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Introduction 

Infectious diseases like measles, influenza, chicken pox, and rubeola have several fea

tures in common; for example, they cause recurrent epidemic outbreaks and transmission 

rates depend strongly on age-dependent contact rates. The etiological agents of these com

municable diseases are viruses from different families but all capable of generating similar 

epidemiological responses at the level of the individual (symptoms). Common responses in

clude relatively short latent periods, followed by also relatively short infectious periods and 

permanent immunity after recovery. It is not completely clear when individuals become in

fectious (that is, capable of transmitting the disease) as some may become infectious while 

symptomless. Effective vaccines have been developed for these communicable diseases (to 

some degree only influenza remains the major challenge, as the family of viruses responsi

ble for the "flu" experiences continuous minor and major genetic changes). A dense and 

mature literature associated with the use of mathematical models to study communica

ble diseases such as measles, influenza, rubeola, and chicken pox is already in place (see 

Hethcote 1976, Dietz 1979, Hethcote, Stech, and van den Driescsche 1981, Anderson 1982, 

Anderson and May 1982, 1991, Dietz and Schenzle 1985, Dietz 1985, Anderson and l'vlay 

1983, Schenzle 1984, Hethcote and Van Ark 1987, Castilla-Chavez et al. 1988, 1989, Feng 

1994, Feng and Thieme 1995). The situation of tuberculosis, despite its fundamental role 

in the development of bacteriology and modern epidemiology, is paradoxically different. 

Tuberculosis (TB) is a bacterial disease with about one third of the world human pop

ulation as its reservoir (Bloom 1994, Miller 1993). It is one of the oldest recorded human 

diseases (it seems clear that TB has afflicted animal populations before the origin of the 

human species). Evidence that supports human cases of TB as well as its role in human 

mortality goes back for centuries (petrified bones 8,000 B.C., Hindu texts from 2,000 B.C. 

and mummified reliquiae from Egypt and pre-Columbian America including an Incan child 

700 A.D.). TB was so devastating that it became the motivating force in the development 

of the fields of bacteriology, modern epidemiology, and public health. TB or TB associ

ated symptoms appear to have been the source of inspiration for Frascatorius' theory of 

contagion (18th century). However, a search for a cause without a clear understanding of 

the sources and nature of disease, naturally led to what Ayvazain (Ayvazain 1993) calls 

"centuries of nonscientific chaos." 

The situation changed when Villeman (19th century) used animal models to establish 

TB as a specific infection due to an innoculable agent (Reichman and Hershfield 1993). On 

March 29, 1882, Robert Koch presented to the Berlin Physiologic Society the results of his 

research on the causes of disease. Koch's fundamental research identified the mechanisms 

for disease transmission and the agents responsible for some diseases, including the etio

logical agent of TB (Reichman and Hershfield 1993). Koch's research opened new doors 

and eventually led to the discovery by various investigators of other bacteriological disease 
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agents including the bacilli for typhoid, glanders, and diphteria. 

Despite its sociological and historical importance, the study of the spread of TB using 

statistical and mathematical models has not received enough attention. In fact we have 

observed only an extremely limited use of mathematical models in the study of the trans

mission dynamics of TB in human populations (see Blower 1995 and references therein). 

Tuberculosis is caused by Mycobacterium tuberculosis. The disease is most commonly 

transmitted from a person suffering from infectious (active) tuberculosis to other persons 

by infected droplets created when the person with active TB coughs or sneezes. Among 

generally healthy persons, infection with TB is highly likely to be asymptomatic. Data 

from a variety of sources suggest that the life time risk of developing clinically evident TB 

after being infected is approximately 10%, with 90% likelihood of the infection remaining 

latent (Hopewell 1994). Individuals who have a latent TB infection are not clinically ill 

nor capable of transmitting TB (Miller 1993). At greater ages, the immunity of persons 

who have been previously infected may wane, and they may be then at risk of developing 

active TB as a consequence of either exogenous reinfection (i.e., acquiring a new infec

tion from another infectious individual) or endogenous reactivation of latent bacilli (i.e., 

re-activation of a pre-existing dormant infection) (Styblo 1991, Smith 1994). 

The epidemiology of TB disease is not simple. For the purpose of this article we 

only provide a superficial view which we believe is sufficient for a rough understanding of 

the dynamics of TB transmission at the population level. General sources of information 

on TB dynamics suggest that TB is hard to transmit. Transmission (it is said) occurs 

only when there is prolonged close contact between a susceptible person and a person who 

has an active case of TB. Nonetheless, under the right conditions a single person with 

active TB can infect many other people (Salyers 1994). For example, it seems that about 

13 persons were infected with TB per year by one source of infection in a Netherlands 

community in the period 1921-1938 (Styblo 1991). However, it is not clear that TB is 

in fact hard to transmit. Recent documented cases of TB transmissioJ:i. during lengthy 

plane trips (Kalata 1995, MMWR 1995) seem to indicate that transmission may be highly 

facilitated in a modern society. It is not at all unlikely that the risk of infection may be quite 

high in public places where there are actively infected TB individuals present. Recently 

mathematical models have been developed to estimate the probability of transmission of 

TB in close public environments. These models support the view that the acquisition 

of TB infection may not be as difficult as previously thought (Edward Nardell 1995). A 

naive look at the fact that one third of the world population is actually infected suggests 

that either the tubercle bacillus is easy to acquire, or that in many parts of the world 

exposure and re-exposure to TB is extremely persistent, or both. Current epidemiological 

studies strongly support the claim that exposed individuals are unable to transmit the 

tubercle bacillus and that only individuals with "active" TB are capable of spreading this 
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bacteria. Therefore, exposed individuals provide a tremendously large reservoir for the 

tubercle bacillus but as latent carriers of this bacillus they are uncapable of transmission. 

What are the epidemiological consequences of this situation in a world where populations 

become closer and closer? Here lies one of the central issues associated with the study of 

TB dynamics. 

