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MODELLING THE EFFECT OF TREATMENT AND BEHAVIORAL CHANGE 

IN HIV TRANSMISSION DYNAMICS. 

Abstract. In this paper we analyze a model for the HIV-infection 

transmission 1n a male homosexual cohort. In the model we consider two 

types of infected individuals. Those that are infected but are not under 

any sort of clinical/therapeutical treatment and those who are. The two 

groups of infecti ves differ in their incubation time, contacts with the 

susceptible individuals, and probability of transmission. The analytical 

results show that change in sexual behavior 1s important in lowering 

prevalence and incidence rate and, eventually, in driving the population 

toward the disease-free equilibrium. 



1. Introduction. 

The most recent figure on the spread of a world-wide AIDS epidemic 
shows over 10 million individuals infected with HIV v~rus. In United 
States alone, 117,781 cases of AIDS were reported by CDC as of December 
1989 with over a million more individuals thought to have been infected 
with HIV. The dread devastation of an AIDS epidemic predicted by many 
seems to have arrived only a short ten years after AIDS was first 
recognized as a new form of sexually transmitted disease (Masur et al. 

[1981]). Despite major public health efforts, the research for an 
antiviral drug with a direct effect against the HIV virus has yet to bear 
fruit. However, several drugs have been shown to work against HIV and its 
related illness, of which only two have been approved by the U. S. Food and 
Drug Administration for use ~n therapeutic treatment for AIDS: AZT 
(azidothymidine) and ddi. Although AZT has been demonstrated to prolong 
the survival time of AIDS patients as early as 1987 (Fischl et al.), its 

use in therapy can produce several severe side effects including bone 

marrow suppression, anemia, and liver problems (see e.g., Broder and Fauci 
[1988], Dournon et al. [1988], or Fischl et al. [1989]). Other side 
effects such as sleep disburbances have also been reported in AZT treatment 

of patients (Richman et al. [1987]). Vhile ddi works against Pneumocystis 
car~n1~ pneumonia (PCP), a leading cause of death among AIDS patients, and 
is less toxic than AZT. 

To aliviate the side effects of AZT, treatment with AZT is alternated 
with other drugs or procedures that have been found to reduce the side 

effects, while techniques such as liposomal encapsulation of AZT have been 



reported to decrease bone marrow toxicity (Phillips et al. [1991]). 

Presently, the treatment program of an AIDS patient must take into account 

the patient's overall health, the presence of symptoms, blood cell counts, 
and an evaluaion of immune system. It is geared to protect uninfected 

cells, to preserve the immune system, and to slow the progression to AIDS 

or AIDS-related illness. Recent reports on the numbers of AIDS incidence 

are less than projected, perhaps due to treatment (Gail et al. [1990]). 

However, a recent study on the use of AZT and AP in the treatment of 

patients with symptomatic HIV infection in San Francisco (Lang et al. 

[1991]) shows surprisingly low number of patients under treatment. Another 

factor for the lack of comprehensive treatment program for AIDS might be 

the general perception of AIDS as a disease of outcasts, i.e., homosexuals 

and drug users. But with the increasing awareness of the general public 

and the recent findigs about the increasing importance of heterosexual 

transmission In the spread of the disease one can foresee a more 

comprehensive treatment program for AIDS patients. 

In light of the present situation, on can question what is the effect 

of the treatment on the population, not at the individual level, but on a 

population scale; I.e., whether treatment will have an impact on the 

reduction of prevalence levels and/or the reduction of the incidence rate. 

Recent studies on the effect of therapy on AIDS incidence include Hethcote 

et al. [1991] which incorporates therapy in a simulation model of AIDS 

among gay men in San Francisco, although the results are inconclusive with 

respect to the effects on HIV transmission rate; and Gail et al. [1990] 

which points to the possible connection between therapy and a decrease in 

AIDS incidence due its effect on AIDS incubation and survival time. The 

question of interest here is to explore the possible consequences of 

medical treatment of HIV infected persons and the associated behavioral 

changes on the transmission of the virus to susceptible individuals in a 

homosexual population. 

