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ABSTRACT 

C. R. Henderson's 1953 Biometrics paper "Estimation of variance and covariance 

components" is an outstanding landmark in the discipline of statistics. It sets out the very 

first ideas of how to estimate variance components from unbalanced (unequal-subclass­

numbers) data in situations more complicated than the 1-way classification, or completely 

randomized design. As such it had two important, long-lasting impacts. First, it provided 

methods for actually using unbalanced data, even in large quantity, for estimating variance 

components. And this played a tremendous role in population genetics and in animal breeding, 

where the use of estimated variance components is vital to the application of selection theory 

and selection index techniques. Second, that 1953 paper stimulated numerous statisticians to 

become interested in random effects, mixed models, and variance components estimation, with 

such statistical greats as H.O. Hartley and C.R. Rao making contributions in the late 1960's 

and early 1970's. By then, improved methods of estimating variance components from 

unbalanced data had been developed, namely maximum likelihood (ML) and restricted 

maximum likelihood (REML). Once computing power had expanded to the point where these 

methods became feasible "Chuck", in his later years, made notable contributions to these 

methods, allied to his two great interests: animal breeding, and feasible computing procedures. 

For both of these his mixed model equations were a salient feature. 

*An invited paper for the Symposium "The Legacy of C.R. Henderson" at the 85'th 

Annual Meeting of the American Dairy Science Association, Raleigh, North Carolina, June 

25-26, 1990. 
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1. THEHENDERSONLANDMARK 

The early beginnings of estimating variance components date back to the work of two 

astronomers: Airy (1861) and Chauvenet (1863). Modern-day work started with Fisher 

(1925), Fisher (1938), Cochran (1939), Daniels (1939) and Winsor and Clarke (1940). In all of 

these papers we see the beginnings of what today is called the ANOVA (analysis of variance) 

method of estimating variance components, based on equating expected mean squares to their 

values computed from data. And as an estimation method it was given considerable impetus 

by the Anderson and Bancroft (1952) book wherein it is considered at some length. More 

details of this history are to be found in Searle (1989). 

Most of this work had dealt with what are now called balanced data - data having equal 

numbers of observations in the subclasses. Cochran (1939), Daniels (1939) and Winsor and 

Clarke (1940) had considered the case of unbalanced data (having unequal numbers of 

observations in the subclasses) from a 1-way classification, and Ganguli (1941) dealt 

comprehensively with unbalanced data from completely nested models, e.g., cows within herds 

and, say, herds within states. But no one had tackled the difficult problem of estimating 

variance components from unbalanced data of cross-classified models, e.g., of milk production 

records of daughters of A.I. sires in different herds - where sires are crossed with herds, and, 

for a large group of herds, each sire has daughters in many herds and each herd has daughters 

of many sires. This was the statistical problem that Charles Ray Henderson (1911-1989) 

addressed in his classic 1953 paper in Biometrics "Estimation of variance and covariance 

components." It was to be a landmark in the history of estimating variance components. 

2. THE HENDERSON BACKGROUND 

Here we had, in 1953, a statistical paper, couched in terms of dairy cows, that was later 

to be described by the Institute of Scientific Information as one of the most-frequently cited 

papers in the scientific literature: e.g., in the decade of 1978-1988, namely 25-35 years after 

publication, it was listed by Science Citation Index as having been referenced 234 times, an 

average of twice a month! From whence statistically, came its author? 

Charles Henderson grew up in Iowa, and had all his university education at Iowa State 

College (now University) in Ames. Following his M.S. in animal nutrition he worked first with 

the Iowa Extension Service and then Ohio University, and in 1942 joined the U.S. Army where 
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he finished up as Commanding Officer of an Army Medical Nutrition Laboratory in Chicago. 

It was during those army days that his statistical interest began, as evidenced by the eighteen 

papers of 1944-1948 on which he is a co-author. Number three of those, for example, is 

"Certain statistical considerations in patch testing", published in the Journal of Investigative 

Dermatology; and almost all of the others are concerned with such features as "effects of'' and 

"observations on" various dietary limitations on young men. 

Leaving the army in 1946, Chuck (as we all knew him) went back to Ames and pursued 

a Ph.D. degree under Jay Lush, Lenoy Hazel and Oscar Kempthorne. And it was in working 

on his thesis, "Estimation of variances due to general, specific and maternal combining abilities 

among inbred lines of swine", that he came to the problem that concerned him, statistically, 

for the rest of his life. This was the question: how does one estimate variance components 

from large, cross-classified data sets that have unequal numbers of observations in the 

subclasses? At that time, the late 1940's and early 1950's, there was only the ANOV A 

method of estimation, based as it is on equating mean squares of an analysis of variance to 

their expected values under models that contain random effects; in general, mixed models. 