Exposed TB individuals may remain in this latent stage for variable periods of time 

(in fact, many die without ever developing active TB). Apparently, the longer that we 

carry this bacteria the less likely we are to develop active TB unless our immune system 

becomes seriously compromised by other diseases. Consequently, age of infection as well 

as chronological age are important factors in disease progression. How important are these 

factors as predictors or measures of spread at the population level? Because it has been 

estimated that 10% of those infected with TB actually develop active TB during their life 

time then the 10% rule has become a useful measure for rough and immediate public health 

measures. This rule is useful but at the same time it is also superficial. It is well known 

that TB progression is not uniform but in fact is closely linked to various other factors such 

as nutritional status and/or access to decent medical care and living conditions (Bloom 

1994). The good news is that latent and active TB can be treated with antibiotics. The bad 

news is that its treatment has side effects (sometimes quite serious) and takes a long time. 

Carriers of the tubercle bacillus who have not developed TB disease can be treated with 

a single drug INH; unfortunately, it must be taken religiously for 6-9 months. Treatment 

for those with active TB requires the simultaneous use of three drugs for a period of at 

least 12 months. Lack of compliance with these drug treatments (a very serious problem) 

not only may lead to a relapse but to the development of antibiotic resitant TB - one of 

the most serious public health problems facing society today. 

TB remains the leading cause of death by an infectious disease in the world. TB is 

also the most prevalent infection in the world (Bloom 1994, Miller 1993). As stated before, 

a third of the world's population is a carrier of tuberculosis and is at risk for developing 

active TB. It is estimated that there are between 8 and 10 million new cases per year, 

of which about 3 million people die (Kochi 1991). In the United States, the estimated 

total number of TB infections lies between 10-15 million persons (Miller 1993). However, 

dramatic increases in the incidence of TB (new cases per year) have occurred within the 

United States over the past few years. From 1985 to 1991, the number of reported cases 

of TB has increased 18% with 26,283 cases reported in 1991 (Kent 1993). In 1991, a large 

California prison with 5,421 inmates and 1,500 staff members had 18 cases of active TB 

(Salyers 1994). Against the backdrop of an increasing incidence of TB in the United States 

there is a second problem, namely that of multi-drug resistant TB (MDR-TB). Resistant

TB develops when the treatment of a TB patient is inadequate or incomplete, thereby 

allowing some of the stronger /resistant bacilli to survive and prosper. Outbreaks of MDR-
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TB in the United States have begun to alarm doctors and public health officials. Over 

80% of the patients in these outbreaks have died, often within weeks of being diagnosed 

as having tuberculosis. These problems are compounded by economics, as the cost of 

treating a patient with MDR-TB can exceed $250,000: nearly 100 times the cost of treating 

most other TB cases (Press release WHO /89 Nov. 1994). The emergence of the HIV 

epidemic has dramatically increased the risk of developing clinical TB in infected persons, 

substantially increasing TB rates globally (Miller 1993). 

A TB vaccine called BCG (Bacillus of Calmette and Guerin) has been available for 

many decades. The BCG vaccine is cheap, costing about 10 cents per dose but its ef

fectiveness in preventing TB is controversial (Salyers 1994). Results of field trials of the 

vaccine have differed widely, some indicating protection rates as high as 70% to 80%, others 

indicating the vaccine was completely ineffective in preventing TB (Salyers 1994). Poten

tial problems associated with the generalized use of the BCG vaccine in some populations 

are closely associated to the fact that vaccinated individuals will test positive for TB. It 

becomes therefore nearly impossible to be able to detect the prevalence of a disease in a 

population (like the Argentinian population) where most individuals are vaccinated. 

The purposes of this paper are quite specific. We formulate a basic transmission model 

to study the dynamics of TB in as simple a setting as possible. The advantage of this 

approach is that using this simple setting, we are able to fully analyze the effects of basic 

epidemiological factors such as the latent and infectious periods on the dynamics of TB 

on a homogeneosuly mixing population. This model then becomes our basic structure to 

begin the study of the effects of resistant-TB on the same population. The difficulties in 

treating these infectious patients and their role in spreading drug-resistant bacilli to others 

is incorporated in our model. 

This paper is organized as follows: Section 1 introduces a "simple" TB model. We 

compute its basic reproductive number and study its role on the dynamics and stability 

properties of this model. In Section 2 we introduce a two-strain TB model and study its 

dynamics under two distinct assumptions. First, we assume that we are only dealing with 

two competing strains and we find that co-existence is possible but "rare". Secondly we 

assume that the second strain is the result of antibiotic resitance and find that co-existence 

is common. Our mathematical results are based on quasi-steady state approximations and 

hence our analysis is not complete. Section 3 is devoted to the conduction of numerical 

simulations that support or complete our analytical results. Our simulations involve the 

construction of bifurcation diagrams that support the results of Section 2. Section 4 details 

some of our current efforts and extensions including the incorporation of distributed delays, 

re-infection, and the effects of age-dependent contact rates. An appendix collects some of 

the mathematical details. 
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1. A simple TB model 

In this section we introduce a simple model for the transmission of TB. The host 

population is divided into the following epidemiological class or subgroups: Susceptibles 

(S), Latent (L, infected but not infectious), Infectious (I), and (effectively) 'Ifeated (T) 
individuals. N denotes the total population. Using Fig. l.a we formulate the following 

model for TB: 

d I 
-S =A- f3cS-- p,S 
dt N 
d I ( ) I I 
dt L = f3cS N - J.L + k + r1 L + /3 cT N 

(1.1) d 
dt I = kL - (p, + d) I - rzi 

d I I 
-T = r1L + rz]- /3 cT-- p,T 
dt N 

N=S+L+l+T. 

A is the recruitment rate, f3 and /31 are the average proportions of susceptible and treated 

individuals infected by one infectious individual per contact per unit of time, respectively, c 
is the per-capita contact rate, p, is the per-capita natural death rate, k is the rate at which 
an individual leaves the latent class by becoming infectious, d is the per-capita disease 

induced death rate, and r1 and rz are per-capita treatment rates. We assumed that an 
individual may be infected only through contacts with infectious individuals. 

