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Abstract 

The problem of mapping quantitative trait loci ( QTL) using genetic marker 

information is of great interest to the mapping community. There are many 

statistical methods available for detecting and/or locating QTL, all of which 

depend on assumptions about the distribution of the quantitative trait values. 

The distribution of the trait values is affected by sample size, genetic marker 

density, missing data patterns, environmental noise, etc., all of which affect 

the distribution of the test statistic used to detect/locate QTL. Failure of the 

test statistic distribution to follow a standard statistical distribution is the 

subject of current research. It is necessary to understand the behavior of the 

test statistic under the null hypothesis so that a critical value may be obtained 

for the purpose of declaring the presence of a QTL. In this paper we discuss 

the choices available for obtaining critical values (threshold values) for QTL 

detection tests using interval mapping procedures. We investigate the effect of 

deviations from normality of the trait values on the threshold value by com

paring analytical approximations to empirical threshold values for simulated 

backcross and F2 populations, along with an experimental F2 population. 
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Introduction 

The mapping of quantitative trait loci (QTL) using information from pairs of 

linked genetic markers (interval mapping) has received a great deal of attention 

and has been applied successfully by both plant and animals breeders, as well 

as geneticists. The basic approach of interval mapping (Lander and Botstein 

1989, 1994) has been further generalized by a number of authors (e.g. Haley 

and Knott 1992, Haley et al. 1994, Jansen 1994, Jansen and Starn 1994, 

Rebai et al. 1994a, 1995, Zeng 1993, 1994) to allow the presence of QTL 

to be tested at every location in a genome for a wide variety of segregating 

populations by exploiting the full power of high density genetic linkage maps. 

Recent (Lander and Botstein 1989, 1994, Feingold et al. 1993, Dupuis 1994, 

Rebai et al. 1994b, Churchill and Doerge 1994, Kruglyak and Lander 1995) 

research on the determination of threshold values used to declare significant 

QTL has provided the mapping community with both theoretical and empirical 

threshold values. Each of these efforts recognizes the importance of working 

with an accurate threshold value, so that progress may continue in the area of 

QTL detection and location. 

The purpose of this paper is to consider the choices (Lander and Botstein 

1989, 1994, Feingold et al. 1993, Dupuis 1994, Rebai et al. 1994b, Churchill 

and Doerge 1994, Kruglyak and Lander 1995) available for obtaining threshold 

values for QTL detection tests via interval mapping, and to discuss their ade

quacy and practical use. We investigate the effect of deviations from normality 

of the sample trait values on the threshold value by comparing the analytical 

approximations and the empirical thresholds based on permutation tests for 

simulated backcross and F2 populations, along with an F2 experimental maize 

population. 
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Threshold values 

Reliability of QTL detection (control of the false positive rate) is an important 

problem, which has motivated many simulation based investigations, along 

with analytical approximations (Feingold et al. 1993, Dupuis 1994, Rebai et 

al. 1994b ), as well as empirical methods. In the interval mapping approach a 

likelihood ratio (or equivalent) test denoted T( x) is performed at every position 

x (in practice each 1 eM) of a chromosome and a QTL is declared present if 

the supremum of the test values exceeds a predetermined threshold anywhere 

on the chromosome or genome. This chromosomewise threshold t is calculated 

so that for a given per chromosome significance level a we have: 

where L is the length of the chromosome in Morgans. A number of approxi

mations have been derived to have analytical equations which permit an easy 

computation of the threshold t for any significance level a. 

Lander and Botstein (1989, 1994) use the asymptotic distribution of the 

test statistic (LOD score) based on an infinitely dense marker map and the 

equation (backcross population, single chromosome): a~ (1+2Lt)x2 (t) where 

x2 is the inverse cumulative distribution function of a x2 with one degree of 

freedom. 

Feingold et al. (1993), Dupuis (1994), and Rebai et al. (1994b) approxi

mations are based on the asymptotic distributional properties of the stochas

tic process generated by performing the interval mapping test at each posi

tion, although the Rebai et al. derivation assumes a finite number of markers 

(intermediate-map density). Equations for these approaches (for backcross 

and F2 ) are found in Dupuis (1994) and Rebai et al. (1994b). 

An empirical approach based on permutation theory (Fisher 1935) de-
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veloped by Churchill and Doerge (1994) samples the distribution of the test 

statistic (under the null hypothesis of no QTL) by shuffling and then analyzing 

the phenotypic data, under a known fixed genetic map, for the purpose of de

stroying any genotypic-phenotypic correlation caused by a QTL. This process 

is repeated numerous times so that the distribution of the test statistic may 

be randomly sampled and then used to obtain a threshold value. Permutation 

based methods have the advantage of being distribution free, as they take into 

account the actual distribution of the trait being studied, and are not limited 

by experimental design. 

