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Summary 

The usual confidence interval, based on Student's t distribution, has conditional 

confidence that is larger than the nominal confidence level. Although this fact is known, 

along with the fact that increased conditional confidence can be used to improve a 

confidence assertion, the confidence assertion of Student's t interval has never been 

critically examined. We do so here, and construct a confidence estimator that allows 

uniformly higher confidence in the interval, and is closer (than 1-a) to the indicator of 

coverage. 
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1. Introduction and Summary 

The usual confidence interval for a normal mean, when the population variance is unknown, is 

based on Student's t distribution. More precisely, let x1,· ··,xn be the realized value of X1,···,Xn, iid 

random variables from a normal distribution with unknown mean p and unknown variance u2• The 

set 

(1.1) C(x, s) = {p:lx;pl $ k} 

n l n 
is a 1-a confidence interval for p, where x = ft E xi, s2 = n: E (xcx)2, and k is a constant (based 

i=l i=l 

on the t distribution with n-1 degrees of freedom) that gives C(x, s) coverage probability 1-a. 

The interval (1.1) has constant coverage probability that is equal to the confidence coefficient, 

1--a. In cases where the coverage probability is nonconstant, the confidence coefficient is the 

infimum of the coverage probabilities, but for (1.1) we have 

(1.2) 

A frequentist must usually be content with reporting the confidence coefficient, but because of the 

equalities in (1.2), the coverage probability can be reported. This makes the value 1-a particularly 

meaningful as a report of confidence that C(x, s) covers p. 

The value 1-a, however, is independent of the data. If we observe X= x and S2 = s2, might 

this new knowledge alter our assessment of confidence in C(x, s)? This question originated with 

Fisher (1956), who was concerned with the behavior of confidence intervals on recognizable subsets 

(subsets of the sample space). If there are recognizable subsets on which confidence can be altered, 

then a confidence report of 1-a may not be appropriate. 

Brown (1967), building on the work of Buehler and Fedderson (1963), proved that there exists 

£ > 0 and a constant c such that 

(1.3) P 2[1' £ C(X, S) IIX/SI $ c] ~ 1--a + £ V p,u2 • p,CT 

The set { (x, s): lx/sl $ c} is now called a relevant set (Robinson, 1979a). The existence of a set 

satisfying the inequality in {1.3) immediately implies that the confidence report 1-a can be improved 
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upon, using a data-dependent confidence report 'Y(x/s), with 'Y(x/s) 2:: 1-a. 

The applicability of Brown's result is limited by the fact that f is only shown to exist, and thus 

an improved confidence report cannot be constructed. A main goal of this paper is to find a 

computable value e0 (along with a constant c) that satisfies (1.3). Once that is done, an improved 

confidence statement for the interval (1.1) can be constructed. 

In Section 2 we provide some background on conditional confidence, and formalize what is 

meant by an "improved confidence statement." Section 3 contains the key result of the paper, the 

lemma giving an explicit value off that satisfies (1.3). The proof of the lemma is extremely lengthy, 

and occupies the remainder of Section 3. (A detailed reading of the proof is not necessary to follow 

the main ideas of the paper.) In Section 4 we show how to construct improved confidence statements 

using the lemma of Section 3. We also apply a Brewster-Zidek-type construction (Brewster and 

Zidek, 1974) to exhibit smoother confidence estimators. The size of the gains is also investigated 

numerically. Section 5 contains a concluding discussion. 
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2. Conditional Confidence 

Suppose X is a random variable with density f( ·16) and, after observing X = x, a confidence 

interval C(x) for (possibly vector valued) 6 is constructed, with the property that P Jo e C(X)] ~ 1-o. 

After the interval is obtained, we would like to report a number that represents our confidence that 

the interval covers the true parameter. The conventional frequentist report is 1-a, the infimum of the 

pre-data coverage probability. Although such a report is probably the best possible before the data 

are obtained, it may be inadequate as a post-data confidence report. This is especially true if 

P Jo e C(X)] is not constant or if an ancillary statistic exists. In the first case the coverage probability 

is under-reported, and in the second case the infimum can be quite misleading. Indeed, the coverage 

probability can be misleading even if it. is constant, as is the case here. (These points are also 

illustrated by Berger and Wolpert, 1989 and Robert and Casella, 1990.) 

Many researchers have been concerned with these problems, starting with Fisher (1956, 1959). 