The result is a set of linear equations in the variance components, the solutions of which are 

taken as estimates of the variance components. 

Example Suppose in a given year there are n daughters of each of b bulls m a sue­

proving experiment, with 

Y·· = J.l + s. +e .. 
IJ 1 IJ 

(1) 

being the record of daughter j of sire i. Then the between-sires and within-sires analysis of 
n 

variance table is based on table 1, where y. = E y .. jn is the mean record of the n daughters 
b n I "-1 IJ 

of sire i, and y = E E y .. fbn is the mean re~ord of all n daughters of all b sires. 
.. i=1 j=1 IJ 

Table 1. Sums of squares and mean squares of n daughters from each of b sires 

Source of 
Variation 

Between sires 

Within sires 

Total 

Degrees of 
Freedom 

b- 1 

b(n-1) 

bn- 1 

Sum of 
Squares 

b n 2 
SSB=E E(Yi.-Y . .) 

i=1j=1 

b n _ 2 ssw= E E (y .. -y.J 
. 1" 1 IJ 1 I= J= 

b n _ 2 
SST = E E (yi"-y . .) 

i=1j=1 J 

Mean 
Square 

MSB = ~~B1 

MSW = SSW 
b(n-1) 
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Then, with sires considered random, the expected mean squares in the usual variance 

component form of (1) are 

2 2 E(MSB) = nus + ue and E(MSW) = u~ . (2) 

Equating mean squares to their expected values as a method of estimating variance 

components gives the equations 

MSB = nu~ + &~ and MSW =IT~, (3) 

and these yield the ANOVA estimates 

a-~= ACMSA-MSE) and u~ = MSE. (4) 

This is the ANOVA method of estimating variance components at its simplest: for the 1-way 

classification with balanced data. By the time of Henderson's 1953 paper this method of 

estimation was well established for balanced data. What Henderson did, for unbalanced data 

from models that could have any number of crossed factors, was to provide suggestions for the 

sums of squares that could be used in those models in the manner that SSB and SSW are used 

in (2), (3) and ( 4 ). 

3. HENDERSON'S THREE METHODS 

The philosophy of Henderson (1953) was to adapt the ANOVA method of estimating 

variance components so as to have methodology available for the kind of analysis that was 

being considered in the 1950's, a year-by-herd-by-sire analysis with years as fixed effects and 

herd and sires as random effects. Thus, one year's records might have the appearance of 

Table 2. 

Table 2. Number of daughter records in each herd for 60 A.I. sires used in 800 herds. 

Sire Herd Total 

1 2 3 4 5 6 ... 800 

1 - 1 - - 2 3 ... 1 436 

2 2 - 1 1 - 1 ... - 281 

3 1 - 2 - 1 2 ... 2 264 

... 

60 - 1 - - - - 40 

Total 65 48 51 47 32 61 ... 24 9862 
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What Henderson gave us was three different sets of mean squares (or sums of squares -

effectively equivalent for the purpose at hand) that could be used in the basic ANOVA method 

of estimation, namely 

equate calculated MS to E(MS) (5) 

or 

equate calculated SS to E(SS) . (6) 

The three different sets of sums of squares came to be known as Henderson's Methods I, II and 

III. In truth they are not three different methods but three different applications of the basic 

ANOV A method as specified in (5) and (6). In brief the three methods are as follows: 

Method I. Use sums of squares analogous to the traditional sums of squares of the 

analysis of variance of balanced data. In fact, some of the terms used are actually not sums of 

squares; they are quadratic forms of the data that can be negative. For example, the analogy 

of 

L:a L:b c- - - +- )2 L: L: -2 L: b -2 L: -2 + b -2 n .. - . - . = . .n . . - . n . - .an . a n . . y IJ • y I• • y •J · y · · · I J y IJ · I y I·· J y •J • y • • • 
I=1J=1 

for balanced data becomes, for unbalanced data, 

"' "' -2 "' -2 "' -2 + -2 L...-iL...-li/ij· - L..-ini.Yi·· - L..-jn.jy ·j· n . .y ... , 

which is not a sum of squares. It can be negative. Thus for a= b= 2 and data 

2 4 
10 4,40 expression (8) is -22 . 

