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Abstract. In this paper we propose a class of infinite–dimensional
phase–type distributions with finitely many parameters as models for
heavy tailed distributions. The class of finite–dimensional distributions
is dense in the class of distributions on the positive reals and may hence
approximate any such distribution. We prove that formulas from re-
newal theory, and with a particular attention to ruin probabilities, which
are true for common phase–type distributions also hold true for the
infinite–dimensional case. We provide algorithms for calculating func-
tionals of interest such as the renewal density and the ruin probability. It
might be of interest to approximate a given heavy–tailed distribution of
some other type by a distribution from the class of infinite–dimensional
phase–type distributions and to this end we provide a calibration pro-
cedure which works for the approximation of distributions with a slowly
varying tail. An example from risk theory, comparing ruin probabilities
for a classical risk process with Pareto distributed claim sizes, is pre-
sented and exact known ruin probabilities for the Pareto case are com-
pared to the ones obtained by approximating by an infinite–dimensional
hyper–exponential distribution.

1. Introduction

The purpose of this paper is to propose a large class of (potentially) heavy

tailed distributions which allows for explicit or exact solutions to a variety of

problems in applied probability, such as e.g. ruin probabilities in risk theory

or waiting time distributions in queueing theory. The class proposed is based

on infinite–dimensional phase–type distributions. [13], [3], [14], [6]

A phase–type distribution of finite dimension is the distribution of the ab-

sorption time in a finite state–space Markov jump process with one absorbing

state and the rest being transient. The class of phase–type distributions is

dense in the class of distributions on the positive reals, see e.g. [5]. The
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quality of the resulting approximation can be improved if a Markov process

was allowed to have an infinite number of states (stages); we are allowing

an infinite number of stages in this paper. In general, this would involve

an infinite number of parameters but here we shall restrict our attention to

models with only a finite number of freely varying parameters (but, generally,

infinite state space).

Phase–type distributions of finite dimension, i.e. where the underlying

Markov jump process lives on a finite state–space, have been employed in a

variety of contexts in applied probability since they often provide exact, or

even explicit, solutions to important problems in complex stochastic models.

This is for example the case in renewal theory where the renewal density is

known explicitly, in queueing theory where waiting time distributions are of

phase–type if the service times are such or in risk theory where the deficit

at ruin is phase–type distributed if the claims sizes are such.

In this paper, we shall prove that many formulas which are known explic-

itly as being exact for the case of finite–dimensional phase–type distributions,

holds true also for a class of infinite–dimensional phase–type distributions,

and we shall provide methods for their numerical evaluation since, due to

their infinite dimension, straightforward calculations are not feasible.

Our method could be illustrated by applications to any of the above men-

tioned areas of interest. In this paper, however, we are mainly concerned

with an application of our method to the ruin probabilities in risk theory,

when the claim sizes have heavy tails. This is due to the fact that the ruin

probabilities are very tail sensitive.

Specifically, we are concerned with a problem which in a general formu-

lation, may be described as follows. Let X1, X2, . . . be a sequence of i.i.d.

random variables with a common law F , concentrated on (0,∞). Let N

be a homogeneous Poisson process on (0,∞) independent of the sequence

X1, X2, . . ., with rate β. Assume that EX1 <∞ and, moreover, βEX1 < 1.

Then the stochastic process

(1.1) S(t) =

N(t)∑
j=1

Xj − t, t ≥ 0 ,
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drifts to −∞ as the time grows, and the probability

(1.2) Ψ(u) = P
(
sup
t≥0

S(t) > u
)
, u > 0 ,

is the object we are interested in calculating. In actuarial applications, as-

suming a deterministic unit rate stream of premiums paid to an insurance

company, and if the claims arrive according to the Poisson process N , and

the size of the jth claim is Xj , then Ψ(u) is the probability that the excess

of submitted claims over the premiums ever exceeds the initial capital u of

the company. This is, therefore, the (infinite horizon) ruin probability. See,

for instance, [11]. However, quantities of the same type as Ψ(u) are known

to represent the tail of the stationary workload in a stable queue (see e.g.

[7]), and appear in many other applications.

Calculating the ruin probability is, therefore, of the utmost importance,

and studying this problem has been a source of much research. We refer

the reader to [4] and [11] for some detailed accounts. Many of the known

results are asymptotic in nature, that is, they describe the behavior of the

ruin probability as the level u grows to infinity. In this paper we describe a

general procedure that, in principle, allows to calculate the ruin probability

for any level u. We devote our attention to the case of heavy tailed claim

sizes, however, we expect the procedure to be applicable when the tails are

lighter as well.

We provide a method for calibrating the approximating infinite phase–type

distribution to a claim size distribution F which has a regularly varying tail.

