Abstract

Statistical inference on the likelihood ratio statistic for the number of components in a mixture model is complicated when the true number of components is less than that of the proposed model since this represents a non-regular problem: the true parameter is on the boundary of the parameter space and in some cases the true parameter is in a nonidentifiable subset of the parameter space. The maximum likelihood estimator is shown to converge to the subset characterized by the same density function, and connection is made to the bootstrap method proposed by Aitkin et al. (1981) and McLachlan (1987) for testing the number of components in a finite mixture and deriving confidence regions in a finite mixture.

Key words: FINITE MIXTURE; LIKELIHOOD RATIO TEST; BOOTSTRAP; IDENTIFIABILITY; BOUNDARY.
1 INTRODUCTION

Finite mixture models have been widely used in biology, medicine and engineering (Everitt and Hand, 1981; Titterington et al., 1985; McLachlan and Basford, 1988). Let \(X = (x_1, \ldots, x_n) \) be a random sample of size \(n \) from a probability distribution with a real-valued density function \(f(x, \theta_0) \), where \(x \) can be univariate or vector-valued, discrete or continuous and \(\theta_0 \) is the unknown true parameter vector of dimension \(p \). Let \(l(\theta; x_i) \) denote the log likelihood. A finite mixture density has the form

\[
f(x, \theta) = \sum_{j=1}^{k} \pi_j f_j(x, \psi_j),
\]

where \(\psi_j \) is the \(m \)-dimensional parameter vector for component \(j \), \(\pi_j \) is the mixing probability for component \(j \) with restriction \(\sum_{j=1}^{k} \pi_j = 1 \) and \(\pi_j \geq 0 \), \(\theta = (\pi_1, \ldots, \pi_{k-1}, \psi_1, \ldots, \psi_k) \), and \(p = k - 1 + km \). The number of components, \(k \), may be known or unknown. When the number of components is known, statistical inferential procedures about the parameters are well developed, mostly via likelihood based inference. Although the inferential problem for the number of components in a mixture has wide applications, it is still an open question without satisfactory treatment (Titterington, 1990). Suppose we want to test

\[
H_0 : f(x, \theta) = N(0, 1)
\]

against

\[
H_1 : f(x, \theta) = (1 - \pi)N(0, 1) + \pi N(\mu, 1),
\]

where \(N(\mu, \sigma^2) \) is a Gaussian density with mean \(\mu \) and variance \(\sigma^2 \). We have \(\theta = (\pi, \mu) \in [0, 1] \times (-\infty, \infty) \). The parameter space where \(H_0 \) holds is, \(\Omega_0 = ([0, 1] \times (-\infty, \infty)) \cup ([0, 1] \times \{0\}) \), i.e., the entire \(\mu \) axis when \(\pi = 0 \) and the line segment \([0, 1]\) on the \(\pi \) axis when \(\mu = 0 \). Therefore, the parameter is on the boundary of the parameter space and the null hypothesis corresponds to a nonidentifiable subset of the parameter space. The classic assumptions (Cramér, 1946) about the asymptotic properties of the maximum likelihood estimator and the likelihood ratio statistic are not valid under the null hypothesis.

There have been only conjectures and simulation results for the limiting distribution of the likelihood ratio statistic for the mixture models under the null hypothesis (Wolfe, 1971; Hartigan, 1977, 1985; McLachlan, 1987; Thode et al., 1988). Ghosh and Sen (1985) showed that choosing an identifiable parameterization can create a problem of differentiability of the density. Bootstrapping
the likelihood ratio to test the number of components of a normal mixture was investigated by Aitkin et al. (1981) and McLachlan (1987). McLachlan (1987) used a parametric bootstrap in which the parameter estimate was obtained from the maximum likelihood method under the null hypothesis, bootstrap samples were drawn from the null hypothesis with the estimated parameter and for each bootstrap sample the likelihood ratio was computed to form the reference distribution. Feng and McCulloch (1995) noted that bootstrap is a preferred method for testing the number of components of normal mixture with unequal variances. For regular cases, Beran (1988) and Martin (1990) studied level error and coverage probability of the bootstrap likelihood ratio on the testing and confidence region problems respectively. Since the maximum likelihood estimator under the alternative hypothesis is not a consistent estimator when the null hypothesis is true, there are questions about the validity of the bootstrap likelihood ratio test based on this inconsistent estimator, such as whether the observed rejection rates will match the hoped-for levels (Titterington, 1990).