In Section 2, we propose a model of HIV transmission in a male 

homosexual population undergoing a treatment program. Treatment is defined 

to be any combination of medication or other forms of therapy (e.g. 



psychotherapeutic sessions) which may result in a net decrease of the 

probability of transmission of HIV virus for the individuals undergoing 

treatment. Hence, in the model we incorporate a (possible) change in 

sexual behavior once someone 1s in treatment since change in sexual 

behavior (use of condoms, avoiding high-risk sexual practices, and so on) 

is crucial element in the extent of spread of the HIV infection. Studies 

have shown that the use of condom greatly reduces the probablity of 

transmission, albeit not completely. Vithout a cure or a vaccine against 

AIDS, change in sexual behavior is necessary in the prevention of AIDS. 

Many studies have shown a significant change in behavior toward safer 

sexual behavior among gay men, particularly in large urban areas. (See 

e.g., Becker and Joseph [1988], Stall et al. [1988], Catania et al. [1989], 

Judson et al. [1989], or O'Reilly et al. [1989].) On the other hand, 

reports of unchanged (unsafe) sexual behavior among gay men in low AIDS­

prevalence areas are also in abundance. (See p. 83, Miller et al. [1990] 

for a partial list of such reports from 1988 to 1990). In fact, one study 

on homosexual men in the Netherlands (Griensven et al. [1989]) reported 

that the seropositive individuals were more likely to have high-risk anal 

intercourse with their nonsteady partners than seronegative and untested 

men, although they were more likely to use condoms. Hence, not all 

individuals can be counted on to change their sexual habits and the picture 

on the relationship between AIDS and behavioral change is not altogether 

clear. In most studies on mixing pattern (e.g., Jacquez et al.[1988], 

Jacquez et al. [1989], Koopman et al. [1989]), the level and pattern of 

sexual contact are assumed to be constant throughout one's (active) 

lifetime. Recently, Scalia-Tomba [1991] proposed a model which describes 

the dynamics of change in sexual behavior from a high activity stage to a 

low activity stage and vice versa. In this work, by assuming a change in 

behavior of an individual undergoing treatment, we are assuming essentially 

that a person with enough sense of responsibility to continue treatment 

program will reflect it in his sexual practices. Ve consider only a male 

homosexual population (no drug users or bisexuals). Ve also assume 

distinct probablity of transmission of HIV virus for patients in treatment 

since, although there 1s no medical evidence of any drug decreasing the 

transmission probability, there is strong evidence that use of condom 

will. 



Section 3 is devoted to qualitative analysis of the model at the 

disease-free equilibrium with the a1m of determining the relative 

importance of changes in incubation time, probability of transmission, and 

sex behavior for an HIV infective under treatment. 'We also explore the 

relationship between the extensiveness of the treatment program and the 

prevention of epidemic, if any. Section 4 gives the results on the 

existence and uniqueness of the endemic equilibrium. Finally we give our 

conclusions in Section 5. 

2. Model formulation 

Consider a population of homosexual men subdivided into three groups: 

S ( susceptibles), U (the recent infecti ves not yet in treatme11t), and I 

(infectives undergoing treatment). The treatment, as mentioned before, 

includes any program of medical supervision/therapy of an infective which 

will have an effect on the transmission of HIV virus. 

The model describing the transmission dynamics of HIV v1rus within the 

population is then given as follow (the symbol ' '' indicates derivative 

with respect to time): 

S' ( t) =A - B( t) - p S + 6 I 

U' ( t) = B( t) - (p+v) U - u U/T 

I'(t) =u U/T- (p+v'+6) I 

with T(t) = S(t) + U(t) + I(t) being the total population. 