That is,

(1.3) F (x) := 1− F (x) = x−φL(x), x > 0

for some φ > 1. Here L is a slowly varying at infinity function. That means

that L never vanishes and L(cx)/L(x) → 1 as x → ∞ for any c > 0. This

is a very common class of models for heavy tailed phenomena; we refer the

reader to [19] for an introduction to regular variation and to [9] for an en-

cyclopedic treatment. Calculating the ruin probability for regularly varying

claims has attracted much attention. An asymptotic result for the subex-

ponential case, including the regularly varying case as a special situation,
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has been established by [12]. The effect on the asymptotics of dependence

between claims is studied e.g. in [15] and [2].

For practical applications it is, of course, important to have a way to

estimate the ruin probability for moderate levels u as well. This has turned

out to be difficult. Practical computation algorithms have been developed for

claim sizes with different versions of the pure Pareto distribution; see [17, 18]

and [1]. Our approach for calculating the ruin probability will apply to a

wide range of levels of u and to a wide variety of claim size distributions. The

main idea is to understand what happens when the claim size distribution

is an infinite dimensional phase–type distribution. We provide an algorithm

for calibrating a distribution from this class to any other distribution with

a regular varying tail. By comparing the results we obtain in the case of

Pareto distributed claims with the previously published numbers we see that

our approach works well up to reasonable high levels of u.

A number of papers have addressed the issue of approximating heavy

tailed distributions using mixtures. The paper [13] proposes the use of a

finite mixture of exponential distributions with a logarithmic scaling of their

means. A similar approach was applied in [3] to approximate arrival pro-

cesses with long range dependence. In [14] an infinite dimensional mixture of

exponential distributions is used to model heavy tailed data and an example

of application from queueing theory is provided. The paper [6] applies the

model of [14] in the context of the GI/M/1 queue. One major difference

from the previous papers is our systematic use of phase–type methodology

and carrying through calculations in infinite dimensions without previous

truncation.

The paper is organized as follows. In the Section 2 we describe the general

construction of the class of infinite dimensional phase–type distributions and

prove some of the basic results concerning renewal theory and with applica-

tions to risk theory in Section 3. We describe the calibration algorithm in

Section 4. In Section 4.3 we test the algorithm on Pareto distributed claims

and compare our results with the previously published results.
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2. Infinite dimensional phase–type distributions

We start with presenting some background on phase-type distributions.

For further details the reader can consult [16].

Consider a Markov jump process X = {Xt}t≥0 on the finite state space

E = {∆, 1, 2, ..., p}, where states 1, 2, ..., p are transient and state ∆ absorb-

ing. Then X has an intensity matrix Q of the form

(2.1) Q =

(
0 0
t T

)
,

where T is a p × p sub–intensity matrix of jump intensities between the

transient states, t is a p–dimensional column vector of intensities for jumping

to the absorbing state and 0 is a p–dimensional zero row vector. Let α =

(α1, ..., αp) denote a p–dimensional row vector of initial probabilities, αi =

P(X0 = i), i = 1, ..., p. Let e = (1, 1, 1, · · · , 1)′ be the p dimensional column

vector of ones. We assume that αe = 1, i.e. with probability 1 the process

initiates in one of the transient states. Since the rows of an intensity matrix

sum to 0, t = −Te. Let τ = inf{t > 0|Xt = p + 1} denote the time

until absorption. Then we say that τ has a phase–type distribution with

parameters (α,T) and we write τ ∼ PH(α,T).

Phase–type distributions generalize mixtures and convolutions of expo-

nential distributions, and are widely used in applied probability due to their

tractability. If τ ∼ PH(α,T) then the density of τ is given by

(2.2) fτ (x) = αeTxt, x > 0 ,

where exp(Tx) =
∑∞

n=0 Tnxn/n! denotes the usual matrix–exponential. The

survival function of τ is given by

F τ (x) = 1− Fτ (x) = αeTxe, x ≥ 0 ,

where Fτ denotes the distribution function of τ , and the Laplace transform

of τ is given by

Ee−sτ = α (sI−T)−1 t, s ≥ 0 ,

where I denotes the p × p identity matrix. The nth order moment is given

by

E(τn) = (−1)nn!αT−ne.
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Similarly, we can consider an infinite dimensional Markov jump process

on the state space E = {∆} ∪ {1, 2, .....}, where states 1, 2... are transient

and the state ∆ is absorbing. It is assumed that absorption occurs with

probability one. We define an infinite dimensional phase–type distribution

in the same way as for a finite state space, namely the time until absorption.

We let π = (π1, π2, ...) be the initial probabilities; these are concentrated on

the transient states (i.e. π∆ = 0). We still write the intensity matrix Λ of

the Markov jump process in the same way as for the finite dimensional case,

namely

Q =

(
0 0
λ Λ

)
,

but now Λ is a doubly infinite matrix.

The question which we may raise is to which extent all of the above for-

mulas generalize to the infinite dimensional case. A sufficient condition for

matrix–exponentials of infinite matrices to be well–defined is requiring the

matrices to be bounded, which shall indeed be the case for our applications.

Below is an example of infinite–dimensional phase–type distributions we

will consider. Let Y ∼ PH(α,T) be a random variable with a (finite

dimensional) phase-type distribution; by (2.2) it has a density given by

g(x) = αeTxt, x > 0. Here and in the sequel we still use the notation

(2.1).