It can be shown that for System (1.1) the first octant in the state space is positively 

invariant. Adding equations in (1.1) gives 

(1.2) 
d 
dt N = A - p,N - di. 

Note that !N(t) < 0 for N > A/ J.L. Hence, without loss of generality , we can consider 
only solutions of (1.1) on the following positively invariant subset of R 4 : 

A 
G = { (S,L,I,T) I S,L,I,T?:. 0, s + L+I +T ~- }. 

f1 

The basic reproductive number for (1.1) is 

that is, the basic reproductive number is given by the product f3c/(J.L+r2 +d), the average 
number of susceptibles infected by one infectious individual during his or her effective 
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infectious period and k/(t-t + r 1 + k), the fraction of the population which survives the 

latent period. Therefore Ro gives the number of secondary infectious cases produced by 

an infectious individual during his or her effective infectious period when introduced in a 

population of susceptibles. 

If we assume that the infection probabilities per contact for the treated class is the 

same as that of the susceptible class, i.e., /3' = /3, then System (1.1) can be reduced to the 

following 3-D system: 

(1.3) 

d I 
-W =A- f3cW- -t-tW +r1L +rzi 
dt N 
d I 
dtL=f3cW N-(t-t+k+rl)L 

d 
-I = kL - (t-t + d + r 2)I 
dt 

N=W+L+I, 

where W = S + T. Replacing the ft W equation in System (1.3) by the ftN equation given 

by (1.2) leads to the the following equivalent system: 

(1.4) 

d 
- N = A - t-tN - di 
dt 
d I 
-L = f3c(N- L- I)-- (1-t + k + rt)L 
dt N 
d 
-I = kL - (t-t + d + r2)I. 
dt 

System (1.4) may have two equilibria given by the disease-free equilibrium 

o ,.r{) o r0 A E =(lv-,L,r)=(-,0,0), 
1-L 

and if no > 1, the unique endemic equilibrium is 

E* = (N* L* I*) 
' ' ' 

where 
N* = a.RoA 

dk(Ro- 1) + t-ta.Ro 

L * = t-t + d + rz I* 
k 

I* = k(Ro- 1) N* 
a.Ro ' 

and 

a = t-t + d + rz + k. 
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We have established the following result on the dynamics of System (1.4). 

Theorem 1. If Ro < 1 then the disease-free equilibrium E 0 is globally asymptotically 
stable (g.a.s.). While ifRo > 1 then the unique endemic equilibrium E* is locally asymp

totically stable (l.a.s.). 

The proof is given in the Appendix. 

If there is no treatment, that is, if r1 = r2 = 0 in System (1.1), then the qualitative 

dynamics are identical to those of the model with positive treatment rates. However, 

because Ro is a decreasing function of r1 and r2, and because the value of Ro decreases 
when we increase the treatment rates, then the disease levels (quantitative dynamics) are 

different, that is, treatment -as expected- reduces prevalence while increasing the fraction 

of non-infected population (S* + T*) /N*. 
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2. A two strain TB model 

The increasing recent number of outbreaks of active TB signal the creation of new 
opportunities for the development of resistant strains. In this section we modify our earlier 

model (System (1.1)) to take into account the possible appearance of resistant strains 

due to the deficient compliance with treatment schedules. We add two additional classes 
L 2 (latent) and J (infectious) representing the developmental stages of resistant strains. 

FUrthermore, we assume that J individuals can infect S, Lr, and T individuals. From the 

disease transmission diagram (see Fig. 2.b) we can write the following system of ordinary 

differential equations: 

where (3* is the average proportion of individuals infected by one resistant-TB infectious 

individual per contact per unit of time; d' and k' have similar meanings as d and k; p + q is 

the proportion of those treated infectious individuals who did not complete their treatment. 
The proportion p modifies the rate that departs from the latent class; qr21 gives the rate 

at which individuals develop resistant-TB because they did not complete the treatment of 

active TB. Therefore p;::: 0, q > 0 and p + q:::; 1. 

For System (2.1) the first octant in the state space is positively invariant. 

the equations in (2.1) we get the equation for 1tN: 

(2.2) 
d I - N = A - p,N - di- d J. 
dt 

By adding 

Since jtN(t) < 0 for N >A/ p,, all solutions of (2.1) with nonnegative initial data approach, 

enter, or stay inside the subset n defined by 0 :::; S + L1 +I+ T + L2 + J:::; A/ p,. Hence, 

without loss of generality, we can only consider solutions of (2.1) on n. Using Lemma 1 

found in the Appendix we get the inequality 

A 
N.oo > . 

- p,+d+d' 
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Since the right hand side of (2.1) is continuously differentiable there exists a unique solution 

on a maximal forward time interval for any nonnegative initial data, and hence the initial 

value problem (2.1) with initial data inn is well posed. 

The basic reproductive numbers for the two-strain model are given by 

1?.,1 _ ( {3c + prz ) ( k ) 
- J1. + d + rz J1. + k + r1 

and 

( {3*c ) ( k1 
) 

Rz = J1. + dl J1. + kl ' 

respectively. We can interpret R1 and Rz as the average numbers of secondary infectious 

cases produced by an ordinary TB strain and one resistant-TB infectious individual during 

his or her effective infectious period, respectively. 

If we let 

Ro = max{R1, R2}, 

then Ro = 1 gives a threshold condition in the sense that the disease will die out if Ro < 1 

while the disease may become endemic if Ro > 1. 

Next we consider the case {31 = {3. We again let W = S + T, hence 

(2.3) !£ W =A- {3cW !.__- JLW + r1L1 + (1- p- q)rzi- {3*cW .!__ 
dt N N' 

An equivalent system to (2.1) when {31 = {3 is given by (2.3) and 

(2.4) 

where 

:t L1 = {3cW ~- (JL + k)L1- r1L1 + pr2I- {3*cL1 ~' 
d 
dt I= kL1 - (J.£ + d)I- rzi, 

!Lz = qrzi- (JL + k1)L2 + {3*c(W + L1) ~' 
d I ( I) dt J = k L 2 - JL + d J, 

N = W + L 1 +I+ Lz + J. 