(7) 

(8) 

(9) 

Method II. Adjust the data to take account of fixed effects estimated as if the random 

effects were fixed; and then use Method I. 

Method III. Use the sums of squares from the classical method of fitting constants that 

has long been available as a method of estimating fixed effects from unbalanced data from 

fixed effects models. These sums of squares used to be used in a hypothesis testing framework, 

too, although it has since been shown (e.g. Searle, 1971) that the hypotheses being so tested 

do, in fact, differ from those which they were once thought to be. 

Each of these methods has its merits and demerits. Method I is easy to calculate, even 

without modern computers, but it can be used only for random models. It cannot be used for 

mixed models. Adaptating the method to mixed models through ignoring the fixed effects, or 

assuming them to be random yields biased estimators of the variance components. Method II 
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was, in my opinion, initially difficult to understand, especially the manner of making the 

adjustments for the fixed effects. More serious, though, was the fact that Method II cannot be 

used for any model that includes interactions between fixed effects factors and random effects 

factors. Trying to do so yields biased estimators. Method III is easy to understand, but with 

large data sets its calculation can require inverting matrices of large order. And for many 

situations it is a method that is not uniquely defined. For example, in the sires-by-herds case 

of Table 2, does one use the (reductions in) sum of squares 

R(herds, adjusted for years) and R( sires, adjusted for years and herds) (10) 

or does one use 

R( sires, adjusted for years) and R(herds, adjusted for years and sires) ? ( 11) 

These two possibilities are different and they do not yield the same estimates. Each of them is 

a legitimate Method III procedure, but Method III gives no indication as to which is preferable 

- nor even if one is preferable to the other, or preferable to other pairs of sums of squares such 

as, for example, the second R( ) in each of (10) and (11). 

4. INITIAL FOLLOW-UP: PROPERTIES OF THE 

HENDERSON METHODS 

All three of the Henderson methods give unbiased estimators of variance components. 

This is to be expected, since all of them are just applications of the most general form of 

AN OVA estimation, which can be typified as E( q) = Pu2 giving &2 = p-1q where q is a 

vector of quadratic forms of the data and u 2 the vector of components to be estimated. Hence 

E(&2) = p-1E(q) = p-1Pu2 = u 2. What the Henderson methods do is provide suggestions for 

the elements of q. 

The three methods also have one deficiency: there is nothing in their methodology that 

prevents the occurrence of negative estimates. Yet all of them simplify, for balanced data, to 

be the same thing, namely to yielding the ANOV A estimators of variance components which, 

for balanced data, are minimum variance unbiased (MVU) under normality assumptions, 

Graybill and Wortham (1956), and even without normality are minimum variance quadratic 

unbiased, MVQU, Graybill and Hultquist (1961). 

Henderson's development of his three methods of estimating variance components soon 

led to their being used extensively in many different applications - and especially in animal 

breeding, as dairy scientists well know. But one particular sentence in that 1953 paper fired 

the imagination of a number of statisticians namely "The relative sizes of the sampling 
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variances of estimates obtained by the methods are not known." (Henderson, 1953, p. 227) 

This led to a small flood of papers that produced expressions for calculating sampling variances 

of estimated variance components for a number of special cases. Searle (1956), which extended 

Crump (1951), Searle (1958, 1961), Mahamunulu (1963), Low (1964), Hirotsu (1966), Blischke 

(1966, 1968) and Rhode and Tallis (1969) are among those who made contributions. To users 

of variance components it was great to have estimation methods available for unbalanced data 

(for that is what Henderson had provided) but for statisticians it was essential to know 

something about the sampling distribution of the resulting estimators, or at least the sampling 

variance. Unfortunately, even on assuming normality of the random effects, there has been no 

progress at all in establishing closed-form expressions for the sampling distributions, and even 

trying to derive expressions for sampling variances turned out to be very messy algebraically. 

Those expressions are quadratic functions of the unknown variance components with 

coefficients that are incredibly miserable functions of the numbers of observations in the 

subclasses of the data. For example, for the 1-way classification, the daughters-within-sires 

illustration of Table 1 only with differing numbers of daughters from the sires, the sampling 

variance of the estimated sire variance component is 

This expression is not amenable to analysis; i.e., one cannot, no matter what the values of u~ 

and 0'~ are, study the behavior of var( u~) for variation in the nrvalues. 

