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Abstract. Social dynamics have had a strong impact on the development of theoretical 
epidemiology over the last six years. Interactions or contacts between individuals have traditionally 
been modeled using the mass-action law or proportionate mixing, giving limited understanding of 
effects that the environment-changing social structure-has on disease dynamics. Furthermore, while 
gender plays a central role in the dynamics of sexually-transmitted diseases, the use of two-sex models 
has been rare. In this article, we review briefly our mixing/pair formation framework and illustrate its 
application to population models of the type. currently used in demography, epidemiology, and social 
"dynamics. A new application to frequency dependent competitive interactions is discussed in more 
detail. Connections between deterministic and stochastic processes are presented. The results of the 
simulations of a demographic two-sex: stochastic model that follows the dynamics of pairs are 
presented. 
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1. INTRODUCTION. 
The transmission of diseases, genetic characteristics, or cultural traits is influenced by many 

factors including the contact/social structure of the interacting subpopulation, that is, the social 
environment. Classical demography (se,e MacKendrick 1926, Lotka 1922, and Leslie 1945) ignores 
social dynamics and usually concentrates on the birth and death processes of female populations under 
the assumption that they have reached a stable age distribution. They usually ignore the specific 
mating/contact structure of the population. The incorporation of mating structures or marriage 
functions, as they are commonly referred to in human demography, was pioneered by Kendall (1949) 
and Keyfitz (1949). However, despite; the fact that their work was extended by Parlett (1972), 
Fredrickson (1971), McFarland (1972); and Pollard (1973) two decades ago, their impact on 
demography, epidemiology, and population biology has been minimal. 

The grim scenario due to the HIV /AIDS epidemic has accelerated the pace at which social 
dynamics have been incorporated into epidemiological models. Researchers are developing new 
models and innovative modelling approaches to help us identify and/or improve our understanding of 
the mechanisms responsible for HIV transmission; for example, there has been intensive research 
activity on looking at the effects of social dynamics, the immune system variability, etc. in HIV 
dynamics as well as on the development of methods for the evaluation of competing control measures. 

Dietz (1988a) and Dietz and Hadeler (1988) have brought to the forefront-and for the first time 
in epidemiology-models that incorporate heterogeneity through the processes of pair formation and 
dissolution. Researchers have shown that epidemic models can be very sensitive to changes in the 
sexual/social mixing structure of interacting subpopulations as they may not only have different 
quantitative dynamics but also distinct global dynamics. 

The work that we (this generic "we" includes many collaborators who will be cited throughout 
the text) have conducted over the last few years bs had as a major component the development of a 
mathematical framework for the systematic incorporation of very general contact structures. The 
modeling approach outlined in Section 2 of this manuscript bas been used to develop models for the 
study of disease dynamics, the dynamics of frequency-dependent predation in heterogeneously mixing 
populations (food web dynamics), transmission dynamics of cultural traits, social dynamics, general 
demographic processes, etc. In addition, we have uiade serious efforts to connect these models to data 
(see Rubin et al. 1992, Castillo-Chavez et al. 1992, Hsu Schmitz and Castillo-Chavez 1992) and have 
Participated in the collection of appropriate data (see Crawford et al. 1990). 

This manuscript is organized as follows: Section 2 introduces the basic formalism and states 
the basic theoretical results; Section 3 uses it in the context of demography and social dynamics; 
Section 4 applies the same approach to model frequency dependent predation and food web dynamics; 
Section 5 discusses the uses of our approach in the study of models for vector-transmitted diseases. 
Section 6 illustrates the connections between deterministic and stochastic processes. The results of 
the simulations of a demographic two-sex stochastic model that follows the dynamics of pairs are 
presented. 

2. BASIC FRAMEWORK FOR CONTACT STRUCTURES. 
The mass-action law has played a central role in the development of stochastic and deterministic 

epidemiological models (see Bailey 1975, Anderson 1982, Anderson and May 1991, and references 
therein). The assumption that the rate of new infections (the incidence) is proportional to the 
product of susceptibles and infectives in the exposed population has no mathematical significance 
when one deals with interacting subpopulations that have a constant number of individuals (although 
it may have an important effect on the interpretation of relevant epidemiological parameters such as 
the transmission coefficient). However, the mass-action assumption seriously affects the qualitative 
and quantitative behavior of models with interacting subpopulations of varying size (that is, when the 
sizes of the interacting subpopulations vary according to deterministic or stochastic rules). 
Unfortunately, a thorough analysis of basic assumptions such as those implict in the mass-action law 
was not carried out in a systematic fashion because mathematical epidemiology was growing almost 
independently of epidemiology (there are some exceptions, e.g., see Hethcote and Yorke 1984). 

The HIV /AIDS epidemic revealed the deficiencies and inadequacies of the existing theory. 
Several questions relevant to the dynamics of heterogeneously mixing populations affected by fatal 
diseases could not be properly studied under the existing framework. The contact structure of the 
population must respond at least to the potential population changes due to a heterogeneously 
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transmitted fatal disease (or more generally to frequency dependent predation). The importance of 
the contact process (well recognized by Ross in his work on malaria, 1911) hi frequency-dependent 
systems has motivated the work that we present in the final volume of this series. 

Our general approach for modeling contact processes describes who is mixing or pairing, with 
whom. We let M(a,t) denote the density of males of age a who are not in pairs at time t, and let 
F(a',t) denote the density of females of age a' who are not in pairs at time t. Pairing is defined 
through the mixing functions : 

and we let 

p(a,a',t) =proportion of partnerships of males of age a with females 
of age a' at time t, 

q(a,a',t) =proportion of partnerships of females of age a' with 
males of age a at time t, 

C(a,t) = expected or average number of partners of a male of 
age a at thne t per unit thne, 

D(a',t) = expected or average number of partners of a female of 
age a' at time t per unit time. 

The following natural conditions characterize these mixing functions: 

(i) p, q 2:: 0, 

(ii) J~ p(a, a',t)da' = J~ q(a', a,t)da = 1, 

(iii) p(a,a', t)C(a,t)M(a,t) = q(a',a,t)D(a',t)F(a',t), 

(iv) C(a,t)M(a,t)D(a',t)F(a',t) = 0 =? p(a,a',t) = q(a',a,t) = 0. 

Condition (ii) is due to the fact that p and q are probabilities. Condition (iii) simply states that the 
total rate of pair-formation between males of age a and females of age a' equals the total rate of pair­
formation between females of age a' and males of age a (all per unit time and age). Condition (iv) 
says that there is no mixing in the age and activity levels where there are no active individuals; i.e., 
on the set 1(t) = {(a,a',t): C(r,a,t)M(a,t)D(a',t)F(a',t) = 0}. 

The pair (p,q) is called a two-sex mixing function if and only if it satisfies axioms (i-iv). Further, 
a two-sex mixing function is called separable if and only if 

p(a,a',t) = p1(a,t) p2(a',t) and q(a,a',t) = q1(a,t) q2(a',t). 

If we let 

hp(a,t) = C(a,t)M(a,t) (1) 

and 

hq(a,t) = D(a,t)F(a,t), (2) 

then, omitting t to simplify the notation, one has the following results (see Busenberg and Castilla­
Chavez 1989, 1991; Castilla-Chavez and Busenberg 1991): 

Result 1 The only two-sex separable mixing function satisfying conditions (i-iv) is given by the Ross 
solution (p,q), where 

h (a') 
p(a') = 00 q , {3) 

J 0 hp(u)du 

h (a) 
q(a) = 00 p (4) I 0 hq(u)du 

We named this solution the Ross solution because Ross (1911) was aware of the importance and 
necessity of Axiom (c) and used it in his model for malaria, although he only used one vector and one 
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host type. This fact was clearly pointed out by Lotka (1923) in his review of Ross's work on malaria 
models (Ross also outlined the potential use of this work in models for STD's) . 

Result 2 Any solution of Axioms (i)-(iv) can be written as a multiplicative perturbation of the Ross 
solution (p ,q). The perturbations are parametrized by matrices that measure the affinities/preferences 
of individuals. 

In the next sections we discuss the applications of this framework in a variety of settings. We 
first outline its use in demographic and social contexts and then provide a new application of this 
approach in the context of frequency-dependent predation and food web dynamics. Finally, we 
discuss its use in epidemiology and its implementation in stochastic frameworks (Markov chain 
models). 

