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We explore the relationship between post-data measures of accuracy 
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1 Introduction 

A post-data measure of accuracy of a procedure is an estimate of the cor­
rectness of an inference. We differentiate between post-data measures, con­
structed after the data have been seen, from pre-data measures constructed 
before seeing any data. For the accuracy of a test, for example, common 
post-data measures are the p-value or the posterior probabilities, as opposed 
to the a-level which is a pre-data measure. 

The concern here is with inferences about the accuracy of tests and con­
fidence intervals. There is a close relationship between the two procedures, 
as each one can be obtained by inverting the other. This duality results in a 
direct correspondence between some characteristics, such as the confidence 
coefficient of an interval and the level of a test. Hence, one may expect the 
associated accuracy measures to be also related. The major focus of the 
paper is to explore the existence of such relationships. 

We will concentrate on two ways of constructing estimates of accuracy. 
The first is the straightforward Bayesian calculation of posterior probabilities 
of hypotheses or regions. The second is through classical decision theory. 
Since the accuracy of a procedure can be viewed as the negative of its loss, 
estimating accuracy is equivalent to estimating a loss function (see, e.g., 
Rukhin 1988ab, Johnstone 1988 or Lu and Berger 1989ab). 

In our general development we assume that X = x is observed, where 
X rv f(·JB) and B is an unknown parameter of interest. Furthermore, there is 
a prior distribution 1r(B) which can be combined with f(·JB) in the usual way 
to yield a posterior distribution 1r(Bjx). For a set estimator of B, C(x), the 
post-data accuracy is measured by I(B E C(x)), where I(-) is the indicator 
function. This, in effect, measures the loss incurred by estimating B with 
C(x), since we can define 

{ 
1 if B ~ C(x) 

LI(B, C(x)) = 1- I (BE C(x)) = O if BE C(x). 

To estimate the accuracy, we look for estimators 7(x) that perform well 
against the loss 

(1) L2(B, C, 7) =[I (BE C(x))- 7(x)] 2. 

The pair (C(x), 7(x)) is referred to as a confidence procedure. 
A similar approach was taken by Lu and Berger (1989b), Robert and 

Casella (1993), and George and Casella (1994) in the context of estimating 
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a multivariate normal mean, while Goutis and Casella (1992) applied this 
methodology to Student's t interval. A discussion of the appropriateness of 
the loss (1) can be found in Hwang and Pemantle (1990) and Hwang et al. 
(1992). 

For the testing problem a similar development is possible. In testing 
Ho : () E eo vs. H1 : () fj. eo we consider a rule of the form "accept Ho if 
x E A", where A is a subset of the sample space. The loss incurred by this 
procedure can be written 

. L3(() A)= { 1 if () E eo, X fj. A or () rt eo, X E A 
' 0 if () E eo, X E A or () rt eo, X rt A. 

Traditional decision theory implicitly uses L3(0, A), as the risk of a test 
under. this loss is the Type I and Type II errors. To estimate the loss (or 
accuracy) of the procedure we use estimators p(x) that perform well against 

(2) L4(0, A,p) = [IJ(O E 8o)- I(x E A)l- p(x)] 2 . 

The procedures {A,p(x)} and {C(x),'Y(x)} both provide a means of assessing 
post-data accuracy. To clarify the meaning of the "equivalence" of these 
post-data measures consider the typical pre-data situation. If A and C are 
an a-level acceptance region and its associated 1- a confidence set, then 
(writing A(O) for clarity) we have 

(3) () E C(x) <==? x E A(O), 

and hence 

(4) sup P(X rt A(O)IO) = 1- info P(O E C(X)IO), 
8E9o 

which we refer to as pre-data equivalence of A and C. 
We. explore whether a similar equivalence exists between accuracy mea­

sures in a post-data setting. However, for the frequentist sets and tests 
related as in (3), there is no implicit definition of post-data accuracy mea­
sures in the construction, so it is not immediate how to derive the post-data 
quantities equivalent to the ones in (4). We are guided in this derivation by 
both decision-theoretical and Bayesian methodology, which lead us to accu­
racy measures derived from posterior distributions. Conditioning on X = x, 

instead of the Type I error for the test, we will consider p7f of the form 

(5) p7r(x) = P(O E eoix)I(x rt A)+ P(O rt 8oix)I(x E A) 
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as an estimate of the loss £3 incurred, where p'lr(x) is the Bayes rule against 
the loss £4 for a given acceptance region A and prior 1r. Similarly, instead 
of the coverage probability we will consider 11r given by 

