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Abstract. In this article we apply recently developed mixing/pair formation structures 
to the modelling of frequency predator-prey interactions. Applications to vector-host 
interactions and food web dynamics are provided. 

1. Introduction 

During the last ten years, mainly due to- the spread of HIV /AIDS throughout 
the world, there has been a surge of mathematical studies on the population 
interactions involved in the transmission of infectious agents. In particular, the 
study of sexually transmitted diseases has motivated models of the mechanisms of 
pair formation and mixing among individuals belonging to heterogeneous popular 
tions (populations structured in groups characterized by different levels of sexual 
activity, drug use, etc.). The mechanism of pair formation has been formalized 
by Castillo-Chavez and collaborators (see Castillo-Chavez and Dusenberg (1991); 
Dusenberg and Castillo-Chavez (1991), Blythe and Castillo-Chavez (1989), for ex­
ample] among others, through an axiomatic approach. They postulate a series of 
axioms for the mixing probabilities and a conservation property on the number 
of contacts per unit time between interacting individuals belonging to different 
subgroups. This postulate is the key component used on generalization of the ap­
proach to other population processes. Two of these applications are reviewed in 
this work. Vector-host interactions constitute, perhaps, the most immediate appli­
cation of the framework since they are analogous to male-female encounters in a 
two-sex population. The first documented attempt to establish a conservation of 
contacts property was provided by Ronald Ross in his studies of Malaria (Ross, 
1911). The second example is of predator-prey interactions structured through 
frequency dependent functional responses. Lotka Volterra models of food webs as­
sume that predation rates follow the mass action law, i.e. the predation rate is 
directly proportional to the density of prey. Shortcomings of this assumption are 
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found in the literature (see Ariditi and Ginzburg, 1989). The approach discussed 
in this manuscript provides alternative descriptions. 

The paper is organized as follows: Section 2 provides a brief description and 
discussion of the classical Ross-Macdonald model of Malaria transmission; Section 
3 provides a modeling framework for the building models for vector-transmitted 
diseases using the pair formation/mixing approach of Busenberg and Castillo­
Chavez (1991); Section 4 provides an application to food web modelling; in Section 
5, we give our conclusions. 

2. The Ross-Macdonald model 

Epidemiology was one of the first areas of research in biology where mathematical 
models were successfuly applied. The basic formulas for the estimation of biting 
rates and associated parasite transmission rates were built after Ross' studies in the 
population dynamics of Malaria (Ross, 1911). The factors affecting transmission 
in vector transmitted diseases can be sumarized as follows (Molineaux, 1988): 
1) The density of vectors with respect to humans, 
2) The effectiveness of the vector in acquiring and maturing the infection, 
3) The frequency of blood meals, 
4) The fraction of blood meals taken from human hosts, 
5) The incubation period of the parasite in the vector, 
6) The longevity of the vector. 
Most of these factors have been included in a single parameter that is a measure 
of how effective is a given vector population in transmitting the infection agent to 
its host. The vectorial capacity is defined as the capacity of the vector to transmit 
the disease in terms of the potential number of secondary inoculations originating 
per day from an infective person (Molineaux, 1988). The formulation of vectorial 
capacity given by Macdonald (1957) is 

where 
m is the ratio of vector to host numbers, 
a is the biting rate (number of blood meals per host per day). 
p is the proportion of vectors surviving per day. 
n is the length (in days) of the parasite incubation period in the vector. 