3. DEMOGRAPIDC AND SOCIAL DYNAMIC MODELS. 
Classical demographic models that consider pairs and follow the dynamics of pairs have been 

studied by Kendall (1949), Keyfitz (1949), Parlett (1972), Fredrickson (1971), McFarland (1972), and 
Pollard {1973) and have been extended to epidemiology by Dietz and Hadeler (1988), Dietz (1988a), 
Hadeler (1989a,b), Hadeler and Nagoma (1990), and Waldstatter (1989). Their approach is based on 
the use of a nonlinear function t/J to model the process (rate) of pair formation. This mixing/pair 
formation function is assumed to satisfy the Fredrickson/McFarland (1971,1972) properties: 

(a) 

(b) 

(e) 

,P(O,F) = ,P(M,O) = 0. 
In the absence of either males or females there will be no heterosexual pair formation. 
t/J( aM,aF) = a,P(M,F) for all a, M, F ~ 0. 
If the sex ratio remains constant, then the increase in the rate of pair formation is 
assumed to be proportional to total population size. 
,P(M + u, F + v) ;?: ,P(M,F) for all u, v, F, M ~ 0. 
Increases in the number of m8.l.es and/or females does not decrease the rate of 
pair formation. 

Condition (b) implies that all mixing functions are of the form 

,P(M,F) = M g (~) = F h (w} 
where h and g are functions of one variable. 

Examples of mixing functions satisfying the above axioms include: 

t/J(M,F) = k min (M,F), k is a constant 

,P(M,F) = k ~MF , 
and 

,P(M,F) = 2k ::F . 
The simplest demographic model that takes into account pair-formation is constructed by 

balacing the rates of flows between the different compartments/subpopulations; that is, by keeping 
track of the transition rates associated with the transfer of individuals and pairs of individuals 
(couples) as they form or dissolve pairings. To state the explicit equations: let u denote the rate of 
pair dissolution, I' denote the natural mortality rate, A denote the "recruitment" rate, and W denote 
the number of (heterosexual) pairs. Then Kendall's demographic model is described by the following 
set of equations: 

~~=A- pM + (u+p)W- f/i(M,F) 

~r =A- pF + (u+p)W- f/i(M,F) 

dd~ =- (u+ 2p)W + f/i(M,F) . 

(5) 

If A, Jl, and cr are constant, then there is always a globally stationary solution (M,F,W), where W is 
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determined by non-trivial solutions to the equation 

~~- W, ~ + W) = (u+2J.t)W . 

For references to this and related results see the work of (Dietz and Hadeler 1988, WaldsUitter, 1989). 
Extensions of this model that incorporate the age structure of a population have been carried out by 
Hadeler {1989a,b). 

We now specify an age-structured demographic model equivalent to those studied by Hadeler 
{1989a,b) but using the framework of Section 2. Specifically, let f(a',t) and m(a,t) denote the age­
specific densities for single males and single females respectively, and assume that C and D are 
defined in Section 2, and J.lm and 1-'f are functions of age (the mortality rates for males and females). 
In addition, let W(a,a',t) denote the age-specific density of heterosexual pairs (where a denotes the age 
of the male and a' the age of the female). Then, using the two-sex mixing functions p and q of 
Section 2, we arrive at the following demographic model for heterosexual populations with pairing: 

{)m + {)m = -G(a)m(a t) 
{)t {)a - ' oo 

-Prn(a)m(a,t) + I [pr(a') + u]W(a,a',t)da' , 

0 

{)f + {)f = -D(a')ti(a' t) 
{)t lJa' ' 

00 

- pr(a')f(a',t) + I lPm(a) + u]W(a,a',t)da, 

88¥( + ~":. + ~'J = D{a')f{a't)q(a,a',t) 0 

- [pr(a'~ + J.lm(a) + u]W{a,a',t) . 

(6) 

To complete this model we must specify the initial and boundary conditions. To this effect we let Am 
and >:! denote the female age-specific fertility rates, and let ffio, f0 , and w0 denote the intial age 
densities. Hence, the initial and boundary conditions are given by 

where 

00 

m(O,t) = I .Am(a')Nr(a',t)da' , 

0 

00 

f{O,t) = I .Ar(a')Nr(a',t)da' , 

0 

W(O,O,t) = 0, 

f(a,O) = f0 (a), m(a,O) = m0 (a), W(a,a',O) = W 0 (a,a'), 

00 

Nr(a',t) = I W (a,a',t)da. 

0 
We observe that Nf and f + Nf satisfy the following set of equations: 

and 

(:. + ;.,) (1 + N1) = -p{la')[f + NtJ 

(:t + a~) Nf = D(a')f(a',t) 

- [J.tr(a') + o-]Nr 

00 

- f J.lm(a) W(a,a',t)da. 

0 

{7) 

(8) 

(9) 
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If we let u -+ oo (while fixing a, t, and J.'m(a) constant) then Nc(a~,t) -+ o+ and formally Equation 
(9) approaches the classical MacKendrick/Von Foerster model. However, since in the model given by 
Equations (7)-(9) only pairs reproduce we can not recover the classical boundary condition (this 
situation is easily corrected if one uses Di~tz's definition of a pair, 1988a). For some preliminary 
analysis of this model see Castilla-Chavez ei al. (1991). 

Models like (7) are useful because of the importance of the mating system and the average 
duration of partnerships in the transmission dynamics of cultural traits. Superficially, the cultural 
transmission of traits appears similar to genetic transmission. However, there are further 
complications, as the inheritance of social ,traits such as language and religion is influenced by the 
level of heterogeneity of the population at' large. Previous approaches to the modelling of cultural 
trait transmission have been either very specific, as in the bilingual competition model of Baggs and 
Freedman (1990), or quite general, albeit within very restricted or rigid frameworks. Cavalli-Sforza 
and Feldman (1981) and Boyd and Richerson (1985) assume that cultural transmission happens once 
per generation, e.g., at birth. Hence they exclude many situations including religious conversion while 
at the same time their model is riddled with the usual inherent limitations of models with non­
overlapping generations. In Lubkin et al. (1992), we have developed a flexible framework to study 
the transmission dynamics of cultural traits in age-structured populations with overlapping 
generations. The flexibility comes from the incorporation of pairings, partnership duration, and 
"arbitrary" mating systems. In Lubkin et al. {1992) examples are provided that include the melting 
pot, biparental determination, and maternal determination models. Finally, we note that the models 
of the type here constructed do not represent just an exercise in modelling, as their use has begun to 
have a serious impact in the area of sociology, epidemiology, immunology, and ecology. The current 
revisions of the theory have increased the number of interactions between a large number of scientists 
from biology, sociology, epidemiology, statistics. and mathematics. The large number of 
interdisciplinary conferences and workshops that have brought these groups together over the last five 
years has radically changed the fields of mathematical population dynamics and mathematical 
epidemiology. 

4.. FREQUENCY DEPENDENT PREDATION MODELS. 
Here we shift gears and discuss applications of the framework of Section 2 to situations in which 

frequency-dependent predation is important. Our emphasis is on the description of prey selection, 
competition for common resources (see Pimm, 1982, 1988), interaction strength (Pimm and Kitching, 
1988), and their relation to food web dynamics. In this section, we define a food web as a network 
composed of biological species interacting through frequency-dependent predation and competition 
and illustrate our approach with the use of a simple three-level food web ( top predators, intermediate 
species, bottom species). 

The mechanisms by which predators select prey for their diet has been the subject of intensive 
research (Akre et a/., 1979; Cock, 1978; Levin and Segel, 1982; Chesson, 1978, 1983; Gendron, 1987; 
Oaten and Murdoch, 1975; Teramoto et a/., 1979). A given predator's diet is, in principle, not 
necessarily related to the abundance of the different prey types available (Gendron, 1987). From a 
phenomenological point of view, this outcome can be seen as the product of a density-dependent risk 
of being captured and the density of other alternative prey (Gendron, 1987). To model these 
interactions we let cij denote the average per capita number of effective contacts (leading to a 
successful meal) between predators of type i and prey of type j per unit time; while r ;;- denotes the 
average per capita number of prey of type j captured by predators of type i per unit time. If Ti(t) 
denotes the number or density of predators of type i at time t and N ;(t) denotes the number or 
density of prey of type j at time t, we must then have that 

T,-cii = N 1r ii . 

By setting 

one has 

Defining 

permits the interpretation of Pij as the proportion of prey of type j on the diet of t~e ith predator, 
and q i i as the proportion of the j th prey type consumed by the i th predator. Hence the matrix 
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(Pik•qki) satisfies the discrete analog of properties (i)-(iv). Using these definitions we introduce the 
concept of a mixing matrix in the context of a finite number of interacting subpopulations: 

Definition 1: The matrix (Pik• qki) is called a mixing/contact matrix if and only if it satisfies the 
following properties: 

(di) 0 ~ Pik~ 1, and 0 ~qki ~ 1, 
(dii) Ek=tPik = 1 = Ei=tqki• 

(diii) c;T;P;k = rkNkqki• fori= 1, ···,nand j = 1, ·· ·, m. 
(div) If for some i, 1 ~ i ~nand/or some j, 1 ~j ~ m we have that c;rkTiNk = 0, then 

we define Pik = qki = 0. 