-y'lr(x) = { 1r(Ojx) dO 
Jc(x) 

as an estimate of the loss £1 incurred. 
The post-data version of ( 4) would involve the supremum of p'lr and 

the infimum of 11r, and in the remainder of the paper this rel~tionship is 
explored. Section 2 considers the one-sided case, where a strong relationship 
exists. In the two-sided case, treated in Section 3, the relationship still exists 
but is not as strong. Finally, Section 4 contains a short discussion. 

2 The One-Sided Case 

There are two major points that we should take into account in establishing a 
post-data equivalence. The first is that for hypothesis testing 1r will usually 
depend on H o, while for set estimation it does not. Hence, along with a 
family of tests we have a family of priors. Secondly there is a vast difference 
in the one-sided vs. two-sided problem (see Berger and Sellke 1987; Casella 
and Berger 1987; Hwang et al. 1992). Any prior for testing Ho : 0 = Oo 
must put a point mass on Oo, which would not be done if interest was in 
set estimation or in testing an interval null hypothesis. Therefore, we will 
consider the one-sided and two-sided cases separately. 

We specialize to the case of a location parameter, and assume that we 
observe X = x, where X rv f(x - 0) with J(-) continuous and having 
monotone likelihood ratio (mlr). Suppose also that the prior is continuous 
and of the form 1r(O- Oo), where Oo is the parameter value specified in Ho, 
and that the supports of the density and prior do not depend on x or Oo. 
Note that the results of this section will also apply to the scale parameter 
case. 

The hypothesis of interest is 

(6) H o : 0 ::; Oo vs. o > Oo, 

which leads to the acceptance region and associated interval 

(7) A(Oo)={x:x::;Oo+c}, C(x)={O:O~x-c}, 
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where cis a constant, usually chosen to yield a specified a level. Using the 
loss function £4, our measure of accuraey of A ( Oo) is 

PA(x, Bo) = P(B::; Bolx) I(x (j A(Bo)) + P(O > Oolx) I(x E A(Bo)) 

where 

(8) 
f~~ f(x- B)1r(O- Bo) dO 

P(B::; Bolx) = f~oo f(x- B)1r(O- Bo) d(}. 

Similarly, using the loss L2, our measure of accuracy of C(x) is 

The equivalence between PA and 'YC is stated in the following theorem. 

Theorem 1 Under the assumptions in this section 

(9) sup PA(x,Bo) = 1-'Yc(c,O). 
Oo:Oo¢C(x) 

Furthermore, if 1r( ·) has mlr, then 

(10) 

and thus 
(11) 

inf !c(x,Bo) = !c(c,O), 
Oo:OoEC(x) 

sup PA(x, Bo) = 1- inf !c(x, Bo). 
Oo:Oo¢C(x) Oo:OoEC(x) 

Remark 1: Equation (11) can be thought of as the equivalent of (4). In 
words, equation (11) says that the maximum probability of not covering e 
(the RHS) is the maximum error of the test when rejecting (the LHS), or 
equivalently 

sup P(X (j A(B)Ix) = 1- inf P(B E C(x)lx). 
0E9o 0 

Remark 2: The assumption of mlr of 1r() is somewhat restrictive, but it is 
a needed technical assumption, and is not a necessary condition for equation 
(11) to hold. Indeed, it can be shown that (11) holds for a Cauchy prior 
and Cauchy likelihood, and we have numerical evidence that it holds for a 
Cauchy prior and normal likelihood. 
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Proof We first calculate the LHS of (9). For Bo < x- c, PA(x, Bo} = P(B:::; 
Bolx}. From (8}, change variables tot= B-Oo, and define y = x- Bo. Then 

(12} 

and we want to calculate the supremum of (12} over the set {Bo : Bo < 
x- c} = {y: y > c}. Since f has mlr, the quantity f(y- t}1r(t)j f(c- t)1r(t) 
is increasing in t for y > c. Applying Lemma A1 of the Appendix we find 
that 

fx00 f(y- t}1r(t)dt 
J:O f(c- t)1r(t)dt' 

is increasing in x for y > c. Setting x - 0 and x = '---00 shows that the 
supremum of (12) over {y > c} is achieved for y = c and is equal to 1 -
'Yc(c, 0), establishing (9). 