Backcross and related populations 

Populations where the QTL effect is characterized by a single parameter such 

as backcross, doubled haploid lines or recombinant inbreds (although there is 

a slight difference due to recombination) are of interest to the mapping com

munity. In cases such as these, the QTL effect is described by the effect of an 

allelic substitution. We simulated backcross data (under the null hypothesis of 

no QTL present) so that the distance between the markers of the chromosome 

were randomly generated to ensure a length in eM and an average marker 

density close to the desired one. Based on complete marker and trait data 

two population sizes of 100 and 200 individuals were considered. Both nor

mally distributed trait data and gamma distributed (Gamma(1,2)) trait data 

were simulated. The gamma distribution represents the situation of extreme 

skewing in the trait data, creating a long right tail in the distribution. We 

calculated chromosomewise threshold values for different chromosome lengths 

and marker densities at 5% and 1% significance levels using the interval map

ping test as described by Lander and Botstein (1989, 1994), based on the 
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approximation given by Rebai et al. (1994b), and the empirical approach 

proposed by Churchill and Doerge (1994) with 1,000 permutations. 

Results of the comparison are given in Table 1. For normally distributed (place Table 

traits or large sample sizes (so that the convergence of the test statistics is 1 here) 

guaranteed) the analytical approximations proposed by Rebai et al. (1994b) 

for medium marker densities (more than 10 eM), and Lander and Botstein 

(1989) and Feingold et al. (1993) (results not shown) for infinitely dense 

maps (say less than 10 eM) give threshold values which are very close to those 

obtained by permutations. The threshold value obtained using the Lander and 

Botstein's (1989, 1994) proposition 2 for one chromosome is also given in Table 

1. The Lander and Botstein threshold provides an upper bound of the actual 

threshold (as it assumes an infinite information) and gives a conservative test 

which ensures the type I error to be less than the significance level. 

F2 populations 

An F2 population has two parameters which characterize the additive and 

dominance action of the QTL alleles, unless an additive model is assumed. This 

characterization makes the covariance of the test process difficult to compute 

(Dupuis 1994; Kruglyak and Lander 1995). Two analytical approximations 

are available, one from Dupuis (1994) based on the same approach as that of 

Feingold et al. (1993) and one from Rebai et al. (1994b). 

We consider the same situations as in the previous section, comparmg 

thresholds from Churchill and Doerge (1994), Rebai et al. (1994b) and Dupuis (place Table 

(1994). Results are given in Table 2. The Rebai et al. approximation is close to 2 here) 

the empirical threshold, with the Dupuis approximation being slightly smaller. 
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Maize F2 population 

We have also computed empirical and approximate threshold values for experi

mental data from an F2 maize population with 106 individuals. The estimated 

length of chromosome 2 is 132.8 eM using 12 RFLP markers. The distribution 

(eM) of these 12 markers is: {7.8 7.9 9. 7 7.1 3.1 9 42.6 5.3 6.5 18.2 15.5}. 

On average 20% of the marker data are missing, while less than 7% of the 

trait data are missing. The results are shown (Table 3) for a chromosomewise 

significance level of 5% (1%). Empirical threshold values are based on 1,000 

permutations. (place Table 

Since the empirical threshold values reflect the specifics of the data set 3 here) 

it is not surprising that the magnitude of the values is somewhat smaller 

than both approximations. When compared to simulated F2 threshold values 

(Table 2), the empirical threshold values for a real data set are smaller, while 

the magnitude of the analytical threshold values remains unchanged. The 

differences between the threshold values as seen in this example are most likely 

due to the proportion of missing marker data, as well as the environmental 

specifics of the experiment. 

Discussion 

Deviations from normality of the trait distribution and sample size are both 

factors which affect the distribution of the test statistic (in this situation the 

LOD score), and ultimately affect the threshold level of the interval mapping 

tests used in QTL detection. When trait distributions deviate from normality 

and/or the sample sizes are small, approximate values based on the asymptotic 

distribution properties of the test statistics are not appropriate, and empirical 

approaches should be used. The results of this paper support the findings that 
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even if the assumptions do not hold (skewed distribution), the approximations 

behave quite well. These findings are probably related to the robustness of 

interval mapping to deviations from normality ( Cierco, personal communica

tion to A.R. ). In practice, one can see the benefits of using either analytical 

or empirical methods for obtaining threshold values. 

The values obtained by the approximations proposed by Reba! et al. (1994b) 

are appropriate for intermediate density map (a marker every 10 eM or more), 

and the others (Lander and Botstein 1989, Feingold et al. 1993, Dupuis 1994) 

appropriate for high density maps (a marker every 10 eM or less). These 

thresholds (see previous citation) provide stringent values that ensure the type 

I error to be less than the significance level chosen by the user (conservative). 

The values obtained are appropriate for the standard interval mapping ap

proach but would be usable, under some conditions, for the multiple QTL 

approach proposed by Jansen and Starn (1994) (see Jansen 1994) and could 

be applied after some specific calculations to nonparametric tests of interval 

mapping (Kruglyak and Lander 1995). 