Condition (diii) is interpreted as a conservation of contacts law or group reversibility property. The 
total number of contacts per unit time of predators of type i and prey of type j has to be equal to the 
number of contacts between prey of type j with predators of type i. The condition relates the rates at 
which k-prey are captured by i-predators C;Pik and riqki• With k-prey and i-predator abundance Nk 
and Tk, we are introducing dynamic concepts involving biological species interactions. Condition 
(div) asserts that the mixing of nonexistent subpopulations, either of prey or predators, cannot be 
arbitrarily defined. The symmetry involved in the total number of contacts required for predator­
prey, consumer-resource or host-parasite interactions is an obvious fact that has not been fully 
explored until very recently (see Castillo-Chavez and Busenberg, 1991). 

Were-derive expressions for the mixing probabilities that allow for the incorporation of handling 
times. Let .,. i be the total relative time (e.g., the average total time used by predator species i divided 
by the smallest average handling predator time or a similar weighted average) spent foraging by an 
average predator of species i, and let u ij denote the per capita average handling time spent by a 
predator of species i on prey in group j, i=1, ... ,n, j=1, ... ,m. Then 

m 
D'· = E U·kC·k (10) 

• k=l •• 

denotes the mean per capita handling time of predators of group i. The searching time (the available 
time that predators of species i have to lind prey suitable for consumption) of predators of type i is 
.,. i- iT;· Hence, the number of contacts that an average predator of type i has with prey in group j 
during the searching time is 

. C··=(T·-u·)b··N·, (11) 
IJ I I IJ J 

where b;j denotes the proportion of contacts that result m a capture of prey from group j by predator 
species i. m 

Substituting (10) in (11) gives iT;= (r;-u;) E u;kbikNk 
k=l 

Solving for iT i leads to 

(12) 

From the ratio c;;/c;, we conclude that the probability of an effective contact between a predator of 
species i and prey of group j is 

b··N · IJ J (13) 

To derive the probability qji of an effective contact of predators of group i with prey of species j we 
solve the relation T ;c;; = N ;r ji for r ji· The formula q ji = r j;/r j leads to 

r;b;;T; I n rubu;T; 
q·;= m L m · 

3 1 + Lk=luikbikNk u=l 1 + Lk=IuukbukNk 
(14) 

Equations (13) and (14) satisfy the mixing axioms (di)- (diii). Formula (14) may be interpreted in 
the following way: b;; is the maximum capt ,re proportion in the absence of frequency-dependent 

. effects; r;b;;T; is the number uf captures of prey of type j by predators of type i during the total 
foraging time characteristic of +.he predator species. The numerator of (14) gives the proportion of 
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captures of all potential prey of predators of type i, while its denominator represents the total number 
of captures made by all types of predators per unit time; Pij depends only on the weighted relative 
proportion of prey types, while qji depends also on the handling times of each predator species 
involved. 

Definition 2 A predator-prey mixing probability is called separable if and only if 

Pij = PiPj and 

To obtain separable solutions from formulae (12) and (13), one requires hi; = b for all indices (i.e., 
the maximum capture proportion is the same for all predators regardless of the 
prey type they capture). This assumption leads to the following set of contact probabilities (Ross 
solutions): N. 

Pj = Em' N , (15a) 
u=t u 

and 

(15b) 

Thus, the frequency of a prey type in the diet of a predator depends on the proportion of prey types 
available, while the presence of a given prey type in the diet of a predator depends on the relative 
foraging time invested in capturing it. This last factor is commonly associated with the functional 
response of the predator (see, e.g. Price, 1990). 
4.a. The components of predation risk. Gendron (1987) has shown that the components of risk 
(how likely it is for a prey of any given type to be captured by a predator) can be understood in 
terms of the following factors: 
• The efficiency of the search path. 
• The area searched by the predator per unit time. 
• The conditional probability of detecting prey. 
• The conditional probability of attacking and then capturing detected prey. 
Models for predator switching behavior are defined in terms of the frequency of each prey type in the 
diet of the predator. Specifically, Fi' the frequency of prey type i is defined as 

p.N. 
F i = L m I I ' {16) 

i=tP;N; 
where Pi is a measure of the relative risk of prey i. Usually {3£ is computed by the formula 

where r i denotes the risk index of species i. Frequency-dependent predation requires risk indices which 
are functions of the relative density of the prey species and give rise to the switching behavior of 
predators. Generalizations of this switching behavior model useful for statistical analyses are of the 
form f(Xi) 

Fi = E;f(X;)' (17) 

where f is a nonlinear (usually a polynomial) function of X;, the density of prey species j (e.g., 
Gendron, 1987): 

To account for several predator species competing for a collection of prey species, we reformulate 
equation (17) in the following way p. ·N. 

F IJ I 

ij = ~m {3 N · 
L..Jk=l ik k 

(18) 

The model is complete after the postulation of appropriate functional forms for the relative risks of 
predation f3 ij· These functional forms usually weigh each prey type according to the risk of being 
captured (see Gendron, 1987). The connection with the mixing theory described before is made by 
applying our matrix (Pij• q) in (13)-(14) to model Fij above. 

Predation in nature ii a selective process and has also been explored in the context of food we1 3 

(Pimm, 1982, 1988; Fretwell, 1987). This frequency-dependent process may be dt ~ exclusively to 
- frequency-dependent effects--the most numerous prey provides a greater share of the diet of a11y 
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predator-or by an active process of preferential prey selection which may be more suitable for the 
survival of a predator. The formalism introduced by the mixing probabilities describes both 
processes. Pimm {1982, 1988) observes rare as well as common species of prey in predators' diets, 
thus imposing a ranking in prey species selectivity. This ranking depends on each predator species 
but it is not transposable to communities. The modeling approach introduced here allows for the 
incorporation of these effects. In the next sub-section we incorporate the mixing formalism in 
dynamic models of predator-prey interactions. These models form the basis of our approach to 
modeling food web dynamics. 

4.b. Predator prey interactions and food webs. The general model of predator-prey interaction is 
given by the system: 

N'(t) = g[N{t)] - R(N, T) ; T'(t) = T(t)G(N, T)- dT(t) , (19) 

where G(N, T) is the numerical response of the predator, R(N, T)/T is the number of prey consumed 
relative to prey density or functional response of the predator, and the symbol' denotes derivative 
with respect to time. The term g(N) models the growth process of a prey population when predators 
are absent and dis the density-independent mortality rate of the predator. 

A generalized form of the predator-prey model (19) that allows for heterogeneity in prey and 
predator interactions is given by the following set of equations: 

n Tk 
Nj(t) = g;[N(t)] -rjNj E <Ijk T, 

k=l 
(20) 

Model {20) may also be used to describe the competitive interaction between species that share a 
spectrum of biotic resources distributed among themselves according to the mixing matrix (Pij• q;;)· 
The first equation in {20) describes the jth - prey population growing according to g;[N(t)] in the 
absence of predators. 
The term n T. 

r- :Eq·. T 
J i=l ]I 

represents the total consumption rate of Nj by all predators in 
recruitment rate of the predator population we proceed as follows: 
The term T-

r-N·q·. TI 
J J Jt 

the community. To obtain the 

represents the total consumption rate of prey Nj by predators of type i. However, these predators eat 
not only prey of type j but of all types. Hence to obtain the overall capture rate by type i predators, 
we.have to sum their effect over all prey types obtaining 

m N· 
.· T;(t) ;~/jqkj ..f· 

The factor a· represents the efficiency of a predator of type in converting captured prey into 
predator bioU:ass (offspring). By virtue of the relations 

c;T;Pik = rkNkqki • 

n m 
:Ec;T; = Er;N;, 
i=l j=l 

we have that the number of prey captured equals the number of prey consumed. 

Remark 1 In fact we note the following property: 

m N; Tk m Tk m Tk 
Tk .E r.q.k T = T?:: r.q.k N i= T?:: ckpk· Tk= ckT Tk. 

J=l J J J=l J J J=l J 

Our simplest food web model considers only three trophic levels (basal, intermediate and top) 
each with £, m and n species, respectively. The dynamics are specified by the following transfer food 
web diagram: 
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N-+Y-+T, 

where T = {Ti}f denotes the top species, Y = {Y 1Jr the intermediate species and N = {N ;lf the 
basal species. The model equations are m y. 