Work by Basu (1964, 1981), Buehler (1959), Robinson (1976, 1977, 1979a, 1979b) all address these 

points. (A review of the development of conditional confidence ideas is given by Casella, 1990). A 
I 

possible solution to these conditional problems was given by Kiefer (1977), who advocated using 

estimated (data-dependent) confidence statements. 

We consider a confidence procedure to be a pair <C(x), -y(x)> where -y(x) is the reported 

confidence in the set C(x). We think of C(x) being constructed in a predetermined way and our goal 

is to determine a reasonable -y(x). We treat the choice of a confidence report as an estimation 

problem and we are concerned whether, for a given X= x, the true parameter is covered by C(x). 

This suggests that -y(x) could be treated as an estimate of the indicator function of coverage, that is, 

(2.1) if 
if 

6 e C(x) 
61 C{x) • 

This approach was discussed by Berger (1985a, 1985b, 1988), and taken in Lu and Berger (1989), 

George and Casella {1990), and Robert and Casella (1990). Our approach is closely related to the 

theory of conditional inference as formalized ~y Robinson {1979 a,b). 

For a given C(x) the confidence statements will be compared according to the squared error loss 
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(2.2) L(r, 0, x) = [r(x)- IC(x)(O)r. 

If we are concerned with the performance of r(x) from a frequentist view, we must evaluate the 

performance of r(x) by considering the risk function 

(2.3) R(r, e) = ~ ( r(X)- Ic(x)(O) Y}. 
A reported confidence r 1(x) will be inadmissible if there is a r 2(x) such that 

(2.4) 

for all 0, with strict inequality for some 0. 

If a relevant subset exists for <C(x), r(x)> (or, in the more general terminology of Robinson 

(1979a), a relevant betting procedure), then r(x) is an inadmissible confidence report for C(x), using 

(2.4). A positively biased relevant subset M satisfies, for some £ > 0, 

(2.5) 

Define r'(x) = r(x) + dM(x). Then, using (2.5), it is immediate that R{r'(X), 0] S R{r(X), 0~ with 

strict inequality for some 0 as long as M has positive probability. (Note that if r(x) = 1--a, then 

(2.5) can be written as the inequality P[o £ C(X) I X£ M] ~ 1--a+£, implying that 1-a reports too 

little conditional confidence.) 

A negatively-biased relevant subset can similarly be defmed, as satisfying 

(2.6) 

and, here, r(x) is dominated by r'(x) = r(x) - dM(x). This can be interpreted as saying r(x) 

reports too much confidence in C(x). Brown (1967) identified a positively biased relevant subset for 

the t procedure <C(x, s), 1--a>, and Robinson (1976) showed that the procedure has no negatively 

biased relevant subsets. 

Estimation of confidence has been studied, though not extensively. Lu and Berger (1989) 

consider the case of a multivariate normal mean and concentrate on improved confidence statements 

for sets recentered at positive-part James-Stein estimator. As shown by Hwang and Casella (1982), 



6 

such sets have uniformly higher coverage probability than the usual confidence region. Lu and Berger 

(1989) established that, if the dimension is more than 5, the constant confidence is inadmissible for 

the class of estimators exhibited in Hwang and Casella (1982). They also developed classes of 

alternative confidence coefficients. George and Casella (1990) developed empirical Bayes confidence 

estimators dominating the usual one. 

Hwang and Brown (1990) established admissibility of 1-a as a confidence report for the usual 

confidence set for a multivariate normal mean of dimension less than or equal to 4. Robert and 

Casella (1990) showed inadmissibility for dimensions more than 5, and also developed improved 

confidence statements for the usual multivariate normal confidence set. 

For the Student's t procedure <C(x, s), 1-a>, Brown (1967) showed that the set 

(2.7) C = { (x, s): lx/sl < c} 

is a positively biased relevant subset. Thus, a confidence estimator of the form 'Y(x/s) = 

1-a + dc(x/s) will dominate 1-a in risk, using (2.3). If values of e and c can be computed, 'Y( ·) 

can be constructed. The next section shows how to compute these values. 
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3. The Construction Lemma 

In this section we state and prove the lemma needed to construct an improved estimator of 

confidence for the interval (1.1), giving an explicit lower bound on the conditional confidence of 

C(x, s). 