If we replace the equation for ft Win (2.3) by (2.2) we get the following equivalent system: 

!£ N = A - 11N - di - d1 J 
dt ,- ' 

:t L1 = {3c(N- L1 -I- Lz - J) ~ - (JL + k )L1 - r1L1 + przi- ,8* cL1 ~, 
d 

(2.5) dt I= kL1 - (J.L + d)I- r2I, 

!Lz = qrzi- (J.£ + k 1)Lz + {3*c(N- I- Lz- J) ~' 
d 1 ( 1) dt J = k Lz - J1. + d J. 
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To simplify future expressions we introduce the following notations: 

R - f3c 
la - /.1 + k + T! ' 

R - k 
lb - J1 + d + Tz' 

k' 
R2a = JL+d'' 

/.1 
qla = /.1 + k + T! • 

When q =I= 0, the system (2.5) has three equilibria Ei, i = 1, 2, 3. (In this case there is 
no boundary equilibrium where only the first strain is present.) E 1 is the disease-free 

equilibrium 
A 

E1 = (-,0,0,0,0). 
/.1 

E2 describes the case where only the second strain is present, that is, 

Ez = (Nz, 0, 0, (JL + d')m(1- ~ )Nz, k'm(1- ~ )Nz), 
Rz Rz 

where 
N- A 

2 - J1 + d'k'm(1- ~)' 
1 

m-----
- /.1 + d' + k'. 

E 2 exists only when R 2 > 1 (for any R 1 > 0). E3 describes the case where both strains 

are present: 

Ea = (N*,L~,I*,L;,J*). 

The region where E3 exists is described explicitly in the Appendix. 

To solve for E3, let 

(2.6) 
I 

U= N' 
J 

V= N. 

From the third and the fifth equations in (2.5) we have 

L = J1 + d +rz I 
1 k ' 

/.1 + d' 
Lz = -,;,-J. 

Substituting into the second equation in (2.5) and using (2.6) we get 

( 1 {3* ) 
Rla(1 + R1b)u + R1aR1b(1 + R2a) + 73R1a v + 1- R1 = 0. 
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This gives 

(2.7) u =a- bv, 

where 

(2.8) 

Substituting into the fourth equation in (2.5) we get 

(2.9) 

where 

Av2 + Bv + C = 0, 

1 
A= 1+- -b. 

R2a ' 

1 bqr2 
B=-+-+a-1. n2 {3*c ' 
C = _ aqr2. 

f3*c 

The positive real roots v* of (2.9), if there are any, are given by 

(2.10) v* = 2~ (-B± VB 2 -4AC ). 

E3 can be expressed as 

N*- A 
- J.L + du* + d'v*' 

{2.11) 

L* _ J.L + d + rz *N* 
1- k u ' 

I*= u*N*, 

L * - J.L + d' * N* 
2- k' v ' 

J* = v*N*, 

where v*, u* are given by (2.10) and (2.7). The feasibility of E3 will be discussed in Theorem 

2. 
The case q = 0 gives the boundary equilibrium E4 (if R 1 > 1): 
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where 

(2.12) 
1 

e = -=R-ta7( 1-+---=R=-tb-:-)" 

To conduct an analytical analysis of asymptotical behaviors of the equilibrium points 

we assume that there is no disease-induced death rate, i.e., d = d' = 0. For d > 0 and 

d' > 0 our numerical simulations support similar results (see Section 3). Hence we have 

that 
d 
-N=A-"N dt r' , 

and, consequently, N(t) -t A/ p, as t -t oo. Without loss of generality (see Thieme 1992, 

1994) we assume that our population has reached its limiting value, i.e., 

N = A/ p, - W + Lt +I+ L2 + J. 

By introducing the fractions 

J 
Y2= N' 

and eliminating the equation for ftN we obtain from (2.5) the equivalent limiting system 

(2.13) 

Obviously 

(2.14) 

!!:_x1 = ,Bc(1 - Xt - x2 - Y1 - Y2)x2 - (p, + k + rt)Xt + PT2X2 - ,8* cx1Y2 
dt 
d 
dt x2 = kx1 - (p, + r2)x2 

!!:_Yl = qr2x2- (p, + k')yl + ,B*c(1- x2- Yt - Y2)Yz 
dt 
d I 

dtY2 = k Yt - J-LY2· 

for all time t ~ 0. With this notation, we are able to setablish the following result: 

Theorem 2 Assume that q = 0, d = d' = 0. Then 

(a). The disease-free equilibrium E 1 of System (2.5) is g.a.s. ifRo < 1, i.e., if'R-1 < 1 

and R2 < 1. 

(b). If R 1 > 1, then there exists a threshold curve given by the function f(Rt) 
such that the boundary equilibrium E4 of (2.5) is l.a.s. if R2 < f(Rt) and unstable if 

R 2 > f(Rt). Moreover, f(Rt) > 1 for all R1 > 1 and f(1) = 1. 
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(c). If R 2 > 1, then there exists a second threshold curve given by the function 
g(R1) such that the boundary equilibrium E2 of (2.5) is l.a.s. ifR1 < 1 or ifR1 > 1 and 

R 2 > g(RI). E2 is unstable ifR1 > 1 and R2 < g(Rl)· Moreover g(R1) > f(RI) > 1 for 
all R 1 > 1 and g(1) = 1. 

(d). The equilibrium E3 of (2.5) exists if R1 > 1 and f(R1) < R 2 < g(R1). At 

the quasi-steady state !x2 = !Y2 = 0, i.e., when x2 = R1bx1 and Y2 = R2ay1, the 
corresponding positive equilibrium is l.a.s. when it exists. 

