors, and 
allowance for some forms of correlation in the data. As such, GLMMs have broad utility 
and are of great practical importance. Two special cases of the GLMM are the linear 
mixed model (LMM) and the generalized linear model (GLM). Despite the utility of such 
models, their use has been limited due to the lack of reliable, well-tested estimation and 
testing methods. I first describe and give examples of GLMMs and then discuss methods 
of estimation including maximum likelihood, generalized estimating equations, and 
penalized quasi-likelihood. Finally I briefly survey current research efforts in GLMMs. 

Keywords and Phrases: Non-normal data, nonlinear models, EM algorithm, Newton­
Raphson, maximum likelihood, generalized estimating equations and penalized quasi­
likelihood. 

1. Introduction 

Generalized linear mixed models (GLMMs) are a natural outgrowth of both linear 
mixed models and generalized linear models. GLMMs can be developed for non-normally 
distributed responses, will allow nonlinear links between the mean of the response and the 
predictors, and can model overdispersion and correlation by incorporating random effects. 
As such, they are ofwide utility (e.g., Breslow and Clayton, 1993). 

While maximum likelihood and variants (e.g. restricted maximum likelihood or 
REML) are standard for both linear mixed models and generalized linear models (e.g., 
logistic regression), its use in GLMMs has been limited to simple models due to the need 
to numerically evaluate high dimensional integrals. 

In this paper we first motivate and give examples of the GLMM approach and 
relate it to both generalized linear models (GLMs) and linear mixed models (LMMs). In 
Section 4 we then tum to the more technical issues of estimation and testing. Section 5 
offers a brief review of the research literature and Section 6 gives conclusions. 



2. Generalized linear mixed models 

2.1 An example 

We begin by considering an example patterned after Stiratelli, Laird and Ware 
(1984) on the effect of air pollution on asthma attacks. Suppose that 200 schoolchildren 
are followed for a number of days. On each day we record a response: Asthma attack 
(yes/no) and several predictors: total suspended particulates (TSP - a measure of air 
pollution), sex of child (SEX), and history of hay fever (HA YF - measured as yes/no). If 
we were conducting a thorough data analysis it would also make sense to consider other 
predictors such as temperature, humidity, age of child, whether the mother or father is a 
smoker, day of week, and perhaps whether the child had an asthma attack on a previous 
day. However, for ease of exposition of the modelling issues we will restrict ourselves to 
the above three. We will focus on two questions of interest. Does polluted air increase 
the risk of an asthma attack? Are some children more sensitive than others to air pollution 
and, if so, which ones? 

If we consider which features of this problem are relevant from a statistical 
modelling viewpoint, an immediate realization is that the data are binary and hence 
Bernoulli distributed. We also need to decide how to relate the response to the three 
predictors. A common approach is to define p=Pr{asthma attack} and model the log odds 
as a linear function of the predictors: 

ln(p/(1-p)) = J..l + PtSEX + P2HA YF + yTSP. (1) 

A typical way to fit such a model is via ordinary logistic regression. However, this 
approach has two serious drawbacks. First, since the data are gathered repeatedly on the 
same children, they are likely to be correlated and the model does not accommodate 
correlated data. Viewed another way, some children will undoubtedly be more likely to 
have asthma attacks and there is nothing in the model which reflects this fact. Secondly, 
the model is incapable of answering our second question which concerns the possibility of 
sensitive individuals. 

Assuming independence when the data are, in fact, highly correlated is well-known 
to cause dramatically incorrect results (Cox and Snell, 1989, p.l07). Estimates are usually 
little affected but standard errors, tests and confidence intervals are usually far from 
correct. Before discussing how to address such problems, we first introduce generalized 
linear models. 

2. 2 Generalized Linear Models 

A basic precept of generalized linear models (GLMs) is to dissect the modelling 
process into three distinct components or questions to be answered: 

1. What is the distribution of the data? 
2. What aspect of the problem will be modelled? 
3. What are the predictors? 



For our example, the data are binary so the distribution has to be Bernoulli. As mentioned 
above, a typical approach to question 2. is to model the log odds, ln(p/(1-p)), as a linear 
function of the predictors. Finally, for the third part, we have decided to use the 
predictors TSP, SEX, and HAYF. 