Kruglyak and Lander (1995) recommended that the dense-map threshold 

always be used, regardless to of the actual density of the map, in order to 

minimize the false positive rate. However, the use of specific approximations 

as proposed by Reba! et al. ( 1994b) will give more appropriate threshold for 

intermediate dense-maps without the loss in power of the tests consistent with 

the use of a stringent threshold. The asymptotic approximations based on 

distributional properties of stochastic processes (Feingold et al. 1993, Dupuis 

1994, Reba! et al. 1994b, Mangin et al. 1994) are with no doubt a powerful tool 

for further analytical investigations of the threshold problem (especially when 

mapping multiple QTL), as well as other developments for QTL parameters 

(location and effect). 
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The empirical threshold values obtained by permutation theory, while com

putationally intensive, may be calculated for any experimental design under an 

unlimited number of experimental situations (e.g. sample size, marker density, 

environmental variance, nonnormal trait distribution, etc.). The number of 

permutations used in each application of this paper was limited to 1,000. Up

wards of 10,000 permutations are more appropriate if an accurate 1% threshold 

value is desired. 

Missing data, either genotypic or phenotypic, greatly influences the quality 

of the parameter estimates (e.g. recombination, additive effects, dominance 

effects, etc.). Each of the analytical methods discussed in this report are based 

upon perfect data, no account is made for missing data. While perfect data 

is a realistic approach through simulation, it is rarely obtainable experimen

tally. The difference in the magnitude of threshold values (empirical versus 

analytical) as seen in the maize example is most likely due to the percentage 

of missing data per marker scored. 

The QTL mapping community continues to bring challenging problems 

to the forefront of QTL research, and while there is no one correct threshold 

value to use in every situation, it is our long term hope that the comparisons 

made in this paper will serve as direction to the application and conclusions 

drawn. Certainly, as the envelop of QTL detection/location is pushed to in

clude multiple QTL, interactions, and fine scale location of QTL, statistical 

issues relating the relevance of application to the conclusions drawn still await 

proper statistical attention. 
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Table 1: Comparison of empirical and approximate threshold values for differ

ent marker densities and chromosome lengths in simulated backcross popula

tions. 

Sample size eM a Nb. markers Empirical b Approx. c LB Approx. d 

Normally distributed trait 

100 82.3 6 1.45 e (2.201) 1.47 (2.15) 1.87 (2.65) 

200 100.2 6 1.53 (2.26) 1.50 (2.18) 1.97 (2.74) 

100 90.6 9 1.58 (2.27) 1.57 (2.26) 1.92 (2.69) 

200 106.7 9 1.58 (2.29) 1.61 (2.12) 1.99 (2.77) 

100 221.4 11 1.71 (2.25) 1.77 (2.47) 2.34 (3.10) 

200 203.4 11 1.56 (2.21) 1. 76 (2.45) 2.30 (3.06) 

Skewed trait distribution 9 

100 

200 

88.5 

89.4 

a length of chromosome 

bChurchill and Doerge 1994 

cReba"i et al. 1994 

6 

6 

dLander and Botstein 1989, 1994 

e 5% threshold value 

f 1% threshold value 

BGamma(1,2) 

1.41 (1.95) 1.47 (2.16) 1.91 (2.68) 

1.40 (1.99) 1.49 (2.17) 1.92 (2.69) 
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Table 2: Comparison of empirical and approximate threshold values for differ

ent marker densities and chromosome lengths in simulated F2 populations. 

Sample size eM a Nb. markers Empirical b Approx. c 

100 

200 

100 

200 

100 

200 

100 

200 

107.8 

103.8 

119.3 

97.3 

188.1 

201.3 

94.9 

104.7 

a length of chromosome 

bChurchill and Doerge 1994 

cReba'i et al. 1994 

dDupuis 1993 

e5% threshold value 

I 1% threshold value 

DGamma(1,2) 

Normally distributed trait 

6 2.10 e (2.90 f) 2.12 (2.87) 

6 2.10 (2.80) 2.11 (2.87) 

9 2.30 (3.20) 2.26 (3.02) 

9 2.20 (2.80) 2.24 (2.99) 

11 2.40 (3.30) 2.39 (3.14) 

11 2.50 (3.20) 2.40 (3.15) 

Skewed trait distribution n 

6 

6 

2.10 (3.20) 2.10 (2.86) 

2.10 (2.90) 2.11 (2.87) 

14 

Dupuis Approx. d 

2.00 (2.69) 

2.00 (2.69) 

2.16 (2.87) 

2.15 (2.86) 

2.25 (2.94) 

2.25 (2.94) 

2.00 (2.69) 

2.00 (2.70) 



Table 3: Comparison of empirical and approximate threshold values for 12 

markers on a single maize chromosome of length 132.8 eM and 106 F2 individ

uals. 

Empirical a Approx. b Dupuis Approx. c 

1.90 d (2.60 e) 2.30 (3.06) 2.27 (2.98) 

achurchill and Doerge 1994 

bReba"i et al. 1994 

cnupuis 1994 

d5% threshold value 

e 1% threshold value 
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