(2.1) 
(2.2) 

(2.3) 

Here A is the constant recruitment rate; p is the mortality rate due 

to causes other than AIDS; B(t) is the force of infection term and v and 

v' are mean death rates due to AIDS of the untreated class and the treatment 

class, respectively; u is the fixed number of infectives enter into 



treatment per unit time given a population of all untreated infectives; and 

6 is the cure rate of the treatment class where one can be cured and sent 

back to the susceptible class. Although currently 6 ~s equal to zero. 

It should be noted that ~n an AIDS model with screen~ng proposed by Hsieh 

[1991], u is the fixed number of individuals screened during each time 

interval and subsequently, u U/T is the proportion of individuals screened 

to be HIV-positive and removed from the active population per unit time. 

The implicit assumption in that model is that all individuals tested 

positive can be successfully removed from activities likely to be of risk 

to the susceptible class by means of education, changes in behavior, etc. 

The distinction being made in the present model is that those individuals 

are not removed, but are taken into a separate treatment class in the 

active population where possible changes in AIDS-related death rates, 

probability of HIV transmission, and behavior might occur. This ~s a more 

realistic view of the current situation regarding AIDS patients. In fact, 

one could argue that the number of newly treated infectives should be 

proportional to the AIDS prevalence in the total population, in which case 

the treatment is u/T. Another way to look at the treatment term is to view 

the number of individuals entering into treatment to be proportional to the 

prevalence of AIDS in the total untreated population since change in 

behavior might be directly related to the AIDS prevalence (Miller et al. 

[1990]), then u is just the constant of proportionality and the treatment 

term is u /(S+U). It will be shown that this change in treatment term does 

not alter the results of the anlysis in Section 3 and therefore is not 

important to make such distinction in this article. 

The force of infection, B(t), is given by 

B( t) = S( t) ( cap ¥ + c'a'p' f) (2.4} 

where a is the infectivity rate of a susceptible when in contact with an untreated infective, c is the 

contact rate {the average number of sexual partners per unit time) of a susceptible individual with 

individuals in class U, and p is the probability that an untreated infective engages in sexual activity 

with a susceptible person given that they have formed a pair; a', c' and p' are the corresponding 

parameters for the pair formation of a susceptible individual with an infective in the treatment class. 



Hence, p and p' are conditional probabilities with p + p' = 1. Moreover, we assume p', the the 

fraction of contact of susceptibles with the treatment class, is dependent on u, i.e., 

p' = 0 if Ci = 0 

=f> if Ci > 0. 

where p is some fixed fraction. Furthermore, it follows that 

p=1 if Ci = 0, 

= 1 - p if Ci > 0. 

The above formulation indicates that without a treatment program (u = 0), all contacts with the 

infectives occur with the untreated class. However with the existence of a treatment class (u >0), there 

will be infections due to contacts with either infective classes. Based on the assumption that changes 

in sexual behavior that diminish the transmission rate are undertaken by individuals in the treatment 

class, we can assume p < 1/2, i.e. the pairing of susceptible individuals with inembers of the treatment 

class are no greater than (and in all likelihood less than) those with the untreated infectives. It follows 

then that p' < p. We also assume that the average number of contacts of a susceptible with someone 

under treatment, c', will be less than or equal to the contacts with an untreated infective due to 

behavioral change. Futhermore, a' < a since treatment does not increase, and may possibly decrease, 

the transmission rate. Hence we have 

c'a'p' < c a p. (2.5) 

The net effect of treatment on the transmission of the disease is assumed to be reflected in relation 

(2.5). 

However, the same cannot be said regarding the mean death rates due to AIDS, v and v', although 

the treatment does not shorten the survival time of the patient (and probably prolongs it). The reason 

being that while v is the mean death rate due to AIDS in the sense that 1/v is the mean duration of 



infectiousness (or the average time from infection to full-blown AIDS), 1/v' is the mean duration of 

time spent by an infective individual under treatment regardless of how long a patient has been 

infected prior to entering into this class. Therefore, even if we know for certain that, on the average, 

treatment will retard the progression to full-blown AIDS, v' could still be greater than v if the patients 

entering treatment are heavily concentrated with individuals infected for a long period of time - a likely 

situation. Thus no assumption can be made concerning the relative size of v and v'. 