NA:(t) = gk[Nk(t)]- skNk l~/kj i' 
1 Nk n T. 

Y'-(t) =a· Y-(t) E sk(Jk. -y - r.Y. E q .. -T1 6 .y · , (21) 
3 J J j=l J J J i=l 31 3 3 

m y. 
Ti(t) = ,BiTi(t) ~ rJ. rj qji- diTi , 

3=1 

and 

where aj and ,Bi are coefficients that measure the efficiency of conversion of captured prey into 
predator biomass, for j = 1, • • ·, m and i = 1, • • ·, n. Also gk denotes the growth law of the kth basal 
species in the absence of predators. 

This model implicitly assumes that all species in level Tare linked to all species in level Y, and 
that all species in level Y are linked to all basal species in N. There are (t + n)m links in this 
completely connected food web. The contact probabilities (Pijt Q;i) (for encounters between T and Y 
populations) and (1rij' O;i) (for encounters between Y and N populations) satisfy the axioms in 
Definition 1 as well as the conditions 

ciTiPik = rkYkqki • 

ak Y k1rkj = s;N ;0 jk ' 

for i = 1, · • ·, n, k = 1, · · ·, m and j = 1, • • ·, t. 

We now replace gk by gk(x) = .\k- pkx where .\k and Pk are constants representing th ... 
recruitment rate and the mortality of the kth population of prey respectively. We obtain 

m y. 
NA:(t) = .\k -pkNk-~kNk ;~/kj .,j, .. 

I Nk n Ti . 
Y'·(t) =a· Y-(t) E skOkj -y - r·Y· E'f<l .. - 6 .y ·, 

3 J J k=t J J i=l Jl J J 

and m 
T;(t) = ,BiTi(t) ~ rJ. 

3=1 

y. 
_l..q .. - d·T· T 3• • • ' 

where N = Ef=tNk andY= E~tY;. 

The initial conditions have to satisfy the constraints 

n m 
E c -T · = E r .Y. 
i=l I I j=l 3 3 

and 
m I. 
Ea.Y-= Es·N· 
i=l • • j=l 3 3 

(22a) 

(22b) 

at time t = 0. The mixing probabilities in (22a) are assumed to have the simplest possible form; i.e., 
they will be assumed to be Ross solutions (separable solutions) describing proportionate mixing of 
captures. Thus we have P·· = p., Q·· = q., 7r··= ;r. and (} .. = o. 
where -~~ = (J ]~ j 1 

) IJ J Jl 1 

and 

P3 "m y 
L..Jk=l k 

*; = ( E;~tNk) 
B; = [ 1J{i j t TJ~ Yu ]· 

1 +e 2: k=IwikNk u=l 1 +e E k=lwukNk 

In model (22) we consider the case where the capture of prey by corresponding predators is given 
by Ross solutions (15) in both the top and the intermediate levels of the food chain. The capture of 
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prey is essentially a random process where predators do not show preference for prey of any type. 
Furthermore, we have that the total populations in each trophic level follow the dynamics specified 
by the system 

T'(t) = ( f: !3·&· Ti) ( E r · YT;)- f: diTi . 
i=l 1 1 j=l J i=l 

This system is a representation of the dynamic:: behavior of the trophic species N, Y, and Tor, in 
other words, it represents a model for the dynamics of the trophic web as such. Only in very special 
cases, as it will be shown below, can the RHS of these equations be written in terms of N, Y, and T, 
and hence be solved independently of the biological species that constitute each trophic:: level. 
Statistical models of food webs deal at this level of organization, therefore incorporating a particular 
aggregation structure. 

The RHS of the equation for either type of predator in the aggregated model (top T, and 
intermediate Y) include two of the components of predation. The second factor in the first term 
describes the availability of prey- which depends on the ratio of prey numbers to predator numbers 
very much as the expression for the vectorial capacity in vector-transmitted diseases-, and the first 
factor represents the probability of capturing the encountered prey. The explicit introduction of 
rela~ive handling times and the appearance of the ratio of prey to predator density in the predator 
capture rates indicate its dependence on the number of available prey for each predator type and the 
behavioral constraints of the predator in the capture and consumption of prey. 

The constant equilibrium solutions of model (22) can be found by equating the RHS of each 
equation to zero. In the simplest case-, the mixing probabilities are Ross solutions that involve 
cons:ant and identical handling or searching times for all types of predator. In this case Bj= Yj/Y 
and q.=T·/T. 

bs~~ Remark 1 together with the definitions of the mixing probabilities for the matrices (Pj' 
qi), (i'j, Oi), we find the equilibrium values 

n 2 
r- L: f3.t. + 6. 
J i=l 1 1 J 

Yj = a.a. , or Yj= 0, for some j, j=l, .. ,m; 
d. J J 

t. = ~' or T1·=0, for some i, i=l, ... ,n; (23) 
1 ,.,.c. 

an~ 1 1 A 
Nk = m k ' 

sk i'f;/j 2 + l'k 

where Yj = Yj/Y and ti = TifT. Notice that with (23) one can determine the equilibrium value of Y 
from the second equation in ~22a), and then by using it and the third equation in (22a) we can find 
the equilibrium value ofT. If all species have zero densities except those in the basal web level, one 
more equilibrium occurs when 

A 
Nk= I'~' for k=l, ... ,/ and Yj = Ti = 0, for all i, j, i=l, ... ,m; j=l, ... ,n. 

This is the unique feasible equilibrium point whenever the removal rate (predation and death for 
intermediate predators, death for top predators) exceeds the value of the recruitment rate, that is, if 
predators are not efficient consuming prey or if the prey is not abundant enough, the predator 
populations go extinct. Otherwise the non-trivial equilibria in (23) are also feasible. 

Recall that in a predator-prey system, unlike typical compartmental models for infectious 
diseases, the captured prey is removed from the original compartment but, most importantly, 
contributes to the recruitment of the predator that kills it. Thus, there is anet transfer of individuals 
from, say, prey of group k to predator of group j and this transfer of individuals is weighted by the 
predator efficiencies a and /3. 
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Notice however, that we still have a conservation condition which derives from the conservation 
law for the mixing probabilities. In fact, if we subtract the overall losses of basal prey from the 
overall recruitment of intermediate predators, and the overall losses from the intermediate predators 
due to predation from the overall recruitment of the top predator species, and if we assume that a., 
/3i are unity for all i and j, then from Eq. (21) we find J 

my. 1 1 m y . 
. E i _E sk8kj Nj E skNk _E Okj i = 0, (24a) 
J=l J=l k=l J=l 

and, likewise, n T. m m n T. 
E_! Er· Y;q .. - Er·Y· "£q .. T1 =0. (24b) 
i=t T j=l J 1 ~~ j=l J J i=l Jl 

The same kind of results holds if the recruitment rate of the basal prey is changed to a logistic 
type of expression of the form gh(x)=~hx (1-x/Kh). The same conservation property holds. 
However, in this case, complex penodic behavior may arise. As examples we show some numerical 
simulations in Figures 1-2. Figures 1-2 show the dynamics of the trophic species; that is, the total 
densities for each trophic level have been computed and plotted. Thus we can say that these figures 
represent, literally, the food web dynamics. Figure 1 shows the phase plot of a food web with, 
possibly, chaotic dynamics. Figure 2 shows the phase plot of a trophic web that apparently exhibits 
aperiodic behavior. In all phase plots only basal and intermediate levels are shown. Simulations 
results for the food web represented by the system (22) with logistic growth term used the parameter 
values ~1= 0.07,~2= 0.01; ~a= 0.02; d1= 0.011; d2= 0.02; d3= 0.03; 61=62= 63= 0.01. The 
efficiency of biomass conversion for both predator types (ai and {3k i=1, .•. ,m and k=1, ..• ,n) is equal to 
1 and b and e are varied (b and e are the parameters needed in the expressions for qi and 0 ;)· For 
example if b=e=40, and begin with three species at each level then all three basal species survive and 
all others go extinct. For further details see Velasco-Hernandez and Castillo-Chavez {1991). 

4c. Relation to other models. 
The modeling framework presented in this work can be related to previous well-known models of 

food webs and consumer-resource intera.Ciions. For example, by taking only one species per trophic 
level in (21) and by defming g[N] to be a logistic growth rate we essentially recover the three-species 
trophic web studied by Hastings and Powell (1991) since in this case the mixing probabilities are p=1, 
q=1 and the capture rate of each predator can be assumed to be a type ll functional response. This 
food web may present chaotic behavior in regions of the parameter space. Likewise, by considering 
only two trophic levels, say Y and N in Eq.(21), we end up with a resource-consumer model of the 
type described by Tilman (1982) in which consumers compete for abiotic resources, sharing these 
resources according to the mixing probabilities qji• In our ease, however, these probabilities are not 
constant. The simplest possible ease occurs when we assume identical searching and handling times 
for all consumers. Here qj\ describes a resource-consumer system where the resource share of each 
consumer is proportional to Its frequency in the population. 