Lemma: Suppose n > 2. Define the constant c* by 

(3.1) c* = ma.xf k, ~ k2 'eo} 1 1 +k -1 

with k given in (1.1), and c0 satisfying 

c = { k + ~k2 +1 
0 cotw0 

'f 3n-2 .-!L 1 1 1-a < 
otherwise 

where w0 is the solution to 

(3.2) 

' 
) [ ( )n-2] n-1 sinw0 

F 1 n-1 < -2- = (1-a) 1 + . (3 ) ' ' cot w0 sm w0 

and F1,n-l is an F random variable with 1 and n-1 degrees of freedom. Then for all c > c*, 

(3.3) P (IX-pl < kiiXI < c) > 
p,u2 S - S - -

Remark: For p = 0, the conditional probability on the right-hand side of (3.3) does not depend on 

u2, so the bound is independent of all parameters. 

Proof: Define the two sets 

(3.4) K = {(x, s): lx-plfs ~ k}, C = {(x, s): lxl/s S c}. 

Following Brown (1967), we will constantly refer to Figure 1 (which is a reproduction of his Figure 1). 

The area K is contained in A1AoA2 and Cis contained in B10B2• Since K and C depend only on the 

ratios xjs, pfs, and pju, all the probabilities we consider are only functions of pfu. Thus, without 

loss of generality we can assume u = 1, and because of symmetry, we can take p ~ 0. 

Let ({' = cot-1(k) and w = cot-1(c). Since c > k, the lines AoA2 and OB2 intersect at Q2, while 
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OB1 and AoA1 do not intersect. Note that c > k is equivalent to fP > w. Also, we have taken 

AoP J.. OB2, and c > k~~1+k2-1) implies 'P <'K/2-2w, or AoC1P < AoC2P. (The "...., denotes 

angle.) 

Consider the system of polar coordinates with Ao as its center. Let r2 = (x-p)2 + s2 and () = 

arctan [s/(x-p)]. The values r and () can be considered values of random variables, R and 9 with 

probability density 

It can be easily seen that R and 9 are independent. Defme 

p1 (r) = P{ K n c n {o: () ~ f} j' R = r} 

p2(r) = P{ C n {o:o ~ f} I R = r} 

p3(r) = P{K n c n {o:o > f} I R = r} 

p,.(r) = P{ c n {o:o > f} I R = r} 

p(r) = p {IX-pl < k I lXI < c R = r} = Pt(r) + P3(r) for r > AoP . 
P S S ' p2(r) + p,.(r) 

We will omit the dependence on r for notational convenience, whenever no confu13ion arises. 

Obviously 

If p = 0, p(r) is independent ofr, 1-ct < p(r) < 1, and can be written 

(3.5) 

11" 
2 J (sin(J)n-2d(J 

p(r) = ~ _ 1-a+e0 , 
2 J (sin9)n-2d(J 
w 

which "defines e0• Observe that for every p, 

(3.6) l!im p(r) = 1--a + e0 • 
[-too . 
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To show that this limit is a lower bound, we must consider a number of cases. We will consider two 

cases depending on the range of c and, for each of these cases there will be four subcases, depending 

on the range of r. 

Case/: c > k+ ~1+k2, or equivalently, tp > 2w or AoQ2 < AoO. 

Case la:r > AoO 

Let t/J = D4AoO and e = D2Aox. Note that 0 4 lies on the line OB1• Let D0 and D~ be the 

reflections of 0 0 and 0 4 with respect to x axis, respectively. Clearly D~AoO = t/J. By simple 

geometry we know that the sum of the radian measure of the arcs D~D0 and D2D0 equals twice the 

measure of OC2Ao, hence "' + e = 2w. 

Taking the derivative of p2 + p4 with respect to t/J, we have 

which is positive since e = 2w-t/; > t/J and n > 2. Since t/J is increasing in r, d(p~; p4) > 0. On the 

other hand, for r > AoQ2 > AoC1, p1 and p3 are constant, hence pis decreasing in r. Using (3.6) we 

conclude that p > 1-a + c0• 

Case lb: AoO > r>AoQ2 

Similar to the previous ease, p1 and p3 are constant, whereas now both p2 and p4 are increasing 

in r. Therefore p decreases to p(AoO), which is greater than 1-a + c0• 

Case lc: AoQ2 > r > AoCt 

Let t/J = D 4AoO as above, and observe that t/J is decreasing in r. If t/J > w then p > 1-a + c0 and 

r = AoQ2 corresponds to t/J = tp-2w. Hence we are interested in t/J such that tp-2w < t/J < w. (If 

tp > 3w then p > 1-a + c0 trivially.) Since p4 is decreasing in 1/J, 
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11" 11" 11" 11" 
2 2 2 2 