Table 1 shows a more general prescription of the structure of generalized linear 
models and illustrates the specific case of simple linear logistic regression. We decide on a 
distribution for the data (often from the exponential family and perhaps after 
transformation). The mean of that distribution is then modelled by selecting a link 
function (typically specified, not estimated from the data) and assuming that that function 
applied to the mean is a linear function of the predictors. 

Estimation of the parameters for GLMs is typically accomplished by calculating 
maximum likelihood or maximum quasi-likelihood estimates. Hypothesis tests can then be 
based on analysis of deviance, where deviance is defined as = 2(max possible loglikelihood 
- loglikelihood of fitted model). Differences in the deviance of two models then give the 
likelihood ratio statistic for comparing the models: difference in deviance for models 1 
and 2 = 2(loglik model2 -loglik model1). For details see McCullagh and Nelder (1989). 

2.3 Generalized Linear Mixed Models 

We now return to the asthma example of Section 2.1. Write Yij for the response 
for child i at time j, where Yij equals 1 for an asthma attack and is zero otherwise. Then 
Yij - Bemoulli(pij), where pij is the probability of an attack for child i at time j. Next 
assume that 

(2) 

where J..li- Normal(O,'t11). 

The main difference here is that we have assumed a distribution for Jl;. This induces a 
correlation between the logits of the probabilities of response for the ith child on occasions 
j and k: cov(ln(pi/(1-pij)), ln(pik/(1-Pik)) = 'tw If the Pij are correlated then the data are 
likewise correlated for observations taken on the same child. 

Alternatively or additionally we could assume a distribution for the parameter y by 
using the model: 

with Yi- Normal(y, 't1). 

From model (2) we can see that y is the air pollution effect which is assumed constant 
across children. More precisely, it is the increase in the log odds of an asthma attack 
associated with an increase of one unit in TSP. Hence 'Yi is the air pollution effect for the 
ith child. We are now able to answer the second question of Section 2.1 in the following 
way. The hypothesis 'tr > 0 is equivalent to children having differential sensitivities to 
pollution (TSP). Furthermore, if we can predict the values of Yi then we can identify the 



sensitive individuals. That is, children with the highest values of Yi are the ones who are 
most sensitive to TSP. 

Finally we can consider assuming a distribution on ~2: 

ln(pij/(1-pij)) = ~i +~~SEX+ ~2iHAYF + yTSP, 

with ~2i - Normal(~2, 't13). 

What effect does this have? If HA YF is coded 1 for yes and 0 for no, then for the non­
hayfever group, the contribution of the ~2iHA YF term is zero, while for the hayfever 
group it is ~2i· If 't!J > 0, then the hayfever group will have a larger variance. 

We can see that the simple device of assuming a distribution on a parameter is 
capable of modelling correlation in the data, identifYing differential sensitivity and 
predicting the most sensitive individuals, and modelling unequal variances. This is now a 
more adequate model for inference in the asthma example. 

The steps on specifying a GLMlvl are almost the same as for a GLM. We must 
consider: 

1. What is the distribution of the data? 
2. What aspects will be modelled? 
3. What are the factors? 
4. Which factors will be assumed to have a distribution? 

Table 2 illustrates the structure of GLMMs. The fourth decision in the list is the only new 
one but should be familiar from usage ofLMMs. That is, which factors will be assumed to 
have a distribution and be declared random and which will be declared fixed? 

2. 4 Fixed versus Random Factors 

It has long been suggested (Eisenhart, 1947; Scheffe, 1959) that two main 
assumptions can be made about the parameters describing the parameters in a linear 
model. They can be assumed to be fixed, unknown constants or to them can be attnbuted 
a distribution. This is well accepted. 