The proof of Theorem 2 is given in the Appendix. Our numerical simulations suggest 

that E3 is l.a.s. not only at the quasi-steady state (when the conditions in (d) are satisfied) 

but in general. Theorem 2 states that using R1 and R2 as parameters the existences as 

well as the stabilities of all possible equilibria of (2.5) can be completely determined by 

threshold conditions Ro = 1, R2 = f(Rl), and R2 = g(RI). We also notice that for 
realistic parameter values the region for co-existence is very small under the assumption 

of Theorem 2. This means that if we assume that we are only dealing with two competing 

strains (q = 0) then co-existence is possible but "rare". Fig. 2.a gives a bifurcation diagram 

for the case q = 0. 

Remarks: 
1. We see, from the proof of Theorem 2, that the functions f(R1) and g(Rl) can be 

determined by fixing all parameter values related to the first strain except f3. Hence R 1 

can be varied by varying f3. Furthermore, since R2 is a monotone increasing function of 

f3*, the bifurcation diagram can be drawn using f3 and /3* instead of R1 and R2. 

2. Our numerical simulations suggest that non-trivial equilibria Ei(i = 2, 3, 4) are 

g.a.s. whenever they are l.a.s .. 

We now consider the case q > 0. In this case System (2.5) has only three equilibrium 

E 1, E 2 and E3 . We have established the following result: 

Theorem 3 Assume that q > 0, d = d' = 0. Then 
(i). The disease-free equilibrium E1 of (2.5) is g.a.s. if Ro < 1, i.e., if R 1 < 1 and 

R2 < 1. 
(ii). If R 2 > 1, then the boundary equilibrium E2 of (2.5) is l.a.s. if R 1 < 1 or if 

R 1 > 1 and R 2 > g(Rr). (g is the function given in Theorem 2 (c)). E 2 is unstable if 

R1 > 1 and R2 < g(RI). 
(iii). The equilibrium E3 of (2.5) exists iH R1 > 1 and R2 < g(RI). (In this case E2 

is unstable). When it exists, E3 is l.a.s. at tbe quasi-steady state ftx 2 = itY2 = 0, i.e., 

when x2 = R1bx1 and Y2 = R2aY1· 

The proof of Theorem 3 can be found in the Appendix. Fig. 2.b gives a bifurcation 

diagram for the case q > 0. By analyzing the parameters (also from Fig. 2) we see that 
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co-existence is almost the rule under the assumption that the second strain is the result 

of antibiotic resistance (q > 0). For the case when d > 0, d' > 0 our numerical simulations 
and bifurcation diagram also support similar results (see Fig. 5). 
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3. Numerical simulations 

In this section we study the system (2.5) (or (2.13) in the cased= d' = 0) numerically 

to confirm our analytical results as well as to provide evidences that our results are likely to 

hold in more general situations. First we "extend" the result of Theorem 2 (d) numerically. 

Our simulations support the stability of the interior equilibrium E 3 for the system (2.13) 

not only at the quasi-steady state but in general (see Fig. 3). Fig. 3 presents some 

phase portraits for the system (2.13) which show that (for parameters in certain region 

(see Fig. 2)) the corresponding l.a.s. equilibrium Ei( i = 2, 3, 4) attracts all solutions 

with positive initial data (see Fig. 3). Similar simulations have been carried out when 

q > 0 to support the same conclusion (see Theorem 3) that the interior equilibrium E3 is 

asymptotically stable whenever it exists not only at the quasi-steady state but in general, 

and that the non-trivial equilibrium switches stability as the parameters change as specified 

in the bifurcation diagram (see Fig. 2.b and Fig. 4). We also "extend" the results of 

Theorem 3 numerically to the case when d > 0 and d' > 0. This is done by establishing 

a functional relationship between (3 and (3' and by showing numerically that this function 

plays a role similar to that of the function gin Theorem 3 (see Fig. 5). 

For the construction of Fig. 3 we have selected for illustration purposes the following 

parameter values: p, = 0.143 (1/p, = 70 years),/3 = 13,c = Lk = 1,q = O,p = 0.5,r1 = 

1, Tz = 2, k' = 1, A = 35, d = d' = 0. This choice of parameter values gives nl = 3.45. 

Using the formula for f(Rt) and g(Rt) (see the Appendix) we get 

(R1, Rz) E III iff 1.34 < Rz < 4.13, 

(R1, Rz) E II iff Rz > 4.13, 

(R1, Rz) E IV iff Rz < 1.34. 

The value of R 2 for Fig. 3.a is chosen to be 2. Our simulations show that E3 attracts all 

solutions with positive initial data. Values of Rz for Fig. 3.b and Fig. 3.c::are 4.5 and 1.2, 

and our simulations support the global stabilities of E2 and E4 , respectively. 

Fig. 4 is for the case when q > 0, and d = d' = 0. The parameter values used in Fig. 

4 are k = 0.5, k' = 1, p, = 0.0143, q = 0.01,p = 0.4, r 1 = 2, rz = 1, d = 0, d' = 0, A = 500. 

fJ is chosen to be 13 as it corresponds to ft1 = 2.627 and ft2 = 2.7364. This last selection 

implies that E 2 is l.a.s. if R 2 < 2.7364 and it also implies that E 3 exists and is l.a.s. if 

R 2 > 2.7364. In Fig. 4, the values for R 2 are chosen to be (a) R 2 = 0.9, (b) R 2 = 1.5, (c) 

Rz = 2, and (d) Rz = 3. 

Our analytic results for the stabilities of equilibrira Ez and E3 (see Theorem 3) hold 

only for d = 0 and d' = 0. Since the death rate d' from resistant-TB may be high, one 

would like to know if similar results hold when d > 0 and d' > 0. Our numerical simulations 

suggest that this is the case. We first find from (2.5) a necessary condition under which 
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the interior equilibium E3 exists (see (17) in the Appendix). Using /3 and /3* as parameters 

we can establish a functional relationship between f3 and /3*, that is, (3* = h(f3) where 

with 

and 

1 JL + k' 
Dt = cRtb(1 + -R ) R , 

2a 2a 

p,+W 1 
Dz= R +(przRtb-(JL+k+rt))(1+-R ). 