J (sin8)"-2d8 + J (sin8)n-2d8 J (sin8)"-2d8 + J (sin8)n-2d8 

_2w,+~t/J _____ V':.---- >_ 2w + t/J ! 
p= 11" 1[ " 

2 2 2 2 I (sin8)"-2d8 + I (sin8)n-2d8 J (sin8)"-2d8 + I (sin8)"-2d8 

2w + t/J t/J 2w + t/J tp-2w 

(3.8) 

1[ 11" 
2 2 

J (sin8)"-2d8 + J (sin8)n-2d8 
3w 1fJ 

~ ~1[~--------=11"--------
2 2 

f (sin8)"-2d8 + f (sin8)"-2dO 
3w tp-2w 

Comparing the lower bound in (3.8) to (3.5), to show p ~ 1-a + E0, it suffices to show 

1r .!. 
2 2 

1[ 11" 
2 2 

J (sin0)"-2d0 J (sin0)"-2d8 + J (sin0)"-2dO J (sin8)"-2d0 

3w "" /() "" 

(3.9) 

1[ 11" 
2 2 

1[ 1r 
2 2 

- J (sin0)"-2dO I (sin0)"-2d8 - J (sin0)"-2d8 J (sin8)"-2dO ~ 0 , 

/() 3w /() tp-2w 

for 2w < I() < 3w and 0 < w < 1r /8. This last restriction is a consequence of the fact that 

2w < I() < 1r /2-2w. 

Differentiating the LHS of (3.9) with respect to tp we obtain 

.!: 11" 
2 2 

-(sinl{))"-2 J (sin0)"-2d8 + (sintp)"-2 J (sin8)n-2d8 

"" 3w 

1[ 11" 
2 2 

+ (sintp)"-2 J (sin8)"-2d0 + [sin(tp-2w)]n-2 J (sin8)"-2d8 

tp-2w tp 
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11" 

J (sin8)n-2d8 > 
tp-2w 

~ 

2 

J (sin0)"-2d8 • 
w 

Hence (3.9) is true if and only if, for 0 < w < ~ /8, 

(3.10) 

or equivalently 

(3.11) 

1!: 11" 
2 2 

J (sin8)"-2d8 + J (sin8)"-2d8 
3w 2w 

11" 11" 
2 2 
J (sin0)"-2dO + J (sin8)"-2d0 

3w 0 

11" 

11" 
2 

J (sin0)"-2d0 
3w 

2 w 

J (sin0)"-2dO + J (sin0)"-2dO 
3w 0 

11" 
2 

J (sin6)"-2d0 

~ .;;2;~---
2 

J (sinO)n-2dO 

"' 

11" 
2 

J (sin0)"-2d0 
~ .;;2:,__ __ _ 

2 

J (sin0)"-2dO 

"' 

Inverting numerators and denominators in (3.11), after some algebra, we obtain the equivalent 

expression 

(3.12) 

3W 

J (sin8)"-2d6 

1+.:;;2,;'r----
2 

J (sin6)"-2d6 
3w 

2W 

J (sin6)"-2d6 

~ -7=~';-----

. J (sin6)"-2d(J 

0 

The LHS of (3.12) is less than 2 since the interval of integration of the denominator is wider and 

lies on the right of the interval of integration of the numerator, since w < ~/8 and (sin0)"-2 is 

increasing. Hence a sufficient condition for (3.12) to hold is 



(3.13) 

or, for w > 0, 

(3.14) 

12 

2W 

J (sin8)n-2d8 

-r.:?,:.;---- ~ 3 

J (sin8}"-2d8 
0 

2W W 

J (sin8)"-2de- 3 J (sin8}"-2d8 ~ 0 • 
0 0 

Since (3.14) (and (3.13)] are true for w = 0, it suffices to show that the LHS of (3.14) is nondecreasing 

in w. Differentiating with respect to w, we need to establish 

2(sin2w)n-2 - 3(sinw)"-2 ~ 0 

or, equivalently 

(3.15) 

Inequality (3.15) is true for 0 < w < 7</8, n > 2 since cosw ~cos 7r/8 = 0.9239, thus establishing (3.10}. 

Case ld: AoC1 > r > AoP 

Clearly p = 1 > 1-a + €0 for this ~range of r. 

· Case II: c < k + ~k2 + 1 or, equivalently, cp < 2w or A00 < AoQ2• We partition the space of 

possible values of r in a similar way. 

Case /Ia: r > AoQ2 Here p decreases to 1-a+e0, as before. 