However, conventional wisdom holds that a factor be treated as fixed if one is 
interested in drawing inferences about the specific levels included in the experiment 
(Searle, 1987, p.4; Snedecor and Cochran, 1989, p.320) or it: in repeated selection of the 
levels of that factor, the same levels are selected (Ott, 1984, p.638; Snedecor and 
Cochran, 1989, p.320). If inferences focus on the population from which the parameters 
are selected or it: on repeated selections of the parameters, the same levels are not used, 
then the factor is declared to be a random factor. 

I argue that for both linear and generalized linear mixed models these criteria are 
incorrect. In practice we need to divorce the fixed versus random distinction from the 
scope of the inferences and instead base the decision on a criterion more closely related to 
the assumption of a distribution for the parameters. To make this point consider the idea 
of best prediction of the value of the level of a random effect. We are in this case willing 
to assume that the parameters follow a distribution (it is a random factor), but by 



calculating best predicted values we are making inferences about (and are "interested in") 
the specific levels included in the experiment. 

In arguing that the conventional criteria are incorrect I consider two generic 
examples: a randomized blocks design and prediction of sire effects in animal breeding. I 
first consider the randomized blocks design and the criterion of whether or not we would 
get the same levels (blocks) of the random factor if the experiment were conducted again. 
In many experiments the following facts are all true: 

a) The same blocks would be used ifthe experiment were repeated (which blocks 
are used is often determined by the availability of experimental material), 
b) The investigator wants to draw inferences beyond the blocks on hand in the 
experiment, 
c) The investigator is willing to make inferences to a population of blocks similar 
to the ones in the experiment, and 
d) It is reasonable to assume the blocks in the experiment are an i.i.d.sample from 
the population described in c). 

Points b), c), and d) mean that, by definition, blocks are a random factor. But a) argues 
that blocks should be declared fixed. Essentially the criterion fails because we do not have 
a physical sampling scheme which guarantees random sampling, but we are willing to 
assume the blocks form an i.i.d. sample from some distribution. 

Next consider the second criterion: interest in the levels actually included in the 
experiment. The primary example is prediction of sire effects in animal breeding, but there 
are parallels in spatial prediction (kriging). Animal breeders often face the following 
problem. They wish to improve the genetic value of animals (e.g., the ability of cows to 
produce protein in milk) by selective breeding of the population. The data used for the 
analysis often includes the daughters of all the sires whose data are available through a 
registry. The goal is to estimate the ability of a specific sire to produce genetically 
superior offspring. On one hand it is easy to envision the sires included in the analysis as 
coming from a population (actual or conceptual) of sires; hence the argument for treating 
the effect as random. On the other hand, interest focusses specifically on the sires to be 
included in the analysis. Those are the only ones which could be considered for use in a 
breeding program. This, according to the second criterion, would argue for treating sire 
effects as fixed. 

How does one reconcile assuming a distribution for parameters, but still being 
interested in them? This is now straightforward using the ideas of best prediction or best 
linear unbiased prediction (BLUP) ("prediction" rather than "estimation" since it is a 
random variable) as detailed in Robinson ( 1991) and Searle, Casella and McCulloch 
(1992) and implemented in software such as SAS PROC MIXED. With apologies to T.S. 
Geisel, I would summarize as follows: 



UpwithBLUP 

No ma'am, No ma'am. No one 
knows ma'am. Whether FIXED 
or whether RANDOM. 

Should we this one, or do that one? 
I.I.D. says that they're RANDOM. 

But if we must say that's nixed, 
then we'll say that they are FIXED. 

What of those who won't predict? 
To them I say interdict. 
Up with BLUP, 
BLUP's for you. 
That's for when you're interested too. 

3. Other Examples 

To illustrate the versatility of GLMMs, I would like to briefly describe two other 
examples. The first involves Potomac River Fever (equine monocytic ehrlichiosis) in 
horses and is more carefully described in Atwill, et al (1996). Potomac River Fever is a 
blood-borne rickettsial disease whose transmission mechanism is unknown. Both 
arthropod (e.g. blackfly) and direct oral transmission have been suspected but not verified. 
Identification of risk factors of horses in New York State might give clues to the spread of 
this disease and help with reducing its frequency. The study involved 511 farms each with 
several social groups of horses, for a total of 2,587 horses. The response variable was 
seropositivity (yes/no) for the disease. Again, because the data are binary the distribution 
must be Bernoulli. We used the standard link for binary data, the logit link. A number of 
fixed predictors were used, examples of which are: frequency stall cleaned, frequency fly 
spray applied, breed, sex, etc. Two random factors were also used: farm and social group 
nested within farm. So there were a number of fixed factors and two nested random 
factors. If we let Yijk denote seropositivity for horse k in social group j on farm i then the 
model was given by 