These results slowly led to the realization that it is a practical impossibility to compare 

the three Henderson methods in terms of sampling variances (or error mean squares) of 

estimators. The mathematical expressions for these variances and covariances are simply too 

intractable to permit any general statements comparing one method with another - either 

mathematically or numerically. The few numerical studies that were done (e.g. Bainbridge, 

1963, Bush and Anderson, 1963, Anderson and Crump, 1967, and Anderson, 1975) are mostly 

for small hypothetical data layouts that give little or no relevant information for the kind of 

large data sets that animal breeders so often deal with. 

Along with the flurry of papers on sampling variances, there also came papers on a 

variety of other features of the Henderson methods and associated ideas. Cunningham and 

Henderson (1968), Zelen (1968), and Thompson (1969), for example, suggest extensions of 

Method III, Searle (1968) provides proof that Method II cannot be used on models that have 

interactions between fixed and random effects, and Henderson, Searle and Schaeffer (1974) 

show how Method II can be computed and that it has an essential invariance property (in 
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contrast to Searle, 1971, who wrongly asserted that it lacked such a property.) 

An interesting by-product of Henderson's contributions and influence in all this work is 

that many animal breeders, particularly those in academia, realized the necessity of having a 

knowledge of matrix algebra as a tool both for understanding the difficulties involved in 

estimating variance components from their data, and for developing methods that can handle 

those difficulties. Henderson, from the late 1950's onwards was a steady user of matrix 

methods and it seems to me that it was he who single-handedly promoted their use for animal 

breeding problems. 

5. BLUP AND HENDERSON'S MMEs 

One of Chuck's most important contributions not only for animal breeders but equally 

so for statisticians was in a paper with Oscar Kempthorne and others, Henderson eta/ (1959). 

The paper has an interesting format because it is written in three sections, each with its own 

author(s). The importance of the paper is largely in Henderson's section where the estimation 

of variance components is not the emphasis but rather the derivation of the best linear 

unbiased predictor (BLUP) of random effects. Equations now known as the mixed model 

equations (MMEs), derived by Henderson, are also given in that paper. Before discussing 

these and their connection to BLUP it is interesting to give a little history. 

During his Ph.D. training, Chuck had taken a statistics course from Alexander Mood 

wherein he first came upon the following exercise that later appeared in Mood (1950, p. 164, 

exercise 23). With small changes it is also to be found in Graybill (1963, p. 195, exercise 32), 

and in Mood, Graybill and Boes (1974, p. 370, exercise 52). 

"23. Suppose intelligence quotients for students in a particular age group are 

normally distributed about a mean of 100 with standard deviation 15. The IQ, say 

x1, of a particular student is to be estimated by a test on which he scores 130. It is 

further given that test scores are normally distributed about the true IQ as a mean 

with standard deviation 5. What is the maximum-likelihood estimate of the 

student's IQ? (The answer is not 130)." 

This exercise, with its tantalizing last sentence, played a prominent role in initially motivating 

C. R. Henderson in his lifelong contributions to the problem of estimating genetic merit of 

dairy cattle. It is the classic prediction problem of predicting the unobservable realized value 

of a random effect that is part of a mixed model. 

As the forerunner of BLUP, it is, as we know now, a procedure for estimating a 
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conditional mean, the mean of the random effect of interest, given the data. In the sire­

proving context, BLUP is the estimator of E(sily), where si is a sire effect, andy is the vector 

of data. In 1950 Henderson had given a paper on this topic at a meeting of the Institute of 

Mathematical Statistics and had referred to the technique as "estimation" of random effects, 

Henderson (1950), a phrase that, Chuck once told me, went down like a lead balloon. 

Statisticians simply do not estimate random variables. And that, along with Cochran (1951), 

is presumably and appropriately what led to the name predictor, rather than estimator. 

Brief details of the BLUP and MME ideas are as follows, given in the matrix notation 

that Henderson used so often. Begin with the model equation for a data vector y: 

y = X/3 + Zu + e . 

f3 is a vector of fixed effects, u is a vector of random effects, X and Z usually incidence 

matrices (elements of 0 or 1) and e is a residual error vector. Then with 

var(u) = D, var(e) = R, and cov(u,e) = 0 , 

V = var(y) = ZDZ' + R . 