To establish (10) we make the transformation t = (}- eo andy = X- eo 
and show 

(13) 
. f J;c f(t- y)1r(t) dt J000 f(t- c)1r(t) dt 

y~~~c r:oo) f(t- y)7r(t)dt = f~oo f(t- c)7r(t)d( 

Apply Lemma A1 with g(t) = f(t- y)1r(t), h(t) = f(t- c)1r(t), and a(x) = 
X+ y- c. Since 7r(x- e) has mlr and c > y, it follows that 

g(a(x))a'(x) 
h(x) 

is increasing in x, and thus 

f(x- c)1r(x + y- c) 
f(x- c)1r(x) 

fx~y-cf(t- y)1r(t) dt 

J:O f(t- c)1r(t) dt 

is increasing in x. Evaluating the function at x = 0 and x = -oo establishes 
(13) and (10), proving the theorem. 0 

Allowing 1r(·) to depend on eo is really a "testing-type" prior. The 
equivalence between the testing and set estimation errors is thus somewhat 
more striking. We can turn the problem around, and ask if the equivalence 
holds using an "interval-type" prior that does not depend on e0. In that 
case, the posterior probability that e E C(x) is equal to 'Yc(x, 0) and the 
following corollary is immediate. 
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Corollary 1 If 1r(·) is independent of Bo, then 

sup PA(x, Bo) = 1- rc(x, 0). 
Oo~C(x) 

To illustrate Theorem 1 we look at the following example. 

Example 2.1: Suppose X rv n(B, o-2) and() rv n(Bo, r2) where o-2 and r 2 are 
known and (6) are the hypotheses of interest. The acceptance region and 
interval of (7) become A(Bo) = {x: x ~ Bo + c} and C(x) = {8: B ~ x- c}. 
It is straightforward to calculate 

and 
(15) 'Yc(x,Bo) = P (z ~ [(1- B)(x- Bo)- cJ/Io-2B), 
where Z rv n(O, 1) and B = r 2/(o-2 +r2). Since P(B:::; Boix) is increasing in 
Bo and 'Yc(x, Bo) is decreasing in Bo, it follows that 

(16) sup P(B:::;Boix) P(B:::; x- cix) 
8o:9o<x-c 

1 - inf rc(x, Bo) 
{Oo:Oo~x-c} 

P(Z:::; -eVE). 

The quantities in (14) and (15) are illustrated in Figure 1. It can be seen 
that P(B:::; Boix) is decreasing in x- Bo and always intersects the increasing 

(in x- Bo) 1 - 'Yc(x, Bo) at c. 

3 The Two-Sided Case 

In contrast with the frequentist situation, the Bayesian paradigm treats the 
two-sided hypothesis test in an entirely different way from the one-sided 
case. This reflects mainly on the form of the priors used in the point null 
case Ho : () = Bo, where a point mass is put on Bo. It turns out that the 
correspondence between two-sided testing and set estimation is weaker than 
in the one-sided case. However, if a set estimation-type prior distribution is 

used, then the correspondence is stronger. 
Before proceeding we restate and strengthen our assumptions. As before, 

we assume that JO is continuous, symmetric and unimodal, but now we also 
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assume that f ( ·) has a bounded derivative. Also, we assume that f ( ·) has the 
T P3 property (Karlin 1968; Brown et aL, 1981), which guarantees that the 
distribution of lXI has mlr and implies TP2, which is exactly the property 
of monotone likelihood ratio. We continue to make the same assumptions 
about 1r(·), but will sometimes also need 1r(-) to have TP3. This will be 
explicitly stated. 