This work provides some justification for the bootstrap method by showing that the maximum likelihood estimator converges to the nonidentifiable subset to which the true parameter belongs. This property has a natural connection to the bootstrap likelihood ratio tests and confidence regions. The test sizes and coverage probabilities of bootstrap methods match the nominal levels well in simulation studies when the null hypothesis is true.

2 MAIN RESULTS

Along with other classic regularity conditions, if the true parameter is an interior point of the parameter space then standard asymptotic theory applies. We extend the standard results by considering a situation where the true parameter lies in a non-identifiable subset, \(\Omega_0 \), and this subset may be on the boundary of the parameter space. We first extend the definition of consistency and prove that the unrestricted maxima \(\hat{\theta} \), (i.e., maximizing \(\theta \) without restricting it to \(\Omega \)) is consistent in the following sense: \(\hat{\theta} - \theta_0^*(\hat{\theta}) \rightarrow 0 \), with probability one for some \(\theta_0^*(\hat{\theta}) \in \Omega_0 \), where \(\Omega_0 \) identifies a subset of \(\Omega \) in which the distributions are not distinguishable. Consistency also holds for the maximum likelihood estimator in the same sense. We first extend the definition of \(l(\theta; x) \) to \(\mathbb{R}^p \):

\[
l^*(\theta; x) = \sum_{i=1}^{n} \log[f^*(\theta; x_i)1(f^*(\theta; x_i) > 0)], \tag{2.1}
\]

where \(1(.) \) is an indicator function and \(f^*(\theta, x_i) \) is the extension of \(f(\theta, x_i) \) to all \(\theta \in \mathbb{R}^p \).
We need the following assumptions, with \(\theta_0 \) an arbitrary fixed point in \(\Omega_0 \):

(A) the parameter space \(\Omega \) has finite dimension.

(B) \(f(x, \theta_0) = f(x, \theta_0') \) for all \(\theta_0, \theta_0' \in \Omega_0 \).

(C) there exists an open subset \(\omega_\epsilon \) of \(\mathbb{R}^p \) containing \(\Omega_0 \), such that for almost all \(x, f(\theta; x) \) admits all third derivatives w.r.t. \(\theta \) for all \(\theta \in \omega_\epsilon \), and

\[
\left| \frac{\partial^3}{\partial \theta_j \partial \theta_k \partial \theta_l} \log f(x; \theta) \right| \leq M_{jkl}(x, \theta),
\]

and \(m_{jkl}(\theta_0) = E_{\theta_0}[M_{jkl}(x, \theta_0)] < \infty \) for all \(j, k, l \), for any fixed \(\theta_0 \in \Omega_0 \).

Remark: \(\omega_\epsilon \) is not necessarily an open ball and can be expressed as \(\omega_\epsilon \equiv \bigcup_{\theta_0 \in \Omega_0} B_\epsilon(\theta_0)(\theta_0) \), for each \(\epsilon(\theta_0) > 0 \), depending on \(\theta_0 \) and \(B_\epsilon(.) \) is an open ball of radius \(\epsilon \) centered at \(. \). In the example of (1.3) when (1.2) is true, \(\omega_\epsilon \) is an open stripe with unequal width surrounding \(\Omega_0 \) with \(\epsilon \) the maximum of \(\epsilon(\theta_0) \)s.

(D) \(E_{\theta_0}[\frac{\partial}{\partial \theta_j} \log f(x, \theta)] = 0 \) for \(j = 1, \ldots, p \) and all \(\theta_0 \in \Omega_0 \).

\[
I_{jk}(\theta_0) = E_{\theta_0}[\frac{\partial}{\partial \theta_j} \log f(x, \theta) \frac{\partial}{\partial \theta_k} \log f(x, \theta)]
= E_{\theta_0}[\frac{\partial^2}{\partial \theta_j \partial \theta_k} \log f(x, \theta)]
\]

for any \(\theta_0 \in \Omega_0 \). Also, for any \(\theta \notin \Omega_0 \), the \(\theta_0 \in \Omega_0 \) which is nearest to \(\theta \) in Euclidean distance, (i.e. \(|\theta - \theta_0| \leq |\theta - \theta_0'| \) for all \(\theta_0' \in \Omega_0 \)), is selected and has the property that \((\theta - \theta_0)^t I(\theta_0)(\theta - \theta_0) > 0 \) for all \(\theta \) in the neighborhood of \(\theta_0 \).