2a 2a 

Then we have that u* =a- bv* > 0 (a necessary condition for E 3 to exist, see (2.7) and 

(2.10)) iff 

(3.1) {3* < h(/3), n1 > 1. 

By analogy with the proof for the case d = d' = 0 (see the proof of Theorem 3 in the 

Appendix) we would guess that E3 exists and isl.a.s. if (3.1) holds and E 2 is l.a.s. if 

(3* > h(/3). Our guess is clearly supported by Fig. 5. 

The parameter values used in Fig. 5 are the same as those used in Fig. 4 except that 

d = 0.1 and d' = 0.5. We choose fJ to be 13 (corresponding to R1 = 2.39) and therefore 

fJ* = h(/J) = 1.116 (corresponding to R2 = 2.139). V-le conclude that E2 is l.a.s. if 

{3* < 1.116 (or R 2 < 2.139) and E3 exists and is l.a.s. if /3* > 1.116 (or R 2 > 2.139). In Fig. 

5 the values for (3* are chosen to be (a) (3* = 0.4695(Rz = 0.9), (b) {3* = 0.78(R2 = 1.5), 

(c) {3* = 1.04(R2 = 2), and (d) /3* = 1.565(Rz = 3). 
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4. Discussion 

In this paper we introduced a basic model to study the dynamics of resistant TB. First 

we analyzed a one-strain TB model in order to understand its transmission dynamics in the 

absence of resistance. We proceeded to analyze a two-strain model for TB and resistant

TB with the purpose of determining the role that lack of drug treatment compliance by 
TB patients plays on the maintenance of antibiotic resistant strains. To make the role of 

antibiotic resistance transparent, we first studied a special version of our two-strain model 

with two competing strains of TB: the typical strain plus a resistant strain that was not 

the result of antibiotic resistance. In this last situation, we found that co-existence is 

possible but rare while later we noticed that co-existence is almost certain when the second 

strain is the result of antibiotic resistance. Our mathematical analysis was based on quasi

steady state approximations but our results were confirmed with the help of numerical 

simulations and the construction of bifurcation diagrams that support the plausability of 

our hypotheses. 

A natural criticism of our basic model is that it did not take into account long and 

variable periods of latency - a key feature of TB. We have in fact looked at the effects of 
long and variable periods of latency (rather than the exponentially distributed delays used 

in this article) and we have found that their addition makes no difference in the qualitative 

dynamics of TB. However, we chose not to incorporate this analysis in this article as its 

emphasis is on the study of resistant TB. The incorporation of distributed delays would 

have obscured the objective of this article while making the mathematics quite ugly. The 

coupling of a two-strain model with different distributed delays for their latent periods is 

at this point under investigation. However, we are not very hopeful that we will be able 

to fully analyze this complex model. Nevertheless, we plan to publish some preliminary 

results in this direction in the near future. 

A person infected with TB may develop active TB in a variety of ways. One possibility 

is that such a person may develop active TB as a consequence of exogenous:reinfection (i.e., 

acquiring a new infection from another infectious individual; Smith 1993). We have begun 

to look at the role that exogenous reinfection has on the transmission dynamics of common 

strains of TB. Our preliminary results seem to support our hy-pothesis that exogenous 

reinfection has a drastic effect on the qualitative dynamics of TB. More explicitly, the 

incorporation of exogenous reinfection into the basic TB model of Section 1 allows for 

the possibility of a subcritical bifurcation. That is, not only an endemic equilibium may 

occur at the critical value of the reproductive number Ro = 1 but our system can have 

multiple endemic equilibria for Ro < 1. This type of behavior has been observed in recent 

epidemiological models but in the context of sexually-transmitted diseases (see Hadeler 

and Castilla-Chavez 1995, to appear). Our analysis is almost complete and we plan to 

publish these results elsewhere in the near future. 
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Finally, it is clear that mixing plays a key role in TB transmission. We are particularly 
interested in looking at the effects of age-dependent contact rates on TB dynamics. The 
formulation of models with age-dependent contact rates, even under the assumption of 
proportionate mixing, leads to hyperbolic systems of partial differential equations that are 
difficult to analyze. Nevertheless, we have managed to obtain some preliminary results and 
we plan to use them to study the role of the BCG vaccine on age-structured populations. 
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Appendix 

In this Appendix we provide the details of the proofs of Theorem 1, 2 and 3 as well 
as the statements of needed preliminary results. 

For a bounded real-valued function f on [0, oo) we define 

foo = liminff(t), f)()= lim sup f(t). 
t-+oo t-+oo 

Lemma 1 (Thieme {1993)) Let f: [0, oo) ---+ R be bounded and twice differentiable 
with bounded second derivative. Let tn---+ oo and f(tn) converge to f 00 or foo for n---+ oo. 

Then 
f' ( tn) ---+ 0, n ---+ 00. 

Proof of Theorem 1: 

Let Ro < 1. Choose a sequence tn ---+ oo such that 

Using the equation for fti in (1.3) and Lemma 1 we have 

(1) 

Similarly, choosing a sequence Bn ---+ oo such that 

and using the equation for ftL in (1.3) we get 

s 
0 ~ f3c( N)00 ! 00 - (Jl + k + rt)L00 

~ f3cl00 - (Jl + k + r1)L00 

~ (Jl + k + ri)(~- 1)Dx:. 

This implies that L00 ~ 0 (since Ro < 1). But since L.)O ~ 0, we have that L 00 = Loo = 0, 

and 
L(t) ---+ 0, t---+ oo. 

By (1) we also have that 
I(t) ---+ 0, t---+ oo. 
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Using the !N equation (1.2) we get 

Since N 00 ~ ~, it follows that 

Hence E 0 is g.a.s. when Ro < 1. 