3.1 Priors putting mass on a point 

For testing 
(17) Ho: () = Oo vs. 

a typical prior distribution is of the form 

(18) { 1ro if e = eo 
7r*(eiOo) = (1- 7r0)7r(e- eo) if e =F Oo, 

where 7rO is a specified constant, and 1r(e- eo) is a density function. We 
assume that 7r(·) of (18) is continuous and symmetric, and that the value 
of 7rO is a constant independent of eo. An acceptance region and confidence 
interval corresponding to (17) are given by 

(19) A(eo) = {x: lx- eo!:::; c} and C(x) = {e: lx- e1:::; c}. 

Under the prior of (18), the probability that Ho is true is 

(20) P(e = eolx) = ?rof(x: eo) 
?rof(x- eo)+ (1- 7rO) f-oo f(x- e)7r(B- eo) d() 

and substituting in (5) we obtain PA(x, Bo), the post-data accuracy of A(Bo). 
Similarly, the post-data accuracy of C(x), using the loss L2, is 

1r0 f(x- Oo)I(Oo E C(x )) + (1- 1ro) fc(x) f(x - 0)7r(e- Oo) d() 
l'c(x, eo) = Joo ( 1r0 f(x- Oo) + (1- 1r0) _00 f x - e)1r( lJ - Oo) dO 
(21) 
Unlike the one-sided case, there is no equivalence between PA(x, Oo) and 
l'c(x, Bo) as expressed in Theorem 1. However, we are able to calculate 
suprema and infima, which are given in the following theorem. Its proof is 
given in the appendix. 
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Theorem 2 Under the assumptions in this section 

(22) 
7rOf(c) 

sup PA(x, Bo) = . 
Oo:!x-Oo!>c 7rQ f(c) + (1- 1ro) 1-oof(c- t)1r(t) dt 

Furthermore, if 1r( ·) has T P3, then 

(23) 
. ( )- 7r0/(c)+(1-7ro)J:_cf(u)7r(c-u)du 
mf 'YC x, Bo - ( ) ( ) Joo ( ) ( ) . Oo:!x-Oo!sc 1r0 f c + 1 - 7rO _00 f u 1r c- u du 

Remark: Depending on whether Bo E C(x), the accuracy estimate in (21) 
falls on either side of the estimate 

1 fc(x) f(x- B)1r(B- Bo) d() 
'Yc(x, Bo) = f~oo f(x- B)1r(B- Bo) d()' 

which is what might have been used if the problem were treated as one of 
interval estimation that is, using an interval estimation prior. In fact, we 
can write 

(24) ( ) _ M(x- Bo) I(Bo E C(x)) + 'Yc(x, Bo) 
'YC x,Bo - M(x- Bo) + 1 ' 

where 

(25) M(y) = ~ oo f(y) . 
1- 'lrQ f-cxJ(y- t)1r(t) dt 

is the posterior odds ratio for the hypotheses (17). From (24) it is immediate 
that 

'Yc(x, Bo) I(Bo rf. C(x)) < 'Yc(x, Bo) < 'Yc(x, Bo) I(B E C(x)). 

Example 3.1: Suppose X rv n( B, a 2) and the prior on () is 

(BIB) { 1r0 if B=Bo 
7r 0 = (1 - 1ro) x n( Bo, r 2) if () =I Bo 

where r 2 is known. For the hypothesis of (17), we have P(B = Bolx) = 
M j(M + 1), where M is the posterior odds ratio, given by 

M = --v1- B exp -(x -Bo) , 7rO r,--;:; { -B 2} 
1- 1r0 2a2 
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where, again, B = T 2j(a2 + T 2). It is easy to see that P(B 
decreasing in lx - Bol, so 

sup PA(x, Bo) = P(B = x- cJx). 
{9o:lx-9ol>c} 

Bolx) is 

The post-data accuracy estimate for C(x), rc(x, Bo), is given by (24) with 
M of (17) and 

(26) rc(x, Bo) P ( fl [(1- B)(x- Bo)- c] 
v~ 

S Z S {-;; [(1- B)(x- Bo) + c]) . 
Since rc(x, Bo) is also decreasing in lx - Bol, we have 

(27) inf rc(x, Bo) = P(B = x- cJx) + P(B i x- cJx) 
{9o:lx-9ol::;c} 

Values of P(B = Bolx) and rc(x, Bo) are shown in Figure 3.1 for various 
values .of c. It can be seen that, for the most part, P(B = BoJx) is smaller 
than rc(x, Bo). However, for large c (small alpha) the order is reversed. 