-td.. Remarks. Models of food webs. can be divided into two categories: classical, or static, and 
dynamic. Dynamic models include those of Hastings and Powell (1991) and Tilman {1991), and they · 
are the main topic of this section. Classical models include those that attempt to describe, from a 
statistical point of view, characteristic patterns common to sets of food webs • The cascade model of 
Cohen et a/. (1990) provides a successful example of a classical or static model. It describes the 
plausible behavior of the population densities of trophically related species. 

The concept of trophic species on which 'static' food web models are based is not a natural 
biological class but rather a theoretical classification. It is an equivalence class made of those 
organisms, regardless of the species to which they belong, that share the same predators and the same 
prey. Thus, when one tries to define a trophic species from data sources of error exist associated with 
the identification of common predators and common prey. The applicability of the concept of trophic 
species to the field of applied ecology depends heavily on the ability of experimentalists to eliminate 
errors in the classification process. This problem is not unique to the study of food web dynamics; it is 
quite common in the biological and social sciences. Once the researcher establishes what is a weak 
(negligible) interaction and what is a strong one, the trophic level of each organism is determined. 
•Jowever, as the study of Polis (1991) shows, it is difficult to decide what is a weak and what i~ a 
strong interaction in a trophic web. 

Moreover, the existence of omnivory makes it difficult to justify the classification of organisms 
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into trophic species. This is particularly important if one is interested in the population dynamics of 
the web. Omnivory implies a very diverse diet with some items being more frequent than others (a 
matter of taste, opportunity, or chance), and if a large share of a predator's diet is made up of rare 
organisms, their neglect on the basis of weak or strong interactions may be misleading. Consequently, 
the trophic structure dynamics of the food web cannot be defined exclusively in terms of strong 
interactions, but rather through a 'distribution' of interactions that reflects the composition of an 
organism's diet. In a recent study Paine (1992) concludes that in an species-rich herbivore guild there 
are mainly weakly negative or positive interactions with only a few strong negative ones. 

A trophic web may be better described from a dynamical point of view if the description centers 
on what resources are used and the way these resources are used, that is, if the description is centered 
on guilds of species. A trophic web is a model of the interrelations between species that share 
common resources which have been shaped by natural selection through various mechanisms such as 
diffuse <»-evolution (Maddox and Root, 1990). In fact, the mechanism of switching or apostatic 
selection has been recognized as one of the factors that may promote diversity in prey populations 
(Greenwood 1984; Levin and Segel, 1982). 

For the simple three-level food web discussed here, we have shown that the conservation 
principle of the mixing probabilities (cf. Definition 1} allows us to structure predator-prey interaction 
in terms of two main factors: the probability that a predator encounters its prey, and the conditional 
probability of capturing and eating the prey once it has been found. Moreover, the use of the mixing 
framework described in this work constitutes an approach to the modeling of switching predator 
behavior, of frequency-dependent mechanisms in prey selection, and interaction strength in food webs. 

We have also shown that the conservation law of the mixing probabilities translates into a 
conservation property in the predator capture and consumption rates, and the prey capture and 
removal (through predation) rate, as shown in Eq. (15a) and (15b). Eq. (13) is essentially a 
consumer-resource model where the probability that during a unit time, an individual in consumer 
species j captures and consumes an individual in species i is not constant but determined by the 
frequency ·of predators and prey involved in the interaction, and the preference or risk of each 
predator or prey type respectively. In fact, only when the mixing probabilities are constant, and the 
ratio of resource of type k numbers to total consumer numbers is equal to the density of resource prey 
of type k, do we recover a Lotka-Volterra (Kolmogorov type, Brauer, 1976) model. 

The models of food web dynamics based on our framework can be used, for example, to study 
the time evolution of any given initial food web configuration. It is possible to assign different 
'strengths' to the interactions in the web through the initial contact rates satisfying conservation 
relations as the one shown in (22b ), and then follow through time the fate of the individual species. 

5 .. APPLICATION TO MODELS FOR VECTOR TRANSMITI'ED DISEASES. 
Our efforts to contribute to the understanding of the relative effects of different mechanisms on 

the dynamics of the HIV /AIDS epidemic constitute the driving force behind the development of 
mixing/contact structures that we have discussed in this article, and consequently their application 
has. been in the context of STD's. In this section, we outline the use of our framework in the context 
of vector-transmitted diseases. 

5a. Host-Vector Mixing Frameworks. 
Mathematical models have played a very important role in the history and development of 

vector-parasite epidemiology. Sir Ronald Ross in 1911 developed a theory for parasite transmission 
mechanism while engaged in the study of malaria. He developed a simple mathematical model that 
provided him with the concept of transmission threshold. Later on, Macdonald (1957), based on the 
work of Ross, developed a new model from which he extracted the concept of vectorial capacity. The 
involvement of mathematical models in epidemiological theory has persisted along the years. In 
particular we mention the mathematical model developed for the evaluation of control measures for 
malaria in the Garki Project (Molineaux and Gramiccia, 1980). This model was developed based on 
an extensive research on the transmission of malaria in Northern Nigeria. It uses the theory and 
results developed by Ross and Macdonald. Despite the construction of new models (e.g. Aron and 
May, 1982; Rogers, 1988; Pacala and Dobson, 19W; Dietz, 1988b), all estimates and assumed 
mechanisms for parasite transmission from vector to host still rely on the assumptions implicit in the 
definition of vectorial capacity as presented by Macdonald (1957). It is estimated in order to 
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understand and evaluate the strength and effectiveness of vectors for the transmission of parasites. 
Transmission in vector-transmitted diseases depends on the life history of the vector species . 

Malaria and dengue, for example, are transmitted by mosquitoes of several species including Aedes 
spp. for dengue and Anopheles spp. for malaria. Chagas' disease is transmitted by triatominae bugs 
of various genuses, e.g. Triatoma spp., Rhodnius spp., and Pastrongylus spp. In malaria and dengue, 
transmisson of the parasite to human hosts involves only adult individuals since the larval stages are 
aquatic and have a completely different ecological niche. In Chagas' disease, however, the vector is a 
triatomine bug with 5 nymphal stages preceding reproductive maturity. All of them are 
hematophagous and all of them may be involved in the transmission process {Zeledon and 
Rabinovich, 1981). Thus when speaking about general models for vector-parasite-host interactions we 
must consider the age and stage structure of the vector population. 

5b. vectorial Capacity 
The factors affecting transmission by the appropriate vector stages according to Molineaux 

(1988) are: (1) density of the vectors in relation to human hosts; (2 ) the effectivennes of the vector in 
acquiring ano maturing the infection after feeding on an infective subject; (3) the frequency with 
which the vector takes a blood meal and the fraction of these blood meals taken on human hosts; (4) 
the duration of the parasite incubation period in the vector; (5) the longevity of the vector. Most of 
the above factors are included in the formula for the vectorial capacity defined as the capacity of the 
vector population to transmit the disease in terms of the potential number of secondary inoculations 
originating per unit time from an infective person (Molineaux, 1988; Molineaux et al., 1988). A 
formula for the vectorial capacity is derived form the concept of basic reproductive rate (not a rate) 
proposed by Macdonald (1957): 2 n 

C rna p {25) 
-lnp ' 

where C denotes the vectorial capacity, m the number of vectors per human host, a the number of 
blood meals taken on a human host per vector per day (biting rate), p the proportion of vectors 
surviving per day, and n the length in days of the parasite in~ubation period in the vectors. Formula 
(25) is species specific since, for example,n varies from species to spedes. 

H we denote by Ro the basic reproductive num~r or ratio, then we have that 

Ro=r• 
where r - 1 denotes the expected duration of infectivity (Molineaux. 1988). If we define p. as the 
death rate then p = e - P. and 

(26) 

then R0 = £, the form used by Aron and May (1982) in their models of Malaria transmission. 
. The assumptions on which (25) is based are, according to Molineaux (1988): (a) the vector is 

fully effective in acquiring and maturing the infection. This amounts to ignoring variability in 
susceptibility by the vector species; (b) vectors die at constant rate, independent of age, and 
senescence is ignored; (c) longevity is unaffected by the infection; (d) the probability of feeding on· 
hosts is unaffected by the number of previous meals or by differences in host type, and (e) parasite 
presence does not affect preference by vectors (Dye, 1990). 

