EXPERIMENT DESIGN, GRADIENTS, COVARIATES, ADDITIVITY, INTERACTION, AND COMPETITION

by

Walter T. Federer

BU-1259-M* August 1994

ABSTRACT

A discussion of blocking or design variables, treatment variables, and model considerations is presented with the idea that confusion arising among these items will be clarified for experimenters and statistical consultants. Spatial trends or gradients are considered to be blocking factors to be controlled by proper design and/or statistical analysis. An ordering of effects to be considered in a statistical analysis is presented. Basically, design variables and then model considerations must be accounted for prior to obtaining results for the various types of treatment effects.

* In the Technical report Series of the Biometrics Unit, Cornell University, Ithaca, New York 14853
EXPERIMENT DESIGN, GRADIENTS, COVARIATES, ADDITIVITY, INTERACTION, AND COMPETITION

by

Walter T. Federer

1. INTRODUCTION

For several types of situations, there may be confusion over the various types of experiment design effects and various types of treatment effects as they relate to the response model equation used for the statistical analysis and the interpretation of the obtained responses. Treatment effects are sometimes treated as blocking effects and *vice versa* by individuals analyzing results from an experiment. Interactions with some environmental variables can, in some instances, be eliminated by transforming the responses to another scale of measurement and then back transforming the results to the original scale for interpretation. Standardizing responses by dividing by their standard errors may be useful in some cases, especially for variance heterogeneity and unequal numbers of observations. To make clear the distinction between design (blocking) variables and treatment effects, it is necessary to study the types and nature of variation in the experimental material prior to applying the treatments to the experimental units (the smallest unit to which one treatment is applied). Then it is necessary to determine how the particular treatments selected (the treatment design) are affected by the various sources of variation present in the experiment. By completely modeling the variation before applying the treatments, it is possible to distinguish between blocking effects and treatment effects in the experiment. A modeling of experimental variation necessarily includes a complete description of the population structures for both the population of which the experiment is a representative sample and of the population structure used in the experiment if different from the former. Statistical literature appears to be devoid of any discussion of this except in a few isolated instances (See, e. g., Federer, 1991, Chapter 7, and Federer, 1993, Chapter 10.). Present discussions of spatial analyses do little to clarify and many things to muddle the above points, e. g., randomization restrictions due to blocking are ignored for many of the proposed procedures. Randomization theory is a vital part of statistical theory and needs to be considered in order to obtain appropriate analysis procedures.
Starting with the population structures for the population of inference and for the experiment, Federer (1994b) shows how to design and analyze experiments to account for spatial variation. In the following, we shall discuss the various types of blocking effects and how they relate to gradients or trends in the experimental material. This is followed by a discussion of the various types of treatment effects. Appropriate design and/or appropriate scales of measurement may be helpful in eliminating certain treatment effects such as environmental interactions and inter-experimental unit competition.

In an experiment, statistical procedures, whether design or analysis, are selected

(i) to reduce the estimate of error variation by removing extraneous variability from the responses

and/or

(ii) to obtain a more accurate estimate of the treatment effect.

Methods for doing this have been described in several places in the literature (e.g., Federer, 1994a, and references contained therein). Blocking, trend analysis, and covariance are useful in accomplishing (i) and experiment design, trend analysis, covariance, and an appropriate response model are used to accomplish (ii). In many experimental situations, both (i) and (ii) are the desired goals.

Figure 1 has been prepared as an aid in sorting out the various effects and possible response models for an experiment and is an outline for discussion in this paper. For the more complex experiment designs and treatment designs, several additional effects may need to be considered.

2. POPULATION AND EXPERIMENT STRUCTURES

The goal of an experimenter is to be able to make inferences to some target population using the results obtained from an experiment. If the experiment is a representative sample from the target population, then the inferences from the experimental responses to the target population are valid. However if the population of which the experiment is a representative sample is not the desired population, inferences from the experimental results to the target population are invalid. To illustrate, suppose that we are interested in relative sales of v brands
THE EXPERIMENT

BLOCKING VARIABLES \[\downarrow \]
EXPERIMENT DESIGN \[\downarrow \]
BLOCKING EFFECTS \[\downarrow \]
COMPLETE BLOCK \[\downarrow \]
INCOMPLETE BLOCK \[\downarrow \]
TRENDS

\[\overline{\text{RESPONSE MODEL}} = \]
\[\text{BLOCKING EFFECTS} + \text{TREATMENT EFFECTS} + \text{COVARIATE EFFECTS} + \text{RANDOM ERROR} \]

Figure 1. Relationships among experiment design effects and treatment design effects and the response model used.
of a product, say orange juice, and we conduct an experiment in convenience stores with the v brands simultaneously displayed in an appropriate experiment design. In this experiment, the customer has a choice of v brands from which to select one or more of the brands whereas in practice there will be only one brand available in a store. A customer’s buying habits and relative sales may and probably will be completely different when there is choice and when there is no choice of brands. All brands may have the same volume of sales when offered alone but have vastly different volumes of sales when there is a choice of the v brands. In this case, the population structure for the experiment is completely different from the target population where inferences are desired. A useful axiom to follow for experimentation is:

Axiom 1: The conditions for the experiment must be representative of those in the population for which inferences are to be made. Or, stated another way, the conditions of the experiment must be the same as those used in practice.