For fixed c, (22) and (23) are both increasing functions of no and there 
is a unique 7ro =no( c) for which equality holds between (22) and one minus 
(23), and we have 

sup 
9o:lx-9ol>c 

PA(x, Bo) { : } 1- inf rc(x, Bo) 
> 9o:ix-9o!::;c 

~ ~0 {: } ~O(c). 
In general this relationship is artificial, since it is not usual for c and no to 
be chosen in a dependent way. But it should come as no surprise, given the 
dependence of the posterior probability P(Bolx) on no, and the subjective 
choice of no. In the next section, however, we look into another methodology 
that yields a less artificial equivalence. 
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3.2 Continuous Priors 

If interest were only in interval estimators, then a continuous prior would 
most likely be used. With such a prior, however, P(B = Ooix) cannot be 
evaluated. Fortunately, in the decision-theoretic framework ofSection 2, we 
can obtain accuracy estimates of a test based on a continuous prior. This 
is done by using an interval estimate to construct an estimate of testing 
accuracy. 

For the hypothesis of (17), we can estimate the accuracy of A(Bo) of 
(19) in the following way. Starting from C(x) of (19), create the family of 
intervals 

and the corresponding accuracy measure of A(Oo): 

(28) Pk(x, Bo) P (BE Ck(Oo)ix) I (x (j. A(Bo)) 

+ P (B (j. Ck(Bo)ix) I (x E A(Bo)). 

Of course, Pk(x, Bo) is a Bayes rule for the interval hypothesis Ho: IBo- Bl ~ 
k. The advantage of the measure Pk(x, Bo) is that it can be evaluated without 
using a prior that puts mass on Bo. We consider a continuous prior 1r( (}- Bo), 
as might be used for interval estimation, calculate P(B E Ck(Bo)ix), and see 
that it is also the posterior probability of the hypothesis Ho : IBo- Bl ~ k. 
Thus, by constructing our probability from the confidence interval, we are, 
in effect, replacing the point null by an interval null. We have the following 
theorem, which shows the relationship between Pk(x, Bo) and 'Yc(x, Bo). 

Theorem 3 For the hypotheses in (17), where X rv f(x- B), continuous 
and symmetric with T Ps, and 1r(B - Bo) continuous and symmetric, there 
exists a value k* = k*(c) such that 

(29) sup Pk•(x, Bo) = 1- inf 'Yc(x, Bo). 
{Bo:lx-Bol>c} {Bo:lx-Bol:=;c} 

Proof. For lx- Ool > c, Pk(x, Bo) = 1- P(B E Ck(Bo)ix). Thus, to compute 
the left-hand side of (29) we can compute 

(30) 
tk f(y- t)7r(t) dt 

inf P(B E Ck(Bo)ix) = inf ~ . 
Bo:lx-Bol>c y:lyl>c Loo f(y- t)1r(t) dt 
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Write 

(31) 
J~k f(y- t)7r(t) dt - Jt[f(y- t) + f(y + t)]7r(t) dt 

k - k . 
f_k f(c- t)1r(t) dt fo [f(c- t) + f(c + t)]1r(t) dt 

Since!(·) has T P3, the function in square brackets (which is the density of 
lXI) has mlr. An application of Lemma A1 shows that (31) is decreasing in 
k for y > c > 0. Thus the infimum in (30) is attained at y = c, and 

(32) ) - tkJ(c-t)1r(t)dt 
sup Pk(x, Bo - 1 - oo . 

Oo:/x-Oo/<c f-oo f(c- t)1r(t) dt 

The right-hand side of (32) is a monotone function of k that takes values 
from 0 to 1. Since the right-hand side of (29) is constant ink, equation (29) 
has a unique solution k*. 0 

Note that the right-hand side of (29) is not directly computable, but it 
is not needed for the theorem. However, if the prior also has T ?3, we can 
establish that the infimum is attained for lx- Bol = c and hence compute 
it. This is illustrated in Example 3.2. 