3. Analysis of the model 

Since the disease-free equilibrium of the system (2.1)-(2.3) is (A/ p., 0, 0), the well-known basic 

reproductive number, the number of secondary infections caused by an infective among a population of 

susceptibles in one infectious period, is 

(3.1) 

where we have labeled f3=cap and f3'=c'a'p'. In figure 1 it is shown the dependence of Ron {3' and u. 

In epidemiological studies, the basic reporductive number is closely related to the outcome of an 

epidemic by the simple criterion that R > 1 implies persistence of epidemic while R < 1 means the 

disease will die out. In the following portion of this article, we will look more closely at this condition 

but before going into more detailed analysis we explore the epidemiology of the early stages of the 

disease according to our model. 

(FIGURE 1 ABOUT HERE) 

At the begining of the epidemic we can assume that all members of the population are susceptible 

which translates into S = T and we can take this quantity to be roughly constant by neglecting 

recruitment and mortality (Anderson and May, 1991). At this early stage there are no infectious 

individuals undergoing treatment and thus we obtain the following equation for U: 

U'(t)= ([3 - v - u /T) U(t) 



where u /T is assumed constant. The solution to this equation is 

U(t)=U exp[(,B-v- u/T)t] 

which renders the initial doubling time for the epidemic ( the time required for doubling the number of 

individuals initially infected with the virus) 

0 = 0.7/(,8-v-u/T). 

the expression is similar to that obtained by Anderson and May (1991) differing only in the iclusion of 

u /T which lengthens the doubling time. 

Notice that at the beginning of the infection the number of cases rises exponentially with growth rate 

equal to 

,8 -v- ufT. 

The above relation sets also an upper limit for the treatment rate u /T which is 

ufT < ,8 -v 

indicating that to stop the spread of the epidemic in its early stages treatment rate has to be equal to 

the net recruitment rate of newly infected persons situation that is unlikely given the difficulties 

inherent in the determination of the incidence rate of the disease. 

When u = 0, i.e. no one in the population is being treated, we have I = 0. In this case the system 

(2.1)-(2.3) simplifies to 

S'(t)=A - ,8 s s~u 

U'(t)=.B s s~u - (JL+v) u 

(3.2) 

(3.3) 



which are exactly Equations (2.5)-(2.6) in Hsieh [1991). Therefore we have the following result: 

Proposition 1. Let R = {J/(JJ + v). If R < 1, the disease-free equilibrium (A/JJ, 0) is the unique 

equilibrium for system (2.1)-(2.3) and is globally asymptotically stable. If R > 1, there exists a unique 

endemic equilibrium (S, U) which is asymptotically stable for all initial populations except at the 

disease-free equilibrium. 

For proof of this proposition, see Hsieh [1991]. 

Our concern then is to know whether a positive value of u will prevent the convergence of populations 

toward an endemic population when R >1. Recall that u>O implies, for our model, that P>P' or, in 

other words, that u>O comes together with a reduction of risky sexual behaviors. The Jacobian matrix 

of system (2.1)-(2.3) 

At the disease-free equilibrium (A/ JJ , 0, 0) the Jacobian matrix becomes 



The eigenvalues of the matrix are - J.l and the roots of the characteristic equation 

Performing some elementary computations and using the Routh-Hurwitz criterion, we obtain the follow 

result on the stability of the matrix: 

Proposition 2. Given u > 0 and f3 > JJ+v we have 

(a), The matrix is unstable if {3' >J.l + v' + 6 . 

(b). When {3' <J.l +v' + 6 , then the matrix is unstable if u < ff , and it is stable if 

ff <u ; where 

ff= 

Proposition 2 gives us the local stability result of system (2.1)-(2.3) at the disease-free equilibrium. 