Let q = (q1, q2, . . .) be a vector of probabilities on N. We define a new

probability law on (0,∞) by

F̃ (x) =

∞∑
i=1

qiP (Y ≤ x/i), x > 0 .

It is easy to see that this is an infinite dimensional phase-type distribution

with a representation of the form

(2.3) Λ = diag(T1,T2, ...) =


T1 0 0 0 ...
0 T2 0 0 ...
0 0 T3 0 ...
0 0 0 T4 ...
...

...
...

...
. . .

 ,

where Ti = T/i and ti = −Tie = t/i, i = 1, 2, . . .. For convenience we

denote the infinite vector of the intensities of transition to the absorbing
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state by λ =
(
t1, t2, . . .

)′. The density of F is then given by

(2.4) f(x) =
∞∑
i=1

qiαe
Tixti, x > 0 .

This infinite dimensional phase–type distribution can be thought of as having

a representation (π,Λ), with π = (q⊗α), the notation q⊗α meaning that

the initial probability of the jth position in the ith block is equal to qiαj .

Correspondingly, the density f in (2.4) can be written compactly as

f(x) = (q⊗α)eΛxλ, x > 0 ,

and the distribution function F̃ as

(2.5) F (x) = 1− (q⊗α)eΛxe∞, x ≥ 0 .

Here e∞ is the infinite dimensional column vector of ones. The Laplace

transform of this infinite dimensional phase-type distribution is given by

(q⊗α) (sI∞ −Λ)−1 λ, s ≥ 0 ,

where I∞ is the infinite dimensional identity matrix. The nth moment, if it

exists, is given by n!(q⊗α)(−Λ)−ne∞.

Example 2.1. Consider g(x) = x29/29! e−x, an Erlang distribution with

30 stages. Then T is a 30–dimensional matrix with tii = −1 and ti,i+1 = 1

and all other entrances zero. α = (1, 0, 0, ..., 0) (dimension 30) and t′ =

(0, 0, 0, ..., 0, 1) (dimension 30). We choose qi = i−1.5/ζ(1.5), the Zeta distri-

bution, and construct f as in (2.4). The following figure shows the original

Erlang density versus f .

Example 2.2. Though the basic construction uses phase–type distributions,

we can easily generalize the construction to distributions having a rational

Laplace transform in general. Most applications will go through under this

larger class, as is certainly the case for the ruin formulas in the next section.

Let g(x) = (1 + 1
4π2 )(1 − cos(2πx))e−x. Then g is not a phase type distri-

bution but a distribution with a rational Laplace transform which may be

represented as a matrix–exponential distribution in the following way

α = (1, 0, 0) T =

 0 −1− 4π2 1 + 4π2

3 2 −6
2 2 −5

 , t =

 0
1
1
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Figure 1. Erlang density versus a heavy tailed modification
based on the same Erlang distribution and the ζ–distribution

We choose qi = i−1.5/ζ(1.5), the Zeta distribution, and construct f as in

(2.4) . The following figure shows the original matrix–exponential density

versus its heavy–tailed version f .

3. Renewal theory, ladder heights and ruin probabilities

If Λ is a bounded operator then so is Λ+λ(q⊗α). The matrix Λ+λ(q⊗α)

is the intensity matrix (defective or not) of the Markov jump process obtained

by concatenating the underlying Markov jump processes of the corresponding

(infinite dimensional) phase–type renewal process. Hence

(q⊗α)e(Λ+λ(q⊗α))x

is the distribution at time x of the concatenated Markov jump process. This

distribution is of crucial interest for calculating various functionals of inter-

est. Let v be an infinite–dimensional vector and consider

fv(x) = (q⊗α)e(Λ+λ(q⊗α))xv.

If v = λ, then fv(x) equals the renewal density. If the renewal process is

terminating (Λ+λ(q⊗α) being defective), then for v = e, fv(x) equals the

probability that the renewal process will ever reach time x. If the renewal
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Figure 2. Matrix–exponential distribution versus a heavy–
tailed modification of the same. The broken line in the heavy
tailed version is caused by numerical difficulties.

process is not defective, this probability is of course equal to one. If v =

eΛyλ, then y → fv(x) = fv(x, y) equals the over–shoot density in the

renewal process, i.e. the density of the time until the next arrival after time

x. The following theorem provides an algorithm for the calculation of the

functional fv(x).

Theorem 3.1.

fv(x) = e−θx
∞∑
n=0

κn
(θx)n

n!
,

where

κn = (q⊗α)
(
I + θ−1(Λ + λ(q⊗α)

)n v.

The κn’s can be calculated by the following recursion scheme:

κn+1 =

n∑
i=0

θ−1(q⊗α)(I + θ−1Λ)iλκn−i + (q⊗α)(I + θ−1Λ)n+1v,

with initial condition κ0 = (q⊗α)v

Proof. Since the diagonal elements of Λ are bounded, we can choose a θ > 0

such that I+ θ−1(Λ +λ(q⊗α)) is a sub–transition matrix. With such θ we
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write

Λ + λ(q⊗α) = −θI + θ
(
I + θ−1(Λ + λ(q⊗α)

)
,

so that

e(Λ+λ(q⊗α))u = e−θue(I+θ−1(Λ+λ(q⊗α)))θu .