By multiplying this expression by r-1 , the expected duration of infectiousness in 
the host, we obtain the basic reproductive number 
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where we have defined p = e-J.£, J.L being the daily vector death rate with 

This basic reproduction number and its associated model, have provided useful 
insights in the study of the population dynamics of infectious diseases. However, it 
is based on assumptions that need to be modified for its useful implementation to 
disease transmission in heterogeneous populations where demographic activity is 
not negligible. The limitations are better understood after one analyzes the main 
assumptions behind the Ross-Macdonald formulation. They are: 
1) The vector is fully effective in acquiring and maturing the infection. 
2) The vectors die at a constant rate. 
3) Longevity is not affected by infection. 
4) The probability of feeding is not affected by the number of previous meals. 
5) The probability of feeding is not affected by the number of host types. 
6) Parasite presence does not affect preference. 
To take into account heterogeneity, we may need to consider: 
a) Behavioral aspects of the vector. In particular we probably need to take into 

account the time budgeting of vectors (eg., foraging and search time) thus 
introducing multiple time scales into the models. 

b) Diversity of host types (different degree of susceptibility) 
c) Frequency dependent contact rates. Not all host types are equally abundant 

and this implies that the frequency at which a given host type is bitten may 
depend on its relative frequency. 

d) Vector preference, understood as the differential budgeting of biting rates amongl 
host types. 

Examples of diseases where these factors are important include Dengue, Malaria, 
Chagas' disease and Leishmaniasis. 

3. Modelling vectorial transmission 

We model the situation in which we have several types of interacting vector and 
host subpopulations. Let Ni denote the total human population of town i and 
T~c = W~~: + V~c the population of vectors of species k where W~c and V~~: represent 
the susceptible and infective subpopulations respectively. In this model we assume 
that vector species are not regulated by disease density. Also, we assume that 
vectors' carrying capacities have values distributed according to a given probability 
density. Thus we denote by qki the probability that species k enters into contact 
with group i of hosts. We assume that the host group has a constant recruitment 
rate Ai and we arbitrarily set the disease induced mortality rate equal to zero. With 
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this assumptions we have the following set of equations for host-vector interactions: 

Si = Ai- Bf (t) + '"'fli- f..LSi, 

Ii = -(f..L + '"'f)li + Bf (t), 

Wk = g(Tk)[,6Tk - 8Wk] - B[(t), 

Vk = -g(Tk)8Vk + Bf{t). 

for i = 1, ... , n and k = 1, ... , m. 
Where 

N T ~ Vk 
Bi (t) = ai Si L....tPik(t)pk W: Vi , 

k=l k + k 

denotes the i-th host incidence rate, and 

(1) 

represents the k-th vectorial incidence rate. In addition, Pk and .Xi are coefficients 
that measure, respectively, the infectivity of vectors and hosts; aj represents the 
average number of com acts with population x by members of group j; Pik ( t) is the 
probability of contact of hosts of group i with vectors of species kat timet; qki(t) 
is the probability of contact of vectors of species k with hosts of group i. These 
probabilities constitute a mixing matrix. 
Definition 1 (Castillo-Chavez and Busenoerg, 1991) The matrix (Pik, qki) is called 
a mixing/pair formation matrix if and only if it satisfies the following properties: 
1. 0 ::::; Pik ::::; 1, and 0 ::::; qki ::::; 1, 
2. E~=l Pik = 1 = E~=l qki, 
3. af NiPik = af/Tkqki, for i = 1, ... , n and j = 1, ... , m. 
4. If for some i, 1 ::::; i ::::; n and/ or some j, 1 ::::; j ::::; m we have that ai af TkNi = 0, 

then we define Pik = qki = 0. 
Condition (3) is interpreted as a conservation of contact rates law or group re­
versibility property while ( 4) asserts that the mixing of inexistent subpopulations, 
either of hosts or vectors, cannot be arbitrarily defined. 
The axioms stated in Definition 1 were motivated by the study of the sexual/social 
mixing structures that determine the transmission of sexually-transmitted dis­
eases, especially AIDS. These aximns incorporate natural constraints that occur 
during the transmission process. In particular, Busenberg and Castillo-Chavez 
(1991) have shown that all mixing probabilities that satisfy the axioms in Def­
inition 1 can be obtained as multiplicative perturbations of a special family of 
solutions called sepamble solutions (see Definition 2 below). Separable solutions 
describe proportionate or random mixing. The framework formalized by Busenberg 
and Castillo-Chavez (1991) is general enough as to include all the major mixing 
processes used in modeling contact patterns for the transmission of infectious and 
sexually-transmitted diseases and can be adapted to deal with contact patterns 
for vector transmitted diseases. In the next sub-section we derive expressions for 
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the mixing probabilities for contacts such as those assocaited with vector-host 
interactions. 