Case 1/b: AoQ2 > r > AoO The functions p1 and p2 are equal and increasing in r whereas p4 is 

decreasing and p3 is constant. Hence 

(3.16) 

The derivative of p has the same sign as 

(3.17) 
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which is positive since p2 + p4 > p1 + p3 and (3.16). Hence p is increasing in r and it is greater than 

1-a+e0 if and only if p(~O) > 1-a+e0• 

Case 1/c: AoO > r > AoC1 

and only if 

for all t/J such that 0 < t/J < w. 

Since (3.18) is true for t/J = w, it is sufficient (but not necessary) that the LHS be nopincreasing 

in t/J. Differentiating with respect to t/J, the derivative is nonpositive if and only if 

(3.19) 1 _ 1 > ( sint/J )"-2 

1-a + e0 - sin(2w + t/J) 

Since the RHS of (3.19) is increasing in t/J, using the definition of 1-a + e0 (from (3.5)), an equivalent 

condition is 

(3.20) 

11" 
2 

J (sin0)"-2d0 

w 1 
11" -
2 

J (sin0)"-2d0 
tp 

~ ( ~inw )"-2 
sm3w 

for 0 < w < fP· Now observe that the LHS, as a function of w, decreases to zero whereas the RHS is 

increasing. Hence if 

(3.21) 

11" 
2 I (sin0)"-2dO 
0 (t)n-2 
~ -1 > 3 ' 
2 I (sin0)"-2d0 
tp 
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inequality (3.20) holds for w < w0 where w0 is the value of w that makes (3.20) an equality. 

Note that integrals of the form J (sinO)n-2 dO can be expressed as beta integrals, using the 

transformation u = sin26. Then using the relationship between the beta and F distribution, equality 

in (3.20) is exactly condition (3.2). Moreover, condition (3.21) reduces to the requirement 

3n-2 o:/(1-a) > 1. Therefore, for c > c0 =cot w0, P> 1-ot+£o· 

Case 1/d: AoC1 > r > AoP. For the range of r it is clear that p = 1, hence p > 1-o: + £0• 

Since p( r) ~ 1-a + £0 for every p, with equality for J.l = 0, the lemma is proved by taking 

expectations over r. 0 

The assumptions of the lemma are clearly sufficient but not necessary. Numerical evidence 

shows that the result holds for c smaller than the bounds given in the statement of the lemma. 

However if c < k the RHS of (3.3) equals 1 and, as Brown (1967) points out, if c < 1/k the 

conditional probability tends to 0 as J.l tends to infinity. 
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4. Increased Confidence for the t Interval 

The lemma of Section 3 gives an easily computable bound on the conditional coverage 

probability. We now use this bound to construct a post-data confidence estimator "'f(X./s) which 

improves on 1--a. 

Theorem 4.1 Let c > c* and k be fiXed constants, where c* and k satisfy the assumptions of the 

lemma of Section 3. Define 'Yc(X./s) as follows: 

if 
(4.1) 

if lxl > c 
s -

where tn-l denotes at random variable with n-1 degrees of freedom. Then 

(4.2) 

for all iJ and u2, where C(x, s) is the 1-a Student's t interval of (1.1). 

Proof Since "'fc(x/s) = 1-a for lxl/s ~ c, it suffices to show 

for all IJ· The last inequality can be seen to be true by observing that, for IXI/S < c, 

(4.4) 

and using inequality (3.3) (as in Robinson, 1979a). 0 

Since .a confidence report based on a partition of possible values of lxl/s improves upon 1--a, it 

seems plausible that, by taking a finer partition, we could construct a report that is even better. The 

technique of further partitioning has been introduced by Brewster and Zidek (1974) and has been 

applied in similar problems in Goutis and Casella (1990) and Shorrock (1990). We have the following 

theorem: 

Theorem 4.2 Let £2 = (c1, ~), ct > ~ > c* and k be constants, where c* and k satisfy the 

assumptions of the lemma of Section 3. Define 'Yc (x/s) as follows: 
-2 
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1-a 