Therefore

fv(x) = (q⊗α)e−θu
∞∑
n=0

(
I + θ−1(Λ + λ(q⊗α))

)n (θu)n

n!
v

= e−θu
∞∑
n=0

κn
(θu)n

n!
.

Concerning the recursion scheme, we have that

κn+1 = (q⊗α)
(
I + θ−1 (Λ + λ(q⊗α))

)n+1 v

= (q⊗α)
(
I + θ−1 (Λ + λ(q⊗α))

) (
I + θ−1 (Λ + λ(q⊗α))

)n v

= θ−1(q⊗α)λκn + (q⊗α)
(
I + θ−1Λ

) (
I + θ−1 (Λ + λ(q⊗α))

)n v

= θ−1(q⊗α)λκn + θ−1(q⊗α)
(
I + θ−1Λ

)
λκn−1

+(q⊗α)
(
I + θ−1Λ

)2 (I + θ−1 (Λ + λ(q⊗α))
)n−1 v

=
n∑
i=0

θ−1(q⊗α)
(
I + θ−1Λ

)i
λκn−i + (q⊗α)

(
I + θ−1Λ

)n+1 v .

�

Consider the claim surplus process {S(t)}t≥0 in (1.1) with i.i.d. claims

with the infinite–dimensional phase–type distribution whose density is given

by (2.4). Let τ+ = τ+(1) = inf{t > 0|S(t) > 0} and τ+(n + 1) = inf{t >
τ+(n)|S(t) > S(τ+(n))}, n ≥ 1 denote the successive ladder epochs for

the ascending ladder process {S(τ+(n))}n≥1. This is a terminating renewal

process since the ladder height distribution is defective. The density of this

distribution is g+(x) = β(1− F (x)) (see e.g. [5]), x > 0. Thus by (2.5)

g+(x) = β(q⊗α)eΛxe = β
∞∑
i=1

qiαe
Tixe, x > 0.

Rewriting for x > 0

g+(x) = β(q⊗α)Λ−1eΛxΛe

=
(
−β(q⊗α)Λ−1

)
eΛxλ,
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we see that the ascending ladder height distribution, though defective, is

itself of the infinite dimensional phase–type, with a representation (π+,Λ),

where π+ = −β(q⊗α)Λ−1. It is defective because these initial probabilities

do not sum to one.

Since Λ is block diagonal, the ascending ladder height density can also be

written as

g+(x) = −β
∞∑
i=1

qiαT−1
i eTixti = −β

∞∑
i=1

qiαT−1eTixt.

Thus, if ĝ is the density of the finite dimensional defective phase–type dis-

tribution PH(α+,T), where α+ = −βαT−1, then

g+(x) =
∞∑
i=1

qiĝ(x/i), x > 0 .

In fact, ĝ is the ascending ladder height density corresponding to the finite

dimensional phase–type distribution with the representation (α,T).

Let Ĝ denote the distribution function corresponding to ĝ. Then the total

mass of the defective distribution G+ corresponding to g+ is

||G+|| =
∫ ∞

0
g+(x)dx =

∞∑
i=1

iqi‖Ĝ‖ = µqα+e,

where µq is the mean of the discrete distribution q. Of course we also have

||G+|| = π+e.

Since the ascending ladder process is terminating, there is a finite (geo-

metrically distributed) number of ascending ladder epochs. Let M denote

the sum of all the ladder heights (i.e. the life of the terminating renewal

process). Then M also has an infinite dimensional phase–type distribution

with a representation (π+,Λ +λπ+). The ruin occurs if and only if M > u,

so the corresponding ruin probability is given by

(3.1) Ψ(u) = P(M > u) = π+e
(Λ+λπ+)ue.

Note, further, that the random variable M has a compound geometric

distribution, because it can be represented as M = G1 + ... + GK , where

K is a geometric variable with parameter δ = ||G+||, independent of an

i.i.d. sequence G1, G2, ... with the common law G+/δ. We will find this

interpretation useful in the sequel.
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We may use Theorem 3.1 with v = e to compute (3.1). However, using

the special structure of Λ we can further refine the algorithm to the following

κ0 = βα(−T)−1
∞∑
j=1

jqje ,

κn = θ−1βα
n−1∑
i=0

∞∑
j=1

qj
(
I + (jθ)−1T

)i eκn−1−i

+βα(−T)−1
∞∑
j=1

jqj
(
I + (jθ)−1T

)n e, n ≥ 1 .

The computations for the ruin probability Ψ(u) developed above work well

up to reasonably high levels u. Estimates of ruin probabilities for reserves u

larger than those that could be handled by the proposed recursion scheme,

might be carried out by the asymptotic expansions developed by [8]. We re-

produce this expansion here. Suppose that the claim sizes have a distribution

with regular varying tails with index φ > 1, as in (1.3).