First we make the observation that ff >u is equivalent to R > 1. Hence we can state the local 

stability property of the system (2.1)-(2.3) at disease-free equilibrium can be stated in terms of the 

basic reproduction number: 

Proposition 3. Given f3 >J.l + 11 and 6 > 0. If /3' > J.l + v' + 6, then R >1 for all u>O and the 

disease-free equilibrium is unstable. If /3' < Jl + v' + 6 then the disease-free equilibrium is unstable if 

R > 1 (ff > u ), and locally asymptotically stable if R ~ 1 (ff ~ u ). 



Note that if the treatment term is changed to 0'/(S+U), R remains the same. The Jacobian matrix 

J will be different but, at the disease-free equilibrium, J will be the same as in (3.4) and hence 

Propositions 1, 2, and 3 follow similarly. Therefore having the treatment term proportional to the 

ratio of the untreated to the total population or the total untreated population does not alter our 

results. 

It is interesting to note that when /J'=c'a'p' is too large, the disease will persist no matter how 

comprehensive the treatment program is. However, if {J' <p + v' + 6, the convergence of the 

population will depend on whether the treatment program is comprehensive enough compared to the 

threshold value for the size of treatment program. 

4. Characterization of the endemic equilibrium 

To explore the behavior of the system when the disease-free equilibrium is unstable, we make the 

assumption that 6 = 0 and v = v'· = il. To that end define the new variables 

and 

t' = pt, b = pIp, b'=P'/ p, 0=1 + vf p, 

- pS 
S=jp 

- pU U=T, 

With these new variables, system (2.1)-(2.3) is given by 

B(t') s - s, 

0''=![_ 
A 

(4.1) 



(4.2) 

d-_ ,{j -
dt'I - u T - (} I, (4.3) 

with i'(t') = S(t') + U(t') + i(t') and B = b ¥ + b' i· 

Setting the RHS of (4.1)-(4.3) equal to zero we fmd the expression for the coordinates of the endemic 

equilibria 

A 1 
S=--A, 

1+B 
u _ :Bs 

- (} + u'fT' 
• u' 1=--AO 

fJ + T 

Substituting (4.4) into the expression forB and rearranging terms we obtain 

b + ..Ji.....u' 
B= ot2 

T (} + u' 
1 

(4.4) 

(4.5) 

Since p. < v it is not possible to find an explicit expression for T. However, some information about the 

nature of the equilibrium point can still be obtained. Adding together the expressions in ( 4.4) one 

obtains, for T > 0 

t = _!_,.. (1 + . B + u' B ) 
1+B T fJ + u' 0 t2 (T O+u') 

(4.6) 

which together with ( 4.6) gives a system of non-linear algebraic equations whose solutions correspond 

to the possible equilibria of system (4.1). Substituting (4.5) into (4.6) we have (to keep the notation 

simple enough we drop the ' • 'from the state variables below) 



(4.7) 

Denoting by F(T) the RHS of (4.7), we prove now the existence of a fixed point of F. Notice first that 

all coefficients except the one corresponding to T3 in the numerator of F are positive since u'> > 1 and 

b>l. Secondly we look for fiXed points only for values ofT in [0, 1]. The reason being that at the 

disease-free equilibrium we have all the population being susceptible, i.e., T = S = 1 (remember that 

we are using the rescaled variables defined at the beginnig of the section). We thus expect that when 

the virus spreads the value of S at equilibrium will actually go down below 1 and that the total 

population will in fact satisfy T<l. Also note that as T goes to zero F(T) tends +oo and that for 0 < 

T < 1 it is always positive. Evaluating Fat T=1 we obtain 

b'u'+O(b -u')+02(u' -1)+03 
F(1)= O(b'u+bO) 

F(1) is positive since lb- u'l < lu' -:-11 and 0 > 1. Moreover F(1)<1 since this is equivalent to require 

that 

Ou'+92 < b'u' + bO, (4.8) 

and, if the disease-free equilibrium is unstable (i.e., the disease is spreading) we have () < b which in 

terms of the original parameters can be written as {3 > ~ + 11. This condition guaranties (4.8). (see 

figure 3). 