3.1 Derivation of the contact probabilities 
Let Cij represent the number of contacts per day of a vector of species i with a 
host of group j fori= 1, ... , m and j = 1, ... , n. Then, necessarily 

Let Ti be the total time spent foraging by an average vector of species i, and denote 
by aij the handling time spent by a vector of species ion hosts in group j. Then 

n 

ai = I: aikcik, 

k=l 

(2) 

is the mean handling time of vectors of group i. Now, the searching time of vectors 
of type i is Ti - ai; this is the time that vectors of species i have to find host 
suitable for blood meals. Hence, the number of contacts that an average vector of 
type i has with hosts in group j is 

(3) 

Here /3ij is the rate of successful contacts (contacts that result in a blood meal) 
of vector species i with hosts of group j which we assume a function of the total 
number of vectors feeding in average on a-host of group j. Let T*i be the average 
number of vectors (all species included) feeding on hosts of group j. Assume 

bij 
/3ij = -T. ·' 

*J 

which reflects the fact that vectors are less efficient in contacting a host as the 
density of vectors per host increases. We impose the condition bij = bji for i, j 
within the common range of indices. 
Substituting now (2) in (3) we obtain 

where 

n 

ai = (Ti- ai) L aikbikmkl 

k=l 

is the ratio of hosts to vectors in the kth host group which we call the Ross ratio. 
Solving for ai we obtain 

(4) 
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and then substituting into (3) and after some algebra we have 

C .. _ ribiimi 
tJ- n · 

1 + l:k=I aikbikmk 

C.· 
To compute Pii we use the formula ~: where Ci = 1::;=1 Cii. Thus, the prob-

ability of effective contacts between a vector of species i and a host of group j 
is 

Pij = "'n · 
L..tj=l biimi 

(5) 

To derive the probability qii of effective contacts of hosts of group j with vectors 
of species i we use the relation TiCii = NiCii to solve for Cji· After some algebra 

C·· 
and the use of the formula qij = J~ we obtain 

J 

- TibijTi I~ Tibijpi 
qij - "'n ~ "'n · 1 + Ltk=I aikbikmk i=l 1 + Ltk=l aikbikmk 

(6) 

By construction, (5) and (6) satisfy the set of axioms (1) to (3) above (axiom (4) 
is satisfied by definition) hence, they are particular forms of the general solution 
of Castilla-Chavez and Busenberg (1991). Formula (6) may be interpreted in the 
following way: bij is the maximum biting rate when no density dependent effects 
are taken into accmmt so, Tibij Ti is the nUII!I;.>er of bites made by vectors of type i on 
hosts in group j during the total foraging time characteristic of the vector species. 
The numerator of (6) gives the proportion of bites on all hosts corresponding to 
vectors of species i; the denominator represents clearly the total number of bites 
made on all hosts by all types of vectors. 
Notice that Pii depends only on the Ross' ratio and that qii depends on the Ross' 
ratio as well as on the handling times of each vector species involved. We now give 
the following definition: 
Definition 2. A vector-host mixing probability is called separable if and only if 

Pii = PiPi and 

To obtain separable solutions for our formulas (5) and (6) we require bii = b for 
all indices. In this way the contact probabilities become 

mi 

and 

TiTi I~ TiPi 
qi = "'n ~ "'n · 1 + b Ltk=l aikmk i=l 1 + b Ltk=l aikmk 

In this case, the transmission mechanism to susceptible hosts depends on the ratio 
mi that measures how the population of hosts is allocated to each vector species. 
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On the other hand, the transmission mechanism to susceptible vectors depends on 
the foraging time invested in capturing a host. 