Let m < φ − 1 be a nonnegative integer. If m ≥ 2, assume that the

claim size distribution tail F has, for large values of its argument, m − 1

derivatives, with the m − 1th derivative regularly varying at infinity with

exponent −(φ+m−1). Note that about any distribution F used in practice

with φ > 3 satisfies this assumption with m = dφe− 2. Let ρ = βEX; recall

that we are assuming that ρ < 1. Denote

H(x) =
1

EX

∫ x

0
F (y) dy, x ≥ 0 ,

the stationary renewal distribution function corresponding to F . Note that

by the Karamata theorem, H(u) = 1−H(u) is regularly varying with expo-

nent −φ+ 1; see [19]. Then by Proposition 4.5.1 in [8],

(3.2) Ψ(u) = ρ(1− ρ)

m∑
j=0

γj(ρ)
djH(u)

duj
+ o
(
u1−mF (u)

)
as u→∞. Here

γj(ρ) =
1

j!

dj

dθj

(
1− ρLH(θ)

)−2∣∣∣
θ=0

, j = 0, . . . ,m ,

with

LH(θ) =

∫ ∞
0

e−θxH(dx), θ ≥ 0
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being the Laplace transform of H. The first few values of γj(ρ) are

γ0(ρ) =
1

(1− ρ)2
, γ1(ρ) = − 2ρ

(1− ρ)3
m1,H ,

γ2(ρ) =
ρ

(1− ρ)3
m2,H +

3ρ2

(1− ρ)4
(m1,H)2,

γ3(ρ) = −
(

ρ

3(1− ρ)3
m3,H +

3ρ2

(1− ρ)4
m1,Hm2,H +

4ρ3

(1− ρ)5
(m1,H)3

)
,

γ4(ρ) =
ρ

12(1− ρ)3
m4,H +

ρ2

(1− ρ)4
m1,Hm3,H +

3ρ2

4(1− ρ)4
(m2,H)2

+
6ρ3

(1− ρ)5
(m1,H)2m2,H +

5ρ4

(1− ρ)6
(m1,H)4 .

Here

mj,H =
EXj+1

(j + 1)EX
, j = 0, . . . ,m .

4. Calibration to a known distribution with a regularly

varying tail

Let X be a generic claim size random variable whose law is the claim

size distribution F , which is assumed to have a regularly varying tail with

exponent −φ < −1. We assume that EX > 1; any other case can be reduced

to this case by scaling the problem.

Let Y be another (positive) random variable with EY φ = 1. In the algo-

rithm Y will have a phase–type distribution, of the type described in Section

2. For now it is enough to assume that Y has a significantly lighter tail than

X does; we will be more specific in a moment. We start by approximating

the law F of X by a suitable mixture of the scaled versions of Y .

For i = 1, 2, . . . let

qi = P (i− 1 < X ≤ i) = F (i)− F (i− 1) .

Next, let

I = max

min
{
j : jF (j) +

∞∑
i=j+1

iqi ≥ EX/EY
}
,

min
{
j : F (j) +

∞∑
i=j+1

iqi ≤ EX/EY
} ,
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and for s ∈ [0,∞] denote

pi(s) =
qis

i∑I
j=1 qjs

j
F (I), i = 1, . . . , I .

Then

F̃s(x) =

I∑
i=1

pi(s)P (Y ≤ x/i) +

∞∑
i=I+1

qiP (Y ≤ x/i), x > 0 ,

defines a probability distribution on (0,∞). If Xs is a generic random vari-

able with this law, we see, by the definition of I, that

lims→0EXs =
(
F (I) +

∑∞
i=I+1 iqi

)
EY ≤ EX,

lims→∞EXs =
(
IF (I) +

∑∞
i=I+1 iqi

)
EY ≥ EX .

Therefore, there is a unique s∗ ∈ [0,∞] such that EXs∗ = EX. The approx-

imating claim size law is defined by

(4.1) F̃ (x) = Fs∗(x), x > 0 ,

and we denote by X̃ a generic random variable with this distribution. By

construction, EX̃ = EX. The following proposition shows that the asymp-

totic tail of X̃ matches the tail of X as well.

Proposition 4.1. (i) Assume that EY φ+ε < ∞ for some ε > 0, and that

EY φ = 1. Then

lim
x→∞

P (X̃ > x)

P (X > x)
= 1 .

(ii) Assume, additionally, that Y has a bounded density g, satisfying for

some p > φ+ 1,

(4.2) g(x) ≤ Ax−p for some A > 0, all x > 0.

Then X̃ has a density f̃ satisfying

lim
x→∞

f̃(x)

φx−1P (X > x)
= 1 .

Proof. Denote by D a discrete random variable with

P (D = i) =

{
pi(s∗) for i = 1, . . . , I,
qi for i = I + 1, . . ..