Sometimes the population of interest does not include the blocking variables in an experiment. For example, the way plants are handled in a greenhouse prior to transplanting in the field may need to be considered in an experiment but may be irrelevant in practice. Also, it may not be possible to plant an entire experiment in single day in which case the planting will end at the end of a complete block; this allows the day of planting and complete block to be completely confounded. Several other conditions may necessitate blocking in an experiment. The experimenter can, and often does, include blocking factors which may not be present in the target population. If there are no treatment by blocking factor interactions (a treatment effect), then the inferences from the experiment to the target population are valid, even though the experiment population and the target population differ.

3. **VARIATION IN THE EXPERIMENT AND BLOCKING**

In planning an experiment, a set of experimental material is available to an experimenter. This set is subdivided into N, say, experimental units (An experimental unit (eu) is the smallest unit to which one treatment is applied.). There will be variation among the N experimental units (eus), and the experimenter blocks the eus into blocks in such a manner as to maximize the variation among blocks and to minimize the variation within blocks. Once the blocking is completed, there should be no further way to reduce the variation
within blocks that cannot be taken care of through statistical analysis, i.e., there
is homogeneity among the eus within blocks. If possible, all trends or gradients
among the eus within blocks should be absent. If there is a gradient in one
direction, this can be eliminated by laying out the eus perpendicular to the
gradient (See Federer, 1955, Chapter III.). However, despite an experimenter's
best effort to block for sources of variation owing to lack of knowledge or owing
to unforeseen events (e.g., bird damage, floods, etc.) that occur during the
conduct of the experiment, trends among the eus within a block will occur. The
ensuing statistical analysis will need to account for this. Certain experiment
designs and statistical analyses proposed by Federer (1994b) can be effective
in controlling for the effects of gradients within blocks.

When an event is unforeseen or happens during the course of the
experiment and is not a treatment effect such as water covering a part of the
experiment for a period, insect damage to a portion of the experiment, a failure
to control weeds in a portion of the experiment, fire damage in a store, etc.,
covariance for amount of damage or using another block to designate the
damaged portion should be used. Of course this would change an orthogonal
experiment design into a non-orthogonal one, but with the computing power
available today this presents little difficulty for the statistical analysis.

The following axiom may be used to delineate between blocking variables
and treatment variables:

Axiom 2. All factors affecting variation in experimental material prior to the
application of treatments and not interacting with the proposed set of
treatments are candidates for blocking.

This means that factors affecting all treatments by the same amount, i.e., an
additive effect, may be considered for blocking.

Covariance analysis can be used to eliminate certain types of non-treatment
effects affecting responses and could be considered as a blocking procedure.
Covariance analyses have as their goal the reduction of the error mean square
and increased accuracy of the estimated treatment effects. The regression
coefficient must then be computed from the error line in an analysis of variance.
In more complex experiments there may be several error lines and
consequently several regression coefficients (See Federer and Meredith,
1992). If there are treatment effects for the covariates, then some form of
multivariate analysis is required. The statistical analyst must carefully consider
covariates to determine whether they are treatment variables or blocking
variables.
4. EXPERIMENTAL RESPONSES AND TREATMENT EFFECTS

The application of a treatment to an eu may produce a variety of effects. There will be the direct effect of a treatment as measured from the responses obtained from the several eus to which the treatment is applied. There may be an interaction effect of the treatment with any of a number of environmental factors present in the experiment. For eus used over several periods, there may be a carry-over or residual effect of the treatment used in the preceding period. Also, if appropriate eus are not used (See Federer and Basford, 1991.), a treatment may affect all surrounding eus thus exhibiting a competition effect. (Note that inter-eu rather than intra-eu competition is the kind of competition referred to above.) To check for competition, one may use the Kempton single-degree-of-freedom for competition (Kempton, 1982, and Federer, 1994a). Since most experimenters conducting field experiments have used small eus, it is felt that most of these experiments contain competition effects which have been ignored and it is wondered how many of the results from previous experiments have been vitiated.