4. Applications to food web models 

The analysis of community assembly and dynamics has been widely studied both 
from the experimental as well as theoretical point of view (eg., Cohen et al, 1990; 
Lawton and Warren, 1988; Hastings and Powell, 1991; Polis, 1991; Paine, 1992). A 
recent issue of Ecology (vol 73{3}} discusses the problem of top-down and bottom­
up control in food webs. Hunter and Price {1992) point out that communities 
are structured by a variety of biotic and abiotic factors acting at all levels of 
food webs. In this section we model food webs structured through predator prey 
and consumer resource interactions where predation or compsumption rates are 
frequency-dependent. Each trophic level consists of a finite number of species or 
types of organisms and the probability that a given prey type is captured and 
consumed by a predator may be a function of both prey and predator densities. The 
full description of the approach is given in Velasco-Hernandez and Castillo-Chavez 
{1992). It derives directly from th" modeling of mixing/pair formation processes 
done by Castilla-Chavez and co-workers (eg., Castilla-Chavez and Busenberg, 1991; 
Busenberg and Castilla-Chavez, 1991). 

Besides allowing omnivory and heterogeneity in prey choice our modeling frame­
work allows for ratio-dependent predator.:prey interactions. The use of the mix­
ing/pair formation modelling approach in the context of predator-prey interactions 
requires the budgeting of prey capture rates for all predator types. The budgeting 
of rates and the conservation of contacts rate law imply that predator attack rates 
scale with the ratio of prey to predator numbers. Power {1992), based on the work 
of Arditi and Ginzburg {1989) and Hanski {1991), argues that ratio dependent 
models describe interactions where predator interference is important. 

4.1 Model formulation 
Consider a multi-species community with n species distributed among several prey 
and predator types. The basic framework of the model is as follows: we let Cij(t) 
denote the average per capita number of contacts {leading to a successful meal) 
between a predator of type i and a prey of type j per unit time, while r ji ( t) denotes 
the average per capita number of prey of typej killed and consumed by predators 
of type i per unit time. Let Pk denote the number or density of species of type k 
at time t (we do not label differently predators and prey). Then, the conservation 
property 

i>j t2:0 

holds, ie., the total number of prey of type j killed and consumed by predators 
of type i must equal the number of prey of type j actually captured by predators 
of type i at all times. We number the species in the community as to reflect their 
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trophic position in the food web following Cohen et al. (1990). Thus, a given species 
can predate upon another only if it has a higher number. In a three level food web, 
for example, top predator, intermediate species and basal prey have the highest, 
medium, and lowest numbers respectivelly. Let 

i 

t;(t) = :L Cij(t), 
j=1 

n 

Tj(t) = L Tji(t) 
i=j+l 

where n is the total number of species in the community. 
We define now Pii and qji for i > j as the proportion of prey of type j on the 

diet of predator of type i; and the proportion of the jth prey consumed by the ith 
predator, respectively. These proportions are given by 

These proportions satisfy a set of axioms which essentially define them as proba­
bilities with the properties 

i n 

LPik = 1 = L qki 
k=1 i=k+1 

and 

i>j t;::: 0. 

If we assume now that predators can switch prey in a frequency dependent fash­
ion making the rate at which prey are killed and consumed a function of predator 
capture rates. By introducing searching and handling times in the derivation of 
Cij and Tji, we have shown in Velasco-Hemandez and Castilla-Chavez (1992) that 

(7) 

and 

1 + 'L~-1 aikbikPk (8) q··-
Jt - Ln TxbxyPy 

x=y+1 1 + L%=1 <YxkbxkPk 

Expressions (7) and (8) form the basis of our modelling approach. In the next 
sub-section we present as example the three level food web introduced by Velasco­
Hernandez and Castilla-Chavez (1992). 

4.2 A three level food web 
For clarity of exposition we now relabel the species in the community. We assume 
that there are n top predator types, m intermediate predator types and l basal 
prey types. Let Ni, Yj and Tk denote the basal prey, intermediate predator and 
top predator respectively. Let t;(t) and ak(t) denote the number of prey captured 
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per unit time by top and intermediate predator respectively; also let rk ( t) and 
s;(t) denote the number of individuals of intermediate and basal species captured 
per unit time by top and intermediate predators respectively. 