Note that for x > I,

P (D > x) = P (X > dxe) ∼ P (X > x)
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as x→∞. Since X̃ d
=DY , with D and Y independent in the right hand side,

we obtain by the Breiman lemma (see [10]), that

P (X̃ > x) ∼ EY φP (D > x) ∼ P (X > x)

as x→∞. This establishes the claim of part (i).

For part (ii), existence of a density f̃ follows from existence of the density

of Y . We will use the results in Section 4.4 of [9]. To this end we write the

density f̃ as a Mellin–Stieltjes convolution

f̃(x) =
1

x

∫ ∞
0

k(x/y)U(dy) =
1

x

(
k
S∗ U
)

(x), x > 0 ;

see (4.0.3) in [9]. Here k(x) = xg(x), x > 0, while U is a non-decreasing

right continuous function on (0,∞) defined by U(x) = −P (D > x), x > 0.

We check the conditions of Theorem 4.4.2 in [9]. Choose two real numbers,

σ and τ , such that

−(p− 1) < σ < −φ < 0 < τ < 1 ,

and consider the amalgam norm

‖k‖σ,τ =

∞∑
n=−∞

max
(
e−σn, e−τn

)
sup

en≤x≤en+1

|k(x)| .

Note that
∞∑
n=0

max
(
e−σn, e−τn

)
sup

en≤x≤en+1

|k(x)| =
∞∑
n=0

e−σn sup
en≤x≤en+1

|k(x)|

≤ A

∞∑
n=0

e−σnen+1e−pn <∞

by (4.2) and the choice of σ. Next, denoting by M an upper bound on the

density g, we have
0∑

n=−∞
max

(
e−σn, e−τn

)
sup

en≤x≤en+1

|k(x)| =
0∑

n=−∞
e−τn sup

en≤x≤en+1

|k(x)|

≤ M

0∑
n=−∞

e−τnen+1 <∞

by the choice of τ . We conclude that ‖k‖σ,τ < ∞. Finally, U(0+) = −1 =

O(xσ) as x→ 0+. Therefore, we may apply Theorem 4.4.2 in [9] to conclude
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that, as x→∞,

f̃(x) ∼ (−α)

(
1

x
U(x)

)∫ ∞
0

u−α−1k(1/u) du

= φx−1EY φP (D > x) ∼ φx−1P (X > x) ,

as required. �

In our algorithm we choose Y above to be a phase–type distribution, dis-

cussed in Section 2. Note that, in particular, all the conditions of Proposition

4.1 hold.

A useful conclusion from Proposition 4.1 is the fact that a subclass of

infinite–dimensional phase–type distributions is dense within the class of all

distrbutions in (0,∞) with regularly varying tails, both in the weak topol-

ogy, and in a tail–related topology, that we presently explain. Let F be a

probability law on (0,∞), and (ti) a dense countable subset of (0,∞) con-

sisting of continuity points of F . Let (wi) be an arbitrary countable family

of positive numbers adding up to 1. Then a sequence (Gn) of probability

laws on (0,∞) converges weakly to F if and only if

d0(Gn, F ) :=
∑
i

wi
∣∣Gn(ti)− F (ti)

∣∣→ 0

as n→∞. In order to show that the approximation works well in the tails

in the distribution, we would like to to show convergence using the distance

(4.3) d1(Gn, F ) :=
∑
i

wi

(∣∣∣∣1− 1− F (ti)

1−Gn(ti)

∣∣∣∣+

∣∣∣∣1− 1−Gn(ti)

1− F (ti)

∣∣∣∣) .

Clearly, d1(Gn, F ) → 0 still implies weak convergence, but it also implies

that the convergence to F is good “in the tails” as well.

Consider the class I of infinite–dimensional phase-type distributions with

a representation of the form, generalizing that in (2.3):

(4.4) Λ =



T0 0 0 0 0 ...
0 T1 0 0 0 ...
0 0 T2 0 0 ...
0 0 0 T3 0 ...
0 0 0 0 T4 ...
...

...
...

...
...

. . .


,

where Ti, i ≥ 1 are as in in (2.3), and T0 is a finite sub–intensity matrix. We

claim that for any probability law F on (0,∞) with a regularly varying tail
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with exponent −φ < −1, any dense countable subset (ti) of (0,∞) consisting

of continuity points of F , we can find a sequence (Gn) of laws in I converging

to F in the distance d1 in (4.3).

To see this, let X be a random variable with distribution F . Let θ > 0

be large enough so that P (X ≤ θ) > 0. By Proposition 4.1 there is a

random variable X̃θ with an infinite–dimensional phase-type distributions

with a representation of the form (2.3) such that

lim
x→∞

P (X̃θ > x)

P (X > x)
= P (X > θ) .

Let Yθ have the conditional law of X given X ≤ θ. By Theorem 4.2 in [5], for

any (small) ε > 0 we can find a random variable Ỹθ,ε with a finite phase–type

distribution such that both

d0(Yθ, Ỹθ,ε) ≤ ε

and

E(Yθ,ε)
2φ ≤Mθ

for some finite Mθ independent of ε. If we define (the law of) a random

variable Zθ,ε by

the law of Zθ,ε =

{
the law of Ỹθ,ε with probability P (X ≤ θ)
the law of X̃θ with probability P (X > θ),

then the law of Zθ,ε is in I, and it is straightforward to check that, by

taking θ large enough, and ε > 0 small enough, we can make the law of Zθ,ε
arbitrarily close to the law F of X in the distance d1 in (4.3).