logit(pijk) = J..l + Sj(i)+ fi +fixed effects, 

Sj(i) ~ i.i.d. N(O, a 2 up(fi ) ), 
gro arm 

:fi ~ i.i.d. N(O, a}arm ), 



where the Sj(i) denote the social group effects and the t represent the farm effects. We 
focus on inferences for the random factors. The estimated variances of the random effects 
were: 

a~arm = 1.26 

"2 -o a group(farm) -

So the difference in loglikelihood for testing a~oup(farm) = 0 is zero and hence not 

statistically significant when compared to a ~ zf (see Section 4). On the other hand, the 

farm variance component is statistically significant. This has the following implications. 
There is a significant correlation among horses within a farm on the logit scale (0.32), but 
no correlation within social groups. This suggests that the disease is not transmitted 
directly from horse to horse, but instead is related to environmental or management 
factors operating at a farm scale. 

Another example in which GLMMs could be used is in analyzing data from the 
Breeding Bird Survey (Peterjohn, 1994). Counts of number of birds "sighted" has been 
made each June at thousands of locations across the U.S. and Canada. Many of the 
locations have been surveyed since the mid 1960s. Responses are a count of the number 
of birds of each species at each location. A possible distribution to try for such data 
would be Poisson. Fixed factors would include time (in order to gauge trends in 
population sizes) and possibly observer effects (Sauer, Peterjohn and Link, 1994) and 
location could serve as a random factor. This would serve to incorporate correlations for 
data taken repeatedly at the same location. 

4. Inference for GLMMs 

4.1 Maximum Likelihood Estimation 

Since maximum likelihood estimation is used for both LMMs and GLMs it is a 
logical place to start for estimation in GLMMs. To fix ideas, consider a very simple 
GLMM, a logit-normal model: 

Yij I u~Bemoulli(pij), i=1,2, ... n;j=1,2, ... q. 

ln{pij/{1-pij)) = ~Xij + Uj 

Uj ~ Normal(O,d). 

This model has n observations in each of q clusters, within which the data are correlated. 
It uses a logit link and has one fixed and one random factor. The likelihood for this model 
would be calculated as follows 



likelihood= P{Y = Ylfi,a2 } 

= JP{Y = Ylfi,a2 ,u}f(ula2 )du 

= JP{Y = Ylfi,u}f(ula2 )du 

= JITP{Yy = Y!ilfi,u}f(uia 2 )du 
iJ 

=IT JITP{Yy = Y!ilfi,u}f(ujla 2 )duj 
j i 

= ITJexp{PLiy!ix!i +y+juj}IIi(l+exp{Pxli +uj})-1 x 
j 

This cannot be evaluated in closed form, and, in general, the calculation of the likelihood 
can be quite difficult. For the general case, 

likelihood = JJ...J exp(LiYi(x;p+z;u))I1i(l+exp(x;p+z;u)r1dF(u). 
dim ofu 

Unfortunately, the dimension of u and hence the order of integration can get large quickly. 
For example, in the salamander data set from McCullagh and Neider (1989) with two 
crossed random factors (males and females) each with 6 levels, the above is a 12 
dimensional integral. This makes numerical evaluation ofthe integral problematic. 

What then to do for ML estimation? For simple problems we can use numerical 
integration. When the model has a single random effect or two nested random effects, it is 
relatively easy to evaluate the integrals in the likelihood. For example, with a single 
random factor we have seen that the likelihood is a product of one-dimensional integrals. 
One can then maximize the likelihood numerically to find ML estimates and to perform 
likelihood ratio tests. 