Then the best linear unbiased estimator of X/3 is 

(12) 

where (X'v-1x)- is defined by X'V-1X(X'V-1X)-X'V-1X = X'v- 1x . And then the BLUP 

of u is 

BLUP(u) = DZ'V-1[y-BLUE(X/3)] (13) 

Henderson's development was that BLUE(X/3) and BLUP(u) can both be obtained, more 

easily than in (12) and (13), from the one set of equations 

(14) 

which he called the mixed model equations. 

Then 

X/J = BLUE(X/3) (15) 

and 

ii = BLUP(u) . (16) 

Equations (14), the mixed model equations, have several important features. First, for 
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obtaining X{J they are easier to calculate than (12): v-1 in (12) has order N, whereas 

equations (14) have order equal to the number of fixed and random effects occurring in the 

data - usually much less than N. Moreover R-1 and n-1 in (14) are usually easy to calculate, 

because R is commonly just u~I, and D is often diagonal. Second, equations (14) yield jJ and 

ii simultaneously. And then there are the two other properties of ii that are so useful to 

animal breeders: one is the good ranking property of ii, that in ranking sires by their 

corresponding values in ii one is maximizing the probability of correctly ranking the sires, as in 

Portnoy (1982); and the other useful feature of jJ and ii is that provided k' f3 is estimable (i.e., 

k' = t'X for some t'), then the best estimator of k' f3 + p'u is k' jJ + p'ii. And finally, of 

course, through their reliance on the variance components of whatever mixed model is being 

used, the MMEs provide solid motivation for wanting to estimate variance components. 

These then, are Henderson's main specific contributions to statistics: timely methods in 

the early 1950's for estimating variance components from unbalanced data; and development 

of the BLUP procedure and affiliated methodology. These contributions are substantial. No 

one before Chuck had really tackled the variance component problem; and his BLUP is 

equivalent to, and came long before, procedures in statistics in the framework of Bayes, Stein 

and shrinkage estimation that are now so widely recognized. In this context, Henderson the 

statistician, through his intense interest in animal breeding problems, was years ahead of his 

time. 

6. MAXIMUM LIKELIHOOD ESTIMATION 

Henderson's methods not only inspired other statisticians to study properties of those 

methods (e.g., sampling variances, as already discussed) but they also motivated others, in my 

opinion, to develop further methods of estimating variance components. The most important 

of these, by Hartley and J.N.K. Rao (1967), has been the application of the long-established 

method of maximum likelihood - a method of estimation which, in almost all circumstances, 

yields estimators that have a variety of optimal statistical properties: consistency, sufficiency, 

and asymptotic normality with asymptotic sampling variances being available. It is therefore 

a very attractive method of estimation. Yet, apart from Crump (1951), it was not applied to 

the variance component problem until Hartley and Rao (1967), their success undoubtedly 

being due to their matrix formulation of the problem. With the model equation 

y = X{J + Zu + e (17) 

they partitioned u into vectors ui of order qi, one for each random factor (main effect, 
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interaction or nested factor) in the data, with var( ui) = u[ Iqi 

conformably with u, to give 

And Z IS partitioned 

r 
Zu = E z.u. 

i=1 I I 

for r random factors. Moreover, on defining 

the model equation becomes 

e = u0 and I = z 0 

r 
y = X{J + E z.u .. 

i=O I I 

(18) 

(19) 

Then, on assuming normality of all the random effects and residual error term, and defining 

(20) 

the maximum likelihood equations for the variance components can be adapted (e.g., Searle, 

1979) from the Hartley - Rao equations to be written succinctly as (see Searle, 1987, Sec. 7.1a 

for notation) 
r r r 

{m trcv-1zizrv-1zjzj) hJ=O t o-J}j=o = t y'f>zizif>y }i=o (21) 

These equations may not be the easiest form for obtaining a solution, but they are well suited 

to considering what is involved in calculating maximum likelihood estimates. They have to be 

solved for the uJ-terms; and these occur in v-1, of course, and also, from (20), in f>. So the 

equations are very non-linear, and in general do not yield closed-form solutions. Nevertheless, 

the asymptotic sampling dispersion matrix of the variance component estimators is known and 

IS 

(22) 

A variant of ML is restricted (or, in Europe, residual) maximum likelihood (REML) that 

IS maximum likelihood for linear functions of the data that do not contain the fixed effects, 

"error contrasts" as Harville (1977) calls them. This results in equations 
r r 

{ tr(PZ.Z!PZ.Z~)}·. 0 { u~}. r = { y'PZ.Z!Py}·-o 
m I I J J I,J= c J J=0 c I I !-

with asymptotic dispersion matrix 
r 

var( u) ~ {m tr(PZ. Z! PZ. Z~)}· . 0 . I I J J I,J= 

(23) 

(24) 

Whichever one uses, ML or REML, the equations for the estimates have to be solved 

numerically, usually by iteration, although with the availability of very large computers, 

methods of simply evaluating the logarithm of the likelihood are coming to be investigated. 