Let Ro > 1. Noticing that 
W* 1 

-
N* Ro 

we can write the Jacobian of (1.4) J at E* as 

where 
(3c I* 

a=--. 
RoN* 

The characteristic equation is 

where 
A = aRo + 31-£ + k + r1 + r2 + d, 

B = aRo(2J-£ + k + r2 +d) + J-£(21-£ + k + r1 + r2 +d), 

C = J-ta'R.o(J-£ + k + r2 +d) + kad(Ro - 1). 

It is clear that A, C > 0. Since it can be easily checked that 

AB > C, 

then the Routh-Hurwitz stability conditions are satisfied. It follows that E* is l.a.s .. 

Proof of Theorem 2: 

(a). Let R1 < 1, R2 < 1. By Lemma 1 and the ix2, !Y2 equations in (2.13) we have 

(2) 
Xz ~ RtbXi, X2oo ~ RtbX!oo 

Yz ~ R2aYi, Y2oo ~ R2aY1oo 
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Using the ftyl equation in (2.13) and choosing tn--t oo such that 

we get 

0:::; -(J-L + k')y! + ,B*c(1- xz- Yl- Yz) 00Y2· 

Using (2) and (2.14) we get 

0:::; Yi(Rz- 1), 

and it is shown that Yi :::; 0 since Rz < 1. As Yi ;:::: 0, we have that Yi = 0. The 

inequalities in (2) also imply that Yz = 0. Similarly, using (2.14), the equation for ~x1 in 
(2.13), and the inequalities in (2) we conclude that 

0:::; xr(nl - 1). 

Since R 1 < 1, we have that x2:::; 0. It follows that x! = x2 = 0. Hence 

lim x1(t) = lim xz(t) =lim YI(t) = lim Yz(t) = 0. 
t->oo t->oo t->oo t->oo 

(b). Let R 1 > 1. Denote the corresponding equilibrium E4 for (2.13) by (x1, x2 , y1, y2 ). 

Then 
_ _ _ _ e(R1 - 1) 

(x1, xz, Yl, Yz) = ( R , e(R1- 1), 0, 0), 
lb 

where e is given by (2.12). The eigenvalues of the Jacobian of (2.13) at E 4 are given by 

the following two equations (keeping in mind that q = 0): 

(3) 
..\ 2 + (,Bcxz + 2J-L + k + r1 + rz)..\ + ,Bcxz (J-L + rz + k) = 0, 

>.2 + (2J-L + k')>. + J-L(J-L + k') + k',B*c(xz -1) = 0. 

The first equation in (3) always has two eigenvalues with negative real p*rts. Both roots 

of the second equation in (3) have negative real parts if and only if the constant term is 

positive which is equivalent to 

Let 

(4) 

1 
Rz < --~:::-:--

1 + (1-'Rl) 
Rra(l+llrb) 

it follows that E4 is l.a.s. if Rz < f(Rr). If Rz > f(Rr), then the second equation in 
(3) has one root with positive real part, and hence E4 is unstable. It is easy to show that 

f(Rr) > 1 for all R1 > 1 and /(1) = 1. 
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(c). Let Rz > 1. Note that the corresponding equilibrium E 2 now is 

The eigenvalues w of the Jacobian of (2.13) at the corresponding equilibrium E 2 are given 

by the following two equations: 

(5) 
w 2 + (p, + k + r1 + p,Rz + rz)w + a = 0, 

w 2 + (2p, + k' + p,(Rz- 1))w + p,(p, + k')(Rz- 1) = 0, 

where 

In the second equation of (5), since the coefficients are all positive there are always two 

roots with negative real parts. In the first equation of (5), both roots have negative real 

parts iff a > 0 which is true if Rt < 1 or if R 1 > 1 and 

(6) 

As a quadratic function of Rz, the left hand side of (6) has exactly one positive root which 

we denote by Ri = g(Rt)· Then a > 0 iff Rt < 1 or 

(7) 

where 

'lb check that g(R1) > 1, iet F(z) be the function defined by the left hand-side of (6) (as a 

function of R 2). Then F(Ri) = 0, and z < Ri iff F(z) < F(Ri) or F(z) < 0. If R 1 > 1, 
then it is easy to see that F(1) < 0. Hence 1 < Ri, i.e., g(Rt) > 1. Then we conclude 

that E2 is l.a.s. if Rt < 1 or if (7) holds. 

If Rt > 1 and Rz < g(Rt), then a < 0 and the first equation in (5) has one root with 
positive real part, and hence E2 is unstable. 

Note that 

F(f(Rt)) = Rta(Rt- 1)(qta + qtaRtb + Rt- 1- Rta- RtaRtb) 

Rta(1- Rt) ( 
~ (p,+k+r1)(p,+r2) krz(1+p)+(rt+,Bc)(p,+r2)), 

~0 
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for all R1 > 1. It follows that g(RI) > f(RI) for all R1 > 1. It is easy to see that g(1) = 1. 

(d). E3 is feasible iff u* > 0 and v* > 0 where u* and v* are the solutions of equations 

(2.7) and (2.10) with C = 0 (since q = 0). Note that 

The equivalent condition for v* > 0 is that A and B have opposite signs which turns out 

to be if the following condition is satisfied: 

(9) 
f3c 

f(RI) < Rz < -. 
J1, 

Here we have used the fact that f(RI) < ~. Expression (9) implies that A > 0 and B < 0. 

By (2. 7) the equivalent condition for u* > 0 is that ajb > v* which is satisfied when the 

inequality (6) or (7) change direction, i.e., when 

(10) Rz < g(RI). 

It can be checked that g(R1) = Ri < ~c. Then (9) and (10) imply that f(RI) < R 2 < 
g(R1), which also implies by part (c) that R1 > 1. It follows that E3 exists iff 

(11) R1 > 1, j(R1) < Rz < g(R1). 