Our next result shows how to calculate the non–integer moments of phase–

type distributions.

Theorem 4.2. Let X ∼ PH(α,S). For any real φ > 1, the non-integer

moments E
(
Xφ
)
can be calculated using the formula

E
(
Xφ
)

= Γ(φ+ 1)θ−φα
∞∑
i=0

(
−φ− 1

i

)
(−K)ik

where S = θK− θI, k = θ−1s and θ, K are chosen such that spectral radius

of K is less than 1. The formula can be restated as

E
(
Y φ
)

= Γ(φ+ 1)α(−S)−φe.
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Proof. First we choose a positive θ with a value that is at least as large as the

absolute values of all eigenvalues of S. The matrix I + θ−1S will then have

all eigenvalues within the unit circle, as all eigenvalues of S have negative

real part. Additionally we define k = θ−1s. We then write

eSy = e(θK−θI)y = e−θy
∞∑
i=0

(Kθy)i

i!

and use this expression when evaluating the moments.

E
(
Y φ
)

= α

∫ ∞
0

yφ
∞∑
i=0

(Kθy)i

i!
e−θydys = α

∞∑
i=0

Ki

i!
θ−φ

∫ ∞
0

θ(θy)φ+ie−θydy
s
θ

= α
∞∑
i=0

Ki

i!
θ−φΓ(φ+ 1 + i)

s
θ

= θ−φα
∞∑
i=0

Ki

i!
Γ(φ+ 1 + i)k

= Γ(φ+ 1)θ−φα
∞∑
i=0

∏i
`=1(−φ− `)

i!
(−K)ik

= Γ(φ+ 1)θ−φα
∞∑
i=0

(
−φ− 1

i

)
(−K)ik,

which converges for SP(K) < 1, where SP - the spectral value - is defined

as the largest absolute value of the eigenvalues of K. For the second part of

the theorem we apply a well-known result. For SP(K) < 1 it is well-known

that

(I + K)r =
∞∑
i=0

(
r

i

)
Ki = I + rK +

r(r − 1)

2!
K2 . . .

so

E
(
Y φ
)

= Γ(φ+ 1)θ−φ(I−K)−φ−1k.

Now

(−S)r = (θ(I−K))r = θr(I−K)r

and we get

E
(
Y φ
)

= Γ(φ+ 1)α(−S)−φe.

�

In the next example we examine how our calibration and ruin probability

evaluation procedures for certain infinite dimensional phase–type distribu-

tions combine in the case of Pareto distributed claims. We have chosen this
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u approximation Ramsay Deviation
0 0.2001 0.2000 0.1%
1 0.2561 0.2551 0.4%
5 0.3593 0.3523 2.0%
10 0.4226 0.4148 1.9%
30 0.5405 0.5349 1.0%
50 0.5997 0.5954 0.7%
100 0.6793 0.6765 0.4%
500 0.8321 0.8313 0.1%
1000 0.8779 0.8774 0.1%
Table 1. Pareto claims, ρ = 0.80 φ = 1.5

example because exact calculations of the ruin probabilities are available in

this case, due to [17, 18].

Example 4.3. Consider a generic claim size X having a Pareto distribution

with tail index φ > 1, whose survival function is given by

P(X > x) =

(
1 +

x

(φ− 1)µX

)−φ
for x > 0 and where µX is the mean of X. Let, further, Y have the expo-

nential distribution with an intensity such that

E(Y φ) = 1.

We apply the calibration procedure descrubed in Section 4 and approximate

the distribution of X as a suitable mixture of scaled versions of Y .

Having calibrated the approximate claim size distribution suitable for an

application of Theorem 3.1, we use (3.1) to calculate the correponding ruin

probability (see the discussion following (3.1)). In Tables 1 – 4 we compare

the obtained approximate ruin probability with the exact (for Pareto claims)

numbers of [17, 18]. The comparison is performed for a risk reserve process

with unit premium rate in terms of the expected net claim amount per

unit time, ρ, and the parameter φ of the Pareto distribution. The results

show that the approximate results are reasonably close to the true value.