To evaluate the likelihood numerically, with a single, normally distributed random 
effect, the likelihood can be written as a product of integrals of the form: 

J~g(x)exp{-x2 }dx. These can be accurately evaluated using Gauss-Hermite 

quadrature: 

J~g(x)exp{-x2 }dx ~ LW.g(x.) 
1 1 

The weights, Wi, and the evaluation points, Xi, can be found in books describing numerical 
integration, e.g., Abramowitz and Stegun (1964). There are other approaches to ML 
estimation (see Section 5) for more complicated models, but the computations are much 
more difficult. 

If one can calculate the ML estimates and the maximized value of the likelihood, 
then likelihood ratio tests are a possibility. Inference using ML would then proceed using 
the usual asymptotic approximations: ML estimates are asymptotically normal, with SEs 
coming from second derivatives of the log likelihood. Tests would be based on the 



likelihood ratio test, comparing -2loglikelihood for nested models. Best predicted values 
would be estimated by calculating E[random effectldata] and plugging in ML or REML 
estimates. In general, the conditional expected values cannot be evaluated in closed form 
just as the likelihood cannot. 

One point bears emphasis in using the likelihood ratio test for variance 
components. A common hypothesis of interest is whether a variance component is zero. 
This hypothesis lies on the boundary of the parameter space and the usual asymptotic 
theory breaks down. The intuition is seen easily by considering ANOV A estimators in a 
one-way random effects layout for a linear mixed model. When the variance of the 
random effect is zero and the sample sizes are large, the ANOV A estimator is negative 
about half the time. The ML estimator cannot be negative and so it is zero about half the 
time. The likelihood ratio test statistic which is formed as 

-2logA = -2(logL(ci=O) -logL(ci=D-2 )) 

would be zero about half the time. The likelihood ratio theory breaks down because the 
estimate gets "stuck" on the boundary. The actual large-sample distribution under Ho: 
ci=O is a 50:50 mixture of a xi and 0. Operationally, we would calculate the p-value 

under xi and cut the p-value in half, creating, in essence, a one-tailed test. See Stram 

and Lee (1994) and Self and Liang (1987) for proofs and further details. 
In summary, ML estimation for GLMMs has known large sample properties and 

likelihood ratio tests can be based on them. Unfortunately, estimates are hard to compute 
for many GLMMs and their small sample performance needs to be assessed for any 
particular model. 

4.2 Generalized Estimating Equations 

The computational difficulty of ML estimation has made approaches based on 
general estimating equations (GEEs) attractive. GEEs are a computationally less 
demanding method than ML estimation. They are applicable (mainly) to longitudinal data, 
where we define longitudinal data as data collected on a subject on two or more occasions 
with the number of occasions being small compared to the number of subjects. 

To set the basic ideas, we first consider a longitudinal data modelling approach 
using a linear mixed model. It proceeds in three steps: 
(1) Separate effects which are constant across subjects ((3) from those which vary across 

subjects (uj). 

(2) For the data of the jth subject, Yj, write a linear model conditional on the value ofui: 

(3) Incorporate subject-to-subject variability by assigning a distribution to ui: 



Uj ~ N(O,D). 

The resulting distribution is Yj ~ indep N(Xj13, Vj = zjn~· + Rj). 
An example of this is given in Diggle, Liang and Zeger (1994). Milk was collected 

from 79 cows on one of three diets: barley, lupins, and a mixture of both. Protein content 
of the milk was recorded weekly for 19 weeks after the earliest calving. Effects which are 
constant are diet and time and those which vary across subjects (animals) are the 
intercepts. That gives the model for the jth cow on diet ~ at time t as 

where f(t) is a nonlinear function of time. This model incorporates both random effects 
for the animals {a.;) and a residual correlation governed by the parameter~-

What would the consequences be of using ordinary least squares (OLS) to estimate 
such a model? If we write 

Y =XI3+Zu +e 

u ~ N(O, D), e ~ N(O, R), 

so that Y ~ N(XI3, V=ZDZ' + R), then 13 OLS = (X'X)"1X'Y. It is well known that 13 OLS 

is unbiased: 
A 

E[l3 OLS] = (X'X)"1X'E[Y] 

= (X'X)"1X'X13 = 13. 