(FIGURE 3 ABOUT HERE ILLUSTRATING 4.8) 

We conclude the preceeding discussion with 



Proposition 4. If condition ( 4.8) holds, there exists at least one endemic equilibrium point for system 

(4.1)-(4.3) {and hence the same hold for system {2.1)-(2.3)). 

Proof: The condition in the hypothesis implies that there is a T such that F(T) = T with 0 < T < 1. 

Notice that for c small 

F(c) "'+ = 0( ~) 
c (} c 

(4.9) 

and, by Decartes' rule of signs F has no poles in (0, 1]. Also, by Decartes' rule of signs the numerator 

of F{T) has no positive zeroes since the coefficients of the polynomial change sign only twice. Thus the 

graph ofF always remains above the horizontal axis. We now show that for certain (feasible) values of 

fJ, b, b' and u', F(T) is monotonically decreasing in (0, 1]. Notice that the changes of sign of the 

derivative with respect to T of F {denoted F '(T)) are determined by the changes of sign of the 

derivative of the numerator of the RHS of (4.7). Define p(T) as the numerator of F(T) divided by 04 

(so as to obtain a monic polynomial). Then 

(4.10) 

We apply again Decarte's rule to p'(T)/T and obtain that it has no real positive zeroes forT> 0 

We use now known results from Henrici {1974, pp: 450-453). Define 

_ 1 {m)( ) bm- -,P To, m. 
m=0,1, ... ,n 

where p(m) denotes the mth derivative of p evaluated at T0. 

Then the polynomial 

(bn = 1) 

has exactly one positive solution. Let this solution be p. The following theorem holds. 

Theorem 1. (Henrici, 1974 p. 452) No zero of pis contained in the open disk IT- To I < p. 



We have the following proposition regarding the uniqueness of the endemic equilibrium of system (4.1)­

(4.3). 

Proposition 5. There exist positive numbers 80, b0, b' 0, and u' 0 such that for 18-801, lb- b01, 
lb'- h'ol and lu'- u01 small enough. Then there exist a unique solution to equation (4.7) for T in the 

interval [€, 1] where t is arbitrarily small. 

Proof: AB pointed out before, changes in sign ofF' are determined by the changes in sign of (4.10). 

For fixed t > 0 let {Tj}, j=1, ... ,k, denote a partition of the interval [t, 1]. For each Tj we apply now 

Theorem 1. Since [€, 1] is compact and p'(T)/T does not have positive real zeroes, there exists a k* for 

which the set {IT-Tjl}, j = 1, ... ,k* generated by the repeated use of Theorem 1 is a finite open cover. 

It follows that (4.7) and hence F' do not change sign in [t, 1]. This implies that F is monotone in [t, 1] 

rendering the uniqueness of the endemic equilibrium point in this interval. The existence of 80, b0, b' 0, 

and u' 0 is dictated by biological feasibility. In figure 4 we illustrate the existence of the fixed point for 

one set of parameter values Q.E.D. 

It is important to note that tis a function of the parameter values 80, h0, b'0, and u'o· 

We discuss now some of the properties of the endemic equilibrium of system (4.1)-(4.3). Define as 

¢(u', T) = 
b + __!L_ u' 

8 t 2 

T 8 + u' 

the first term on the RHS of (4.5). Using (4.4) and (4.5) we have 

. 1 
s = <fo' 

• ¢ - 1 
U = ¢ (T 8 + u')' 

. u' ( ¢ - 1) 
I= ·2 2 . 