The conservation relation that must be satisfied is: 

CiTiPik = rk Ykqki 

for the top-intermediate level interactions and 

akYk11"kj = s;Ni(}ik 

for the intermediate-basal interactions. 
To simplify our model we make the assumption that the contact probabilities 

depend only on one index, ie., Pii = p;, q;i = qi, 1l":cy = 1l"y and Byx = Bx. This 
type of contact probabilities describe predator prey intercations where contacts are 
proportionate to the relative numbers of both predator and prey in the commu­
nity (Velasco-Hernandez and Castilla-Chavez, 1992). Within the original context 
of the mixing of population these are called Ross solutions (eg., Castilla-Chavez 
and Busenberg, 1991), the simplest kind of interaction that does not assume that 
predator attack rates scale with the density of prey (the so-called homogeneous 
predator-prey models). More complex that include a preference component can be 
formulated. 

Let e and b denote the efficiency of capture by top and intermediate predators 
respectively. These are the parameters that modulate the evolution of the food 
web since, as Power (1992) points out, the importance of top-down and bottom­
up control depends, at least in part, on the-efficiency with which consumers exploit 
their prey. Also let 'T/i and P; denote the total time allocated to prey search by each 
intermediate and top predator respectively. Therefore, Wik is the handling time of 
intermediate predator i spent on prey of type k; and O"jk is the handling time of 
top predator j spent on intermediate prey k. Thus, the time scale of the predation 
process is introduced as a parameter in this model. 

Define N = L:~=l Nk, Y = L:~1 1j, and T = L::=l Tx as the total number of 
individuals in each trophic level. The definitions of the contact probabilities are: 

- 1j 
Pi= "\"'m 

Lik=l yk 

- N; 
11"j = l 

L:k=l Nk 
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The three level food web model is given by the following system of equations. We 
assume that basal prey in the absence of predation grows in a density-dependent 
fashion wher Kk denotes the carrying capacity of the species k. 

Several properties of the model have to be noted. First, the interactions Y --7 N 
and T --7 Y are typical resource-consumer interactions in which resources are 
chosen in a frequency-dependent manner with probability ()j, j = 1, · · ·, l, and qi, 
i = 1, · · ·, m respectively. These probabilities are also an indirect measure of the 
strength of the interaction and indicate, for any given time, how consumers or 
predators divide their diet among the available resources. 

There is a conservation property for food webs derived form the conservation 
law. In the case of the example being treated here, if we assume that consumers 
are fully efficient in incorporating biomass of captured prey into their own biomass 
we obtain 

(see Velasco-Hernandez and Castillo-Chavez(1992) for details of the derivation). 
The capture rate of prey of a given type depends on the ratio of available prey 

to total predator density. Since we are assuming that every predator type within a 
given trophic level shares their diet with every other member of the same predator 
level, then the likelihood of capturing a prey of, say, type k, depends on the relative 
demand of that prey type: if the total density of predators is high, this likelihood 
is small and viceversa. The model thus describes interference competition in a 
heterogeneous environment (relatively high diversity of resource types, see Hunter 
and Price, 1992; Power, 1992; Arditi and Ginzburg, 1989). 

The model also allows us to keep track of either the individual types within 
each trophic level or the dynamics of T, Y, and N. The first aspect we call the 
population dynamics of the web; the second describes directly the food web dy­
namics. 
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5. Conclusions 

We show that the mixing/pair formation approach derived from the study of dis­
ease transmission in human populations has wide applicability. The two examples 
discussed here are intended as illustrative applications. The important fact is the 
establishment of the conservation of contacts per unit time. This law constraints 
the time evolution and behavior of the interacting populations. Detailed analyti­
cal and numerical studies are needed to evaluate the range of behaviors that are 
realistic for models formulated under these conditions. 
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