A 

It is also well known (Diggle, Liang and Zeger, 1994) that 13 OLS usually has high 
A A A 

efficiency. In fact, with balanced designs, 13 OLS = 13 GLS , where 13 GLS is the, fully 
A 

efficient, generalized least squares estimator. What, then, is wrong with using 13 OLS and 

standard software? V ar( 13 OLS) is actually (X'X)"1X'VX(X'X)"1 but, using standard 

software, it is estimated to be (X'X)"1 &2 , which will often be very wrong. That is, the 
OLS estimate is not so bad, but the usual variance estimate is way off. 

The basic idea behind GEEs is, with Yj ~ independently, to use the "replication" 
across subjects to get an empirical (or so-called "robust") estimate of the variance. For 
the longitudinal data setting, 



A 

l3 OLS = (~XjX j )-1(2;:Xj Y) and 
J J 

Var(~ ) = (I;X'.X .)-1(I;X'.V .X -)(I;X'.X .)-1 
OLS j 1 1 j 1 1 1 j 1 ' 

which can be estimated by (L;XjXj)- 1(L;Xj(Y. -,1 .)(Y. -,J..)'X.)(L:XjXj)-1 • 
j j J J J J Jj 

Intuitively, for the milk protein data from Diggle, Liang and Zeger (1994), if all the 
animals had all 19 weeks of data we could just get empirical estimates of the correlation 
within animal from the multivariate observations. With some missing data the above 
formula can be used. 

GEEs work most easily for models specified on the unconditional distribution. In 
contrast, we have been specifying models which are conditional on the random effects, u. 
An unconditional or marginal specification for binary data would be as follows: 

E[Yii] =pii 

This hypothesizes a logistic relationship on the marginal distribution of Yii rather than the 
A 

conditional distribution. For these marginal distributions, we obtain 13 by solving the 

GEE: 

L: __ j Var(Y.)-1(¥_-p.)=O n (0 P J 
J=l .?13 ' ' ' 

This has properties similar to the equations for the LMM: 

L: X . 'V . -l (Y. - X .13) = 0 . 
J ) J J 

j 

Again, the basic idea is to use the robust variance estimates (robust because they are not 
A 

model dependent) to get proper estimates of Var(J3 ). For the conditionally specified 

random effects models we have been using, one has to work a bit harder (see Zeger, Liang 
and Albert, 1988). 

In summary, GEEs are mainly for longitudinal data and are easiest for marginal 
models, not random effects models. Primary advantages are that they are computationally 
easier than ML estimators and use robust standard errors. They work best when the 
number of time points is relatively small compared to the number of subjects and when the 
data consist mainly of essentially complete vectors. Otherwise a parametric modelling 
approach may be more attractive (Diggle, Liang and Zeger, 1994). 

4. 3 Penalized quasi-likelihood 

Another approach which has been suggested is that of penalized quasi-likelihood 
(Breslow and Clayton, 1994). The same approach has been arrived at by using Laplace 



approximations (Wolfinger, 1994) and the 'joint-maximization" point of view (Gilmour, 
Anderson and Rae, 1984; Schall, 1991). It can be derived by the following argument. Let 

Y - exponential family with mean J.1 

g(J.l) = Xj3 + Zu, u -N(O,D). 

First we approximate g by linearization: 

g(y) ~ g()l) + (Y-)l)g'(Jl) = z 

= Xl3 + Zu + (Y-)l)g'(Jl) 

= Xj3 + Zu + Eg'()l). 

Next we treat z as a LMM with 

. Var(z) = ZDZ' + R(g'(Jl)i 

The basic idea is then to use the Mixed Model Equations (Searle, Casella, and McCulloch, 
A 

1992) to iteratively to find both 13 and the BLUP ofu. Schall (1991) also suggests ways 
to get approximate standard errors. 

This approach has several advantages. It is computationally fairly easy and it 
works well when the data are approximately normal to start with. Unfortunately it does 
not work well (Breslow and Lin, 1995; McCulloch, 1997) for highly non-normal data (e.g. 
binary data). It is also tied to random effects distributions which are normal (McCulloch, 
1997). 