In making comparisons among a set of treatments, the experimenter may wish to study effects free of competition, free of residual effects of the previous treatment, and / or on an interaction-free basis. For the last item, a transformation, say a logarithmic transformation, may free the treatment effects from interaction with environmental effects or even other treatment factors. In a repeated measures experiment, direct, residual, or cumulative effects free of the other effects may be the item to be considered. In certain cases, the cumulative effect is the effect desired. If so, the experimenter may wish to take repeated measures on the same treatment over a longer time period rather than use shorter periods and changing treatments. The goals of an experimenter will determine the order of treatment effects to be used in the analysis. When inter-eu competition effects are present, these effects will need to be removed prior to making comparisons among the treatments. Inter-eu competition arises not from the treatments themselves but from the method used to lay out the experiment and hence is a removable treatment effect.

In certain situations, a treatment by environmental interaction may be present and the experimenter wishes to use a parsimonious model with as few parameters as possible. One particular analysis for doing this is the so-called AMMI (additive main effects and multiplicative interaction) model. This analysis can increase the accuracy of the cell means over the full interaction model. As stated above, a transformation of the responses may remove certain types of interaction and make the AMMI analysis unnecessary.
5. MODEL AND SCALE OF MEASUREMENT

Considerable thought should be given to the exact nature of the model equation for responses from an experiment prior to adding treatments and after adding treatments. Assuming that a model given in a statistical textbook is appropriate can be quite inappropriate for the data at hand. The statement that "the linear model is" is incorrect at best as all that can be said for most situations is that this is "a linear model is". In fact, the response model is often non-linear. As William Lawton once remarked, "I never met a linear model in all my work at Kodak". As a first approximation, the experimenter often uses a linear model to summarize the results from an experiment. A transformation of data to, say logarithms, reciprocals, or square roots of responses, often tends to make a linear model and the assumptions underlying the statistical analysis more appropriate. Certain types of treatment by environment interactions can sometimes be removed by using data on a transformed scale of measurement, e.g., logarithms. There are situations where an analysis on the obtained responses are needed even though the assumptions for standard statistical analyses are violated. This means that different types of analyses will need to be used when analyses on transformed data do not meet the goal of the experimenter.

6. ORDER FOR REMOVING EFFECTS IN THE STATISTICAL ANALYSIS

In performing a statistical analysis on the data from an experiment, the various effects should be taken account of in the order described below. The first item that must taken into account is

scale of measurement and the response model equation
both before and after treatments are applied.

This considers the adequacy of the model and the additivity of effects. Once this is decided upon, the form, but not the order of effects, of the statistical analysis is determined and set. The first item to list in an analysis such as an analysis of variance (ANOVA) is the block effects in the order listed in Figure 1. Then, any trends or gradients within the blocks are taken into account. After this, the treatment effects are considered. If interest centers on the direct effect of treatments, any competition effects or residual effects from previous
treatments must be removed to obtain such things as a sum of squares due to
direct effects eliminating all other blocking and treatment effects. Since the
effect of related variates (covariates) may need to be taken into account, an
analysis of covariance (ANCOVA) may need to be performed. Note that the
error regression is used to adjust treatment effects for covariate effects. Hence
the covariates effects are the last effects to be included in an analysis. This
means that the regression due to the covariates eliminating all other effects, i.e. the error regression, is the one used..

In certain situations, the blocks in a block design interact with the treatments
and this interaction component of variance is necessarily part of the appropriate
error mean square for differences of treatment effects. The commonly assumed
response model for a block design is

\[Y_{ij} = \mu + \rho_i + \tau_j + \epsilon_{ij} \]

(where the usual definition of effects is used) whereas it could be

\[Y_{ij} = \mu + \rho_i + \tau_j + \rho \tau_{ij} + \epsilon_{ij} \]

or some other more complicated response model. Instead of the error variance
being \(\sigma_e^2 \) as for the former case, it is \(\sigma_e^2 + \sigma_{\rho \tau}^2 \). In order to obtain an unbiased estimate of the error variance, it is necessary to have a random sample of
blocks from the population of blocks whereas for the former model and orthogonal experiment designs any sample of blocks would suffice. This fact receives little or no attention in statistical texts, but is in agreement with Fisher’s (1935) definition of an error variance for differences of treatment effects in that
an appropriate error variance must contain all sources of variation in the
difference except that due to the treatments themselves.

7. LITERATURE CITED

Macmillan, New York, pp. xix + 544 + 47. (Republished as the Indian Edition by

Kong, pp. xvi + 578.

Fisher, R. A. (1935). The Design of Experiments. Oliver & Boyd Ltd., Edinburgh (Note: there are several later editions of this text.)