Remark: Notice that the above properties need not be held by all \(\theta_0 \in \Omega_0 \). For those \(\theta_0 \) which will not be selected by the above rule the assumptions can be relaxed, i.e., the quadratic form can be zero. It is not difficult to check that for the MLE under (1.3) when (1.2) is true, (A)-(D) are satisfied.

Theorem 2.1.

Let \(X = (x_1, \ldots, x_n) \) be independent, identically distributed observations with density \(f(x, \theta) \) satisfying assumptions (A)-(D) above and with the true parameter \(\theta_0 \) being any point in \(\Omega_0 \) (The value of \(\theta_0 \) is not important since all points in \(\Omega_0 \) identify the same density function). Then with probability tending to 1 as \(n \to \infty \), there exists a \(\hat{\theta} \in \mathbb{R}^p \), a local maxima of \(l^*(\theta, X) \) as defined in (2.1), which has the property that there exists a \(\theta_0^*(\hat{\theta}) \in \Omega_0 \) which depends on \(\hat{\theta} \) such that \(\hat{\theta} - \theta_0^*(\hat{\theta}) \to 0 \) with probability 1. Moreover, the maximum likelihood estimator, \(\hat{\theta}_{ml} - \theta_0^*(\hat{\theta}_{ml}) \to 0 \) with probability 1.
Proof. The proof is similar to that of Lehmann (1983) with modifications to adapt assumptions (B) and (C). We only need to show that for sufficient small $\epsilon(\theta_0) > 0$, $l^*(\theta, X) < l^*(\theta_0, X)$ at all points θ on the boundary of some stripe ω_c surrounding Ω_0, since this means that there exists at least a local maxima within ω_c. We can choose $\epsilon(\theta_0)$ small enough such that $f(x_i, \theta) > 0$ for all x_i's in the sample and Taylor expansion of $l^*(\theta, X)$ about θ_0 is justified in ω_c. For any fixed θ on the boundary of ω_c, we define $\theta^*_\theta(\theta)$, such that $|\theta - \theta^*_\theta(\theta)| \leq |\theta - \theta_0|$ for all $\theta_0 \in \Omega_0$, i.e., $\theta^*_\theta(\theta)$ is the point in Ω_0 closest to θ in Euclidian distance. Taylor expansion of $l^*(\theta, X)$ about $\theta^*_\theta(\theta)$ leads to:

$$
\frac{1}{n} l^*(\theta, X) - \frac{1}{n} l^*(\theta^*_\theta(\theta), X) = S_1 + S_2 + S_3,
$$

with

$$S_1 = \frac{1}{n} \sum_{j=1}^{p} (\theta_j - \theta^*_j(\theta)) \left[\frac{\partial}{\partial \theta_j} l^*(\theta, X) \right]_{\theta = \theta^*_\theta(\theta)},$$

$$S_2 = \frac{1}{2n} \sum_{j=1}^{p} \sum_{k=1}^{p} (\theta_j - \theta^*_j(\theta))(\theta_k - \theta^*_k(\theta)) \left[\frac{\partial^2}{\partial \theta_j \partial \theta_k} l^*(\theta, X) \right]_{\theta = \theta^*_\theta(\theta)},$$

$$S_3 = \frac{1}{6n} \sum_{j=1}^{p} \sum_{k=1}^{p} \sum_{l=1}^{p} (\theta_j - \theta^*_j(\theta))(\theta_k - \theta^*_k(\theta))(\theta_l - \theta^*_l(\theta)) \left(\frac{\partial^3}{\partial \theta_j \partial \theta_k \partial \theta_l} l^*(\theta, X) \right)_{\theta = \theta^*_\theta(\theta)} \sum_{i=1}^{n} \gamma_{jkl}(x_i) M_{jkl}(x_i, \theta),$$

where $0 \leq |\gamma_{jkl}(x)| \leq 1$ by assumption (C).

The asterisk on the log-likelihood can be dropped in each term of the Taylor expansion since $\theta^*_\theta(\theta) \in \Omega$. Therefore, the rest of the proof of $S_1 + S_2 + S_3 < 0$ as $n \to \infty$ follows Lehmann (1983). The proof of convergence of $\hat{\theta}_{ml}$ is the same except Taylor expansion of $l^*(\theta, X)$ is about any fixed θ on the boundary of the intersection of ω_c and Ω.