P{ltn-tl < c:,~n-1) 
'Yc (x/s) = 1-a 

-2 P{ltn-tl < c1~n-1) 
1-a 

Then 

for all p. and u2, where 'Yc is given in (4.1). 
1 

if lxl < 
8- c:, 

if C:, < '!' < Ct 

if lxl 
cl ~ 8 · 

Proof The result follows immediately after observing that P o,u2{ 1;1 < k 11;1 < c} is d"Ccreasing in 

c. 0 

An immediate consequence of the above theorem is that 'Y£2(x/s) improves upon 1-a. We can 

easily generalize and take more cutoff points. We create an array ~m = (cm,l' cm, 2 ••• cm,m) such 

eim max(cm i-cm i-t> = o. As 
m--+oo i ' ' 

m-+ +oo the reported confidence will tend to -y(x/s) defined by 

(4.5) -y(:X/s) = 
P{ltn-tl < (lxl/s) ~n-1) 

1-a if lxl/s < c* 

1-a if lxl/s > c* 

Note that P(l tn-tl < (lxl/s) ~n-1) = 1-p(x) where p(x) is the p-value associated with the hypothesis 

p. = 0. By the Dominated Convergence Theorem, -y(x/s) dominates 1-a in terms of risk. 

For an observed value of x/s, the confidence report attached to the t interval will be -y(x/s) of 

(4.5). To give some idea of the shape of this function, Figure 2 shows values of -y(x/s) for n=5 and 

n=9. It can be seen that a confidence report of almost 94% confidence is possible when using a 

nominal 90% interval. Figure 3 shows the difference in the risks plotted against p.fu. Although the 

improvement is not large, -y(x/s) does dominate 1-a. Note that the size of the risk improvement is 

really only of secondary concern, as the experimenter may be able to assert a sizeable increase in 
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confidence. Indeed, the experimenter really does not care about the magnitude of the risk 

improvement 88 long 88 the confidence is maximally increased. AB the degrees of freedom get large, 

for the usual confidence coefficients, the constant k is rather small. Since c* ~ ~ k 2 > ~' the 
1+k -1 

bound c* is large, so "f(X./s) is quite close to 1-a and we cannot expect a large improvement. 
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5. Discussion 

For the t interval, the existence of a relevant subset implies that the unconditional confidence 

statement may not be the most appropriate assertion of confidence. Since the conditional confidence 

level can be bounded above the nominal 1-a for all parameter values, an increased confidence 

assertion is appropriate. 

Although it is known, in theory, how to use a relevant set to improve confidence, the 

implementation of the theory may be difficult. This was the case for Student's t, as the verification 

of the lower bound on the conditional probabilities was quite involved. The end result, however, is 

the construction of a confidence estimator that allows a confidence assertion uniformly higher than 

1-a, and is closer to the true indicator of coverage. 

Many of the arguments used here took advantage of properties of the normal and t distribution, 

so the extent of generalizability is not clear. It is probably the case, however, that our results can be 

extended to the F distribution in the analysis of variance, allowing for increased confidence in 

Scheffe's simultaneous intervals. (Olshen, 1973, was able to extend some of Brown's 1967 arguments 

to the analysis of variance. Some of those arguments may prove useful.) 

For the case of known variance, the usual interval does not allow relevant sets so the 

construction used in this paper will not result in improved confidence. (Actually, Robinson, 1979b 

established a stronger result, the absence of semirelevant sets.) Also, recall that Hwang and Brown 

(1990) have shown that 1-a is an admissible confidence report in four or fewer dimensions. For five 

or more dimension, even though there still are no relevant sets, the confidence in the usual set can be 

improved (Robert and Casella, 1990). Thus, although the existence of a relevant set results in an 

improved confidence statement, it is a sufficient but not necessary condition. 

Perhaps the key idea is Fisher's, that an interval's confidence should be evaluated on 

recognizable subsets. Then, if the confidence, conditional on that subset, is different from the 

nominal value, that information should be used to improve the confidence assertion. Fisher 

concentrated on sets defined by ancillary statistics, while here the conditioning set is the acceptance 

region of a hypothesis test, and is not based on an ancillary statistic. The moral may be to examine 
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recognizable sets of interest, perhaps dictated by the problem at hand, and see if confidence assertions 

are affected by conditioning. If so, the nominal confidence coefficient, 1--a, may not be an adequate 

confidence report. 
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Figure 1. Regions used for calculation of conditional coverage probabilities. 
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Figure 2. Values of "f(X./s) of (4.5) for n=5 (solid line), n=9 (dotted line) and 1-a=.90. 
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Figure 3. Difference in risks EJ.l,0'2 [{rc{X/S)- IC(X,S)(J.l)Y] - EJ.l,0'2[{1-a- IC(X,S)(J.l)Y] for 

n=5 (solid line), n=9 (dotted line) and 1-a=.90. 
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