At the quasi-steady state, xz = RtbXl, Yz = RzaYl, System (2.13) reduces to a two dimen

sional system: 

(12) 

:t x1 = (Ji, + k + rt)(Rt - 1)xl - f3c(Rlb + Rib)xi - (f3cRtb(1 + R2a) + /3* cR2a)X1Y1 

!Y1 = (Ji, + k')Rz ( (1- ~2 )Yt - RtbXlYl - (1 + R2a)yi). --

The positive equilibrium of (12) corresponding to E3 is 

(13) 
u* 

Xt = Rtb' 
v* 

Yt = R2a · 

One can show that the the Jacobian of (12) at (13) has two eigenvalues with negative real 

part(s) iff 

(14) 
f3c 

Rz<-. 
J1, 

Notice that Rz < Ri < ~c. The local stability follows. 
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This finishes the proof. 

Remark: Functions f(R.l) and fz(R.I) can be written in different forms depending on 

which parameter(s) we want to vary. For example if we want {3 to be a varying parameter 

with other parameters fixed, we can write f and g as the following (noticing that R.1 is a 

function of {3): 

where 
l = p,(k + r1) + r1r2 + (1- p)kr2 

(J-L + k + rr) (p, + r2) ' 

kpr2 
n=----,...----,----

(1-L + k + rr) (J-L + r2) · 

Proof of Theorem 3: 

(i) is true since the proof of part (a) in Theorem 2 is valid for any q ~ 0. 

Notice that q does not appear in both the expression of E2 and the Jacobian of (2.13) 
at E 2. Also q is not involved in the proof of theorem 2 (c). (ii) follows immediately. 

For part (iii), recall that v* is the solution of (2.9). As C < 0 there exists a unique 

positive real root v* iff A> 0, which (after some algebra) is equivalent to 

(15) 
j3c 

R2< -. 
J-L 

l> .. ·s bv* > 0, a necessary condition for u* > 0 is that a> 0, i.e.; that 

(16) R.l > 1. 

Let G(z) = Az2 + Bz + C (a function given by the left hand side of (2.9) in Section 2), 

then G( v*) = 0. Since G is a parabola with A > 0, and since v* is the only positive root, 

u* > 0 (or a/b > v*) iff 

This is equivalent to 

(17) 

a 
G( [;) > G(v*) = 0. 

( 1 a 1 
1 + -)- + - - 1 > 0. 

R2a b R2 
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After some algebra we can see that (17) is equivalent to 

(18) 

Note that (18) has just the opposite direction as that of the inequality (6) which implies 

that 

(19) 

Hence u* > 0 iff (16) and (19) hold. Also noticing that g('R-1) = Ri < !!E., we see that 
}L 

(19) implies (15), i.e., u* > 0 implies that v* > 0 exists and is unique. Hence E3 exists iff 
'R-1 > 1 and 'R-2 < g('R.I). The proof of the local asymptotical stability is similar to the one 

in Theorem 2 (d). 
This finishes the proof. 
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~+d ~r 
~0-.[IJ-k~0--l'j-+ 

Fig.l.a. A diagram for one strain TB disease transmission. S 
stands for susceptible, L - exposed (latent), I - infectious, T -
treated. A is the recruitment rate, J1, is the per capita death rate, d 

is the disease-induced death rate (per capita), r 1 and r 2 denote the 

treatment rates for latent and infectious individuals, respectively. 

Individuals in SandT classes can be infected only through contacts 

with infectious individuals. 

Fig.l.b. A diagram for two-strains TB transmission. L1 and 

L 2 denote individuals exposed to typical TB and antibiotic resistant 

TB, respectively. J stands for infectious individuals with resistant 

TB. p + q is the proportion of those treated infectious individuals 

who did not complete their treatment. The proportion p modifies 
the rate that departs from the latent class, and hence qr21 gives 

the rate at which individuals develop resistant-TB because they 

did not complete the treatment of active TB. p ;::: 0, q ;::: 0 and 

p + q ~ 1. A, J-t, d, r 1, r2 have the same meanings as in Fig.l.a and 
d' is the disease (resistant TB) induced death rate. 
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Fig.2.a. A bifurcation diagram for the system (2.5) in the case 
q = 0. There are four regions I, II, III, and IV in the parameter 
space ('R-1, 'R-2). In the region I Et is a global atractor and other 

equilibria are unstable when they exist. In regions II and IV Ea 
does not exist and E2 and E4 are l.a.s., respectively. In the region 
ill E3 exists and is l.a.s .. 

Fig.2.b. A bifurcation diagram for the system (2.5) in the case 
q > 0. There are three regions I, II and III in the parameter space 
(Rb R,.) (E4 does not exist.), and they correspond to stabilities of 

Eb E2, and Ea, respectively. 
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Fig.4. Plots of fractions of infected and infectious population 

versus time in the case q > 0, d = d' = 0. Parameters for all graphs 

are chosen to be: f.L = 0.143,.8 = 13,c = 1,k = 0.5,q = 0.01,p = 

0.4, r1 = 2, r2 = 1, k' = 1, A = 500, d = d' = 0. 
In (a) 'R-2 = 0.9 and hence ('R-1, 'R-2) E III. In (b) 'R-2 = 1.5 

and ('R-11 'R-2) E III. In (c) 'R-2 = 2 and ('R-1, 'Rz) E III. In (d) 

'R-2 = 3 and ('R-1. 'R-2) E IV. 
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Fig.5. Plots of fractions of infected and infectious population 

versus time in the case q > 0, d > 0, d' > 0. Parameters for all 

graphs are chosen to be: f.£ = 0.143, {3 = 13, c = 1, k = 0.5, q = 
0.01, p = 0.4, r1 = 2, r2 = 1, k' = 1, A = 500, d = 0.1, d' = 0.5. 

In (a) 'R-2 = 0.9 and hence ('Rt, 'R-2) E III. In (b) R2 = 1.5 
and (Rt, 'R-2) E III. In (c) R2 = 2 and (Rt. R2) E. III. In (d) 

R2 = 3 and (Rt, R2) E IV. 
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