Remark: Redner (1981) proved the strong consistency of the maximum likelihood estimator in the quotient topological space. The above proof is the parallel result expressed in Euclidean space and is therefore easier for practitioners to apply. It is also valid for the true parameter being on the boundary of the parameter space and in a nonidentifiable subset while Redner's result dealt with the nonidentifiable situation only. If the parameter is identifiable but on the boundary of the parameter space, Self and Liang (1987) proved the consistency and gave the characteristic of the asymptotical distribution of the maximum likelihood estimator. Feng and McCulloch (1992) proposed an unrestricted maximum likelihood estimator which is consistent and has asymptotic normality. So, Theorem 2.1 is the extension of results of Redner (1981) and Self and Liang (1987). When Ω_0 is a single boundary point, Theorem 2.1 reduces to Self and Liang's consistency result of the maximum likelihood estimator. It reduces to Redner's result when Ω_0 is in the interior of
\(\Omega \), and to the classic consistency of the maximum likelihood estimator when \(\Omega_0 \) is a single point in the interior of \(\Omega \). It also extends Feng and McCulloch’s results to nonidentifiable cases.

3 CONNECTION TO BOOTSTRAP LIKELIHOOD RATIO

Following Beran (1988), Martin (1990), and McLachlan (1987), we denote

\[
W(\theta, X) \equiv 2(l(\hat{\theta}, X) - l(\theta, X))
\]

and

\[
W(\theta_0, X^*(\theta_0)) \equiv 2(l(\hat{\theta}^*, X^*(\theta_0)) - l(\theta_0, X^*(\theta_0))),
\]

where \(\hat{\theta} \) and \(\hat{\theta}^* \) are the maximum likelihood estimators under \(\Omega \) from \(X \) and \(X^* \) respectively, and \(X^*(\theta_0) \) means a bootstrap sample under \(\theta_0 \), where \(\theta_0 \) is contained in \(H_0 \). The size \(\alpha \) bootstrap likelihood ratio test procedure for simple \(H_0 : \theta = \theta_0 \) is: Reject \(H_0 \) if

\[
W(\theta_0, X) > W_\alpha(\theta_0, X^*(\theta_0))
\]

where \(W_\alpha(\cdot, \cdot) \) is the upper \(\alpha \) quantile of \(W(\cdot, \cdot) \).

For \(\theta = (\theta_1, \theta_2) \) and a composite \(H_0 : \theta_1 = \theta_{01}, \theta_2 \) unspecified, denote the maximum likelihood estimator under \(H_0 \) as \(\hat{\theta}_0 = (\theta_{01}, \hat{\theta}_{02}) \). The bootstrap test is then: Reject \(H_0 : \theta = \theta_{01} \) if

\[
W(\hat{\theta}_0, X) > W_\alpha(\hat{\theta}_0, X^*(\hat{\theta}_0)).
\]

By Theorem 2.1, when \(H_0 \) is true, the likelihood computed under \(H_1 \) is based on the maximum likelihood estimate converging to \(\Omega_0 \) with probability 1. If this convergence does not hold, it is clear that the bootstrap likelihood ratio test is not valid. For example (1.2)-(1.3), Hartigan (1985) pointed out that \(W(\theta_0, X) \) is asymptotically unbounded above in probability at a very slow rate \((\frac{1}{2}\log \log n) \) when the null hypothesis is true. However, the distribution of \(W \) or \(W^* \) for any finite sample size does exist. Since the likelihood is identifiable while the parameters are not, the bootstrap likelihood ratio is a natural candidate for this inference problem as compared to other parameter-based tests (e.g. Wald’s test).

We can define a bootstrap confidence region, \(\hat{\mathcal{R}}_\alpha \) as:

\[
\hat{\mathcal{R}}_\alpha \equiv \{ \theta : W(\theta, X) \leq W_\alpha(\hat{\theta}, X^*(\hat{\theta})) \},
\]

where \(X^*(\hat{\theta}) \) is the bootstrap sample from \(F(\hat{\theta}) \), i.e., the parametric bootstrap, \(\hat{\theta} \) and \(\hat{\theta}^* \) are the maximum likelihood estimates of \(\theta \) from \(X \) and \(X^*(\hat{\theta}) \) respectively.
The validity of \(\hat{\alpha} \) relies heavily on Theorem 2.1, since the resampling is from \(F(\hat{\theta}) \), the maximum likelihood estimate under \(H_1 \), while in the hypothesis testing situation the resampling is from the null hypothesis.