T 8 ¢ 

(4.11) 

( 4.12) 

The magnitude of the populations at equilibrium depends on the properties of ¢. Of interest in this 



work is the nature of the relationship between l/J and u' and T, the total population. In figure # we 

show graphically the nature of this relationship. Specifically we have 

84J Tb'O- b(O+T) < O 

8u' (T+O)(u'+T0)2 

if and only if Ob' < b. This relation holds only for very small values of b' (see figure 5). 

(FIGURE 4 ILLUSTRATING l/J AS A FUNCTION OF u and T ABOUT HERE) 

(FIGURE 5 ILLUSTRATING WHEN THE LAST RELATION HOLDS ABOUT HERE) 

This means that in order for treatment to be effective bringing down the incidence rate of HIV, it is 

necessary to enforce behaviors that effectivelly reduce the transmission rate b' otherwise, no matter 

how large u' is the incidence rate will be always positive. 

Note that l/J depends on the size of the total population. In this case it can be verified that 

for all feasible parameter values due to the fact that in a larger population the contacts of infective 

individuals in either class is diluted among all teh members (this is a consequence of assuming an 

homogeneous population and proportional mixing for the probabilities p and p' in (2.1)-(2.3) ). 

To wrap up the discussion and analysis of this section, we study now a particular case of (2.1)-(2.1) for 

which the coordinates of the endemic equilibrium point can be explicitly computed. In this case we take 

v = v'=O neglecting disease induced mortality. This assumption stresses the action of {3, {3' and u on 

the spread of the disease. Thus, from (2.1)-(2.3) we have 



Thus, from (2.1)-(2.3) we have 

and, at equilibrium, 

T~-.4 -p 

T'(t)=A - JJ T 

Setting the RHS of (2.1)-(2.3) equal to zero we obtain 

where 

~ A 
S=-~-, 

B+p 
A B s u ~, 

p+u/T 
(4.13) 

(4.14) 

is the expression for the force of infection B(t) at equilibrium. Substituting (4.1) and (4.2) into (4.3) we 

obtain that 

where 

p + P'u 
tP = A 

p(1 + :4> 

With this expression for the force of infection we obtain from ( 4.2) 

S = A 
JJ t/1' 

A A (t/1 - 1) 
u = tP JJ (1- j)' 

(4.16) 

i = uA (t/1 - 1) (4.16) 
tP JJ (1- :4f 



The point (S, U, i) given by (4.5) is the unique endemic equilibrium point for system (2.1)-(2.3) when 

we assume no cure rate (6 = 0) and v = v'. Notice that ¢ = 1 gives the disease-free equilibrium of 

the model. Also since 

d¢ A 
d(T = ([3' - !3) :5 0 

Jl (A+ u)2 
(4.17) 

we see that tretment can reduce the prevalence level of the disease in both types of infective individuals 

provided there are associated behavioral changes that insure [3' < [3. Otherwise, no matter how large (J' 

is, prevalence levels will always be away from zero. If we solve the equation ¢ = 1 for u we obtain 

u= 
A (p - !3) 

{3' - Jl 
(4.18) 

as the value for u that guaranties the prevalence levels to be zero. The value of u given by ( 4. 7) is 

positive (biologically feasible) only if two conditions are satisfied. One of them is 

{3' < Jl < [3. (4.19) 

This indicates that [3' has to be substantially small in order for treatment to succeed. For example, in 

a population where the life expectancy at birth is of 70 years, {3' has to be less than 1/70 in order for a 

treatment program to bring down the prevalence level of HIV infection. The other is that u can not be 

arbitrarily large since the number of infective individuals going into treatment can be at most he total 

number of untreated infectives existing at any time. Thus, even when ( 4.8) holds u may still not be 

feasible and (4.7) has no solution. We finally point out that the discussion presented in this section up 

to this point is valid only when the disease has reached the endemic equilibrium given by (4.5). In this 



contest, if condition ( 4.8) does not hold there is no treatment rate that results in tjJ = 1. If J..' < {3' < {3 

the transmission probabilities are so high that the incidence rate B is always positive and large 

producing high prevalence levels even if the populaton is under a treatment program. If {3' < {3 < p, 

the endemic equilibrium does not exists. 