Example 3.2. Suppose X"' n(B, u 2 ) and e"' n(Bo, 7 2 ) where u 2 and 7 2 are 
known. For the interval C(x) = {e: lx- Bl :<::; c}, an accuracy measure for 
H o : e = Bo could be based on 

(33) ( ()I) ( B(Bo-x)-k B(Bo-x)+k) 
P e E ck eo x = P v;;xB ::::; z ::::; v;;xB , 

where B = 7 2j(u2 +72 ) and Z rv n(O, 1). The post-data accuracy measure of 
C(x) is 'Yc(x, Bo) of (26) and, as both (26) and (33) are decreasing functions 
of x - Bo, we have 

( -Bc-k -Bc+k) 
p r;:; ::::; z ::::; r;::; 

uv B uv B 
sup P(B E Ck(Bo)lx) 

{Oo:/x-Oo/>c} 

inf 'Yc(x, eo) = 
{Oo:/x-Oo/~c} 

( -Be c(2-B)) 
p r;:; ::::; z ::::; r;::; . 

uvB uvB 

Using (18), it is now a simple matter to solve for the value of k* to satisfy 
(29), and selected values are given in Table 3.1. There is a remarkable agree­
ment between the values of Table 3.1 and Table 2 of Berger and Delampady 
(1987), which gives bounds on (standardized) E such that the hypothesis 
Ho : jB- Bol :<::; E has approximately the same p-value as the exact hypothe­
sis H o : B = Bo. 
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Table 3.1: 
Values of k* satisfying (29) 

a c k* 

0.200 1.282 0.250 
0.100 1.645 0.213 
0.050 1.960 0.191 
0.020 2.326 0.172 
0.010 2.576 0.156 
0.005 2.807 0.148 
0.001 3.291 0.125 

4 Discussion 

In the frequentist paradigm, the testing/interval estimation duality has long 
been employed to both construct and evaluate these statistical procedures. 
This correspondence is a pre-data one, however, and did not translate to a 
post-data equivalence. On the other hand, Bayesians tend to treat intervals 
and testing (especially with point nulls) as two different entities, employing 
different priors in either situation. There has never been much effort directed 
toward establishing any Bayesian post-data testing/interval relationship. 

We find that a strong post-data relationship exists in the one-sided test­
ing case. By employing decision theory to develop the form of the post-data 
accuracy measures (as loss estimates), the relationship in the one-sided case 
is established. A similar relationship does not hold in the two-sided case, 
however, again demonstrating that Bayesian testing is vastly different from 
interval estimation in the two-sided case. 

Most interestingly, it seems that the p-value occupies a middle ground. 
The testing/interval accuracy relationship is valid almost by definition for 
both one-sided and two-sided tests, as the p-value corresponds to a flat prior 
on the location parameter. So we have a relationship between a post-data 
measure (the p-value) and a pre-data measure (the confidence coefficient) 
that yields a pre-data bound on the post-data accuracy measure. This equiv­
alence is quite general, making essentially no assumptions about the form 
of the density or the forms of the tests or confidence sets. It follows directly 
from the frequentist equivalence of the construction of confidence sets as 
inverted tests. 

This is a distinct difference from the fully Bayesian setup, and more 
closely mimics the frequentist correspondence. Thus, it seems that the 
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p-value borrows properties from both the Bayesians and frequentists. It 
allows a post-data testing/interval correspondence in a manner that some­
what mimics the pre-data frequentist correspondence. This "middle ground" 
seems to carry over to risk considerations. Figure 4 shows the risk (using the 
loss £4 of (2) of three estimators: the point-null estimator, the interval-null 
estimator, and the p-value. As can be seen, the p-value seems to occupy a 
middle risk between these other two estimators. 

Acknowledgment. We would like to thank the editor and two referees 
for valuable suggestions that improved the paper: 

14 



References 

1. Berger, J.O. and Delampady, M. (1987). Testing precise hypotheses. 
Statist. Sci. 2, 317-352. 

2. Berger, J.O. and Sellke, T. (1987). Testing a point null hypothesis: the 
irreconciliability of p-values and evidence (with discussion). J. Amer. 
Statist. Assoc. 82, 112-122. 