For the hypothesis testing in (1.2)-(1.3), bootstrap samples are generated from the standard normal distribution. The maximum likelihood estimate \((\hat{\pi}, \hat{\mu}) \) by Theorem 2.1 will converge to \(\Omega_0 : ([0]x(-\infty, \infty)) \cup ([0, 1]x[0]) \) which identifies the standard normal density. Therefore, we expect the bootstrap test to have a high probability of accepting \(H_0 \) when the sample size is sufficiently large and \(H_0 \) holds. For the confidence region based on the model of (1.3) when the unknown true distribution is a standard normal, \(X^*(\hat{\theta}) \) is sampled from (1.3) with \(\hat{\theta} \) converging to \(\Omega_0 \). Therefore, we expect the bootstrap confidence region \(\hat{\alpha} \) to have a high probability of intersecting \(\Omega_0 \) for a large sample size. Since the asymptotic normality of the unrestricted maximum likelihood estimator by Feng and McCulloch (1992) does not hold under nonidentifiable cases and the asymptotical distribution for the maximum likelihood estimator is unknown, the critical values for tests and confidence regions should come from bootstrapping.

4 SIMULATION STUDIES

We conducted two simulation studies to examine the acceptance probabilities of the bootstrap likelihood tests and the coverage probabilities of the bootstrap likelihood confidence regions under null hypotheses. We focus on the null hypothesis since this is where the classic asymptotic distribution theory for the likelihood ratio fails. Table 1 describes the simulation results of bootstrap likelihood ratio test for a mixture normal alternative: \((1 - \pi)N(1, 1) + \pi N(0, 1) \) with the true density standard normal. This is the case where the parameter is on the boundary of \(\Omega \). We also included the likelihood ratio test based on the unrestricted maximum by Feng and McCulloch (1992) which has a limiting chi-square distribution with one degree of freedom. The probabilities of correctly accepting \(H_0 \) for both procedures are near the nominal level when the sample size \(N \) is 100, but the bootstrap procedure outperforms the likelihood ratio method. This difference is clear for smaller sample sizes. The likelihood ratio method performed poorly when \(n=10 \) with the probability of making a correct conclusion from 0.128 to 0.180 less than that of the nominal level while the bootstrap procedure has the probability only 0.010 to 0.018 away from the nominal level. Table 2 summarizes the coverage probabilities of bootstrap confidence regions for a mixture normal model: \((1 - \pi)N(0, 1) + \pi N(\mu, 1) \) when the true distribution is a standard normal. This is the case where the parameter is on the
boundary of Ω and in a nonidentifiable subset Ω₀. The bootstrap confidence procedure is again clearly better than the confidence region based on χ²₁ (a χ²₂ approximation was even worse in this simulation). We should mention that neither χ²₁ nor χ²₂ has a theoretical basis for use. The bootstrap confidence region has good coverage probabilities that are very close to the nominal levels in all sample sizes at all nominal levels, while the chi-squared approximation, although not bad in 0.95 and 0.99 nominal levels, performed poorly at the 0.90 nominal level.

5 CONCLUSIONS AND OPEN QUESTIONS

This paper provides some justification for the bootstrapping likelihood ratio when the true parameter is on the boundary of the parameter space and in a nonidentifiable set. It shows that the maximum likelihood estimate is consistent to the set identifying the true density function. Therefore, a procedure based on the likelihood is justified although its asymptotic distribution may be difficult to obtain and one needs to use the bootstrap method to construct tests or confidence regions. The parametric bootstrap confidence region works very naturally under this setting since bootstrap resamples from a consistently estimated density. Therefore, to a large extent we overcome the difficulties of the fact that the density is characterized by a set of the parameters and this set is on the boundary of the parameter space. The simulations indicate that the bootstrap tests and confidence region seem to hold the nominal levels and the expected coverage probabilities.