Whatever is done, writing the necessary computer program is no easy task. Among the 
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difficulties are the following: 

(i) Using an optimum form of the equation. 

(ii) Developing an optimum iteration technique. 

(iii) Using sparse matrices of very large order. 

(iv) Having no intermediate values of V be singular. 

(v) Being sure that choice of starting values does not effect the final solution. 

(vi) Reaching a global, not local, maximum for the likelihood. 

(vii) Being certain that convergence is achieved. 

(viii) Achieving u~ > 0 and «Tf ~ 0 for i=1,· · ·,r. 

(ix) Having V be non-negative definite. 

Despite these difficulties, along with having to assume normality, the maximum 

likelihood approach is definitely coming to be accepted as an optimal approach to estimating 

variance components. Its difficult computing problems are getting to be solved both by the 

rapid development of hardware and software, and by the attention that computer scientists 

and numerical analysts are giving to the solution of non-linear equations. Furthermore, ML 

came on the scene just as some statistical dissatisfaction with the Henderson methods was 

peaking - lack of distribution properties and the inability to informatively compare methods. 

And although it is my personal opinion that to begin with Chuck Henderson was not 

convinced that ML was going to become acceptable, he had soon started working with ML, 

and after 1977 was publishing comparative studies involving ML and REML. (See, for 

example Henderson and Quaas, 1977, and Rothschild and Henderson and Quaas, 1978, and 

Rothschild and Henderson, 1979). These studies also included comparisons with the MINQUE 

estimation method of Rao (1970, 1971a,b and 1972) which requires using a set of prior values 

of the components as part of the estimation process. MINQUE estimates are then functions of 

those prior values. Brown (1976), however, shows that iterating MINQUE, which is 

computationally equivalent to REML, gives estimators that are asymptotically normal. 

At about the same time as this comparative work, Henderson wrote an unpublished 

paper, Henderson (1973) in which he shows how ML calculations can be achieved using 

elements of his MMEs, (14). This was a remarkable piece of work, allied as it was to both 

Patterson and Thompson (1971) in their original development of REML and to the later 

Dempster et a/ (1977) in their description of what is now called the EM algorithm. 

Henderson's approach, by way of his mixed model equations, avoided some of the computing 

problems listed earlier, notably that, as shown by Harville (1977), it always gives positive 

values for the estimated components. 
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7. AN OVERVIEW 

A list of C.R. Henderson's publications contains 233 items, being one book, one thesis, 

48 abstracts and 183 papers. In a rough and subjective classification of these papers I labelled 

94 of them as primarily statistical, and 41 of those as being concerned with variance 

components. With this record, it is clear that although dairy scientists will always think of 

Chuck as one of them (and quite rightly so), he was also a major player in statistics. His 

statistical contributions were, of course, in the specialized fields of linear models and variance 

components, resulting from his strong and lifelong interest in using statistics for the 

improvement of dairy farming. A dazzling lighthouse of his work was the 1953 Biometrics 

paper (Henderson, 1953). It had three major effects. First, it showed us that there were 

indeed ways of estimating variance components from unbalanced data. Second, it motivated a 

number of statisticians to look at those methods, and investigate their properties, and in so 

doing to generate interest in the mixed model. This encouraged Chuck, I believe, to continue 

promoting the mixed model, to his colleagues and his students, until (and as the 1953 paper's 

third, and possibly greatest, effect) his ideas reached a statistical audience far far wider than 

just the users of the mixed model and variance components. In the 1950's and early 1960's 

interest in the mixed model was primarily among biometricians connected with genetics. (I 

remember in 1957 being at a 6-week NSF seminar on analysis of variance that included a 

number of established statisticians who were publishing analysis of variance papers in the 

Annals of Mathematical Statistics. Several of them had never heard of random effects!). Yet 

by 1967 and in the years since, the mixed model has become a hot topic in numerous 

statistical journals. And much of this interest stems, I'm sure, from the man who got to the 

problems first: Charles Ray Henderson. 
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