3. Brown, L.D., Johnstone, I.M., and MacGibbon, K.B. (1981). Varia­
tion diminishing transformations: a direct approach to total positivity 
and its statistical applications. J. Amer. Statist. Assoc. 76, 824-832. ,. 

4. Casella, G. and Berger, R.L. (1987). Reconciling evidence in the one­
sided testing problem (with discussion). J. A mer. Statist. Assoc. 82, 
106-111. 

5. George, E.I. and Casella, G. (1994). An empirical Bayes confidence 
report. Statistica Sinica 4, 617-638. 

6 .. Goutis, C. and Casella, G. (1992). Increasing the confidence in Stu­
dent's t interval. Ann. Statist. 20, 1501-1513. 

7. Hwang, J.T., Casella, G., Robert, C., Wells, M.T., and Farrell, R.H. 
(1992). Estimation of accuracy in testing. Ann. Statist. 20, 490-509. 

8. Hwang, J. T. and Pemantle, R. (1990). Evaluation of estimators of 
statistical significance under a class of proper loss functions. Statist. 
Decis. (to appear). 

9. Johnstone, I.M. (1988). On inadmissibility of some unbiased estimates 
of loss. In Statistical Decision Theory and Related Topics IV (J.O. 
Berger and S.S. Gupta, eds. ). New York: Springer-Verlag, pp. 361-
379. 

10. Karlin, S. (1968). Total Positivity. Stanford, CA: Stanford University 
Press. 

11. Lu, K.L. and Berger, J.O. (1989a). Estimation of normal means: Fre­
quentist estimation of loss. Ann. Statist. 17, 890-906. 

12. Lu, K.L. and Berger, J.O. (1989b). Estimated confidence procedures 
for multivariate normal means. J. Statist. Plan. In/. 23, 1-19. 

15 



13. Robert, C.R. and Casella, G. (1993}. Improved confidence statements 
for the usual multivariate normal confidence set. In Statistical Decision 
Theory and Related Topics V (J.O. Berger and S.S. Gupta, eds.). New 
York: Springer-Verlag, pp. 351-368. 

14. Rukhin, A.L. (1988a}. Estimated loss and admissible loss estimators. 
In Statistical Decision Theory and Related Topics IV (J.O. Berger and 
S.S. Gupta, eds.). New York: Springer-Verlag, pp. 409-418. 

15. Rukhin, A.L. (1988b). Loss functions for lossestimation. Ann. Statist. 
16, 1262-1269. 

16 



5 Appendix 

Lemma :A1: Let h(-) and g(·) be positive functions, and let a(·) be a dif­
ferentiable function so that g[a(x)] a'(x)jh(x) is a decreasing (increasing) 
function of x. Then, if the integrals exist, 

(34) 
fa(x) g(t) dt 

J:O h(t) dt 

is a decreasing (increasing) function of x. 

Proof. Differentiating (34) with respect to x and simplifying will show that 
the sign of the derivative is given by the sign of 

(35) 100 {h(x)g[a(t)]a1(t)- h(t)g[a(x)]a'(x)} dt. 

Fort> x the integrand in (35) is negative (positive) depending on whether 
g[a(x)] a1(x)jh(x) is a decreasing (increasing) function. 0 

Lemma A2: Under the assumptions of Section 3, the function M(y) given 
by (25) is decreasing for y > 0 and increasing for y < 0. 

Proof. By symmetry we only need to give details for y > 0. Differentiating, 
M (y) is decreasing if 

(36) !'(y) i: f(y- t)1f(t)dt- f(y) i: !'(y- t)1f(t)dt < 0 

(interchange of derivative and integral is permissible since f' is assumed 
bounded). The left-hand side of (36) equals 