To fully justify the bootstrap likelihood ratio method one needs to obtain the exact convergence rate of the bootstrap approximation of the distribution of sample quantiles. The singular Fisher information is the major difficulty in investigating the error rate of the bootstrap procedure for the nonidentifiable case. As in Singh (1981), the proof of the error rate of the bootstrap procedure depends on the existence of an Edgeworth expansion of W. Bhattacharya (1985) proved that if

\[W = 2n(H(\tilde{Z}) - H(\mu)) \]

where \(\tilde{Z} = n^{-1}(Z_1 + \cdots + Z_n) \) with \(\mu = EZ_1 \) and with some other regularity conditions, the Edgeworth expansion of W is valid. Chandra and Ghosh (1979, p.42) pointed out that if the assumptions \((A_1)\) to \((A_4)\) and \((A_6)\) of Theorem 3 of Bhattacharya and Ghosh (1978) are satisfied, the Edgeworth expansion of the cdf of W agrees with the true distribution up to \(o_p(n^{-1}) \). Unfortunately, \((A_4)\) is that the Fisher information is nonsingular. The importance of \((A_4)\) is that it enables us to apply the implicit function theorem to ensure that there exists a uniquely defined real-valued infinitely differentiable function \(H \) on the neighborhood of \(\mu \). The difference between \(n^{\frac{1}{2}}(\hat{\theta} - \theta_0) \) and its Edgeworth representation is then of order \(o(n^{(s-2)/2}) \), where \(s \) is the
positive integer such that the ith derivative of the density function with respect to every θ is continuously differentiable for $1 \leq i \leq s$. The representation of W as a sum of iid random variables is necessary in all three of the above papers' proof. Therefore, a possible approach is to develop some non-Edgeworth expansion method or other criterion to justify the Edgeworth expansion.

ACKNOWLEDGEMENT

The authors would like to thank Dr. R.A. Redner for the helpful communications.

REFERENCES

<table>
<thead>
<tr>
<th>Nominal 1-(\alpha)</th>
<th>Sample Size</th>
<th>Bootstrap Likelihood Ratio(s.e)</th>
<th>Feng and McCulloch's Likelihood Ratio(s.e)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.90</td>
<td>10</td>
<td>0.882 (0.014)</td>
<td>0.720 (0.020)</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>0.892 (0.014)</td>
<td>0.824 (0.017)</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>0.894 (0.014)</td>
<td>0.864 (0.015)</td>
</tr>
<tr>
<td>0.95</td>
<td>10</td>
<td>0.938 (0.011)</td>
<td>0.796 (0.018)</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>0.950 (0.010)</td>
<td>0.884 (0.014)</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>0.948 (0.010)</td>
<td>0.924 (0.012)</td>
</tr>
<tr>
<td>0.99</td>
<td>10</td>
<td>0.980 (0.006)</td>
<td>0.862 (0.015)</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>0.998 (0.002)</td>
<td>0.956 (0.009)</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>0.990 (0.004)</td>
<td>0.982 (0.006)</td>
</tr>
</tbody>
</table>

Table 1: Probabilities of acceptance of \(H_0 : N(0, 1) \) vs. \(H_1 : \pi N(0, 1) + (1 - \pi) N(1, 1) \) when \(H_0 \) is true in 500 simulations.

<table>
<thead>
<tr>
<th>Nominal 1-(\alpha)</th>
<th>Sample Size</th>
<th>Bootstrap Likelihood Ratio(s.e)</th>
<th>Likelihood Ratio(s.e) ((\chi^2_1))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.90</td>
<td>10</td>
<td>0.916 (0.012)</td>
<td>0.878 (0.015)</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>0.918 (0.012)</td>
<td>0.856 (0.016)</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>0.916 (0.012)</td>
<td>0.862 (0.015)</td>
</tr>
<tr>
<td>0.95</td>
<td>10</td>
<td>0.946 (0.010)</td>
<td>0.926 (0.012)</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>0.954 (0.009)</td>
<td>0.924 (0.012)</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>0.966 (0.008)</td>
<td>0.926 (0.012)</td>
</tr>
<tr>
<td>0.99</td>
<td>10</td>
<td>0.988 (0.005)</td>
<td>0.986 (0.005)</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>0.984 (0.006)</td>
<td>0.970 (0.008)</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>0.996 (0.003)</td>
<td>0.992 (0.004)</td>
</tr>
</tbody>
</table>

Table 2: Coverage Probabilities of bootstrap and the likelihood ratio based confidence regions for a mixture normal model: \((1 - \pi) N(0, 1) + \pi N(\mu, 1) \) when the true distribution is \(N(0, 1) \) in 500 simulations.