Some of the important factors neglected in Formula (25) were described by Ribeiro, Rossignol, 
and Spielman (1985) in their study on the blood finding strategy of Aedes aegipty and its interaction 
with the parasite Plasmodium gallinaceum. The probing behaviour by Aedes aegipty is complex and 
involves periodically repeated probing while searching for a blood meal (Ribeiro et al., 1985): new 
attempts to feed depend on the success of the previous search. During each search the probability of 
feeding success may be interpreted as a function of the blood vessels on the skin. There is some 
evidence that the probability of desisting from feeding increases linearly with time while decreasing as 
a function of the previous number of attempts. Ribeiro et al. (1985) conclude that the dependence of 
the probability of feeding success on the density of blood vessels implies a preference for infected hosts 
since parasites induce an increase in the availability of blood vessels (see also Molyneaux and 
Jeffreries, 1986). 

Feeding and probing behaviour of hematophagous arthropods may change during feeding 
depending on the infected status of the host, and this fact, according to Dye (1990), makes direct 
estimation of the vectorial capacity impossible. He argues that it is better to estimate the relative 



• 

• 

-15-

vectorial capacity before and after a control measure is applied. 
In Chagas' disease, the feeding and developmental cycle can be broken into clear stages (see the 

study on the population of Rhodnius prolixus, Friend et al., 1965). Trypanosoma cruzi is transmitted 
to susceptible hosts by contamination rather than by injection during biting. Triatomines urin"te and 
defecate during or after a blood meal (Zeledon and Rabinovich, 1981), and this excretory behavior 
impacts the transmission dynamics of the parasite. Infective forms of T. cruzi go in the feces and are 
able to penetrate wounds or soft tissue-around the eyes and the mouth-infecting the host. The 
probability of infection increases with the duration of a blood meal (Zeledon and Rabinovich, 1981). 
Bess and Bayes (1970) have explored the potential of domestic animals to attract zoophilic species of 
mosquito (Culex tarsalis and other species of the same genus). It has been established that preterences 
do exist among vector populations in the selection of hosts; however, host preference in the field 
depends not only on the vector preferences but on the density and relative abundance of host types. 

These results indicate that a careful modelling of the process of acquisition of blood meals by 
vectors is necessary in order to obtain a better estimate of the transmission probability. Searching 
and handling times must be explicitly considered as well as the functional form of the dependence of 
the transmission probability on these parameters. We cannot proceed to use formula (25) when the 
vector does not transmit the disease by biting, as in the case of Chagas' disease, when there is more 
than one stage involved in the transmission process (Schofield, 1982; Zeledon and Rabinovich, 1981), 
or when handling, search times, host-preference, and frequency and density dependent effects are 
important. 

5c. Contact structure. 
The need for further theoretical work is therefore quite evident. We re-interpret the contact 

structure for frequency-dependent predation, completed in Section 4, in the context of host-vector 
interactions. We hope that our approach will provide a useful framework on which the questions 
raised may be systematically addressed. 

Assume that vectors as well as hosts are subdivided into groups according to some variable of 
interest (geographical location, susceptibility to infection, species, etc.), and denote by C.Ij the average 
number of contacts per day that vectors of group i have with hosts in group j. Consequently ( for i = 
1, •• , M and j = 1, ••• , N) we must have 

Vi(t)Cij(t) = Bj(t) Cji(t), (27) 

where Vi(t) denotes the n"umber of vectors of type i at timet and Bj(t) denotes the number of hosts 
of type j at time t. 

Let ri denote the total relative average time spent foraging and <Tij the average handling time 
spent on hosts of group j by a typical vector of type i. Then, as before, 

N 
D'i == L o-ik cik' {28) 

k=l 
denotes the mean per capita handling time of vectors of group i, and the searching time available for 
vectors of type i to make contacts, that is, to find suitable hostst is rra't Therefore, the average 
number of contacts that a typical vector of type i makes with hosts of type J per unit time is 

Cij = (rrD'i) Pij Bj, (29) 

where Pii denotes the rate of successful contacts, i.e., the actual biting rate of vectors of type i on 
hosts of -type j. In many situations it is reasonable to assume that Pr is a function of the total 
number of vectors of any type feeding at timet on hosts of type j. If llj ~enotes the average number 
of vectors of any type feeding on a host in group j, and if we assume tliat vectors are less efficient at 
biting very popular hosts (that is, hosts with many vectors feeding on them), then as a first 
approximation we have that r·. 

• p .. = ~J, (30) 
1J j 

where the matrix (ri') can be interpreted as the matrix of maximum biting rates at low vector 
densities. We imposeJthe condition rij = rji for all 1 ~ i ~ M, 1 ~ j ~ N, and set rji = 0 otherwise. 
Substituting (29-30) into (28) one obtains a:. before 

N 
(1. = (r·-U·) "'\;' u.kr.krnk 1 1 1 L.... 1. 1 •• 

k=l 



• 

• 

• 

-16-

H 
where mk = ll k is the ratio of hosts of kth type to vectors of any type feeding on a host of type k . 

k 
If Pij denotes the proportion of effective contacts between vectors of type i and hosts of type j, then 
one easily sees (as in Section 2) that 

{31) 

Similarly, if <lji denotes the proportion of effective contacts between hosts of type j with vectors of 
type i then r.r .. v. 

1 1J 1 

(32) 

Therefore the matrix (Pij , qji) is a mixing contact matrix; that is, it satisfies properties (di)-(div). 
Solutions (31-32) are not Ross-solutions, however, they become Ross solutions by requiring that rr = 
r for all indices (see Section 4, Equations 15a and 15 b). lJ 

Remark 2. Frou1 Equations (15a and 15 b) we see that the mixing of susceptible hosts depends on the 
ratio mi-measuring how the host population is allocated to each vector type-while the mixing of 
susceptible vectors depends on the foraging time invested in 'capturing' a host. In this sense, 
solutions (15a) and (15b) and, more generally solutions (31) and (32), allow for the possibility of 
modelling asymetric forms of transmission as those discussed in relation to Chagas' disease (see 
Velasco-Hemandez, 1991). 

In a classical contact epidemic model, which is quite appropriate for host-vector interactions, the 
incidence rate for infective hosts, or the number of newly infected hosts per unit time, has the general 
form 

M lv. 
Sh. L Pij gi S + 1 I ' (33) 

J i=1 vi vi 
where gi is a parameter that measures the infectivity of vectors of type i, Sv. and lv. are the 
suSceptible and infective subpopulations respectively of vectors of type i, and Sh.1 is the slisceptible 
host population of type j. Similarly, the incidence rate of infected vectors has the g\!neral form 

M Ih. 

Sv. t= qji ij S +J I ' (34) 
1 1-1 h .. h. 

where f. is a parameter that measures th; infectivitf of h~sts of type j, and Sh.and Ih.are the 
susceptible and infective host populations respectively. The full equations are then ~eadily Written. 
Some preliminary work using these equations has begun to be carried out by Velasco-Hernandez 
(1991). 

6. CONNECTIONS BETWEEN DETERMINISTIC AND STOCHASTIC APPROACHES 
Classical deterministic models for the sexual spread of STD's such as gonorrhea among 

heterosexual populations can be found in Hethcote and Yorke {1984) while classical and pair­
formation models under a unified mixing framework for the spread of STD's can be found in Blythe 
et al. (1991), and references therein. A stochastic version of one of the deterministic models found in 
Blythe et al. (1991) is provided below. This formulation uses the modeling approach common to 
interacting particle systems (for details see Luo and Castillo-Chavez 1991, 1992). Hence, it has great 
generality and flexibility. 
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General Notation 

Let X = {0, 1, · · ·, L} x {0, 1} x {0, 1, · ··, N} x {0, 1}\{0} x {0, 1} x {0} x {0, 1} and consider 
the stochastic process et : X -+ {0, 1, 2, •· ·}, t :2: 0. For x = (i, lli j, v) EX, our interpretation ofthis 
process is as follows: 
(1) The labels ll and v represent the eepidemiological status of the individuals. Specifically, 0 :: 

susceptible and 1 = infected. The labels i and j represent groups of males and females. 
(2) For i > 0 and j >0, et(i, lli j, v) gives the number of pairs where the male is of the i-th type and 

has epidemiological status ll and the female is of the j-th type and has status v at time t; 
(3) Singles are labeled by triplets. However, to keep the domain fixed we use four coordinates and 

set either i or j equal to zero. Specifically, if i > 0 and j = 0, then et(i, lli 0) :: et(i, lli 0, 0) = et(i, Jli 0, 1) denotes the number of single males with status Jl in the i-th subpopulation at 
time t. Similarly, if i = 0 and j > 0, then et(O; j, v) :: et(O, 0; j, v) :: et(O, 1; j, v) denotes 
the number of single females with status v in the j-th subpopulation at time t. 
LetS = {0, 1, 2, ···}x and let c: SxS- (0, oo) be a real-valued function-the flip rate--to be 

specified later. We view {et:t :2: 0} as an S-valued Markov process with flip rate c(., .), i.e., if et = e 
for some t :2:0 then c{e, 'I) denotes the instantaneous rate at which et may change to the state 'I· 
The generator of this process is 

nr(e) = }:c(e, 'l)(f(7J) -f(e)), 
7] 

where f is a continuous function on S. Thus, 

(35) 