Interstingly, the largest deviation is found for moderately large values of the

initial reserve u.
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u approximation Ramsay Deviation
0 0.0501 0.0500 0.2 %
1 0.0674 0.0669 0.7 %
5 0.1031 0.1003 2.8 %
10 0.1287 0.1251 2.9 %
30 0.1872 0.1833 2.1 %
50 0.2238 0.2200 1.7 %
100 0.2845 0.2809 1.3 %
500 0.4713 0.4685 0.6 %
Table 2. Pareto claims, ρ = 0.95 φ = 1.5

u approximation Ramsay Deviation
0 0.2000 0.2000 0.0 %
1 0.3097 0.3090 0.2 %
5 0.5201 0.5050 3.0 %
10 0.6446 0.6273 2.8 %
30 0.8314 0.8217 1.2 %
50 0.8949 0.8895 0.6 %
100 0.9495 0.9448 0.5 %
500 0.9913 0.9913 0.0 %
1000 0.9958 0.9958 0.0 %
Table 3. Pareto claims, ρ = 0.80 φ = 2.0

u approximation Ramsay Deviation
0 0.0500 0.0500 0.0 %
1 0.0847 0.0845 0.2 %
5 0.1693 0.1628 4.0 %
10 0.2399 0.2294 4.6 %
30 0.4160 0.4010 3.7 %
50 0.5255 0.5104 3.0 %
100 0.6872 0.6747 1.9 %
500 0.9425 0.9409 0.2 %
1000 0.9758 0.9755 0.0 %
Table 4. Pareto claims, ρ = 0.95 φ = 2.0



RUIN PROBABILITIES FOR HEAVY TAILED CLAIMS 21

References

[1] H. Albrecher and D. Kortschak. On ruin probability and aggregate claim

representation for Pareto claim size distributions. Insurance: Mathemat-

ics and Economics, 45:362–373, 2007.

[2] T. Alparslan and G. Samorodnitsky. Ruin probability with certain sta-

tionary stable claims generated by conservative flows. Advances in Ap-

plied Probability, 39:360–384, 2007.

[3] Allan T. Andersen and Bo Friis Nielsen. A Markovian Approach for

Modeling Packet Traffic with Long Range Dependence. IEEE JSAC,

16(5):719–732, 1998.

[4] S. Asmussen. Ruin Probabilities. World Scientific Publishing Company,

2000.

[5] S. Asmussen. Applied Probability and Queues. Springer, New York,

second edition, 2003.

[6] Søren Asmussen, Manfred Jobmann, and Hans-Peter Schwefel. Exact

Buffer Overflow Calculations for Queues via Martingales. Queueing

Systems, 42:63–90, 2002.

[7] F. Baccelli and P. Brémaud. Elements of Queueing Theory. Palm–

Martingale Calculus and Stochastic Recurrences. Springer–Verlag,

Berlin, 1994.

[8] P. Barbe and W. McCormick. Asymptotic Expansions for Infinite

Weighted Convolutions of Heavy Tail Distributions and Applications.

Number 922 in Memoirs of the American Mathematical Society. Amer-

ican Mathematical Society, Providence, 2009.

[9] N.H. Bingham, C.M. Goldie, and J.L. Teugels. Regular Variation. Cam-

bridge University Press, Cambridge, 1987.

[10] L. Breiman. On some limit theorems similar to the arc-sine law. Theory

of Probability and Its Applications, 10:323–331, 1965.

[11] P. Embrechts, C. Klüppelberg, and T. Mikosch. Modelling Extremal

Events for Insurance and Finance. Springer-Verlag, Berlin, 2003. 4th

corrected printing.



22 M. BLADT, B. NIELSEN, AND G. SAMORODNITSKY

[12] P. Embrechts and N. Veraverbeke. Estimates for the probability of

ruin with special emphasis on the possibility of large claims. Insurance:

Mathematics and Economics, 1:55–72, 1982.

[13] Anja Feldmann and Ward Whitt. Fitting mixtures of exponentials to

long-tail distributions to analyze network performance models. Perfor-

mance Evaluation, 31:245–279, 1998.

[14] Michael Greiner, Manfred Jobmann, and Lester Lipsky. The importance

of power-tail distributions for modeling queueing systems. Operations

Research, 47(2):313–326, mar-apr 1999.

[15] T. Mikosch and G. Samorodnitsky. The supremum of a negative drift

random walk with dependent heavy–tailed steps. Annals of Applied

Probability, 10:1025–1064, 2000.

[16] M. Neuts. Matrix-Geometric Solutions in Stochastic Models: An Algo-

rithmic Approach. Dover Publications, revised edition, 1995.

[17] C. Ramsay. A solution of the ruin problem for Pareto distributions.

Insurance: Mathematics and Economics, 33:109–116, 2003.

[18] C. Ramsay. Exact waiting times and queue size distributions for equilib-

riumM/G/1 queues with Pareto service. Queueing Systems, 37:147–155,

2007.

[19] S.I. Resnick. Extreme Values, Regular Variation and Point Processes.

Springer-Verlag, New York, 1987.

Institute for Applied Mathematics and Systems, National University of
Mexico, A.P. 20-726, 01000 Mexico, D.F., Mexico

E-mail address: bladt@sigma.iimas.unam.mx

Informatics and Mathematical Modeling, Technical University of Den-
mark, DK-2800 Kongens Lyngby, Denmark

E-mail address: bfn@imm.dtu.dk

School of Operations Research and Information Engineering, and Depart-
ment of Statistical Science, Cornell University, Ithaca, NY 14853, USA

E-mail address: gs18@cornell.edu