4. 4 Other approaches 

Other approaches are to derive models for specific situations. Examples can be 
found in Crowder (1978) for the beta-binomial model, in Abu-Libdeh, et al (1990) for the 
Poisson-gamma, and in Conaway (1990). Conditional approaches have been used as 
exemplified in Conaway (1989) and Cox and Snell (1989). Marginal models have been 
explored in Liang, Zeger and Qaqish (1992). 

5. Some Current Research Topics 

The research literature for GLMMs is growing quickly. Because maximum 
likelihood estimation is computationally difficult, a number of authors have tried 
simulation based approaches to ML estimation. McCulloch (1994, 1997) uses a Gibbs 
sampler to find ML estimates in a probit-normal model and a Metropolis algorithm to 
suggest Monte Carlo EM and Monte Carlo Newton-Raphson approaches to calculating 
ML estimates for general GLMMs. Alternate approaches to ML estimation include those 
of Geyer (1994), Geyer and Thompson (1992), and Casella and Berger (1995). The 



econometrics literature also contains simulation based approaches to ML estimatio~ e.g., 
Borsch-Supan and Hajivassiliou (1993). 

Examples of the penalized quasi-likelihood approaches can be found in Gilmour, 
Anderson and Rae (1984), Schall (1991), Breslow and Clayton (1994), Breslow and Lin 
(1995), Lin and Breslow (1997), and Wolfinger (1994). Another philosophy is Bayesian 
estimation which is natural since it does not distinguish fixed and random factors and so 
the "mixed" model presents no extra complications. Bayes techniques have been 
propounded in Gilks, et al (1993), and Zeger and Karim (1991) among others, but 
Natarajan and McCulloch (1995) caution against using flat priors for variance 
components. 

Generalized estimating equations have rightly become popular. The original 
articles are Zeger and Liang (1986), and Liang and Zeger (1986). Recently, some authors 
have found situations where GEEs may not be very efficient (Fitzmaurice, 1995; Lipsitz, 
et al, 1994), so care needs to be taken in their use. 

Other research has tried to directly look at analogs of the Mixed Model Equations, 
e.g., Engel and Keen (1994), and McGilchrist (1994) and Kuk (1995) offers a general 
simulation based approach for improving estimators. 

5. Summary 

GLMMs are very versatile in that they can handle non-normal data, nonlinear 
models, and a random effects covariance structure. They can be used to incorporate 
correlations in models, model the correlation structure, identifY sensitive subjects and can 
be used to handle heterogeneous variances. The modelling process is relatively 
straightforward, requiring the following decisions: 

1. What is the distribution of the data? 
2. What is to be modelled? 
3. What are the factors? and 
4. Are the factors fixed or random? 

This all makes GLMMs attractive for use in modelling. 
Unfortunately, computing methods for much of the class of GLMMs is an area of 

active research. Advances are being made in ML estimatio~ PQL, GEEs and Bayes 
methods. No general purpose software exists and tests and confidence intervals are 
asymptotic and approximate. Nevertheless, I foresee heavy usage of GLMMs in the future 
as the computational issues are resolved and the validity of tests is established and/or 
improved. 
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Table 1: The structure of generalized linear models. 

General case 

Y - distribution 

J.1 =mean ofY 

g(J.L) = Xj3 

link function g( ·) 

covariates Xl3 

Simple linear logistic regression 

Y -Bernoulli 

p=meanofY 

ln(p/(1-p)) =a.+ j3x 

logit link 

one predictor x 

Table 2: The structure of generalized linear mixed models. 

general case logit-nonnal 

Y - distribution Y -Bernoulli 

J.1 =mean ofY p=meanofY 

g(J.L) = Xj3 + Zu ln(p/(1-p)) = j3x + Ui 

link function g(·) logit link 

fixed factors Xl3 fixed factor x 

random factors Zu random intercepts Ui 

u - distribution \lj- Nonnal(J.Lu, 'tu) 