(36) 

We further assume the existence of an underlying mixing/pair-formation matrix (Pij(e), qij(e)) of the 
type described in Section 2. To SP.ecify the flip rates we use the following notation. For e e S, A C X, 
B C X and A n B = 0, we define e~ e S as 

_ { ((x) + 1 
et(x) = e(x) - 1 

e(x) 

ifxeA 
ifxeB • 
otherwise 

If we change the notation slightly and now use the letters m and f to denote the parameters 
associated with uninfected males and females and M and F to denote those associated with infected 
males and females then one defines the flip rate c(., .) as follows (here -y, 6, and u are constant 
parameters): 

(a) Pair-formation 
For i > 0, j > 0, 

(e e(i,~-';j,v) ) - b1(e)e(o·· ) f (e) e(i,J.t;o) 
c ' (i,I';O),(O;j,v) - i i.J,v Pji e(i,J.t;O) + e(i,1 - J.liO) . 

(b) Pair-dissolution (u denotes the pair-dissolution rate) 
For i > 0, j > 0, 

~i u·O) (oi.J· v) c(t: t: .•r•. ' ' ) = u t:(i u· J. v). '-' '- I,J.liJ,v) VJ.l'- ' r• ' 

(c) Transmission (6 denotes the transmission coefficient-transmission may occur only while paired) 
For i > 0, j > 0, 

cce. e8:~~:B> = 6Fe(i, o; j, 1), c(e, e8:~~:~~> = 6Me(i, 1; j, o). 

(d) Recovery (r denotes the recovery rate) 
For i > 0, j > 0, 

c(e, e8:~~:~~) = rFe(i, o; j, 1), c(e, e8:~j:~~) = rM<(i, 1; j, o), 

( c ,(i,1;j,O)) '(' 1 . 1) (' c(i,O;j,l)) c . 1 · 1) 
c "' "(i,1;j,1) = rF" 1' ; J, • c.,, "(i,1;.i,1) = rM"'1' ; J, · 
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while for single infected individuals we have 

I 

furthermore, for i > 0, j > 0 we have the combined recovery rate 

c(~. ~H:~~:~~> = '"~FM~(i, 1; j, 1). 

(e) Removal (JJ denotes the removal ra~ from sexual activity) 
For i > 0, j > 0, p, v, ' 

( t: t:(i,p;O) ) .$(' . ) (t: t;{O;j,v) ) t:(' • ) 
c .. , .. (i,p;j,v) = l't .. 1, l'i J, v ' c .. , .. (i,p;.i,v) = JJm .. 1, l'i J, v ' 

while for the removal rate of single individuals we have that 

c(e, e(i,tJ;O)) = l'me(i, I' ; 0), c(e, ~(O;jv)) = 1'~(0; j, v). 

(f) Recruitment (all recruited individuals are susceptible) 
For i > 0, j > 0, 

(g) Other: 
For any other '1 =/= e, we assume c(~. '1) = 0 and c(~.e) = - L c(e, q). 

e=t=" 
(More details are found in Luo and Castillo-Chavez, 1991, 1992). 

A13 the time t changes, singles may form pairs, pairs may dissolve, and the disease may be 
transmitted (usually only within clearly specified pairings). The system {~t} consists of a series of 
changing elements in the set X, the set ot' all functions on S. The dynamics of the system is dt"SCribed 
by the rates at which the system changes. These rates are given as a set of nonnegative numbers 
{c(e, q) : e =/= q, e, '1 e X}. Specifically, each c(~, q) is the rate at which the system changes from 
e to "' that is, . 

P(~t+h = qfet = e) = c(e, q) h + O(h), Vt ~ 0 • 

The deterministic model that corresponds to the above stochastic model in the context of a STD 
such as gonorrhea (susceptible-+infected-+Susceptible) but that incorporates couples (transmission can 
only occur in a couple where one of the partners is infected) is described below (for more details see 
Blythe et al. 1991). 

· Consider a population of sexually active heterosexual individuals divided into subpopulations by 
such factors as sex, race, socio-economic background, and average degree of sexual activity. There are 
Nf female and Nm male subpopulations, each divided into two epidemiological classes for single 
individuals: fj{t) and m/t) (single susceptible females and males, at time t), and Fj(t) and Mift) 
(single infected females and males), all for j = 1, ... ,Nr and i = 1, •.. ,Nm. Hence the sexually-active 
single individuals of each sex and each subpopulation are g!ven bJ. T/ = ~ + F. and 71m = mi + Mi. 
The epidemiological classes for pairs are given by "fi• ;_rim, ?r!fl, 1r[iM, which are respectively the 
numbers of pairs of f-with-m, F-with-m, /-with-M, and F-witt-M mdividuals. Transmission can 
only occur among those individuals in pair types 1r~m or ~. Since ~ = 1rt.«, we need only 
consider four types of pairs. We assumed that the trinsmission probability per uni£ time is constant 
within each pair containing one infected individual. We let 6M and 6F be the rates for male-to-female 
and female-to-male transmission, respectively. The per capita recovery rates are 'YM and 'YF for 
infected males and infected females, respectively, when their partner is uninfected. When both 
partners are infected (F-with-M pairs), simultaneous treatment of both is the norm for gonorrhea, so 
we incorporate "combined" recovery rate 'YFM• with both parties moving directly to the f-with-m (no 
infection) pair type. The per capita dissolution rates are ufm• ufM, uFm• and uFM for the different 
types of pairs, and the per capita removal rates from sexual activity due to death or other causes are 
Jlc and Jlm for all females and all males respectively. Let Af and Ai denote the "recruitment" rates 
(assumed constant) of single (assumed uninfected) individJais in the female and male populations 
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respectively. We use the notation 

m· f 
Pxm .. = 1 P M J'jl Jl - i + mi 

M M· f 
Px.. = 1 p M J'jl Jl - i + mj 

yf_ fi m 
Pij = F. + f. Pij ' 

I I 

yF- Fi m 
Pij = F· + f. Pij ' 

l l 

(x = for F and y = m or M, for i = 1, ... , Nm and j = 1, ... ,Nf) for the fraction of pair-f~rmations 
between the specified sub-groups ( i and j) which are of given infection status; for example, p!f and 
p~ give the fractions involving uninfected {mi) and infected (Mi) males respectively. T~en the 
g~norrhea pair formation/dissolution model is 

df. Nm Nm 
dt = Af +'YFFj + [JJM+ufM] L ~ + [1-'m+urm1 L wfi-£Cf(t)+!-'r] ~~ 

dF· Nm i=l Nm i=l 

dtJ = [pm+uFmJ L wKm + [pm+<TFM] L wKM- [cf(t)+'YF+I'rl Fj, 
dm· i=l Nf i=I Nr 

Tt = Ai + 'YM Mi + [!Jc+uFmJ ~ 1 + [!Jc+umJ ~ wJi- [<Ji(t)+l'ml mi, 
~ ~ ~N ~ <Jt = [!Jc+un,d L ~ + [!Jc+uFM1 L 'lr~M- [<Ji(t)+'YM+I'M] Mi, 
d~ j=l j=l 

A~1 = cf< t) pJf ~ + 'YM ~ + 'YF ~m + 'YFM 11"KM - [!Jr+l-'m +u mJ wfi, 
dn-.. m F wf.M F 
~ =cj"(t)pjimFj+'YM ji -(JJr+l'm+uFm+6F+'YF]'~~"jim' 

dd~M= cf(t)p~~ +'YF~M- (JJr+l'm+uCM+c5M+'YM) ~, 
dn-ji ,.,r FM F fM FM 
(it= vj(t)pji Fj + c5F'~~"jim + 6M?Iji""- [!Jr+/Jm+<TFM+'YM+'YF+'YFM] '~~"ji • 

with initial conditions fj(O) > 0, mi(O) > 0, wfi'(O)=O, ~(0) = 0, wKm(o) = 0, iM(O) = 0, and at 
least one of the Fj(O) and Mi(O) greater than zero (for i = l, ••• ,Nm and j = l, ••. N-J. We invoke the 
results of Kurtz (1970, 1971) and conclude that for large populations the deterministic and stochastic 
models will have the same asymptotic beliavior. 