(37) /_~ {f'(y)f(y- t)- J(y) !'(y- t)}7r(t)dt 

+ fooo {f'(y)J(y- t)- f(y) / 1(y- t)}1r(t)dt 

= fooo {f'(y)J(y + u)- J(y) !'(y + u)}1r(u)du 

+ fooo {f 1(y)f(y- t)- f(y) / 1(y- t)}1r(t)dt 

fooo {f'(y)[J(y + t) + f(y- t)]- f(y)[J'(y + t) + f 1(y- t)]}1r(t)dt, 

where in the above we have used the symmetry of 1r(·) and!(·). Now, if 
f(y-t) issymmetricandhasTP3, then fort> Oandy > 0, [f(y+t)+f(y-
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t)]/(2f(y)] is increasing in y so its derivative with respect toy is positive. 
This implies 

f'(y) f'(y + t) + f'(y- t) 
--<----''-------'-----:''---~ 

f(y) f(y + t) + f(y- t) 

so the integrand of (37) is negative fort> 0, and hence (36) holds. 0 

Proof of Theorem 2: Since lx- Bol > c is equivalent to x fl. A(Bo), the 
post-data accuracy PA(x, Bo) equals P(B = Bolx) of (20). Hence to compute 
(22) we need to compute 

(38) sup M(x- Bo), 
9o:lx-9ol>e 

where M(y) is given by (25) for t = B- Bo. From Lemma A2, M(y) is 
increasing for y < 0 and decreasing for y > 0, so the supremum in (38) is 
attained at either boundary, establishing (22). 

To establish (23), again let y = x- Bo, u = x- B. By symmetry it suffices 
to consider only y? 0. Substituting in the definition of rc(x, Bo), it suffices 
to show that the function 

1TO f(y) + (1- 1r0) f~e j(u)1r(y- u) du 
r0)= foo 

1TO f(y) + (1- 7rO) _00 J(u)1r(y- u) du 

is decreasing in y. 

Under the assumption that 1r(-) is T P3, the ratio 

(39) 
J~ef(u)1r(y- u) du 
f~oo j(u)1r(y- u) du 

is a decreasing function of y, so for Y2 < Yl we obtain 

(40) f(u)'lf(yl- u) du 1: f(u)7r(Y2- u) du 

:S lee f(u)7r(Y2- u) du 1: f(u)7r(Yt- u) du. 

Using this, a sufficient condition for the function r(Y) to be decreasing is 

(41) f(Y2) lee f(u)7r(Yl- u) du + f(Yl) 1: f(u)7r(Y2- n) du 

:S f(yt) lee f(u)7r(Y2- u) du + f(Y2) 1: f(u)7r(Yl- u) du 
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or, equivalently, that the function 

f(y) 
J~oo j(u)1r(y-u) du 

N(y} = Jc j( u)1r(y-u) du 
1 ..;,;;;-.,_c--.-~:----- J~00 j(u)1r(y-u)du 

is decreasing. The numerator of N(y) is decreasing by an argument similar 
to the one used for the function M (y) in Lemma A2. Since (39) is decreasing, 
the denominator is increasing, hence N(y) is decreasing, establishing (41) 
which implies (23) and completes the theorem. 0 
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Figure 1: The one-sided testing problem Ho: () :s; eo vs. H1: e > eo, where 
X "'n(e, 1) and()"' n(Oo, 1). The solid line is P(e :s; Bolx). The posterior 
coverage probabilities of the interval C(x) = {0 : () > x- c} are given for 
c = 1.282 (long dashes), c = 1.645 (closely spaced dots), c = 1.96 (short 
dashes) and c = 2.326 (dots). The intersections are at the value of c. 
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Figure 2: The two-sided testing problem H o : fJ = eo vs. H 1 : (} =/:- eo, 
where X rv n(e, 1) and eo has prior probability !, and (} =/:- eo has density 
~n(eo, 1) otherwise. The solid line is P((} = eolx). The posterior coverage 
probabilities of the interval C(x) = {e: I(}- xl ::; c} are given for c = 1.645 
(long dashes), c = 1.96 (closely spaced dots), c = 2.326 (short dashes), 
c = 2.574 (dots) and c = 2.807 (dots and dashes). 
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Figure 3: The two-sided testing problem Ho : e = eo vs. H1 : e =/= eo, 
where X rv n(e, 1). Shown are risks, using the loss £4 of (1.2) for esti­
mates PA(x, eo) based on a point-mass prior (solid line), Pk(x, 8o) based on 
a continuous prior (dashes), and the p-value (dotted). Note that the risk at 
e = 0 is .23 for the point-mass prior estimate, .651 for the continuous prior 
estimate, and .33 for the p-value. 
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