We now proceed with the stability analysis of the equilibrium point (4.5). Equation (3.1) can be 

rewritten as 

R(/3' u) - 1 ( {3 + /3' u J..' ) 
' - J..& + v + upf A (J..& + v) A 

(4.20) 

Since the parameters all are positive, R is a continuous function in the variables /3' and u. When 

{3 = /3', R(/3', u) > 1 and the disease-free equilibrium is unstable. Furthermore, in this case there 

exists a unique endemic equilibrium (S, U, i) given by ( 4.5). 

Using a continuity argument, together with Proposition 3, we have the main result for the system 

(2.1)-(2.3) in a small neighborhood of lv - v'l and 6. 

Proposition 6. Given lv - v'l small, 6 small and positive, and /3 > J..& + v, if /3' ~ p+v+8, then the 

disease-free equilibrium for system (2.1)-(2.3) is unstable and there exists a unique endemic 

equilibrium. If, however, /3' < J..& + v + 8 , then the disease-free equilibrium is stable provided u 2: u 
and there is no endemic equilibrium. If u < u then the disease-free equilibrium is unstable and there 

exists a unique endemic equilibrium point. 

We now prove a stability result for the endemic equilibrium point of system (4.1)-(4.3). To this end let 

(4.21) 

where </>(t) is given by (4.11) and ~ is 1/J evaluated at the endemic equilibrium point (4.12). Thus~ 

evaluated at the endemic equilibrum is zero and positive for all T > 0. Moreover, viewing tjJ as a 

function of T we have 



for all T > 0. Thus 

aq; < o 
8T 

(4.22) 

Theorem 2. Assume 1/J > 1. Then the unique endemic equilibrium point of system (4.1)-(4.3) is 

asymptotically stable. 

Proof: Since 1/J > 1, the endemic equilibrium point exists and it is unique. We prove now that if! is a 

Lyapunov function of system (4.1)-(4.3). It is positive definite for all T > 0 and if!(~)= 0. Also note 

that the RHS of ( 4.22) can be rewritten as 

aq; • 
- 8T (a- b)(I/J-1/J) 

where a = A and b = S + O(U+I). Thus if the total population sligthly increases we have a> band 

since 1/J is a decreasing function of T this implies ~~ < 0. Analogously, if T decreases we have a < b 

implying 1/J > ~ rendering ~~ <0. It follows that the endemic equilibrium point is globally 

asymptotically stable. QED. 

5. Conclusions. The conclusions of this model indicate that whenever the incidence rate is positive 

there will be a asimptotically stable endemic equilibrium point no matter the level of treatment to 

which the population of infective individuals is being subjected to. However, results indicate that even 

if treatment cannot be effective to eradicate the disease, it can bring down the prevalence. Moreover, 

the only way in which treatment can have a significant impact either in eradicating the disease or 

lowering its prevalence is, one, to reach a high proportion of the infective population and two, to 

greatly alter the risky sexual behavior of the total population. In figures 6 and 7 we illustrate the 

endemicity levels of HIV whenever one of the two conditions just given is not fullfilled. In both cases 

the prevalence of the disease is relativelly high. 

(FIGURES 6 AND 7 ABOUT HERE) 

The Lyapunov function used to prove the global asymptotic stabilty of the endemic equilibrium was 



derived from the observation that the endemic level that any disease can achieve is the result of two 

interacting factors. One is the incidence rate per se (the number of new cases per unit time), and the 

other is the number of individuals (regardles of their serological status) that are exposed or re-exposed 

to the infectious agent per unit time (in this case HIV). In fact, (4.11) shows that in a homogeneous 

population under proportional mixing the incidence rate of the disease is really a function of the total 

population. These considerations led us to choose ( 4.22) as our 'energy' function. 
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