6a. Simulations of the process { et : t ~ 0}. 

The general approach for simulating jump Markov processes is as follows. From the construction 
of the flip rates we know that 

c(e) = I: c(e, TJ) < 00. 

f/ES 

Hence, if we let the sequence 0 = Po < p1 < p2 < · · · denote the jump times of the process. Then T n 
= Pn- Pq_1 has an exponential distribution with rate c(eu ). We can simulate the process using 
th~ followmg procedure: n-1 

(i) 

(ii) 

Set the initial state e0 and assume that a sequence of n jump times 0 = u0 < u1 < ... < un and 
their COrresponding States e(T.I 1 ~ i ~ n have been determined. 

1 

Get Tn+l from exp {c(eun)} and let un+l = <Tn + rn. 

c(eu ' TJ) 
n with probability 

c(e(T ) • (iii) Set eu = TJ 
n+l n 

(iv) Define et = eun for <Tn ~ t < un+1' 

We proceed to simulate the above stochastic model in a very special situation. We assume that 
the infection rates c5M and c5F are equal to zero or equivalently that there are no infected individuals 
in the population. Hence, we are simulating a purely demographic model. Individuals form and 
dissolve pairs. There is constant recruitment and we have individuals of several (economic, social, 
etc.) types. The simulation (described below) will have as its average dynamics the corresponding 
deterministic dynamics. However, the stochastic version allows for the study the changes of the 
variance as a function of time. 

A 10,000-realization run vas allowed to simulate the process up to time t = 2.0, and a 1,000-
realization run was extended to t = 32.0. Simulations were carried out using four groups of single 



• 

• 

-20-

males and four groups of single females, resulting in 16 possible pair-types. The initial numbers used 
for single males, by group, were: m1 = 1000, m2= 900, m3= 800, and m4 = 2700. For females, the 
corresponding numbers were: f1 = 2000, f2= 1000, f3 = 500, and f4= 3500. The initial number of 
pairs was constrained to zero for all possible pair-types. Removal rates for individuals-whether single 
or in pairs-were held constant at 0.1. For this exercise, pair dissolution rates were also assumed to be 
invariant, but with a 5.0 value. Recruitment rates used for (single) males were the following: m1= 
100, m2= 90, m3= 80, and m4= 270; the recruitment rates imputed for (single) females were: f1= 
200, f2= 100, f3= 50, and f4= 350. Pair formation rates for males were set at: m1= 3.5, m2= 3.0, 
m3 = 2.5, and m4= 3.5; and pair formation rates for females were set at: f1 = 2.5, f2 = 2.45, f3 = 
2.3, and f4= 2.586. As shown in Figure 3, stability in absolute sizes is reached early-at t < 0.5 
(relative distributions, not shown, expose the same trait). This pattern of very rapid stabilization is 
maintained when averages are computed from simulations based on as few as 30-to-100 realizations. 
Variance, expressed as standard deviations, for all possible pair-types also stabilizes at t < 0.5 (see 
Figure 4). However, variation for each of the groups of single individuals, male or female, continues 
to increase until 10 <= t <= 12 (Figures 4 and 5). Further simulations will allow us to ascertain 
whether the pattern observed beyond t = 12 indeed reflects stability-or only smaller increments in 
variation. A simulation with 10,000 or more realizations and a time horizon of 50 <= t <= 100 
could be necessary to accomplish this. 

7. Conclusions. 
In this article we have introduced a flexible framework for the modeling of contact structures in 

biology. It can be implemented in stochastic and/or deterministic frameworks. We have provided 
modeling applications in demography-including demographic models for pairs-, epidemiology, 
inheritance of cultural traits, and food web dynamics. Recently, we have also estimated the contact 
structure-as modeled by our mixing matrices-of a student population as a function of sexual or 
dating activity (see Castillo-Chavez et al. 1992; Hsu Schmitz and Castillo-Chavez 1992). In addition, 
we have worked on methods for estimating the parameters associated with arbitrary mixing structures 
(see Rubin et al. 1991; Blythe et al. 1992). Furthermore, the representation theory of mixing 
matrices as a function of the preference structure of a population, as first developed by Busenberg and 
Castillo-Chavez (1989, 1991), has allowed us to begin studying the role of preference in two-sex 
mixing populations. In fact, we designed and conducted a behavioral survey of a colllege population 
in order to estimate the preference and mixing structure of two-sex mixing populations. 

This research represents our initial efforts in understanding the role of "social" structures in 
disease dynamics. Most models in the past assumed a fixed social/behavioral structure. The serious 
study of the transmission dynamics of HIV pointed out the serious limitations of this approach. We 
have observed a large number of theoretical advances over the last few years (see Castillo-Chavez 
1989; Jewell et al. 1992; Anderson and May 1991; and Hethcote and Van Ark 1992). However, we 
have just begun to understand the effects of changing contact structures in population dynamics. 
This is what happens when biology meets mathematics! 
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Figure 1. Simulation Results for the Food Web Model, with b =4 and e =80. 
The Simulation Was Run for 5,000 Time Units. 
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• Figure 2. Simulation Results for the Food Web Model, with b =4, and e =2. 
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Figure 3. Total Population by Sex, Class, and Pairing Groups. 
Simulation with a = 5.0, t <= 2.0, and 10,000 Realizations. 

1~,-------~-----.-------r------~------r-----~------~------, 

!lilt.' -··-··-1 -·~- ·-·1-11-11. 11-11 ~~~-·1-11-1 ~,,,,l ....... ,,,,,, 
1 , 

11111" 111111111111111111 111111111111111111 111111111111111111 111111111111111111 111111111111111111 111111111111111111 111111111111111111 -- -1 - - - - -- -~ - - - - ·~ - - - -
1000~~----r-----~------+-----~------~------r-----~------; 

~-....... ......... ••• • ~ • ••••••••••••••••• I •••• I •••• 

.................. .................. ................... .................. .................. .................. ................. . 
~.- _, ...... ~······ .............. "······ ............. . 

~-- .. I- I~ I-I- I-I-I-I- I·~ I-I- -I-I I~ I-I-•• It ••.. --·~-· -·~-··-··-II···· ·1-·1 ··~·-··-··-· 
# .... ---- ~--··!-·-----------------· ---·· . .. 

~ # =::.· • - • - •• - •• - •• - • - •• -~ •• - •• -~ ~ •• - •• ~ •• - • . . . . ------ ~------· --------· ------- ~-------- ------· -------~~.,.- --.-- --.- -• ----• -~--·---- ... -.--. --.- .. 100-+--..-... ~~p~;;,..-l::.-:l""''---·--~ .. _---_&..l=-.l.'+"~-=---....... _=--f-&_ ............ _ .... _t_=-..... =-=-= ............ _ ...... _ ..... =-=-... .p=---&..I=-:..:L.4 

# • ~-- -Jl'./' - • - • ~ io - • - • - • - • - • - • - .. - • - • - • - •••• - • -. 
~-. _,_ I.,_:,. ... --- -

~:~--~--~-- --~--~-=--=~~~--~--~-~ .. :.=··=:-~~-~ ~-~·-=·-~:~ ~:-~·-=--~~ ~-~~-=:·: 
I./ "' - :- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - ,_ - - - -... , .,· 

10~~~~-r-------r-------r-------r-------r-------r-------r------~ 

1 
0.00 

................ 
1111111111111111 

I • , 
I 

m1 

m2 

m3 

m4 

0.25 

- -
• • • • I 

-·-II 

-II -I 

0.50 0.75 

f1 - - m1f1 

f2 m1f2 

f3 ················· m1f3 

f4 -- - - m1f4 

1.00 1.25 1.50 1.75 2.00 
Time 

-.-. m2f1 ----. m3f1 -I I- I m4f1 

-- -- m2f2 ----. m3f2 ------· m4f2 

- - - - m2f3 m3f3 ------· m4f3 

- .. - m2f4 --.-. m3f4 •••••• 1 m4f4 

... ·(~ 



.. 

• 

• 

• 

Figure 4. Standard Deviation, Total Population by Sex, Class, and Pairing 
Groups. Simulation with a = 5.0, t <= 32.0, and 1 0,000 Realizations. 
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Figure 5. Standard Deviation, Total Population by Sex, Class, and Pairing 
Groups. Simulation with a = 5.0, t <= 32.0, and 1 ,000 Realizations. 
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